

C H A P T E R 5

5

A
O

C
E

 Tem
plates

AOCE Templates 5

This chapter describes how to expand the capabilities of the AOCE Catalogs Extension to
the Finder. The AOCE Catalogs Extension (CE) allows users to use the Finder’s
iconographic interface to search through AOCE catalogs, examine records, and edit
records. You can provide extensions to the CE that make it possible for the Finder to
handle new types of records and attributes, to group record types in a new way, or to
present the content of records and record attributes in a new way. These extensions to the
AOCE Catalogs Extension are called AOCE templates .

This chapter describes the various types of AOCE templates, tells you how to write an
AOCE template, and defines the resource types that you use to create an AOCE
template. How you apply AOCE templates is up to you. Indeed, the entire point of
AOCE templates is to allow developers to extend the CE in ways that could not be
foreseen.

This chapter is intended for developers who are providing new record types or new
attribute types and who want to allow users to use the AOCE Catalogs Extension to the
Finder to view, create, or modify these records and attributes. The chapter is also for
anyone who wants to extend the capabilities of the CE in any other way. This chapter is
also required reading along with the chapter “Service Access Module Setup” in Inside
Macintosh: AOCE Service Access Modules for anyone writing a service access module
(SAM).

To use this chapter, you should be familiar with the structure of AOCE catalogs as
described in the introduction to the chapter “Catalog Manager” in this book. You also
must be familiar with Macintosh resources as described in the chapter on the Resource
Manager in Inside Macintosh: More Macintosh Toolbox. The sample code listings in this
chapter include code written for the Rez resource compiler.

This chapter first briefly describes the human interface of the AOCE Catalogs Extension
and the way in which AOCE templates work together to modify the CE. Next it
describes the use of each type of AOCE template in more detail. Finally, the chapter
presents the details of the implementation of AOCE templates, including definitions of
the various resource types you use to create AOCE templates.

Introduction to the AOCE Catalogs Extension 5

AOCE catalogs, described in the chapter “Catalog Manager” in this book, contain
information arranged in a hierarchical structure similar to the Macintosh hierarchical file
system (HFS). At the root level of the hierarchy is the AOCE catalog itself. Each catalog
can contain any number of dNodes, and each dNode can contain dNodes and records,
which contain the data.

The Catalog Manager provides access to server-based AOCE catalogs, including those
implemented by Apple Computer, Inc.’s PowerShare servers and those implemented by
third parties through the CSAM interface. The Catalog Manager also provides access to
catalogs on the local Macintosh computer: personal catalog files and information cards
(individual records on disk).
Introduction to the AOCE Catalogs Extension 5-5

C H A P T E R 5

AOCE Templates

Catalogs are organized in a hierarchy of dNodes, much like Macintosh HFS folders. Each
dNode has a name, so that a particular location within the catalog can be specified by
listing the dNode names leading from the catalog through the hierarchy to the particular
dNode of interest. At the bottom of the hierarchy are records, just as Macintosh files are
at the bottom of the HFS hierarchy. Each record has a name and a type. The data within
records is organized into attributes, each of which can contain an arbitrary number of
values. Each attribute has a type, and each attribute value has a tag that indicates its
format. Attribute tags are of type OSType and are therefore 4 bytes long. Attribute
values are blocks of data up to 64 KB in size.

PowerShare catalogs and the CE also support stand-alone attributes. A stand-alone
attribute is a record that contains only one attribute, extracted from another record.
Although technically a record, the AOCE software treats a stand-alone attribute like an
attribute in most circumstances. For example, if a user drags a single mail address from a
User record and drops it in a personal catalog, the CE creates a stand-alone attribute
containing that address. When the user drops that stand-alone attribute onto another
User record, the AOCE software adds the address to the User record as an attribute.

The AOCE Catalogs Extension to the Finder places all PowerShare catalogs and CSAM
catalogs within an icon (the “Catalogs” icon) that must remain on the desktop like the
icon for a disk. To the user, each catalog within the Catalogs icon appears to be a folder,
and each dNode within the catalog appears to be a folder inside another folder. Figure
5-1 shows what a user’s desktop might look like with catalogs and dNodes open.

Figure 5-1 The AOCE Catalogs Extension in use
5-6 Introduction to the AOCE Catalogs Extension

C H A P T E R 5

AOCE Templates

5

A
O

C
E

 Tem
plates

From the user’s perspective, browsing the catalog system is very much like browsing the
Macintosh file system. Catalog dNodes look like file folders. They contain lists of
enclosed dNodes and records. Opening a dNode produces a new window showing the
contents of that dNode.

There are three major differences between browsing HFS directories and browsing
AOCE catalogs:

■ The AOCE Catalogs Extension can display the contents of catalogs that contain many
more items than could be browsed in the file system. While file system browsing is
limited to hundreds of items, catalog dNodes can contain tens of thousands of items.

■ Finder windows that display lists of AOCE catalogs, contents of catalogs, and
contents of dNodes include a column labeled “Kind,” just as Finder windows for HFS
folders include a “Kind” column. Whereas HFS windows differentiate such items as
application documents, application programs, and folders, AOCE windows
differentiate between PowerShare catalogs and CSAM catalogs, and among records of
various types. Unlike the file system, AOCE catalog items are grouped into categories
such as people, mail servers, and AppleShare. For example, the separate record types
for LaserWriters, ImageWriters, and ImageWriter LCs could be grouped into the
category “printers.” The user can use the View menu to select the categories to be
displayed (Figure 5-2).

■ Whereas the Finder launches an application to display the contents of HFS files, the
AOCE Catalogs Extension itself can display and be used to edit the contents of
records.

Figure 5-2 View menu seen with the AOCE Catalogs Extension to the Finder

When the user opens a record, the AOCE Catalogs Extension opens a window that lets
the user select any of a series of information pages. Each information page (sometimes
called an info-page) shows a portion of the contents of the record. The user moves to
different information pages by using a pop-up menu.

Depending on the type of record and the design of the information pages, the user might
be able to select various options such as different displays of the same data, perform
functions such as dialing the telephone, and edit certain fields of the information page or
Introduction to the AOCE Catalogs Extension 5-7

C H A P T E R 5

AOCE Templates

even create a new record. Figure 5-3 shows an information page for an address catalog.
Notice the pop-up menu and editable text fields.

Figure 5-3 Information page

Any information page for a record can include a list of attribute values. The information
page template specifies which attribute types are included in the list. Because the list
includes a subset of the attribute types in the record and appears as a distinct portion of
the information page window, these lists are referred to as sublists. Each sublist entry
includes information from within the attribute value as specified by the template. After
opening an item in a sublist, the user is presented with a new information page window
displaying the contents of the opened attribute. Similarly, a dNode window can include
a sublist of records contained in the dNode. Figure 5-4 shows an information page with a
sublist, and Figure 5-5 shows the information page that appears when the user opens
one of the items in that sublist. (The information page in Figure 5-5 also appears when
the user opens a stand-alone attribute created by dragging the item from the sublist and
dropping it in a catalog or on the desktop.)

Figure 5-4 Information page with a sublist
5-8 Introduction to the AOCE Catalogs Extension

C H A P T E R 5

AOCE Templates

5

A
O

C
E

 Tem
plates

Figure 5-5 Information page for an item in a sublist

You can extend the ability of the AOCE Catalogs Extension to display the contents of
records and attributes by providing AOCE templates.

Introduction to AOCE Templates 5

The AOCE Catalogs Extension to the Finder provided with the PowerTalk system
software can display a certain number of record types and attribute types. If you want to
provide users with the ability to work with other record types or attribute types, you can
extend the AOCE Catalogs Extension (CE) by writing AOCE templates.

Templates allow developers to extend the browsing capabilities of the system in several
ways: adding new types of visible records, defining the kind and category for a
particular record type or attribute type shown in a list, and extending the available
information pages for displaying the record or attribute contents to the user.

The data in a record is stored in data structures known as attributes. Each attribute can
contain any number of attribute values. Each attribute has a type, and each attribute
value has a tag that indicates its format. Attribute values can be up to 64 KB in size. The
attribute structure is defined in the chapter “AOCE Utilities” in this book.

There is not necessarily a one-to-one correspondence between attribute values and data
items of interest to a user. For example, the name and address of a person could be
stored as a single attribute value, as two attribute values (one containing the name and
one the address), or as several attribute values (one containing the first name, one the
last name, one the house number and street, one the state, and so forth). There are no
restrictions on the type of data that can be placed in attributes, and, except for a few
standard attribute types, there is no way for the CE to determine how to display or
interpret an attribute. For this reason, for each new record type or attribute type that you
Introduction to AOCE Templates 5-9

C H A P T E R 5

AOCE Templates

add to a catalog, you must provide templates that tell the CE how to display the data
contained in records or attributes of that type.

To display the data contained in records, AOCE templates must do two things: parse
attribute values into the individual data items of interest to the user (referred to as
properties) and specify how the Finder should display each property. For example, an
attribute value could contain three strings: a house number, a street name, and a city
name. To display each string as a separate item on the screen, you would provide two
AOCE templates: an aspect template and an information page template. The aspect
template would specify that the house number, street name, and city name each
constitutes a property, and the information page template would specify that each of
these items is to be displayed in an editable text box and would specify the size and
location of each text box in the information page.

Just as an information page template has an associated information page, an aspect
template has an associated aspect; a structure in memory that contains properties
provided by the aspect template. Each information page displays properties taken from a
single aspect. Note, however, that a given information page template need not use all of
the properties in an aspect, and any number of information page templates can use
properties from a single aspect.

Note
In the terminology of object-oriented programming, the information
page is the view/controller and the attribute value is the persistent
storage; the aspect template is the class for the aspect instance, and the
information page template is the class for the information page
instance. ◆

Figure 5-6 illustrates the relationships among records, aspect templates, aspects,
information page templates, and information pages. As the figure shows, the aspect
template processes the data in an attribute within a catalog record to create properties in
an aspect. The aspect template itself might also provide data for properties, as is the case
with the icon resources in the figure. The information page template specifies how the
properties are displayed on an information page. The information page template can
also provide such unchanging items as labels for text fields. Any editable item in the
information page can also be processed in the other direction by the templates to change
the data in the catalog record, as indicated by the bidirectional arrows in the figure.
5-10 Introduction to AOCE Templates

C H A P T E R 5

AOCE Templates

5

A
O

C
E

 Tem
plates

Figure 5-6 From a record to an information page

There are five different types of AOCE templates:

■ An aspect template specifies an aspect that provides information about a record or
attribute of a particular type. Some of the information in an aspect is specified by the
aspect template itself and therefore applies to all records or attributes of the same
type. Examples of such information are the kind and category of an attribute or the
icon of a record. Other information in the aspect is extracted by the template from the
record, such as a string or number from the contents of an attribute value. Each aspect
includes a collection of items of various types, which are known as properties. The
aspect template includes instructions that tell the CE how to create properties from
attributes and attributes from properties. Some aspect templates also specify how new
records of a specific type are to be added to the containing dNode or how new
attributes of a specific type are to be added to the containing record.
Each aspect is independent of all other aspects, even aspects created from the same
attribute or record. Therefore, two developers can provide separate aspect templates
that act on the same attribute or record without causing any conflicts.

■ An information page template specifies how the Finder should display record or
attribute data. The information page template specifies which aspect to use to fill in
the fields of the information page and the graphic layout of the information page.

■ A forwarder template allows existing aspects and information pages to be used for
new types of records. Using forwarders, a single information page template can be
applied to several different record or attribute types.

Aspect template

Icon

resources

Attributes

User data

Phone number

Birthday

Properties

Name

Department

Phone number

Other properties

Other properties

AspectUser record
Information page

template Information page
Introduction to AOCE Templates 5-11

C H A P T E R 5

AOCE Templates

■ Killer templates allow developers to supersede existing templates. Killer templates
identify one or more templates by name and cause the CE to ignore those templates.
For example, if you want to override one of the built-in templates, you can provide a
killer template that disables the existing template and a replacement template that the
CE uses instead.

■ In some applications of templates, all of the types of files that might contain templates
cannot be known ahead of time. File type templates allow you to extend the list of file
types that the CE searches for templates. All of the new files containing templates
must, however, reside in the System Extensions folder.

The aspect and information page templates specify how to divide a record or attribute
into properties and how to display and edit those properties through information pages.
Forwarder, killer, and file type templates, in contrast, are concerned with which
templates to use and where to find them.

Templates reside in the resource forks of files. The CE looks in several places for
templates:

■ template files (as indicated by a file type of 'detf') in the System Extensions folder

■ MSAM and CSAM files in the System Extensions folder

■ additional files of the types specified by any file type templates

■ the PowerTalk Extension file, also in the System Extensions folder, which includes all
the templates that are included as part of the PowerTalk software

Templates consist of a set of associated resources in the resource forks of these files. Each
template has a signature resource that indicates the type of template. The ID of the
signature resource is used to locate the other resources that make up the template. All
additional resources are at fixed offsets from this base ID.

All templates, regardless of type, include a signature resource and a name resource. Each
of the different types of templates also contain additional resources specific to that
template’s function. For example, an information page template includes the record and
attribute types that it applies to, plus the layout of the information page to be displayed;
a killer template includes a list of template names to be ignored.
5-12 Introduction to AOCE Templates

C H A P T E R 5

AOCE Templates

5

A
O

C
E

 Tem
plates

Aspect Templates 5
An aspect template creates an aspect, which is a collection of information about a
particular part of a record or an attribute. The information is divided into properties.
Each property is identified by a unique number and can be any one of the following
types:

Aspects serve two primary purposes:

■ They provide unique identification for properties. Although within an aspect each
property is identified only by a number and the same number is likely to be used for
semantically different properties in different aspect templates, the combination of
aspect template name and property number should be unique. To ensure that your
aspect template has a unique name, you should start the template name with a
4-character application signature registered with Macintosh Developer Technical
Support.

■ They allow efficient access to subsets of the data in a record or attribute. For an item to
appear in a sublist—such as a record in a dNode window or an attribute in a record
information page—the Catalogs Extension must have icon, kind, and category
information for that item. The CE takes this information from a single aspect. If you
place other information about the item in other aspect templates, the CE does not
create the other aspects for the item until they are needed, such as when an
information page is opened for the item. Not creating aspects until they are needed
saves time and memory. In addition, one aspect can often be used by more than one
information page.

Property values in aspects are derived from three sources:

■ the aspect template itself

■ the record or attribute value

■ the CE, which fetches related information not directly a part of an attribute (such as
the access mask)

Some properties provide unchanging information, such as a record’s kind or default
values for changeable information. The CE takes these properties from resources in the
aspect template itself by using the property number as an offset from the base ID of the
template. For example, a resource of type 'rstr' (RString) with an ID of 1013 in a
template with a base ID of 1000 corresponds to a string property with property
number 13.

For properties that must be taken from a record or attribute, the aspect template includes
directions for dividing up attribute values to extract the properties. The aspect template

Property type Description

String A string of text characters, stored internally as an RString structure

Number A numerical value, stored internally as a long integer

Icon An icon suite; always stored within the aspect template as a set of
resources

Binary An uninterpreted block of bytes, which can be used to store arbitrarily
formatted data
Introduction to AOCE Templates 5-13

C H A P T E R 5

AOCE Templates

can include a lookup table with instructions for parsing attribute values into properties
(“The Lookup-Table Resource” beginning on page 5-105), a code resource (“Code
Resources Reference” beginning on page 5-142), or both. The CE uses the same process
in reverse to revise or create attribute values in the record when the user edits a field in
an information page. The lookup-table mechanism for parsing attribute values should
allow you to create most of your aspect templates without writing any code. Aspect
template lookup tables (also referred to as patterns) provide a wide range of different
types of data structures that can be combined to handle almost any attribute format.

An aspect template can convert data from one type to another as it divides an attribute
value into properties and also when it takes the value of a property from a field on an
information page. For instance, an aspect template might convert a number in an
attribute to a string property to allow the user to edit it. The property-type system is
extensible, allowing the aspect template code resource to supply additional types and
perform the appropriate type conversions.

Each aspect template includes a specification of the types of records and attributes to
which the template applies. An aspect template can apply to a particular type of record
or to a particular type of attribute found either in any record type or only in specific
record types.

Information Page Templates 5
There is an information page template for each information page displayed to users. The
template specifies the physical layout of the information page and indicates what
properties are used to fill in each field (or view) in the information page.

For a list of possible view types, see “View Lists” on page 5-123.

Like aspect templates, information page templates apply only to a specified record or
attribute type.

Forwarder Templates 5
Forwarder templates allow a new record or attribute type to use existing aspect and
information page templates. A forwarder template includes a specification of the record
type and attribute type to which it applies, just as is the case with aspect and information
page templates. In addition, the forwarder template contains a list of aspect and
information page template names to be used with the specified record or attribute type.
5-14 Introduction to AOCE Templates

C H A P T E R 5

AOCE Templates

5

A
O

C
E

 Tem
plates

Killer Templates 5
Killer templates disable existing templates. A killer template consists of a list of names of
the templates to be disabled.

Killer templates do not change the affected template. They just render it inactive at the
time it would have been used.

You can use killer templates to disable any type of template except another killer
template.

File Type Templates 5
The CE looks for templates during system initialization and the first time the CE needs a
template after someone has called the kDETcmdUnloadTemplates callback routine
(page 5-208). The CE always looks for templates in files of type 'detf', 'dsam', 'msam',
and 'csam'; and in files of type 'fext' that have creator type 'adbk'. (See “File and
Resource Types Used by the Catalogs Extension” on page 5-73 for more information
about these file types.) File type templates specify additional file types in which the CE
looks for templates. The new files can also include file type templates. All of the new files
containing templates must reside in the System Extensions folder.

How Aspect and Information Page Templates Work 5

The most important function of AOCE templates is to provide users with new
information pages through which they can view and modify information contained
within the AOCE catalog system. To accomplish this, the Catalogs Extension starts with
a record or attribute and, following the instructions in aspect templates, creates aspects
of the record or attribute. Each aspect can contain information derived from a single
attribute, or—in the case of aspects derived from records—from several attributes.
Because each aspect is independent from other aspects of the same record or attribute,
you can create them without concern for what other developers might do. An aspect
contains one or more values, each of a specific type—a text string or a number, for
example. These values are referred to as properties. The CE then follows the instructions
in an information page template to use the properties to fill in one or more fields
(referred to as views) in the information page that is displayed to the user. Each
information page is associated with only one aspect, from whose properties values for all
of its views are taken.

When the user changes a value in an information page and then closes the page, the CE
uses the same process in reverse to revise the attribute value in the record. If the record
does not already contain this attribute value, the CE creates a new one from the values in
the information page, following the instructions in the aspect template.
How Aspect and Information Page Templates Work 5-15

C H A P T E R 5

AOCE Templates

Figure 5-7 shows the process of translating between a record and an aspect. The aspect
template uses lookup tables and code resources to parse the attribute data into
properties. The aspect template can also contain property resources that it uses to create
uneditable properties; in Figure 5-7 the icon property is created in this way.

Figure 5-7 Creating an aspect from a record

Figure 5-8 shows how the information page template translates properties in an aspect
into views (fields) in an information page. The information page template includes one
or more view lists that describe the layout and type of each field in the information page
and that assign a property to each view. Note that not all the properties in the aspect
must be represented in a single information page.

Aspect template

Lookup tables,

code resources,

property resources

Icon resources

Attributes

Personal data

Financial data

Other attributes

Properties

Name

Home phone

Mother’s name

Address

Bank balance

AspectCatalog record

MacDoe, John

555-1212

2025 Mariani Ave.

Cupertino

Conner

$1,213.44

MacDoe, John

555-1212

Conner

20525 Mariani Ave.

Cupertino

$1,213.44
5-16 How Aspect and Information Page Templates Work

C H A P T E R 5

AOCE Templates

5

A
O

C
E

 Tem
plates

Figure 5-8 Creating an information page from an aspect

Any number of aspect templates can extract data from the same record or attribute, and
the aspects they create can exist simultaneously without conflict. Because the properties
in a given aspect are identified only by number, the CE uses the combination of the
aspect’s name and the property number to identify a property uniquely. Therefore, it is
important that the name of an aspect be unique. When you create an aspect template,
you should give it a name that includes a description of its purpose plus your
application signature or other unique identifying string. The CE uses aspect names
solely for internal identification; the user never sees them.

An information page takes the properties for all of its views from a single aspect. Each
view specification in the information page template tells which property number is to be
used. The information page template itself includes the name of the aspect within which
these properties are found.

Information page

template Information page

View listProperties

MacDoe, John
Name

555-1212
Home phone

Conner
Mother’s name

20525 Mariani Ave.

Cupertino

Address

$1,213.44
Bank balance

Aspect
How Aspect and Information Page Templates Work 5-17

C H A P T E R 5

AOCE Templates
Figure 5-9 shows a record with multiple aspects and information pages. Note that one
aspect can be used by more than one information page.

Figure 5-9 Multiple aspects and information pages

When a record or attribute appears in a sublist—in a dNode window in the case of
records, or in an information page in the case of attributes—the CE takes the properties
needed to fill in the data for an item in the list from a special aspect known as the main
aspect. Whereas any aspect can contain information about the contents of a record or
attribute, only a main aspect contains information about the record or attribute itself: its
name, kind, category, and icon. In the case of records, this information usually consists of
unchangeable properties stored permanently in the main aspect template. In the case of
attributes, however, the main aspect template often retrieves the information from the
attribute. Thus, the information changes when someone edits the attribute value.

Catalog record

Information page

Aspect

Aspect

Information page

Information page
5-18 How Aspect and Information Page Templates Work

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
There is a separate main aspect for each item in a sublist (note, however, that more than
one of these main aspects may be derived from the same aspect template). Figure 5-10
shows how main aspects for records are used to fill in the contents of a sublist in a
dNode window.

Figure 5-10 Main aspects for records

Figure 5-11 shows how aspects and main aspects are used to fill in the contents of an
information page that contains a sublist. All of the properties for the views in the main
part of the information page come from a single aspect, the main view aspect . This
aspect also specifies whether there is a sublist in the information page and which
attribute types are to be included in the sublist. Each attribute in the sublist has its own
main aspect, which provides the information shown in the sublist for that attribute.

Record type User

Main aspect

dNode window

Record type Admin

Main aspect
How Aspect and Information Page Templates Work 5-19

C H A P T E R 5

AOCE Templates
 Figure 5-11 shows two of the aspects used to fill in an information page: the main view
aspect and a main aspect for an item in the sublist. There is one aspect template for each
attribute type in the sublist, and a separate aspect template for the main view aspect.
Note that, whereas the properties in the aspect for the main part of the information page
can come from any number of attributes in the record, a main aspect (which describes a
single line in a sublist) derives its properties from a single attribute value.

Figure 5-11 Main aspects for attributes

Main aspect

AspectCatalog record Information page
5-20 How Aspect and Information Page Templates Work

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
There must be a separate main aspect template for each type of record displayed in a
dNode window and for each type of attribute displayed in a sublist. The CE can use a
main aspect template to create main aspects for any number of items of the same type.
Figure 5-12 shows three records, two of type User and one of type Admin. The two
records of type User are processed by a single main aspect template to create a main
aspect for each record; the record of type Admin is processed by a separate main aspect
template to create its main aspect.

Figure 5-12 Main aspect templates for records

Main aspect

Main aspect

Main aspect

template

Main aspect

template

dNode window

Record type User

Record type User

Record type Admin

Sam

Sheryl

Paul

Main aspect
How Aspect and Information Page Templates Work 5-21

C H A P T E R 5

AOCE Templates
Figure 5-13 shows how an information page with a sublist is created from one aspect
template and one or more main aspect templates. The aspect template creates an aspect
for the main part of the information page. Each attribute type has a separate main aspect
template; several attributes of the same type might be processed by the same main
aspect template. Each attribute in the sublist has its own main aspect.

Figure 5-13 Main aspect templates for attributes

A main aspect can contain properties used by other information pages as well as the
information needed for a sublist. As shown in Figure 5-14, a typical use for this feature is
for a main aspect to contain all the properties for the information page that appears
when the user double-clicks an attribute in a sublist. Note that all of the views for a
single information page are described in a single information page template. Even the
position of the sublist and the layout of each line in the sublist are described in this
information page template. As shown in the figure, the information page that appears
when the user opens an attribute in the sublist requires its own information page
template.

Main aspect

Aspect

Information page

Catalog record

Aspect

template

Main aspect

Main aspect

Main aspect

template

Main aspect

template
5-22 How Aspect and Information Page Templates Work

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Figure 5-14 Providing an information page for an attribute in a sublist

 In contrast to the situation shown in Figure 5-13 and Figure 5-14, a record shown in a
dNode window list typically has at least two aspect templates associated with it: a main
aspect template used to display information about the record in the dNode window plus
one or more aspect templates used to provide properties for the information pages that
are displayed when the user opens that record. Figure 5-15 illustrates this situation. Note
that you must provide both an aspect template and an information page template to
display the contents of the record, but you do not provide an information page template
for the dNode window.

Keeping the main aspect template and other aspect templates for a record separate
allows the Catalogs Extension to load into memory only the aspects that are needed at a
given time and makes it easier for developers and users to create new information pages
for an existing record type.

Main aspect

Aspect

Information page

template

Main aspect

Information page

template

Information page

Information page
How Aspect and Information Page Templates Work 5-23

C H A P T E R 5

AOCE Templates
Figure 5-15 Providing an information page for a record in a dNode window list

A main aspect template for a record type specifies how new records of that type are to be
added to the containing dNode. Similarly, a main aspect template for an attribute type
specifies how new attributes of that type are to be added to the containing record.

Main aspect templates are described in “Aspect Template Signature Resource,” which
starts on page 5-88.

The process of filling in views in information pages from properties in aspects is fairly
straightforward. The information page template includes a property number for each
view that requires data from the aspect. The information page template includes
instructions for how to interpret the contents of the property—as a number, a text string,
and so forth—how to display it, and whether to allow the user to edit it. Information
page templates may display the same type of property in different ways depending on
the circumstances. For example, a number property is used in both checkboxes and
pop-up menus. In checkboxes, this property indicates whether the checkbox is selected
or not. In pop-up menus, it indicates which of the entries in the menu is currently
selected.

The process of filling in properties from records and records from properties is more
complex. The aspect template provides two mechanisms: lookup tables and code
resources. Lookup tables can translate a large variety of data structures without
requiring you to write any code. Code resources cover all data formats, including those
not handled by lookup tables. In addition, code resources can perform actions based on
the new data being written to the catalog system. For example, adding a new user record
might trigger an update of a personal gateway’s internal user list.

Main aspect

Main aspect

template

Aspect

Aspect

template

Information page

Record Type Admin

dNode window

–

–

Information page

template

–

5-24 How Aspect and Information Page Templates Work

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Figure 5-16 Pattern-based attribute parsing

Lookup Tables 5

A lookup table contains a pattern that describes the contents of an attribute and
specifies into which property to store each part of the attribute value. In many cases, the
pattern is extremely simple. For instance, an attribute value might consist only of a
single string of type RString or only of a single binary number. Other attribute value
formats may be more complex, combining multiple items in a single attribute value, or
requiring conditional evaluation of the contents. Figure 5-16 illustrates the basic process
of creating properties from attribute values.

A lookup table also works in reverse, revising the contents of attribute values when the
user enters new data in views in the information page. If an attribute value does not

Template

mechanism

Pattern

(for record type Person,

attribute type General Info)

type, property, extra

‘rstr’, kName,-

‘rstr’, kManager,-

‘long’, kAge,-

Properties

fred
kName

sam
kManager

22
kAge

Record type Person

Attribute (type General Info)

0000000466726564 “----fred”

0000000373616D00 “----sam-”

000022
How Aspect and Information Page Templates Work 5-25

C H A P T E R 5

AOCE Templates
already exist, the lookup table creates a new attribute value from the data and puts it
into the record.

Figure 5-17 Conditional view

Conditional Views 5
The information page template includes one or more view lists; each view list describes
one or more views that can be displayed on the information page. Each view list is
associated with two property values. The views described by that view list are displayed
only if those property values are equal (or if either property equals kDETNoProperty).
Therefore, you can control whether a particular view is displayed on the information
page by changing the values of properties in the aspect associated with the information
page. Views that are made to appear and disappear in this fashion are called conditional
views. Figure 5-17 illustrates the use of a conditional view. In this case, the radio buttons
that specify the playing speed of the album (33, 45, or 78 RPM) appear only when the
5-26 How Aspect and Information Page Templates Work

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
user selects Vinyl as the format of the album. For more information on conditional views,
see Listing 5-14 on page 5-122 and “Implementing Conditional Views” beginning on
page 5-131.

Code Resources 5
Aspect templates can include code resources that allow developers to extend the
capabilities of the templates.

The Catalogs Extension calls your code resource when certain events occur that affect the
aspect with which the code resource is associated. Such events include user actions, such
as the user clicking a button in an information page or dropping a file on a catalog object,
and administrative events, such as initialization or a query as to whether a control
should be drawn as enabled. The code resource may call the CE to perform a variety of
services, such as returning information, converting one data type to another, or updating
an information page.

The routine selectors and parameters that the CE passes to your code resource are
described in “Functions You Can Provide as Part of Your Code Resource” beginning on
page 5-148. The CE-provided routines that your code resource can call are described in
“CE-Provided Functions That Your Code Resource Can Call” beginning on page 5-196.

How the Catalogs Extension Saves New Values 5
When the user closes an information page or makes another information page the active
one, the Catalogs Extension checks all of the visible views in the information page the
user just closed or left. If the user has changed any of the properties associated with
those views, the Catalogs Extension saves the new values.

For each property, the CE first calls the code resource for the aspect from which the
property came with the kDETcmdValidateSave routine selector (page 5-168). If your
code resource does not return an error for any of the changed properties, then for each of
these properties, the CE finds all of the lookup-table patterns that include that property.
The CE processes those lookup-table patterns to write attribute values. Any of the
lookup-table patterns can contain custom elements that you define; in that case, the CE
calls your code resource to process those elements.

For a property to be saved, it must both be in a visible view and be marked as changed,
or it must be in a lookup-table pattern with another property for which those two
conditions are met.

If the user makes a change to a sublist value, the CE saves the change as soon as the user
leaves the item and clicks somewhere else on the screen. The CE uses the lookup-table
pattern in the main aspect for items of the type changed to process the change. The CE
does not call your kDETcmdValidateSave routine for changes in sublists.
How Aspect and Information Page Templates Work 5-27

C H A P T E R 5

AOCE Templates
Property Value Synchronization 5
The Catalogs Extension checks a catalog system flag periodically to see if the data in the
catalog system has changed. If it has, the Catalogs Extension processes the lookup tables
of all the aspects for open information pages, recalculating all the properties derived
from the catalog system. The CE then updates the aspects and open information pages
accordingly. At the time the CE checks for changes, it calls the aspects’ code resources
with the kDETcmdShouldSync routine selector (page 5-185). If you have derived any
properties from data outside the catalog system or from records or attributes other than
the one to which your aspect applies and you have reason to believe their values have
changed, your code resource should tell the CE to update all the properties, which it will
then do whether data in the catalog system has changed or not.

When the CE updates all the property values in an aspect—either because data in the
catalog system has changed or because your code resource told it to—the CE calls your
code resource with the kDETcmdDoSync routine selector (page 5-186). If your code
resource has supplied any of the property values, you should update your sublist items
and your other properties.

When the CE synchronizes a sublist, it first marks every item in the list as “unseen.” The
CE then reads in all the attribute values mentioned in the lookup tables and calls the
code resource’s kDETcmdDoSync routine. The code resource should update any sublist
items that it supplied. For each attribute the CE processes that the lookup table lists as
for use in the sublist, the CE checks the type and creation ID of the item to see if it is
already in the sublist. If the item is in the sublist, the CE updates it and marks it as
“seen.” If it’s not there, the CE creates a new item, adds it to the sublist, and marks it as
“seen.” After processing all such items, The CE removes from the sublist any items that
are still marked “unseen.”

Drags and Drops 5
The user can drag HFS and catalog objects—such as files, information cards, records, and
attributes—and drop them on records, attributes, or sublists. In each case, the Catalogs
Extension determines the most appropriate action based on the type of object dragged,
the type of object on which the item was dropped, and instructions in the aspect
templates of the dragged and destination objects (see note at end of this section).

For example, if the user drags an information card and drops it on a record in a catalog,
the CE checks every aspect template available that applies to that record for resources
that provide drop instructions. The CE then determines what to do (perhaps to add an
alias to the information card to the sublist of the record) and calls the code resource (if
any) in each aspect for the record. The code resource can take some other action, carry
out the action recommended by the CE, or take no action and return control to the CE.
See the descriptions of the kDETcmdDropQuery (page 5-172) and
kDETcmdDropMeQuery (page 5-170) routines for more information on how code
resources handle drags and drops.
5-28 How Aspect and Information Page Templates Work

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
If the user drags more than one item onto a catalog object, the CE collects all of the
operations and executes them in batches—for instance, the CE might copy half the items
and use the other half to invoke custom operations in a destination code resource.

In addition, there may be more than one aspect in the destination that can accept a drop.
For example, a Group record includes an aspect that can add a user to the group and
another aspect that can mail an information card to a group. Each aspect includes a
string that the CE can present to the user to confirm the action.

The aspect template signature resource includes a drop-check Boolean value and a
drop-operation order number. If there is only one aspect that can handle the drop and
you specify dropCheckAlways as the Boolean value, the CE displays a dialog box to let
the user confirm the action. You must provide the prompt string for the dialog box in an
aspect template resource. If you specify dropCheckConflicts as the Boolean value,
the CE handles the drop without checking with the user. If there is more than one aspect
that can handle the drop, the CE displays a confirmation dialog box for the option
offered by the aspect that has the lowest drop-operation order number.

The resources that you must provide in an aspect template to support drags and drops
are described in “Supporting Drags and Drops” beginning on page 5-98.

How the Catalogs Extension decides which drop operation to perform

The process the Catalogs Extension goes through to decide which drop
operation is appropriate is fairly complex. First, the CE finds every
aspect that might accept the drop (that is, every aspect of the destination
object that has drag-in resources or a code resource). For each one, the
CE figures out what operation the aspect wants to perform by looking at
where the aspect is located (for example, whether to move an object or
copy it depends on whether the destination is on the same volume as the
original location), the access masks (can the CE delete the original, for
example?), the drag-in and drag-out resources in the aspects of the
source and destination containers, and the code resource (if any).

The CE calls the code resource in the aspect of the object being dropped
with the kDETcmdDropMeQuery routine selector and then calls the code
resource of the destination aspect with the kDETcmdDropQuery routine
selector. These routines can specify that a different action be performed
in response to the drop. In both bases, if the code resource does not
handle the request, the CE calls the code resource of the object’s
container (if the object is an attribute, its container is a record).

At this point, the CE has a list of possible operations—one for each
possible destination. If the user has dragged several objects, the CE
repeats this process until it has such a list for each item being dropped.
Then the CE groups together all the items that share the same set of
possible operations. For each group for which there’s a choice of
possible operations, the CE selects the operation with the lowest
drop-operation order number and displays a dialog box asking the user
whether to perform the operation.
How Aspect and Information Page Templates Work 5-29

C H A P T E R 5

AOCE Templates
The operation can be a move, a copy (also referred to as a drag), the
creation of an alias, or the sending of a property command to a code
resource. If the operation is a property command specified by the
destination’s code resource (in response to the kDETcmdDropQuery
request), then the CE sends the property command to the destination’s
code resource. If the operation is a property command specified by the
dragged object’s code resource (in response to the
kDETcmdDropMeQuery request), then the CE sends a property
command to that code resource. If the operation is a move, copy, or
creation of an alias, then the CE carries out the operation itself,
displaying status windows as appropriate. ◆

Writing AOCE Templates 5

This section provides some simple examples of source code for AOCE templates. The
templates shown here create a new record type that stores information about a user’s
collection of recording albums. A user can place these templates in the System Folder to
add a new record type and information pages to his or her personal catalog.

A set of AOCE templates includes a large number of resources of several different types.
To understand this section you must be familiar with the definitions and concepts
provided in the preceding sections of this chapter. In addition, the resource types used in
this section are all described fully in “AOCE Templates Reference” beginning on
page 5-73 and “Code Resources Reference” beginning on page 5-142; cross references to
the reference material are provided wherever practical. You will probably have to refer to
the reference material frequently while reading this section. Additionally, the AOCE
templates provide many features not illustrated by these examples; to learn about all
these features you will have to read the reference sections in detail.

Note
All of the resource examples in this chapter are written in the syntax of
the Rez resource compiler. All other code is written for the MPW C
compiler. ◆

Defining a New Record Type or Attribute Type 5
When you define a new record type or attribute type, you must provide a main aspect
for that record or attribute type. The main aspect includes a signature resource, a
resource that specifies the record or attribute type to which the main aspect applies, and
several other resources (for instance, icon resources, the text of help balloons, the text of
the New item in the Catalogs menu for records or the text of the Add item in the
new-attribute-item dialog box, and the name given to newly created records or the initial
value for new attributes). For a full list of the required and optional resources used only
by main aspect templates, see Table 5-4 on page 5-89. Additionally, main aspect
templates can contain any of the resources found in other aspect templates. For a full list
of resources that can be used by aspect templates, see Table 5-1 on page 5-78.
5-30 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Listing 5-1 shows a main aspect template for a new record type. Because Listing 5-1 is for
a main aspect template for a record, it includes only resources that are specific to the
main aspect. Separating the main aspect template from other aspect templates for a
record has certain advantages. This segregation of resources into main aspect templates
and other aspect templates allows the Catalogs Extension to load into memory only the
aspects that are needed at a given time and makes it easier for developers and users to
create new information pages for an existing record type.

Note
In order to ensure uniqueness of attribute and record types, this and
other code listings in this chapter use WAVE, the application signature
of the fictitious application SurfWriter, as the first part of all attribute
and record type names. ◆

Listing 5-1 Main aspect template

// File: AlbumMainAspect.r

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

#define kAlbumMainAspect kDETFirstID

// Aspect template signature resource

resource 'deta' (kAlbumMainAspect, purgeable) {

0, // drop-operation order (not used in this aspect)

dropCheckAlways, // drop-check flag (not used in this aspect)

isMainAspect // is the main aspect

};

// Template name

resource 'rstr' (kAlbumMainAspect + kDETTemplateName, purgeable) {

"WAVE Album Main Aspect" // start name with application signature

};

// Record type to which this template applies

resource 'rstr' (kAlbumMainAspect + kDETRecordType, purgeable) {

"WAVE Album" // start with application signature

};
Writing AOCE Templates 5-31

C H A P T E R 5

AOCE Templates
// Categories to which this record type belongs

resource 'rst#' (kAlbumMainAspect + kDETAspectCategory,purgeable)

{{

"Recordings"

}};

// String to be displayed in the Catalogs menu

resource 'rstr' (kAlbumMainAspect + kDETAspectNewMenuName, purgeable) {

"New Album"

};

// Name given to new record of this type

resource 'rstr' (kAlbumMainAspect + kDETAspectNewEntryName, purgeable) {

"untitled album"

};

// Record kind as shown in a sublist

resource 'rstr' (kAlbumMainAspect + kDETAspectKind, purgeable) {

"album"

};

// Text for help balloons

resource 'rstr' (kAlbumMainAspect + kDETAspectWhatIs, purgeable) {

"Album\n\nA description of an album. Open this icon to display information

 about the album."

};

resource 'rstr' (kAlbumMainAspect + kDETAspectAliasWhatIs, purgeable) {

"Album alias\n\nAn alias to a description of an album. Open this alias to

 display information about the album."

};

// Icons

include "AlbumIcons" 'ICN#'(0) as

'ICN#'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl4'(0) as

'icl4'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);
5-32 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
include "AlbumIcons" 'icl8'(0) as

'icl8'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics#'(0) as

'ics#'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics4'(0) as

'ics4'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics8'(0) as

'ics8'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'SICN'(0) as

'SICN'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

The main aspect in Listing 5-1 makes it possible for the user to create a new record of
type Album by choosing New Album from the Catalogs menu. A new record of this type
has the name “untitled album” until the user renames it. Records of this type are
displayed in the catalog window when the user chooses Recordings from the View
menu. Figure 5-18 shows a personal catalog window displaying records of type Album.
The icons displayed in this window are provided by the icon resources in the main
aspect.

Figure 5-18 Catalog window displaying the record type defined by Listing 5-1

Defining the Contents of the New Record Type or Attribute Type 5
When you define a new record type or attribute type, you must define its contents and
provide a mapping between attributes and properties. In the case of a new attribute, you
would normally include this information in the main aspect template. In the case of a
record, however, you usually provide a separate aspect template to support each
information page.

Listing 5-2 shows an aspect template for the Album record type defined in Listing 5-1.
This aspect template defines several properties, provides a lookup table mapping
attributes to properties, and provides default values and help-balloon strings for each
property type. The lookup table maps a single attribute ("WAVE Album General
Info") into four properties (prArtist, prTitle, prComments, and prFormat) and a
second attribute (“WAVE Album Cover”) into another property (prCover). Note that
this mapping also works in reverse: The first time the user provides new values for the
properties and closes the information page, the Catalogs Extension creates the attributes
Writing AOCE Templates 5-33

C H A P T E R 5

AOCE Templates
and places them in the record. Lookup tables are described in “The Lookup-Table
Resource” beginning on page 5-105.

Listing 5-2 Defining properties for a record

/*

File: AlbumMainAspect.r

*/

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

#define kAlbum1stInfoPageAspect kDETSecondID

// Aspect template signature resource

resource 'deta' (kAlbum1stInfoPageAspect, purgeable) {

0, // drop-operation order (not used in this aspect)

dropCheckAlways, // drop-check flag (not used in this aspect)

notMainAspect // not the main aspect

};

// Template name

resource 'rstr' (kAlbum1stInfoPageAspect + kDETTemplateName, purgeable) {

"WAVE Album First Info Page Aspect" //start with application signature

};

// Record type to which this template applies

resource 'rstr' (kAlbum1stInfoPageAspect + kDETRecordType, purgeable) {

"WAVE Album" //start with application signature

};

// Properties

#define prTitle kDETFirstDevProperty

#define prArtist kDETFirstDevProperty + 1

#define prComments kDETFirstDevProperty + 2

#define prFormat kDETFirstDevProperty + 3

#define prCover kDETFirstDevProperty + 4
5-34 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
// Lookup table - maps attributes to properties

resource 'dett' (kAlbum1stInfoPageAspect + kDETAspectLookup, purgeable) {

{

{"WAVE Album General Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'rstr', prTitle, 0;

'rstr', prArtist, 0;

'rstr', prComments, 0;

'word', prFormat, 0;

};

{"WAVE Album Cover"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{ 'rest', prCover , 0 };

}

};

// Default property values

resource 'rstr' (kAlbum1stInfoPageAspect + prTitle) {

"<Put the album’s full title here.>"

};

resource 'rstr' (kAlbum1stInfoPageAspect + prArtist) {

"<Put the album’s recording artist or group here.>"

};

resource 'rstr' (kAlbum1stInfoPageAspect + prComments) {

"<Put comments here. Did you like it? What's the best track?>"

};

resource 'detn' (kAlbum1stInfoPageAspect + prFormat) {

1

};

include "AlbumIcons" 'detb'(0) as

'detb'(kAlbum1stInfoPageAspect + prCover, purgeable);

// Text for help balloons for the properties

resource 'rst#' (kAlbum1stInfoPageAspect + kDETAspectBalloons,purgeable) {
Writing AOCE Templates 5-35

C H A P T E R 5

AOCE Templates
{

"The full title.", "The full title. Uneditable because the record is

 locked or access is restricted.",

"The artist or group.", "The artist or group. Uneditable because the

 record is locked or access is restricted.",

"Comments.", Comments. Uneditable because the record is locked or

 access is restricted.",

"Format.", "Format. Uneditable because the record is locked or

 or access is restricted."

"Album’s cover.", Album’s cover. Uneditable because the record is locked

 or access is restricted."

}

};

To display the properties defined in Listing 5-2, you must provide an information page.

Laying Out an Information Page 5
Once you have defined a new record type or attribute type, or even if you just want to
display the contents of an existing record type or attribute type in a new way, you have
to provide one or more information page templates that tell the Catalogs Extension how
to display the information in the record or attribute.

Listing 5-3 provides an icon and title for the information page and lays out the way in
which the properties are displayed. The view list specifies the location and type of each
field used to display a property value. View lists are described in “View Lists” beginning
on page 5-123.

Listing 5-3 A simple information page

#define kAlbumInfoPage kDETThirdID

resource 'deti' (kAlbumInfoPage, purgeable) {

1000, // sort order

{0, 0, 0, 0}, // rectangle to put sublist in

selectFirstText, // select the first text

// field when info-page opens

{ // the header view list

kDETNoProperty, kDETNoProperty, kAlbumInfoPage;

},

{ // no subview view lists
5-36 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
}

};

resource 'rstr' (kAlbumInfoPage + kDETTemplateName, purgeable) {

"WAVE Album 1st Info Page" // start with application signature

};

resource 'rstr' (kAlbumInfoPage + kDETInfoPageName, purgeable) {

"General Info"

};

// Associate this information page with records of this type

// and with the aspect

resource 'rstr' (kAlbumInfoPage + kDETRecordType, purgeable) {

"WAVE Album"

};

resource 'rstr' (kAlbumInfoPage + kDETInfoPageMainViewAspect, purgeable) {

"WAVE Album First Info Page Aspect"

};

// View list

#define kCoverTop (kDETSubpageIconBottom + 8)

#define kCoverLeft (kDETSubpageIconLeft - 2)

#define kCoverBottom (kCoverTop + 175)

#define kCoverRight (kCoverLeft + 175)

#define k1stColumnLeft (kCoverRight + 4)

#define k1stColumnRight (k1stColumnLeft + 65)

#define k2ndColumnLeft (k1stColumnRight + 4)

#define k2ndColumnRight (kDETRecordInfoWindWidth - 8)

#define kTitleTop (kCoverTop)

#define kTitleBottom (kTitleTop + kDETAppFontLineHeight + 4)

#define kArtistTop (kTitleBottom + 6)

#define kArtistBottom (kArtistTop + kDETAppFontLineHeight + 4)

#define kFormatTop (kArtistBottom + 6)

#define kFormatBottom (kFormatTop + kDETAppFontLineHeight + 4)

#define kNumFormats (3)

#define kCDRadioLeft (k2ndColumnLeft)

#define kCDRadioRight (kCDRadioLeft + 35)
Writing AOCE Templates 5-37

C H A P T E R 5

AOCE Templates
#define kCassetteRadioLeft (kCDRadioRight)

#define kCassetteRadioRight (kCassetteRadioLeft + 60)

#define kVinylRadioLeft (kCassetteRadioRight)

#define kVinylRadioRight (k2ndColumnRight)

#define kCommentsTop (kFormatBottom + 32)

#define kCommentsLabelBottom (kCommentsTop + kDETAppFontLineHeight + 4)

#define kCommentsBottom (kCoverBottom)

resource 'detv' (kAlbumInfoPage, purgeable) {

{

kDETSubpageIconRect, kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

{kTitleTop, k1stColumnLeft, kTitleBottom, k1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Full title:" };

{kTitleTop - 2, k2ndColumnLeft, kTitleBottom - 2, k2ndColumnRight},

kDETEnabled, prTitle,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kArtistTop, k1stColumnLeft, kArtistBottom, k1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Artist:" };

{kArtistTop - 2, k2ndColumnLeft, kArtistBottom - 2, k2ndColumnRight},

kDETEnabled, prArtist,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kFormatTop, k1stColumnLeft, kFormatBottom, k1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Format:" };
5-38 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
{kFormatTop, kCDRadioLeft, kFormatBottom, kCDRadioRight},

kDETEnabled, prFormat,

RadioButton { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal, "CD", prFormat, 1 };

{kFormatTop, kCassetteRadioLeft, kFormatBottom, kCassetteRadioRight},

 kDETEnabled, prFormat,

RadioButton { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal, "Cassette", prFormat, 2 };

{kFormatTop, kVinylRadioLeft, kFormatBottom, kVinylRadioRight},

 kDETEnabled, prFormat,

RadioButton { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal, "Vinyl", prFormat, 3 };

{kCommentsTop, k1stColumnLeft, kCommentsLabelBottom, k1stColumnRight},

 kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Comments:" };

{kCommentsLabelBottom, k1stColumnLeft, kCommentsBottom - 2,

 k2ndColumnRight},

kDETEnabled + kDETMultiLine, prComments,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{ kCoverTop, kCoverLeft, kCoverBottom, kCoverRight },

 kDETNoFlags, prCover,

EditPicture { 8 };

}

};
Writing AOCE Templates 5-39

C H A P T E R 5

AOCE Templates
Figure 5-19 Simple information page

Listing 5-3 together with Listing 5-2 on page 5-34 describe the information page shown
in Figure 5-19. The user can type information into the editable text fields and place a
figure in the editable picture field.

Adding a Conditional View 5
A conditional view is one that appears in an information page only if certain conditions
are met. For example, the Album information page shown in the preceding example
could display radio buttons that specify the speed of the album, but only if the user
selects the Vinyl radio button for album format (Figure 5-20).

Figure 5-20 Simple information page with a conditional view
5-40 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
To implement the conditional view shown in Figure 5-20, make the following additions
to the templates:

■ Add the property prVinylSpeed to the list of properties.

#define prTitle kDETFirstDevProperty

#define prArtist kDETFirstDevProperty + 1

#define prComments kDETFirstDevProperty + 2

#define prFormat kDETFirstDevProperty + 3

#define prCover kDETFirstDevProperty + 4

#define prVinylSpeed kDETFirstDevProperty + 5

■ Add the prVinylSpeed property to the lookup table.

resource 'dett' (kAlbum1stInfoPageAspect + kDETAspectLookup,

purgeable) {

{

{"WAVE Album General Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias,

 isNotRecordRef,

{

'rstr', prTitle, 0;

'rstr', prArtist, 0;

'rstr', prComments, 0;

'word', prFormat, 0;

'word', prVinylSpeed, 0;

};

{"Album Cover"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias,

 isNotRecordRef,

{ 'rest', prCover , 0 };

}

};

■ Add a default property value for the prVinylSpeed property.

resource 'detn' (kAlbumMainAspect + prVinylSpeed) {

1

};

■ Add help balloons.

resource 'rst#' (kAlbum1stInfoPageAspect + kDETAspectBalloons,

purgeable) {

{

"The full title.", "The full title. Uneditable because the

 record is locked or access is restricted.",
Writing AOCE Templates 5-41

C H A P T E R 5

AOCE Templates
"The artist or group.", "The artist or group. Uneditable

 because the record is locked or access is restricted.",

"Comments.", Comments. Uneditable because the record is locked

 or access is restricted.",

"Format.", "Format. Uneditable because the record is locked or

 access is restricted."

"Album’s cover.", Album’s cover. Uneditable because the record

 is locked or access is restricted."

"Record speed", Record speed. Uneditable because the record is

 locked or access is restricted."

}

};

■ Add a line to the information page signature resource for a second view list. Each
view list has a corresponding line in the information page signature resource; each
line has two property numbers and a resource ID for the view list resource. The view
is displayed only if the values of the two properties are equal. In this case, the second
line requires that the property prFormat must equal 3; that is, the value of the
property (kDETFirstConstantProperty + 3) is the constant 3. Information page
signature resources are defined and described in “Information Page Template
Signature Resource” on page 5-121.

resource 'deti' (kAlbumInfoPage, purgeable) {

1000,

{0, 0, 0, 0},

selectFirstText,

{

kDETNoProperty, kDETNoProperty, kAlbumInfoPage;

prFormat, kDETFirstConstantProperty + 3, kAlbumInfoPage + 1;

},

{

}

};

■ Add the definitions and view list for the conditional view. Notice that the conditional
view resource ('detv') includes the identification number for the conditional view,
kAlbumInfoPage + 1.

#define kConditionalTop (kFormatBottom + 4)

#define kConditionalBottom (kConditionalTop +

 kDETAppFontLineHeight + 4)

#define k33RadioLeft (k2ndColumnLeft)

#define k33RadioRight (kCDRadioLeft + 35)

#define k45RadioLeft (k33RadioRight)
5-42 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
#define k45RadioRight (k45RadioLeft + 35)

#define k78RadioLeft (k45RadioRight)

#define k78RadioRight (k45RadioRight + 35)

resource 'detv' (kAlbumInfoPage + 1, purgeable) {

{

{kConditionalTop, k1stColumnLeft, kConditionalBottom,

 k1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETRight, kDETBold, "Speed:" };

{kConditionalTop, k33RadioLeft, kConditionalBottom,

 k33RadioRight},

kDETEnabled, prVinylSpeed,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal, "33", prVinylSpeed, 1 };

{kConditionalTop, k45RadioLeft, kConditionalBottom,

 k45RadioRight}, kDETEnabled, prVinylSpeed,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "45", prVinylSpeed, 2 };

{kConditionalTop, k78RadioLeft, kConditionalBottom,

 k78RadioRight}, kDETEnabled, prVinylSpeed,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "78", prVinylSpeed, 3 };

}

};

For another example of a conditional view, see “Implementing Conditional Views”
beginning on page 5-131.

Adding an Information Page With a Sublist 5
Listing 5-4 shows the aspect and information page templates for a second information
page for the Album record. This information page (shown in Figure 5-21) provides
details about the tracks on the album, including a list of all the tracks. The list of tracks is
implemented as an information page sublist. Each item in the sublist is an attribute
value; each attribute value includes the title and track number of a track on the album.
For more information on sublists, see “Sublists” on page 5-136.
Writing AOCE Templates 5-43

C H A P T E R 5

AOCE Templates
Figure 5-21 Information page with a sublist

Note that this template supports the dropping of an attribute into the sublist as a way to
add an item to the sublist. The aspect template signature resource, the
kDETAspectDragInString resource, and the kDETAspectAttrDragIn resource all
support drops. See “Supporting Drags and Drops” beginning on page 5-98 for more
information about resources that support dragging and dropping objects on templates.

Listing 5-4 An information page with a sublist

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

// This is an aspect template with this base resource ID.

#define kAlbum2ndInfoPageAspect kDETFourthID

// Aspect template signature resource

resource 'deta' (kAlbum2ndInfoPageAspect, purgeable) {

0, // drop-operation order

dropCheckAlways, // drop-check flag

notMainAspect // not the main aspect

};

// Template name

resource 'rstr' (kAlbum2ndInfoPageAspect + kDETTemplateName, purgeable) {
5-44 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
"WAVE Album Second Info Page Aspect"

};

// Associate this aspect template with records of type Album.

resource 'rstr' (kAlbum2ndInfoPageAspect + kDETRecordType, purgeable) {

"WAVE Album"

};

// Icons

include "AlbumIcons" 'ICN#'(0) as

 'ICN#'(kAlbum2ndInfoPageAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl4'(0) as

 'icl4'(kAlbum2ndInfoPageAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl8'(0) as

 'icl8'(kAlbum2ndInfoPageAspect + kDETAspectMainBitmap, purgeable);

// Aspect properties - shared between aspect and info page(s)

#define prTrackNumber kDETFirstDevProperty

#define prNumTracks kDETFirstDevProperty + 1

#define prPlayingTimeHours kDETFirstDevProperty + 2

#define prPlayingTimeMinutes kDETFirstDevProperty + 3

#define prPlayingTimeSeconds kDETFirstDevProperty + 4

// Lookup table

// This lookup table defines the format of attribute type

// WAVE Album Track Info. This attribute type is not displayed in a

// sublist and so does not require a main aspect.

// Attribute values of type WAVE Track are displayed in the sublist.

// The format of attribute type WAVE Track is defined in the main aspect

// shown in Listing 5-5 on page 5-52.

resource 'dett' (kAlbum2ndInfoPageAspect + kDETAspectLookup, purgeable) {

{

{"WAVE Album Track Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,
Writing AOCE Templates 5-45

C H A P T E R 5

AOCE Templates
{

'word', prNumTracks, 0;

'long', prPlayingTimeHours, 0;

'long', prPlayingTimeMinutes, 0;

'long', prPlayingTimeSeconds, 0;

};

{"WAVE Track"}, typeBinary,

notForInput, notForOutput, useInSublist, isNotAlias, isNotRecordRef,

{};

}

};

// Drag and drop information (see

// “Supporting Drags and Drops” beginning on page 5-98)

// Prompt string for drag-in dialog box

resource 'rstr' (kAlbum2ndInfoPageAspect + kDETAspectDragInString,

purgeable) {

"Do you want to add %3%“^3”%the selected items% to the track address list

of *0x/the/* ^1 “^2”?"

};

// Attributes can be dragged from any kind of record (""); attributes of

// type WAVE Track can be dragged into this record; and the new copy of the

// attribute will be of type WAVE Track.

resource 'rst#' (kAlbum2ndInfoPageAspect + kDETAspectAttrDragIn, purgeable) {

{

"", "WAVE Track", "WAVE Track"

}

};

// Sublist sorting information

// Property names in this resource appear in the View menu, and property

// numbers tell the CE what to sort by. Positive property number is

// alphanumeric sort; negative number is numeric sort.

resource 'detm' (kAlbum2ndInfoPageAspect + kDETAspectViewMenu, purgeable) {

kAlbum2ndInfoPageAspect + kDETAspectViewMenu,

{

kDETAspectName,"by Title";
5-46 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
-prTrackNumber,"by Track Number";

}

};

// Properties in this resource are sorted in reverse order.

resource 'detp' (kAlbum2ndInfoPageAspect + kDETAspectReverseSort, purgeable)

{

{

prTrackNumber

}

};

// Text for help balloons for the properties

resource 'rst#' (kAlbum2ndInfoPageAspect + kDETAspectBalloons,purgeable) {

{

"The number of tracks on the album.", The number of tracks on the album.

 Uneditable because the record is locked or access is restricted.",

"The number of hours of music on the album.", "The number of hours of

 music on the album. Uneditable because the record is locked or access

 is restricted.",

"The number of minutes of music on the album.", "The number of minutes of

 music on the album. Uneditable because the record is locked or access

 is restricted.",

"The number of seconds of music on the album.", "The number of seconds of

 music on the album. Uneditable because the record is locked or access

 is restricted.",

}

};

// --

//

// Album information page

#define kAlbum2ndInfoPage kDETFifthID

#define kTitleTop (85)

#define kTitleBottom (kTitleTop + 12)

#define kSublistTop (kTitleBottom + 2)

#define kSublistBottom (kDETRecordInfoWindHeight - 40)

#define kSublistLeft (12)
Writing AOCE Templates 5-47

C H A P T E R 5

AOCE Templates
#define kSublistRight (kDETRecordInfoWindWidth - 12)

// Information page template signature resource

resource 'deti' (kAlbum2ndInfoPage, purgeable) {

2000,

{kSublistTop, kSublistLeft, kSublistBottom, kSublistRight},

selectFirstText,

// View list for main view is identified by the following line.

{

kDETNoProperty, kDETNoProperty, kAlbum2ndInfoPage;

},

// View list for sublist is identified by this line.

{

kDETNoProperty, kDETNoProperty, kAlbum2ndInfoPage + 1;

}

};

resource 'rstr' (kAlbum2ndInfoPage + kDETTemplateName, purgeable) {

"WAVE Album 2nd Info Page"

};

resource 'rstr' (kAlbum2ndInfoPage + kDETInfoPageName, purgeable) {

"Track Info"

};

// Associate this information page with records of type WAVE Album

// and with this aspect template.

resource 'rstr' (kAlbum2ndInfoPage + kDETRecordType, purgeable) {

"WAVE Album"

};

resource 'rstr' (kAlbum2ndInfoPage + kDETInfoPageMainViewAspect, purgeable) {

"WAVE Album Second Info Page Aspect"

};

// View list - what you see in this information page

#define kMyFirstColumnLeft (55)

#define kMyFirstColumnRight (kMyFirstColumnLeft + 120)

#define kEditTextWidth (23)
5-48 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
#define kSpaceBeforeEditDesc (25)

#define kNumEditColumns (3)

#define kMyEditColumnWidth (70)

#define k1stEditColumnLeft (kMyFirstColumnRight + 2)

#define k2ndEditColumnLeft (k1stEditColumnLeft + kMyEditColumnWidth)

#define k3rdEditColumnLeft (k2ndEditColumnLeft + kMyEditColumnWidth)

#define k4thEditColumnLeft (k3rdEditColumnLeft + kMyEditColumnWidth)

#define kNumTracksTop (40)

#define kNumTracksBottom (kNumTracksTop + kDETAppFontLineHeight + 4)

#define kPlayingTimeTop (kNumTracksBottom + 4)

#define kPlayingTimeBottom (kPlayingTimeTop + kDETAppFontLineHeight + 4)

#define k2ndColumnRightInset (kDETRecordInfoWindWidth - 10)

#define kButtonTop (kSublistBottom + 15)

#define kButtonBottom (kButtonTop + 16)

#define kOpenLeft 62

#define kOpenRight 112

#define kAddLeft 208

#define kAddRight 258

#define kRemoveLeft 270

#define kRemoveRight 320

#define kIconLeft 2

#define kNameLeft 22

#define kTrackNumberLeft 162

#define kPrefLeft 285

#define kPrefRight 305

#define kIconEntryTop -7

#define kIconEntryBottom 9

#define kEntryTop -5

#define kEntryBottom 9

resource 'detv' (kAlbum2ndInfoPage, purgeable) {

{

kDETSubpageIconRect, kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

{kNumTracksTop, kMyFirstColumnLeft, kNumTracksBottom,

 kMyFirstColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,
Writing AOCE Templates 5-49

C H A P T E R 5

AOCE Templates
 kDETRight, kDETBold, "Number of tracks:" };

{kNumTracksTop - 2, k1stEditColumnLeft, kNumTracksBottom - 2,

 k1stEditColumnLeft + kEditTextWidth},

kDETEnabled + kDETNumericOnly, prNumTracks,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kPlayingTimeTop, kMyFirstColumnLeft, kPlayingTimeBottom,

 kMyFirstColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Total playing time:" };

{kPlayingTimeTop - 2, k1stEditColumnLeft, kPlayingTimeBottom - 2,

 k1stEditColumnLeft + kEditTextWidth},

kDETEnabled + kDETNumericOnly, prPlayingTimeHours,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kPlayingTimeTop, k1stEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k2ndEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal, "Hours" };

{kPlayingTimeTop - 2, k2ndEditColumnLeft, kPlayingTimeBottom - 2,

 k2ndEditColumnLeft + kEditTextWidth},

kDETEnabled + kDETNumericOnly, prPlayingTimeMinutes,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kPlayingTimeTop, k2ndEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k3rdEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal, "Minutes" };

{kPlayingTimeTop - 2, k3rdEditColumnLeft, kPlayingTimeBottom - 2,

 k3rdEditColumnLeft + kEditTextWidth},

kDETEnabled + kDETNumericOnly, prPlayingTimeSeconds,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };
5-50 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
{kPlayingTimeTop, k3rdEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k4thEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal, "Seconds" };

{kSublistTop - 1, kSublistLeft - 1, kSublistBottom + 1,

 kSublistRight + 1},

kDETNoFlags, kDETNoProperty,

Box { kDETUnused };

{kTitleTop, kSublistLeft + kNameLeft, kTitleBottom,

 kSublistLeft + kTrackNumberLeft - 2},

kDETNoFlags, kDETAspectName,

StaticCommandTextFromView { kDETDefaultFont, kDETDefaultFontSize,

 kDETLeft, kDETUnderline, "Title", kDETChangeViewCommand, - 1};

{kTitleTop, kSublistLeft + kTrackNumberLeft, kTitleBottom,

 kSublistLeft + kPrefLeft - 2},

kDETNoFlags, prTrackNumber,

StaticCommandTextFromView { kDETDefaultFont, kDETDefaultFontSize,

 kDETLeft, kDETNormal, "Track Number", kDETChangeViewCommand, - 2 };

{kButtonTop, kOpenLeft, kButtonBottom, kOpenRight},

kDETNoFlags, kDETOpenSelectedItems,

Button { kDETApplicationFont, 10, kDETCenter, kDETNormal, "Open",

 kDETOpenSelectedItems };

{kButtonTop, kAddLeft, kButtonBottom, kAddRight},

kDETNoFlags, kDETAddNewItem,

Button { kDETApplicationFont, 10, kDETCenter, kDETNormal, "Add…",

 kDETAddNewItem };

{kButtonTop, kRemoveLeft, kButtonBottom, kRemoveRight},

kDETNoFlags, kDETRemoveSelectedItems,

Button { kDETApplicationFont, 10, kDETCenter, kDETNormal, "Remove",

 kDETRemoveSelectedItems };

}

};

// View list for sublist
Writing AOCE Templates 5-51

C H A P T E R 5

AOCE Templates
resource 'detv' (kAlbum2ndInfoPage + 1, purgeable) {

{

{kIconEntryTop, kIconLeft, kIconEntryBottom, kNameLeft-4},

kDETHilightIfSelected, kDETAspectMainBitmap,

Bitmap { kDETMiniIcon };

{kEntryTop, kNameLeft, kEntryBottom, kTrackNumberLeft - 2},

kDETHilightIfSelected + kDETDynamicSize, kDETAspectName,

EditText { kDETDefaultFont, kDETDefaultFontSize, kDETLeft,

 kDETNormal };

{kEntryTop, kTrackNumberLeft, kEntryBottom, kPrefLeft - 2},

kDETHilightIfSelected + kDETDynamicSize, prTrackNumber,

EditText { kDETDefaultFont, kDETDefaultFontSize, kDETLeft,

 kDETNormal };

}

};

Writing a Main Aspect and Information Page for an Attribute 5
The information page in Listing 5-4 on page 5-44 allows a user to add a new attribute of
type Track. To make this possible, you have to provide a main aspect for attributes of
that type. To let the user see the contents of the attribute, you need to provide an
information page (see Figure 5-5 on page 5-9). Listing 5-5 shows the main aspect
template and information page template for attributes of type Track. Because this is an
attribute, the main aspect template contains all the properties needed by the information
page in addition to the resources required for a main aspect template.

Listing 5-5 Attribute main aspect and information page

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

#include "Track.h"

#define kDETSixthID (1000 + 5 * kDETIDSep)

#define kTrackAspect (kDETSixthID + kDETIDSep)

#define kTrackInfoPage (kDETSixthID + (2 * kDETIDSep))

// The aspect template

resource 'deta' (kTrackAspect, purgeable) {
5-52 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
0, // drop-operation order

dropCheckAlways, // drop-check flag

isMainAspect // is the main aspect

};

resource 'rstr' (kTrackAspect + kDETTemplateName, purgeable) {

"WAVE Track Aspect"

};

resource 'rstr' (kTrackAspect + kDETAttributeType, purgeable) {

"WAVE Track"

};

resource 'rstr' (kTrackAspect + kDETAspectKind, purgeable) {

"Track"

};

resource 'rstr' (kTrackAspect + kDETAspectWhatIs, purgeable) {

"Track\n\nA track on an album."

};

resource 'rst#' (kTrackAspect + kDETAspectCategory, purgeable)

{{

"Recordings"

}};

resource 'rstr' (kTrackAspect + kDETAspectNewMenuName, purgeable) {

"New Track"

};

#define prTrackNumber kDETFirstDevProperty

#define prTrackMinutes (kDETFirstDevProperty + 1)

#define prTrackSeconds (kDETFirstDevProperty + 2)

#define prTrackComposer (kDETFirstDevProperty + 3)

#define prTrackComments (kDETFirstDevProperty + 4)

// Default values for a newly created attribute

data 'detb' (kTrackAspect + kDETAspectNewValue, purgeable) {

$"626E 7279" // tag (bnry)

$"0000 0001" // prTrackNumber (1)

$"0000 0000" // prTrackMinutes (1)

$"0000 0000" // prTrackSeconds (1)
Writing AOCE Templates 5-53

C H A P T E R 5

AOCE Templates
$"0000 0007 3C74 6974 6C65 3E" // kDETAspectName (<title>)

$"0000 000A 3C63 6F6D 706F 7365 723E" // composer (<composer>)

$"0000 000A 3C63 6F6D 6D65 6E74 733E" // comments (<comments>)

};

// Lookup table

resource 'dett' (kTrackAspect + kDETAspectLookup, purgeable) {

{

{"WAVE Track"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'long', prTrackNumber, 0;

'long', prTrackMinutes, 0;

'long', prTrackSeconds, 0;

'rstr', kDETAspectName, 0;

'rstr', prTrackComposer, 0;

'rstr', prTrackComments, 0

};

}

};

// Icons

include "TrackIcons" 'ICN#'(0) as 'ICN#'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'icl4'(0) as 'icl4'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'icl8'(0) as 'icl8'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'ics#'(0) as 'ics#'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'ics4'(0) as 'ics4'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'ics8'(0) as 'ics8'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'SICN'(0) as 'SICN'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

// --

// Information page

#define kTrackNumberTop (50)
5-54 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
#define kTrackNumberBottom (kTrackNumberTop + kDETAppFontLineHeight

 + 4)

#define kTrackPlayingTimeTop (kTrackNumberBottom + 4)

#define kTrackPlayingTimeBottom (kTrackPlayingTimeTop +

 kDETAppFontLineHeight + 4)

#define kTrackComposerTop (kTrackPlayingTimeBottom + 4)

#define kTrackComposerBottom (kTrackComposerTop +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4)

#define kTrackCommentsTop (kTrackComposerBottom + 4)

#define kTrackCommentsBottom (kTrackCommentsTop +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4)

#define kTrackEditTextWidth (23)

#define kTrackSpaceBeforeEditDesc(25)

#define kTrack1stColumnLeft (4)

#define kTrack1stColumnRight (kDETAttributeInfoWindWidth / 2 - 20)

#define kTrack2ndColumnLeft (kTrack1stColumnRight + 4)

#define kTrack2ndColumnRight (kDETAttributeInfoWindWidth - 8)

#define kTrackSecondsColumnLeft (kTrack2ndColumnLeft +

 kTrackSpaceBeforeEditDesc + 40)

resource 'deti' (kTrackInfoPage, purgeable) {

1000,

{0, 0, 0, 0},

selectFirstText,

{

kDETNoProperty, kDETNoProperty, kTrackInfoPage;

},

{

}

};

resource 'rstr' (kTrackInfoPage + kDETTemplateName, purgeable) {

"WAVE Track Info Page"

};

resource 'rstr' (kTrackInfoPage + kDETAttributeType, purgeable) {
Writing AOCE Templates 5-55

C H A P T E R 5

AOCE Templates
"WAVE Track"

};

resource 'rstr' (kTrackInfoPage + kDETInfoPageName, purgeable) {

"Track Info"

};

resource 'rstr' (kTrackInfoPage + kDETInfoPageMainViewAspect, purgeable) {

"WAVE Track Aspect"

};

// View list

resource 'detv' (kTrackInfoPage, purgeable) {

{

kDETSubpageIconRect, kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

{kTrackNumberTop, kTrack1stColumnLeft, kTrackNumberBottom,

 kTrack1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Track Number:" };

{kTrackNumberTop - 2, kTrack2ndColumnLeft, kTrackNumberBottom - 2,

 kTrack2ndColumnLeft + kTrackEditTextWidth},

kDETEnabled + kDETNumericOnly, prTrackNumber,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kTrackPlayingTimeTop, kTrack1stColumnLeft, kTrackPlayingTimeBottom,

 kTrack1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Playing Time:" };

{kTrackPlayingTimeTop - 2, kTrack2ndColumnLeft,

 kTrackPlayingTimeBottom - 2,

 kTrack2ndColumnLeft + kTrackEditTextWidth},

kDETEnabled + kDETNumericOnly, prTrackMinutes,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };
5-56 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
{kTrackPlayingTimeTop, kTrack2ndColumnLeft + kTrackSpaceBeforeEditDesc,

 kTrackPlayingTimeBottom, kTrackSecondsColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal, "Mins" };

{kTrackPlayingTimeTop - 2, kTrackSecondsColumnLeft,

 kTrackPlayingTimeBottom - 2, kTrackSecondsColumnLeft +

 kTrackEditTextWidth},

kDETEnabled + kDETNumericOnly, prTrackSeconds,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kTrackPlayingTimeTop, kTrackSecondsColumnLeft +

 kTrackSpaceBeforeEditDesc, kTrackPlayingTimeBottom,

 kTrack2ndColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal,"Secs" };

{kTrackComposerTop, kTrack1stColumnLeft, kTrackComposerBottom,

 kTrack1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold,"Composer:" };

{kTrackComposerTop - 2, kTrack2ndColumnLeft, kTrackComposerBottom - 2,

 kTrack2ndColumnRight},

kDETEnabled + kDETMultiLine, prTrackComposer,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kTrackCommentsTop, kTrack1stColumnLeft, kTrackCommentsBottom,

 kTrack1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold,"Comments:" };

{kTrackCommentsTop - 2, kTrack2ndColumnLeft, kTrackCommentsBottom - 2,

 kTrack2ndColumnRight},

kDETEnabled + kDETMultiLine, prTrackComments,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,
Writing AOCE Templates 5-57

C H A P T E R 5

AOCE Templates
 kDETNormal };

}

};

Creating a Custom Information Page Window 5
The aspect and information page templates in Listing 5-6 define a new AOCE record
type and the information page that displays the record’s contents. The user can use this
record type to store information about collections of recording albums. The information
page lists the albums in the collection. Because an AOCE record cannot contain another
record, the AOCE record type Album Collection actually contains aliases to records of
type Album.

The information page consists of a sublist listing the albums in the collection. The
information page window is a custom size, defined by the 'detw' resource with a
resource ID of kCollectionAspect + kDETAspectInfoPageCustomWindow (see
page 5-97 for a description of this resource). This resource specifies the flag
discludePopup, so the Catalogs Extension does not include a pop-up menu in the
window. The template does not add a custom pop-up menu either. Therefore, no one can
add any more information pages to this information page window, because the user
would have no way of selecting which page to look at. For this reason, a single aspect
template is used for both the main aspect and the information page aspect for this new
record type.

Notice also that the aspect template for the Album Collection record type includes a
view list. Ordinarily, you can put view lists only in information page templates, not in
aspect templates. However, because this aspect template defines a custom information
page window, you can include a view list with a resource ID of kCollectionAspect
+ kDETAspectInfoPageCustomWindow. The views defined by this view list appear
in every information page associated with this main aspect. (In Listing 5-6, there’s only
one information page, so the view list could be placed in either the aspect or information
page template.)

Listing 5-6 Templates for a custom information page

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

#define kCollectionAspect (kDETFifthID + (3 * kDETIDSep))

#define kCollectionInfoPage (kDETFifthID + (4 * kDETIDSep))

#define kGeneva 3

#define kSystemFont 0

// Page layout defines
5-58 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
#define iconColumnWidth 16

#define nameColumnWidth 132

#define kindColumnWidth 86

#define spaceBetweenColumns 2

#define iconColumnLeft 0

#define iconColumnRight (iconColumnLeft + iconColumnWidth)

#define nameColumnLeft (iconColumnRight + spaceBetweenColumns)

#define nameColumnRight (nameColumnLeft + nameColumnWidth)

#define kindColumnLeft nameColumnRight

#define kindColumnRight (kindColumnLeft + kindColumnWidth)

#define sublistIconTop (-7)

#define sublistIconBottom (9)

#define sublistTextTop (-6)

#define sublistTextBottom (8)

#define sublistTitleTop (35)

#define sublistTitleBottom (sublistTitleTop + 12)

#define windowHeight 280

#define windowWidth (kindColumnLeft + kindColumnWidth + 15 + 16)

#define sublistTopBound (sublistTitleBottom + 2)

#define sublistBottomBound (windowHeight - 12)

#define sublistLeftBound 12

#define sublistRightBound (windowWidth - 12)

#define kPageBitmapLeft (11)

#define kPageBitmapRight (kPageBitmapLeft + 16)

#define kPageBitmapTop 7

#define kPageBitmapBottom 23

// Aspect template; serves as both main aspect and information page aspect.

//

resource 'deta' (kCollectionAspect, purgeable) {

0, // drop-operation order

dropCheckConflicts, // drop-check flag

isMainAspect // is the main aspect

};
Writing AOCE Templates 5-59

C H A P T E R 5

AOCE Templates
resource 'rstr' (kCollectionAspect + kDETTemplateName, purgeable) {

"WAVE Album Collection Aspect"

};

resource 'rstr' (kCollectionAspect + kDETRecordType, purgeable) {

"WAVE Album Collection"

};

resource 'rstr' (kCollectionAspect + kDETAspectKind, purgeable) {

"album collection"

};

resource 'rstr' (kCollectionAspect + kDETAspectWhatIs, purgeable) {

"Album Collection\n\nA collection of albums.Open this icon to display

 information about the collection."

};

resource 'rstr' (kCollectionAspect + kDETAspectAliasKind, purgeable) {

"album collection alias"

};

resource 'rstr' (kCollectionAspect + kDETAspectAliasWhatIs, purgeable) {

"Album Collection alias\n\This is an alias to a collection of albums.

 Open this alias to display information about the collection."

};

// Record category; this record type is assigned to the same category as the

// Album record type.

resource 'rst#' (kCollectionAspect + kDETAspectCategory,purgeable)

{{

"Recordings"

}};

// Define a custom information page window.

resource 'detw' (kCollectionAspect + kDETAspectInfoPageCustomWindow,

purgeable) {

{ 0, 0, windowHeight, windowWidth },

discludePopup

};

// View list for views to appear in all information pages for this
5-60 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
// main aspect

resource 'detv' (kCollectionAspect + kDETAspectInfoPageCustomWindow,

purgeable)

{

{

{6, kPageBitmapRight + 8, 25, kPageBitmapRight + 8 + 166},

 kDETNoFlags, kDETInfoPageNumber,

Menu {kSystemFont, 12, kDETLeft, kDETNormal, "", kDETInfoPageNumber,

kDETInfoPageNumber };

};

};

resource 'rstr' (kCollectionAspect + kDETAspectNewMenuName, purgeable) {

"New Album Collection"

};

resource 'rstr' (kCollectionAspect + kDETAspectNewEntryName, purgeable) {

"untitled album collection"

};

include "AlbumCollectionIcons" 'ICN#'(0) as 'ICN#'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'icl4'(0) as 'icl4'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'icl8'(0) as 'icl8'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'ics#'(0) as 'ics#'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'ics4'(0) as 'ics4'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'ics8'(0) as 'ics8'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'SICN'(0) as 'SICN'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

// Supporting drops

resource 'rstr' (kCollectionAspect + kDETAspectDragInString, purgeable) {

"Do you want to add %3%“^3”%the selected items% to *0x/the/* ^1 “^2”?"

};

resource 'rst#' (kCollectionAspect + kDETAspectRecordCatDragIn,purgeable)
Writing AOCE Templates 5-61

C H A P T E R 5

AOCE Templates
{{

"Recordings", kMemberAttrTypeBody

}};

resource 'rst#' (kCollectionAspect + kDETAspectAttrDragIn,purgeable)

{{

"", kMemberAttrTypeBody, kMemberAttrTypeBody

}};

resource 'dett' (kCollectionAspect + kDETAspectLookup, purgeable)

{{

{kMemberAttrTypeBody}, typePackedDSSpec,

notForInput, notForOutput, useInSublist, isAlias, isNotRecordRef,

{};

}};

resource 'detm' (kCollectionAspect + kDETAspectViewMenu, purgeable)

{

kCollectionAspect + kDETAspectViewMenu,

{

kDETPrName, "by Name";

kDETPrKind, "by Kind";

}

};

//---

// The information page template

#define k2ndColumnRightInset (kDETRecordInfoWindWidth-kDETSubpageRightInset)

resource 'deti' (kCollectionInfoPage, purgeable) {

1000,

{sublistTopBound, sublistLeftBound, sublistBottomBound,

 sublistRightBound},

noSelectFirstText,

{

kDETNoProperty, kDETNoProperty, kCollectionInfoPage;

},

{

kDETNoProperty, kDETNoProperty, kCollectionInfoPage + 1;
5-62 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
}};

resource 'rstr' (kCollectionInfoPage + kDETTemplateName, purgeable) {

"WAVE Album Collection Info Page"

};

resource 'rstr' (kCollectionInfoPage + kDETRecordType, purgeable) {

"WAVE Album Collection"

};

resource 'rstr' (kCollectionInfoPage + kDETInfoPageName, purgeable) {

"Album Collection"

};

resource 'rstr' (kCollectionInfoPage + kDETInfoPageMainViewAspect,

purgeable) {

"WAVE Album Collection Aspect"

};

resource 'detv' (kCollectionInfoPage, purgeable)

{

{

{kPageBitmapTop, kPageBitmapLeft, kPageBitmapBottom, kPageBitmapRight},

kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETSmallIcon };

{sublistTopBound - 1, sublistLeftBound - 1, sublistBottomBound + 1,

sublistRightBound + 1}, kDETNoFlags, kDETNoProperty,

Box { kDETUnused };

{sublistTitleTop, sublistLeftBound + nameColumnLeft, sublistTitleBottom,

 sublistLeftBound + nameColumnRight},

kDETNoFlags, kDETPrName,

StaticCommandTextFromView { kGeneva, 9, kDETLeft, kDETUnderline,

 "Name", kDETChangeViewCommand, - 1 };

{sublistTitleTop, sublistLeftBound + kindColumnLeft, sublistTitleBottom,

 sublistLeftBound + kindColumnRight},

kDETNoFlags, kDETPrKind,

StaticCommandTextFromView { kGeneva, 9, kDETLeft, kDETNormal, "Kind",

 kDETChangeViewCommand, - 2 };

};

};
Writing AOCE Templates 5-63

C H A P T E R 5

AOCE Templates
resource 'detv' (kCollectionInfoPage + 1, purgeable)

{

{

{sublistIconTop, iconColumnLeft, sublistIconBottom, iconColumnRight},

kDETHilightIfSelected, kDETAspectMainBitmap,

Bitmap { kDETMiniIcon };

{sublistTextTop, nameColumnLeft, sublistTextBottom, nameColumnRight},

kDETHilightIfSelected + kDETDynamicSize, kDETPrName,

StaticText { kGeneva, 9, kDETLeft, kDETIconStyle };

{sublistTextTop, kindColumnLeft, sublistTextBottom, kindColumnRight},

kDETNoFlags, kDETPrKind,

StaticText { kGeneva, 9, kDETLeft, kDETNormal };

}

};

Figure 5-22 shows an example of the information page defined by Listing 5-6. Notice that
this information page contains no Add or Remove buttons. The only way for a user to
add a record alias to a record of type Album Collection is to drag an Album record into
the sublist. The only way to remove one is to drag it from the sublist into the Trash. This
design works well for the Album Collection record type because letting the user create a
new, empty attribute for this record would make little sense. When the user
double-clicks an album in the sublist, the Catalogs Extension opens the information page
for the album, not for an attribute in the Album record.
5-64 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Figure 5-22 Custom information page

Writing Template Code Resources 5

The set of templates you’ve seen so far creates information pages that let a user store
information about an album, about each track on an album, and about a collection of
albums. Because the user can enter the duration of each track in the Track Info attribute
information page (Figure 5-5 on page 5-9), you can provide a code resource that
automatically adds up the number of tracks and the total playing time so that the user
does not have to enter that information into editable text boxes. The resulting
information page (Figure 5-23) is identical to an earlier information page (Figure 5-21 on
page 5-44) except that the number of tracks and total playing time are no longer editable
text.

Figure 5-23 Information page using a code resource
Writing AOCE Templates 5-65

C H A P T E R 5

AOCE Templates
The aspect and information page templates that create the information page in Figure
5-23 are identical to those in Listing 5-4 on page 5-44, with the following exceptions:

■ The aspect template includes the code resource. To include the code shown in Listing
5-8 on page 5-68 (assuming this code has been compiled and saved as the resource
Album2Code of type 'detc' with a resource ID of 0), add the following line to the
aspect template:

include "Album2Code" 'detc'(0) as

 'detc'(kAlbum2ndInfoPageAspect + kDETAspectCode, purgeable);

■ The lookup table does not contain the attribute Album Track Info or elements for the
properties prNumTracks, prPlayingTimeHours, prPlayingTimeMinutes, or
prPlayingTimeSeconds. These properties are all handled by the code resource.

■ Instead of the edit-text views in the view lists for the “Number of tracks” and
“Playing time” fields, the view list contains static text fields that get the values to
display from the code resource. Listing 5-7 shows the view lists.

Listing 5-7 View lists that get values from a code resource

resource 'detv' (kAlbum2ndInfoPage + 1, purgeable) {

{

{kNumTracksTop, kMyFirstColumnLeft, kNumTracksBottom,

 kMyFirstColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETRight, kDETBold, "Number of

 tracks:" };

{kNumTracksTop, k1stEditColumnLeft, kNumTracksBottom,

 k1stEditColumnLeft + kEditTextWidth},

kDETNoFlags, prNumTracks,

StaticText { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal };

}

};

resource 'detv' (kAlbum2ndInfoPage + 2, purgeable) {

{

{kPlayingTimeTop, kMyFirstColumnLeft, kPlayingTimeBottom,

 kMyFirstColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETRight, kDETBold,

 "Total playing time:" };
5-66 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
{kPlayingTimeTop, k1stEditColumnLeft, kPlayingTimeBottom,

 k1stEditColumnLeft + kEditTextWidth},

kDETNoFlags, prPlayingTimeHours,

StaticText { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal };

{kPlayingTimeTop, k1stEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k2ndEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETLeft, kDETNormal, "Hours" };

{kPlayingTimeTop, k2ndEditColumnLeft, kPlayingTimeBottom,

 k2ndEditColumnLeft + kEditTextWidth},

kDETNoFlags, prPlayingTimeMinutes,

StaticText { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal };

{kPlayingTimeTop, k2ndEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k3rdEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETLeft, kDETNormal, "Minutes" };

{kPlayingTimeTop, k3rdEditColumnLeft, kPlayingTimeBottom,

 k3rdEditColumnLeft + kEditTextWidth},

kDETNoFlags, prPlayingTimeSeconds,

StaticText { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal };

{kPlayingTimeTop, k3rdEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k4thEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETLeft, kDETNormal, "Seconds" };

}

};

All of the routines you can provide in code resources for aspect templates are described
in “Functions You Can Provide as Part of Your Code Resource” beginning on page 5-148.
The Catalogs Extension can call the code resource for the aspect of the information page
the user is currently using, or it can target another code resource. The code resource in
Listing 5-8 handles only calls from the CE that are not targeted or for which the target is
Writing AOCE Templates 5-67

C H A P T E R 5

AOCE Templates
kDETSelf. Targeting of code resource routines is described in “Target Specifier” on
page 5-142.

At initialization, Listing 5-8 sets the call-for mask so that the CE calls this code resource
only for idle events and view-change events. Thus, the CE calls this code resource
periodically to let it process idle-time tasks. The CE also calls this code resource
whenever the user opens the information page or displays a conditional view. The
call-for mask is described in “Call-For Mask” on page 5-149.

Listing 5-8 calls routines provided by the CE—referred to in this chapter as callback
routines—to get and set the values of properties and to obtain the number of items in the
sublist. The CallBackDET macro that you can use to call these routines is described on
“Calling CE-Provided Functions” on page 5-197. All of the available callback routines are
described in “CE-Provided Functions That Your Code Resource Can Call” beginning on
page 5-196.

Listing 5-8 calculates the playing time by adding up the playing times of all the
individual tracks. To calculate this total, Listing 5-8 calls the
kDETcmdGetPropertyNumber callback routine repeatedly, targeting each call to the
attribute representing a specific track. See the description of the kDETSublistItem
target selector in “Target Specifier” on page 5-142 to gain a better understanding of this
technique.

IMPORTANT

When you design your code resource, you must follow certain rules to
avoid corrupting or crashing the Finder. See “Rules for Writing Code
Resources” on page 5-142 for details. ▲

Listing 5-8 Template code resource

/* Forward declaration of function defined later */

static OSErr DoIdle(DETCallBlockPtr callBlockPtr);

/* Dispatcher for routines in this code resource that the CE can call */

pascal OSErr MyAlbumCode(DETCallBlockPtr callBlockPtr)

{

OSErr err = kDETDidNotHandle;

if ((callBlockPtr->protoCall.reqFunction < kDETcmdTargetedCall) ||

 (callBlockPtr->protoCall.target.selector == kDETSelf))

{

switch (callBlockPtr->protoCall.reqFunction)

{

case kDETcmdInit:

callBlockPtr->init.newCallFors = kDETCallForIdle +
5-68 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
 kDETCallForViewChanges;

break;

case kDETcmdIdle:

case kDETcmdViewListChanged:

err = DoIdle(callBlockPtr);

break;

}

}

return err;

}

/* This routine calls the CE-provided routine kDETcmdGetPropertyNumber to

 obtain the value of a property as a number. */

static OSErr DoGetPropertyNumber(DETCallBlockPtr callBlockPtr,

DETTargetSelector selector,

long itemNumber,

short property,

long *value)

{

OSErr err;

DETCallBackBlock cbb;

cbb.getPropertyNumber.reqFunction = kDETcmdGetPropertyNumber;

cbb.getPropertyNumber.property = property;

cbb.getPropertyNumber.target.selector = selector;

cbb.getPropertyNumber.target.aspectName = nil;

cbb.getPropertyNumber.target.itemNumber = itemNumber;

err = CallBackDET(callBlockPtr, &cbb);

*value = cbb.getPropertyNumber.propertyValue;

return err;

}

/* This routine calls the CE-provided routine kDETcmdSublistCount to

 obtain the number of items in a sublist. */
Writing AOCE Templates 5-69

C H A P T E R 5

AOCE Templates
static OSErr DoGetNumSublistItems(DETCallBlockPtr callBlockPtr, long *num)

{

OSErr err;

DETCallBackBlock cbb;

cbb.sublistCount.reqFunction = kDETcmdSublistCount;

cbb.sublistCount.target.selector = kDETSelf;

err = CallBackDET(callBlockPtr, &cbb);

*num = cbb.sublistCount.count;

return err;

}

/* This routine calls the CE-provided routine kDETcmdSetPropertyNumber to

 set the value of a number property. */

static OSErr DoSetPropertyNumber(DETCallBlockPtr callBlockPtr,

short property,

long newValue)

{

OSErr err;

DETCallBackBlock cbb;

cbb.setPropertyNumber.reqFunction = kDETcmdSetPropertyNumber;

cbb.setPropertyNumber.property = property;

cbb.setPropertyNumber.target.selector = kDETSelf;

cbb.setPropertyNumber.newValue = newValue;

err = CallBackDET(callBlockPtr, &cbb);

return err;

}

/* Here is the main routine for this code resource. This routine counts the

 number of tracks and adds up the total time for the album. */

static OSErr DoIdle(DETCallBlockPtr callBlockPtr)

{

OSErr err;

long oldNumber, actualNumber;
5-70 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
/* Get the current value of the property prNumTracks. */

err = DoGetPropertyNumber(callBlockPtr, kDETSelf, 0, prNumTracks,

 &oldNumber);

/* Get the number of items in the sublist. Because each sublist item

 represents one track, set the value of prNumTracks equal to the

 number of sublist items. */

if (err == noErr)

{

err = DoGetNumSublistItems(callBlockPtr, &actualNumber);

}

if ((err == noErr) && (oldNumber != actualNumber))

{

err = DoSetPropertyNumber(callBlockPtr, prNumTracks, actualNumber);

}

if (err == noErr)

{

long index;

long oldSeconds, actualSeconds = 0;

long seconds;

long minutes;

long hours;

/* Calculate the playing time by adding up the playing times of all

 the tracks, calling each track in the sublist in turn. */

for (index = 1; (err == noErr) && (index <= actualNumber); ++index)

{

err = DoGetPropertyNumber(callBlockPtr, kDETSublistItem, index,

 prTrackSeconds, &seconds);

if (err == noErr)

{

err = DoGetPropertyNumber(callBlockPtr, kDETSublistItem, index,

 prTrackMinutes, &minutes);

}

if (err == noErr)

{

actualSeconds += (minutes * 60 + seconds);

}

Writing AOCE Templates 5-71

C H A P T E R 5

AOCE Templates
}

/* Get the old total playing time. */

if (err == noErr)

{

err = DoGetPropertyNumber(callBlockPtr, kDETSelf, 0,

 prPlayingTimeHours, &hours);

}

if (err == noErr)

{

err = DoGetPropertyNumber(callBlockPtr, kDETSelf, 0,

 prPlayingTimeMinutes, &minutes);

}

if (err == noErr)

{

err = DoGetPropertyNumber(callBlockPtr, kDETSelf, 0,

 prPlayingTimeSeconds, &seconds);

}

/* Now compare the two playing times. If they're different, set

 the properties to equal the new one. */

if (err == noErr)

{

oldSeconds = 3600 * hours + 60 * minutes + seconds;

if (oldSeconds != actualSeconds)

{

hours = actualSeconds / 3600;

err = DoSetPropertyNumber(callBlockPtr, prPlayingTimeHours,

 hours);

if (err == noErr)

{

actualSeconds -= (hours * 3600);

minutes = actualSeconds / 60;

err = DoSetPropertyNumber(callBlockPtr, prPlayingTimeMinutes,

 minutes);

}

if (err == noErr)

{

5-72 Writing AOCE Templates

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
actualSeconds -= (minutes * 60);

err = DoSetPropertyNumber(callBlockPtr, prPlayingTimeSeconds,

 actualSeconds);

}

}

}

}

return err;

}

AOCE Templates Reference 5

This section describes the file types, template types, and resource types you can use to
extend the capabilities of the Catalogs Extension. For complete lists of the resource types
required to create each type of AOCE template, see Table 5-1 on page 5-78 for aspect
templates, Table 5-10 on page 5-120 for information page templates, Table 5-11 on
page 5-138 for forwarder templates, Table 5-12 on page 5-140 for killer templates, and
Table 5-13 on page 5-141 for file type templates.

Code resources are described in detail in “Code Resources Reference” beginning on
page 5-142.

File and Resource Types Used by the Catalogs Extension 5
AOCE templates exist as resources in the resource forks of files in the Macintosh file
system. A single file can contain multiple templates. The Catalogs Extension looks for
files containing templates in the System Extensions folder inside the System Folder. It
looks in all files in its list of appropriate file types. Initially, it uses the following file types:

File type Description

'detf' CE template file. This file type exists solely to hold templates.

'dsam' A CSAM. If you create new templates to support a CSAM, you can make
installation easy for users by including the templates in the CSAM file.

'msam' An MSAM. If you create new templates to support an MSAM, you can
make installation easy for users by including the templates in the MSAM
file.

'csam' A combined CSAM and MSAM. If you create new templates to support a
combined CSAM and MSAM, you can make installation easy for users by
including the templates in the SAM file.

'fext' Finder extensions. The CE searches only for those Finder extension files
that have creator 'adbk', which is the CE. This file supplies the templates
that come with the CE and that are installed when the CE is installed.
AOCE Templates Reference 5-73

C H A P T E R 5

AOCE Templates
Note
The abbreviation “dsam”—found in the 'dsam' file type and in
function names and data structures in the AOCE interface files—stands
for “directory service access module,” the name used for catalog service
access modules in early versions of the AOCE software. The 'csam' file
type is so named because it implements “combined service access
modules.” Therefore a file of type 'dsam' implements a CSAM and a
file of type 'csam' implements both a CSAM and an MSAM.

See the chapter “Service Access Module Setup” in Inside Macintosh:
AOCE Service Access Modules for descriptions of the templates you must
write to support CSAMs and MSAMs. ◆

File type templates can specify additional file types for the CE to search for template
resources. You can use this feature to include AOCE templates with extension files of
other types.

Within the file, templates consist of sets of associated resources. Each template in the file
includes a signature resource, which specifies the type of the template and the base ID of
the associated resources. All signature resources include a version number to tell the CE
the format of the template. Because these version numbers are automatically included as
a part of the Rez template resource definition, you do not need to include them explicitly
in your Rez file. Some signature resources also contain additional template-related
information.

AOCE templates use the following resource types for template signature resources:

AOCE templates also use the following types of resources:

Resource type Kind of template

'deta' Aspect template

'deti' Information page template

'detf' Forwarder template

'detk' Killer template

'detx' File type template

Resource type Description

'detb' Binary data

'detc' Code resource

'detm' Menu entries

'detn' Number (long)

'detp' Reverse-sort properties list

'dett' Lookup table

'detv' View list

'detw' Custom information page window

'rstr' String (RString)

'rst#' RString array
5-74 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
In addition, icons are composed of a suite of resource types as described in the chapter
“Finder Interface” in Inside Macintosh, Macintosh Toolbox Essentials.

IMPORTANT

It is very important not to overlap resource IDs from two different
templates within the same file. One way to help ensure that they don’t is
to separate template base IDs by 250. ▲

Template Names 5

Every template includes a name resource, described in this section.

Each template must have a name so that it can be referred to by other templates. To
avoid ambiguity in such cross-references, you should make your template names
unique. To ensure uniqueness, you should start the template name with a four-character
application signature registered with Macintosh Developer Technical Support.

kDETTemplateName 5

The template name resource has a resource ID with an offset of kDETTemplateName
from the template’s base (signature) resource ID.

resource 'rstr' (rMyBaseID + kDETTemplateName, purgeable) {

"WAVE This is the name of my template"

};

The 'rstr' resource is defined as follows:

type 'rstr' {

rstring; /* an RString */

};

To ensure the uniqueness of the template name, start it with a four-character application
signature registered with Macintosh Developer Technical Support.

Specifying Record and Attribute Types for Templates 5
Each aspect and information page template applies only to specific types of records or
attributes. To specify the types of records and attributes with which it is used, each
template must include one or both of the record-type and attribute-type resources.

If your template applies to records, include a kDETRecordType resource but no
kDETAttributeType resource. If your template applies to attributes in records of any
type, include a kDETAttributeType resource but no kDETRecordType resource. Such
AOCE Templates Reference 5-75

C H A P T E R 5

AOCE Templates
a template also supports stand-alone attributes. If your template applies to attributes in a
specific type of record, include both a kDETAttributeType resource and a
kDETRecordType resource. The following table summarizes these rules:

Note
Specifying both a kDETAttributeType resource and a
kDETRecordType resource does not prevent a user from dragging an
attribute from a sublist and dropping it on the desktop or on another
object. To control which attribute types can be dragged from a sublist,
use a kDETAspectDragOut resource (page 5-102). ◆

Note
A stand-alone attribute has a record type formed by concatenating the
value of the constant kAttributeValueRecTypeBody (aoce Attribute
Value), the attribute tag value, and the attribute type of the original
attribute (without the attribute type’s length or character set). The
RString structure that holds the record type has a character set that is
the same as the character set of the original attribute type. ◆

kDETRecordType 5

The record-type resource specifies the record type to which an aspect or information
page template applies. The record-type resource has a resource ID with an offset of
kDETRecordType from the template’s base resource ID.

resource 'rstr' (rMyBaseResourceID + kDETRecordType, purgeable) {

"WAVE record type"

};

To ensure the uniqueness of the record type, start it with a four-character application
signature registered with Macintosh Developer Technical Support.

kDETRecordType kDETAttributeType Template applies to

Not present Not present Nothing (invalid)

"my rectype" Not present Records of type "my rectype"

Not present "my attrtype" Attributes of type "my attrtype" in
records of any type or as stand-alone
attributes

"my rectype" "my attrtype" Attributes of type "my attrtype"
only in records of type "my rectype"
5-76 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
kDETAttributeType 5

The attribute-type resource specifies the attribute type to which an aspect or information
page template applies. The attribute-type resource has a resource ID with an offset of
kDETAttributeType from the template’s base resource ID.

resource 'rstr' (rMyBaseResourceID + kDETAttributeType,

purgeable) {

"WAVE attribute type"

};

To ensure the uniqueness of the attribute type, start it with a 4-character application
signature registered with Macintosh Developer Technical Support.

kDETAttributeValueTag 5

The attribute-tag resource specifies the attribute value tag of the attributes to which an
aspect or information page template applies. The attribute-tag resource has a resource ID
with an offset of kDETAttributeValueTag from the template’s base resource ID.

resource 'detn' (rMyTemplate + kDETAttributeValueTag, purgeable) {

'bnry'

};

The 'detn' resource type is defined as follows:

type 'detn' {

longInt;

};

You can specify this resource only if the template also contains an attribute-type
resource. If this resource is present, then the template applies only to attributes that have
the specified tag. Because you can define your own attribute value tags, you can use this
resource in any way you wish. If this resource is not present, then the template applies to
attributes with any tag value.

The attribute-tag resource is useful to improve the efficiency of the display of addresses
in a user address information page. Address attributes in user records should have
attribute tags set to the value of the address subtype (for example, 'alan' for
LAN-based mail, 'aphn' for Direct Dialup mail). Address templates should include the
attribute-tag resource to specify the tag they work with. This resource allows the
Catalogs Extension to determine very quickly the proper template to use with a given
address.
AOCE Templates Reference 5-77

C H A P T E R 5

AOCE Templates
Components of Aspect Templates 5
The primary purpose of an aspect template is to supply information about a record or
attribute in an AOCE catalog. Most of this information is in the form of properties used
by either an information page field or a sublist in an information page or dNode. Each
information page template includes the name of an aspect used to supply properties for
its fields and to generate its sublist (if any). In addition, an aspect template may provide
information about how to create new items (records or attributes) of the type described
by the template, the icon to use in a sublist, and the string to put in the “Kind” column of
a sublist.

An aspect template can contain the resources listed in Table 5-1.

Table 5-1 Resources in aspect templates

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

'deta' 0 Identifies template as aspect and provides
a base resource ID. Required for all aspect
templates.

'rstr' kDETTemplateName Name of template. Required for all aspect
templates.

'rstr' kDETRecordType Type of record to which the template
applies. Either this resource, the
kDETAttributeType resource, or both
must be included.

'rstr' kDETAttributeType Type of attribute to which the template
applies. Either this resource, the
kDETRecordType resource, or both must
be included.

'detn' kDETAttributeValueTag Attribute tag of attributes to which the
template applies. You can provide this
resource if you have also provided the
kDETAttributeType resource. If you
don’t provide this resource, the template
applies to attributes with any tag value.

icon
suite

kDETAspectMainBitmap Suite of icons. Neither the code resource
nor the user can change these values. A set
of icon resources at this offset is required
for main aspect templates. (You may also
include in any aspect template one or more
icon suites with other resource IDs to
provide icons for display in the
information page.)
5-78 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
'rstr' kDETAspectKind The kind of record or attribute as shown in
a sublist. Neither the code resource nor the
user can change this value. You must
include this resource in main aspect
templates; it is not needed in other
aspect templates.

'rst#' kDETAspectCategory The names of categories to which the
record or attribute belongs. These names
are used internally by the CE. They are
also displayed to the user if no template
includes a corresponding
kDETAspectExternalCategory
resource. You must include this resource in
main aspect templates for records and
stand-alone attributes; it is not needed in
other aspect templates.

'rst#' kDETAspectExternalCategory The names of categories to which the
record or attribute belongs. These names
are displayed to the user; they must
correspond 1:1 to those in the
kDETAspectCategory resource. If no
template includes this resource, the CE
displays the names in the
kDETAspectCategory resource to the
user. You can include this resource in main
aspect templates; it is not needed in other
aspect templates.

'detn' kDETAspectGender The gender of the kind to display in a
sublist for objects of this type. For use with
languages that require this information.
You can include this resource in main
aspect templates when necessary; it is not
needed in other aspect templates.

'rstr' kDETAspectWhatIs Help-balloon string for objects of the type
described by this aspect when they appear
in a sublist. You must include this resource
in main aspect templates; it is not needed
in other aspect templates.

'rstr' kDETAspectAliasKind The kind of record or attribute to display
in a sublist for aliases to the type of object
described by this aspect. You must include
this resource in main aspect templates; it is
not needed in other aspect templates.

continued

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource
AOCE Templates Reference 5-79

C H A P T E R 5

AOCE Templates
'detn' kDETAspectAliasGender The gender of the kind to display in a
sublist for an alias to an object of this type.
For use with languages that require this
information. You can include this resource
in main aspect templates when necessary;
it is not needed in other aspect templates.

'rstr' kDETAspectAliasWhatIs Help-balloon string for aliases to objects of
the type described by this aspect when the
aliases appear in a sublist. You must
include this resource in main aspect
templates; it is not needed in other aspect
templates.

'rstr' kDETAspectNewMenuName Text for the New item in the Catalogs
menu for records, or for the Add button
for the new-attribute-item dialog box.
Include this resource only in a main aspect
and only if the user is allowed to add a
new record or attribute of this type. If you
do not include this resource, the user
cannot use the Catalogs menu or Add
button to add a new object of this type.

'rstr' kDETAspectNewEntryName Name given to newly created records of
the type described by this aspect. Include
this resource only in a main aspect for a
record and only if the user is allowed to
add a new record of this type. If you do
not include this resource, the user cannot
use the Catalogs menu to add a new
record of this type.

'rstr' kDETAspectName Name displayed in the sublist for newly
created attributes of the type described by
this aspect. Include only in a main aspect
for an attribute, only if the user is allowed
to add a new attribute of this type, and
only if the kDETAspectNewValue
resource does not provide a name for the
new attribute.

'detb' kDETAspectNewValue The concatenation of the 4-byte attribute
tag and the attribute value used as an
initial value for newly created attributes of
the type described by this aspect. Include
this resource only in a main aspect for an
attribute and only if the user is allowed to
add a new attribute of this type. If you do
not include this resource, the user cannot
use the Add button to add a new attribute
of this type.

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource
5-80 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
'detn' kDETAspectSublistOpenOnNew If you include this resource set to a
nonzero number, the CE automatically
opens newly created attributes or records
of this type. This resource sets the value of
the property that has property number
kDETAspectSublistOpenOnNew. Your
code resource can specify a different
resource, overriding the resource in the
aspect template (see “Dynamic Creation of
Resources” beginning on page 5-154).
You can also use the
kDETcmdSetPropertyNumber callback
routine (page 5-227) to change this
property value at any time. You can
include this resource only in main aspect
templates. This resource is optional.

'detw' kDETAspectInfoPageCustomWindow The width, height, and placement of the
set of custom information pages that
appears if the user opens the catalog object
to which this aspect applies. This resource
also specifies whether a page-selection
pop-up menu should be included in the
window. You can include this resource
only in main aspect templates. Include
only if you do not want to use the default
information page window.

'detv' kDETAspectInfoPageCustomWindow A view list that describes items to be
displayed on every information page that
appears if the user opens the catalog object
to which this aspect applies. You can
include this resource only in main aspect
templates. Optional.

'rst#' kDETAspectRecordDragIn Types of records the user is allowed to
drag and drop on the catalog object to
which this aspect applies, paired with the
attribute types used to store aliases to
these records. When the user drops such a
record, the CE creates an alias to the record
and stores it in an attribute of the type you
specify (unless your code resource takes
some other action). Do not include
this resource if you do not want to allow
the user to drop records on this catalog
object.

continued

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource
AOCE Templates Reference 5-81

C H A P T E R 5

AOCE Templates
'rst#' kDETAspectRecordCatDragIn Categories of records that can be dropped
on the catalog object to which this aspect
applies, paired with attribute types used to
store aliases to these records. When the
user drops such a record, the CE creates an
alias to the record and stores it in an
attribute of the type you specify (unless
your code resource takes some other
action). Do not include this resource if you
do not want to allow the user to drop
records on this catalog object.

'rst#' kDETAspectAttrDragIn Record and attribute types of attributes the
user is allowed to drag and drop on the
catalog object to which this aspect applies.
When the user drops such an attribute, the
CE creates a copy of the attribute (unless
your code resource takes some other
action). Together with the record type and
attribute type of each attribute the user can
drop, the resource lists the attribute type
the CE should assign to the new copy of
the attribute. Do not include this resource
if you do not want to allow the user to
drop attributes on this catalog object.

'rstr' kDETAspectDragInString Prompt string that the CE displays when
the user drags and drops an object on the
catalog object to which this aspect applies.
You do not have to include this resource if
your aspect template does not support
drops.

'rstr' kDETAspectDragInVerb Label for the OK button in the dialog box
that the CE might display when the user
drags and drops an object on the catalog
object to which this aspect applies. You do
not have to include this resource if your
aspect template does not support drops.

'rstr' kDETAspectDragInSummary Short phrase that describes the action of
dropping an object on the catalog object to
which this aspect applies. The CE can use
this phrase in a selection list if more than
one aspect can receive the drop.

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource
5-82 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
'rst#' kDETAspectDragOut Types of attributes that the user is allowed
to drag out of the aspect’s sublist. If you
do not provide this resource, the user can
drag any attribute types from the sublist.
To prevent the user from dragging any
attributes from the sublist, include this
resource but do not specify any attribute
types.

'detn',
'rstr',
'detb'

Any property number in the range 0–249 If the aspect template has not used a
lookup table or code resource to construct
a property with this property number, the
CE looks for a resource with an offset
equal to this property number and uses
the value in that resource as the value of
the property. Your code resource can
change the value of these resources before
the CE loads them (see “Dynamic Creation
of Resources” beginning on page 5-154).
You can also use callback routines to
change property values and types from a
code resource at any time (see “Setting
Value, Type, and Other Features of
Properties” beginning on page 5-223).

'detm' kDETAspectViewMenu A list of property name and property
number pairs that specifies the properties
by which the user can sort items in a
sublist. The property names you list in this
resource appear in the View menu, and the
property numbers tell the CE what to sort
by. If the property number is positive, the
sort is alphanumeric; if you specify the
negative of the property number, the sort
is numeric. You should provide this
resource for any aspect template that
includes a sublist.

'detp' kDETAspectReverseSort A list of properties that you want sorted in
reverse order; that is, descending
alphanumeric or ascending numeric order.
You can list any property that you have
already listed in a kDETAspectViewMenu
resource.

continued

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource
AOCE Templates Reference 5-83

C H A P T E R 5

AOCE Templates
Properties 5

Properties are individual, self-contained pieces of information, such as a number or a
string. Properties come from several sources: attribute values, resources in the template,
constants, and data provided by the Catalogs Extension. Each property is identified by a
property number. The property number uniquely identifies that property within an
aspect. Note, however, that other aspects can have entirely unrelated properties with the
same number; thus, it is important that each aspect have a unique name.

Each property also has a type. Table 5-2 lists the property types currently defined by
Apple Computer, Inc.

'rst#' kDETAspectBalloons Help-balloon strings for views in an
information page. You should provide
strings for any properties you define,
starting with property number
kDETFirstDevProperty. For each such
property, you include a string to be used if
the property is editable and one that
appears if the property is not editable. The
strings appear in help balloons when
Balloon Help is on and the user places the
cursor on a view that has a help-balloon
property number corresponding to an
entry in this resource. If your aspect
contains any such properties, you should
include this resource.

'dett' kDETAspectLookup A lookup table that parses attributes into
properties. Lookup tables are described in
“The Lookup-Table Resource” beginning
on page 5-105. You can include a lookup
table in any aspect template.

'detc' kDETAspectCode A code resource. Code resources for aspect
templates are described in “Code
Resources Reference” beginning on
page 5-142. You can include a code
resource in any aspect template.

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource
5-84 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
The CE converts between these types as necessary for purposes of storage or display. For
example, a number stored in a 32-bit field in an attribute would be kept in a
number-type property when read in to the aspect. However, the number would have to
be displayed to the user as a character string. The CE does this conversion automatically.

You can define your own property types as needed. Apple Computer, Inc., reserves all
property-type values less than or equal to 0. Therefore, if you define your own property
type, give it a positive property-type value. Whenever the CE needs to convert to or from
one of your private property types, it calls your code resource. The CE performs such
conversions only between string and numeric types.

For example, you might want to store the date and time as a 32-bit long integer. Your
code resource could convert between that format and a string. The date and time could
then be stored in 32-bit format within the attribute value but displayed to the user using
normal edit-text views in an information page.

Some properties are supplied as resources in the aspect template file, some properties are
constructed from the contents of attribute values, and some are derived from the catalog
system in other ways.

Properties are divided into three main categories:

■ Local properties: Properties with property numbers from 0 through 249 are taken
from the current (local) aspect. First, the CE checks properties constructed by parsing
attribute values. (“The Lookup-Table Resource” beginning on page 5-105 describes
how to use lookup tables to convert attribute values to properties.) If the CE finds a
constructed property with the appropriate number, it uses that property. If not, then
the CE looks for a template resource of type 'detn' (number), 'rstr' (type
RString), or 'detb' (binary) with a resource ID equal to the template base ID plus
the property number. You should use property numbers starting with the value
kDETFirstDevProperty. For example, property rMyProperty of type RString
might be defined as follows:

#define rMyProperty kDETFirstDevProperty + 10

resource 'rstr' (rMyAspectResourceID + rMyProperty, purgeable)

{

"My fixed property value."

};

Table 5-2 Property types

Property type Use

kDETPrTypeNumber A number, stored internally as a 32-bit unsigned long word

kDETPrTypeString A string, stored as an RString structure

kDETPrTypeBinary A binary block, stored as an uninterpreted sequence of bytes
of any size
AOCE Templates Reference 5-85

C H A P T E R 5

AOCE Templates
■ Constants: information page templates can use property numbers in the range
250–499 as a shortcut to defining numeric constants in the range 0–249. To specify the
constant n (0 ≤ n ≤ 249), use property number n + 250.

■ Metaproperties: These properties are generated by the CE itself or are retrieved from
an AOCE catalog, but they are not attribute values. Examples of these are the name or
type of a record, or the value of a record or attribute access mask. Table 5-3 lists the
kinds of metaproperties that are available. (Note that a “metaproperty name” is a
symbolic name for a reserved property number.)

Several of the metaproperty descriptions in Table 5-3 mention property commands. A
property command is any command handled by your code resource’s
kDETcmdPropertyCommand routine (page 5-159). The CE calls your code resource with
the kDETcmdPropertyCommand routine selector whenever the user clicks a button or
checkbox in your information page, when the user selects an item in a pop-up menu in
your information page, and in a few other circumstances, as described in Table 5-14
starting on page 5-161. Each property command includes a property number, usually the
number of the property that corresponds to the information page control that originated
the command.

Table 5-3 Metaproperties

Metaproperty name Use

kDETPrName The name of an attribute, record, or alias. If you specify this
property in a view list, for example, the CE displays the name
of the record, the name of the alias (which it gets from the
record pointed to by the alias), or the name of the attribute
(which it gets from the kDETAspectName property). You
cannot store a name in this metaproperty. To store the name of
an attribute, use the kDETAspectName property in a lookup
table or resource.

kDETPrKind The kind of a record or alias.

kDETPastFirstLookup The value of this property is 0 until the CE has completed its
first catalog lookup, after which it’s 1.

kDETInfoPageNumber The number of the information page currently being
displayed. This number is 0 if no information page is open.
You can have the CE display a different information page by
issuing a property command (such as a command sent by a
pop-up menu) with this property number and with the new
page number in the parameter field. You must use this
metaproperty to implement your own page-selection pop-up
menu in place of the default pop-up menu.

kDETAspectTemplateNumber The template number of the targeted aspect’s template. This
value can be used with the kDETAspectTemplate target
selector (see “Target Specifier” on page 5-142).
5-86 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
kDETInfoPageTemplateNumber The template number of the template for the currently open
information page (if any). This value can be used with the
kDETInfoPageTemplate target selector (see “Target
Specifier” on page 5-142).

kDETOpenSelectedItems A property number for use with the property command
associated with an Open button in an information page with a
sublist. When you issue a property command with this
property number, the CE opens the sublist items the user has
selected.

kDETAddNewItem A property number for use with the property command
associated with an Add button in an information page with a
sublist. When you issue a property command with this
property number, the CE displays a dialog box that lets the
user add an attribute to the sublist.

kDETRemoveSelectedItems A property number for use with the property command
associated with a Remove button in an information page with
a sublist. When you issue a property command with this
property number, the CE removes the sublist items the user
has selected.

kDETAspectSublistOpenOnNew If you set this property to a nonzero number, the CE
automatically opens newly created sublist entries. You can
also set a default value for this property by including a
'detn' resource at this offset in the aspect template.

kDETDNodeAccessMask The dNode access mask.

kDETRecordAccessMask The record access mask.

kDETAttributeAccessMask The attribute access mask.

kDETPrimaryMaskByBit The full set of 16 bits of the primary access mask (the access
mask for the object you are in); the following properties
provide values for several of the individual bits.

kDETPrimarySeeMask The “see” access mask bit (1 for “can see”)

kDETPrimaryAddMask The “add” access mask bit (1 for “can add”)

kDETPrimaryDeleteMask The “delete” access mask bit (1 for “can delete”)

kDETPrimaryChangeMask The “change” access mask bit (1 for “can change”)

kDETPrimaryRenameMask The “rename” access mask bit (1 for “can rename”)

kDETPrimaryChangePrivsMask The “change privileges” access mask bit (1 for “can change
privileges”)

NOTE Access masks are described in the chapter “Catalog Manager” in this book.

Table 5-3 Metaproperties (continued)

Metaproperty name Use
AOCE Templates Reference 5-87

C H A P T E R 5

AOCE Templates
Aspect Template Signature Resource 5

As with all templates, an aspect template has a signature resource that identifies the type
of template and that provides a base resource ID relative to which all other resource IDs
are numbered.

'deta' Resource 5

The signature resource for an aspect template is of type 'deta'.

type 'deta' {

longInt = kDETAspectVersion; /* template format version */

longInt; /* drop-operation order */

boolean dropCheckConflicts, dropCheckAlways; /* confirm drops? */

boolean notMainAspect, isMainAspect; /* main aspect? */

align word; /* reserved */

};

The Catalogs Extension uses the drop-operation order in case a catalog object is
associated with more than one aspect that can handle drop operations. The operation
specified by the aspect with the lowest drop-operation order is offered to the user. If two
templates have the same drop-operation order number, the CE picks one arbitrarily. If
your template does not support drop operations, the CE ignores this field.

If you specify dropCheckAlways as the drop-check Boolean value, the CE always
displays a dialog box asking the user to confirm a drop operation before performing it. If
you specify dropCheckConflicts as this Boolean value, the CE displays the dialog
box only if there is more than one aspect that supports drops for this catalog object. You
must provide a prompt string and button label for the dialog box in additional resources
in the aspect template. If your template does not support drop operations, the CE
ignores this field.

See “Drags and Drops” on page 5-28 for more information about drag-and-drop
operations. See “Supporting Drags and Drops” beginning on page 5-98 for descriptions
of all the resources you must provide to support these operations.

You use the second Boolean field of the aspect signature resource to specify whether this
template is for a main aspect. The next section describes additional resources you must
provide if this is a main aspect template.

Main Aspect Template Resources 5

Main aspects provide the information the Catalogs Extension needs to display the record
or attribute value in a sublist—such as a record in a dNode window or an attribute value
in a record window. Figure 5-21 on page 5-44 shows an information page with a sublist.
Main aspect templates provide the information the CE needs to create a main aspect. You
5-88 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
can also use a main aspect template to specify the size, location, and standard contents of
custom information pages that the CE displays when the user opens an object to which
the main aspect template applies.

Table 5-4 lists the resources used specifically by main aspect templates. In addition to the
resources in Table 5-4, main aspect templates can include any of the resources shown in
Table 5-1 on page 5-78. The resources required by main aspect templates are described in
this section. The resources required for all aspect templates are described in the
preceding sections. All aspect-template resource descriptions are summarized in Table
5-1 on page 5-78.

Note that main aspects can support information pages in addition to supporting a
sublist. For example, a single main aspect can provide the information needed to list a
specific attribute value in a sublist, plus all the properties needed by the information
page displayed when the user double-clicks that line on the sublist.

Table 5-4 Resources used by main aspect templates

Resource
type

Offset of resource ID from signature
resource ID Comments

'deta' 0 Required for all aspect templates.

'rstr' kDETTemplateName Required for all aspect templates.

'rstr' kDETRecordType Either this resource, the
kDETAttributeType resource, or both
must be included.

'rstr' kDETAttributeType Either this resource, the kDETRecordType
resource, or both must be included.

icon
suite

kDETAspectMainBitmap Required for all main aspect templates.

'rstr' kDETAspectKind Required for all main aspect templates.

'rst#' kDETAspectCategory Required for records and stand-alone
attributes.

'rst#' kDETAspectExternalCategory Optional.

'detn' kDETAspectGender Optional.

'rstr' kDETAspectWhatIs Required for all main aspect templates.

'rstr' kDETAspectAliasKind Required for all main aspect templates.

'detn' kDETAspectAliasGender Optional.

'rstr' kDETAspectAliasWhatIs Required for all main aspect templates.

'rstr' kDETAspectNewMenuName Include if the user is allowed to add a new
record or attribute of this type.

continued
AOCE Templates Reference 5-89

C H A P T E R 5

AOCE Templates
kDETAspectMainBitmap 5

A main aspect template must include an icon suite with a resource ID that has an offset
of kDETAspectMainBitmap from the template’s base resource ID. Suppose, for
example, that you prepared an icon suite in a ResEdit file named AlbumIcons, that all
of your icon resources had resource IDs of 0, and that your resource base ID was
kMainAspect. In that case, you could use the following code to include the icon suite in
your main aspect template:

include "AlbumIcons" 'ICN#'(0) as

'ICN#'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl4'(0) as

'icl4'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl8'(0) as

'icl8'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics#'(0) as

'ics#'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics4'(0) as

'ics4'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics8'(0) as

'ics8'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'SICN'(0) as

'SICN'(kMainAspect + kDETAspectMainBitmap, purgeable);

'rstr' kDETAspectNewEntryName Include in a template for a record if the
user is allowed to add a new record of this
type.

'rstr' kDETAspectName Include in a template for an attribute if the
user is allowed to add a new attribute of
this type, and if the
kDETAspectNewValue resource does not
provide a name for the new attribute.

'detb' kDETAspectNewValue Include in a template for an attribute if the
user is allowed to add a new attribute of
this type.

'detn' kDETAspectSublistOpenOnNew Optional.

'detw' kDETAspectInfoPageCustomWindow Include only if you do not want to use the
default information page window.

'detv' kDETAspectInfoPageCustomWindow Optional.

Table 5-4 Resources used by main aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Comments
5-90 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
The icon suite must be included in the main aspect template or specified by your
kDETcmdDynamicResource code resource routine (page 5-156). Once the icon suite has
been specified, it cannot be changed from a code resource or by the user.

kDETAspectKind 5

Specify the kind of the record or attribute as it is to be displayed in a sublist with an
RString resource with an offset of kDETAspectKind from the template’s base resource
ID.

resource 'rstr' (kMainAspect + kDETAspectKind, purgeable)

{

"My Kind"

};

This resource must be included in the main aspect template or specified by your
kDETcmdDynamicResource code resource routine (page 5-156). Once the record or
attribute kind has been specified, it cannot be changed from a code resource or by the
user.

kDETAspectCategory 5

Specify the categories to which the record or attribute belongs with an RString-array
resource with an offset of kDETAspectCategory from the template’s base resource ID.

resource 'rst#' (kMainAspect + kDETAspectCategory, purgeable)

{

{ "Category 1", "Category 2" }

};

The 'rst#' resource type is defined as follows:

type 'rst#' {

integer = (endOfData - startOfData) / 8;

startOfData:

integer = $$CountOf(RStrArray); /* Array size */

array RStrArray {

rstring;

align word;

};

endOfData:

};
AOCE Templates Reference 5-91

C H A P T E R 5

AOCE Templates
Every record must be assigned to one or more categories. The Catalogs Extension uses
record categories to group records in catalog windows. You also specify record
categories if you include a kDETAspectRecordCatDragIn resource in your template
(see page 5-99). If no template includes a kDETAspectExternalCategory resource,
the CE uses the category name you provide in the kDETAspectCategory resource for
display in the View menu.

You must include a kDETAspectCategory resource in an attribute’s main aspect
template if the template supports a stand-alone attribute—that is, if you do not include a
kDETRecordType resource in the main aspect template.

Note that an item in a sublist can be of only one kind, but it can be in as many categories
as is appropriate. Thus, the kind resource is a single string of type RString, but the
category resource is an array of RString strings.

kDETAspectExternalCategory 5

Specify category names to be displayed to the user with an RString-array resource with
an offset of kDETAspectExternalCategory from the template’s base resource ID.

resource 'rst#' (kMainAspect + kDETAspectExternalCategory, purgeable)

{

{ "Category 1", "Category 2" }

};

This resource must contain one category name for each name in the
kDETAspectCategory resource, in the same sequence. If you do not include this
resource in the main aspect template, the Catalogs Extension uses the external category
names provided for these categories in any other template available. If no template
provides this resource, the CE uses the names in the kDETAspectCategory resource.
(If more than one template provides a kDETAspectExternalCategory resource, the
CE picks one of them and ignores the others.)

You should use category names in your local language for the kDETAspectCategory
resource when you are creating the template. Then, when someone localizes the template
to another language, the person doing the localizing can add a
kDETAspectExternalCategory template to change the names displayed to the user.
5-92 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
kDETAspectGender 5

You can specify the gender of the record kind of the record to which this main aspect
applies with a resource of type 'detn' with an offset of kDETAspectGender from the
template’s base resource ID.

resource 'detn' (kMainAspect + kDETAspectGender, purgeable) {

1

};

You can use this resource to match the article of the record kind to the gender of the
record kind when you are displaying the kind to the user. The significance of the value in
this resource depends on the language with which it is being used; you can place any
value you wish in this resource, and you are responsible for interpreting it. It is
recommended that you follow the guidelines in Guide to Macintosh Software Localization.

kDETAspectWhatIs 5

Each main aspect template must provide a help-balloon string. The Finder displays this
string when the user enables Balloon Help online assistance and moves the cursor over
an object (a record or attribute) of the type to which this main aspect applies. The
help-balloon string is in an RString resource with an offset kDETAspectWhatIs from
the template’s base resource ID.

resource 'rstr' (kMainAspect + kDETAspectWhatIs, purgeable) {

"Flue handle record\n\nA record containing information about a flue

handle."

};

kDETAspectAliasKind 5

To specify the kind of an alias to a record or attribute as it is to be displayed in a sublist,
use an RString resource with an offset of kDETAspectAliasKind from the template’s
base resource ID.

resource 'rstr' (kMainAspect + kDETAspectAliasKind, purgeable)

{

"My kind alias"

};
AOCE Templates Reference 5-93

C H A P T E R 5

AOCE Templates
kDETAspectAliasGender 5

To specify the gender of the kind of the alias to a record, use a resource of type 'detn'
with an offset of kDETAspectAliasGender from the template’s base resource ID.

resource 'detn' (kMainAspect + kDETAspectAliasGender, purgeable) {

1

};

The significance of the value in this resource depends on the language with which it is
being used; you can place any value you wish in this resource, and you are responsible
for interpreting it.

kDETAspectAliasWhatIs 5

Each main aspect template must provide a help-balloon string for aliases. The Finder
displays this string when the user enables Balloon Help online assistance and moves the
cursor over an alias to an object (a record or attribute) of the type to which this main
aspect applies. The help-balloon string is in an RString resource with an offset
kDETAspectAliasWhatIs from the template’s base resource ID.

resource 'rstr' (kMainAspect + kDETAspectAliasWhatIs, purgeable) {

"Alias to a flue handle record\n\nAn alias to a record containing

information about a flue handle."

};

kDETAspectNewMenuName 5

A main aspect template for a record type specifies how new records of that type are to be
added to the containing dNode. Similarly, a main aspect template for an attribute type
specifies how new attributes of that type are to be added to the containing record. To
allow the user to add a new record or attribute, you must supply an RString resource
containing the text of the New item for the Catalogs menu or the Add item for the
new-attribute dialog box. The menu name resource must have an ID with the offset
kDETAspectNewMenuName from the template’s base resource ID.

resource 'rstr' (rMyAspectResourceID + kDETAspectNewMenuName, purgeable)

{

"The text for the New menu item goes here"

};
5-94 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
IMPORTANT

To allow the user to add a new attribute, you must provide a New
button in your information page, and the property command associated
with that button must use the property number kDETAddNewItem. See
Table 5-3 on page 5-86 for a description of this and other special
property numbers. ▲

kDETAspectNewEntryName 5

A main aspect template for a record type must also specify the name the Catalogs
Extension should give to newly created records of that type. To provide this name, use
an RString resource with an offset of kDETAspectNewEntryName from the template’s
base resource ID.

resource 'rstr' (rMyAspectResourceID + kDETAspectNewEntryName, purgeable)

{

"Name of new record goes here"

};

kDETAspectName 5

A main aspect template for an attribute type can specify a default name for newly
created attribute values of that type. To provide this name, use an RString resource
with an offset of kDETAspectName from the template’s base resource ID.

resource 'rstr' (rMyAspectResourceID + kDETAspectName, purgeable)

{

"Name of new attribute goes here"

};

For main aspect templates for records, the Catalogs Extension automatically sets the
kDETAspectName property to be the name of the record. This property provides the
name the CE displays in the “Name” column in dNode windows.

If you wish to specify a name for an attribute value, you can provide a value for the
kDETAspectName property in the main aspect template for the attribute. You can
display attribute value names in sublists (use the metaproperty kDETPrName for this
purpose); the CE uses attribute value names for stand-alone attributes.

You can store the name of an attribute in the kDETAspectName property at any time.
You can use the lookup table, a code resource, a kDETAspectName resource, or any
combination of these methods to provide a value for the kDETAspectName property.

You should limit sublist items to one line. Multiline sublist items are not guaranteed to
work correctly.
AOCE Templates Reference 5-95

C H A P T E R 5

AOCE Templates
Note
For records to be displayed in the Key Chain, your setup main aspect
template must provide a kDETAspectName resource to explicitly set
this property. See the chapter “Service Access Module Setup” in Inside
Macintosh: Service Access Modules for complete information about setup
templates. ◆

kDETAspectNewValue 5

If the new item is an attribute value, the main aspect template must contain a binary
block resource (type 'detb') containing the concatenation of the attribute tag and the
new value. Give this resource an ID with an offset of kDETAspectNewValue from the
template’s base resource ID.

data 'detb' (kTrackAspect + kDETAspectNewValue, purgeable) {

$"626E 7279" // tag (bnry)

$"0000 0001" // prTrackNumber (1)

$"0000 0000" // prTrackMinutes (1)

$"0000 0000" // prTrackSeconds (1)

$"0000 0007 3C74 6974 6C65 3E" // kDETAspectName (<title>)

$"0000 000A 3C63 6F6D 706F 7365 723E" // composer (<composer>)

$"0000 000A 3C63 6F6D 6D65 6E74 733E" // comments (<comments>)

The Catalogs Extension needs the attribute tag, the attribute value, and the attribute type
to add an attribute to a record in an AOCE catalog. When the user clicks the Add button
in your information page to create a new attribute value, the CE gets the attribute type
from the aspect template’s attribute-type resource (see “Specifying Record and Attribute
Types for Templates” on page 5-75) and the tag and initial attribute value from the
kDETAspectNewValue resource. Once the CE has added the attribute to the catalog
record, the CE uses the main aspect for attributes of that type to display that attribute in
a sublist.

kDETAspectSublistOpenOnNew 5

A main aspect template can specify whether the Catalogs Extension should
automatically open an information page for a newly created attribute or record in a
sublist. If you set the value of property kDETAspectSublistOpenOnNew to a nonzero
number, the CE automatically opens newly created attributes or records of the type
associated with the main aspect. You can provide a 'detn' resource with an offset of
kDETAspectSublistOpenOnNew to provide a default value for this property.
5-96 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
resource 'detn' (kMainAspect + kDETAspectSublistOpenOnNew, purgeable) {

1

};

Your code resource can change the value of this resource before the CE loads it (see
“Dynamic Creation of Resources” beginning on page 5-154). You can also use the
kDETcmdSetPropertyNumber callback routine (page 5-227) to change this property
value from a code resource at any time. This resource is optional.

kDETAspectInfoPageCustomWindow 5

If you want to specify a nonstandard size or location for the information page window
that appears when the user opens the catalog object to which this main aspect applies,
you can provide a 'detw' resource with an offset of
kDETAspectInfoPageCustomWindow from the template’s base resource ID. This
resource also specifies whether a page-selection pop-up menu should be included in the
window.

resource 'detw' (kMainAspect + kDETAspectInfoPageCustomWindow, purgeable) {

{kCustomPageTop, kCustomPageLeft, kCustomPageBottom, kCustomPageRight},

discludePopup

};

The 'detw' resource type is defined as follows:

type 'detw' {

rect; /* info-page window in */

/* global coordinates */

boolean discludePopup, includePopup;/* include a page-selection pop-up? */

align word; /* Future expansion */

};

Note that you can specify no pop-up menu only if there is only one information page for
the object or if you are also providing a 'detv' resource in this main aspect template
that provides a pop-up menu of information page names.

If there is more than one information page for the object and you include this resource in
the main aspect template, then all of the information pages have the size you specify in
this resource.

IMPORTANT

If the information page window you specify is too large to be displayed
on the user’s screen, the Finder makes the window smaller, truncating
the bottom and right side of the information page. To be sure an
information page can fit on a Macintosh computer screen of any size,
make it no larger than 322 pixels high by 512 pixels wide. ▲
AOCE Templates Reference 5-97

C H A P T E R 5

AOCE Templates
There are two special values you can use for the top left corner of a custom information
page window:

■ specify (0, 0) to place the upper-left corner of the window slightly below and to the
right of the upper-left corner of the parent window

■ specify (–1, –1) to center the window on the screen

If you want to specify a view list for views that are to be displayed on all the information
pages that appear when the user opens the catalog object to which this main aspect
applies, you can provide a 'detv' resource with an offset of
kDETAspectInfoPageCustomWindow from the template’s base resource ID.

If, as part of this view list, you include a pop-up menu (view type Menu) with a property
number of kDETInfoPageNumber, the Catalogs Extension displays a pop-up menu
with a list of information page names at the location you specify. Therefore, by
combining a 'detw' resource with the discludePopup flag set and a 'detv' resource
with a pop-up menu for selecting information pages, you can create a custom set of
information pages with the pop-up menu at any location you wish. The following view
list displays an icon and a pop-up menu for selecting information pages.

resource 'detv' (kMainAspect + kDETAspectInfoPageCustomWindow, purgeable) {

{

{kBitmapTop, kBitmapLeft, kBitmapBottom, kBitmapRight},

kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

{kMenuTop, kMenuLeft, kMenuBottom, kMenuRight},

kDETPopupDynamicSize, kDETInfoPageNumber,

Menu { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "Page", kDETInfoPageNumber,

rMenuResourceID };

}

};

View lists are described in “View Lists” beginning on page 5-123.

Supporting Drags and Drops 5

If your aspect supports drags and drops, your template should include the resources
listed in this section, a code resource that handles drags and drops, or both. Drags and
drops are described in “Drags and Drops” on page 5-28. For more information on how
code resources handle drags and drops, see the descriptions of the kDETcmdDropQuery
(page 5-172) and kDETcmdDropMeQuery (page 5-170) routines.
5-98 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
kDETAspectRecordDragIn 5

When a user drags a record and drops it on another record, the most common result is
that the Catalogs Extension creates an alias to the record and stores it in an attribute in
the target record. When the user drops a record on a record for which you provided an
aspect template, the CE looks for a resource with an ID offset of
kDETAspectRecordDragIn from the base resource ID. This resource lists the types of
records that can be dragged into the aspect, paired with the attribute type in which the
CE should store an alias to the record that was dragged. Use the
kDETAspectRecordCatDragIn resource (described next) to specify categories of
records that can be dragged and dropped on the catalog object.

resource 'rst#' (kMyAspectTemplate + kDETAspectRecordDragIn, purgeable)

{

 "Record type 1", "Alias attribute type 1",

 "Record type 2", "Alias attribute type 2"

};

Do not include a kDETAspectRecordDragIn resource if you do not want to allow the
user to drop records on this catalog object.

Note
In addition to checking for drag-in resources, the CE calls your code
resource (if any) to check whether the code resource can handle the
drop. A code resource can take an action different from that specified in
the drag-in resources, can handle a drop in the absence of drag-in
resources, and can handle drags and drops for source and destination
objects other than records (as long as either the source or the destination
is an AOCE catalog object). ◆

See the discussion of drags and drops in “Drags and Drops” on page 5-28 and the
descriptions of the kDETcmdDropQuery (page 5-172) and kDETcmdDropMeQuery
(page 5-170) routines for more information on this process.

IMPORTANT

If your code resource does not take a different action and you do want
the CE to store an alias to the record in an attribute value, you must be
sure that you have listed the attribute type in your aspect’s lookup table
with the useInSublist and isAlias flags set. Lookup tables are
described in “The Lookup-Table Resource” beginning on page 5-105. ▲

kDETAspectRecordCatDragIn 5

Instead of or in addition to specifying individual record types of records that can be
dragged and dropped on the record to which the aspect applies, you can specify
categories of records that can be dropped. When the user drops such a record, the
AOCE Templates Reference 5-99

C H A P T E R 5

AOCE Templates
Catalogs Extension creates an alias to the record and stores it in an attribute (unless your
code resource takes some other action). For each category of record the user can drop,
the resource also lists the attribute type of the new attribute containing the alias to the
record. Do not include this resource if you do not want to allow the user to drop records
on this catalog object.

resource 'rst#' (kMyAspectTemplate + kDETAspectRecordCatDragIn, purgeable)

{

 "Category 1", "Alias attribute type 1",

 "Category 2", "Alias attribute type 2"

};

See the preceding discussion of the kDETAspectRecordDragIn resource for more
information on drags and drops.

kDETAspectAttrDragIn 5

When a user drags an attribute and drops it on a record, the most common result is that
the Catalogs Extension creates a copy of the attribute and stores it in the target record.
When the user drops an attribute on a record for which you provided an aspect
template, the CE looks for a resource with an ID offset of kDETAspectAttrDragIn
from the base resource ID. This resource lists the types of records that can be dragged
from, the types of attributes that can be dragged into the target record, and the attribute
type the CE should assign to the new copy of the attribute. To indicate any type, you can
use the empty string "" for the type of record that can be dragged from.

resource 'rst#' (kMyAspectTemplate + kDETAspectAttrDragIn, purgeable)

{

 "Record type 1", "Attribute type 1", "New attribute type 1",

 "Record type 2", "Attribute type 2", "New attribute type 2"

};

Do not include this resource if you do not want to allow the user to drop attribute values
on this catalog object.

Note
In addition to checking for drag-in resources, the CE calls your code
resource (if any) to check whether the code resource can handle the
drop. A code resource can take an action different from that specified in
the drag-in resources, can handle a drop in the absence of drag-in
resources, and can handle drags and drops for source objects other than
attributes or records and destination objects other than records (as long
as either the source or the destination is an AOCE catalog object). ◆
5-100 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
See the discussion of drags and drops in “Drags and Drops” on page 5-28 and the
descriptions of the kDETcmdDropQuery (page 5-172) and kDETcmdDropMeQuery
(page 5-170) routines for more information on this process.

kDETAspectDragInString 5

If your aspect supports drops, you must provide a prompt string for the Catalogs
Extension to display when the user drags and drops an object on the catalog object to
which the aspect applies. You provide this string in an RString resource with an ID
offset of kDETAspectDragInString from the base resource ID.

resource 'rstr' (rMyAspectTemplate + kDETAspectDragInString, purgeable)

{

"Do you want to send %3%“^3”%the selected items% to *0x/the/* ^1 “^2”?"

};

The string %3%“^3”%the selected items% helps the CE either insert the name of
the item being dragged (in ^3 if it’s a single selection) or insert the substring “the
selected items” (if it’s a multiple-item selection).

The token ^1 is the destination’s kind as displayed in the sublist (kDETAspectKind).

The token ^2 is the destination's name.

When localizing this resource, replace the string *0x/the/* with an article consistent
with the destination’s kind (token ^1).

You do not have to include this resource if your aspect template does not support drops.

kDETAspectDragInVerb 5

If your aspect supports drops, you must provide a label for the OK button in the dialog
box that the Catalogs Extension can display when the user drags and drops an object on
the catalog object to which the aspect applies. You provide this label in an RString
resource with an ID offset of kDETAspectDragInVerb from the base resource ID.

resource 'rstr' (rMyAspectTemplate + kDETAspectDragInVerb, purgeable)

{

"Send"

};

If you are unsure as to what label to use for this feature, use OK.

You do not have to include this resource if your aspect template does not support drops.

Drag-in verbs are not implemented in the initial release of the AOCE software, but you
should include this resource to support future enhancements to the software.
AOCE Templates Reference 5-101

C H A P T E R 5

AOCE Templates
kDETAspectDragInSummary 5

If your aspect supports drops, you should provide a short phrase that describes the
action of dropping an object on the catalog object to which this aspect applies. The
Catalogs Extension can use this phrase in a selection list if more than one aspect can
receive the drop.

resource 'rstr' (rMyAspectTemplate + kDETAspectDragInSummary, purgeable)

{

"Send item"

};

You do not have to include this resource if your aspect template does not support drops.

Selection lists are not implemented in the initial release of the AOCE software, but you
should include this resource to support future enhancements to the software.

kDETAspectDragOut 5

If your aspect template’s lookup table includes any attribute types for which you have
set the useInSublist flag, the user might try to drag an attribute of that type from the
sublist to drop it on another object or on the desktop. You can include a resource of type
'rst#' that specifies which attribute types the user is allowed to drag from the sublist.
You must give this resource an ID offset of kDETAspectDragOut from the base resource
ID.

resource 'rst#' (rMyAspectTemplate + kDETAspectDragOut, purgeable)

{

{

"First attribute type",

"Second attribute type"

}

};

If you do not provide this resource, the user can drag any attribute types from the
sublist. To prevent the user from dragging any attributes from the sublist, include this
resource but do not specify any attribute types.
5-102 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Other Aspect Template Resources 5

Any aspect template can include the resources listed in this section. In addition to the
resources described here, see Table 5-1 on page 5-78 for a summary of all of the resources
that you can include in an aspect template.

Any property number in the range 0–249 5

If the information page template has not used a lookup table or code resource to
construct a property for any property number in the range 0–249, the Catalogs Extension
looks for a resource whose ID has an offset from the base resource ID equal to that
property number and uses the value in that resource as the value of the property. You
can use resources of types 'detn', 'rstr', or 'detb' for this purpose.

You must be careful to ensure that none of your property numbers conflict with the
resource ID numbers defined in the AOCE header files. To do so, use the value
kDETFirstDevProperty for your first property number and increment each
additional property number by 1.

kDETAspectViewMenu 5

The user can sort a sublist in an information page by any of a number of different
properties, just as users can sort lists in the Finder by name, kind, date, and so forth. The
user can use the View menu to select the property to use for sorting. If your aspect
template supports a sublist (that is, if the lookup table includes any attribute types for
which you have set the useInSublist flag), you should provide a resource of type
'detm' to specify the properties that can be used for sorting. You must give this
resource an ID offset of kDETAspectViewMenu from the base resource ID.

resource 'detm' (rMyAspectTemplate + kDETAspectViewMenu, purgeable)

{

rMyAspectResourceID + kDETAspectViewMenu,

{

kPrName, "By Name";

-kPrAge, "By Age";

}

};
AOCE Templates Reference 5-103

C H A P T E R 5

AOCE Templates
The 'detm' resource type is defined as follows:

type 'detm' as 'fmnu';

For each property by which the sublist may be sorted, you must provide the property
number followed by the text that appears in the View menu.

Normally, the Catalogs Extension sorts items in ascending alphanumeric order. To have
the items sorted numerically rather than alphanumerically (that is, taking the value of
the property as a number rather than a text string), use the negative of the property
number. Numeric sorting is descending by default (matching the Finder’s normal
procedure of sorting sizes and dates in descending order).

For a way to let users sort items in a sublist without using the View menu, see the
description of the StaticCommandTextFromView view type on page 5-128.

kDETAspectReverseSort 5

If you want to sort any properties of items in a sublist in reverse order—that is,
descending alphanumeric or ascending numeric order— you must list its property
number in a resource of type 'detp'. You must give this resource an ID offset of
kDETAspectReverseSort from the base resource ID. The resource can list any
property that you have already listed in a kDETAspectViewMenu resource.

resource 'detp' (rMyAspectTemplate + kDETAspectReverseSort, purgeable)

{

{ kPrAge }

};

The 'detp' resource type is defined as follows:

type 'detp' {

integer = $$CountOf(SortArray); /* Number of items */

array SortArray {

integer; /* Property number */

};

};
5-104 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
kDETAspectBalloons 5

Your aspect template should provide help-balloon strings for any properties that can
appear in an information page. The Finder displays a help-balloon string when the user
turns on Balloon Help assistance and positions the mouse over a view. For each property
you define, you should provide two strings: one to be presented if the property is
editable and one to be presented if the property is not editable. The first pair of strings in
the resource is used for property number kDETFirstDevProperty; the second pair of
strings is for property number kDETFirstDevProperty + 1; and so forth.

Use a resource of type 'rst#' to specify the help-balloon strings. You must give this
resource an ID offset of kDETAspectBalloons from the base resource ID.

resource 'rst#' (rMyAspectResourceID + kDETAspectBalloons, purgeable)

{

{

"The foobar’s age.",

"The foobar’s age. Uneditable because the foob is locked or access is

 restricted.",

"The foobar’s size.",

"The foobar’s size. Uneditable because the foob is locked or access is

 restricted."

}

}

The Lookup-Table Resource 5
You can use a lookup-table resource in an aspect template to parse attribute values into
properties and properties into attribute values. An aspect-template lookup table contains
an entry for each type of attribute value to be translated into and from properties.
Attribute values to be translated into properties come from two sources:

■ Attribute values in the record or attribute to which the aspect applies. For each
attribute type for which the lookup table contains a pattern, the lookup table
automatically processes all of the attribute values with that attribute type in this
record or attribute.

■ Attribute values sent to the lookup table by the code resource. You can use the code
resource callback routine kDETcmdBreakAttribute (page 5-224) to send to the
lookup table an attribute value from anywhere within or outside of an AOCE catalog.

Each lookup-table entry includes a list of attribute types, an attribute tag, a flags field,
and a pattern that specifies the mapping between attribute values and properties. The
attribute types and tag specify the types of attribute values to be processed. Use a tag
value of 0 to process all tag types. The flags further qualify how and when the table entry
should be used. The lookup-table flags are shown in Table 5-5 on page 5-109.
AOCE Templates Reference 5-105

C H A P T E R 5

AOCE Templates
In many cases, the translation pattern consists of a single item—indicating that the
attribute value maps to a single property. However, it is possible to have much more
complex patterns, including variable-length and repeating elements. Figure 5-24 on
page 5-107 illustrates the format of a lookup table. There is one entry for each type of
data block to be parsed (that is, each attribute value with a specific combination of
attribute type and attribute value tag), and each entry contains a list of pattern elements.
Each pattern element contains three parts: a format, which drives the parsing process; a
property number, telling where to store the result (which may be kDETNoProperty if
no result should be stored); and an “extra” parameter, which is used by some of the
pattern types to specify a second property number. Basic lookup-table pattern elements
are shown in Table 5-6 on page 5-111.

Note that a specific attribute might contain more than one attribute value with the same
tag, and you might want to parse these values differently. The lookup-table format
includes conditional elements and pattern elements that let you identify each kind of
attribute value and process each one appropriately. Lookup-table elements for repeating
patterns are shown in Table 5-9 on page 5-115, and elements for conditional patterns are
shown in Table 5-7 on page 5-112.

The Catalogs Extension sends any pattern element whose type begins with an uppercase
letter to the code resource for processing; see the description of the kDETcmdPatternIn
routine on page 5-182 for details.

When the CE uses lookup-table patterns to create or update attribute values, a pattern
entry can combine any number of property values into a single attribute value. When the
user closes an information page, the CE checks whether any properties have changed. If
it finds one that has, the CE calls the aspect’s code resource (if there is one) with the
kDETcmdValidateSave routine selector (page 5-168). If the code resource does not
want the new property value saved, it returns an error. If the code resource returns
noErr or kDETDidNotHandle, the CE processes all the entries in the lookup table that
have the useForOutput flag set and that include the property that has changed.

You can provide separate lookup-table entries for input (that is, converting attribute
values into property values) and output (converting property values into attribute
values), or you can specify that a single entry be used for both purposes.
5-106 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Figure 5-24 Lookup-table format

count = 3

count = 1

“Name” Attribute type

typeBinary Attribute tag

… Flags

count = 1

‘rstr’ Element type

prName Property number Pattern element

– Extra

count = 1

“Birth date” Attribute type

typeBinary Attribute tag

… Flags

count = 3

‘word’ Element type

prYear Property number Pattern element

– Extra

‘byte’ Element type

prMonth Property number Pattern element

– Extra

‘byte’ Element type

prDay Property number Pattern element

– Extra

count = 1

“Mthr’s Name” Attribute type

typeBinary Attribute tag

… Flags

count = 1

‘rstr’ Element type

prMother Property number Pattern element

– Extra
AOCE Templates Reference 5-107

C H A P T E R 5

AOCE Templates
kDETAspectLookup 5

You specify a lookup table with a resource of type 'dett' with an offset of
kDETAspectLookup from the template’s base resource ID.

resource 'dett' (rMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"Name"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'rstr', prName, 0; // name

};

{"Birthdate"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'word', prYear, 0; // year of birth

'byte', prMonth, 0; // month of birth

'byte', prDay, 0; // day of birth

};

{"Mthr's Name"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'rstr', prMother, 0; // mother's name

};

}

};

The format for a lookup-table resource is as follows:

type 'dett' {

integer = $$CountOf(AttributeArray); /* attribute array size */

array AttributeArray {

integer = $$CountOf(TypeArray); /* attribute type array size */

array TypeArray {

RString[32]; /* attribute type */

};

longInt; /* attribute tag */

/* Flags */

boolean notForInput, useForInput; /* use this pattern for

 input processing? */

boolean notForOutput, useForOutput; /* use for output processing? */

boolean notInSublist, useInSublist; /* include attr type in sublist? */

boolean isNotAlias, isAlias; /* mark attr value as an alias? */
5-108 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
boolean isNotRecordRef, isRecordRef;/* reserved; use isNotRecordRef */

align word; /* reserved */

integer = $$CountOf(PatternArray); /* pattern array size */

array PatternArray {

longint; /* pattern element type */

integer; /* property number */

integer; /* extra parameter */

};

};

};

IMPORTANT

The pattern element types in lookup tables are case sensitive. Thus, the
following two patterns are not equivalent:

'word', prYear, 0;
'byte', prMonth, 0;
};
{
'Word', prYear, 0;
'Byte', prMonth, 0;
};

The Catalogs Extension would interpret the pattern element types
'word' and 'byte' as standard types, but would send 'Word' and
'Byte' to the code resource for processing. ▲

The flags field in each entry in the lookup table contains several bits that help select and
control the translation process. Table 5-5 shows the currently defined flags (the rest are
reserved for future use, and should be set to 0).

Table 5-5 Lookup-table flags

Flag Meaning

useForInput Use this table entry for translating attribute values to properties.

useForOutput Use this table entry for translating properties to attribute values.

useInSublist Include this attribute value in the sublist. This flag is used in
aspect templates of records only. You must set this flag for each
attribute type that you want included in the sublist of any
information page that has a sublist and that uses this aspect. You
should limit sublist items to one line. Multiline sublist items are
not guaranteed to work correctly.

isAlias The resulting entry in the sublist is an alias. This flag applies only
to attributes in a sublist that hold aliases. If the useInSublist
flag is not set, the CE ignores this flag.

isRecordRef Reserved; use the isNotRecordRef value for this flag.
AOCE Templates Reference 5-109

C H A P T E R 5

AOCE Templates
The Catalogs Extension uses the mapping of properties to attributes provided by the
lookup table to check the user’s access privileges for each attribute and to mark each
property accordingly as either editable or uneditable. The CE can then use this
information to allow or prevent a user from making changes in an information page. The
CE assumes that properties not associated with any attribute are “internal” and therefore
always editable (unless you explicitly make them uneditable with the
kDETcmdSetPropertyEditable callback routine described on page 5-232).

When processing an output pattern (a lookup-table element that has the useForOutput
flag set), the CE changes an existing attribute value if there is one or creates a new
attribute value if one does not already exist. However, if there is no input pattern for that
attribute type in the lookup table, the CE has no way of knowing an attribute value
already exists, and so it creates a new one every time it processes the output pattern. In
that case, the record ends up containing multiple attribute values corresponding to a
single set of properties. Therefore, you must observe this rule:

IMPORTANT

You must always include an input pattern for every attribute type for
which you provide an output pattern. ▲

If your lookup table or code resource writes a zero-length attribute value, the CE deletes
that attribute value from the record. Note that an attribute type that contains an
RString (for example) would not have zero-length attribute value unless the entire
RString structure were removed; a zero-length RString still contains a length and a
script code.

The input pattern can be separate from the output pattern, if you wish, and can be empty
except for the resource declaration, the attribute type, the attribute tag, and the flags field.

Note
A lookup table can contain only one input pattern and one output
pattern for each attribute type. Therefore, although the CE places no
restriction on the number of attribute values that can be assigned to each
attribute type, lookup-table patterns are designed to work only for those
multivalued attributes that appear in sublists.

Multivalued attributes normally appear only in sublists, and the input
and output patterns for an attribute in a sublist are normally located in
the main aspect for that attribute type, not in the lookup table for the
information page that contains the sublist. Therefore, you will not
usually set the useInSublist flag and the useForInput or
useForOutput flags for the same pattern element.

However, see “Conditional Element Types” on page 5-112 for pattern
elements that you can use to develop exceptions to these rules. ◆
5-110 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Basic Element Types 5

A number of pattern element types are available to process single pieces of the pattern.
Table 5-6 shows the basic lookup-table element types available.

Listing 5-9 shows the use of basic lookup-table elements to parse an attribute of type
Album Track Info into several properties (the number of tracks and the hours, minutes,
and seconds of playing time).

Listing 5-9 Lookup table with basic elements

// Properties

#define prNumTracks kDETFirstDevProperty

#define prPlayingTimeHours kDETFirstDevProperty + 1

#define prPlayingTimeMinutes kDETFirstDevProperty + 2

#define prPlayingTimeSeconds kDETFirstDevProperty + 3

Table 5-6 Basic lookup-table element types

Element type Data format Property type

'byte' Byte (8 bits) Number

'word' Word (16 bits) Number

'long' Long word (32 bits) Number

'pstr' Pascal-style string (8-bit length) RString

'wstr' Pascal-style string (16-bit length) RString

'cstr' C-style (null-terminated) string RString

'rstr' RString data structure RString

'type' 4-character type RString

'blok' Block of data; the “extra parameter” field holds the
number of bytes

Binary

'bbit' Binary bit (8 per byte) Number

'abyt' Align to byte boundary None

'awrd' Align to word boundary None

'alng' Align to long boundary. None

'padz' Process the following element and pad it to the size
specified in the extra field, using zero fill. (Used for
fixed-width fields.)

None

'rest' Take everything remaining in the attribute value and
put it into a property.

Binary
AOCE Templates Reference 5-111

C H A P T E R 5

AOCE Templates
// Lookup table

resource 'dett' (kMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"WAVE Album Track Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'word', prNumTracks, 0;

'long', prPlayingTimeHours, 0;

'long', prPlayingTimeMinutes, 0;

'long', prPlayingTimeSeconds, 0;

};

}

};

Conditional Element Types 5

Lookup tables also provide several element types that implement “if” statements. The
element type indicates the test to be performed, the property number indicates which
property to test, and the extra field of the element indicates a property number of the
property against which the test is performed. If the condition in the test is met, the
following element or block is executed. Otherwise, the following element or block is
skipped. You can test against a constant value either by using one of the constant
property numbers—allowing comparisons against constants in the range 0–249—or by
using a resource-based static property. The conditional elements for lookup tables are
shown in Table 5-7.

Table 5-7 Conditional elements for lookup tables

Element type Pattern

'equa' Value of the property specified by the “property number” field equal
to value of the property specified by the “extra parameter” field (any
type)

'nteq' Value of the property specified by the “property number” field not
equal to value of the property specified by the “extra parameter” field
(any type)

'less' Value of the property specified by the “property number” field less
than value of the property specified by the “extra parameter” field
(long integers only)
5-112 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
You can use the 'p:=p' element type to set a property equal to the value of an existing
property. The property field in a 'p:=p' element indicates the destination property. The
source property is given by the extra field. The source property (that is, the extra field)
can specify a resource.

Listing 5-10 tests whether an album has a playing time of over 1 hour. If it does, the
lookup table sets the property prLongPlay to true.

Listing 5-10 Lookup table with conditional elements

resource 'dett' (kMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"WAVE Album Track Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'word', prNumTracks, 0;

'long', prPlayingTimeHours, 0;

'long', prPlayingTimeMinutes, 0;

'long', prPlayingTimeSeconds, 0;

'p:=p', prLongPlay, kDETFalseProperty;

'greq', prPlayingTimeHours, kDETConstantProperty + 1;

'p:=p', prLongPlay, kDETTrueProperty;

};

}

};

Block Elements 5

You can use block elements to form more complex patterns. You form a block by
surrounding a list of elements with the '((((' and '))))' elements (Table 5-8). The
block is then treated conceptually as a single element. Block elements are particularly

'grea' Value of the property specified by the “property number” field greater
than value of the property specified by the “extra parameter” field
(long integers only)

'leeq' Value of the property specified by the “property number” field less
than or equal to value of the property specified by the “extra
parameter” field (long integers only)

'greq' Value of the property specified by the “property number” field greater
than or equal to value of the property specified by the “extra
parameter” field (long integers only)

Table 5-7 Conditional elements for lookup tables (continued)

Element type Pattern
AOCE Templates Reference 5-113

C H A P T E R 5

AOCE Templates
useful with repeating and conditional elements. In addition, if the destination property
for the '((((' element is something other than kDETNoProperty, everything
described by the block is put into the specified property as a binary block. (The
destination property of the '))))' element must always be kDETNoProperty.)

Listing 5-11 illustrates the use of the block elements ('((((' and '))))') with a
conditional element. This lookup table tests whether an album has a playing time of over
1 hour. If it does, the lookup table sets the property prLongPlay to true and the
property prComments to “Long-play album.”

Listing 5-11 Lookup table with block elements

// Properties

#define prNumTracks kDETFirstDevProperty

#define prPlayingTimeHours kDETFirstDevProperty + 1

#define prPlayingTimeMinutes kDETFirstDevProperty + 2

#define prPlayingTimeSeconds kDETFirstDevProperty + 3

#define prComments kDETFirstDevProperty + 4

#define prLongPlayComment kDETFirstDevProperty + 5

resource 'rstr' (kMyAspectResourceID + prLongPlayComment, purgeable) {

"Long-play album"

};

// Lookup table

resource 'dett' (kMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"WAVE Album Track Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'word', prNumTracks, 0;

'long', prPlayingTimeHours, 0;

'long', prPlayingTimeMinutes, 0;

'long', prPlayingTimeSeconds, 0;

'p:=p', prLongPlay, kDETFalseProperty;

Table 5-8 Block elements for lookup tables

Element type Pattern

'((((' Begin block

'))))' End block
5-114 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
'greq', prPlayingTimeHours, kDETConstantProperty + 1;

'((((', kDETNoProperty, 0;

'p:=p', prLongPlay, kDETTrueProperty;

'p:=p', prComments, prLongPlayComment;

'))))', kDETNoProperty, 0;

};

}

};

Listing 5-16 on page 5-131 illustrates the use of conditional and block elements in the
implementation of a conditional view.

Size Element Types 5

Lookup tables provide pattern elements that create patterns of a specific size. Table 5-9
shows lookup-table elements you can use for this purpose. An attribute created by one of
these pattern elements begins with a length (either a byte, word, or long integer,
depending on the element), which is followed by data. The data is in the format specified
by the next pattern element. You can use the block elements shown in Table 5-8 on
page 5-114 to specify more complex formats for the data. If the data is longer than the
pattern element used to format it, the pattern element is repeated as many times as
necessary. You can use one of these elements to ensure that a particular attribute is of a
specified size and format so that it can be read by a program external to the AOCE
catalog system or by a CSAM.

A property created by one of these pattern elements is of property type Binary and of the
size specified by the length byte, word, or long integer in the attribute.

Table 5-9 Lookup-table elements that create patterns of a specific size

Element
type Pattern Property type

'bsiz' Byte-sized size, followed by enough repeats of
the following element to use that many bytes

Binary
(property does not
include size byte)

'wsiz' Word-sized size, followed by enough repeats
of the following element to use that many
bytes

Binary
(property does not
include size word)

'lsiz' Long word-sized size, followed by enough
repeats of the following element to use that
many bytes

Binary
(property does not
include size long word)
AOCE Templates Reference 5-115

C H A P T E R 5

AOCE Templates
The code fragment in Listing 5-12 stores two properties that are variable-length text
strings in a sized attribute. A CSAM or other program reading this attribute from the
record could determine how many bytes to read from the length word without having to
interpret the constituent RString structures.

Listing 5-12 Lookup table with size and block elements

// Properties

#define prAlbumName kDETFirstDevProperty

#define prPublisherName kDETFirstDevProperty + 1

// Lookup table

resource 'dett' (kMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"WAVE Album Name Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'wsiz', kDETNoProperty, 0;

'((((', kDETNoProperty, 0;

'rstr', prAlbumName, 0;

'rstr', prPublisherName, 0;

'))))', kDETNoProperty, 0;

};

}

};

In this case, your information page template would assign the prAlbumName and
prPublisherName properties to edit-text fields (see “View Lists” beginning on
page 5-123). Your default value for each property should be a helpful text string such as
“<enter text here>”.

Suppose the user types the string “Apple’s Top Hits” in the album name field and closes
the information page. When it processes the lookup-table entry in Listing 5-12, the
Catalogs Extension creates an attribute of type WAVE Album Name Info with the
attribute tag typeBinary. On a roman script system (the script code is smRoman = 0),
the attribute-value data looks like this:

0029

0000 0010 4170 706C 6527 7320 546F 7020 4869 7473 '....Apple's Top Hits'

0000 0011 3C65 6E74 6572 2074 6578 7420 6865 7265 3E '....<enter text here>'

The block of data begins with a word length (the length of the block of data, not
including the length word itself), followed by two RString structures. Each RString
begins with the script code (which is $0000 for roman script) followed by a length word
followed by the string. Notice that the CE writes the value of the second string even
5-116 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
though it has not been changed, because the CE always fully specifies an attribute when
any property derived from that attribute has changed.

The next time the user opens this information page, the CE looks through the lookup
table for every attribute type for which the useForInput flag has been set. In this case,
it finds the attribute type WAVE Album Name Info and finds one attribute value of this
type, which has the attribute tag typeBinary. The CE finds the entry shown in Listing
5-12, which has this attribute type and tag type, and applies it to the data in the attribute
value.

Because the lookup-table entry is of element type 'wsiz', the CE knows the first word
of the data indicates the length of the rest of the data block. The rest of the lookup-table
entry indicates that the data block consists of two RString structures, so the CE reads
the length, script code, and string from the first RString structure and stores the value
in the property prAlbumName. It then reads the second RString the same way,
assigning the value to the property prPublisherName. The CE stores all strings
internally as RString structures (see Table 5-2 on page 5-85).

You normally include a destination property for either a size element, for a block
element, or for each element within the block, and make the destinations of all the other
elements kDETNoProperty. To illustrate why this is so, Listing 5-13 shows a
lookup-table entry similar to the one in Listing 5-12 except that, in Listing 5-13, the
destination property for the 'wsiz' element is prNames rather than kDETNoProperty.

Listing 5-13 Lookup-table entry with a destination property for the 'wsiz' element type

// Properties

#define prAlbumName kDETFirstDevProperty

#define prPublisherName kDETFirstDevProperty + 1

#define prNames kDETFirstDevProperty + 2

// Lookup table

resource 'dett' (kMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"WAVE Album Name Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'wsiz', prNames, 0;

'((((', kDETNoProperty, 0;

'rstr', prAlbumName, 0;

'rstr', prPublisherName, 0;

'))))', kDETNoProperty, 0;

};

}

};
AOCE Templates Reference 5-117

C H A P T E R 5

AOCE Templates
In the case of Listing 5-13, when the user types a new value into the album name or
publisher name field and closes the information page, the CE first checks whether the
binary property prNames already exists. If not, the CE uses the new value to create an
attribute of type WAVE Album Name Info with the attribute tag typeBinary, exactly as
it did for the lookup-table element in Listing 5-12 on page 5-116. If the property
prNames exists, however (as it would if the code resource had already created it), the CE
uses the value of the property prNames to create the attribute, ignoring the block
following the 'wsiz' element and therefore ignoring the new value typed in by the user.

In either case, the next time the user opens the information page, the CE creates the
binary property prNames from the value of the attribute WAVE Album Name Info. After
creating the property prNames, the CE uses the same attribute value to create the
RString properties prAlbumName and prPublisherName, as it did for the
lookup-table element in Listing 5-12 on page 5-116.

Because the property prNames exists, the CE ignores the block following the 'wsiz'
element and uses the value of the property prNames to create the attribute. Therefore, if
the user changes the value of the property prAlbumName or prPublisherName, the
value of the property prNames is not affected, and the changes to prAlbumName and
prPublisherName are not saved. For this reason, you would normally include a
destination property for either the size element, for the block element, or for each
element within the block, and make the destinations of all the other elements
kDETNoProperty. If you have some special need to maintain properties for both the
block element or the size element and the constituents of the block, you must use your
code resource to update property values.

Providing Your Own Pattern Elements 5

The Catalogs Extension passes to the aspect template’s code resource any pattern
element type that begins with an uppercase letter. The code resource can then process
that portion of the attribute value or property. You can freely mix together built-in and
code resource pattern elements.

When creating or changing attribute values, the CE processes only those properties that
have changed and that are included in the list of properties in the lookup table. Because
you can use a code resource routine invoked by a single pattern element to process any
number of properties, you must use the following pattern element to list each property
that your code resource processes:

The 'prop' pattern element lets you associate properties with a lookup table, so that the
CE uses that lookup table when those properties need to be saved.

Element type Pattern

'prop' Include this property in the lookup table
5-118 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Overriding Default Property-Type Assignments 5

Each property has a type (see “Properties” beginning on page 5-84). The Catalogs
Extension automatically converts between types as needed. The type of the property is
taken from the pattern. In most cases, the type is determined automatically—'byte'
pattern elements produce number type properties; 'rstr' pattern elements produce
string type properties; and so forth. Two pattern elements are provided to allow you to
override the default type determination:

You can use the 'styp' and 'btyp' element types to assign custom property types to
properties. The CE calls your code resource when necessary to convert between your
custom property types and standard property types; see “Custom Property-Type
Conversions” beginning on page 5-188.

Canceling Pattern Processing 5

Lookup tables provide an element type that aborts processing of the pattern.

The 'abrt' lookup-table element stops the processing of the pattern but does not abort
the process of reading or writing the attribute value.

Components of Information Page Templates 5
Information page templates specify the layout and provide the functions of the
information pages that users see when they open a record or attribute. The primary
content of an information page template is one or more view lists, indicating where on
the information page to place the fields (or views) that display information to users and
allow them to edit that information.

The Catalogs Extension fills in the views from an aspect specified by the information
page. A view list specifies only the property numbers of properties in that aspect. All of
the information in the main part of an information page (that is, all of the information
page except for items in a sublist) comes from the same, specified aspect.

Element type Pattern

'styp' Set the type of the property to the value in the “extra parameter” field

'btyp' Use the value of the “extra parameter” field as the type of all
subsequent “binary” properties—for instance, '((((', 'rest',
'bsiz', 'wsiz' elements

Element type Pattern

'abrt' Abort processing of the pattern
AOCE Templates Reference 5-119

C H A P T E R 5

AOCE Templates
An information page template can contain the resources listed in Table 5-10.

Table 5-10 Resources in information page templates

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

'deti' 0 Identifies template as information page and
provides a base resource ID. Required for all
information page templates.

'rstr' kDETTemplateName Name of template. Required for all information
page templates.

'rstr' kDETRecordType Type of record to which the template applies.
Either this resource, the kDETAttributeType
resource, or both must be included.

'rstr' kDETAttributeType Type of attribute to which the template applies.
Either this resource, the kDETRecordType
resource, or both must be included.

'detn' kDETAttributeValueTag Attribute tag of attributes to which the template
applies. You can provide this resource if you
have also provided the kDETAttributeType
resource. If you don’t provide this resource, the
template applies to attributes with any tag value.

'detv' The resource ID of a view list is
independent of that of the
information page signature
resource.

View list. An information page template can
contain any number of view lists describing
specific items in the information page and in the
sublist (if any). The information page signature
resource lists the resource IDs of all of the
applicable view list resources. Each information
page must have at least one view list if it is to
provide any useful information.

'rstr' kDETInfoPageMainViewAspect The name of the aspect template whose aspect
provides all of the properties for the views in the
main portion of the information page. This
aspect also lists the objects that go in the sublist
(if any). Required for every information page
template.

'rstr' kDETInfoPageName The name of the information page that appears
in the page-selection pop-up menu. Required for
all information pages that appear in a
page-selection pop-up menu.

'detm' kDETInfoPageMenuEntries A list of items that the CE adds to the end of the
Catalogs menu. When the user chooses one of
these items, the CE calls the code resource of the
aspect. Optional.
5-120 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Information Page Template Signature Resource 5

The information page seen by the user is the combination of one or more view lists
specified by the template. The signature resource of the information page lists the
resource IDs of the view lists to be used in the main and icon-list parts of the information
page. Each view list resource ID is preceded by two property numbers. The view list is
displayed only if the contents of the two properties are equal or if either property equals
kDETNoProperty. This feature allows you to enable or disable a view list according to
the current values of properties in the associated aspect. Thus, an information page can
change to include different views according to the current state of the record or attribute
represented by that page.

The signature resource also specifies the sort-order number of the information page, the
presence or absence of a sublist in the information page, and the rectangle that contains
the sublist. The Catalogs Extension displays the information pages in the sequence
indicated by their sort-order numbers. When creating several information pages for a
single catalog object, you should assign sort-order numbers at intervals of 1000 (1000,
2000, 3000, and so on) to allow a new page to be easily inserted between two existing
pages.

The signature resource includes a Boolean value that indicates whether the first edit-text
field of the information page should be automatically selected when the information
page is opened. If you set this value to selectFirstText, the CE selects the first
edit-text field when a user opens the information page (as is usual for a dialog box). If
you set this value to noSelectFirstText, no field is initially selected. For most
information pages, you should set the Boolean value to noSelectFirstText to lessen
the likelihood that users will change a field unintentionally.

'deti' Resource 5

The signature resource for an information page template is of type 'deti'.

type 'deti' {

longInt = kDETInfoPageVersion; /* template format version */

longInt; /* sort order */

rect; /* rectangle to put sublist in */

boolean selectFirstText, noSelectFirstText;

/* select the first text field

 when info-page opens? */

align word; /* reserved */

integer = $$CountOf(HeaderViewArray);

array HeaderViewArray { /* the header view lists */

integer; /* property 1 */

integer; /* property 2 */

integer; /* 'detv' ID */
AOCE Templates Reference 5-121

C H A P T E R 5

AOCE Templates
};

integer = $$CountOf(SubviewViewArray);

array SubviewViewArray { /* the subview view lists */

integer; /* property 1 */

integer; /* property 2 */

integer; /* 'detv' ID */

};

};

Listing 5-14 is an example of an information page template signature resource. This
resource specifies four view lists. The first describes a view that always appears on the
information page. The second and third are conditional views; each appears on the
information page only if the two properties associated with that view are equal (or if
either property number equals kDETNoProperty). In Listing 5-14, the view list with an
ID of rMyInfoPage + 1 appears if the property prEnable1 equals
kDETZeroProperty (that is, 0) and the view list rMyInfoPage + 2 appears if
rEnable1 equals kDETOneProperty (that is, 1). The fourth view list in Listing 5-14
describes a line in the sublist and is always enabled.

Listing 5-14 Information page signature resource with conditional views

resource 'deti' (rMyInfoPage, purgeable) {

1000, // sort order

kDETSublistRect, // rect for sublist

noSelectFirstText,

{

// View list for main part of window:

kDETNoProperty, kDETNoProperty, rMyInfoPage; // always enabled

// View lists for conditional views in main part of window

prEnable1, kDETZeroProperty, rMyInfoPage + 1; // enabled if prEnable1

// property is 0

prEnable1, kDETOneProperty, rMyInfoPage + 2; // enabled if prEnable1

// property is 1

},

// View lists for sublist:

{

kDETNoProperty, kDETNoProperty, rMyInfoPage + 3;// always enabled

}

};

Listing 5-16 on page 5-131 further illustrates the implementation of conditional views.
5-122 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
If the information page has no sublist, you can use the following sublist rectangle:

#define kDETNoSublistRect {0, 0, 0, 0}

View Lists 5

A view list specifies individual items on the information page. Each item in the list
includes the graphic rectangle containing the view, the number of the property that
provides the information to be displayed, the type of view, and information specific to
that view type. A view list need not use all of the properties in the aspect. On the other
hand, a single property can provide information for more than one view. For example, a
set of three radio buttons would require three views in a view list but could all display
the information in a single property.

'detv' Resource 5

A view list is defined by the 'detv' resource type.

type 'detv' {

longint = 0;

longint = 0;

longint = 0;

integer = 0;

longint = 0;

longint = 0;

longint = 0;

longint = 0;

integer = 0;

longint = 0;

longint = 0;

integer = $$CountOf(ItemArray);/* count */

array ItemArray {

rect; /* bounds of the view */

longint = 0; /* position flags (preset by CE) */

longint; /* flags (described following this struct) */

integer; /* property number */

switch { /* class of view */

case StaticTextFromView:

key longint = 7750;/* class ID */

integer; /* font ID */

integer; /* font size */
AOCE Templates Reference 5-123

C H A P T E R 5

AOCE Templates
integer; /* justification */

integer; /* style */

pstring; /* string to display */

case StaticCommandTextFromView:

key longint = 22250;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

pstring; /* string to display */

align word; /* reserved */

longint; /* property command */

integer; /* command parameter */

case StaticText:

key longint = 3250;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

case EditText:

key longint = 8250;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

case Bitmap:

key longint = 6250;

integer; /* size */

case Box:

key longint = 4750;/* class ID */

integer; /* box attributes */

case DefaultButton:

key longint = 7250;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */
5-124 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
pstring; /* label for button */

align word; /* reserved */

longint; /* property command */

case Button:

key longint = 21000;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

pstring; /* label for button */

align word; /* reserved */

longint; /* property command */

case CheckBox:

key longint = 21250;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

pstring; /* label for checkbox */

align word; /* reserved */

longint; /* property command */

case RadioButton:

key longint = 21500;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

pstring; /* label for button */

align word; /* reserved */

longint; /* property command */

integer; /* command parameter */

case Menu:

key longint = 5750;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

pstring; /* label for pop-up menu */

align word; /* reserved */
AOCE Templates Reference 5-125

C H A P T E R 5

AOCE Templates
longint; /* property command */

integer; /* menu resource ID */

case EditPicture:

key longint = 0x00010000 + 24250; /* class ID */

integer; /* maximum pixel depth */

case Custom:

key longint = 6750;/* class ID */

integer; /* reference value for use by developer */

};

align word;

};

};

Here are the possible values for the flags field near the beginning of the 'detv' resource:

Flag Meaning

kDETNoFlags No flags.

kDETEnabled If set to 1, this view should be highlighted if the user selects the item
of which this view is a part. Not for use in sublists.

kDETHilightIfSelected If set to 1, highlight the view when the entry is selected. For items in
a sublist only.

kDETNumericOnly If set to 1, the user is allowed to enter only numbers into this item.
For editable text fields only.

kDETMultiLine If set to 1, the user or template can enter more than one line into the
field. If set to 0, pressing Return terminates text entry; if set to 1,
pressing Return enters a carriage return and starts a new line. For
text fields only. Note that you must set this flag to 1 for multiline
static text fields.

kDETDynamicSize If set to 1, a box appears around the item when the user clicks the
item or tabs into it. The CE sizes the box dynamically as the user
edits the text in the box. For editable text fields only.

kDETAllowNoColons If set to 1, the user is not allowed to enter colons as part of the text.
The CE substitutes a hyphen (-) for each colon (:) typed. For editable
text fields in which the user is expected to type a filename.

kDETPopupDynamicSize If set to 1, the CE automatically resizes a pop-up menu according to
its contents. For pop-up menus only.

kDETScaleToView If set to 1, a picture is scaled to the bounds of the view. If set to 0, the
picture is cropped. For EditPicture views only.
5-126 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Several constants are provided for use with fonts:

Here are the possible values for text styles:

Here are the possible values for text justification:

View types

StaticTextFromView
Text that cannot be edited by the user. The contents of the string
come from the view itself; that is, from the information page
template.

Constant Value

kDETApplicationFont 1

kDETApplicationFontSize 9

kDETAppFontLineHeight 12

kDETSystemFont 0

kDETSystemFontSize 12

kDETSystemFontLineHeight 16

kDETDefaultFont 1

kDETDefaultFontSize 9

kDETDefaultFontLineHeight 12

Constant Meaning

kDETNormal Normal font

kDETBold Bold

kDETItalic Italic

kDETUnderline Underlined

kDETOutline Outline style

kDETShadow Shadow style

kDETCondense Condensed

kDETExtend Extended

kDETIconStyle Same as normal text style for regular entries and as italic text
style for aliases

Value Meaning

kDETLeft Text in scripts written from left to right is left-justified; text in
scripts written from right to left is right-justified.

kDETCenter All text is centered in the text field.

kDETRight All text is right-justified.

kDETForceLeft All text is left-justified.
AOCE Templates Reference 5-127

C H A P T E R 5

AOCE Templates
StaticCommandTextFromView
Text that cannot be edited by the user. When the user clicks on the
text, the CE calls your code resource with the routine selector
kDETcmdPropertyCommand and with the property command and
command parameter from the view list. Most commonly, the code
resource does nothing in response to this property command;
instead, this view type is used to provide headings for sublist
columns, so that when the user clicks the column heading, the sort
criteria for the sublist is changed. To accomplish this, set the
property-command field to kDETChangeViewCommand and the
command parameter field to the negative of the property number of
the appropriate entry in the aspect’s kDETAspectViewMenu
resource (page 5-103). When you use kDETChangeViewCommand
as the property command, the CE handles the command without
calling your code resource. The contents of the string come from the
“string to display” field in the view itself.

StaticText Text that cannot be edited by the user. The contents of the string
come from the view property; that is, from the aspect.

EditText Text that the user can edit. The contents of the string come from the
view property; that is, from the aspect.

Bitmap An icon, taken from an icon suite in the aspect template. The CE
looks for an icon suite with a resource ID equal to the aspect
template’s base ID plus the property number. The property number
is in the property number field of the 'detv' structure. The size
field indicates the size of the icon: kDETLargeIcon,
kDETSmallIcon, or kDETMiniIcon.

Box A simple graphic rectangle or rounded rectangle, useful for
drawing dividing lines between view elements and boxes around
elements that do not normally have them, such as sublists. The Box
view type takes a single integer as a parameter. The dimensions of
the box are those of the view itself. The first 4 bytes of the integer
are flags, as follows:

Bit Flag Meaning

none kDETUnused No flags.

0 kDETBoxTakesContentClicks If this flag is set to
1 and the user
clicks in the box,
the CE calls your
code resource with
the property
number.

1 kDETBoxIsRounded Box is a rectangle
with rounded
corners.

2 kDETBoxIsGrayed Box is dimmed.

3 kDETBoxIsInvisible Box is invisible.
5-128 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
DefaultButton A standard button with a heavy border indicating that this is the
default button; that is, pressing Return or Enter keys has the same
effect as clicking the button. Clicking a default button closes any
open edit-text field, whereas clicking a regular button does not. In
every other respect, a DefaultButton view is identical to a
Button view. You can have only one default button in a given
information page.

Button A standard button. You must use the button’s property number for
the property-command field of the 'detv' resource. Then, when
the user clicks the button, the CE calls your code resource with the
routine selector kDETcmdPropertyCommand and with the
property number of the button in the property field of the
parameter block. If your code resource does not handle this
command, the CE does nothing. If you use the property numbers
kDETAddNewItem, kDETRemoveSelectedItems, or
kDETOpenSelectedItems, the CE handles the command without
calling your code resource. These property numbers are described
in Table 5-3 on page 5-86.

Checkbox A standard dialog checkbox, which can be selected or not. The
property can be equal to 0 (checkbox is not selected) or 1 (checkbox
is selected). You must use the checkbox’s property number for the
property-command field of the 'detv' resource. Then when the
user clicks the checkbox, the CE sends the property number to your
code resource. If your code resource does not handle the command,
the CE changes the property value to toggle the checkbox off or on.
Note that if your code resource does handle this command, you
must call the kDETcmdDirtyProperty callback routine
(page 5-233) to force the CE to redraw the checkbox.

RadioButton A standard dialog radio button, which can be on or off, as selected
by the user. When multiple radio buttons are associated with the
same property, only one can be on at a time. You must use the
button’s property number for the property-command field of the
'detv' resource, and you should use a different value for the
command parameter field of each button associated with the same
property. Set the command parameter of the default button (the one
you want the CE to select when the view is first displayed) equal to
the value of the property. When the user clicks the radio button, the
CE first calls your code resource. If your code resource does not
handle the command, the CE sets the value of the property to the
value of the parameter for that button, thereby selecting that button
and deselecting all other radio buttons for that property.
Note that if your code resource does handle this command, you
must call the kDETcmdDirtyProperty callback routine
(page 5-233) to force the CE to redraw the radio button.

Menu A pop-up menu from which the user can select one item, which the
information page then displays as the “state” of the menu. The
menu resource ID field of the 'detv' resource indicates the
'fmnu' resource that specifies the contents of the menu. The menu
resource can have any resource ID. You must use the menu’s
AOCE Templates Reference 5-129

C H A P T E R 5

AOCE Templates
property number for the property-command field of the 'detv'
resource. Pop-up menus are limited to 31 items; if your 'fmnu'
resource includes more than 31 items, the pop-up menu will not
work properly. You cannot put a pop-up menu view in a sublist.
When the user chooses an item in the pop-up menu, the CE calls
your code resource with the routine selector
kDETcmdPropertyCommand and with the property number of the
menu in the property field of the parameter block. The CE gets
the value for the parameter field of the command’s parameter
block from the 'fmnu' resource; your code resource can use this
parameter to determine which item in the pop-up menu the user
has selected. You can use the kDETcmdAddMenu (page 5-238) and
kDETcmdRemoveMenu (page 5-240) callback routines to add and
remove menu items.

EditPicture A picture that the user can select and copy onto the Clipboard, cut,
or replace by pasting.

Custom A custom view defined by the code resource of the aspect
associated with the information page. A custom view can respond
to mouse-down events if you provide code to handle these events.
There is no way for the user to select the custom view, but if no
other view is selected, your code resource can receive keypress
events and interpret them as belonging to the custom view. See
“Custom Views and Custom Menus” beginning on page 5-192 for
more information about how code resources can handle custom
views. You can specify any value you wish for the reference-value
integer in the view list. Your code resource can use the
kDETcmdGetCustomViewUserReference callback routine
(page 5-242) to obtain this value.

Listing 5-15 shows a sample view list.

Listing 5-15 Sample view list

resource 'detv' (rMyInfoPage, purgeable) {

{

{kBitmapTop, kBitmapLeft, kBitmapBottom, kBitmapRight},

kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

{kStatTextTop, kStatTextLeft, kStatTextBottom, kStatTextRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

kDETRight, kDETBold, "Label:" };

{kEditTextTop, kEditTextLeft, kEditTextBottom, kEditTextRight},

kDETEnabled, prEditTextProperty,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,
5-130 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
 kDETNormal};

{kCheckboxTop, kCheckboxLeft, kCheckboxBottom, kCheckboxRight},

kDETNoFlags, prCheckboxProperty,

CheckBox { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "Check Me", prCheckboxProperty };

{kRadio1Top, kRadio1Left, kRadio1Bottom, kRadio1Right},

kDETNoFlags, prRadioProperty,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "Radio 1", prRadioProperty, 0 };

{kRadio2Top, kRadio2Left, kRadio2Bottom, kRadio2Right},

kDETNoFlags, prRadioProperty,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "Radio 2", prRadioProperty, 1 };

}

};

Implementing Conditional Views 5

Listing 5-16 shows a lookup table, information page signature resource, and view list
used to implement a conditional view. In Listing 5-16, the information page contains a
view-selection pop-up menu with three choices. When the user chooses an item from the
menu, the value of that item becomes the value of the property prMsgType. In the
'deti' resource, the value of prMsgType determines which view is active. In the
lookup table (the 'dett' resource), the value of prMsgType determines which
properties are processed. Note the use of block and conditional elements in the lookup
table (see “Conditional Element Types” on page 5-112 and “Block Elements” on
page 5-113) to achieve this end. There is one view list for the pop-up menu and one view
list for each of the conditional views.

Note
Listing 5-16 is not a complete, working set of templates. It is intended
only to illustrate the interaction of the information page signature
resource, lookup table, and view lists in the implementation of
conditional views. ◆

Listing 5-16 Implementing a conditional view

#define prMsgType kDETFirstDevProperty

#define prPMDate kDETFirstDevProperty + 1

#define prPMTime kDETFirstDevProperty + 2

#define prPMFrom kDETFirstDevProperty + 3
AOCE Templates Reference 5-131

C H A P T E R 5

AOCE Templates
#define prPMTo kDETFirstDevProperty + 4

#define prNMessage kDETFirstDevProperty + 5

#define prNReply kDETFirstDevProperty + 6

#define prIBOFrom kDETFirstDevProperty + 7

#define prIBOTo kDETFirstDevProperty + 8

#define prIBOBecause kDETFirstDevProperty + 9

resource 'deta' (kCondViewAspect, purgeable) {

0, // drop-operation order

dropCheckAlways, // drop-check flag

notMainAspect // not the main aspect

};

resource 'rstr' (kCondViewAspect + kDETTemplateName, purgeable) {

"WAVE Conditional view aspect" // Start with application signature

};

resource 'rstr' (kCondViewAspect + kDETRecordType, purgeable) {

"WAVE Conditional View" // Start with application signature

};

// Custom information page window with no default pop-up menu

resource 'detw' (kCondViewAspect + kDETAspectInfoPageCustomWindow, purgeable)

{

{0,0,224,224},

discludePopup

};

// Lookup table. Conditional elements correspond to conditional views.

resource 'dett' (kCondViewAspect + kDETAspectLookup, purgeable) {

{

{"aoce MailNote"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'long', prMsgType, 0;

'equa', prMsgType, kDETConstantProperty + 0;

'((((', kDETNoProperty, 0;

'rstr', prPMDate, 0;

'rstr', prPMTime, 0;

'))))', kDETNoProperty, 0;

'equa', prMsgType, kDETConstantProperty + 1;

'((((', kDETNoProperty, 0;

'rstr', prNMessage, 0;

'rstr', prNReply, 0;
5-132 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
'))))', kDETNoProperty, 0;

'equa', prMsgType, kDETConstantProperty + 2;

'((((', kDETNoProperty, 0;

'rstr', prIBOFrom, 0;

'rstr', prIBOTo, 0;

'rstr', prIBOBecause, 0;

'))))', kDETNoProperty, 0;

};

}

};

resource 'deti' (kCondViewInfoPage, purgeable) {

1000,

kDETNoSublistRect,

noSelectFirstText,

{

kDETNoProperty, kDETNoProperty, kCondViewInfoPage;

prMsgType, kDETConstantProperty + 0, kCondViewInfoPage + 1;

prMsgType, kDETConstantProperty + 1, kCondViewInfoPage + 2;

prMsgType, kDETConstantProperty + 2, kCondViewInfoPage + 3;

},

{

}};

resource 'rstr' (kCondViewInfoPage + kDETTemplateName, purgeable) {

"WAVE Conditional view info page"

};

resource 'rstr' (kCondViewInfoPage + kDETRecordType, purgeable) {

"WAVE Conditional view"

};

resource 'rstr' (kMNInfoPage + kDETInfoPageMainViewAspect, purgeable) {

"WAVE Conditional view aspect"

};

//View list for conditional-view-selection pop-up menu

resource 'detv' (kMNInfoPage, purgeable) {

{

kMenuTop, kMenuLeft, kMenuBottom, kMenuRight,

kDETNoFlags, prMsgType,

Menu {kDETSystemFont, kDETSystemFontSize, kDETCenter, kDETNormal, "",

prMsgType, kMNInfoPage};
AOCE Templates Reference 5-133

C H A P T E R 5

AOCE Templates
}

}

//Menu resource for conditional-view-selection pop-up menu

resource 'fmnu' (kMNInfoPage, purgeable)

{

kMNInfoPage,

{

0,”Phone Message”;

1,”Note”;

2,”I’ll Be Out”;

}

};

//View lists for conditional views

resource 'detv' (kMNInfoPage + 1, purgeable) {

{

{kTextTop, kLabelLeft, kTextTop + kOneLineHeight, kLabelRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"Date:" };

{kTextTop - 2, kTextColumnLeft, kTextTop + kOneLineHeight - 2,

kTextRight},

kDETEnabled, prPMDate,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

{kTextTop + kOneLineHeight + 2, kLabelLeft,

kTextTop + kOneLineHeight + 2 + kOneLineHeight, kLabelRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"Time:" };

{kTextTop + kOneLineHeight + 2 - 2, kTextColumnLeft,

kTextTop + kOneLineHeight + 2 + kOneLineHeight - 2, kTextRight},

kDETEnabled, prPMTime,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

};

};

resource 'detv' (kMNInfoPage + 2, purgeable) {

{

{kTextTop - 2, kTextLeft, kTextTop + kSixLineHeight - 2, kTextRight},
5-134 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
kDETMultiLine, rNMessage,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

{kTextTop + kSixLineHeight + 2, kLabelLeft, kTextTop + kSixLineHeight + 2

+ kOneLineHeight, kLabelRight}, kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"Reply:" };

{kTextTop + kSixLineHeight + 2 + kOneLineHeight + 2 -6, kTextLeft,

kTextBottom, kTextRight}, kDETMultiLine, rNReply,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

};

};

resource 'detv' (kMNInfoPage + 3, purgeable) {

{

{kTextTop, kLabelLeft, kTextTop + kOneLineHeight, kLabelRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"From:" };

{kTextTop - 2, kTextColumnLeft, kTextTop + kOneLineHeight - 2,

kTextRight}, kDETEnabled, rIBOFrom,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

{kTextTop + kOneLineHeight + 2, kLabelLeft, kTextTop + kOneLineHeight + 2

+ kOneLineHeight, kLabelRight}, kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"To:" };

{kTextTop + kOneLineHeight + 2 - 2, kTextColumnLeft, kTextTop +

kOneLineHeight + 2 + kOneLineHeight - 2, kTextRight}, kDETEnabled, rIBOTo,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

{kTextTop + kOneLineHeight + 2 + kOneLineHeight + 2, kLabelLeft, kTextTop

+ kOneLineHeight + 2 + kOneLineHeight + 2 + kOneLineHeight, kLabelRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"Because:" };

{kTextTop + kOneLineHeight + 2 + kOneLineHeight + 2 - 2, kTextColumnLeft,

kTextTop + kOneLineHeight + 2 + kOneLineHeight + 2 + kTwoLineHeight - 2,

kTextRight}, kDETEnabled, rIBOBecause,
AOCE Templates Reference 5-135

C H A P T E R 5

AOCE Templates
EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

};

};

Sublists 5

If the information page includes a sublist, the information page template includes a view
list that describes a line in the list. Each line in a sublist typically contains an icon, a
“name” field, and a “kind” field, and might contain other fields or controls. For each
item in the sublist, the Catalogs Extension takes the properties for the views from the
main aspect of that item.

Note that, if the sublist contains items of more than one type, each type of item has an
associated main aspect template. For example, if the sublist contains Direct Dialup mail
addresses, PowerTalk serverless mail addresses, and PowerShare server mail addresses,
there are three main aspect templates, one for each type of mail address. The CE uses the
appropriate main aspect template to create the main aspect for each item that appears in
the list. The CE uses a single view list in the information page template to format all of
the lines in the sublist but takes the values to display in the sublist from a separate main
aspect for each line.

The CE does not automatically draw a box around a sublist; if you want a box around a
sublist, you must draw it yourself.

View lists are described in the preceding section. Main aspect templates are described in
“Main Aspect Template Resources” beginning on page 5-88. Listing 5-4 on page 5-44
shows an information page template for an information page with a sublist.

Information Page Resources 5

In addition to view lists, an information page template contains resources that name the
template, specify the type of record or attribute to which the template applies, provide
the name of the associated aspect, and specify items for the Catalogs menu. The
information page template resources that are common to aspect templates are described
in “Template Names” on page 5-75 and “Specifying Record and Attribute Types for
Templates” on page 5-75. The remaining resources are described in this section. For a
complete list of information page resources, see Table 5-10 on page 5-120.

kDETInfoPageMainViewAspect 5

All property numbers listed by the view lists for the main portion of the information
page come from one aspect, the main view aspect. The main view aspect also provides the
list of objects to be included in the sublist (if any). Name the main view aspect with an
RString resource that has a resource ID with an offset of
kDETInfoPageMainViewAspect from the template’s base resource.
5-136 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Note
Do not confuse the main view aspect with a main aspect. A main aspect
provides the properties that describe an item in a sublist. A main view
aspect provides all of the properties needed by the information page
except the contents of the sublist. ◆

resource 'rstr' (rMyInfoPage + kDETInfoPageMainViewAspect, purgeable) {

"WAVE Associated Aspect Name"

};

IMPORTANT

If the information page template does not name a main view aspect, the
Catalogs Extension does not load the template. ▲

kDETInfoPageName 5

To specify the name of the information page that appears in the page-selection pop-up
menu, use an RString resource that has a resource ID with an offset of
kDETInfoPageName from the template’s base resource.

resource 'rstr' (rMyInfoPage + kDETInfoPageName, purgeable) {

"Information Page Pop-up Name"

};

You must include this resource in every information page template if the information
page window includes a page-selection pop-up menu. Only custom information pages
can exclude page-selection pop-up menus; see the description of the
kDETAspectInfoPageCustomWindow resource on page 5-97.

kDETInfoPageMenuEntries 5

You can use a resource of type 'detm' to add items to the Catalogs menu. Give the
resource an ID with an offset of kDETInfoPageMenuEntries from the template’s base
resource ID.

resource 'detm' (rMyInfoPage + kDETInfoPageMenuEntries, purgeable) {

rMyInfoPage + kDETInfoPageMenuEntries,

{

menuParameter1, "Entry 1";

menuParameter2, "Entry 2";

}

};
AOCE Templates Reference 5-137

C H A P T E R 5

AOCE Templates
When the user chooses an item, the Catalogs Extension calls the code resource in the
aspect with the routine selector kDETcmdCustomMenuSelected (page 5-195), passing
your code the menu parameter from the kDETInfoPageMenuEntries resource for the
item the user selected. Your code resource is also called (with the
kDETcmdCustomMenuEnabled routine selector described on page 5-194) to determine
if the menu item should be enabled.

Components of Forwarder Templates 5
Forwarder templates provide a list of names of aspect and information page templates
that can be used with the record or attribute type to which the template applies.

A forwarder template can contain the resources listed in Table 5-11.

Table 5-11 Resources in forwarder templates

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

'detf' 0 Identifies template as forwarder and provides a
base resource ID. Required for all forwarder
templates.

'rstr' kDETTemplateName Name of template. Required for all forwarder
templates.

'rstr' kDETRecordType Type of record to which the template applies.
Either this resource, the kDETAttributeType
resource, or both must be included.

'rstr' kDETAttributeType Type of attribute to which the template applies.
Either this resource, the kDETRecordType
resource, or both must be included.

'detn' kDETAttributeValueTag Attribute tag of attributes to which the template
applies. You can provide this resource if you
have also provided the kDETAttributeType
resource. If you don’t provide this resource the
template applies to attributes with any tag value.

'rst#' kDETForwarderTemplateNames A list of names of aspect and information page
templates that the CE can use with the record or
attribute type to which this forwarder template
applies.
5-138 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
Forwarder Template Signature Resource 5

The forwarder template signature resource provides a base resource ID from which the
other resource IDs in the template are offset and provides the forwarder template
version number of the template.

'detf' Resource 5

Use a resource of type 'detf' for the forwarder template signature resource.

type 'detf' {

longInt = kDETForwarderVersion; /* template format version */

};

Forwarder Template Resources 5

A forwarder template contains resources that name the template, specify the type of
record or attribute to which the template applies, and specify the names of templates
that the Catalogs Extension can use with the record or attribute to which the template
applies. The forwarder template resources that are common to aspect and information
page templates are described in “Template Names” on page 5-75 and “Specifying Record
and Attribute Types for Templates” on page 5-75. The remaining resource is described in
this section. For a complete list of forwarder template resources, see Table 5-11 on
page 5-138.

kDETForwarderTemplateNames 5

To specify the templates that the Catalogs Extension can use with the record or attribute
to which the forwarder template applies, use a resource of type 'rst#' that has a
resource ID with an offset of kDETForwarderTemplateNames from the template’s
base resource.

resource 'rst#' (kForwarderTemplate + kDETForwarderTemplateNames, purgeable)

{

{ "WAVE Album", "WAVE Track" }

};
AOCE Templates Reference 5-139

C H A P T E R 5

AOCE Templates
Components of Killer Templates 5
A killer template provides a list of names of templates that the Catalogs Extension
should ignore. You can use killer templates to disable any type of template except
another killer template. A killer template can contain the resources listed in Table 5-12.

Killer Template Signature Resource 5

The killer template signature resource provides a base resource ID from which the other
resource IDs in the template are offset and provides the killer template version number
of the template.

'detk' Resource 5

Use a resource of type 'detk' for the killer template signature resource.

type 'detk' {

longInt = kDETKillerVersion; /* template format version */

};

Killer Template Resources 5

A killer template contains resources that name the template and specify the names of
templates that the Catalogs Extension should ignore. The killer template name resource
is described in “Template Names” on page 5-75. The other resource is described in this
section. For a complete list of killer template resources, see Table 5-12.

kDETKillerName 5

To specify the templates that the CE should disable, use a resource of type 'rst#' that
has a resource ID with an offset of kDETKillerName from the template’s base resource.

Table 5-12 Resources in killer templates

Resource
type

Offset of resource ID from
signature resource ID Purpose of resource

'detk' 0 Identifies template as killer and provides a base resource
ID. Required for all killer templates.

'rstr' kDETTemplateName Name of template. Required for all killer templates.

'rst#' kDETKillerName A list of names of templates to disable.
5-140 AOCE Templates Reference

C H A P T E R 5

AOCE Templates

5
A

O
C

E
 Tem

plates
resource 'rst#' (kKillerTemplate + kDETKillerName, purgeable) {

{ "WAVE Album", "WAVE Track" }

};

Components of File Type Templates 5
A file type template provides a list of file types that the Catalogs Extension should search
for AOCE templates. A file type template can contain the resources listed in Table 5-13.

File Type Template Signature Resource 5

The file type template signature resource provides a base resource ID from which the
other resource IDs in the template are offset, provides the file type template version
number of the template, and lists the file types that the CE is to search for templates.

'detx' Resource 5

Use a resource of type 'detx' for the file type template signature resource.

type 'detx' {

longInt = kDETFileTypeVersion; /* template format version */

integer = $$CountOf(ItemArray); /* count */

array ItemArray {

longInt; /* type of additional file */

};

};

File Type Template Resources 5

A file type template contains a resource that names the template. The file type template
name resource is described in “Template Names” on page 5-75.

Table 5-13 Resources in file type templates

Resource
type

Offset of resource ID from
signature resource ID Purpose of resource

'detx' 0 Identifies template as file type and provides a base
resource ID. Required for all file type templates.

'rstr' kDETTemplateName Name of template. Required for all file type templates.
AOCE Templates Reference 5-141

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	 AOCE Utilities
	 Standard Mail Package TOC
	 Standard Mail Package
	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	Introduction to the AOCE Catalogs Extension
	Introduction to AOCE Templates
	Aspect Templates
	Information Page Templates
	Forwarder Templates
	Killer Templates
	File Type Templates

	How Aspect and Information Page Templates Work
	Lookup Tables
	Conditional Views
	Code Resources
	How the Catalogs Extension Saves New Values
	Property Value Synchronization
	Drags and Drops

	Writing AOCE Templates
	Defining a New Record Type or Attribute Type
	Defining the Contents of the New Record Type or At...
	Laying Out an Information Page
	Adding a Conditional View
	Adding an Information Page With a Sublist
	Writing a Main Aspect and Information Page for an ...
	Creating a Custom Information Page Window
	Writing Template Code Resources

	AOCE Templates Reference
	File and Resource Types Used by the Catalogs Exten...
	Template Names
	Specifying Record and Attribute Types for Template...
	Components of Aspect Templates
	Properties
	Aspect Template Signature Resource
	Main Aspect Template Resources
	Supporting Drags and Drops
	Other Aspect Template Resources

	The Lookup-Table Resource
	Basic Element Types
	Conditional Element Types
	Block Elements
	Size Element Types
	Providing Your Own Pattern Elements
	Overriding Default Property-Type Assignments
	Canceling Pattern Processing

	Components of Information Page Templates
	Information Page Template Signature Resource
	View Lists
	Implementing Conditional Views
	Sublists
	Information Page Resources

	Components of Forwarder Templates
	Forwarder Template Signature Resource
	Forwarder Template Resources

	Components of Killer Templates
	Killer Template Signature Resource
	Killer Template Resources

	Components of File Type Templates
	File Type Template Signature Resource
	File Type Template Resources

	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	 Digital Signature Manager
	 Interprogram Messaging Manager TOC
	 Interprogram Messaging Manager
	 Catalog Manager TOC
	 Catalog Manager, Part 1 (Introduction, About, and Using)
	 Catalog Manager, Part 2 (Reference)
	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	 Authentication Manager
	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

