CHAPTER 7

Interprogram Messaging Manager

This chapter describes the AOCE Interprogram Messaging (IPM) Manager. The IPM
Manager provides a low-level interface to the AOCE store-and-forward messaging
service.

You can use the IPM Manager to send a message from one AOCE-aware application to
another. There are no restrictions on the contents of AOCE interprogram messages.
However, if you want to send or read messages intended to be read by people, you
should use the Standard Mail Package instead of the IPM Manager. Such messages are
referred to as letters. The Standard Mail Package provides a high-level interface to the
AOCE store-and-forward messaging service specifically to support letters. It is described
in the chapter “Standard Mail Package” in this book.

This chapter assumes that you are familiar with AOCE catalog concepts, including
catalog records, attribute types, and attribute values, as described in the chapter
“Catalog Manager” in this book.

This chapter provides an introduction to AOCE interprogram messages and the IPM
Manager and then discusses how you can use the IPM Manager to

» create and send a message to one or more recipients
= manage the queues in which the IPM Manager places messages

= list and read the messages that you receive

About the IPM Manager

The Apple Open Collaboration Environment provides a store-and-forward messaging
service that can deliver a message from one application to another regardless of whether
the applications are simultaneously connected to a network, or, in fact, regardless of
whether they are connected to a network at all. In addition to general application-to-
application messages, the Apple Open Collaboration Environment defines a special
category of messages, called letters, that are intended to be read by people. The sending
and receiving of letters by AOCE-aware applications is referred to as the AOCE mail
service. The IPM Manager provides a low-level interface to AOCE messaging services.
The Standard Mail Package is a client of the IPM Manager that provides a high-level
interface to AOCE mail services.

The IPM Manager application interface is the same no matter what transport medium is
being used to carry the message. Apple Computer, Inc., provides interfaces between the
IPM Manager and an AppleTalk network with and without a mail and messaging server.
Apple also provides the Direct Dialup mail and messaging service access module
(MSAM), which allows the IPM Manager to use a modem to send messages over
telephone lines. Other developers can provide MSAMs that allow the IPM Manager to
use other transport media and messaging services, such as Ethernet networks or fax
modems.

The IPM Manager maintains output and input queues on the local hard disk to store
messages waiting to be forwarded or to be read. The IPM Manager can use the output
queue, for example, to store a message until the telephone-connection MSAM can

About the IPM Manager 7-3

Jabeuely buibessa|n weiboidiaiu) .

7-4

CHAPTER 7

Interprogram Messaging Manager

establish a modem-to-modem connection. Any number of applications can use the same
queue. You can ask for a list of messages filtered by creator, so you need not sort through
all of the messages intended for other applications. However, if you have a need to do
s0, you can also create any number of input queues for the use of your application.

When you send a message, you must specify the addresses of one or more recipients. If a
recipient or group of recipients has an associated record in an AOCE catalog, you can
specify the record ID and the attribute containing the address, and the IPM Manager
looks up the address in the catalog. Alternatively, you can specify the type of connection
and provide specific information about the address of the recipient, such as the
telephone number and modem information or the AppleTalk network address.

You can use the IPM Manager to

= create a new message

= add blocks to a message

= write data to a message block

= nest a message within a message

= address a message

= send a message or save it to a disk file
= create input queues

= open input queues

» obtain a list of received messages

w filter received-message lists by such attributes as priority, message type, or script code
» read message-header information

= read message blocks

= delete messages from an input queue

= close input queues

About AOCE Interprogram Messages

The AOCE store-and-forward messaging service implemented by the IPM Manager uses
messages that consist of a header plus any number of message blocks. The header
contains addressing information, a table of contents of the message blocks, other
information of interest to the receiving application (such as the message type and
priority), and information used solely by the IPM Manager. Each message block can be
of any length less than 232 bytes and can contain any type of data. Apple Computer has
defined a few message types and message block types, such as the
standard-letter-content block type used by the Standard Mail Package. You can define
any message block types you wish.

Figure 7-1 illustrates the basic structure of a message. Note that the message header is
actually located at the end of the message, after all the message blocks.

About the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

Figure 7-1 Structure of an AOCE message

-
Block 1
Block 2

Message —
body Z

Block n

A

-

M] Control
essage information
header

AN

When a block contains a message, the message inside the block is called a nested
message. A message can contain any number of nested messages, and any nested

message can contain other nested messages. The structure of a nested message is exactly

the same as the structure of a message. Figure 7-2 illustrates a message containing a

nested message.

Note

If you are using the IPM Manager to send letters to the Standard Mail
Package, you should avoid sending any nested letters that contain
standard content. If the Standard Mail Package receives a letter that
contains a nested letter, it ignores any content (standard interchange
format or image format) within the nested letter. It displays the header
and nesting information of the nested letter as a forwarded mailer. O

Figure 7-2 An AOCE message containing a nested message
' B
Block 1 Block 1
Block 2 Block 2
Message — — Message
body Z / body
Block n Block n
N —
' B
M] Control Control M
essage information information essage
header header
N —y

About the IPM Manager

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Figure 7-3 illustrates the contents of a message header. Note that Figure 7-3 does not
show the size or true sequence of fields in the message header. You must use IPM
Manager routines to read and write message-header information.

Figure 7-3 Contents of an AOCE message header

Message length . —
9 9 Number of recipients

Priority .
Delivery notification) Recipient 1
Message type Recipient 2

Message family

Process hint Z /

./ Recipients / Recipient n

Reply queue
/ Table of contents / Number of blocks | =~ = |

Block 1 information Creator and type
" Offset to block
Sender . Block 2 information |°.
Message 1D / / Length of block
Reference constant N Reference constant

Block n information

Z Trace information /

Authentication

Signature

Although all of the public message-header fields are described in detail in the reference
section of this chapter, several fields of general interest are briefly described here.

The sender of a message assigns a priority (low, normal, or high) to it. The IPM Manager
does not read the contents of the priority field; it is up to the receiving application to
determine how to handle messages of different priorities.

When you send a message, you can request delivery and nondelivery reports. The
delivery notification field in the message header tells the IPM Manager what kinds of
reports you want to receive. Reports are AOCE messages and can include the original
message as a nested message if you request that option. Report messages are described
in “Report Messages” on page 7-9.

The message type consists of a creator field and a type field. The sending application
assigns the message type, and the receiving application uses it to help determine how to
interpret the contents of the message. Apple Computer has defined some standard
message types for report messages and letters. You can define other message types for
whatever purpose you wish.

About the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

The message family is a class of messages. Apple Computer has defined some standard
message family types for mail and reserves all message family types consisting entirely
of lowercase characters. You can define your own message family types, but Apple
Computer does not register or otherwise control developer-defined message family

types.

The process hint is a character string that you can use for any purpose, such as
discriminating among subtypes of messages of the same type or internal routing of
messages.

When you send a message, you must specify location information for each recipient. You
can specify the record ID of a user record if the recipient’s address is stored in an AOCE
catalog, or you can specify the actual delivery address of the recipient.

The reply queue is the address to which the IPM Manager should return delivery and
nondelivery reports and to which reply messages should be sent.

The table of contents specifies the type and location of each block. The block type
includes a creator field and a type field. Apple Computer has defined some standard
block types for such things as nested messages and standard-letter-content blocks. You
can define other block types for your own use.

In the case of an authenticated message, the sender field is filled in by the IPM Manager
and identifies the authenticated originator of the message. In the case of an
unauthenticated message, such as a message sent over a serverless network or over a
dialup connection, the originator of the message fills in the sender field. In this case, the
field should give some indication of who originated the message, but the IPM Manager
can not ensure its accuracy or usefulness.

The reference constant is a numeric reference value that the creator of the message
provides for the message. You might use this field, for example, to indicate that the
message includes blocks of a certain type so that the receiving application can allocate
the memory resources it will need to read the message. The table of contents (TOC
information) for each block also contains a reference constant that you can use for any
purpose you wish.

The IPM Manager sets the authentication information field to indicate whether the
message was sent over a secure, authenticated connection. In the case of a message that
passes through more than one store-and-forward server, the IPM Manager sets this field
to t r ue only if the identities of the original sender and of every server in the routing
chain were authenticated. The authentication field does not reflect the authentication
status of the communication link that the addressee uses to read the message from the
last server’s message queue. The chapter “Authentication Manager” in this book
describes the authentication process in detail.

If the sending application adds a digital signature to a message, the IPM Manager adds a
signature block to the message and sets the signature field of the message header to
true.

About the IPM Manager 7-7

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Message Queues

The IPM Manager delivers a message to a message queue, which is maintained by the
IPM Manager on the recipient’s disk or by a server on the disk of the server computer.
Any application can create message queues. Before you can list the messages in a
message queue or read a message in a queue, you must open the queue.

Each queue can be opened any number of times, by any number of applications. Each
time an application opens a queue the IPM Manager assigns a queue reference number.
Each time you list the messages in the queue, open a message, read information from a
message, close a message, or delete a message, you must specify a queue reference
number.

When you list the messages in a queue, you can specify a filter that limits the messages
included in the list. For example, you can filter a queue list for messages with a specific
creator to limit it to messages sent by your own application. You can also filter queue
lists by message priority or process hint (an application-defined value). When you open
a queue (and so obtain a queue reference number), you can specify a default queue filter
to be associated with that queue reference number. You can change the default queue
filter at any time.

If you open a queue three times to get three queue reference numbers, it appears as
though you have three queues, especially if you specify a different queue filter each time
you open the queue. Note, however, that these three “queues” are all actually views of
the same physical queue and so may list some or all of the same messages. To
distinguish between the queue on disk and the apparent queues you get when you open
the queue, this book refers to the physical queue on disk and to virtual queues
associated with that physical queue. Each queue reference number identifies one virtual
queue. A physical queue can have any number of associated virtual queues. When you
close a virtual queue, the IPM Manager automatically closes all the messages that were
opened through that virtual queue.

You can use a virtual queue to open and close messages regardless of whether the same
messages are already open through another virtual queue. However, when you delete a
message, it is deleted from the physical queue and so from all the virtual queues
associated with that physical queue. (The IPM Manager prevents you from deleting a
message as long as it is open through any virtual queue.)

The primary reason the IPM Manager provides virtual queues is to allow more than one
application to use the same physical queue simultaneously. However, you can also use
virtual queues to help organize your bookkeeping. You can use multiple virtual queues
as a convenient way to group messages, especially if your message groups are based on
message type or creator, script code, priority, or process hint.

For example, an application for stockbrokers might receive two types of IPM messages:
notices about stock prices and orders sent by clients. Such an application might maintain
two virtual queues to make it easier to list, open, and close the two message types
independently.

In much the same way that virtual queues link together messages that you might want
to list, open, or close together, each virtual queue is associated with a queue context. You

About the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

must open at least one queue context before you can open a queue, and each time you
open a queue you must specify to which context the virtual queue is to belong. When
you close a queue context, the IPM Manager automatically closes all of the queues
associated with that context. If you are using several virtual queues to organize
messages, you might want to use more than one queue context to add another
hierarchical level to the organization.

To extend the previous illustration, for example, suppose the stockbrokers” application
has separate virtual queues for low-, normal-, and high-priority buy-or-sell orders, and
links these three queues together by assigning them all to the same context. Then the
application could close all the high-priority orders by closing one virtual queue, or it
could close all of the orders of all priorities by closing the queue context to which they
belong.

Addresses

When you send an AOCE message, you must specify the address to which the message

is to be delivered. The address can specify an entity (such as a person), an exact location
(such as a queue on a specific AppleTalk node), or a group (which must be resolved into
individual addresses).

An IPM message can contain two types of addresses: direct addresses and indirect
addresses. A direct address specifies the exact location and queue name to which you
want the message sent. An indirect address specifies the person or group to which you
want the message sent and relies on IPM to determine the actual location and queue
name of each addressee. AOCE addressing is described in two sections: “Direct
Addressing,” beginning on page 7-11, and “Indirect Addressing,” beginning on

page 7-14.

Report Messages

When you send a message, you can request that the IPM Manager return recipient report
messages. You have several options for report messages. You can request that the IPM
Manager

return report messages when the message is delivered

return report messages when the message cannot be delivered
= return both delivery and nondelivery reports

= include the original message in the report message

= include the original message only in nondelivery reports

» send a separate report message for each recipient, sending each one as soon as its
delivery status is known for that recipient

= wait until the delivery status of the message is known for all recipients and then send
a single summary report

About the IPM Manager 7-9

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Figure 7-4 illustrates the contents of a report message. Note that Figure 7-4 does not
show the size or true sequence of fields in the report message. You must use IPM
Manager functions to read report message information.

The report message contains a recipient report block, which includes a header and report
data. The header, an | PMRepor t Bl ockHeader structure, includes the message ID of
the original message and the time that the IPM Manager generated the report. The report
data, an OCEReci pi ent Report structure, indicates the outcome of the delivery to each
recipient to which the report applies.

Because reports are messages, they are delivered to queues just as all messages are.
Report messages are always delivered to the reply queue specified in the original
message. If no reply queue was specified in the original message, then the IPM Manager
does not issue report messages. When you send a message, you have the option of
specifying whether you want the IPM Manager to issue delivery and nondelivery
reports.

Figure 7-4 An IPM report message

Report block header
——— .
Original message ID
Recipient report —
p P Report generation time
Message —| ..
body - 3 -, Report block data
Original message " Recipient 1 | Result code
optional . -
L (op) Recipient 2 | Result code
' .
Control K Z /
Mc?]ssa&ge n information E
eader L ".| Recipient n | Result code

For more information on how to read a report, see the descriptions of the
| PMRepor t Bl ockHeader structure on page 7-33 and the OCEReci pi ent Report
structure on page 7-33.

Addressing IPM Messages

7-10

The IPM Manager uses a single data type, the OCEReci pi ent structure, to specify any
type of address. Figure 7-5 shows the components of an OCEReci pi ent structure. The
OCEReci pi ent structure has three parts: record location information (RLI), a local
record identifier, and an extension. The record location information and local record
identifier make up a record ID. Which of these parts are used in a specific address
depends on the type of address, as described in the following sections. The

OCEReci pi ent structure is defined on page 7-24. For more information on the

Addressing IPM Messages

CHAPTER 7

Interprogram Messaging Manager

Recor dl D, Local Recor dI D, and RLI structures, see the chapter “AOCE Utilities” in
this book.

Figure 7-5 Contents of an OCEReci pi ent structure

Catalog name

Catalog
discriminator

RLI — dNode number — Record
ID

Pathname

)i

Creation ID

Local —|

record ID Record name

Record type

Extension type

Extension size

(Extension subtype)

Extension value

Direct Addressing

In direct addressing, the OCEReci pi ent structure specifies the location of the recipient
and the queue to which you want the message sent. (All AOCE messages are delivered

to a specific queue at a specific location.) This information is contained in the extension

part of the OCEReci pi ent structure.

Apple Computer, Inc., has defined address formats for its built-in transport media,
which are described in the following sections. Personal and Server MSAMs allow the
transport address space to be extended, and each transport medium has a unique set of
addresses. Generally, the record location information (RLI) in the Recor dI Dfield is used
for routing, the name and type are used for display, and the extension contains the native
transport address as a displayable RSt r i ng. The list of accessible RLIs is available via
the Di r Get Ext endedDi r ect or i esl nf o function, which is defined by the Catalog
Manager.

The AOCE software defines two types of direct addresses: the AppleTalk type and the
telephone type, described in the following two sections.

Addressing IPM Messages 7-11

Jabeuely buibessa|n weiboidiaiu) .

7-12

CHAPTER 7

Interprogram Messaging Manager

AppleTalk Direct Addressing

You can use AppleTalk direct addressing to specify the location on an AppleTalk internet
to which a message should be delivered. You can use the Name Binding Protocol (NBP)
AppleTalk routines to obtain the addresses of entities on an AppleTalk network. For
more information on NBP and AppleTalk networking, see Inside Macintosh: Networking.

The IPM Manager recognizes an AppleTalk direct address by the value' al an' in the
ext ensi onType field of the OCEReci pi ent structure. In this case, the extension
portion of the OCEReci pi ent structure contains the entire address; the IPM Manager
ignores the record ID portion of the structure. The ext ensi onVal ue field of the
OCEReci pi ent structure is defined as follows:

Str32 obj ect Nane
Str32 t ypeNanme
Str32 zoneNane
Str32 queueNane

All four of the fields are required, and all are packed. The first three fields are in the exact
format used by the NBP Ent i t yNane structure. As is usual for AppleTalk, you can
specify a zero-length string or the wildcard character * to indicate the local zone.

You must fill in the queueNane field with the name of the specific queue to which the
message is to be delivered. The messaging applications on both the sending and
receiving computers have to open input queues and must somehow exchange queue
names. You have to determine the protocol for achieving this yourself. The easiest way to
know the recipient’s queue name is for your application to use the same queue name
always. If you need to send messages to multiple queues or have other reasons to allow
more than one possible queue name, you have to implement your own process for
determining which queues are available and what their names are.

Telephone Direct Addressing

You can use telephone direct addressing to specify an address for use by PowerTalk
Direct Dialup. You must specify a telephone number and the recipient queue name. The
IPM Manager delivers the message to the queue with the specified name on the node
that is connected to a modem at the specified telephone number. To receive and route the
message correctly, the receiving computer must have Direct Dialup installed and the
modem set to answer the telephone.

Note

The telephone direct addressing type of OCEReci pi ent structure
described here is created by the Direct Dialup template when the user
adds a Direct Dialup mail address to an information card. You can use
the information in this section to create your own Direct Dialup
addresses to use with messaging applications. The IPM Manager
provides no facilities for using communications software other than
Direct Dialup to send messages over telephone lines. O

Addressing IPM Messages

CHAPTER 7

Interprogram Messaging Manager

The IPM Manager recognizes a telephone direct address by the value ' aphn' in the
ext ensi onType field of the OCEReci pi ent structure.

You should use the string “Direct Dialup” for the catalog name field of the

OCEReci pi ent structure. This is the name of the personal catalog used by the Direct
Dialup software for setup information. The Direct Dialup catalog contains access
numbers for local calls (such as 9, used to obtain an outside line in some telephone
systems), long distance calls (such as 8 to obtain a long-distance outside line), and
international calls (when calling from the United States, this is generally 011, the
international access code) and can specify a credit card number to be used. The IPM
Manager ignores the other fields in the record ID portion of the OCEReci pi ent
structure.

When you use telephone direct addressing, the ext ensi onType field must contain the
value ' aphn' and the ext ensi onVal ue field is defined as follows:

RStri ng phoneNunber /* tel ephone nunber */
RSt ri ng nodemType /* reserved */
Str32 gueueNane /* recipient’s queue nane */

All three fields are required. The phoneNunber and nodeniType fields must be padded
to an even number of bytes, and all fields must be packed.

The phoneNunber field is composed of several subfields. Each subfield must be packed
and padded to an even number of bytes.

short subType;

RString countryCode;
RString areaCode;

RString phone;

RString postFix;

RString nonHandyDi al Stri ng;

Field descriptions

subType A byte that specifies whether the Direct Dialup software should use
the information in the Direct Dialup setup catalog when it forms the
dialing string. If you specify the value kOCEUseHandyDi al for this
field, the Direct Dialup software uses the Direct Dialup catalog to
obtain special access numbers and optionally a charge card number.
If you specify KOCEDont UseHandyDi al for this field, the Direct
Dialup software uses only the exact dialing string you specify in the
nonHandyDi al St ri ng field and ignores the other subfields.

count r yCode The ASCII value of the country code needed to dial an international
number. For example, the country code for the United Kingdom is
ASCII 44. For long-distance calls from and within North America,
use the long distance prefix, ASCII 1.

ar eaCode The ASCII value of the US area code or, for international calls, the
city code.

Addressing IPM Messages 7-13

Jabeuely buibessa|n weiboidiaiu) .

7-14

CHAPTER 7

Interprogram Messaging Manager

phone The telephone number including any other special modem control
characters you may need. For example, you could include the “,”
character as one of the characters in the phone string to cause the
modem to pause briefly before dialing the rest of a number.

post Fi x Reserved. You must specify an RSt r i ng structure of zero length
and an empty data string (").

nonHandyDi al Stri ng
The dialing string used by the Direct Dialup software when you set
the subType field to kOCEDont UseHandyDi al . When this is the
case all of the other fields of the extension value are ignored when
the dialing string is formed. If the subType field has a value of
kOCEUseHandyDi al , then Direct Dialup ignores this field.

The modenilype field of the extension value is reserved and must be set to an empty
RSt ri ng; that is, an RSt r i ng structure with a length of 0 and an empty data string (" ").

You must fill in the queueNane field of the extension value with the name of the specific
queue to which the message is to be delivered. The messaging applications on both the
sending and receiving computers have to open input queues and must somehow
exchange queue names. You have to determine the protocol for achieving this yourself.
The easiest way to know the recipient’s queue name is for your application to always use
the same queue name. If you need to send messages to multiple queues or have other
reasons to allow more than one possible queue name, you have to implement your own
process for determining which queues are available and what their names are.

Indirect Addressing

You can use indirect addressing when you want to specify the entity to which a message
should go, instead of the exact location and queue name to which the message should be
delivered. In indirect addressing you specify a record—and optionally a specific attribute
within the record—that contains the location and queue information that the IPM
Manager needs to deliver the message. In mail applications, for example, the user
typically selects a user record from a catalog or information card as the addressee. The
IPM Manager then looks up the address of the recipient in that user record.

To use indirect addressing, fill in the record ID portion of the OCEReci pi ent structure
with the record ID of the record containing the address and set the ext ensi onType
field to the value 'ent n'. Extensions of type 'ent n' include a subtype field, which can
have the following values:

enum {
kOCEAddr Xt n= "addr', /* reserved */
kOCEanXt n= 'gnham, /* queue-nane form */
kKOCEAttrXtn= "attr', /* attribute-type form*/
kKOCESpAt Xt n= 'spat' [* reserved */

Addressing IPM Messages

CHAPTER 7

Interprogram Messaging Manager

To specify an indirect address, you must use the attribute-type (" att r') subtype. The
queue-name subtype of an OCEReci pi ent structure is used for attribute values (see
“Queue-Name Format for Attribute Values” on page 7-16). The other two subtypes are
reserved for use by the IPM Manager.

Both the attribute-type and queue-name subtypes require the record ID portion of the
OCEReci pi ent structure to contain a valid reference to a record.

The fields that are required in the record ID portion of the OCEReci pi ent structure are
as follows:

s If the creation ID value is sufficient to identify the record in the catalog then the
recor dNane and r ecor dType fields are not required and can be ni | .

s If the creation ID is not sufficient to specify the record or is nul | , then the
recor dNanme and r ecor dType fields are required.

= If you include both the creation ID and the record name and type, they must specify
the same record.

You can use the Catalog Manager functions to create and modify records and record
attribute values. See the chapter “Catalog Manager” in this book for more information.
For information on record IDs, attributes, attribute values, and the creation ID, see the
chapter “AOCE Utilities” in this book.

Attribute-Type Indirect Addressing

You use attribute-type indirect addressing when you want to specify the entity that is to
receive a message rather than the specific location and queue to which a message is to be
delivered. The IPM Manager obtains the location and queue name to which the message
is to be delivered from an attribute in the record you specify. If you are specifying a
standard AOCE user record or group record into which the system administrator placed
messaging addresses, then the IPM Manager creates the attribute containing the address,
and you do not have to be concerned with the format of the attribute value. If, however,
you want to create your own record or attribute type and place addresses in it yourself,
then you need to be familiar with address formats for attributes, discussed in the
following section, “Queue-Name Format for Attribute Values.”

The simplest form of an attribute-type OCEReci pi ent structure has an extension type
of ' ent n', an extension size of 0, and no extension value. In this case, the IPM Manager
uses the preferred messaging queue as specified in the default messaging attribute in the
record. The preferred messaging queue is created and designated by the catalog
administrator.

To specify an attribute type, use an extension type of ' ent n' and a subtypeof ' attr'.
The extension value is defined as follows:

OSType "attr'
AttributeType attributeNane

Addressing IPM Messages 7-15

Jabeuely buibessa|n weiboidiaiu) .

7-16

CHAPTER 7

Interprogram Messaging Manager

The At t ri but eType structure is defined as follows:

struct AttributeType {
RSt ri ngHeader
Byt e body[kAttri but eTypeMaxByt es];

b

The at t ri but eNane field must be packed and padded to an even number of bytes. The
Attri but eType structure is equivalent to an RSt r i ng structure that has a length of
KAt tri but eTypeMaxByt es bytes. For more information on the At t ri but eType and
RSt r i ng structures, see the chapter “AOCE Utilities” in this book.

Setting the subtype to' attr' and the body field of the At t ri but eType structure to
the value kPr ef MsgQAt t r TypeBody has the same effect as leaving out the extension
value entirely: the IPM Manager uses the preferred messaging queue in the record as the
address to which to deliver the message.

If you specify another attribute type, then the IPM Manager looks for the address in that
attribute type. If there is more than one attribute value in the record with the attribute
type you specify, the IPM Manager chooses one of the values. The method that the IPM
Manager uses to decide which attribute value to use is private. Therefore, you should
use a multivalued attribute type to hold an indirect address only when you do not care
at which address a recipient receives the message.

Queue-Name Format for Attribute Values

If you want to define your own record type or attribute type to hold addresses for
indirect addressing, you must format the attribute value as an OCEReci pi ent structure.
You use the queue name form of the OCEReci pi ent structure for the attribute value.
The recipient must have an account on an AOCE messaging server, such as a
PowerShare server. The queue name form specifies the messaging server and queue
name to which to deliver the message.

In the queue name form of the OCEReci pi ent structure, the ext ensi onType field has
a value of 'ent n', the extension subtype field has a value of 'qnam, and the extension
data is a queue name string. The ext ensi onVal ue portion of the OCEReci pi ent
structure is defined as follows:

OSType " gnam
Str32 queueNane

The record ID portion of the OCEReci pi ent structure specifies the catalog and record
ID of the catalog record that contains information about the messaging server. (When the
system administrator installs a messaging server, the setup software creates a catalog
record containing information about the messaging server.)

As with other AOCE addressing formats that require the name of a queue, you must
implement your own method for obtaining the queue name because the AOCE toolbox
does not provide you with a mechanism for doing so.

Addressing IPM Messages

CHAPTER 7

Interprogram Messaging Manager

Here is one possible procedure for indirect addressing using queue name attribute
values:

1. Create your own new record type, or create a new attribute for an existing record type.

2. Log on to the messaging server as an administrator and create a queue with the name
you want to use. You use the | PMCr eat eQueue function (page 7-69) for this purpose.

3. Put the name and location of the queue you just created into the new attribute in a
queue-name-format OCEReci pi ent structure.

4. Once you have created the queue and you have placed the queue name and location
information into an attribute, then both ends of your connection can obtain the queue
name from the record. Both the recipient and the sender of the message must know
before the message is sent which record and attribute in the catalog contains the
queue name.

Using the IPM Manager

This section describes how to create messages, create and manage message queues, and
read messages.

Determining Whether the Collaboration Toolbox is Available

Before calling any of the Interprogram Messaging Manager functions, you should verify
that the Collaboration toolbox is available by calling the Gest al t function with the
selector gest al t OCETool boxAt t r. If the Collaboration Toolbox is present but not
running (for example, if the user deactivated it from the PowerTalk Setup control panel),
the Gestalt function sets the bit gest al t OCETBPr esent in the r esponse parameter. If
the Collaboration Toolbox is running and available, the function sets the bit

gest al t OCETBAvai | abl e in the r esponse parameter. The Gestalt Manager is
described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Ultilities.

If you want to be informed when the Interprogram Messaging Manager starts up or
shuts down, you can install an entry in the AppleTalk Transition Queue (ATQ). Then the
AppleTalk LAP Manager calls your ATQ routine with the transition selector

ATTr ans| PMst art when the IPM Manager has finished starting up and with the
selector ATTr ans| PMshut down when the IPM Manager has started to shut down. The
ATQ is described in the “Link-Access Protocol (LAP) Manager” chapter of Inside
Macintosh: Networking.

Determining the Version of the Collaboration Toolbox

To determine the version of the Collaboration Toolbox that is available, call the Gestalt
function with the selector gest al t OCETool boxVer si on. The function returns the
version number of the Collaboration toolbox in the low-order word of the r esponse
parameter. For example, a value of 0x0101 indicates version 1.0.1. If you are using the
Collaboration toolbox on a computer that has a PowerShare server, the function returns

Using the IPM Manager 7-17

Jabeuely buibessa|n weiboidiaiu) .

7-18

CHAPTER 7

Interprogram Messaging Manager

the version number of the server in the high-order word of the r esponse parameter.

If the Collaboration Toolbox or server is not present and available, the Gest al t function
returns 0 for the relevant version number. You can use the constant gest al t OCETB for
AOCE Collaboration Toolbox version 1.0.

Note that the version number of the Collaboration toolbox is not necessarily the same as
that returned by the | PMReadHeader function (page 7-89) for the IPM Manager. The

| PMReadHeader function returns a version number in the ver si on field of the

| PMFi xedHdr | nf o structure (page 7-38).

Error Handling

If the ASDSP connection between the Collaboration toolbox and the server shuts down
for any reason, the next IPM Manager function you call that requires communications
with the server fails with the result code kOCEConnect i onCl osed. To correct this
condition, call the | PMCl oseQueue function (page 7-76) to close the messaging queue
and then call the | PMOpenQueue function (page 7-72) to reopen the queue.

If either end of the IPM connection crashes during message transmission, the IPM
Manager might send a duplicate copy of a message that was already successfully
delivered. Although such an occurrence is very rare, your application should be capable
of handling the receipt of duplicate messages.

Creating a Message

A message is created in three steps:
1. Initiate the message-creation process.
2. Add information to the message.

3. End the process.

Initiating the Message-Creation Process

Before you start to create a message, you must decide whether you intend to send the
message, save it to disk, or nest it in another message. These processes are independent
of one another. If you want to both send a message and save the same message to disk,
for example, you must create the message twice.

s To begin the process of creating a new message to be sent to a recipient, call the
| PMNewMs g function (page 7-43).

» To start a new message to be saved to disk, call the | PMNewHFSMs g function
(page 7-47).

» To start a new nested message, call the | PMNewNest edMsgBl ock function
(page 7-56).

You provide each of these functions with information for the message header and an
authentication identity of the creator of the message. You can specify the reply message
queue and one recipient message queue at this time, or you can add this address

Using the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

information later, as described in the following section. Each of the new-message
functions returns a message reference number that you must use when you call
other functions to build the message.

Adding Information to the Message

Once you have started the message, you can add information to the message. You can
call the | PMAddReci pi ent (page 7-50) and | PMAddRepl yQueue (page 7-52) functions
at any time during the message-creation process to add recipients and a reply queue to
the message header. To add a new message block, you first call either the | PMNewBl ock
function (page 7-53) to start a new message block, or the | PMNewNest edMsgBl ock
function to start a new nested-message block. You then call the | PMN i t eMsg function
(page 7-61) to add data to a message block. You can also use the | PMNest Msg function
(page 7-59) to add an existing message as a message block. You can’t modify such a
nested message. You can add as many message blocks and nested messages as you wish
to a message.

Note

Although the IPM Manager allows you to add any number of
nested-message blocks at the same nesting level in a message, the
messaging service access module (MSAM) interface supports only one
nested-message block at a given nesting level. Therefore, if you want
your message to be compatible with MSAMSs, you must not add more
than one nested-message block at a given level of nesting. You can,
however, nest a message within another nested message to as many
nesting levels as disk and memory resources allow. O

The | PMV i t eMsg function adds data at a specific offset in a message. You can specify
an offset from the start of the currently open message block, from the start of the
message, or from the end of the last byte written. A message block can be any length.
Each time you call the | PMNewBI ock function or the | PMNewNest edMsgBI ock
function, the IPM Manager closes the current message block and starts a new message
block, putting the offset to the beginning of the new block into the message header.
Therefore, once you start a new message block, you cannot extend the length of any
message blocks you added earlier. You can write over the data in a block you wrote
earlier, but you can’t extend the block.

If you call the | PMNewNest edMsgBI ock function to add a nested-message block to a
message, each subsequent call to the | PMNewBl ock or | PMNewNest edMsgBl ock
functions adds another block to the nested message, not a new block to the enclosing
message. Once you have started a nested message, you must call the | PMENdMs g
function (page 7-65) to complete the nested message before you can add any more
information to the enclosing message. After you call the | PMEndMsg function to end the
nested message, you cannot add any recipients or blocks to the nested message.

Using the IPM Manager 7-19

Jabeuely buibessa|n weiboidiaiu) .

7-20

CHAPTER 7

Interprogram Messaging Manager

Ending a Message

When you are finished adding address information, blocks, and nested messages to your
message, you call the | PMEndMs g function. This function sends the message, saves it to
disk, or ends a nested message, depending on which function you used to start the
message. You can also choose to add a digital signature to the message at this time and
you can request delivery and nondelivery reports.

Creating and Managing Message Queues

The IPM Manager provides functions to perform the following tasks:
= create a new physical queue

= open a queue context

= open a physical queue to establish a virtual queue

= change the default message filter for a virtual queue

= enumerate the messages in a queue

= close a queue context

= close a virtual queue

= delete a physical queue

Creating and Opening a Queue

Before another client of IPM can send messages to your application or process, you must
establish the input messaging queue to which the messages will be sent and from which
you can read them. You can use the default messaging queue created by the PowerShare
system administrator for the user as described in “Attribute-Type Indirect Addressing”
on page 7-15.

The administrator of a PowerShare messaging server can create any number of queues
on the server computer. Each such queue has a creator (the administrator who created
the queue) and an owner, assigned by the administrator. The owner can open a queue
and the administrator can delete a queue. An administrator typically creates a queue for
each user who has an account on the server.

However, if you want to create and maintain your own messaging queues, you must use
the functions described in “Managing Message Queues” on page 7-68.

Using the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

To establish a messaging queue, follow these steps:

1. Call the | PMCr eat eQueue function to create a new physical queue. When you call
the | PMCr eat eQueue function (page 7-69), the IPM Manager sets up a new physical
input queue with the name and address you specify. Other users of IPM can send
messages to that queue (assuming they know its name and address) at any time.

Note
You must be authenticated as the administrator to add a queue to a
PowerShare server. O

2. Call the | PMOpenCont ext function to create a new queue context. A queue context
links together virtual queues so that, by closing the context, you can simultaneously
close all of the queues associated with that context. You use the | PMOpenCont ext
function (page 7-70) to create a new context and the | PMCl oseCont ext function
(page 7-77) to close one. The | PMOpenCont ext function returns a context reference
number that you use when you call the | PMOpenQueue function to open a new
virtual queue.

3. Call the | PMOpenQueue function to establish a new virtual queue. Whereas the
| PMCr eat eQueue function creates a physical message queue, the | PMOpenQueue
function (page 7-72) opens the physical queue to establish a virtual queue (see
“Message Queues” on page 7-8 for a discussion of physical and virtual message
queues). You cannot read messages from a queue until you open it. When you call the
| PMOpenQueue function, you must specify the queue context to which the new
virtual queue will belong. You can call the | PMOpenQueue function any number of
times to establish distinct virtual queues associated with the same physical input
queue. Each time you call this function, the IPM Manager returns a unique queue
reference number.

Specifying a Queue Filter and Enumerating a Queue

When you call the | PMOpenQueue function to establish a virtual queue, you can specify
a default message filter for that virtual queue. You can filter messages by priority,
message type, or other attributes, as described in “Filter Structures” on page 7-34.

For example, you can open an input queue three times to create three virtual queues,
each with its own filter: one that passes only high-priority messages, one that passes
only messages specifically intended for your application, and one that passes all
messages in the physical input queue. You can use the | PMChangeQueueFi | t er
function (page 7-74) to change the default message filter for a specific virtual queue.

When you call the | PMEnurer at eQueue function (page 7-80), you specify a queue
reference number and you can specify a queue filter. The IPM Manager uses the message
filter to determine which messages in the physical queue to list. If you do not provide a
message filter with the | PMEnumer at eQueue function, the function uses the default
filter for that virtual queue.

Using the IPM Manager 7-21

Jabeuely buibessa|n weiboidiaiu) .

7-22

CHAPTER 7

Interprogram Messaging Manager

Closing a Queue

You can close an individual virtual queue or you can close a queue context to
simultaneously close all of the virtual queues associated with that context. When you
open a message, you specify the reference number for an open virtual queue. This virtual
queue must belong to the physical queue that actually contains the message and its filter
must pass the specific message you wish to open. When you call the | PMCl oseQueue
function (page 7-76) to close a virtual queue, the IPM Manager closes all of the messages
opened using that virtual queue’s reference number and removes the virtual queue from
its context. When you call the | PMCl oseCont ext function (page 7-77) to close a
context, the IPM Manager closes all of the messages opened for all the virtual queues
associated with that context before it closes the virtual queues and removes the context.

Call the | PMDel et eQueue function (page 7-78) to delete a physical queue that you own.
Before you delete a physical queue, you must close all of the virtual queues that belong
to that physical queue.

Reading Messages

To read a message, follow these steps:

1. Enumerate the queue or determine the location of the message on disk. Use the
| PMEnumner at eQueue function (page 7-80) to list the messages in a virtual queue;
that is, the messages that meet the filter criteria for the queue. If you wish, you can
specify a filter that is in effect only for a single execution of the function; otherwise,
the function uses the current filter for the virtual queue. In addition to the sequence
number of each message, the | PMEnumer at eQueue function provides information
about the message such as the message length and priority.

A queue can contain any number of messages. The IPM Manager assigns a sequence
number to each message when it adds the message to the physical queue. The IPM
Manager uses a monotonically increasing series of sequence numbers and does not
reuse a sequence number when a message is deleted from the queue. Therefore, when
you request a list of all the messages in the queue, some sequence numbers might be
missing, but the message with the highest sequence number is always the last one
added to the queue.

Use File Manager or Standard File Package routines to locate a message on disk. The
File Manager and Standard File Package are described in Inside Macintosh: Files.

2. Open the message. Use the | PMOpenMs g function (page 7-82) to open a message in an
input queue or the | PMOpenHFSMs g function (page 7-84) to open a message that has
been saved in a file on disk. These functions return a message reference number that
you must provide to the various message-reading functions.

If a message contains a nested-message block, you can use the | PMOpenBl ockAsMsg
function (page 7-86) to open that block as a message. You must open the containing
message and determine the offsets of the nested-message block before you can open a
nested message. You use the | PMCet Bl kI ndex function (page 7-96) to get the index
numbers and block types of the blocks in a message.

Using the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

3. Read the message header. The IPM Manager reads certain fields of the headers of
messages in an input queue and saves this information in local memory. You can use
the | PMcet Msgl nf o function (page 7-87) to read this information. The
| PMGet Msgl nf o function returns the same information about a message as that
returned by the | PMEnuner at eQueue function. To get more information about a
message or to read header information from a message on disk or a nested message,
use the | PMReadHeader function (page 7-89).

The creator of a message adds one or more recipients to the message header. Some or
all of these recipients might be group addresses or references to catalog records that
the IPM Manager must resolve before delivering the message. The

| PMReadReci pi ent function (page 7-92) returns only the original list of recipients.

4. Call the | PMzet Bl kI ndex function (page 7-96) to get the index numbers and block
types of the blocks in the message. If you are interested only in blocks of a certain
type, such as nested-message blocks, you can use this function to list only those blocks.

5. Use the | PMReadMs g function (page 7-98) to read any message block other than a
nested-message block.

Call the | PMOpenBl ockAsMsg function to open a nested-message block as a message
and then use the other functions in this section to read it as you would read any other
message. Before you use this function, you must open the containing message (which
can also be a nested message) and you must know the index number of the
nested-message block within the containing message. A nested message has a creator
type of kI PMSi gnat ur e and a block type of kIl PMENCI osedMsgType.

If the message includes a digital-signature block, you can use the
| PWer i f ySi gnat ur e function (page 7-102) to verify the signature.

6. When you have finished reading the message, call the | PMCl oseMsg function
(page 7-104) to close the message and release the memory the IPM Manager reserved
for the message when you opened it. Closing a message does not automatically close
any nested messages that you have opened with the | PMOpenBl ockAsMsg function;
you must call the | PMCl oseMsg function once for every nested message you open.
You can also close messages by closing the message queue or the queue context to
which that message belongs.

Using the IPM Manager 7-23

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPM Manager Reference

This section describes the data types and routines provided by the IPM Manager.

Data Types

The IPM Manager routines use the data types described in this section. Included are
structures for message addressing, message and block types, delivery notification,
filter structures, message information structures, header information structures, sender
structures, and interprogram messaging parameter blocks.

Message Addressing Structures

You must use the OCEReci pi ent structure to specify a message address. This section
also shows some structures you can use for extensions to OCEReci pi ent structures. See
“Addressing IPM Messages,” beginning on page 7-10 for more information about
addressing.

OCERecipient

7-24

The OCEReci pi ent structure is defined as a DSSpec data type.

struct DSSpec {

Recordl D *entitySpecifier;
OSType ext ensi onType;
unsi gned short ext ensi onSi ze;
Ptr ext ensi onVal ue;

b

typedef struct DSSpec DSSpec;
t ypedef DSSpec OCEReci pi ent;

The OCEReci pi ent structure can specify a specific attribute in a specific record in a
catalog from which the IPM Manager reads the recipient address, or it can hold the
actual queue address. The various forms of the OCEReci pi ent structure are described
in “Addressing IPM Messages,” beginning on page 7-10.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

All of the components of the DSSpec data type are defined in the chapter “OCE
Utilities” in this book. Figure 7-5 on page 7-11 illustrates the contents of an

OCEReci pi ent structure. Note that this figure does not show the true size or location of
the fields in an OCEReci pi ent structure, and that the actual structure contains packed
fields. You must use the utility routines provided by the IPM Manager to create and read
these structures. The utility routines are described in “Utility Functions,” beginning on
page 7-107.

OCEPackedRecipient

The IPM Manager often uses a packed form of the OCEReci pi ent structure, defined by
the OCEPackedReci pi ent data type.

defi ne OCEPackedReci pi ent Header\
unsi gned short dat aLengt h;

struct Prot oOCEPackedReci pi ent {
OCEPackedReci pi ent Header ;

s
t ypedef struct ProtoOCEPackedReci pi ent Prot oOCEPackedReci pi ent;

define kOCEPackedReci pi ent MAXBYTES\
(4096 - sizeof (Prot oOCEPackedReci pi ent))

struct OCEPackedReci pi ent {
OCEPackedReci pi ent Header
Byt e dat a[kOCEPackedReci pi ent MaxByt es] ;

s
t ypedef struct OCEPackedReci pi ent OCEPackedReci pi ent;

The dat aLengt h field at the beginning of the structure specifies the length of the data
field that follows. The dat a field of the OCEPackedReci pi ent structure contains an
OCEReci pi ent structure in packed format. Use the utility routines provided by the IPM
Manager to pack and unpack OCEReci pi ent structures.

IPM Manager Reference 7-25

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMEntityNameExtension

You can use the following data type when creating an extension to an OCEReci pi ent
structure:

struct | PMENtityNameExtension {
OSType subExt ensi onType;

uni on {
| PMENnt nSpeci fi cAttri but eExt ensi on specificAttribute;
| PMENt nAt t ri but eExt ensi on attribute;
| PMENt nQueueExt ensi on queue;

}ow

b

The specific attribute type is reserved for use by the IPM Manager.

IPMEntnAttributeExtension

The attribute type is defined by the | PMEnt nAt t r i but eExt ensi on structure.

struct | PMEnt nAttri but eExt ension { /* kOCEAttrXtn */
AttributeType attributeNane;

}s

IPMEntnQueueExtension

The queue type is defined by the | PMEnt nQueueExt ensi on data structure.

struct | PMENt nQueueExt ensi on {
Str32 queueNane;

}s

Message and Block Types

Each IPM message has an associated message type. Each block in a message has a block
type. A message type can have either of two formats: the creator/type format contains a
creator field and a type field; the string format contains a length field and a string. A
block type always has the creator/type format. As illustrated in Figure 7-6, the first field
in a message type structure is a 2-byte tag that specifies the format of the structure. The
block type structure does not include this tag.

7-26 IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

Figure 7-6 The two forms of the message type structure
Creator/Type format String format
kI PMOSFor mat Type k1 PMSt ri ngFor mat Type
Length
Creator
String containing
up to
Type Z 32 characters /
IMPORTANT

Apple Computer, Inc., reserves all message type values and all block
type values that consist entirely of lowercase letters. a

OCECreatorType

The block type and the creator/type portion of a message type are defined by the
OCECr eat or Type data type.

struct OCECreat or Type {
OSType msgCr eat or;
GSType msgType;

b

Field descriptions

msgCr eat or The creator of the message or block. You can specify any
four-character value in this field; usually it is the signature of your
application. For example, a message or block created by the IPM
Manager has a creator type of kI PMSi gnat ur e.

negType The type of the message or block. For example, an enclosed message
block has a block type of kI PMEncl osedMsgType. You can define
your own four-character block types to serve your own purposes.
Apple Computer, Inc., reserves all block types consisting entirely of
lowercase letters.

IPM Manager Reference 7-27

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMMsgType

The message type structure is defined by the | PMVgType data type.

/* val ues of | PMVsgFormat */
enum {

kl PMOSFor mat Type = 1,

kl PMSt ri ngFor nat Type = 2

b
typedef Str32 | PMstringMsgType;

struct | PMgType {
| PMVBgFor mat format; /* | PMVsgFor mat */
uni on{
OCECr eat or Type msgOSType;
| PMSt ri ngMsgType nsgStr Type;
}t heType;
1

typedef struct |PMvsgType | PMvBgType;

IPMBlockType

The block type structure is defined by the | PMBI ock Type data type.

t ypedef OCECreat or Type | PMBlI ockType;

Delivery Notification

The IPM Manager uses a delivery notification flag byte in the message header to
determine when to generate recipient report messages and whether to include the
original message in any report messages that are returned by the recipients. Report
messages include a header (the | PMRepor t Bl ockHeader structure on page 7-33) and
an array of delivery results (the OCEReci pi ent Report structure on page 7-33). Report
messages are described in “Report Messages” on page 7-9.

7-28 IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

Nondelivery Codes

The nondelivery result codes that can be returned by an MSAM or the IPM Manager in a
recipient report message are shown here. A personal MSAM can define its own result
codes in addition to the ones listed here. (If a server MSAM returns a nonstandard result
code, the IPM Manager is unable to convert it to a string meaningful to the user.)

enum {
kl PMNoSuchReci pi ent = 0x0001,
kl PMReci pi ent Mal f or ned = 0x0002,
kl PMReci pi ent Ambi guous = 0x0003,
kl PMReci pi ent AccessDeni ed = 0x0004,
kl PM& oupExpansi onPr obl em = 0x0005,
kl PMVsgUnr eadabl e = 0x0006,
kl PMVBgEXpi r ed = 0x0007,
kl PMVsgNoTr ansl at abl eCont ent = 0x0008,
kl PMReci pi ent ReqSt dCont = 0x0009,
kl PMReci pi ent ReqSnapShot = OxO000A,
kl PMNoTr ansf er Di skFul | = 0x000B,
kl PMNoTr ansf er MsgRej ect edbyDest = 0x000C,
kl PMNoTr ansf er MsgTooLar ge = 0x000D

Constant descriptions

kl PMNoSuchReci pi ent
The IPM Manager or MSAM has determined that the specified
recipient does not exist. For example, the recipient might have no
record in the catalog (and therefore no account on the mail server)
or have no account on the MSAM’s mail or messaging system.

kl PMReci pi ent Mal f or med
The recipient address in the message was not formatted correctly.
The problem can be any of the following: The name and record
creation ID don’t match; both the dNode number and pathname are
specified in the record location information (RLI) structure; a dialup
address is missing a phone number; an NBP address is missing a
zone name; the RLI for a catalog is missing a discriminator; the
extension value of the OCEReci pi ent structure is not properly
formed (as determined by the MSAM interpreting the address).

kl PMReci pi ent Arrbi guous
The IPM Manager or MSAM has been unable to resolve, look up, or
find the specified recipient. The recipient may exist but has been
unavailable (for example, it has an AppleTalk address but has not
been logged on to AppleTalk), or there may be duplicate addresses
and the IPM Manager or MSAM cannot determine which to use.

IPM Manager Reference 7-29

Jabeuely buibessa|n weiboidiaiu) .

7-30

CHAPTER 7

Interprogram Messaging Manager

kl PMReci pi ent AccessDeni ed

In the process of attempting to deliver the message to the specified
recipient, access to some critical information was prevented. The
address may be valid and the recipient might exist, but the agent
responsible for delivering the message doesn’t have access to the
recipient’s record.

kl PM& oupExpansi onPr obl em

The IPM Manager or MSAM was unable to expand a group address
fully. Some of the recipients in the group might have received the
message.

kl PMVsgUnr eadabl e

kl PMVBgEXpi red

The MSAM was unable to read (and thus to translate) a message
(the message might be corrupted or the content missing), and
therefore the message was never delivered to the specified recipient.

The IPM Manager was unable to confirm delivery of this message
before the specified expiration time (currently set at 5 days for
PowerShare servers, Direct AppleTalk, and server MSAMs). The
server makes several attempts to deliver a message before the
message delivery time expires. This result code does not necessarily
mean that all the attempts at delivery failed— it means that the
server has not been able to determine the success or failure of any of
the previous attempts to deliver the message and will make no
further attempts.

kl PMVsgNoTr ansl at abl eCont ent

The message is missing a piece of information that is considered
critical for its delivery. For example, the message might be missing a
subject or a type of content required by the MSAM.

kl PMReci pi ent ReqSt dCont

The MSAM cannot deliver messages that don’t contain a
standard-interchange-format block, and such a block was not
present.

kl PMReci pi ent ReqSnapShot

The MSAM required the message to contain a standard image
format block (or snapshot) in order to deliver it, and such a block
was not present.

kl PMNoTr ansf er Di skFul |

The recipient could not receive the message because there was
insufficient room on the disk to hold it. The recipient might be a
user’s computer in the case of Direct AppleTalk or a server in the
case of an MSAM. If a PowerShare disk is full, the IPM Manager
periodically makes new attempts to send the message.

kl PMNoTr ansf er MsgRej ect edbyDest

The destination system refused delivery without specifying a
reason.

kl PMNoTr ansf er MsgToolLar ge

The destination system has a limit to the size of message it accepts,
and this message exceeded that limit.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

IPMNotificationType

The IPM delivery notification setting is specified by the | PMNot i fi cati onType data
type.

typedef Byte | PMNotificationType;
The bits in the notification byte are defined as follows:

enum {

kl PMDel i veryNoti ficationBit = 0,

kl PMNonDel i veryNoti ficati onBit =1,

kl PMENCl oseOri gi nal Bi t = 2,

k1l PMSummar yReport Bi t = 3,

kl PMOri gi nal Onl yOnErrorBit =4
b

You can use a combination of the following values to set the flags in the
| PMNot i fi cati onType data type:

enum {

kl PMNoNot i fi cati onMask = 0x00,

kl PMDel i veryNoti fi cati onMask = 1<<kl PMDel i veryNotificationBit,

kl PMNonDel i veryNot i fi cati onMask = 1<<kl PMNonDeliveryNotificationBit,

kl PMDont Encl oseOri gi nal Mask = 0x00,

kl PMEncl oseOri gi nal Mask = 1<<kl PMEncl oseOriginal Bit,

kl PM nmedi at eRepor t Mask = 0x00,

kl PMSummar yRepor t Mask = 1<<kl PMSumaryReportBit,

kl PMOr i gi nal Onl yOnEr r or Mask = 1<<kl PMXri gi nal Onl yOnErrorBit,

kl PMENcl oseOri gi nal OnEr r or Mask =

(kI PMOri gi nal Onl yOnEr r or Mask| kl PMENcl oseOri gi nal Mask)

b

Constant descriptions

kI PMNoNot i fi cati onMask
Do not deliver any report messages. This setting is overridden
when combined with any setting that requests reports.

kl PMDel i veryNoti fi cati onMask
Generate a report message when the message arrives at the
recipient queue.

kl PMNonDel i ver yNot i fi cati onMask
Generate a report message if the IPM Manager cannot deliver the
message to a recipient.

IPM Manager Reference 7-31

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

kl PMDont Encl oseOri gi nal Mask
Don’t enclose the original message in the report message. This is the
default setting for this feature; this setting is overridden by the
k1 PMENcl oseOri gi nal Mask setting.

kl PMEncl oseOri gi nal Mask
Enclose the original message in a report message. This value must
be combined with the kI PMSunmar yRepor t Mask value.

kl PM nmedi at eRepor t Mask
Generate a report message for each recipient as soon as there is any
information to report. This is the default setting for this feature; this
setting is overridden by the kI PMSunmmar yRepor t Mask setting.

kl PMSummar yRepor t Mask
Return a single report message for all recipients.

kl PMOri gi nal Onl yOnEr r or Mask
Return the original message only in nondelivery reports. For this
setting to have an effect, it must be combined with the
kl PMEncl oseOri gi nal Mask value. The
kI PMEncl oseOri gi nal OnEr r or Mask value provides this
combination.

kl PMEncl oseOri gi nal OnErr or Mask
A combination of the kI PMEncl oseOri gi nal Mask and
kI PMOr i gi nal Onl yOnEr r or Mask values, resulting in the
original message being included only in nondelivery reports.

The bit kI PMSunmar yReport Bi t in the | PMNot i fi cati onType byte determines
whether the report messages that the sending application receives contain information
about a single recipient or all of the recipients of the message. If the bit

kI PMSummar yRepor t Bi t is not set, the IPM Manager returns a report message about
each recipient as soon as it is generated. If that bit is set, the IPM Manager creates a
single report message that summarizes the requested delivery notification for all of the
recipients.

IPMMsgID
The message ID is a unique identifier of the message you sent. The message ID is
returned by the | PMEndMs g function (page 7-65).
struct |1 PMvsgl D {
unsi gned long id[4];
};
7-32 IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

IPMReportBlockHeader

A recipient report message (message creator kI PMSi gnat ur e, message type

kI PMRepor t | nf 0) includes a report block (which also has a creator of

kI PVMBi gnat ur e and a type of kI PMRepor t | nf 0). The report block starts with

a header, followed by the report data (see Figure 7-4 on page 7-10). The report block
header is defined by the | PMRepor t Bl ockHeader data type.

struct | PMReport Bl ockHeader {
| PMMVsgl D nsgl D, /* message I D of the original */
UTCTi ne creationTime; /* creation time of the report */

b

Field descriptions

msgl D The message ID of the message you sent originally. The recipient
report message carries information about this message. The
message ID is returned by the | PMEndMsg function (page 7-65).

UTCTi e The time at which the report was generated. The UTCTi e data
type is an unsigned long containing Greenwich Mean Time in
seconds since 00:00 hours, January 1, 1904.

OCERecipientReport

A recipient report message (message creator kI PMSi gnat ur e, message type

kI PMRepor t | nf 0) includes a report block (which also has a creator of

kI PMSi gnat ur e and a type of kI PMRepor t | nf 0). The report block starts with a
header, followed by the report data (see Figure 7-4 on page 7-10). The report data
consists of an array of recipients and delivery results defined by the

OCEReci pi ent Report data type.

struct OCEReci pi ent Report {
unsi gned short rcptlindex; /* index of recipient in
ori gi nal nessage */
CSErr result; /* result of sending letter to
this recipient */

b

Field descriptions

rcpt | ndex The index number of the recipient in the header of the original
message. In the case of group addresses, the delivery report tells
you only that the group address was expanded; you don't receive
information on delivery to individual members of a group.

resul t The result of the attempt to deliver the message to this recipient.
The standard values returned in this field are shown on page 7-29;
in addition, each personal MSAM can define its own result codes.

IPM Manager Reference 7-33

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

To calculate the number of recipients in a report, divide the size of the block (minus the
header size) by the size of an OCEReci pi ent Report structure.

nunReci pi ents = (pnPB. readMsgPB. act ual Count
- sizeof (IPMReportBlockHeader)) / sizeof (OCEReci pientReport);

Filter Structures

When you open a message queue or enumerate the messages in the queue, you can
apply a filter to the queue so that the IPM Manager lists only the messages that match
your filter criteria.

The IPM Manager defines a queue filter as an array of single filters. It performs an OR
operation on all of the single filters you specify for a queue filter. For example, if you set
one single filter in the filter array to pass high-priority messages of type ' hi gh' and
another single filter to pass low-priority messages of type ' | ow ', the queue filter
passes messages of both descriptions. The OR operation is performed on the entire single
filters, not on the individual fields in the single filters; thus the filter in this example
would not pass a low-priority message of type ' hi gh' .

This section provides the data structures that define single filters and queue filters.

IPMSingleFilter

7-34

The | PVMSi ngl eFi | t er data type describes the contents of a single filter. You must pack
and word-align each field of the structure before you pass it to an IPM routine.

struct | PMSingleFilter({
| PMPriority priority;

Byt e padByt e;

OSType famly; [/* fanmily to which this nsg bel ongs */
Scri pt Code script; [/* language identifier */

| PMPr ocHi nt hi nt ;

| PMVBgType nmegType;

b

Field descriptions

priority The priority of the message. You can set the priority to any of the
following values:
kl PMAnyPriority
kl PMNor mal Priority
kl PMLowPriority
kl PMHi ghPriority

If you set the filter priority to kI PMANyPri ori ty, the queue does
not filter messages according to their priority settings.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

famly The message family to which the message belongs. You can use the
wildcard value kI PMFani | yW | dCar d for all families.

script Reserved.

hi nt A process hint value. A process hint is a string of up to 32

characters, defined by the creator of the message.

msgType A message type. The message type is assigned by the creator of the
message. You can use the wildcard value kI PMTypeW | dCar d for
either or both fields of the | PMVEgType structure to pass messages
with any creator or any type. The | PMVsgType data type is defined
on page 7-28.

The IPM Manager defines the following message family types:

#def i ne kl PMFam | yUnspecified O /* any message */

#define kIl PMrFami | yW | dCard Ox3F3F3F3FL [* 12227 %]

#defi ne kMail Fam |y "mai |

In addition, the AOCE MSAM interface defines the following message family types:

/* "mail" negs: content, header, etc */

#defi ne kMail Fam | yFil e "file' /* "direct display" nmsgs */

IPMFilter

In addition to the types shown here, Apple Computer reserves for its own use any
message family type consisting entirely of lowercase letters.

A full queue filter is a packed array of single filters. The contents of a filter are shown by
the | PMFi | t er data type.

struct IPMFilter{
unsi gned short count ;
| PMSI ngl eFi I ter sFilters[1];

};

Field descriptions

count The number of single filters in this queue filter.
sFilters An array of single filters.

IPM Manager Reference 7-35

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Message Information Structure

When you call the | PMEnumner at eQueue function (page 7-80) or the | PMcet Msgl nf o
function (page 7-87), the function returns the information about the message in an

message information structure.

IPMMsglInfo

7-36

The message information structure is defined by the | PMVsgl nf o data type.

struct | PMVsgl nf of
| PMSeqNum
unsi gned | ong
unsi gned short
Byt e
| PMPriority
unsi gned | ong
unsi gned short
unsi gned short
UTCTi e
| PMVBgI D
OSType
| PMPr ocHi nt
| PMVBgType

1

The | PMEnumner at eQueue function lets you specify whether the returned | PMVsgl nf o
structure includes the pr ocHi nt or nsgType fields. Because these fields are of variable
length, the offset to the nsgType field depends on the presence and length of the

procHi nt field.

Field descriptions

sequenceNum A sequence number that uniquely identifies a particular message in
the queue.

user Dat a Reserved.

r espl ndex Reserved.

priority The priority setting of the message. This field can be set to

sequenceNum

user Dat a;

respl ndex;
padByt e;

priority;

negSi ze;

ori gi nal Rept Count ;
reserved;
creationTi ne;
msgl D

famly; [/* family of this nsg */

procHi nt;/* packed and even-I|ength padded */
nsgType; /* packed and even-|ength padded */

kl PMNor mal Priority, kl PM.owPriority,or
kl PMHI ghPriority.

msgSi ze The length of the entire message.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

ori gi nal Rept Count

reserved
creationTi ne

nmsgl D
fam |y

pr ocHi nt

megType

The number of recipients that the sending application originally
specified for the message. This value may differ from the actual
number of recipients if the message was sent to one or more groups.

Reserved.

The date and time that the message was created. The UTCTi e data
type is an unsigned long containing Greenwich Mean Time in
seconds since 00:00 hours, January 1, 1904.

A unique identifier of the message. The message ID is returned by
the | PMEndMsg function (page 7-65).

The message family to which the message belongs. Possible values
for this field are shown on page 7-35.

An optional field of varied length. If this field is present, it contains
the process hint for the message, which is a Pascal-type string of up
to 32 characters, defined by the creator of the message. The
information in the field is packed. If the field contains an odd
number of bytes (including the length byte), the IPM Manager adds
a pad byte following the field. Therefore, the maximum length of
this field (including the length byte and the pad byte) is 34 bytes.

An optional parameter that contains the message type of the
message. The | PMVsgType data type is defined on page 7-28. Like
the procHi nt field, the nsgType field is packed and padded if
necessary to contain an even number of bytes.

Header Information Structures

IPMTOC

The | PMReadHeader function (page 7-89) uses the data structures in this section to
return information from a message header.

When you specify the value kI PMTOC for the f i el dSel ect or field in the parameter
block used by the | PMReadHeader function, the function returns an array of TOC
information structures—one for each block in the message. The TOC information
structure is defined by the | PMTOC data type.

struct | PMTOC
{
| PMBI ockType bl ockType;
| ong bl ockO f set ;
unsi gned | ong bl ockSi ze;
unsi gned | ong bl ockRef Con;
b

IPM Manager Reference 7-37

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Field descriptions
bl ockType

bl ockOF f set

bl ockSi ze

bl ockRef Con

IPMFixedHdrInfo

The creator and type of the block.
The offset from the start of the message to the start of the block.
The size, in bytes, of the block.

The block’s reference constant. The application that creates the
message specifies this value when it adds the block to the message.
The meaning of this reference constant is defined by the application
that creates the message.

When you specify the value kI PMFi xedl nf o for the f i el dSel ect or field of the
parameter block used by the | PMReadHeader function, the function returns
information about the message header in a fixed header information structure. The fixed
header information structure is defined by the | PMFi xedHdr | nf o data type.

struct | PMFi xedHdr I nfo {
unsi gned short

Bool ean
Bool ean

unsi gned | ong

| PMNot i ficationType
| PMPriority

unsi gned short

unsi gned short

unsi gned | ong

versi on; /* 1 PM Manager version */

aut henti cat ed; /* was message authenticated? */
si gnat ureEncl osed;/* digital signature enclosed? */
nmsgSi ze; /* size of nmessage */
notification; /* notification type requested */
priority; /* nmessage priority */

bl ockCount ; /* nunber of bl ocks */

origi nal Rept Count;/* original nunber of recipients */
r ef Con; /* application-defined data */
reserved; /* reserved */

creationTi ne; /* nmessage creation time */

nsgl D; /* nmessage ID */

famly; [* famly of this nsg */

The version number of the IPM Manager that created the message.
This is not necessarily the same version number as that returned by
the Gest al t function for the Collaboration toolbox (see page 7-17).

A Boolean value that indicates whether the message was
authenticated. In the case of a message that passes through more
than one store-and-forward server, the IPM Manager sets this field
to t r ue only if the identities of the original sender and of every
server in the routing chain were authenticated.

unsi gned short
UTCTi ne
| PMVsgl D
OSType
b
Field descriptions
version
aut henti cat ed
7-38 IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

si gnhat ur eEncl osed
A Boolean value indicating whether the message includes a digital
signature. If this field is set to t r ue, the message includes a block
with a creator of kI PMSi gnat ur e and a type of
k1 PMDI gi t al Si gnat ur e containing a digital signature. You can
use the | PMVer i f ySi gnat ur e function (page 7-102) to verify the
digital signature.

nmsgSi ze The length, in bytes, of the message.

notification The delivery notification requested by the application that sent the
message. See “Delivery Notification,” beginning on page 7-28, for
more information about this value.

priority The priority setting of the message. Values for this field can be
kl PMNor mal Priority, kl PM.owPriority,or
kl PMH ghPriority.

bl ockCount The number of blocks in the message. You can use the
| PMGet Bl kI ndex function (page 7-96) to list the creator, type, and
position of each block in the message.

ori gi nal Rcpt Count
The number of recipients in the recipient list that the sending
application originally specified for the message. Because the IPM
Manager might have expanded groups in the original recipient list,
the number of recipients in the current recipient list might be
different from this.

ref Con A numeric reference value that the sending application provides for
the message when it calls the | PMNewVs g function (page 7-43), the
| PMNewHFSMs g function (page 7-47), or the
| PMNewNest edMsgBI ock function (page 7-56).

reserved Reserved.

creationTi nme The date and time that the message was created. The UTCTi e data
type is an unsigned long containing Greenwich Mean Time in
seconds since 00:00 hours, January 1, 1904.

nmegl D A unique identifier of the message. The message ID is returned by
the | PMEndMsg function (page 7-65).
famly The family the message belongs to.

Sender Structure

When you create a new message or read a message header, the name of the originator of
the message is held in a sender structure, described in this section. In the case of an
application-to-application message, the sender would be an application name. In the
case of a message or letter sent by a user, the sender might be the user’s name or a record
ID that identifies the user record for the sender.

IPM Manager Reference 7-39

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMSender

The sender structure contains either the sender’s name in RSt r i ng format or a catalog
record ID that identifies the user record for the sender of the message. The sender
structure is defined by the | PMSender data type.

struct | PMsender ({

| PMSender Tag sendTag;
uni on {
RStri ng rsString;

PackedRecor dl D rid;
} theSender;

1
enum {
kl PMSender RSt ri ngTag,
kl PMSender Recor dl DTag
1

t ypedef unsi gned short | PMSender Tag;

Interprogram Messaging Parameter Block Header

All IPM Manager function declarations include a pointer to a parameter block. Each
parameter block begins with the following fields:

#def i ne | PMPar anmHeader \
Ptr gLi nk; \
| ong reservedHi; \
| ong reservedHz; \
ProcPtr ioConpletion; \
OSEr r i oResul t; \
| ong saveAb; \
short r eqCode;

Field descriptions

gLi nk Reserved.
reservedHl Reserved.
reservedH2 Reserved.

i oConpl etion A pointer to a completion routine that you provide. If you provide a
pointer to a completion routine in this field, the function calls your
completion routine when it completes execution. Completion
routines are described in”“Application-Defined Functions,”
beginning on page 7-114. Specify ni | for this parameter if you do
not want to supply a completion routine.

7-40 IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

i oResul t The function result. If you call the function asynchronously, it sets
this field to 1 to indicate that the request was queued successfully.
The function sets this field to the function result when it completes

execution.
saveAb Reserved.
reqCode Reserved.

The individual routine descriptions at the end of this reference contain information
about any additional parameters that are specific to the routine.

Asynchronous or Synchronous Operations

You can call the IPM Manager routines either synchronously or asynchronously. If you
call the function asynchronously, it returns control to you immediately and completes
execution incrementally as it is given time by the system. If you call it synchronously, it
completes execution before returning control to you.

IMPORTANT

You must specify asynchronous operation when you call any IPM
function at interrupt time. Because a function might not complete
successfully, calling it synchronously might cause the computer to
hang. a

Completion Routines and Polling Options

When you call an IPM function asynchronously, you can specify a completion routine.
The IPM Manager calls your completion routine when the function completes execution.
If you write you completion routine in Pascal or C, it must take a single argument, which
is a pointer to the parameter block.

For example, to declare a completion routine in Pascal, you could use the following
statement:

PROCEDURE MyConpl eti onRouti ne (paranmBl k: Ptr);
To declare a completion routine in C, you could use the following statement:
pascal void MyConpl eti onRoutine (Ptr paranBlKk);

If you write your completion routine in assembly language, you can find a pointer to the
parameter block in the A0 register and the function result in the DO register.

The IPM Manager saves the value of your A5 register at the time you call an IPM
function and restores the A5 value before calling your completion routine.

IPM Manager Reference 7-41

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

If you do not provide a completion routine, you can poll the i oResul t field of the
parameter block. The IPM Manager sets the value of the i oResul t field to 1 when you
first call a function asynchronously, indicating that the function was successfully queued.
When the function completes execution, the IPM Manager changes the i oResul t value
to the actual function result.

IPM Manager Functions

7-42

This section describes all of the functions provided by the IPM Manager except for those
specifically for use by MSAMs; see the chapter “Messaging Service Access Modules” in
Inside Macintosh: AOCE Service Access Modules for descriptions of MSAM functions.

In the functions described here, you must completely specify any data structure that you
provide to a function unless the description states otherwise.

All of the functions take a pointer to an | PMPar anBl ock parameter block as input. Each
function description includes a list of the fields in the parameter block that are used by
the function.

Most functions in the IPM API have the following form:

pascal OSErr function (I PMParanBl ockPtr paranBl ock,
Bool ean async);

Some functions can be called only synchronously or only asynchronously; therefore, they
do not have the asyncFl ag parameter. The form of those functions is

pascal OSErr function (IPMParanBl ockPtr paranBl ock);

The function returns its result code in the i oResul t field of the parameter block. When
you call a function synchronously, it returns its result both as the function result and in
the i oResul t field of the Mai | Par anBl ockHeader structure. Note that the function
also clears the i oConpl et i on field.

When you call a function asynchronously and the function has successfully queued the
request, it returns NOEr r and sets the i oResul t field to 1. After the call completes, the
function sets the i oResul t field to the actual result and calls your completion routine if
you specified one. There is one exception to this behavior: if the IPM Manager is not
currently ready to accept a request, it may return cor Er r as the function result. In this
case, the i oResul t field has an indeterminate value and the completion routine is not
called.

IMPORTANT

If you choose to poll the i oResul t field to determine if the request has
completed, it is safest to check that its value has changed from 1 to some
other value. Although the IPM Manager does not return positive error
codes, system utilities may return positive error codes and these may be
passed through. a

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

Calling an IPM Function From Assembly Language

You can call a function from assembly language. Listing 7-1 illustrates one way to do this
for a function that takes both the parameter block pointer and the async flag as
parameters. (If a function can be called only synchronously or only asynchronously, the
assembly code would not manipulate the async value.)

Listing 7-1 Calling an MSAM function from assembly language

_oceTBDi spat ch OPVWORD $AASE

SUBQ #2, A7 ; make room for function result
MOVEA par anBl ock, - (SP) ; push the param bl ock pointer onto stack
MOVEQ asyncFl ag, DO ; move async flag into DO
MOVE. B DO, - (SP) ; push the flag (byte) onto stack
MOVEQ #opCode, DO ; move op code into DO
MOVE. W DO, - (SP) ; place the op code on the stack
_oceTBDi spat ch ; trap call
MOVE. W (SP)+, DO ; get result code
Note

The functions described in the section “Utility Functions,” beginning on
page 7-107 use a different assembly-language calling convention,
described on page 7-107. O

Creating a New Message

This section describes the functions that you use to create a new message and either send
it or save it to disk. See “Creating a Message,” beginning on page 7-18 for information
about the sequence in which you use these functions to create a message.

IPMNewMsg

The | PMNewVs g function starts the process of creating a new message to be sent to a
recipient.

pascal OSErr | PMNewMsg(| PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

IPM Manager Reference 7-43

Jabeuely buibessa|n weiboidiaiu) .

7-44

CHAPTER 7

Interprogram Messaging Manager

Parameter block

- i oCompl etion ProcPtr Pointer to a completion routine.

- i oResul t OSEr r Result of the function.

- reci pi ent OCEReci pi ent * Pointer to the recipient’s queue
address.

= repl yQueue

- pr ocHi nt

N msgType
5 r ef Con

- newiVs gRRef
- identity

5 sender

OCEReci pi ent * Pointer to the queue address for
message replies.

StringPtr Pointer to character string for your
use.

| PMVBQType* Pointer to the message type.

unsi gned | ong Reserved for your use.

| PMVEgRef Message reference number.

Aut hl dentity Authentication identity.

| PMSender * Pointer to the sender’s name.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on and i oResul t fields.

Field descriptions
reci pi ent

repl yQueue

procH nt

msgType

A pointer to an OCEReci pi ent structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.

Set this field to ni | if you intend to use the | PMAddReci pi ent
function to add all the recipient addresses later.

A pointer to an OCEReci pi ent structure that specifies the queue in
which you receive your incoming messages. The OCEReci pi ent
structure can specify the reply queue directly, or can specify a
record in a catalog that contains the reply queue information.

If you specify ni | for this field and a local identity for the

i denti ty field, the IPM Manager uses the PowerTalk Setup
catalog to fill in the reply queue field in the message header at the
time the message is sent.

You can also set this field to ni | if you intend to use the
| PMAddRepl yQueue function to specify the reply queue later.

A pointer to a process hint, which is a string of up to 32 characters,
reserved for your use. The IPM Manager puts this string into the
message header. You can use this field, for example, to provide
information that helps your recipients determine how to process the
message.

A pointer to an | PMMsgType structure, which specifies the type of
message that you are creating. The IPM Manager and other AOCE
components do not read the message type; it is for the use of
applications only. Note, however, that the Finder might display the
contents of the message header’s message-type field if the user
displays the Info dialog box for the message while the message is in
the Out Tray.

IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

ref Con An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the message header. You can use this
field, for example, to indicate that the message has content of some
particular type.

newVsgRef A reference number returned by the function. You must use this
number when you call other functions to complete the process of
creating the message.

identity The authentication identity of the creator of the message. If you
provide a nonzero value for this field, the IPM Manager uses this
information to fill in the sender field in the message header.

sender A pointer to an | PMSender structure, which identifies the sender of
the message. If you specify 0 or a local identity for the i denti ty
field, you should provide a meaningful value for the sender. For an
application-to-application message, you might use the application
name as the sender. To specify an individual as a sender, you can
put the user’s name in the | PMSender structure or you can provide
the record ID of the sender’s user record. If you specify a specific
identity for the i dent ity field, the function ignores the sender
field.

You must call the | PMNewiVs g function to begin the process of creating a new message
that is to be sent to a recipient. (Use the | PMNewHFSMs g function to start a message to be
saved on disk.) The IPM Manager uses information that you provide in the parameter
block of | PMNewVk g to fill in fields of the message header of the new message.

The IPM Manager uses the information you provide in the r eci pi ent field to
determine where to send the message and returns any delivery or nondelivery reports to
the queue that you specify in the r epl yQueue field. If you do not know the recipient at
the time you call | PMNews g function, or if you have more than one recipient, you can
use the | PMAddReci pi ent function to provide the recipients. If you do not know the
reply queue at the time you call the | PMNewMs g function, you can use the

| PMAddRepl yQueue function to add the reply queue later.

If the r eci pi ent orrepl yQueue fields specify a record in a PowerShare catalog, the
IPM Manager looks up the catalog records at the time it sends the message.

Note

Because the PowerShare server acts as a trusted agent when resolving
addresses in catalogs, the sender of the message need not have the
access privileges necessary to read these addresses. O

The IPM Manager uses any specific identity you provide in the i dent i ty field to fill in
the sender field in the message header. If the IPM Manager and each intervening
store-and-forward server can authenticate the message, the recipient can then rely on the
sender field to indicate the authenticated originator of the message. If you specify 0 or a
local identity for the i dent ity field, then you should provide a meaningful value for
the sender field, such as the name of the originator of the message.

IPM Manager Reference 7-45

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Note

If you specify either a local identity or O for the i dent i t y field, the IPM
Manager stores the message on the local computer until transmitting it.
If you provide a specific identity, the IPM Manager creates the message
on the computer containing the PowerShare server to which that
identity provides access. O

You can use the SDPPr onpt For | dent i ty function to obtain an identity for the
originator of the message. This function allows the user to decide whether to provide a
local identity, a specific identity, or no identity (guest access). The

SDPPr onpt For | dent i t y function returns to your application the identity plus a value
that tells you which kind of identity it is. To obtain a local identity without displaying a
dialog box, use the Aut hGet Local | dent ity function.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

7-46

Trap macro Selector

_oceTBDi spat ch $0402

NoErr 0 No error

k OCEPar aner r -50 Invalid parameter

kI PM nval i dMsgType -15091 Message type is invalid

kI PM nval i dProcH nt -15092 Process hint is invalid

kl PMVsgTypeReser ved -15095 Message type reserved for system use

k1 PMNest edMsgOpened -15097 Nested message opened; cannot do
operation

k1 PMALHdr Cor r upt -15098 Message is corrupt; may not be
message

k1 PMCor r upt Dat aSt r uct ur es -15099 Message is corrupt

kil PM nval i dSender -15103 Sender is invalid

k1 PMSt r eantr r -15108 Error on stream

k1 PMPor t Cl osed -15109 Stream closed

See “Message Addressing Structures” on page 7-24 for more detailed information about
the format and contents of an OCEReci pi ent structure.

The | PMSender structure is described on page 7-39.

You can use the | PMAddReci pi ent function (page 7-50) to add recipient addresses to a

message.

You can use the | PMAddRepl yQueue function (page 7-52) to specify the reply queue.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

See “Message and Block Types” on page 7-26 for more information about the
| PMMsgType structure.

The RSt r i ng structure and record IDs are described in the chapter “Introduction to the
Apple Open Collaboration Environment” in this book.

You can use the SDPPr onpt For | dent i t y function to obtain an identity. That function
is described in the chapter “Standard Catalog Package” in this book. You can use the
Aut hGet Local | denti ty function to obtain a local identity. See the chapter
“Authentication Manager” in this book for a description of the

Aut hGet Local | dent i ty function.

Use the | PMNewHFSMs g function, described next, to start a message to be saved on disk.

IPMNewHFSMsg

The | PMNewHFSMs g function starts the process of creating a new message to be saved as
an HFS file on disk.

pascal OSErr | PMNewHFSMsg(| PMPar anBl ockPtr par anBl ock,
Bool ean async);

par anBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous

execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.

- i oResul t CSErr Result of the function.

- hf sPat h FSSpec* Specifier of the file in which to save
the message.

- reci pi ent OCEReci pi ent * Pointer to the recipient’s queue
address.

- repl yQueue OCEReci pi ent * Pointer to the queue address for
message replies.

- pr ocHi nt StringPtr Pointer to a character string for your
use.

- msgType | PMMBgType* Pointer to the message type.

- ref Con unsi gned | ong Reserved for your use.

- newiVs gRef | PMVBgRef Message reference number.

N identity Aut hl dentity Authentication identity.

- sender | PMSender * Pointer to the sender’s name.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on andi oResul t fields.

IPM Manager Reference

7-47

Jabeuely buibessa|n weiboidiaiu) .

7-48

CHAPTER 7

Interprogram Messaging Manager

Field descriptions
hf sPat h

reci pi ent

repl yQueue

procH nt

negType

r ef Con

newlVs gRef

identity

sender

A pointer to the file system specification structure that describes the
file in which you wish to save the message.

A pointer to an OCEReci pi ent structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.

Set this field to ni | if you intend to use the | PMAddReci pi ent
function to add all the recipient addresses later.

A pointer to an OCEReci pi ent structure that specifies the queue in
which you receive your incoming messages. The OCEReci pi ent
structure can specify the reply queue directly, or can specify a
record in a catalog that contains the reply queue information.

Set this field to ni | if you intend to use the | PMAddRepl yQueue
function to specify the reply queue later.

A pointer to a process hint, which is a string of up to 32 characters,
reserved for your use. The IPM Manager puts this string into the
message header. You can use this field, for example, to provide
information that helps your recipients determine how to process the
message.

A pointer to an | PMVsgType structure, which specifies the type of
message that you are creating. The IPM Manager and other AOCE
components do not read the message type; it is for the use of
applications only.

An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the message header. You can use this
field, for example, to indicate that the message has content of some
particular type.

A reference number returned by the function. You must use this
number when you call other functions to complete the process of
creating the message.

The authentication identity of the creator of the message. If you
provide a nonzero value for this field, the IPM Manager uses this
information to fill in the sender field in the message header.

A pointer to an | PMSender structure, which identifies the sender of
the message. If you specify 0 or a local identity for the i dentity
field, you should provide a meaningful value for the sender. For an
application-to-application message, you might use the application
name as the sender. To specify an individual as a sender, you can
put the user’s name in the | PMSender structure or you can provide
the record ID of the sender’s user record. If you specify a specific
identity value for the i dent i ty field, the function ignores the
sender field.

IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

You must call the | PMNewHFSMs g function to begin the process of creating a new
message that is to be saved to a file on disk. (Use the | PMNewiVsg function to start a
message to be sent to a recipient.) The IPM Manager fills in fields of the message header
of the new message from information that you provide in the parameter block of the

| PMNewHFSMs g function.

The IPM Manager uses any specific identity you provide in the i dent i ty field to fill in
the sender field in the message header. If you specify 0 or a local identity for the

i denti ty field, then you should provide a meaningful value for the sender field, such
as the name of the originator of the message.

Note

The IPM Manager does not provide any way to send a message that has
been saved on disk. If you want to send a message and in addition save
it to disk, you must build the message twice, once using the

| PMNewHFSMs g function and once using the | PMNewiVs g function. O

You can use the SDPPr onpt For | dent i t y function to obtain an identity for the
originator of the message. This function allows the user to decide whether to provide a
local identity, a specific identity, or no identity (guest access). The

SDPPr onpt For | dent i t y function returns to your application the identity plus a value
that tells you which kind of identity it is. To obtain a local identity without displaying a
dialog box, use the Aut hGet Local | denti ty function.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $041E

nokErr 0 No error
k OCEPar ankr r -50 Invalid parameter

See “Message Addressing Structures” on page 7-24 for more detailed information about
the format and contents of an OCEReci pi ent structure.

The | PMSender structure is described on page 7-39.

You can use the | PMAddReci pi ent function (page 7-50) to add recipient addresses to a
message.

IPM Manager Reference 7-49

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

You can use the | PMAddRepl yQueue function (page 7-52) to specify the reply queue.

See “Message and Block Types” on page 7-26 for more information about the
| PMMsgType structure.

The RSt r i ng structure and record IDs are described in the chapter “Introduction to the
Apple Open Collaboration Environment” in this book.

You can use the SDPPr onpt For | dent i t y function to obtain an identity. That function
is described in the chapter “Standard Catalog Package” in this book. You can use the
Aut hGet Local | denti ty function to obtain a local identity. See the chapter
“Authentication Manager” in this book for a description of the

Aut hGet Local | dent i ty function.

Use the | PMNewMs g function (page 7-43) to start a message to be sent.

IPMAddRecipient

7-50

The | PMAddReci pi ent function adds a recipient to a new message that you are
creating.

pascal OSErr | PMAddReci pi ent (1 PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on andi oResul t fields.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.

- i oResul t OSErr Result of the function.

S nmsgRef | PMVBgRef Message reference number.

- reci pi ent OCEReci pi ent * Pointer to the recipient’s queue
address.

Field descriptions

msgRef The message reference number of the message or nested-message
block to which you want to add a recipient. This number is returned
by the | PMNewiVB g function for a message you intend to send, by
the | PMNewHFSMs g function for a message you intend to save to
disk, and by the | PMNewNest edMsgBI ock function for a
nested-message block.

IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

reci pi ent A pointer to an OCEReci pi ent structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.

You can call the | PMAddReci pi ent function at any time during the message-creation
process to add a recipient to the message. You repeat this call for each recipient that you
add to the message (except for recipients that belong to a group; see “Message
Addressing Structures” on page 7-24). You can add only one recipient to a message when
you call the | PMNewiVsg or | PMNewHFSMs g function; if you want to add more than one
recipient to a message, you must call the | PMAddReci pi ent function.

When you call the | PMAddReci pi ent function for a new message, the function adds
the specified recipient to the message header. If you are working with a nested message,
the function adds the recipient to the header of the nested message.

If the r eci pi ent parameter specifies a record in a catalog, the | PMAddReci pi ent
function does not look up the address of the recipient in the catalog. The IPM Manager
looks up catalog records when you send the message.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0403

noErr 0 No error
kCCEPar ankr r -50 Invalid parameter
k1 PMCor r upt Dat aSt r uct ur es -15099 Message is corrupt

See “Message Addressing Structures” on page 7-24 for more detailed information about
the format and contents of an OCEReci pi ent structure.

IPM Manager Reference 7-51

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMAddReplyQueue

DESCRIPTION

7-52

The | PMAddRepl yQueue function adds the reply queue to the header of a new message
that you are creating,.

pascal OSErr | PMAddRepl yQueue(| PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.
- i oResul t CSErr Result of the function.

- msgRef | PMVs gRef Message reference number.

> repl yQueue OCEReci pi ent * Pointer to the queue address for

message replies.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on and i oResul t fields.

Field descriptions

nmsgRef The message reference number of the message or nested-message
block to which you want to add the reply queue. This number is
returned by the | PMNewiVs g function for a message you intend to
send, by the | PMNewHFSMs g function for a message you intend to
save to disk, and by the | PMNewNest edMsgBl ock function for a
nested-message block.

repl yQueue A pointer to an OCEReci pi ent structure that specifies the queue in
which you receive your incoming messages. The OCEReci pi ent
structure can specify the reply queue directly or specify a record in
a catalog that contains the reply queue information.
If you specify ni | for this field and specified a local identity for the
i dentity field in the | PMNewMs g function, the IPM Manager uses
the PowerTalk Setup catalog to fill in the reply queue field in the
message header at the time the message is sent.

You can call the | PMAddRepl yQueue function at any time during the message-creation
process. When you call the | PMAddReci pi ent function for a new message, the function
adds the specified reply queue to the message header. If you are working with a nested
message, the function adds the reply queue to the header of the nested message.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

Each message or nested message has only one reply queue. If you have already specified
a reply queue for the message that you specify in the msgRef field, the
| PMAddRepl yQueue function returns the KOCEPar anEr r result code.

If the r epl yQueue parameter specifies a record in a catalog, the | PMAddReci pi ent
function does not look up the address of the reply queue in the catalog. The IPM
Manager resolves addresses in catalog records at the time a message is sent.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $041D

noErr 0 No error
k OCEPar antr r -50 Invalid parameter
k1 PMCor r upt Dat aSt r uct ur es -15099 Message is corrupt

See “Message Addressing Structures” on page 7-24 for more detailed information about
the format and contents of an OCEReci pi ent structure.

IPMNewBlock

The | PMNewBl ock function creates a new block at the end of the message or nested
message that you are currently recording and returns the offset to its starting point.

pascal OSErr | PWMNewBl ock(| PMParanmBl ockPtr paranBl ock,
Bool ean async);

par anBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

IPM Manager Reference 7-53

Jabeuely buibessa|n weiboidiaiu) .

DESCRIPTION

7-54

CHAPTER 7

Interprogram Messaging Manager

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.
- i oResul t GOSEr r Result of the function.

- msgRef | PMVEgRef Message reference number.

- bl ockType | PMBl ockType Type of block you are adding.
- ref Con unsi gned | ong Reserved for your use.

- startingOff set | ong Offset to new block.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on andi oResul t fields.

Field descriptions

msgRef The message reference number of the message or nested message to
which you want to add the block. This number is returned by the
| PMNewlVs g function for a message you intend to send, by the
| PMNewHFSMs g function for a message you intend to save to disk,
and by the | PMNewNest edMsgBI ock function for a nested
message.

bl ockType A pointer to an | PMBl ockType data type that specifies the type of
block that you are adding to the message.

ref Con An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the TOC field of the message header.
You can use this field, for example, to identify block subtypes for
your own use.

starti ngOf set
The offset, in bytes, from the start of the message body to the start
of the new block. This value is returned by the function. You can use
this offset as a starting point when you call the | PMV i t eMsg
function to add data to the block.

You can call the | PMNewBI ock function at any time during the message-creation process
to create a new message block.

The | PMNewBl ock function creates the new block at the end of the message, records the
offset to the new block, and then returns the offset to you. You can use this value to
determine the offset to provide to the | PMA i t eMsg function when you add data to the
block or overwrite data in the block.

Note

The IPM Manager does not allow you to modify the starting point of a
block. When you call the | PMNewBl ock function to create a new block,
you freeze the size of the previous block. You can use the | PMNV i t eNsg
function to overwrite data in an existing block, but if you try to write
more data than was originally in the block, you write over the block
boundary into the following block. O

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

A nested message is contained entirely within a single block of the enclosing message
and has exactly the same structure as any other message (see Figure 7-2 on page 7-5).
Once you have called the | PMNewNest edMsgBI ock function to start a nested message,
you must call the | PMENdMsg function to end the nested message before adding another
block to the outer message. If you specify the message reference of an outer message
before completing a nested message, the | PMNewBl ock function returns the

kl PMNest edMsgOpened result code.

SPECIAL CONSIDERATIONS

If you specify kI PMSi gnat ur e as the creator of the block in the | PMBI ockType data
type, the function returns the kI PMVsgTypeReser ved result code.

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0404

noErr 0 No error

k OCEPar antr r -50 Invalid parameter

kl PMVBgTypeReser ved -15095 The bl ockType parameter specifies
a block type reserved for system use

k1 PMNest edMsgQOpened -15097 The message reference in the msgRef

parameter specifies an outer
message, but nested message is not
yet closed

k1 PMCor r upt Dat aSt r uct ur es -15099 Message is corrupt

The | PMBI ockType data type is defined on page 7-28.

You start a new message by calling the | PMNewiVsg function (page 7-43) or the
| PMNewHFSMs g function (page 7-47). You start a new nested message by calling the
| PMNewNest edMsgBI ock function (next).

You can use the | PMV i t eMsg function (page 7-61) to add data to the block.

IPM Manager Reference 7-55

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMNewNestedMsgBlock

7-56

The | PMNewNest edMsgBIl ock function starts a new nested message from information
that you provide to the function. Use this function to begin recording a new nested
message that you create from scratch.

pascal OSErr | PMNewNest edMsgBIl ock(| PMPar anBl ockPt r par anBl ock,
Bool ean async);

par amBl ock

async

A pointer to a parameter block.

A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous

execution.

Parameter block

—

—

i oConpl eti on
i oResul t
msgRef

reci pi ent

repl yQueue
pr ocHi nt
msgType
ref Con

newivs gRef
startingCff set

identity
sender

ProcPtr

OSEr r

| PMVEgRef
OCEReci pi ent *

COCEReci pi ent *
StringPtr

| PMMsgType*
unsi gned | ong

| PMVEgRef
| ong

Aut hl dentity
| PMSender *

Pointer to a completion routine.
Result of the function.

Message reference number.
Pointer to the recipient’s queue
address.

Pointer to the queue address for
message replies.

Pointer to character string for your
use.

Pointer to the message type.
Reserved for your use.

Message reference number.
Offset to the start of the nested
message.

Authentication identity.

Pointer to sender’s name.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on and i oResul t fields.

Field descriptions

nsgRef

reci pi ent

The message reference number of the message or nested message

into which you want to insert the new nested message. This number
is returned by the | PMNewMs g function for a message you intend to
send, by the | PMNewHFSMs g function for a message you intend to
save to disk, and by the | PMNewNest edMsgBl ock function for a
nested message.

A pointer to an OCEReci pi ent structure that either specifies a

destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.

Set this field to ni | if you intend to use the | PMAddReci pi ent
function to add all the recipient addresses later.

IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

repl yQueue

pr ocHi nt

msgType

r ef Con

newMs gRef

startingOf f set

identity

sender

A pointer to an OCEReci pi ent structure that specifies the queue in
which you receive your incoming message reports. In most cases,
you have only one message queue.

Set this field to ni | if you intend to use the | PMAddRepl yQueue
function to specify the reply queue later.

A pointer to a process hint, which is a string of up to 32 characters,
reserved for your use. The IPM Manager puts this string into the
nested-message header. You can use this field, for example, to
provide information that helps your recipients determine how to
process the nested message.

A pointer to an | PMVsgType structure, which specifies the type of
nested message that you are creating. This value is application
dependent and is not read by any AOCE component.

An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the nested-message header.

A reference number returned by the function. You must use this
number when you call the | PMAddReci pi ent,

| PMAddRepl yQueue, | PWMNewBI ock, | PMN i t eMsg,

| PMNest Msg, | PMNewNest edMsgBl ock, and | PMENdMs g
functions to complete the process of creating this nested message.

The offset in bytes to the start of the new nested-message block
from the start of the enclosing message body. This value is returned
by the function.

The authentication identity of the creator of the message. If you
provide a nonzero value for this field, the IPM Manager uses this
information to fill in the sender field in the message header.

A pointer to an | PMSender structure, which identifies the sender of
the message. If you specify 0 or a local identity for thei dentity
field, you should provide a meaningful value for the sender. For an
application-to-application message, you might use the application
name as the sender. To specify an individual as a sender, you can
put the user’s name in the | PMSender structure or you can provide
the record ID of the sender’s user record. If you specify a specific
identity in the i dent i ty field, the function ignores the sender
field.

You can call the | PMNewNest edMsgBl ock function at any time during the
message-creation process to start a new nested message.

The | PMNewNest edMsgBI ock function first creates a new block at the end of the
message. The msgCr eat or field of the block type of the new block is equal to the
constant kI PMSi gnat ur e and the nsgType field is equal to k| PMEncl osedMsgType.
The | PMNewNest edMsgBl ock function then fills in fields of the message header of the
new nested message from information that you provide in the parameter block of the

| PMNewNest edMsgBl ock function.

IPM Manager Reference 7-57

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Note that, because the header of the nested message is located within a block of the
enclosing message, the IPM Manager does not read the nested-message header and so
does not use the information in its message-delivery process.

The IPM Manager uses any specific identity you provide in the i dent i ty field to fill in
the sender field in the message header. If you specify 0 or a local identity for the

i denti ty field, then you should provide a meaningful value for the sender field, such
as the name of the originator of the message.

After you call the | PMNewNest edMsgBI ock function to start a nested message, you can
call the | PMNewBl ock function to add a new block to the nested message, the

| PMNewNest edMsgBl ock function to nest another message within the nested message,
or any of the functions that add information to the message header or to the body of the
message. When you call any of these functions, you must pass the message reference
value returned by the | PMNewNest edMsgBI ock f unction.

You must call the | PMEndMsg function to complete the nested message before you can
add any more information to the enclosing message. After you call the | PMENdMsg
function to end the nested message, you cannot add any recipients or blocks to the
nested message.

SPECIAL CONSIDERATIONS

Although the IPM Manager allows you to add any number of nested-message blocks at
the same nesting level in a message, the MSAM interface does not support this feature.
Therefore, if you want your message to be compatible with MSAMs, you must not add
more than one nested-message block at a given level of nesting. You can, however, nest a
message within another nested message to as many nesting levels as disk and memory
resources allow.

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

7-58

Trap macro Selector
_oceTBDi spat ch $0405

noErr 0 No error

kCCEPar ankr r -50 Invalid parameter

ki PM nval i dMsgType -15091 Message type is invalid
kI PM nval i dPr ocHi nt -15092 Process hint is invalid
k1 PMCor r upt Dat aSt r uct ur es -15099 Message is corrupt

kil PM nval i dSender -15103 Sender is invalid

IPM Manager Reference

SEE ALSO

CHAPTER 7

Interprogram Messaging Manager

See “Message Addressing Structures” on page 7-24 for more detailed information about
the format and contents of an OCEReci pi ent structure.

The | PMSender structure is described in “Sender Structure” on page 7-39.

You can use the | PMAddReci pi ent function (page 7-50) to add recipient addresses to a
message.

You can use the | PMAddRepl yQueue function (page 7-52) to specify the reply queue.

See “Message and Block Types” on page 7-26 for more information about the
| PMMsgType structure.

IPMNestMsg

The | PMNest Msg function creates a new block at the end of the specified new message
and stores the existing message that you specify into the new block.

pascal OSErr | PMNest Msg(| PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.

- i oResul t CSEr r Result of the function.

- msgRef | PMVB gRef Message reference number.

- ref Con unsi gned | ong Reserved for your use.

- nsgToNest | PMVB gRef Message reference number of the
message to nest.

- starti ngOf f set | ong Offset to the start of the nested
message.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on andi oResul t fields.

Field descriptions

msgRef The message reference number of the message to which you want to
add a nested message. This number is returned by the | PMNewVsg
function for a message you intend to send, by the | PMNewHFSMs g
function for a message you intend to save to disk, and by the
| PMNewNest edMsgBl ock function for a nested message.

IPM Manager Reference 7-59

Jabeuely buibessa|n weiboidiaiu) .

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

ref Con An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the nested-message header.
nmegToNest This parameter contains the message reference number of an
existing message that you want to nest within the message that you
specify in the msgRef field. This number is returned by the
| PMOpenMs g function for a message you have read, by the
| PMOpenHFSMs g function for a message you have read from disk,
or by the | PMOpenBl ockAsMsg for a nested message.
startingOf f set
The offset, in bytes, to the start of the new nested-message block
from the start of the body of the enclosing message. You can use this
value if you want to create your own table of contents for a message
you are creating.

You can call the | PMNest Msg function at any time during the message-creation process.
The | PMNest Msg function adds an existing message as a nested message at the end of
the message that you specify in the nsgRef field. Before you call the | PMNest Msg
function, you must use the | PMOpenMsg, | PMOpenHFSMs g, or | PMOpenBl ockAsMsg
function to open the message to be nested.

The | PMNest Msg function first creates a new block at the end of the message. The
msgCr eat or field of the block type of the new block is equal to the constant

kI PVBi gnat ur e and the msgType field is equal to kI PMEncl MsgType. The function
then writes the specified message into the new block.

The | PMNest Msg function returns, in the st art i ngOf f set parameter, the offset to the
start of the new block. The function provides this offset for your information only. You
should not call | PMA i t eMsg to make changes to this nested message.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

7-60

Trap macro Selector
_oceTBDi spat ch $0406

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

RESULT CODES
noErr 0 No error
k OCEPar antr r =50 Invalid parameter
kI PM nval i dMsgType -15091 Message type is invalid
kI PM nval i dPr ocHi nt -15092 Process hint is invalid
kl PMVsgTypeReser ved -15095 Message type reserved for system use
kl PMNest edMsgQpened -15097 Nested message opened; cannot do
operation
k1 PMALHdr Cor r upt -15098 Message is corrupt; may not be
message
k1 PMCor r upt Dat aSt r uct ur es -15099 Message is corrupt
kI PM nval i dSender -15103 Sender is invalid
kl PVSt r eanEr r -15108 Error on stream
k1 PMPor t Cl osed -15109 Stream closed
SEE ALSO
See “Message and Block Types” on page 7-26 for more information about the
| PMMsgType structure.
You can obtain a message reference number from the | PMOpenMsg function (page 7-82),
the | PMOpenHFSMs g function (page 7-84), or the | PMOpenBl ockAsMsg (page 7-86).
IPMWriteMsg

The | PMWV i t eMsg function writes data to the specified location within the body of a
message.

pascal OSErr |PMNiteMsg(IlPMParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

IPM Manager Reference 7-61

Jabeuely buibessa|n weiboidiaiu) .

7-62

CHAPTER 7

Interprogram Messaging Manager

Parameter block

—

i oConpl eti on
i oResul t
msgRef

node

of f set

count

buf fer

act ual Count
current Bl ock

ProcPtr

OSEr r

| PMVBgRef

| PMAccessMbde

| ong

unsi gned | ong
Ptr

unsi gned | ong
Bool ean

Pointer to a completion routine.
Result of the function.

Message reference number.

The mode in which the function
interprets the offset value.

Offset at which to begin writing.
Number of bytes of data to write.
Pointer to the data buffer.

Number of bytes of data written.
Set to t r ue to restrict writing to the

current block.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on andi oResul t fields.

Field descriptions

nms gRef

node

of f set
count

buf f er
act ual Count

current Bl ock

The message reference number of the message or nested message to
which you want to write. This number is returned by the

| PMNewVB g function for a message you intend to send, by the

| PMNewHFSMs g function for a message you intend to save to disk,
and by the | PMNewNest edMsgBI ock function for a nested
message.

The mode in which the of f set parameter is to be interpreted. The
function uses this field to determine whether to begin writing data
at the end of the last data written or to use the offset value to
calculate another starting point relative to the beginning of the
message, the end of the message, or the current location. See the
discussion following these field descriptions for details.

An offset that the function uses when it calculates the starting point
of the write operation. See the following discussion for details.

The number of bytes of data that you want the function to write
from the buffer into the message.

A pointer to your data buffer.

The number of bytes of data the function actually wrote into the
message.

A Boolean value that specifies whether you want the entire write
operation to occur within the current block. The current block is
always the last block to be added to the message. If you set this field
to t r ue but the values you specify for the nbde and of f set fields
require the function to write data into another block, the function
cancels the write operation and returns the kI PM nval i dOf f set
result code.

IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

The IPM Manager uses a marker (referred to as the message mark) that points to the
current location within a message that you are creating. After the | PMNewBl ock
function completes, the message mark points to the first byte in the new block. After the
| PMWV i t eMsg function completes, the mark points to the end of the last byte written.

Note

The way you use the message mark, mode, and offset to read and write
messages is similar to the way you use the file mark, positioning mode,
and positioning offset to read and write files. See Inside Macintosh: Files
for more information about how the File Manager treats these
parameters. O

You use the nbde and of f set parameters to specify the point in the message at which
the | PMA i t eMsg function starts writing. The nbde parameter indicates whether you
want the | PMWV i t eMsg function to begin writing at the current position of the mark or
to calculate another starting point relative to the beginning of the message, the end of the
message, or the current mark location. (In the case of a nested message, offsets are
relative to the start or end of the nested message, not the enclosing message.) You can set
the nbde parameter to any one of the following values:

enum {
kl PMAL Mar k,
kl PMFrontst art,
k|l PMFr omLEOM
k1 PMFr omVar k

b

Constant descriptions
k1 PMAt Mar k The | PMWV i t eMsg function starts writing at the current position of
the mark. In this case, the function ignores the offset value. This

mode is useful, for example, for writing data in sequence into a new
block.

kI PMFronBtart If the curr ent Bl ock parameter is set to t r ue, the function
interprets the value in the of f set parameter as an offset from the
beginning of the current block. If the cur r ent Bl ock parameter is
set to f al se, the function interprets the value in the of f set
parameter as an offset from the beginning of the message body. If
you want to start writing at the beginning of the second block in the
message, for example, you can set cur r ent Bl ock to f al se and
use the offset that the | PMNewBI ock function returned when you
created the second block. When you use this mode, you cannot set
the of f set parameter to a negative value.

KI PMFronLEOM The function interprets the value in the of f set parameter as an
offset from the current end of the message.

IPM Manager Reference 7-63

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

kI PMFr omivar k The function interprets the value in the of f set parameter as an
offset from the current position of the mark. Use a negative offset
value to indicate a starting point prior to the current position of the
mark and a positive offset value to indicate a starting point
following the current position of the mark.

If the mark is at the end of the last block, the function extends the end of the block and
the end of the message as it writes data into the block.

Note

If you use a positive offset to position the mark past the current end of
the message, the function extends the end of the message and writes the
data in the location you requested. In this case, you incorporate into the
message whatever happened to be on disk between the previous end of
the message and the location at which you start writing. O

If you set the cur r ent Bl ock parameter tot r ue, the | PMA i t eMsg function returns an
error rather than starting to write in a block other than the last block to be added to the
message.

Note that the IPM Manager places the offset to each block in the message header when
you first create the block. You cannot change this information in the message header
after the block is created. Therefore, when you call the | PMNewBI ock function to create
a new block, you freeze the size of the previous block. You can use the | PMNV i t eMsg
function to write over data in an existing block, but you cannot change the size of the
block. If you write too much data to fit in an existing block, the function writes over

the block boundary into the following block.

When you call the | PMA i t eMsg function, it first calculates the starting position of the
write request. The function then checks the value of the cur r ent Bl ock parameter to
determine if it is in conflict with the starting position. That is, if you set cur r ent Bl ock
to t r ue and specify a write location that falls in another block of the message, the

| PMNV i t eMsg function returns the kI PM nval i dOF f set error.

If the cur r ent Bl ock setting is not in conflict with the specified starting position, the
function writes the data from the buffer into the message and returns, in the
act ual Count field, the number of bytes written.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

7-64

Trap macro Selector
_oceTBDi spat ch $0407

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

RESULT CODES
noErr 0 No error
kOCEPar antr r -50 Invalid parameter
k1 PMNot | nABI ock -15096 The specified starting point does not fall
within the body of the message
k1 PMNest edMsgOpened -15097 The message reference in the nsgRef
parameter specifies an outer message, but
nested message is not yet closed
kI PVSt r earEr r -15108 Error on stream
kI PMPort Cl osed -15109 Stream closed
SEE ALSO
The | PMNewVB g function (page 7-43), the | PMNewHFSMs g function (page 7-47), and the
| PMNewNest edMsgBI ock function (page 7-56) all return message reference numbers.
The | PMNewBI ock function (page 7-53) and the | PMNewNest edMsgBl ock function
(page 7-56) return the offset to the start of a new block.
IPMEndMsg

The | PMENdMs g function ends the message-creation process for the message or nested
message that you specify. It can also provide a digital signature for the message.

pascal OSErr | PMEndMsg(| PMPar anBl ockPtr paranBl ock,
Bool ean async);
par amBl ock
A pointer to a parameter block.
async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.
Parameter block
- i oConpl etion ProcPtr Pointer to a completion routine.
- i oResul t OSEr r Result of the function.
- nsgRef | PMVsgRef Message reference number.
- msgl D | PMVsgl D Message ID.
- negTitle RStri ng* Message title.
- del i veryNotification | PMNot i ficationType Delivery report specifier.
- priority |PMPriority Message priority.
- cancel Bool ean Cancel the message?

- signhature
- si gnatureSi ze
- si gnat ur eCont ext

IPM Manager Reference

S| GSi gnat urePtr
Size
SI GContext Ptr

Pointer to a digital signature.
Size of the digital signature.
Pointer to digital signature
context.

7-65

Jabeuely buibessa|n weiboidiaiu) .

DESCRIPTION

7-66

CHAPTER 7

Interprogram Messaging Manager

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on and i oResul t fields.

Field descriptions
nmsgRef

msgl D

nmegTitle

The message reference number of the message or nested message
that you want to complete. This number is returned by the

| PMNewVs g function for a message you intend to send, by the

| PMNewHFSMs g function for a message you intend to save to disk,
and by the | PMNewNest edMsgBl ock function for a nested
message.

The message ID, a unique identifier assigned to the message by the
IPM Manager. You can use this value to identify a message.

The message title. Because the Finder displays this title for the user
for any message in the Out Tray, the message title should reflect the
subject, contents, or purpose of the message. The maximum size of
this title is 32 bytes (that is, an RSt r i ng32 structure).

deliveryNotification

priority

cancel

si gnature

si gnat ureSi ze

The types of delivery reports you want to receive. See “Delivery
Notification,” beginning on page 7-28, for more information about
this value.

The priority of the message. Set this parameter to any one of the
following values: kI PMNor mal Priority, kl PMLowPriority, or
kl PVHi ghPriority.

A Boolean value that specifies whether to cancel the message. Set
this field to t r ue to cancel the message or to f al se to send the
message. If the | PMENdMs g function applies to a nested message,
the function ignores the value of this field.

A pointer to a digital signature. You must allocate a buffer for the
signature and pass a pointer to it in this field. If you specify ni | for
the si gnat ur eCont ext field, the function ignores the si gnat ur e
field. See the following discussion for more information about
digital signatures.

The size of the digital signature. This value is returned by the
SI GSi gnPr epar e function.

si gnat ur eCont ext

A pointer to the signature context you obtained from the

Sl GNewCont ext function and provided to the SI GSi gnPr epar e
function. Specify ni | for this pointer if you do not want a digital
signature added to the message.

When you call the | PMENdMsg function, it checks the setting of the cancel parameter to
see if you are canceling the message. If so, the function destroys the message. Otherwise,
the function completes the message-creation process for the specified message. If the
message reference number you specify applies to a nested-message block, the IPM
Manager ends the nested-message block and applies any subsequent functions that you
call to the enclosing message. The enclosing message can be another nested message or

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

the top-level message (that is, the message you started with the | PMNewVsg or

| PMNewHFSMs g function). To completely finish the message-creation process, you must
call the | PMENndMs g function once for each nested message and once for the top-level
message.

IMPORTANT
You cannot close an enclosing message until any messages nested within
it have been closed. a

Once you have called the | PMEndMs g function to close the top-level message, you
cannot make any more changes to the message. If you created the message with the

| PMNewHFSMs g function, the IPM Manager saves the message to the disk file you
specified when you called the | PMNewHFSMs g function. If you created the message with
the | PMNewMs g function, the IPM Manager sends the message to each recipient and
generates any requested reports.

The IPM Manager uses the value of the del i ver yNot i fi cat i on parameter to
determine when to generate report messages and whether to include the original
message in any reply messages that are returned by the recipients.

If you want to add a digital signature to the message, you must call the

Sl GNewCont ext and Sl GSi gnPr epar e functions before you call the | PMEndMsg
function. You can then allocate a buffer for the signature, or specify ni | for the

si gnat ur e parameter, in which case the Digital Signature Manager allocates the buffer
for you on your application heap. The size needed for the buffer is returned by the

SI GSi gnPr epar e function. Pass a pointer to the buffer in the si gnat ur e parameter to
the | PMENdMsg function, the size of the buffer in the si gnat ur eSi ze parameter, and a
pointer to the signature context (returned by the SI GNewCont ext function) in the

si gnat ur eCont ext parameter.

Note

If you are adding a digital signature to a large message, the | PMEndMVsg

function can take a long time to complete (up to several minutes on

some computers). You should display a dialog box informing the user of

this possibility. O

The | PMENdMsg function places the signature in a block with a creator of

k1 PMSi gnat ur e and a type of kI PMDi gi t al Si gnat ur e. A message can contain only
one block of this type, and you must use the | PMENdMsg function to create this block.

Note

The signature context used to create a digital signature has no
relationship to the contexts discussed in “Managing Message Queues”
starting on page 7-68 and elsewhere in this chapter. O

SPECIAL CONSIDERATIONS

If you want to add a digital signature to the message (that is, you pass a non-ni | value
for the si gnat ur eCont ext parameter), you must call the | PMEndMsg function
synchronously. There must also be at least 8.5 KB of stack space available.

IPM Manager Reference 7-67

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

If you pass ni | for the si gnat ur eCont ext parameter, there must be enough space in
your application heap to hold the signature.

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0408

RESULT CODES
nokErr 0 No error
k OCEPar ankr r -50 Invalid parameter
kil PM nval i dOf f set -15093 Bad offset for read or write operation
kl PMNest edMsgQOpened -15097 The message reference in the msgRef
parameter specifies an outer
message, but nested message is not
yet closed
k1 PMALHdr Cor r upt -15098 Message is corrupt; may not be
message
k1 PMCor r upt Dat aSt r uct ur es -15099 Message is corrupt
k1 PMAbor t OF Nest edMVsg -15100 Adding nested message was canceled
kl PM nval i dSender -15103 Sender is invalid
k1 PMNoReci pi ent sYet -15104 Require recipient to send
k1 PNVt r eanEr r -15108 Error on stream
k1 PMPor t Cl osed -15109 Stream closed
SEE ALSO

You start creating a message with the | PMNewVb g function (page 7-43) or the
| PMNewHFSMs g function (page 7-47), and start a nested-message block with the
| PMNewNest edMsgBl ock function (page 7-56).

See “Delivery Notification,” beginning on page 7-28, for more information about the
delivery notification flag byte.

Digital signatures and the SI GNewCont ext and Sl GSi gnPr epar e functions are
discussed in the chapter “Digital Signature Manager” in this book.

Managing Message Queues

You can create any number of local input message queues for your own use. This section
describes the functions you can use to create input message queues, open queues,
enumerate their contents, and close them.

7-68 IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

IPMCreateQueue

The | PMCr eat eQueue function creates a physical queue at the specified location.

pascal OSErr | PMCreat eQueue(| PMParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.

- i oResul t CSEr r Result of the function.

- queue OCEReci pi ent * Name and location of the new
queue.

- identity Aut hl dentity Authentication identity.

- owner PackedRecor dI D Owner of the queue.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on and i oResul t fields.

Field descriptions

queue A pointer to an OCEReci pi ent structure that specifies the name
and location of the new queue. You must use the queue-name form
of the OCEReci pi ent structure for this field.

identity The authentication identity of the creator of the queue. If you are
creating the queue on a server computer, the messaging server uses
this identity to verify that you have the privileges necessary to
create a queue. Only the administrator of that server can create
queues.
The function ignores this field if you specify the local computer as
the location of the new queue.

owner A pointer to the packed record ID of the owner of the queue. If you
are creating a queue on a remote computer, you must specify an
owner of the queue in this field. Only the creator of the queue and
the owner of the queue can open or delete the queue.
The function ignores this field if you specify the local computer as
the location of the new queue.

DESCRIPTION

You can create a new queue at any time. You can create a queue on the local computer or
on a server computer.

IPM Manager Reference 7-69

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IMPORTANT

You should use restraint in creating queues because the IPM Manager
provides no interface for listing and managing queues. Also, each queue
uses memory and disk resources. a

Once you have used the | PMCr eat eQueue function to create a physical queue, you
must open one or more virtual queues to list and open the messages in the queue. Use
the | PMOpenQueue function to open a virtual queue.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0411

RESULT CODES
noErr 0 No error
k OCEPar antr r -50 Invalid parameter
k1 PMBadQNane -15112 Invalid queue name
SEE ALSO
“Message Addressing Structures” on page 7-24 defines the OCEReci pi ent structure.
The queue-name form of this structure is described in “Queue-Name Format for
Attribute Values” on page 7-16.
You must use the | PMOpenQueue function (page 7-72) to open a queue before you can
open the messages in the queue. You must have an open queue context before you can
open a queue; use the | PMOpenCont ext function, described next, to open a context.
IPMOpenContext

The | PMOpenCont ext function creates a new queue context.

pascal OSErr | PMXenCont ext (I PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

7-70 IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.
- i oResul t OSEr r Result of the function.
- cont ext Ref | PMCont ext Ref Context reference number.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti onandi oResul t fields.

Field descriptions
cont ext Ref The context reference number for the new context. You must use
this number when opening a queue or closing the context.

You must specify a context reference number when you open a virtual queue. You must
specify a virtual-queue reference number when you open a message. When you close a
context, the IPM Manager closes all of the virtual queues that belong to that context and
all of the open messages that belong to those queues. You can create as many contexts as
you wish; in any case, you must call the | PMOpenCont ext function at least once to
obtain a context reference number before you can open any queues.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0400

noErr 0 No error
k OCEPar antr r -50 Invalid parameter

Use the | PMOpenQueue function, discussed next, to open a virtual queue and add it to a
context.

Use the | PMCl oseCont ext function (page 7-77) to close all the virtual queues and open
messages associated with a context.

IPM Manager Reference 7-71

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMOpenQueue

7-72

The | PMOpenQueue function opens the specified queue and associates it with the
specified context.

pascal OSErr | PMXpenQueue(| PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion
routine.

- i oResul t CSEr r Result of the function.

- cont ext Ref | PMCont ext Ref Context reference number.

- queue OCEReci pi ent * Queue that you want to open.

- identity Aut hl dentity Authentication identity.

- filter | PMFi | ter* Pointer to the queue filter.

- newQueueRef | PMQueueRef Virtual-queue reference
number.

- notificationProc | PMNot ePr ocPtr Reserved; settoni | .

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on and i oResul t fields.

Field descriptions

cont ext Ref A context reference number. When you close the context specified
by this reference number, the IPM Manager closes all of the virtual
queues that you opened using this reference number.

queue A pointer to an OCEReci pi ent structure that specifies the name
and location of the queue that you want to open. To open a user’s
default messaging queue, just specify the user record of that user. To
open a queue that you created, use the same OCEReci pi ent
structure that you used to create the queue.

identity The authentication identity of the opener of the queue. If the
physical queue is on a server computer, only the server
administrator and the owner of the physical queue can open a new
virtual queue.

filter A pointer to the message filter for this virtual queue.

Set this field to ni | if you do not want the IPM Manager to
associate any filter with this queue.

IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

newQueueRef The reference number for the queue. You must use this reference
number when you change the queue filter or list, open, close, or
delete messages.

notificationProc
Reserved. You must set this field toni | .

The | PMOpenQueue function opens the message queue you specify, creating a virtual
queue with the message filter you provide. The function returns a reference number that
uniquely identifies this virtual queue. When you call this function, you must specify a
message-context reference number. The context links together several queues so that you
can simultaneously close them simply by closing the context. If you have not already
created the message context to which you want this queue to belong, you must call the

| PMOpenCont ext function before calling the | PMOpenQueue function. You can open
the same physical queue any number of times, creating a new virtual queue each time.

You specify a virtual-queue reference number whenever you list or open messages. Once
you have opened a message, you must provide the same queue reference number when
you call the | PMCl oseMs g function or the | PMCl oseQueue function. If you call the

| PMCl oseQueue function, the IPM Manager simultaneously closes all the messages that
you opened with that queue reference number. If you call the | PMCl oseCont ext
function, the IPM Manager simultaneously closes all the messages associated with all the
queues that belong to that context, and closes all of those queues.

The message filter determines which messages in the physical queue are listed by the

| PMEnuner at eQueue function when you provide the reference number for this virtual
queue, which messages you can open through the queue, and which messages you can
close and delete through the queue. For example, you can open a virtual queue for the
default input queue with a filter that passes only high-priority messages. Then, when
you call the | PMOpenMsg function with that queue reference number, the function
allows you to open only the high-priority messages in the default input queue. If you do
not provide a filter for the queue, these functions operate on all the messages in the
physical queue.

SPECIAL CONSIDERATIONS

Although you allocate the pointer to the queue filter, the IPM Manager owns the pointer
until you close the queue or call the | PMChangeQueueFi | t er function to replace the
filter. Do not reuse or dispose of this pointer until you close the queue or replace the filter.

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

IPM Manager Reference 7-73

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDi spat ch $0409

RESULT CODES
NoErr 0 No error
k OCEPar antr r -50 Invalid parameter
kI PM nval i dFil ter -15105 The specified filter is invalid
k1 PVt r eanEr r -15108 Error on stream
kl PMPor t Ol osed -15109 Stream closed
k1 PMBadQNane -15112 Invalid queue name
k1 PMBadCont ext -15118 Invalid context reference
k1 PMCont ext | sCl osi ng -15119 The specified context is closing
SEE ALSO
To create a new queue before opening it, use the | PMCr eat eQueue function (page 7-69).
You can change the queue filter by calling the | PMChangeQueueFi | t er function,
described next. See “Filter Structures” on page 7-34 for information on queue filters.
Call the | PMO oseQueue function (page 7-76) to close a virtual queue.
IPMChangeQueueFilter
The | PMChangeQueueFi | t er function sets a new filter for a specific virtual queue.
pascal OSErr | PMChangeQueueFilter (I PMParanBl ockPtr paranBl ock,
Bool ean async);
par amBl ock
A pointer to a parameter block.
async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.
Parameter block
. i oConpl etion ProcPtr Pointer to a completion routine.
- i oOResul t OSErr Result of the function.
. queueRef | PMQueueRef Virtual-queue reference number.
o filter | PMVFi | ter* Pointer to the queue filter.
See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on andi oResul t fields.
7-74 IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

Field descriptions

gueueRef The virtual-queue reference number returned by the
| PMOpenQueue function. This number identifies the virtual queue
to which the request applies.

filter A pointer to an | PMFi | t er structure that specifies the new filter
that you want the IPM Manager to apply to the queue. Set this field
toni | to remove all filters from this queue.
When the | PMChangeQueueFi | t er function completes execution,
it returns a pointer to the filter that was in effect when you called
the function. The IPM Manager has no further use for this pointer,
and you can now dispose of it.

The | PMChangeQueueFi | t er function applies the filter specified in the fi | t er
parameter to the virtual queue indicated by the queueRef parameter. If you set the
filter parameter to ni | , the function sets the filter for the virtual queue to the default
filter, which matches all messages in the physical queue.

SPECIAL CONSIDERATIONS

Although you allocate the pointer to the queue filter, the IPM Manager owns the pointer
until you close the queue or call the | PMChangeQueueFi | t er function to replace the
filter. Do not reuse or dispose of this pointer until you close the queue or replace the filter.

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0414

noErr 0 No error

k OCEPar antr r -50 Invalid parameter

kl PM nval i dMsgType -15091 Message type is invalid
kIl PM nval i dFil ter -15105 Filter is invalid

kl PMSt r eantEr r -15108 Error on stream

kl PMPor t C osed -15109 Stream closed

See “Filter Structures” on page 7-34 for information on queue filters.

You set the queue filter initially when you open the queue; see the description of the
I PMOpenQueue function on page 7-72.

IPM Manager Reference 7-75

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMCloseQueue

DESCRIPTION

The | PMO oseQueue function closes the specified virtual message queue.

pascal OSErr | PMI oseQueue(| PMParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.
- i oResul t OSEr r Result of the function.
- queueRef | PMQueueRef Virtual-queue reference number.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on and i oResul t fields.

Field descriptions

queueRef The virtual-queue reference number returned by the
| PMOpenQueue function. This number identifies the virtual queue
you wish to close.

You can call the | PMCl oseQueue function at any time that the specified virtual queue is
open. When you call this function, the function first closes any messages that you
opened using the queue reference number for this queue. The function then closes the
virtual queue and disassociates the queue from its context.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

7-76

Trap macro Selector
_oceTBDi spat ch $040A

IPM Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 7

Interprogram Messaging Manager

noErr 0 No error
k OCEPar antr r -50 Invalid parameter

You use the | PMOpenQueue function (page 7-72) to open a virtual queue.
You can use the | PMCl oseMsg function (page 7-104) to close an individual message.

You can use the | PMCl oseCont ext function, described next, to close simultaneously all
of the queues associated with a specific context.

You can use the | PMDel et eQueue function (page 7-78) to delete a physical queue after
you have closed all of its associated virtual queues.

IPMCloseContext

DESCRIPTION

The | PMO oseCont ext function closes all of the messages and queues that are
associated with the specified context and then eliminates that context.

pascal OSErr | PMI oseCont ext (1 PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.
- i oResul t CSEr r Result of the function.
- cont ext Ref | PMQueueRef Context reference number.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on andi oResul t fields.

Field descriptions

cont ext Ref The context reference number returned by the | PMOpenCont ext
function. This number identifies the context you wish to close.

When you open a virtual queue, you provide a context reference number that specifies
the context to which that queue belongs. When you close a context, the

| PMCl oseCont ext function first closes all of the messages that you opened for the
queues that belong to that context. Next, it closes all of the queues that belong to the

IPM Manager Reference 7-77

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

context, and finally, it eliminates the context itself, so that the context reference number is
no longer valid.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0401

noErr 0 No error

kOCEPar antr r -50 Invalid parameter

k1 PMBadCont ext -15118 Invalid context reference

k1 PMCont ext | sCl osi ng -15119 The specified context is already closed

You use the | PMOpenCont ext function (page 7-70) to create a context.

You use the | PMOpenQueue function (page 7-72) to open a queue and associate it with a
specific context.

You can use the | PMCl oseMs g function (page 7-104) to close a specific message and the
| PMCl oseQueue function (page 7-76) to close a specific queue.

IPMDeleteQueue

7-78

The | PMDel et eQueue function deletes the specified physical message queue.

pascal OSErr | PMel et eQueue(| PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.
- i oResul t CSErr Result of the function.

. gueue OCEReci pi ent * Queue that you want to delete.
. identity Aut hl dentity Authentication identity.

- owner

PackedRecor dI D* Owner of the queue.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on andi oResul t fields.

Field descriptions
queue

identity

owner

DESCRIPTION

A pointer to an OCEReci pi ent structure that specifies the name
and location of the queue that you want to delete.

The authentication identity of the owner of the queue or of the
server administrator if this queue is on a server computer.

The IPM Manager ignores this field if the queue is on the local
computer.

A pointer to the packed record ID of the owner of the queue. If the
queue is on a remote computer, you must specify the owner of the
queue in this field.

The IPM Manager ignores this field if the queue is on the local
computer.

Before you can delete a physical queue, you must close any open virtual queues
associated with that physical queue. You can delete a queue at any time that the queue is
not open, provided it is on the local computer or, if it is on a server computer, you have
the appropriate access privileges. The AOCE server allows only the server administrator

to delete a queue.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro
_oceTBDi spat ch

Selector
$0412

IPM Manager Reference 7-79

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

RESULT CODES

noErr 0 No error

kOCEPar antr r =50 Invalid parameter

k1 PMBadQNane -15112 Invalid queue name

kl PMQBuUsy -15126 Queue busy; cannot delete
SEE ALSO

You use the | PMCr eat eQueue function (page 7-69) to create a physical queue and the
| PMOpenQueue function (page 7-72) to open a virtual queue.

You use the | PMCl oseQueue function (page 7-76) to close a virtual queue.

Listing and Reading Messages

A queue can contain any number of messages. This section describes the functions you
can use to list the messages in a message queue, open a message or a nested-message
block, read a message header and message blocks, and close a message.

IPMEnumerateQueue

The | PMEnumer at eQueue function returns a list of messages in the specified queue that
match the filter criteria that you provide in the function.

pascal

par amBl ock

OSErr | PMENnuner at eQueue(| PMPar anBl ockPt r par anBl ock,

Bool ean async);

A pointer to a parameter block.

async

A Boolean value that specifies whether the IPM Manager should execute

the function asynchronously. Set this parameter to t r ue for asynchronous

execution.

Parameter block

> i oConpl eti on
- i oResul t

- queueRef

- start SegNum
> get ProcHi nt
- get MsgType
> filter

- nunroGet

- nuntotten

- enuntCount

- enunBuf f er
- act EnuntCount

7-80 IPM Manager Reference

ProcPtr

OSEr r

| PMQueueRef

| PMSegNum

Bool ean

Bool ean

| PMFilter*
unsi gned short
unsi gned short
unsi gned | ong
Ptr

unsi gned | ong

Pointer to a completion routine.
Result of the function.

Queue reference number.

First message to list.

List process hints?

List message types?

Pointer to queue filter.

Number of messages to list.
Number of messages listed.
Buffer size.

Pointer to buffer.

Number of bytes returned in buffer.

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on and i oResul t fields.

Field descriptions

queueRef A pointer to an OCEReci pi ent structure that specifies the name
and location of the virtual queue that you want to enumerate.

start SeqNum The sequence number of the first message for which you want the
function to return information. Sequence numbers start with 1.

get ProcH nt A Boolean value that indicates whether you want the function to
include the process hint of each listed message. You can specify a
process hint for a message when you call the | PMNewVs g,
| PMNewHFSMs g, or | PMNewNest edMsgBIl ock function to start the
message.

get MsgType A Boolean value that indicates whether you want the function to
include the message type of each listed message.

filter A pointer to the filter to use for this enumeration of the queue. If
you provide a valid pointer to a filter, the function uses it only for
this enumeration; the current filter for this virtual queue remains in
effect after the function completes execution. (The current filter is
the one you specified most recently with the | PMOpenQueue or
| PMChangeQueueFi | t er function.) Setthefilter fieldtonil to
use the current filter. Set this field to —1 to ignore all filters and list
all the messages in the physical queue.

nunmroGet The number of messages that you want listed.

numGot t en The number of messages that the function actually listed in your
buffer.

enumCount The size, in bytes, of the buffer you are providing.

enunBuf f er A pointer to the buffer that you are providing.

act EnumCount The number of bytes of data that the function wrote to your buffer.

For each message in the physical input queue that matches your filter criteria, the

I PMEnuner at eQueue function places a structure of type | PMVEgI nf 0 in your buffer.
You must allocate a buffer large enough to hold at least one complete | PMVsgl nf o
structure. The last two fields in this structure, pr ocHi nt and nsgType, are present only
if you specify t r ue for the get ProcHi nt and get MsgType parameters of the

| PMEnuner at eQueue function. Both the pr ocHi nt and msgType fields, if present, are
packed structures and can be anywhere from 0 to 33 bytes in size.

You can use the nunToGet parameter to specify the total number of messages you want
listed. In the numGot t en parameter, the function returns the actual number of messages
listed and, in the act EnunCount parameter, the number of bytes it wrote to your buffer.
The function does not return partial | PMVsgl nf o structures.

The first time you call the | PMEnurer at eQueue function to list the messages in a
queue, specify 1 for the st ar t SeqNumparameter. If the function returns information for
as many messages as you requested in the nunifoGet parameter or puts as many

IPM Manager Reference 7-81

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

| PMVBgI nf o structures in your buffer as the buffer will hold, you can assume that the
queue holds more messages to be listed. In this case, increment the number in the

st ar t SegNumparameter by the number of messages listed (that is, by the number
returned in the numGot t en parameter) and call the function again.

Note

Do not call the | PMEnuner at eQueue function any more often than
necessary; every user connected to a server periodically requests a list of
messages, and a server’s overall performance can be noticeably affected
if it has to process too many enumeration requests. O

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0413

RESULT CODES
noErr 0 No error
k OCEPar antr r -50 Invalid parameter
kl PM nval i dMsgType -15091 Message type is invalid
kIl PM nval i dFil ter -15105 Filter is invalid
kl PMSt r eantEr r -15108 Error on stream
kl PMPor t C osed -15109 Stream closed
kl PMeoQ -15120 No more messages
SEE ALSO

The | PMEnumner at eQueue function places structures of type | PMVsgl nf 0 in your
buffer. The | PMVsgl nf 0 data type is described in “Message Information Structure” on
page 7-36.

IPMOpenMsg

The | PMOpenMs g function opens the specified message in the specified queue.

pascal OSErr | PMXenMsg(|l PMParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

7-82 IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl eti on ProcPtr Pointer to a completion routine.

- i oResul t OSErr Result of the function.

- queueRef | PMQueueRef Queue reference number.

- sequenceNum | PMsegNum Message sequence number requested.

- newiVs gRef | PMVBgRef Message reference number.

- actual SegNum | PMSegNum Sequence number of message actually
opened.

- exact Mat ch Bool ean Match requested sequence number
exactly?

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on andi oResul t fields.

Field descriptions

queueRef The queue reference number of the virtual queue containing the
message that you want to open.

sequenceNum The sequence number of the message you wish to open, or, if you
set the exact Mat ch field to f al se, the sequence number at which
you want the function to start looking for a message to open.
Sequence numbers start with 1.

newiVsgRef The message reference number of the opened message. You must
use this number when you call the | PMeri f ySi gnat ure
function to verify a signature, when you call the | PMCl oseMsg
function to close the message, and any time you read information
from the message.

actual SegqNum The actual sequence number of the message opened by the function.
This value always equals the number you specify in the
sequenceNumfield unless you set the exact Mat ch field to f al se,
in which case the message opened might have a sequence number
higher than the one you requested.

exact Mat ch A Boolean value that specifies whether the sequence number of the
message opened must be exactly the same as the number you
specify in the sequenceNumfield. If you set the exact Mat ch field
to f al se, the function opens the next message that has a sequence
number equal to or greater than the one you specify in the
sequenceNumfield and that passes the current filter criteria for the
queue.

You must call the | PMOpenMs g function before you can read any of the information in a
message in a message queue.

The IPM Manager assigns a sequence number to each message in a physical queue when
it adds that message to the queue. Because the IPM Manager does not reuse the number

IPM Manager Reference 7-83

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

of a message that is removed from the queue, some sequence numbers might be missing
from the queue.

The | PMOpenMsg function opens a message only if it meets the current filter criteria for
the virtual queue. If you specify a message sequence number for a message that does not
meet the filter criteria and set the exact Mat ch field to t r ue, the | PMOpenMsg function
returns the kI PMEI t Not Found result code.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $040B

noErr 0 No error

k OCEPar antr r -50 Invalid parameter

k1 PMALHdr Cor r upt -15098 Message is corrupt; may not be message
kl PNMSt reantr r -15108 Error on stream

kl PMPor t C osed -15109 Stream closed

You can use the | PMEnurrer at eQueue function (page 7-80) to list the messages in a
queue.

Use the | PMOpenHFSMs g function, described next, to open a message on disk.
Use the | PMOpenBIl ockAsMsg function (page 7-86) to open a nested message.

IPMOpenHFSMsg

7-84

The | PMOpenHFSMs g function opens the specified HFS file as a message.

pascal OSErr | PMXenHFSMsg(| PMPar anBl ockPtr paranBl ock,
Bool ean async);

par anBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.
- i oOResul t OSEr r Result of the function.

- hf sPat h FSSpec* Specifier of the file to open.

- newMs gRef | PMVBgRef Message reference number.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti onandi oResul t fields.

Field descriptions

hf sPat h The file system specification structure for the file you wish to open

as a message.

newvs gRef The message reference number of the opened message. You must

use this number when you read information from the message,
when you call the | PMer i f ySi gnat ur e function to verify a

signature, or when you call the | PMCl oseMsg function to close the

message.

You must call the | PMOpenHFSMs g function before you can read any of the information
in a message that is in an HFS file on disk.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0417

noErr 0
k OCEPar aner r -50
k1l PMALHdr Cor r upt -15098
kl PNVBt r eantr r -15108
kl PMPor t Cl osed -15109

No error

Invalid parameter

Message is corrupt; may not be message
Error on stream

Stream closed

Use the | PMOpenMsg function (page 7-82) to open a message in a message queue.

Use the | PMOpenBl ockAsMsg function, described next, to open a nested message.

IPM Manager Reference

7-85

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMOpenBlockAsMsg

DESCRIPTION

7-86

The | PMOpenBl ockAsMsg function opens a nested message.

pascal OSErr | PMXenBl ockAsMsg(| PMPar anBl ockPtr par anBl ock,
Bool ean async);

par anBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.

- i oResul t CSErr Result of the function.

- nmsgRef | PMVs gRef Message reference number of the
enclosing message.

- newivs gRef | PMVs gRef Message reference number of the
nested message.

- bl ockl ndex unsi gned short Index value of block containing

nested message.

See “Interprogram Messaging Parameter Block Header,” beginning on page 7-40, for
descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

msgRef The message reference number of the message that contains the
nested message you want to read. This number is returned by the
| PMOpenMsg, | PMOpenHFSMs g, or | PMOpenBIl ockAsMsg function
when you open the containing message.

newvs gRef The message reference number of the opened nested message. You
must use this number when you read information from the
message, when you call the | PM/er i f ySi gnat ur e function to
verify a signature, or when you call the | PMCl oseMsg function to
close the message.

bl ockl ndex The sequential position of the block that you want to open as a
message. For example, if you want to open the tenth block, you set
bl ockl ndex to 10. You can use the | PMGet Bl kI ndex function to
get the index number of a block.

The | PMOpenBl ockAsMsg function opens a nested message so that you can use other
IPM Manager functions to read information from it. Before you use this function, you
must open the containing message (which can also be a nested message), and you must
know the index number of the nested-message block within the containing message. A

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

nested message has a creator type of k|l PMSi gnat ur e and a block type of
kl PMENC| osedMsgType.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $040F

RESULT CODES
noErr 0 No error
k OCEPar antr r -50 Invalid parameter
k1 PMA1Hdr Cor r upt -15098 Message is corrupt; may not be message
k1 PMBl ockl sNot Nest edMsg -15101 Block is not message
k1 PVt r eanEr r -15108 Error on stream
k1 PMPort Cl osed -15109 Stream closed
SEE ALSO
Use the | PMcet Bl kI ndex function (page 7-96) to get the index number of a block.
IPMGetMsgInfo

The | PMCet Msgl nf o function returns information about a message in a message queue.

pascal OSErr | PMzet Msgl nf o(| PMPar anBl ockPtr paranBl ock,
Bool ean async);

par anBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl eti on ProcPtr Pointer to a completion routine.
- i oResul t CSErr Result of the function.

- nsgRef | PMVB gRef Message reference number.

o info | PMVBQI nf o* Pointer to returned information.

IPM Manager Reference 7-87

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

See “Interprogram Messaging Parameter Block Header,” beginning on page 7-40, for
descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

msgRef The message reference number of the message about which you
want information. This number is returned by the | PMOpenMsg
function when you open the message.

info A pointer to an | PMVsgl nf o structure in which the function
returns information about the message. You must allocate this
structure. The function always returns the full | PMGet Msgl nf o
structure, which is of variable length and packed; the maximum
size of this structure is 130 bytes.

DESCRIPTION

You can call the | PMGet Msgl nf o function after you open a message in a queue. You
cannot use the | PMGet Msgl nf o function to obtain information about a message stored
in a file on disk or to get information about a nested message.

The | PMGet Msgl nf o function returns the same information about a message as the
| PMEnuner at eQueue function returns.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0419

RESULT CODES
noErr 0 No error
k OCEPar ankr r -50 Invalid parameter
kl PNVBt r eantr r -15108 Error on stream
kl PMPor t Cl osed -15109 Stream closed

SEE ALSO

The | PMCet Msgl nf o function returns the same information about a message as the
| PMEnuner at eQueue function (page 7-80) returns.

The | PMGet Msgl nf o function returns information in an | PMGet Msgl nf o structure,
described in “Message Information Structure” on page 7-36.

7-88 IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

Use the | PMReadHeader function, described next, to obtain header information from
nested messages and messages stored on disk, or to get information from header fields
not returned by the | PMGet Msgl nf o function.

IPMReadHeader

The | PMReadHeader function reads the contents of a specified header field of a

message.

pascal OSErr | PMReadHeader (| PMPar anBl ockPtr paranBl ock
Bool ean async);

par amBl ock

A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous

execution.

Parameter block

- i oConpl eti on
- i oResul t

- msgRef

- fiel dSel ector
- of f set

- count

- buf f er
- act ual Count
- remai ni ng

ProcPtr

CSEr r

| PMVEgRef

unsi gned short
| ong

unsi gned | ong

Ptr
unsi gned | ong
unsi gned | ong

Pointer to a completion routine.
Result of the function.

Message reference number.
Message header field selector.
Offset to header field.

The size, in bytes, of the output
buffer.

Pointer to your buffer.

Number of bytes of data read.
Number of bytes of data
remaining to be read.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on and i oResul t fields.

Field descriptions

msgRef The message reference number of the message whose header you
want to read. This number is returned by the | PMOpenMsg,
| PMOpenHFSMsg, or | PMOpenBl ockAsMsg function when you
open the message.

fieldSel ector The message-header field or fields that you want to read. You can
set the fi el dSel ect or field to the values shown in the

description section that follows.

IPM Manager Reference

7-89

Jabeuely buibessa|n weiboidiaiu) .

DESCRIPTION

7-90

CHAPTER 7

Interprogram Messaging Manager

of f set The offset to the header field at which you want to start reading. Set
this field to 0 to start reading a header field at the beginning. If the
| PMReadHeader function returns a value in the r emai ni ng field,
you can increment the value in the of f set field by the value
returned in the act ual Count field and call the function again to
continue reading from the header field.

count The size, in bytes, of the buffer you provide.

buf f er A pointer to your buffer.

act ual Count The number of bytes of data actually written to your buffer.

remai ni ng The number of bytes of data in this header field remaining to be
read.

The | PMReadHeader function returns information about one or more fields of a
message header. If the buffer you provide is not large enough to hold all the data you
request, the function returns, in the r emai ni ng parameter, the number of bytes
remaining. You can then increment the value in the of f set parameter by the value in
the act ual Count parameter and call the function again. You must open the message
with the | PMOpenMsg, | PMOpenHFSMsg, or | PMOpenBIl ockAsMsg function before you
can call the | PMReadHeader function.

Use the fi el dSel ect or parameter to indicate the field of the message header that you
want to read. You can set this parameter to any of the following values:

enum {
kl PMTOC = 0,
kl PMSender = 1,
kl PMProcessH nt = 2,
kl PMessageTitle = 3,
kl PMVessageType = 4,
kl PMFi xedInfo = 7

b
typedef Byte | PMHeader Sel ector;

Constant descriptions

kl PMIoC The message table of contents (TOC). The TOC contains information
about each block in the message. The | PMReadHeader function
returns an array of | PMI'OC structures, each containing information
about one block. The | PMI'OC structure is described on page 7-37.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

kI PMsender The sender of the message, in an | PMSender structure. If the
message is authenticated, the IPM Manager fills in this field from
the identity of the originator of the message, and this field provides
the authenticated originator of the message. If the message is not
authenticated, the creator of the message specifies the contents of
this field. The | PMSender structure is described on page 7-40. The
| PMFi xedHdr | nf o structure (page 7-38) includes an
aut henti cat ed field.

kI PMPr ocessHi nt
The process hint of the message, which is a Pascal string of up to 32
characters. The value of meaning of the process hint is defined by
the creator of the message.

kl PMVessageTitl e
The message title. This title is specified by the creator of the
message and normally indicates the subject, purpose, or content of
the message.

kl PMVvessageType
The message type, in an | PMVsgType structure (page 7-28).

kl PMFi xedl nfo A standard subset of the fields in the header, in an
| PMFi xedHdr | nf o structure (page 7-38). When you set the
fiel dSel ect or parameter to kI PMFi xedl nf o, the IPM Manager
ignores the of f set and count fields.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $040E

RESULT CODES
noErr 0 No error
k OCEPar aner r -50 Invalid parameter
kil PM nval i dOf f set -15093 Bad offset for read or write operation
k1 PMALHdr Cor r upt -15098 Message is corrupt; may not be message
kl PMSt r eanEr r -15108 Error on stream
k1 PMPor t Cl osed -15109 Stream closed
SEE ALSO

The | PMSender structure is described in “Sender Structure” on page 7-39.
The | PMICC structure is described on page 7-37.

IPM Manager Reference 7-91

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

The | PMMsgType structure is described on page 7-28.
The | PMFi xedHdr | nf o structure is described on page 7-38.

IPMReadRecipient

The | PMReadReci pi ent function reads a recipient from a message header.

pascal OSErr | PMReadReci pi ent (| PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.
async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.
Parameter block
- ioConpl etion ProcPtr Pointer to a completion routine.
~ ioResult OSErr Result of the function.
- megRef | PMVB gRef Message reference number.
- rcptlndex unsi gned short Recipient index number.
- offset I ong Offset to recipient data.
- count unsi gned | ong Buffer size.
- buffer Ptr Pointer to your buffer.
~ actual Count unsi gned | ong Number of bytes of data read.
- reserved short Must be 0.
~ renaining unsi gned | ong Number of bytes of data
remaining to be read.
~ originallndex unsi gned short Original recipient index.

~ OCERecipientOffsetFlags recipientOfsetFlags Recipient-type flags.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on and i oResul t fields.

Field descriptions

nmsgRef The message reference number of the message whose recipient data
you want to read. This number is returned by the | PMOpenMsg,
| PMOpenHFSMsg, or | PMOpenBl ockAsMsg function when you
open the message.

rcpt | ndex The index number of the recipient you want to read. Recipient
index numbers are sequential, starting with 1.

7-92 IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

of f set The offset to the data for the specified recipient at which to start
reading. The first time you call the | PMReadReci pi ent function
for a given recipient you should set this field to 0. If your buffer is
not large enough to hold all of the recipient data, you can increment
the value in the of f set field by the value returned in the
act ual Count field and call the function again.

count The size, in bytes, of your buffer.

buf f er A pointer to your buffer. The function places the information about
the recipient in your buffer in the form of an
OCEPackedReci pi ent structure.

act ual Count The number of bytes of data the function wrote to your buffer.
reserved Reserved; you must set this field to 0.
remai ni ng The number of bytes of data remaining to be read. If this field

returns a nonzero value, you should increment the value in the
of f set field by the value returned in the act ual Count field and
call the function again.

origi nal I ndex The index of this recipient in the original recipient list (that is, the
recipient list before the IPM Manager resolves any group addresses).

OCEReci pi ent O f set Fl ags
A flag byte that provides information about the recipient.

The | PMReadReci pi ent function returns recipient information from the header of a
message. If the original message header contained recipient addresses that were groups
or that identified records containing the address of the actual recipient, the

| PMReadReci pi ent function returns the final recipients of the message.

The OCEReci pi ent Of f set Fl ags field contains the following bits:

enum {
kl PMFronDi stListBit = 0,
kl PMDUmmyRecBit = 1,
kl PMreedbackRecBit = 2,
kl PMReporterRecBit = 3,
kl PMBCCRecBit = 4

b

Flag descriptions
kl PMFronDi st Li stBi t
Reserved.

kl PMDumyRecBi t
If this flag is set to 1, the IPM Manager delivered the message to this
recipient.

k|l PMFeedbackRecBi t
Reserved.

IPM Manager Reference 7-93

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

kl PMReport er RecBi t
Reserved.

kI PMBCCRecBi t If this flag is set to 1, this is a “bcc” (blind carbon copy) recipient; in
other words, this recipient is not included in the recipient list
received by the other recipients of the message. You can receive this
flag only if you sent the letter or if you were the bcc recipient.

You can use the following mask values to test these flags:

enum {
kI PMFr onDi st Li st Mask= 1<<kl PMFronDi stListBit,
k1l PMDUummy RecMask= 1<<kl PMDUumyRecBi t ,
kl PMreedbackRecMask= 1<<kl PMreedbackRecBi t,
kl PMReport er RecMask= 1<<kl PMReporterRecBit,
k|l PMBCCRecMask= 1<<kl PMBCCRecBi t

}

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0410

RESULT CODES
noErr 0 No error
k OCEPar antr r -50 Invalid parameter
kil PM nval i dOf f set -15093 Bad offset for read or write operation
k1 PMALHdr Cor r upt -15098 Message is corrupt; may not be message
k1 PMSt r eanr r -15108 Error on stream
kI PMPort Cl osed -15109 Stream closed
SEE ALSO

The | PMReadReci pi ent function places the information about the recipient in your
buffer in the form of an OCEPackedReci pi ent structure (page 7-25).

7-94 IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

IPMReadReplyQueue

The | PMReadRepl yQueue function reads the reply queue field of the message header.

pascal OSErr | PVMReadRepl yQueue(| PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.

- i oResul t OSEr r Result of the function.

- nmsgRef | PMVB gRef Message reference number.

- of f set | ong Offset to reply queue data.

- count unsi gned | ong Bulffer size.

- buf fer Ptr Pointer to your buffer.

- act ual Count unsi gned | ong Number of bytes of data read.

- reserved short Must be 0.

- renmai ni ng unsi gned | ong Number of bytes of data remaining
to be read.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on and i oResul t fields.

Field descriptions

msgRef The message reference number of the message whose reply queue
data you want to read. This number is returned by the
| PMOpenMsg, | PMOpenHFSMsg, or | PMOpenBIl ockAsMsg function
when you open the message.

of f set The offset to the data at which to start reading. The first time you
call the | PMReadRepl yQueue function, you should set this value
to 0. If your buffer is not large enough to hold all of the reply queue
data, you can increment the value in the of f set field by the value
returned in the act ual Count field and call the function again.

count The size, in bytes, of your buffer.

buf f er A pointer to your buffer. The function places the information about
the reply queue in your buffer in the form of an
OCEPackedReci pi ent structure.

act ual Count The number of bytes of data the function wrote to your buffer.
reserved Reserved; you must set this field to 0.
remai ni ng The number of bytes of data remaining to be read. If this field

returns a nonzero value, you should increment the value in the
of f set field by the value returned in the act ual Count field and
call the function again.

IPM Manager Reference 7-95

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

DESCRIPTION

The reply queue is the address to which the IPM Manager returns delivery and
nondelivery reports and to which you should address reply messages.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0421

RESULT CODES
nokErr 0 No error
k OCEPar aner r -50 Invalid parameter
kil PM nval i dOf f set -15093 Bad offset for read or write operation
k1 PMALHdr Cor r upt -15098 Message is corrupt; may not be message
k1 PVAE t r Not | nHdr -15106 No reply queue in message header
k1 PMSt r eaner r -15108 Error on stream
kI PMPort Cl osed -15109 Stream closed
SEE ALSO
The | PMReadRepl yQueue function places the information about the reply queue in
your buffer in the form of an OCEPackedReci pi ent structure (page 7-25).
IPMGetBlkIndex

The | PMGet Bl kI ndex function returns the block type and index value for the first
block encountered that matches the specifications you provide.

pascal OSErr | PMcet Bl kl ndex(| PMPar anBl ockPtr par anBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

7-96 IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

Parameter block

- i oConpl eti on ProcPtr Pointer to a completion
routine.

- i oResul t CSErr Result of the function.

= msgRef | PMVs gRef Message reference number.

= bl ockType | PMBl ockType Block types to return.

- i ndex unsi gned short Number of matches to find
before returning information.

- startingFrom unsi gned short Starting index.

- act ual Bl ockType | PMBl ockType Block type of block returned.

- act ual Bl ockl ndex unsi gned short Index value of block returned.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on andi oResul t fields.

Field descriptions

msgRef The message reference number of the message from which you
want information. This number is returned by the | PMOpenMsg,
| PMOpenHFSMs g, or | PMOpenBl ockAsMsg function when you
open the message.

bl ockType The creator and type of the block for which you want an index
value. You can use the kI PMI'ypeW | dCar d wildcard value for the
creator field, the type field, or both.

i ndex The number of matches the function should find before it returns
the index and type of a block. For example, if you set the i ndex
field to 5, the function returns the index and type of the fifth block it
finds that matches the value you specify in the bl ockType field.

startingFrom The index number of the block at which to begin the search. Index
numbers start at 1.

act ual Bl ockType
The creator and type of the block that matches all of your search
criteria.

act ual Bl ockl ndex
The index number of the block that matches all of your search
criteria.

DESCRIPTION

Each IPM message can contain message blocks. You can use the | PMGet Bl kI ndex
function to determine the type and creator of each block, or the sequential position
(referred to as the index number) of blocks that have specific types.

If you want to get information about every block in the message, you can specify the
wildcard value kI PMI'ypeW | dCar d for the creator and type and call the function
repeatedly, incrementing the value in the st ar t i ngFr omfield each time. If you want to
get information about every block of a specific type or with a specific creator, put that
type or creator in the bl ockType field and call the function repeatedly, incrementing the
value in the i ndex field each time.

IPM Manager Reference 7-97

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

If the function does not find any more matches to your criteria, it returns the
KCCEl nval i dl ndex result code.

You can use the value returned in the act ual Bl ockl ndex field to identify a block you
want to read when you call the | PMReadMsg function.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0418

RESULT CODES
nokErr 0 No error
k OCEPar antr r -50 Invalid parameter
k1 PMALHdr Cor r upt -15098 Message is corrupt; may not be message
k1 PMBI kNot Found -15107 Specified block nonexistent
kl PNSt r eaner r -15108 Error on stream
kl PMPor t Cl osed -15109 Stream closed
SEE ALSO
To read a message block, call the | PMReadMsg function, described next.
IPMReadMsg

The | PMReadMs g function reads data from an IPM message.

pascal OSErr | PVReadMsg(|l PMPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

7-98 IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

Parameter block

- i oConpl eti on ProcPtr Pointer to a completion routine.

- i oResul t OSEr r Result of the function.

- nmsgRef | PMVBgRef Message reference number.

N node | PMAccessMbde Mode in which the offset should be
interpreted.

- of f set | ong Offset to the starting point of the
read.

N count unsi gned | ong Buffer size.

- buf fer Ptr Pointer to your buffer.

- act ual Count unsi gned | ong Number of bytes of data read.

N bl ockl ndex unsi gned short Index number of the block to read.

- remai ni ng unsi gned | ong Number of bytes of data remaining
to be read.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on and i oResul t fields.

Field descriptions
nmegRef

node

of f set

count

buf fer

act ual Count
bl ockl ndex

remai ni ng

The message reference number of the message you want to read.
This number is returned by the | PMOpenMsg, | PMOpenHFSMs g, or
| PMOpenBl ockAsMsg function when you open the message.

The mode in which the offset parameter is to be interpreted. The
function uses this field to determine whether to begin reading data
relative to the end of the last data read, to the beginning of the
block, or to the end of the block. See the discussion following these
field descriptions for details.

An offset that the function uses when it calculates the starting point
of the read operation. Set this value to 0 when you start reading a
block from the beginning. See the following discussion for details.
The size, in bytes, of the buffer that you are providing.

A pointer to your buffer.

The number of bytes of data actually written to your buffer.

The sequential position of the block that you want to read. For
example, if you want to read the tenth block, you set bl ockl ndex
to 10. You can use the | PMGet Bl kI ndex function to get the creator,
block type, and index number of a block.

If you set the bl ockl ndex field to 0, the | PMReadMsg function
treats all the blocks in the message, including the message header,
as a single unit, ignoring all block boundaries.

The number of bytes of data remaining to be read. If this field
returns a nonzero value, you can increment the value in the of f set

field by the value in the act ual Count field and call the
| PMReadMs g function again to read the next portion of data.

IPM Manager Reference 7-99

Jabeuely buibessa|n weiboidiaiu) .

DESCRIPTION

7-100

CHAPTER 7

Interprogram Messaging Manager

The | PMReadMsg function can treat the entire message body as a single unit (if you set
the bl ockl ndex parameter to 0) or can read a specific message block.

The IPM Manager uses a marker (referred to as the message mark) that points to the
current location within a message that you are reading. After the | PMReadMs g function
completes, the message mark points to the byte following the last byte read.

You use the nbde and of f set parameters to specify the point in the message at which
the | PMReadMsg function starts reading. The nbde parameter indicates whether you
want the | PMReadMs g function to begin reading at the current position of the mark or to
calculate another starting point relative to the beginning of the message, the beginning of
the block, the end of the message, or the current mark location. You can set the node
parameter to any one of the following values:

enum {
kl PVAL Mar Kk,
kl PMFrontst art,
kl PMFr omLEOM
k|l PMFr omvar k

s

Constant descriptions
kI PMAL Mar k The | PMReadMsg function starts reading at the current position of
the mark. In this case, the function ignores the offset value. This

mode is useful, for example, for reading in sequence through a
block.

kI PMFronBtart The function interprets the value in the of f set parameter as an
offset from the beginning of the block you specify by the
bl ockl ndex parameter. If you specify 0 for the bl ockl ndex
parameter, the function interprets the value in the of f set
parameter as an offset from the beginning of the message body.

If you want to start reading at the 100th byte of the second block in
the message, for example, set the bl ockl ndex parameter to 2, the
node parameter to kI PMFr onSt ar t, and the of f set parameter to
100. When you use this mode, you cannot set the of f set

parameter to a negative value or you will be reading data that is not
part of the message.

kI PMFronLEOM The function interprets the value in the of f set parameter as an
offset from the end of the block you specify by the bl ockl ndex
parameter. If you specify 0 for the bl ockl ndex parameter, the
function interprets the value in the of f set parameter as an offset
from the end of the message. When you use this mode, the of f set
parameter must be a negative value or you will be reading data that
is not part of the message.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

kI PMFr omivar k The function interprets the value in the of f set parameter as an
offset from the current position of the mark. Use a negative offset
value to indicate a starting point prior to the current position of the
mark and a positive offset value to indicate a starting point
following the current position of the mark.

A message block that has a creator type of kI PMSi gnat ur e and a block type of

kI PMENcl osedMsgType contains a nested message. To read the contents of such a
block, first use the | PMOpenBl ockAsMsg function to open the nested message and then
use the other functions in this section to read its contents.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $040D

noErr 0 No error

k OCEPar antr r -50 Invalid parameter

kil PM nval i dOf f set -15093 Bad offset for read or write operation

k1 PMALHdr Cor r upt -15098 Message is corrupt; may not be
message

k1 PMCor r upt Dat aSt r uct ur es -15099 Message is corrupt

k1 PNVt r eanEr r -15108 Error on stream

k1 PMPor t Cl osed -15109 Stream closed

Use the | PMcet Bl kI ndex function (page 7-96) to get the creator, block type, and index
number of a block.

Use the | PMOpenBl ockAsMsg function (page 7-86) to read a block containing a nested
message.

IPM Manager Reference 7-101

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMVerifySignature

DESCRIPTION

7-102

The | PMWer i f ySi gnat ur e function verifies a digital signature for a message.
pascal OSErr | PMWerifySignature(l PMParanBl ockPtr paranBl ock);

par anBl ock
A pointer to a parameter block.

Parameter block

- i oResul t CSErr Result of the function.
- nsgRef | PMVBgRef Message reference number.
- si gnat ur eCont ext S| GCont ext Pt r Signature context.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for a description of
thei oResul t field.

Field descriptions

msgRef The message reference number of the message from which you
want information. This number is returned by the | PMOpenMsg,
| PMOpenHFSMsg, or | PMOpenBl ockAsMsg function when you
open the message.

si gnat ur eCont ext
The signature context you obtained from the S| GNewCont ext
function and provided to the SI GVer i f yPr epar e function.

If the creator of the message used the | PMENdMs g function to add a digital signature to
the message, you can use the | PWer i f ySi gnat ur e function to verify the signature.
You can use the | PMReadHeader function to determine whether a message has a digital
signature. The | PMEndMs g function places the digital signature in a block with a creator
of kI PMSi gnat ur e and a type of kI PMDi gi t al Si gnat ure.

To verify a signature, use the | PMcet Bl kI ndex function to get the index number of the
signature block and the | PMReadMsg function to read the signature into a buffer. Then
call the SI GNewCont ext and S| GVer i f yPr epar e functions to begin the process of
verifying the signature. When you pass a pointer to the signature context (returned by
the SI GNewCont ext function) in the si gnat ur eCont ext parameter to the

| PWer i f ySi gnat ur e function, the function verifies the signature.

Note

The signature context used to create a digital signature has no
relationship to the contexts discussed in “Managing Message Queues”
starting on page 7-68 and elsewhere in this chapter. O

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

Because the IPM Manager modifies some fields in the message header during message
transmission and delivery, not all header fields can be signed. For example, the final
number of recipients, resolution count, and hop count fields are not signed. All message
blocks except the signature block itself are signed.

SPECIAL CONSIDERATIONS

You cannot execute the | PM/er i f ySi gnat ur e function asynchronously; therefore, you
can not call this function at interrupt time.

There must also be at least 8.5 KB of stack space available when you call this function.

If you are verifying a digital signature for a large message, the | PWer i f ySi gnat ur e
function can take a long time to complete (up to several minutes on some computers).
You should display a dialog box informing the user of this possibility.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0422

noErr 0 No error

k OCEPar antr r -50 Invalid parameter

k1 PMALHdr Cor r upt -15098 Message is corrupt; may not be message
k1 PMBI kNot Found -15107 Specified block nonexistent

kl PMSt r eanEr r -15108 Error on stream

k1 PMPor t Cl osed -15109 Stream closed

You use the | PMENdMsg function (page 7-65) to add a digital signature to a message.

You can use the | PMReadHeader function (page 7-89) to determine if a message has
been signed.

Use the | PMGet Bl kI ndex function (page 7-96) to get the index number of the signature
block and the | PMReadMs g function (page 7-98) to read the signature block.

Digital signatures and the SI GNewCont ext and Sl GVer i f yPr epar e functions are
discussed in the chapter “Digital Signature Manager” in this book.

IPM Manager Reference 7-103

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMCloseMsg

DESCRIPTION

7-104

The | PMO oseMsg function closes a message, invalidating the message reference
number, and can delete the message.

pascal OSErr | PMI oseMsg(| PMParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.
- i oResul t CSErr Result of the function.

- msgRef | PMVs gRef Message reference number.

- del et eMsg Bool ean Delete the message?

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the i oConpl eti on andi oResul t fields.

Field descriptions

msgRef The message reference number of the message you want to close.
This number is returned by the | PMOpenMsg, | PMOpenHFSMsg, or
| PMOpenBl ockAsMsg function when you open the message.

del et eMsg A Boolean value specifying whether you want to delete the message
after closing it. If you set this field to t r ue for a message in a
message queue, the IPM Manager removes the message from the
physical queue. If you set this field to t r ue for a message that is an
HFS file, the IPM Manager deletes the file. If the message is a nested
message, the | PMCl oseMsg function ignores this field.

When you have finished reading information from a message, you should call the

| PMCl oseMsg function so that the IPM Manager can release the memory it allocates
when you open a message. You can set the del et eMsg parameter to t r ue to have the
IPM Manager delete the message after it closes it. (The | PMCl oseMsg function will
always close a message that was opened through the queue you specify with the
message reference number, but if the same message is also open through another virtual
queue, the function does not delete it. In that case, the function returns the

kI PMEI t Busy result code.) If you do not delete the message, it remains in the message
queue or on disk and you can open it again at any time.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

After you close a message, its message reference number is no longer valid.

You can close a message containing an open nested message; however, you can’t delete
such a message.

When you call the | PMCl oseQueue function to close a message queue, the function
automatically closes all of the messages that you opened through that queue’s reference
number. When you call the | PMCl oseCont ext function to close a context, it first closes
all of the messages that you opened for the queues that belong to that context.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $040C

noErr 0 No error
k OCEPar antr r -50 Invalid parameter
k1 PMEL t Busy -15116 Message is in use

You use the | PMOpenMsg (page 7-82), | PMOpenHFSMs g (page 7-84), or
| PMOpenBl ockAsMsg (page 7-86) function to open a message.

The | PMO oseQueue function (page 7-76) closes all the messages associated with a
specific virtual queue. The | PMCl oseCont ext function (page 7-77) closes all the
messages associated with a context.

You can use the | PMDel et eMsgRange function (page 7-106) to delete one or more
messages in a specific virtual queue.

Deleting Messages

You can use the | PMDel et eMsgRange function, described in this section, to delete one
or more messages in a message queue. The | PMC oseMsg function (page 7-104) can
delete a single message after closing it.

IPM Manager Reference 7-105

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

IPMDeleteMsgRange

DESCRIPTION

7-106

The | PMDel et eMsgRange function deletes one or more messages from a message
queue.

pascal OSErr | PMDel et eMsgRange(| PMPar anBl ockPtr par anBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to t r ue for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr Pointer to a completion routine.

- i oResul t OSErr Result of the function.

S queueRef | PMQueueRef Queue reference number.

- start SegNum | PMSegNum The starting message sequence number.

. endSegNum | PMSegNum The ending message sequence number.

- | ast SeqNum | PMSegNum The sequence number of the next
message.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
thei oConpl eti on and i oResul t fields.

Field descriptions

queueRef The virtual-queue reference number returned by the
| PMOpenQueue function. This number identifies the virtual queue
to which the request applies.

start SeqgNum The sequence number of the first message that you want the
function to delete.

endSegNum The sequence number of the last message that you want the
function to delete.

| ast SeqNum The sequence number of the next message that remains in the queue
following the last deleted message.
If the function is unable to delete all of the requested messages, this
field contains the sequence number of the message that the function
was attempting to delete when the error occurred.

The | PMDel et eMsgRange function deletes one or more messages from the physical
message queue. To be deleted, a message must match the current filter for the virtual
queue you specify with the queueRef parameter and have a sequence number falling
within the range you specify with the st ar t SeqNumand endSegNumparameters. Note
that the sequence numbers are inclusive; for instance, if you set the st ar t SeqNum

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

parameter to 5 and the endSegNumparameter to 10, messages with sequence numbers 5
and 10 (if present in the specified virtual queue) are both deleted.

If the function cannot delete a particular message for some reason, the IPM Manager
cancels the function without proceeding any further. In this case, the function returns the
sequence number of the message that it was attempting to delete when the error
occurred and also returns a result code that indicates the error. The

| PMDel et eMsgRange function does not delete a message if it is open through any
virtual queue. If you have closed the message through the virtual queue but still receive
the kI PMEI t Busy result code, the message might be open through another virtual
queue. If the message is closed but contains a nested message that is still open, the
function does not delete the message and returns the k| PMEI t Busy result code.

Once you have deleted a message, you cannot open it again.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0415

noErr 0 No error

k OCEPar aner r -50 Invalid parameter
kl PNMSt r eantr r -15108 Error on stream
kl PMPor t C osed -15109 Stream closed

k1 PMEL t Busy -15116 Message is in use

You can use the | PMCl oseMs g function (page 7-104) to delete a single message from a
queue.

Utility Functions

You can use the routines in this section to work with OCEReci pi ent structures.

The functions described in this section use a different assembly-language calling
sequence from the other IPM Manager routines (see page 7-43). Listing 7-2 illustrates one
way to do this.

IPM Manager Reference 7-107

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Listing 7-2 Calling an MSAM utility function from assembly language

_oceMessagi ng OPWORD $AASC
SUBQ #2, A7 ; make room for function result
MOVEA par aml, - (SP) ; push the first paraneter onto stack
. ; push additional parameters onto stack
MOVEQ asyncFl ag, DO ; move async flag into dO
MOVE. B DO, - (SP) ; push the flag (byte) onto stack
MOVEQ #opCode, DO ; nove op code into dO
MOVE. W DO, - (SP) ; push the op code onto stack
_oceMessagi ng ; trap call
MOVE. W (SP)+, DO ; get result code

OCESizePackedRecipient

DESCRIPTION

The OCESi zePackedReci pi ent function computes the number of bytes of memory
needed to hold a packed OCEReci pi ent structure.

pascal unsigned short OCESi zePackedReci pi ent (
const OCEReci pient *rcpt);

r cpt A pointer to an OCEReci pi ent structure whose size, when packed, you
want to determine.

The OCESi zePackedReci pi ent function computes the number of bytes required to
hold the information contained in an OCEReci pi ent structure when it is packed. The
number of bytes returned by the OCESi zePackedReci pi ent function includes the
dat aLengt h field of the OCEPackedReci pi ent structure.

SPECIAL CONSIDERATIONS

7-108

The OCESi zePackedReci pi ent function does not pad the value contained in the

ext ensi onSi ze field of the OCEReci pi ent structure pointed to by the r cpt
parameter. For this reason, the OCESi zePackedReci pi ent function might return an
odd value rather than an even one. Therefore, you need to pad the necessary fields in the
OCEReci pi ent structure yourself before using it as an address for a message or before
passing it to any of the IPM Manager functions that require an OCEReci pi ent structure
of even size.

This function does not purge or move memory.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

Trap Selector
_OCEMessagi ng $033E

The OCEReci pi ent structure is defined on page 7-24.
The OCEPackedReci pi ent structure is defined on page 7-25.

To pack an OCEReci pi ent structure, use the OCEPackReci pi ent function, described
next.

OCEPackRecipient

DESCRIPTION

The OCEPackReci pi ent function forms an OCEPackedReci pi ent structure from an
OCEReci pi ent structure.

pascal unsigned short OCEPackReci pi ent (const OCEReci pi ent *rcpt,
voi d* buffer);

r cpt A pointer to the OCEReci pi ent structure you want to pack.

buf f er A pointer to the buffer in which the packed data is placed by the
OCEPackReci pi ent function. You must allocate this structure.

The OCEPackReci pi ent function packs the contents of an OCEReci pi ent structure
into an OCEPackedReci pi ent structure. The OCEPackedReci pi ent structure must
be large enough to contain the packed Recor dl Dinformation and any extension value
of the OCEReci pi ent structure. You obtain the buffer size needed by calling the
OCESi zePackedReci pi ent function (page 7-108).

SPECIAL CONSIDERATIONS

This function does not purge or move memory.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

Trap macro Selector
_OCEMessagi ng $033F

The OCEReci pi ent structure is defined on page 7-24.

IPM Manager Reference 7-109

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

The OCEPackedReci pi ent structure is defined on page 7-25.

For information on unpacking an OCEPackedReci pi ent structure, see the
OCEUnpackReci pi ent function, described next.

OCEUnpackRecipient

DESCRIPTION

The OCEUnpackReci pi ent function unpacks an OCEPackedReci pi ent structure.

pascal OSErr OCEUnpackReci pi ent (const voi d* buffer,
OCEReci pi ent *rcpt,
Recordl D *entitySpecifier);

buf f er A pointer to the OCEPackedReci pi ent structure you want to unpack.
r cpt A pointer to an OCEReci pi ent structure. You must allocate this
structure.

entitySpecifier
A pointer to a Recor dI Dstructure. The OCEUnpackReci pi ent function
extracts the record identifier information from the
OCEPackedReci pi ent structure and places it in this Recor dl D
structure. You must allocate this structure.

The OCEUnpackReci pi ent function extracts the information from an
OCEPackedReci pi ent structure and places it in an OCEReci pi ent structure and

a Recor dl Dstructure. The OCEUnpackReci pi ent function extracts the record
identifier (if any) and places it in the Recor dl Dstructure, places the rest of

the information in the OCEReci pi ent structure, and then sets the ent i t ySpeci fi er
field of the OCEReci pi ent structure to point to the Recor dl Dstructure. The
OCEUnpackReci pi ent function returns, in the ext ensi onVal ue field of

the OCEReci pi ent structure, a pointer to the extension (if any), and returns the length
of that extension in the ext ensi onSi ze field of the OCEReci pi ent structure. If there
is no extension, the OCEUnpackReci pi ent function sets the ext ensi onVal ue field of
the OCEReci pi ent structuretoni | .

SPECIAL CONSIDERATIONS

7-110

This function does not move or purge memory.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_OCEMessagi ng $0340

RESULT CODES

noErr 0 No error
k OCEPar aner r -50 Invalid parameter

SEE ALSO
The OCEReci pi ent structure is defined on page 7-24.

The OCEPackedReci pi ent structure is defined on page 7-25.

To pack an OCEReci pi ent structure, see the OCEPackReci pi ent function
(page 7-109).

OCEStreamRecipient

The OCESt r eanReci pi ent function converts an OCEReci pi ent structure from a
pointer-based structure into a stream of bytes.

pascal OSErr OCEStreanReci pi ent (const OCEReci pi ent* rcpt,
OCEReci pi ent Streaner stream
| ong user Dat a,
unsi gned | ong* actual Count);

r cpt A pointer to the OCEReci pi ent structure you want to process.
stream A pointer to a stream function that you supply.

userData Data supplied by you that is passed to your stream function. The
user Dat a parameter can contain anything your particular stream
method needs.

act ual Count
A pointer to the total number of bytes (streamed out) by the
OCESt r eanReci pi ent function.

DESCRIPTION

The OCESt r eanReci pi ent function converts an OCEReci pi ent structure into a
stream of bytes by calling the stream function that you provide. You can use this function
anytime that you want to write the contents of an OCEReci pi ent structure as a series of
bytes to a file, into a buffer in memory, or any other place.

IPM Manager Reference 7-111

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

The stream function that you provide contains the specific code that writes out the data.
The OCESt r eanReci pi ent function calls your recipient stream function repeatedly
and passes your function the current portion of the data that needs to be streamed, the
length of this data, an eof flag that is set by the OCESt r eanReci pi ent function if this
is the last of the data to be streamed, and a user Dat a parameter containing any
application-specific data that you define. For example, if you were writing a stream
function that wrote out an OCEReci pi ent structure to a file on a hard disk, you might
want to store a pointer in the user Dat a parameter to a block of data that contains such
information as the filename and size of the file.

If your stream function sends the OCESt r eanReci pi ent function an error in the valid
range for AOCE error codes, OCESt r eanReci pi ent halts execution and returns the
error as its result code.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. However, it calls the recipient stream
function that you supply in the st r eamparameter, and the stream function could move
memory.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_OCEMessagi ng $0341

RESULT CODES

NoErr 0 No error

k OCEPar aner r -50 Invalid parameter
SEE ALSO

The OCEReci pi ent structure is defined on page 7-24.
OCESetRecipientType

Given a creation ID, the OCESet Reci pi ent Type function sets the extension type of an
OCEReci pi ent structure.

pascal void OCESet Reci pi ent Type(CSType extensi onType,
Creationl D *cid);

ext ensi onType

The type you wish to specify in an OCEReci pi ent structure’s
ext ensi onType field.

7-112 IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

cid A pointer to a Cr eat i onl Dstructure identifying a record. The
OCEReci pi ent structure for that record is the one modified by this
function.

The OCESet Reci pi ent Type function sets an OCEReci pi ent structure’s
ext ensi onType field to the value in the ext ensi onType parameter. The
OCEReci pi ent is determined from the specified ci d parameter.

If the ext ensi onType field has a value of ' ent n' , then the ci d parameter is assumed
to be a valid extension and is not modified. If the ext ensi onType field’s value is
anything else besides ' ent n' , then this routine sets the Cr eat i onl Dstructure’s

sour ce field to 0.

SPECIAL CONSIDERATIONS

The OCESet Reci pi ent Type function does not check whether the ci d pointer is set to
ni | . Calling this function with the ci d parameter set to ni | has an indeterminate but
harmful result.

This function does not move or purge memory.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_OCEMessagi ng $0343

SEE ALSO
The OCEReci pi ent structure is defined on page 7-24.
To get the extension type of an OCEReci pi ent structure, see the
OCECet Reci pi ent Type function, described next.
OCEGetRecipientType

Given a creation ID, the OCEGet Reci pi ent Type function returns the extension type of
an OCEReci pi ent structure.

pascal OSType OCEGet Reci pi ent Type(const CreationlD *cid);

cid A pointer to a Cr eat i onl Dstructure identifying a record. The
OCEReci pi ent structure for that record is the one read by this function.

IPM Manager Reference 7-113

Jabeuely buibessa|n weiboidiaiu) .

DESCRIPTION

CHAPTER 7
Interprogram Messaging Manager
If you used the OCESet Reci pi ent Type function (page 7-112) to set the extension type

of an OCEReci pi ent structure, you can use the OCEGet Ext ensi onType function to
read the extension type.

SPECIAL CONSIDERATIONS

This function does not purge or move memory.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

Trap macro Selector
_OCEMessagi ng $0342

The OCEReci pi ent structure is defined on page 7-24.
The Cr eat i onl Dstructure is defined in the chapter “AOCE Utilities” in this book.

To set the extension type of an OCEReci pi ent structure, see the
OCESet Reci pi ent Type function (page 7-112).

Application-Defined Functions

This section describes routines that you can provide to be called by the IPM Manager in
specific circumstances. The MyConpl et i onRout i ne function is a completion routine
called when an IPM Manager routine that you call asynchronously completes execution.
The MyReci pi ent St r eaner function is a stream-processing function that you supply
to the OCESt r eanReci pi ent function.

MyCompletionRoutine

7-114

When you call an IPM Manager function asynchronously, you can provide a pointer to a
completion routine.

pascal void MyConpl eti onRoutine (Ptr paranBlk);

paranBl k A pointer to the parameter block you used when you called the IPM
Manager function.

IPM Manager Reference

DESCRIPTION

CHAPTER 7

Interprogram Messaging Manager

Parameter block
- i oResul t CSEr r Result of the function.

Other fields returned depend on the function that called the completion routine; see the
other function descriptions in this chapter for details.

When the IPM Manager function you called asynchronously completes execution, it calls
your completion routine. Your completion routine can check the function result plus any
parameters returned by the function and take appropriate action.

SPECIAL CONSIDERATIONS

The IPM Manager saves the value of your A5 register at the time you call the function
and then restores the A5 value before calling your completion routine.

ASSEMBLY-LANGUAGE INFORMATION

The A0 register contains a pointer to the parameter block. You can look for the result
code either in the i oResul t field of the parameter block or in the DO register.

MyRecipientStreamer

Your recipient stream function provides a method for processing data from the
OCESt r eanReci pi ent function.

pascal OSErr MyReci pi ent Streamer (voi d* buffer,
unsi gned | ong count, Bool ean eof,
| ong userData);

buf f er A pointer to the data that your stream method processes. This is supplied
by the OCESt r eanReci pi ent function each time it calls your recipient
stream function.

count The length, in bytes, of the current data in the buffer.

eof A flag that the OCESt r eanReci pi ent function sets when it last calls
your recipient stream function. This flag signals that the
OCESt r eanReci pi ent function has finished processing the
OCEReci pi ent structure.

userData The data that you supply in the user Dat a parameter to the
OCESt r eanReci pi ent function. This data is passed directly to your
recipient stream function.

IPM Manager Reference 7-115

Jabeuely buibessa|n weiboidiaiu) .

DESCRIPTION

SEE ALSO

7-116

CHAPTER 7

Interprogram Messaging Manager

The OCESt r eanReci pi ent function (page 7-111) calls your recipient stream function to
process the data from an OCEReci pi ent structure in discrete segments. You write this
routine to process the data in the way that you want. The OCESt r eanReci pi ent
function calls your recipient stream function various times and passes your function
progress information as well as the current portion of the OCEReci pi ent to process.
Any errors returned by this function are passed to the OCESt r eanReci pi ent function.

The OCEReci pi ent data structure is defined on page 7-24.
The OCESt r eanReci pi ent function is described on page 7-111.

IPM Manager Reference

CHAPTER 7

Interprogram Messaging Manager

Summary of the [IPM Manager

C Summary

Constants and Data Types

/* values of IPMPriority */
enum {
kl PMAnyPriority = 0,
kl PMNormal Priority = 1,
kl PMLowPriority,
kl PMH ghPriority

s
typedef Byte IPMPriority;

/* val ues of | PMAccessMode */
enum {

kl PMAEL Mar k,

kl PMFrontst art,

kl PMFr omLEOM

k|l PMFr omivar k

s
t ypedef unsi gned short | PMAccessMde;

enum {
kl PMJpdat eMsgBi t = 4,
kl PMNewMsgBit = 5,
kl PMDel et eMsgBit = 6
s

/* values of I PMNotificationType */
enum {

kl PMJpdat eMsgMask = 1<<kl PMJpdat eMsgBit,
kl PMNewMsgMask = 1<<kl PMNewMVsgBi t,
1<<kl PMDel et eMsgBi t

kl PMDel et eMsgMask

Summary of the IPM Manager

7-117

Jabeuely buibessa|n weiboidiaiu) .

}s

typedef Byte IPMNotificationType;

CHAPTER 7

Interprogram Messaging Manager

/* val ues of | PMsenderTag */

enum {

kl PMSender RSt ri ngTag,
kl PMSender Recor dl DTag

i
t ypedef

enum {

unsi gned short | PMSender Tag;

kl PMFronDi stListBit = 0,
kl PMDUrmyRecBit = 1,
kl PMreedbackRecBit = 2,

kl PMReport er RecBit

I
w

kl PMBCCRecBit = 4

}s

/* val ues of OCEReci pientOf fsetFlags */

enum {

kl PMFronDi st Li st Mask = 1<<kl PMFronDi stListBit,
kl PMDUnmyRecMask = 1<<kl PMDumyRecBi t ,

kl PMFeedbackRecMask
kl PMReport er RecMask
k|l PMBCCRecMask =

b
t ypedef

#def i ne

#def i ne
#def i ne

Byt e OCEReci pi ent Of f set Fl ags;

kl PMTypeW | dCard

kl PMFami | yUnspeci fi ed
kl PMFami | yW | dCard

/* well-known signature */

#def i ne

kl PMSI gnat ur e

/* well-known message types */

#def i ne

kl PMReport Notify

i pnw

0

1<<kl| PMFeedbackRecBi t,
1<<kl PMReporterRecBit,
1<<kl PMBCCRecBi t

O0x3F3F3F3FL [* 122?27 *]

i prs

"rptn'

/* well-known message bl ock types */

7-118

Summary of the IPM Manager

/* base type */

/* routing feedback */

CHAPTER 7

Interprogram Messaging Manager

#def i ne kl PMENncl osedMsgType "ensg’ /* encl osed (nested) nessage */
#defi ne kl PMReportlInfo "rpti’ /* recipient information */
#def i ne kI PVDi gital Si gnature "dsig' /* digital signature */

/* val ues of | PMvsgFormat */
enum {

kl PMOSFor mat Type = 1,

kl PMSt ri ngFor mat Type = 2

i
t ypedef unsi gned short | PMVvsgFor nat ;
/*

Foll owi ng are the known extension values for |PM addresses handl ed by Apple
Comput er, Inc.

*/

enum {
kOCEal anXt n= "al an',
kOCEentnXtn= "entn', /* 'entn' = entity nane (aka DSSpec) */
kOCEaphnXt n= ' aphn’

1

/* "entn' extension forms */

enum {
kOCEAddr Xt n= "addr', /* reserved */
kOCEQhanXt n= ' gnami, /* queue-nane form */
kOCEAttrXtn= "attr', /* an attribute specification */
kOCESpAt Xt n= 'spat' [/* specific attribute */

i

/* phoneNunber subtype constants */
enum {

kOCEUseHandyDi al = 1,

kOCEDont UseHandyDi al = 2
1

/* addresses with kl PMNBPXtn should specify this nbp type */
#def i ne kl PMABRecei ver NBPType "\ pMsgRecei ver"

/* val ues of | PMHeader Sel ector */
enum {

kl PMTOCC = 0,

kl PMsender = 1,

kl PMProcessHi nt = 2,

Summary of the IPM Manager 7-119

Jabeuely buibessa|n weiboidiaiu) .

}s

CHAPTER 7

Interprogram Messaging Manager

kl PMVessageTitle = 3,
kl PMMessageType = 4,
kl PMFi xedl nfo = 7

t ypedef Byte | PMHeader Sel ector;

enum {

b

kl PMDel i veryNoti ficationBit

kl PMNonDel i veryNot i fi cati onBit
kl PMENcl oseOri gi nal Bit

kl PMSunmar yReport Bi t

kl PMOri gi nal Onl yOnErrorBi t

typedef Byte | PMNotificationType;

enum {

s

kl PMNoNot i fi cati onMask

kl PMDel i veryNoti fi cati onMask

kl PMNonDel i veryNoti fi cati onMask
kl PMDont Encl oseOri gi nal Mask

kl PMENncl oseOri gi nal Mask

kl PM nmedi at eRepor t Mask

kl PMSunmar y Repor t Mask

kl PMOri gi nal Onl yOnEr r or Mask

kl PMEncl oseOri gi nal OnEr r or Mask

PO O

0x00,
1<<kl PMDel i veryNotificationBit,
1<<kl PMNonDel i veryNotificationBit,

= 0x00,

1<<kl PMENncl oseOriginal Bi t,
0x00,

1<<kl PMSumar yReportBit,

1<<kl PMXi gi nal Onl yOnErrorBit,

(kI PMOr i gi nal Onl yOnEr r or Mask| kI PMENCIl oseOri gi nal Mask)

/* standard nondelivery codes */
enum {

kl PMNoSuchReci pi ent

kl PMReci pi ent Mal f or med

kl PMReci pi ent Arrbi guous

kl PMReci pi ent AccessDeni ed
kl PM& oupExpansi onPr obl em
kl PMVBgUnr eadabl e

kl PMVBgEXpi r ed

kl PMMsgNoTr ansl at abl eCont ent
kl PMReci pi ent ReqSt dCont

kl PMReci pi ent ReqSnapShot
kl PMNoTr ansf er Di skFul |

7-120 Summary of the IPM Manager

0x0001,
0x0002,
0x0003,
0x0004,
0x0005,
0x0006,
0x0007,
0x0008,
0x0009,
0x000A,
0x0008B,

CHAPTER 7

Interprogram Messaging Manager

kl PMNoTr ansf er MsgRej ect edbyDest
kl PMNoTr ansf er MsgToolLar ge

0x000C,
0x000D

b

t ypedef unsigned | ong | PMCont ext Ref ;
t ypedef unsigned | ong | PMQuUeueRef ;

t ypedef unsigned | ong | PMMVsgRef ;
typedef unsigned | ong | PMSeqNum
typedef Str32 | PMProcHi nt;

typedef Str32 | PMQueueNane;

t ypedef OCECreat or Type | PMBlI ockType;

Message Addressing Structures

t ypedef DSSpec OCEReci pi ent;

/* format of a packed formrecipient */
#def i ne OCEPackedReci pi ent Header\
unsi gned short dat aLengt h;

struct Prot oOCEPackedReci pi ent {
OCEPackedReci pi ent Header
1
typedef struct Prot oOCEPackedReci pi ent Prot oOCEPackedReci pi ent;

define kOCEPackedReci pi ent MAXBYTES (4096 - sizeof (Prot oOCEPackedReci pi ent))

struct OCEPackedReci pi ent {
OCEPackedReci pi ent Header
Byt e dat a[kOCEPackedReci pi ent MaxByt es] ;
b
typedef struct OCEPackedReci pi ent OCEPackedReci pi ent;

struct | PMENt nQueueExt ensi on {
Str32 queueNane;

1
t ypedef struct | PMENt nQueueExt ensi on | PMENnt nQueueExt ensi on;

Summary of the IPM Manager 7-121

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

struct | PVMENtnAttributeExtension {/* KOCEAttrXtn */
AttributeType attri but eNane;
1
typedef struct | PMENtnAttri buteExtension | PVENt nAttri but eExtension;

struct | PMENt nSpeci fi cAttri buteExtension { /* reserved */
AttributeCreationl D attri buteCreationlD;
AttributeType attri buteNane;

i

typedef struct |PMENntnSpecifi cAttributeExtension

| PMENnt nSpeci fi cAttri but eExt ensi on;

struct | PMENtityNanmeExt ension {
OSType subExt ensi onType;

uni on {
| PMENnt nSpeci fi cAttri but eExt ensi on specificAttribute;
| PMENnt nAt t ri but eExt ensi on attri bute;
| PMENnt nQueueExt ensi on gueue;
}ous
b
typedef struct |PMEntityNaneExtension | PMENtityNameExtension;
Message and Block Types
struct OCECreat or Type {
OSType nmsgCr eat or;
OSType megType;

b
t ypedef struct OCECreat or Type OCECreat or Type;

typedef Str32 | PMstringMsgType;

struct | PMVgType {
| PMVBgFor mat format;/* | PMVsgFor mat */
uni on{
OCECr eat or Type nmsgOSType;
| PMSt ri ngMsgType nsgStr Type;
}t heType;
1
typedef struct |PMvsgType | PMVsgType;

7-122 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

Delivery Notification

struct | PMVsgl D {
unsi gned | ong id[4];
1
typedef struct | PMvsgl D | PMVBgl D;

struct | PVReport Bl ockHeader {
| PMMVsgl D nmsgl D, /* message ID of the original */
UTCTi ne creationTime; /* creation time of the report */
i
typedef struct | PMReport Bl ockHeader | PMReport Bl ockHeader ;

struct OCEReci pi ent Report {
unsi gned short rcptl ndex; /* index of recipient in original nessage */
OSErr result; /* result of sending letter to recipient */
i
typedef struct OCEReci pi ent Report OCEReci pi ent Report ;

Filter Structures

struct |IPVSingleFilter { /* each field should be packed and word aligned */
| PMPriority priority;

Byt e padByt e;

OSType famly; [/* fanmily of this nsg, '????" for all */
Scri pt Code script; /* language identifier */

| PMPr ocHi nt hi nt ;

| PMMBgType msgType;

1
typedef struct IPVSingleFilter |PVSingleFilter;

struct IPMFilter {
unsi gned short count;
| PMSI ngl eFil ter sFilters[1];

b
typedef struct IPMFilter IPMFilter;

Message Information Structure

struct IPMvsglnfo { /* master nessage info */

| PMSeqNum sequenceNum
unsi gned | ong user Dat a;
unsi gned short r espl ndex;

Summary of the IPM Manager 7-123

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Byt e padByt e;

| PMPriority priority;

unsi gned | ong nmsgSi ze;

unsi gned short ori gi nal Rept Count ;

unsi gned short reserved;

UTCTi e creationTi ne;

| PMVsgl D msgl D,

OSType famly; /* family of this nmsg (e.g., nmail) */
| PMPr ocHi nt procHi nt; /* packed and even-I|ength padded */

| PMVBgType nsgType; /* packed and even-|ength padded */

b
typedef struct |PMvsglnfo | PMVgIl nfo;

Header Information Structures

struct | PMIOC {

| PMBI ockType bl ockType;
| ong bl ockOf f set ;
unsi gned | ong bl ockSi ze;
unsi gned | ong bl ockRef Con;

b
typedef struct | PMIOC | PMICC,

struct | PMFi xedHdrInfo {

unsi gned short versi on; /* 1 PM Manager version */

Bool ean aut henti cat ed; /* was message aut henticated? */
Bool ean si gnat ureEncl osed;/* digital signature enclosed? */
unsi gned | ong nsgSi ze; /* size of nmessage */

| PMNotificationType notification; /* notification type requested */
| PMPriority priority; /* message priority */

unsi gned short bl ockCount ; /* nunber of bl ocks */

unsi gned short ori gi nal Rept Count ;/* origi nal nunber of recipients */
unsi gned | ong r ef Con; /* application-defined data */
unsi gned short reserved; /* reserved */

UTCTi ne creationTi ne; /* message creation time */

| PMMVsgl D nsgl D, /* message ID */

OSType famly; /* famly of this nsg */

b

Sender Structure

struct | PMsender {
| PMSender Tag sendTag;
uni on{

7-124 Summary of the IPM Manager

}s

typedef struct

CHAPTER

7

Interprogram Messaging Manager

RSt ri ng
PackedRecordl D
} theSender;

Parameter Block Header

rstring;
rid,

| PMSender | PMSender

#def i ne | PMPar anHeader \
Ptr gLi nk; \
| ong reservedHi; \
| ong reservedHz; \
ProcPtr ioConpletion; \
OSEr r i oResul t; \
| ong saveAb5; \

short r eqCode;

Parameter Blocks for Creating a New Message

struct | PMNewVsgPB {

}s

t ypedef struct

| PMPar amHeader
unsi gned | ong
OCEReci pi ent *
OCEReci pi ent *
StringPtr

unsi gned short
| PMVBgType*
unsi gned | ong
| PMVBgRef

unsi gned short
| ong

Aut hl dentity

| PMSender *
unsi gned | ong
unsi gned | ong

filler;
reci pi ent;
repl yQueue;
procHi nt;
filler2;
megType;

r ef Con;
newMsgRef ;
fillers3;
filler4,;
identity;
sender ;

i nt er nal Use;
i nternal Use2;

| PMNewiVsgPB | PMNewiVE gPB;

struct | PMNewHFSMsgPB {
| PMPar anmHeader
FSSpec* hf sPat h;
OCEReci pi ent * reci pi ent;
OCEReci pi ent * repl yQueue;
StringPtr procHi nt;

Summary of the IPM Manager

7-125

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

unsi gned short filler2;

| PMVBgType* nmegType;

unsi gned | ong r ef Con;

| PMVBgRef newMsgRef ;
unsi gned short filler3;

| ong filler4;
Aut hl dentity identity;

| PMSender * sender ;

unsi gned | ong i nternal Use;
unsi gned | ong i nternal Use2;

b
typedef struct | PMNewHFSMsgPB | PMNewHFSMs gPB;

typedef struct | PMAddReci pi entPB {

| PMPar anmHeader

| PMVBgRef msgRef ;
OCEReci pi ent * reci pi ent;
| ong reserved;

1
t ypedef struct | PMAddReci pi ent PB | PMAddReci pi ent PB;

struct | PMAddRepl yQueuePB {

| PMPar anHeader

| PMVBgRef nsgRef ;

| ong filler;
OCEReci pi ent * repl yQueue;

1
t ypedef struct | PMAddRepl yQueuePB | PMAddRepl yQueuePB;

struct | PVWNewBl ockPB {

| PMPar anmHeader

| PMVBgRef nsgRef ;

| PMBl ockType bl ockType;

unsi gned short filler[5];

unsi gned | ong r ef Con;

unsi gned short filler2[3];

| ong startingOff set;

b
typedef struct | PMNewBl ockPB | PMNewBl ockPB;

struct | PMNewNest edMsgBl ockPB {

| PMPar anmHeader
| PMVBgRef nsgRef ;
OCEReci pi ent * reci pi ent;

7-126 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

OCEReci pi ent * repl yQueue;
StringPtr procHi nt;
unsi gned short filler1;

| PMVBgType* msgType;

unsi gned | ong r ef Con;

| PMVBgRef newsgRef ;
unsi gned short filler2;

| ong starti ngO fset;
Aut hl dentity identity;

| PMSender * sender;

unsi gned | ong i nt er nal Use;
unsi gned | ong i nternal Use2;

1
typedef struct | PMNewNest edMsgBl ockPB | PMNewNest edMsgBl ockPB;

struct | PMNest MsgPB {
| PMPar amHeader

| PMVBgRef nsgRef ;

unsi gned short filler[9];

unsi gned | ong r ef Con;

| PMVBgRef nsgToNest ;

unsi gned short filler2;

| ong startingO fset;

b
typedef struct | PMNest MsgPB | PWNest MsgPB;

struct | PMNViteMsgPB {

| PMPar amrHeader

| PMVs gRef nsgRef ;

| PMAccessMode node;

| ong of fset;

unsi gned | ong count ;

Ptr buffer;

unsi gned | ong act ual Count ;
Bool ean current Bl ock;

1
typedef struct |PMNiteMsgPB | PMNiteMsgPB;

struct | PMENdMsgPB {

| PMPar anmHeader

| PMVBgRef nsgRef ;

| PMVsgl D nmsgl b,
RStri ng* msgTitle;

| PMNoti ficationType deliveryNotification;

Summary of the IPM Manager 7-127

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

| PMPriority priority;

Bool ean cancel ;

Byt e padByt e;

| ong reserved;

SI GSi gnaturePtr si gnat ur e;

Size si gnat ur eSi ze;

SI GContext Ptr si ghat ur eCont ext ;

OSType famly; [/* family of this nsg

use kil PMFami | yUnspecified by default */

1
typedef struct | PMENdMsgPB | PMENdMsgPB;

Parameter Blocks for Managing Message Queues

struct | PMCreat eQueuePB {

| PMPar anmHeader

| ong fillerl;

OCEReci pi ent * gueue;

Aut hl dentity identity;/* used only if queue is renote */
PackedRecor dl D* owner ; /* used only if queue is renote */

b
typedef struct | PMCreat eQueuePB | PMCr eat eQueuePB;

struct | PMOpenCont ext PB {
| PMPar anmHeader
| PMCont ext Ref cont ext Ref ;
1
typedef struct | PMOpenCont ext PB | PMOpenCont ext PB;

struct | PMOpenQueuePB {

| PMPar anmHeader

| PMCont ext Ref cont ext Ref ;

OCEReci pi ent * gueue;

Aut hl dentity identity;

I PMFilter* filter;

| PMQueueRef newQueueRef ;

| PMNot ePr ocPt r notificationProc; /* must be nil */
unsi gned | ong user Dat a; /* reserved */
| PMNotificationType noteType; /* reserved */
Byt e padByt e; /* reserved */
| ong reserved;

| ong reserved2;

b
t ypedef struct | PMOpenQueuePB | PMXpenQueuePB;

7-128 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

t ypedef | PMEnunerat eQueuePB | PMChangeQueueFi | t er PB;
t ypedef | PMOpenCont ext PB | PMCl oseCont ext PB;

struct | PMCl oseQueuePB {
| PMPar anHeader
| PMQUeueRef gueueRef;
s
typedef struct | PMJ oseQueuePB | PMC oseQueuePB;

t ypedef |PMCreat eQueuePB | PMDel et eQueuePB;

Parameter Blocks for Listing and Reading Messages

struct | PMEnuner at eQueuePB {

| PMPar anHeader

| PMQueueRef gueueRef;

| PMSegqNum start SegNum
Bool ean get ProcHi nt;
Bool ean get MsgType;
short filler;

| PMFi I ter* filter;

unsi gned short nuniToCet;
unsi gned short nuntGotten;
unsi gned | ong enunCount;
Ptr enunBuf f er; /* will be packed array of
unsi gned | ong act EnunCount ;
1
typedef struct | PMeEnunmer at eQueuePB | PVEnumer at eQueuePB;

struct | PMOpenMsgPB {

| PMPar amHeader

| PMQueueRef gueueRef;

| PMSegqNum sequenceNum
| PMVBgRef newMsgRef ;

| PMSeqNum act ual SeqNum
Bool ean exact Mat ch;
Byt e padByt e;

| ong reserved;

1
t ypedef struct | PMpenMsgPB | PMpenMsgPB;

struct | PMOpenHFSMsgPB {
| PMPar amHeader
FSSpec* hf sPat h;

Summary of the IPM Manager

| PMVBgl nfo */

7-129

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

| ong filler;

| PMVs gRef newMsgRef ;
| ong filler2;
Byt e filler3;

| ong reserved;

1
t ypedef struct | PMOpenHFSMsgPB | PMOpenHFSMsgPB

struct | PMXYenBl ockAsMsgPB {

| PMPar anmHeader

| PMVBgRef nsgRef ;
unsigned long filler;

| PMVBgRef newMsgRef ;

unsi gned short filler2[7];
unsi gned short bl ockl ndex;
1
t ypedef struct | PMXpenBl ockAsMsgPB | PMOpenBl ockAsMsgPB

struct | PMzet Msgl nf oPB {

| PMPar anHeader
| PMVBgRef nsgRef ;
| PMVBgI nf o* i nfo;

b
typedef struct |PMzet Msgl nfoPB | PMGet Msgl nf oPB

struct | PMReadHeader PB {

| PMPar amHeader

| PMVBgRef msgRef ;

unsi gned short fiel dSel ector
| ong of fset;

unsi gned | ong count ;

Ptr buf fer;

unsi gned | ong act ual Count ;
unsi gned short filler;

unsi gned | ong remai ni ng;

1
typedef struct | PVMReadHeader PB | PMReadHeader PB

struct | PMReadReci pi ent PB {

| PMPar anmHeader

| PMVBgRef nmsgRef ;
unsi gned short rcpt | ndex;
| ong of f set;
unsi gned | ong count ;

7-130 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

Ptr buf fer;

unsi gned | ong act ual Count ;

short reserved; /* must be 0 */
unsi gned | ong remai ni ng;

unsi gned short ori gi nal | ndex;

OCEReci pi ent O f set Fl ags reci pi ent O f set Fl ags;
1
typedef struct | PMReadReci pi ent PB | PMReadReci pi ent PB;

t ypedef | PMReadReci pi ent PB | PMReadRepl yQueuePB;

struct | PMGet Bl kl ndexPB {
| PMPar amHeader
| PMVs gRef nsgRef ;
| PMBI ockType bl ockType;
unsi gned short index;
unsi gned short startingFrom
| PMBI ockType act ual Bl ockType;
unsi gned short actual Bl ockl ndex;
b
typedef struct | PMcet Bl kl ndexPB | PMGet Bl kl ndexPB

struct | PMReadMVsgPB {

| PMPar anmHeader

| PMVBgRef msgRef ;
| PMAccessMode node;

| ong of fset;
unsi gned |l ong count;
Ptr buf fer;

unsi gned | ong actual Count;
unsi gned short bl ockl ndex;
unsi gned | ong remaining;
i
typedef struct |PVReadMsgPB | PMReadMsgPB;

struct | PWerifySignaturePB {
| PMPar anmHeader
| PMVBgRef nmsgRef ;
SI GCont ext Ptr si gnat ur eCont ext ;
1
typedef struct |PWerifySi gnaturePB | PMWeri fySi gnat urePB

Summary of the IPM Manager

7-131

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

struct | PMJ oseMsgPB {

| PMPar anHeader
| PMVBgRef nsgRef ;
Bool ean del et eMsg;

b
typedef struct |PMI oseMsgPB | PMCl oseMsgPB;

Parameter Block for Deleting Messages

struct | PMDel et eMsgRangePB {

| PMPar amHeader

| PMQueueRef gueueRef;

| PMSegqNum start SegNum
| PMSeqNum endSeqNum

| PMSeqNum | ast SegNum

1
typedef struct | PMDel et eMsgRangePB | PVDel et eMsgRangePB;

Parameter Block Union Structure

uni on | PMPar anBl ock {
struct {IPMParanHeader} header;

| PMOpenCont ext PB openCont ext PB;

| PMCl oseCont ext PB cl oseCont ext PB;

| PMCr eat eQueuePB cr eat eQueuePB;

| PMDel et eQueuePB del et eQueuePB;

| PMOpenQueuePB openQueuePB;

| PMCl oseQueuePB cl oseQueuePB;

| PMEnuner at eQueuePB enurmer at eQueuePB;
| PMChangeQueueFi | ter PB changeQueueFi | t er PB;
| PMDel et eMsgRangePB del et eMsgRangePB;
| PMOpenMsgPB openMsgPB;

| PMOpenHFSMsgPB openHFSMsgPB;

| PMOpenBl ockAsMsgPB openBl ockAsMsgPB;
| PMCl oseMsgPB cl oseMsgPB;

| PMGet Msgl nf oPB get Msgl nf oPB;

| PMReadHeader PB r eadHeader PB;

| PMReadReci pi ent PB readReci pi ent PB;

| PMReadRepl yQueuePB r eadRepl yQueuePB;
| PMGet Bl kl ndexPB get Bl kI ndexPB;

| PMReadMsgPB readMsgPB;

| PMVeri fySi gnat ur ePB veri fySi gnat ur ePB;
| PMNewiVs gPB new\sgPB;

| PMNewHFSMs gPB newHFSMs gPB;

7-132 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

| PMNest MsgPB nest MsgPB;

| PMNewNest edMsgBl ockPB newNest edMsgBIl ockPB;
| PMENdMsgPB endMVsgPB;

| PMAddReci pi ent PB addReci pi ent PB

| PMAddRepl yQueuePB addRepl yQueuePB

| PMNewBl ockPB newBl ockPB

| PMWYiteMsgPB writeMsgPB;

b
t ypedef union | PMParanBl ock | PMParanBl ock;
t ypedef | PMParanBl ock *| PMParanBl ockPtr

IPM Manager Functions

Creating a New Message

pascal OSErr | PMNewMsg (I PMPar anBl ockPt r
pascal OSErr | PMNewHFSMsg (I PMPar anBl ockPt r

pascal OSErr | PMAddReci pi ent
(I PMPar anBl ockPt r

pascal OSErr | PMAddRepl yQueue
(I PMPar anBl ockPt r

pascal OSErr | PMNewBl ock (1 PMPar anBl ockPt r

pascal OSErr | PMNewNest edMsgBIl ock
(1 PMPar anBl ockPt r
Bool ean async);

pascal OSErr | PMNest Msg (I PMPar anBl ockPt r
pascal OSErr |PMNiteMsg (I PMPar anBl ockPt r
pascal OSErr | PMEndMsg (1 PMPar anBl ockPt r

Managing Message Queues

pascal OSErr | PMCreat eQueue
(I PMPar anmBl ockPt r

pascal OSErr | PMJXpenCont ext
(1 PMPar anBl ockPt r

pascal OSErr | PMXpenQueue (I PMPar anBl ockPt r

pascal OSErr | PMChangeQueueFilter
(1 PMPar anBl ockPt r
Bool ean async);

pascal OSErr |PMJ oseQueue (| PMParanBl ockPtr

Summary of the IPM Manager

par anBl ock,
par anmBl ock,

par anBl ock,

par anBl ock,
par anBl ock,

par anBl ock,

par anmBl ock,
par anBl ock,
par anBl ock,

par anBl ock,

par anBl ock,
par anBl ock,

par anBl ock,

par anBl ock,

Bool ean
Bool ean

Bool ean

Bool ean
Bool ean

Bool ean
Bool ean
Bool ean

Bool ean

Bool ean
Bool ean

Bool ean

async) ;
async);

async) ;

async) ;
async) ;

async);
async) ;
async) ;

async) ;

async) ;
async) ;

async) ;

7-133

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

pascal OSErr

pascal OSErr

| PMCl oseCont ext
(I PMPar anBl ockPt r

| PMDel et eQueue
(I PMPar anBl ockPt r

Listing and Reading Messages

pascal OSErr

pascal OSErr

| PMEnuner at eQueue
(1 PMPar anBl ockPt r

| PMOpenhMsg (I PMPar anBl ockPt r

pascal OSErr | PMXenHFSMsg (| PMPar anBl ockPtr
pascal OSErr | PMXenBl ockAsMsg

(1 PMPar anBl ockPt r
pascal OSErr |PMzet Msglnfo (1 PMParanBl ockPtr
pascal OSErr | PVReadHeader

(I PMPar anmBl ockPt r
pascal OSErr | PMReadReci pi ent

(1 PMPar anBl ockPt r
pascal OSErr | PMReadRepl yQueue

(I PMPar anBl ockPt r
pascal OSErr | PMzet Bl kl ndex

(1 PMPar anBl ockPt r
pascal OSErr | PMReadMsg (I PMPar anBl ockPt r
pascal OSErr | PMWerifySignature

(I PMPar anmBl ockPt r
pascal OSErr | PMJ oseMsg (I PMPar anBl ockPt r
Deleting Messages
pascal OSErr | PMDel et eMsgRange

(1 PMPar anBl ockPt r
Utility Functions

pascal unsigned short OCESi zePackedReci pi ent
(const OCEReci pi ent *rcpt);

pascal unsigned short OCEPackReci pi ent

(const OCEReci pi ent *rcpt,

pascal OSErr OCEUnpackReci pi ent

(const voi d* buffer,

par anBl ock,

par anBl ock,

par anBl ock,
par anBl ock,
par anBl ock,

par anBl ock,
par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,
par anBl ock,

par anBl ock) ;
par anBl ock,

par anBl ock,

Recordl D *entitySpecifier);

7-134 Summary of the IPM Manager

Bool ean

Bool ean

Bool ean
Bool ean
Bool ean

Bool ean
Bool ean

Bool ean

Bool ean

Bool ean

Bool ean
Bool ean

Bool ean

Bool ean

async) ;

async) ;

async) ;
async) ;
async) ;

async) ;
async) ;

async) ;
async) ;
async) ;
async) ;

async) ;

async) ;

async) ;

voi d* buffer);

OCEReci pi ent *rcpt,

CHAPTER 7

Interprogram Messaging Manager

pascal OSErr OCEStreanReci pi ent
(const OCEReci pient* rcpt, OCEReci pi ent Streaner
stream |ong userData, unsigned |ong*
act ual Count);

pascal OSType OCEGet Reci pi ent Type
(const CreationlD *cid);

pascal void OCESet Reci pi ent Type
(OSType extensionType, CreationlD *cid);

Application-Defined Functions

pascal void MyConpl eti onRouti ne
(Ptr paranBl k) ;

pascal OSErr MReci pi ent Streaner
(voi d* buffer, unsigned |ong count,
Bool ean eof, |ong userData);

Pascal Summary

Constants

CONST

{ values of IPWPriority }
kl PMAnyPriority = 0; { for filter only}

kl PMNormal Priority = 1;
{ val ues of |PMAccessMde }
k1 PMAL Mar k = 0;
kl PMFrontst ar t = 1;
k1 PMFr omLEOM = 2;
k1 PMFr omvar k = 3;
kl PMJpdat eMsgBi t = 4;
kI PMNewMs gBi t = 5;
k1 PVDel et eMsgBi t = 6;
{ values of |IPMNotificationType }
kl PMJpdat eMsgMask = $10; { 1<<kl PMJpdat eMsgBi t }
k1 PMNewivs gMask = $20; { 1<<kl PMNewMsgBi t }
kil PMDel et eMsgMask = $40; { 1<<kl PMDel et eMsgBi t }

Summary of the IPM Manager 7-135

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

{ val ues of | PMsenderTag }
kl PMsender RSt ri ngTag = 0;

kl PMSender Recor dl DTag = 1;
kl PMFronDi st Li st Bit = 0;
kl PMDUnmy RecBi t = 1;
kl PMreedbackRecBi t = 2; { redirect to feedback queue }
kl PMReport er RecBi t =3 { redirect to reporter original
queue }
kl PMBCCRecBi t = 4, { this recipient is blind to all
reci pients of nmessage }
{ val ues of OCEReci pi ent O fsetFl ags }
kl PMFr onDi st Li st Mask = $01; {1<<kl PMFronDi st Li stBit}
k1 PMDummy RecMask = $02; { 1<<kl PMDunmyRecBi t }
kl PMreedbackRecMask = $04; { 1<<kl PMreedbackRecBi t }
kl PMReport er RecMask = $08; { 1<<kl PMReport er RecBi t}
kl PMBCCRecMask = $10; { 1<<kl PMBCCRecBi t }
kl PMTypeW | dCar d ='ipmw;
kl PMFami | yUnspeci fi ed = 0;
kl PMFami | yW | dCar d = ' 9977 ;
{ well known signature }
kl PMSi gnat ur e = 'ipns';{ base type }
{ well known nessage types }
kl PMReport Noti fy = '"rptn';{ routing feedback }
{ well known nessage bl ock types }
kl PMENcl osedMsgType = '"ensqg';{ enclosed (nested) nessage }
kl PMReportinfo ='rpti';{ recipient information }
kl PMDi gi tal Si gnature ='dsig' ;{ digital signature }
{ val ues of |PMsgFormt }
kl PMOSFor mat Type = 1,
kl PMSt ri ngFor mat Type = 2;

7-136 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

{Foll owi ng are the known extension values for | PM addresses handl ed by Apple

Computer, Inc.}

kOCEal anXt n
kOCEent nXt n

kOCEaphnXt n

{ "entn' extension forns }
kOCEAddr Xt n
k OCEanXt n
kOCEAttr Xt n
kOCESpAt Xt n

{ phoneNunber subtype constants }
kCOCEUseHandyDi al
kOCEDont UseHandyDi al

kOCEPackedReci pi ent MaxByt es

al an';
"entn';{ 'entn' = entity nane
(DSSpec: aka) }
"aphn';

"addr';{ reserved }
"gnam ; { queue-nane form}

attr';{ an attribute specification }
spat';{ specific attribute }

(4096 - sizeof (Prot oOCEPackedReci pient));

{ addresses with kl PMNBPXtn shoul d specify this nbp type }

kl PMASRecei ver NBPType

{ val ues of | PMJeader Sel ector }
kl PMTOC
kl PMSender
kl PMPr ocessHi nt
kl PMVessageTitl e
kl PMVvessageType
kl PMFi xedl nf o

kl PMDel i veryNoti ficationBit

kl PMNonDel i veryNoti fi cati onBit
kl PMENcl oseOri gi nal Bit

kl PMSunmar yReport Bi t

kl PMOri gi nal Onl yOnErrorBi t

kl PMNoNot i fi cati onMask
kl PMDel i veryNoti fi cati onMask
kI PMNonDel i veryNot i fi cati onMask

{ 1<<kl PMNonDel

kl PMDont Encl oseOri gi nal Mask
kl PMENncl oseOri gi nal Mask
kl PM nmedi at eRepor t Mask

Summary of the IPM Manager

' MsgRecei ver';

NAREWDNMNRO

hPWNERO

$00;

$01; {1<<klPMDeliveryNotificationBit}
$02;

i veryNotificationBit}

$00;

= $04; {1<<kl PMEncl oseOriginal Bit}

$00;

7-137

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

kl PMSunmar y Repor t Mask
kI PMOri gi nal Onl yOnEr r or Mask
kl PMEncl oseOri gi nal OnErr or Mask

$08;
$10;

{ 1<<kl PMSumar yReportBi t}
{1<<kl PMXi gi nal Onl yOnErrorBit}

kl PMOri gi nal Onl yOnError Mask + kil PMEncl oseOri gi nal Mask;

{ standard Nondelivery codes }

kl PMNoSuchReci pi ent = $0001;
kl PMReci pi ent Mal f or nmed = $0002;
kl PMReci pi ent Arrbi guous = $0003;
kl PMReci pi ent AccessDeni ed = $0004;
k1 PM&r oupExpansi onPr obl em = $0005;
kl PMMsgUnr eadabl e = $0006;
kI PMVsgEXpi r ed = $0007;
kl PMMsgNoTr ansl at abl eCont ent = $0008;
kl PMReci pi ent ReqSt dCont = $0009;
kl PMReci pi ent ReqSnapShot = $000A;
kl PMNoTr ansf er Di skFul | = $000B;
kl PMNoTr ansf er MsgRej ect edbyDest = $000C;
kl PMNoTr ansf er MsgTooLar ge = $000D;

Data Types

TYPE

| PMPriority = Byte;

| PMAccessMode = | NTECGER;

| PMNoti ficationType = Byte;

| PMSender Tag = | NTEGER,

OCEReci pi ent O f set Fl ags = Byt e;

| PMWsgFor mat = | NTEGER,

| PMHeader Sel ect or = Byte;

| PMCont ext Ref = LONG NT;

| PMQueueRef = LONG NT;

| PMVBgRef = LONG NT;

| PMSeqNum = LONG NT;

7-138 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

| PMProcH nt = Str32;
| PMQueueNanme = Str32;

| PMBI ockType = OCECr eat or Type;

Message Addressing Structures
OCEReci pi ent = DSSpec;

Pr ot oOCEPackedReci pi ent = RECORD
dat aLengt h: | NTEGER;
END;

OCEPackedReci pi ent = RECORD

dat aLengt h: | NTEGER;
dat a: PACKED ARRAY[1. . kOCEPackedReci pi ent MaxByt es] OF Byte;
END;

OCEPackedReci pi ent Ptr = ~"OCEPackedReci pi ent ;

| PMENnt nQueueExt ensi on
queueNane: Str32;
END;

RECORD

| PMENnt nAtt ri but eExt ensi on = RECORD{ kOCEAttrXtn }
attributeName: AttributeType;
END;

| PMEnt nSpeci fi cAttri but eExt ensi on = RECORD{ kOCESpAt Xt n }

attributeCreationlD: AttributeCreationl D,
attri but eNane: AttributeType;
END;

| PMENt i t yNaneExt ensi on = RECORD
subExt ensi onType: OSType;
CASE | NTEGER OF
1: (specificAttribute: |PMeEntnSpecificAttributeExtension);

2: (attribute: | PMENt nAt t ri but eExt ensi on) ;
3: (queue: | PMENt nQueueExt ensi on) ;
END;

Summary of the IPM Manager 7-139

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Message and Block Types

OCECr eat or Type = RECORD
nmegCreator: OSType;
msgType: OSType,;
END;

| PMStri ngMsgType = Str32;

| PMMVsgType = RECORD
format: | PWVsgFormat; { | PMvsgFor mat}
CASE | NTEGER OF
1: (msgCSType: OCECr eat or Type) ;
2: (msgStrType: | PMStri ngMsgType);
END;

Delivery Notification Structures

| PMMsgl D = RECORD
i d: ARRAY[1..4] OF LONG NT;
END;

| PMReport Bl ockHeader = RECORD

nsgl D: | PMMVsgl D; { nessage I D of the original }
creationTi nme: UTCTi ne; { creation tine of the report }
END;

OCEReci pi ent Report = RECORD

rcpt | ndex: I NTEGER, { i ndex of recipient in original nessage }
result: OSErr; { result of sending letter to this recipient}
END;

Filter Structures

| PMSi ngl eFi |l ter = PACKED RECORD

priority: | PMPriority;

padByt e: Byt e;

famly: CSType; { famly of this nsg, '????" for all }
script: Scri pt Code; { |anguage identifier }

hi nt: | PMPr ocHi nt ;

nmegType: | PMMsgType;

END;

7-140 Summary of the IPM Manager

CHAPTER

7

Interprogram Messaging Manager

| PMFi | ter = RECORD
count : | NTEGER;
sFilters: ARRAY[1..1] OF IPMsingleFilter;
END;

Message Information Structure

| PMMsgl nfo =
sequenceNum
user Dat a:
r espl ndex:
padByt e:
priority:
nsgSi ze:
ori gi nal Rept Count :
reserved:
creationTi ne:
nmsgl D:
fam |y

procHi nt :
nmsgType:
END;

PACKED RECCORD

| PMSeqNum
LONG NT;

| NTEGER
Byt e;

| PMPriority;
LONG NT;

| NTEGER;

| NTEGER
UTCTi ne;

| PMVBgI D;
GSType;

{ fanmily of this nsg

(e.g. mail) }

| PMPr ocHi nt ;
| PMMsQType;

Header Information Structures

| PMTOCC = RECORD
bl ockType:
bl ockOf f set :
bl ockSi ze:
bl ockRef Con:
END;

| PMFi xedHdr I nfo =
ver si on:
aut henti cat ed:
si gnhat ur eEncl osed:
negSi ze:
notification:
priority:
bl ockCount :
ori gi nal Rept Count :
r ef Con:
reserved:

| PMBI ockType;
LONG NT;
LONG NT;
LONG NT;

PACKED RECCORD

| NTEGER;

BOCOLEAN;

BOOLEAN;

LONG NT;

| PMNoti ficationType;
| PMPriority;

| NTEGER;

| NTEGER;

LONG NT;

| NTEGER;

Summary of the IPM Manager

Lt N e B e W e W e e e N i e Wl

{ packed and even-1length padded }
{ packed and even-1length padded }

| PM Manager version }

was nessage authenticated? }
digital signature enclosed? }
si ze of nessage }

notification type requested }
nmessage priority }

nunber of bl ocks }

ori ginal number of recipients }
application-defined data }
reserved }

7-141

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

creationTi ne: UTCTi ne;
nmsgl D | PMVsgI D,
famly: CSType;
END;

Sender Structure

| PMSender = RECORD
sendTag: | PMsender Tag;
CASE | NTEGER OF
1. (rString: RString);
2: (rid: PackedRecordI D) ;
END;

Parameter Block Header

| PMPar anHeader = RECORD
gLi nk: Ptr;

reservedHL: LONG NT;
reservedH2: LONG NT;
i oConpl etion: ProcPtr;
i oResul t: OSErr;
saveAb5: LONG NT;
r eqCode: | NTEGER,;
END;

Parameter Blocks for Creating a New Message

| PMNewVsgPB = RECORD
gLi nk: Ptr;

reservedHL: LONG NT;
reservedH2: LONG NT;

i oConpl etion: ProcPtr;

i oResul t: OSErr;

saveA5: LONG NT;

r eqCode: | NTEGER;
filler: LONG NT;

reci pient: NQOCEReci pi ent ;
repl yQueue: AQOCEReci pi ent ;
procHi nt : StringPtr;
filler2: | NTEGER;
msgType: A PMVBQTYpe;

r ef Con: LONG NT;
newMsgRef : | PMMsgRef ;

7-142 Summary of the IPM Manager

{ nmessage creation tine }
{ nmessage ID}
{ famly of this nsg }

CHAPTER 7

Interprogram Messaging Manager

filler3:
filler4:
identity:
sender:

i nt er nal Use:
i nt ernal Use2:
END;

gLi nk:
reservedHl:
reservedH2:
i oConpl eti on:
i oResul t:
saveA5:

r eqCode:

hf sPat h:
reci pi ent:
repl yQueue:
procHi nt:
filler2:
megType:

r ef Con:
newMsgRef :
filler3:
filler4:
identity:
sender:

i nternal Use:
i nternal Use2:
END;

gLi nk:
reservedHl:
reservedH2:
i oConpl etion:
i OResul t:
saveA5:

r eqCode:
nsgRef :
reci pient:
reserved:
END;

| NTEGER;
LONG NT;

Aut hl dentity;
Al PMBender ;
LONG NT;
LONG NT;

| PMNewHFSMsgPB = RECORD

Ptr;
LONG NT;
LONG NT;
Prochtr;
CSErr;

LONG NT;
| NTEGER;
NFSSpec;
NQOCEReci pi ent ;
NQOCEReci pi ent ;
StringPtr;
| NTEGER,;
N PMVBgType;
LONG NT;
| PMMVsgRef ;
| NTEGER;
LONG NT;
Aut hl dentity;
Nl PMSender ;
LONG NT;
LONG NT;

| PMAddReci pi ent PB = RECCORD

Ptr;

LONG NT;

LONG NT;
ProchPtr;
OSErr;

LONG NT;

| NTEGER;

| PMMVsgRef ;
NQOCEReci pi ent ;
LONG NT;

Summary of the IPM Manager

7-143

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

| PMAddRepl yQueuePB = RECORD

gLi nk: Ptr;
reservedHl: LONG NT;
reservedH2: LONG NT;

i oConpl eti on: ProcPtr;

i oResul t: CSErr;
saveAb: LONG NT;

r eqCode: | NTEGER,
nsgRef : | PMVEgRef ;
filler: LONG NT;
repl yQueue: NOCEReci pi ent ;
END;

| PMNewBl ockPB = RECORD

gLi nk: Ptr;

reservedHl: LONG NT;

reservedH2: LONG NT;

i oConpl etion: ProcPtr;

i oResul t: OSErr;

saveAb: LONG NT;

r eqCode: | NTEGER,;

nmsgRef : | PMMVsgRef ;

bl ockType: | PMBI ockType;

filler: ARRAY[1..5] OF | NTEGER,
r ef Con: LONG NT;

filler2: ARRAY[1. .3] OF | NTECER
startingOffset: LONG NT;

END;

| PMNewNest edMsgBl ockPB = RECORD

gLi nk: Ptr;
reservedHl: LONG NT;
reservedH2: LONG NT;

i oConpl etion: ProcPtr;

i oResul t: OSErr;

saveAb: LONG NT;

r eqCode: | NTEGER;
nsgRef : | PMMVsgRef ;
recipient: AOCEReci pi ent ;
repl yQueue: NQOCEReci pi ent ;
procHi nt: StringPtr;
fillerl: | NTEGER;
msgType: N PMVBQTYpe;

r ef Con: LONG NT;

7-144 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

newMsgRef :
filler2:

startingOf fset:

identity:
sender:

i nt ernal Use:
i nternal Use2:
END;

gLi nk:
reservedHl:
reservedHz:
i oConpl etion:
i oResul t:
saveA5:

r eqCode:
nsgRef :
filler:

r ef Con:
msgToNest :
filler2:

startingOffset:

END;

gLi nk:
reservedHl:
reservedHz:

i oConpl etion:
i oResul t:
saveA5:

r eqCode:
nsgRef :

node:

of f set:
count :

buf fer:

act ual Count :
current Bl ock:
END;

| PMVsgRef ;

| NTEGER;
LONG NT;

Aut hl dentity;
"l PMsender ;
LONG NT;
LONG NT;

| PMNest MsgPB = RECORD

Ptr;

LONG NT;
LONG NT;
ProchPtr;
OSErr;
LONG NT;

| NTEGER,

| PMVsgRef ;

ARRAY[1. .9] OF I NTEGER

LONG NT;
| PMVsgRef ;
| NTEGER;
LONG NT;

| PMNV it eMsgPB = RECCORD

Ptr;

LONG NT;
LONG NT;
Prochtr;
OSErr;
LONG NT;

| NTEGER,

| PMMVsgRef ;

| PMAccessMbde;

LONG NT;
LONG NT;
Ptr;

LONG NT;
BOOLEAN;

Summary of the IPM Manager

7-145

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

| PMENdMsgPB = PACKED RECCORD

gLi nk: Ptr;

reservedHl: LONG NT;

reservedH2: LONG NT;

i oConpl eti on: ProcPtr;

i oResul t: CSErr;

saveAS5: LONG NT;

r eqCode: | NTEGER,

nsgRef : | PMVEgRef ;

msgl D | PMVsgI D,

nmegTitle: ARString;

deliveryNotification: |IPMNotificationType;

priority: | PMPriority;

cancel : BOOLEAN;

padByt e: Byt e;

reserved: LONG NT;

si gnat ure: SI GSi gnaturePtr;

si gnat ur eSi ze: Si ze;

si gnhat ur eCont ext : SI GContext Ptr;

famly: CSType; { famly of this nmeg (e.qg.,
mai |) use kI PMFami | yUnspeci fi ed
by default }

END;

Parameter Blocks for Managing Message Queues
| PMCr eat eQueuePB = RECORD

gLi nk: Ptr;

reservedHL: LONG NT;

reservedH2: LONG NT;

i oConpl etion: ProcPtr;

i oResul t: OSErr;

saveA5: LONG NT;

r eqCode: | NTEGER;

fillerl: LONG NT;

gueue: AQOCEReci pi ent ;

identity: Aut hl dentity; { used only if queue is renmote }

owner : "PackedRecordI D; { used only if queue is renote }

END;

| PMOpenCont ext PB = RECORD

gLi nk: Ptr;
reser vedHl: LONG NT;
reservedH2: LONG NT;

7-146 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

i oConpl etion:
i oOResul t:
saveA5:

r eqCode:

cont ext Ref :

END;

| PMOpenQueuePB = PACKED
gLi nk:
reservedHl:
reservedH2:
i oConpl eti on:
i oResul t:
saveA5:
r eqCode:
cont ext Ref :
queue:
identity:
filter:
newQueueRef :
notificati onProc:
user Dat a:
not eType:
padByt e:
reserved:
reserved2:
END;

| PMChangeQueueFilterPB =

ProchPtr;
OSErr;

LONG NT;
| NTEGER;

| PMCont ext Ref; { context reference to be

further call s}

RECORD

Ptr;

LONG NT;

LONG NT;
Prochtr;

CSErr;

LONG NT;

| NTEGER;

| PMCont ext Ref ;
NQOCEReci pi ent ;
Aut hl dentity;
N PVFi L ter;

| PMQueueRef ;

| PMNot ePr ocPt r;
LONG NT;

| PMNot i ficationType;
Byt e;

LONG NT;

LONG NT;

| PMEnuner at eQueuePB;

| PMCl oseCont ext PB = | PMOpenCont ext PB;

| PMCl oseQueuePB = RECORD

gLi nk: Ptr;
reservedHL: LONG NT;
reservedH2: LONG NT;

i oConpl etion: ProcPtr;

i oResul t: OSErr;
saveAb: LONG NT;

r eqCode: | NTEGER,;
gqueueRef : | PMQueueRef ;
END;

| PMDel et eQueuePB = | PMCr eat eQueuePB;

Summary of the IPM Manager

used in

7-147

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Parameter Blocks for Listing and Reading Messages

| PMEnuner at eQueuePB = RECORD

gLi nk: Ptr;
reservedHl: LONG NT;
reservedH2: LONG NT;

i oConpl eti on: ProcPtr;

i oResul t: CSErr;
saveAS5: LONG NT;

r eqCode: | NTEGER,
gueueRef : | PMQueueRef ;
start SegNum | PMSeqNum
get ProcHi nt: BOOLEAN;

get MsgType: BOOLEAN;
filler: | NTEGER;
filter: N PMVFi L ter;
nunifoGet : | NTEGER;
nunGot t en: | NTEGER;
enunCount : LONG NT;
enunBuf f er: Ptr; { will be packed array of |PMvsglnfo }
act EnunCount : LONG NT;

END;

| PMOpenMsgPB = PACKED RECCORD

gLi nk: Ptr;
reservedHl: LONG NT;
reservedHz: LONG NT;

i oConpl etion: ProcPtr;

i oResul t: CSErr;
saveA5: LONG NT;

r eqCode: | NTEGER;
gueueRef : | PMQueueRef ;
sequenceNum | PMSeqNum
newisgRef : | PMVBgRef ;
act ual SeqNum | PMBeqNum
exact Mat ch: BOOLEAN;
padByt e: Byt e;
reserved: LONG NT;
END;

| PMOpenHFSMsgPB = RECORD

gLi nk: Ptr;
reservedHl: LONG NT;
reservedH2: LONG NT;

7-148 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

i oConpl etion:
i oOResul t:
saveA5:

r eqCode:
hf sPat h:
filler:
newMsgRef :
filler2:
filler3:
reserved:
END;

ProchPtr;
OSErr;
LONG NT;

| NTEGER;
NESSpec;
LONG NT;

| PMVsgRef ;
LONG NT;
Byt e;
LONG NT;

| PMOpenBl ockAsMsgPB = RECORD

gLi nk:
reservedHl:
reservedHz:
i oConpl etion:
i oResul t:
saveA5:

r eqCode:
nsgRef :
filler:
newisgRef :
filler2:

bl ockl ndex:
END;

| PMGet Msgl nf oPB =
gLi nk:
reservedHl:
reservedH2:
i oConpl eti on:
i oResul t:
saveA5:
r eqCode:
nmsgRef :
i nfo:
END;

| PMReadHeader PB =
gLi nk:
reservedHl:
reservedHz:
i oConpl etion:

Ptr;

LONG NT;
LONG NT;
ProcPtr;
OSErr;
LONG NT;

| NTEGER

| PMVsgRef ;
LONG NT;

| PMMVsgRef ;

ARRAY[1..7] OF | NTEGER;

I NTEGER

RECORD
Ptr;
LONG NT;
LONG NT;
ProchPtr;
CSErr;
LONG NT;
| NTEGER
| PMMVsgRef ;
Nl PMMB gl nf o;

RECORD
Ptr;
LONG NT;
LONG NT;
ProcPtr;

Summary of the IPM Manager

7-149

Jabeuely buibessa|n weiboidiaiu) .

7-150

CHAPTER 7

Interprogram Messaging Manager

i oResul t:
saveA5:

r eqCode:
nsgRef :
fieldSel ector:
of f set:
count :

buf fer:

act ual Count :
filler:
remai ni ng:
END;

gLi nk:
reservedHL:
reservedH2:

i oConpl etion:
i oResul t:
saveAb:

r eqCode:
nmsgRef :
rcpt | ndex:

of fset:
count :
buf f er:

act ual Count :
reserved:
remai ni ng:
ori gi nal | ndex:

reci pi ent O f set Fl ags:

END;

gLi nk:
reservedHl:
reservedH2:

i oConpl eti on:
i oResul t:
saveA5:

r eqCode:
nmsgRef :

OSErr;
LONG NT;
| NTEGER
| PMVsgRef ;
| NTEGER
LONG NT;
LONG NT;
Ptr;
LONG NT;
| NTEGER
LONG NT;

| PMReadReci pi ent PB = PACKED RECCRD

Ptr;
LONG NT;
LONG NT;
ProchPtr;
OSErr;
LONG NT;
| NTEGER
| PMMVsgRef ;
| NTEGER
LONG NT;
LONG NT;
Ptr;
LONG NT;
| NTEGER
LONG NT;
| NTEGER

| PMGet Bl kl ndexPB = RECORD

Ptr;

LONG NT;
LONG NT;
Prochtr;
CSErr;
LONG NT;

| NTEGER

| PMMVsgRef ;

Summary of the IPM Manager

{ must

| PMReadRepl yQueuePB = | PMReadReci pi ent PB

be 0 }

OCEReci pi ent O f set Fl ags;

CHAPTER 7

Interprogram Messaging Manager

bl ockType: | PMBI ockType;
i ndex: | NTEGER;
startingFrom | NTEGER;

act ual Bl ockType: | PMBI ockType;
act ual Bl ockl ndex: | NTEGER;

END;

| PMReadMsgPB = RECORD

gLi nk: Ptr;
reservedHL: LONG NT;
reservedH2: LONG NT;
i oConpl etion: ProcPtr;
i oResul t: OSErr;
saveAb: LONG NT;
r eqCode: | NTEGER,;
nmsgRef : | PMMVsgRef ;
node: | PMAccessMode;
of fset: LONG NT;
count : LONG NT;
buf fer: Ptr;
act ual Count : LONG NT;
bl ockl ndex: | NTEGER,
remai ni ng: LONG NT;
END;

| PWeri fySi gnat urePB = RECORD
gLi nk: Ptr;
reservedHl: LONG NT;
reservedHz: LONG NT;
i oConpl etion: Prochtr;
i oResul t: CSErr;
saveA5: LONG NT;
r eqCode: | NTEGER;
nsgRef : | PMVsgRef ;
si gnat ur eCont ext : SI GContext Ptr;
END;

| PMCl oseMsgPB = RECORD
gLi nk: Ptr;
reservedHL: LONG NT;
reservedH2: LONG NT;
i oConpl etion: ProcPtr;
i oResul t: OSErr;
saveAb: LONG NT;

Summary of the IPM Manager

7-151

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

r eqCode: | NTEGER;
nsgRef : | PMMVsgRef ;
del et eMsgQ: BOOLEAN;
END;

Parameter Blocks for Deleting Messages

| PMDel et eMsgRangePB = RECORD

gLi nk: Ptr;
reservedHl: LONG NT;
reservedH2: LONG NT;

i oConpl eti on: ProcPtr;

i oResul t: CSErr;
saveA5: LONG NT;

r eqCode: | NTEGER;
gueueRef : | PMQuUeueRef ;
start SegNum | PMSegqNum
endSegNum | PMSeqNum
| ast SegqNum | PMBeqNum
END;

Parameter Block Union Structure

| PMPar amBl ock = RECORD
CASE | NTEGER OF
: (header: | PMPar anHeader);
: (openCont ext PB: | PMOpenCont ext PB) ;
: (cl oseCont ext PB: | PMCl oseCont ext PB) ;
: (creat eQueuePB: | PMCr eat eQueuePB) ;
. (del et eQueuePB: | PMDel et eQueuePB) ;
: (openQueuePB: | PMOpenQueuePB);
: (cl oseQueuePB: | PMC oseQueuePB);
: (enuner at eQueuePB: | PMEnuner at eQueuePB) ;
: (changeQueueFi | ter PB: | PMChangeQueueFi | t er PB) ;
: (del et eMsgRangePB: | PMDel et eMsgRangePB) ;
. (openMsgPB: | PMOpenMsgPB) ;
: (openHFSMsgPB: | PMOpenHFSMsgPB) ;
: (openBl ockAsMsgPB: | PMOpenBl ockAsMsgPB) ;
:(cl oseMsgPB: | PMCl oseMsgPB) ;

© 0o ~NOoO O WN PP

ol e
A WNREPO

15: (get Msgl nf oPB: | PMzet Msgl nf oPB) ;
16: (readHeader PB: | PMReadHeader PB) ;
17: (readReci pi ent PB: | PMReadReci pi ent PB) ;

=
00}

: (readRepl yQueuePB: | PMReadRepl yQueuePB) ;
: (get Bl kI ndexPB: | PMzet Bl kI ndexPB) ;

=
(o]

7-152 Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

20: (readMsgPB: | PMReadMsgPB) ;

21: (verifySignaturePB: | PWerifySi gnaturePB);

22: (newivsgPB: | PMNewiVsgPB) ;
23: (newHFSMsgPB: | PMNewHFSMsgPB) ;
24: (nest MsgPB: | PMNest MsgPB) ;

25: (newNest edMsgBl ockPB: | PMNewNest edMsgBIl ockPB) ;

26: (endMsgPB: | PMENdMsgPB) ;

27: (addReci pi ent PB: | PMAddReci pi ent PB) ;
28: (addRepl yQueuePB: | PMAddRepl yQueuePB) ;

29: (newBl ockPB: | PMNewBl ockPB) ;
30: (witeMsgPB: | PMNiteMsgPB);
END;

| PMPar anBl ockPtr = ~| PMPar anBl ock;

IPM Manager Functions

Creating a New Message
FUNCTI ON | PMNewiVB g (par anBl ock:
CSErr;
FUNCTI ON | PMNewHFSMs g (par anBl ock:
OSErr;
FUNCTI ON | PMAddReci pi ent (par anBl ock:
OSErr;
FUNCTI ON | PMAddRepl yQueue (par anBl ock:
OSErr;
FUNCTI ON | PMNewBI ock (par anBl ock:
CSErr;
FUNCTI ON | PMNewNest edMsgBI ock
(par anBl ock:
CSErr;
FUNCTI ON | PMNest Msg (par anBl ock:
CSErr;
FUNCTI ON | PMVW i t eMsg (par anBl ock:
CSErr;
FUNCTI ON | PMENndMs g (par anBl ock:
OSErr;

Summary of the IPM Manager

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

async:

async:

async:

async:

async:

async:

async:

async:

async:

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

7-153

Jabeuely buibessa|n weiboidiaiu) .

Managing Message Queues
| PMCr eat eQueue

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

Listing and Reading Messages

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

FUNCTI ON

7-154

CHAPTER 7

Interprogram Messaging Manager

| PMOpenCont ext

| PMOpenQueue

(par anBl ock:

CSEr r;

(par anBl ock:

CSErr;

(par anBl ock:

CSErr;

| PMChangeQueueFi | t er

| PMCl oseQueue

| PMCl oseCont ext

| PMDel et eQueue

| PMEnuner at eQueue

| PMOpenMsg

| PMOpenHFSMsg

| PMOpenBl ockAsMsg

| PMGet Msgl nf o

| PMReadHeader

| PMReadReci pi ent

| PMReadRepl yQueue

| PMGet Bl kI ndex

| PMReadMsg

(par anBl ock:

CSErr;

(par anBl ock:

CSErr;

(par anBl ock:

CSErr;

(par anBl ock:

CSEr r;

(par anBl ock:

CSErr;

(par anBl ock:

CSEr r;

(par anBl ock:

CSEr r;

(par anBl ock:

CSEr r;

(par anBl ock:

CSErr;

(par anBl ock:

CSErr;

(par anBl ock:

CSErr;

(par anBl ock:

CSEr r;

(par anBl ock:

CSEr r;

(par anBl ock:

CSEr r;

Summary of the IPM Manager

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

| PMPar anBl ockPtr ;

async:

async:

async:

async:

async:

async:

async:

async:

async:

async:

async:

async:

async:

async:

async:

async:

async:

BOOLEAN) :

BOOLEAN) :

BOOLEAN)

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

BOOLEAN) :

CHAPTER 7

Interprogram Messaging Manager

FUNCTI ON | PMVeri fySi gnat ure
(paranBl ock: | PMParanBl ockPtr): OSErr;{ Al ways
synchronous }

FUNCTI ON | PMCl oseMsg (paranBl ock: | PMParanBl ockPtr; async: BOCLEAN):
OSErr;

Deleting Messages

FUNCTI ON | PMDel et eMsgRange (par anBl ock: | PMPar anBl ockPtr; async: BOOLEAN):
OSErr;

Utility Routines

FUNCTI ON OCESi zePackedReci pi ent
(rcpt: OCEReci pient): |NTECGER
FUNCTI ON OCEPackReci pi ent (rcpt: OCERecipient; buffer: UNIV Ptr): | NTECER;
FUNCTI ON OCEUnpackReci pi ent
(buffer: UNIV Ptr; VAR rcpt: OCEReci pient;
VAR entitySpecifier: RecordlD): OSErr;
FUNCTI ON OCESt r eanReci pi ent (rcpt: OCEReci pi ent; stream
OCEReci pi ent Streaner;
userData: LONG NT; VAR actual Count: LONG NT):
OSErr;
FUNCTI ON OCEGet Reci pi ent Type
(cid: CreationlD): OSType;
PROCEDURE OCESet Reci pi ent Type
(ext ensi onType: OSType; VAR cid: CreationlD);

Application-Defined Functions
FUNCTI ON MyConpl et i onRout i ne
(paranmBl k: Ptr);

FUNCTI ON MyReci pi ent St r eaner
(VAR buffer: void; count: LONG NT; eof:
BOOLEAN, userData: LONG NT): CSErr;)

Summary of the IPM Manager 7-155

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

Assembly-Language Summary

Trap Macros Requiring Routine Selectors
__CCETBDI spat ch

Selector
$0400
$0401
$0402
$0403
$0404
$0405
$0406
$0407
$0408
$0409
$040A
$040B
$040C
$040D
$040E
$040F
$0410
$0411
$0412
$0413
$0414
$0415
$0417
$0418
$0419
$041D
$041E
$0421
$0422

7-156

Routine

| PMOpenCont ext

| PMCl oseCont ext

| PMNewiVg

| PMAddReci pi ent

| PMNewBl ock

| PMNewNest edMsgBIl ock
| PMNest Msg

| PMV it eMsg

| PMEndMs g

| PMOpenQueue

| PMCl oseQueue

| PMOpenisg

| PMCl oseMsg

| PMReadMsg

| PMReadHeader

| PMOpenBl ockAsMsg
| PMReadReci pi ent

| PMCr eat eQueue

| PMDel et eQueue

| PMEnuner at eQueue
| PMChangeQueueFi | ter
| PMDel et eMsgRange
| PMOpenHFSMs g

| PMGet Bl kI ndex

| PMGet Msgl nf o

| PMAddRepl yQueue

| PMNewHFSMs g

| PMReadRepl yQueue
| PMVeri fySi gnat ure

Summary of the IPM Manager

CHAPTER 7

Interprogram Messaging Manager

__OCEMessagi ng

Selector Routine

$033E OCESi zePackedReci pi ent
$033F OCEPackReci pi ent

$0340 OCEUnpackReci pi ent
$0341 OCESt r eanReci pi ent
$0342 OCEGet Reci pi ent Type
$0343 OCESet Reci pi ent Type

Result Codes

The allocated range of result codes for the Interprogram Messaging Manager is ~15090
through —15169. Routines may also return result codes from other AOCE managers and
standard Macintosh result codes such as noEr r 0 (no error) and f nf Er r —43 (file not

found).

noErr 0
k OCEPar antr r -50
kOCEConnecti onC osed -1513
kl PMCant Cr eat el PMCat Ent ry -15090
kl PM nval i dMsgType -15091
kl PM nval i dPr ocHi nt -15092
kl PM nval i dOF f set -15093
kl PMJpdat eCat Fai | ed -15094
kl PMVBgTypeReser ved -15095
k|l PMNot | nABI ock -15096
kl PMNest edMsgQOpened -15097
k1l PMALHdr Cor r upt -15098
kl PMCor r upt Dat aSt ruct ur es -15099
kl PMAbor t Of Nest edMsg -15100
kl PMBI ockl sNot Nest edMsg -15101
kl PMCacheFi | | Error -15102
kl PM nval i dSender -15103
kl PMNoReci pi ent sYet -15104
kiIPMnvalidFilter -15105
kl PMAt t r Not | nHdr -15106
kIl PMBl kNot Found -15107
kl PMSt r eantkr r -15108
kl PMPort d osed -15109
kl PMBi nBusy -15110
kl PMCor r upt edBi n -15111
kl PMBadQNarne -15112
kl PMENDOF Bi n -15113
kI PMBi nNeedsConver si on -15114
kl PMVOr | nt er nal Err -15115
kl PMEI t Busy -15116
kl PMEI t Cl osedNot Del et ed -15117

Summary of the IPM Manager

No error

Parameter error

Network connection has closed

Internal error

Message type is invalid

Process hint is invalid

Bad offset for read or write operation
Internal error

Message type reserved for system use
Specified starting point not within the message
Nested message opened; cannot do operation
Message is corrupt; may not be message
Message is corrupt

Canceled nested message

Block is not message (I PMOpenBl ockAsMsg)
Internal error

Sender is invalid

Require recipient to send

Filter is invalid

Specified attribute not in message header
Specified block nonexistent

Error on stream

Stream closed

Internal error

IPM BIN is damaged

Invalid queue name

Internal error

IPM BIN needs conversion

Internal error

Message or letter opened (on delete operation)
Element was closed but not deleted

7-157

Jabeuely buibessa|n weiboidiaiu) .

CHAPTER 7

Interprogram Messaging Manager

k1 PMBadCont ext -15118 Invalid reference

k1 PMCont ext | sCl osi ng -15119 Reference is closing

kl PMeoQ -15120 No more messages (I PMEnuner at eQueue)
k1 PMEI t Not Found -15122 No such item or message

k1 PMQBusy -15126 Specified queue busy; cannot delete

k1 PMLookupAt t r TooBi g -15129 Attribute in lookup is too big

kI PMAccessDeni ed -15141 Access denied

k1 PMNoAt t r sFound -15146 No attributes found in lookup

kl PMBadMai | Sl ot At t r Val -15149 Invalid mail slot attribute value

7-158 Summary of the IPM Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	 AOCE Utilities
	 Standard Mail Package TOC
	 Standard Mail Package
	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	 Digital Signature Manager
	 Interprogram Messaging Manager TOC
	Interprogram Messaging Manager
	About the IPM Manager
	About AOCE Interprogram Messages
	Message Queues
	Addresses
	Report Messages

	Addressing IPM Messages
	Direct Addressing
	AppleTalk Direct Addressing
	Telephone Direct Addressing

	Indirect Addressing
	Attribute-Type Indirect Addressing
	Queue-Name Format for Attribute Values

	Using the IPM Manager
	Determining Whether the Collaboration Toolbox is A...
	Determining the Version of the Collaboration Toolb...
	Error Handling
	Creating a Message
	Initiating the Message-Creation Process
	Adding Information to the Message
	Ending a Message

	Creating and Managing Message Queues
	Creating and Opening a Queue
	Specifying a Queue Filter and Enumerating a Queue
	Closing a Queue

	Reading Messages

	IPM Manager Reference
	Data Types
	Message Addressing Structures
	Message and Block Types
	Delivery Notification
	Filter Structures
	Message Information Structure
	Header Information Structures
	Sender Structure
	Interprogram Messaging Parameter Block Header

	Asynchronous or Synchronous Operations
	Completion Routines and Polling Options
	IPM Manager Functions
	Calling an IPM Function From Assembly Language
	Creating a New Message
	Managing Message Queues
	Listing and Reading Messages
	Deleting Messages
	Utility Functions

	Application-Defined Functions

	Summary of the IPM Manager
	C Summary
	Constants and Data Types
	IPM Manager Functions

	Pascal Summary
	Constants
	Data Types
	IPM Manager Functions

	Assembly-Language Summary
	Result Codes

	 Catalog Manager TOC
	 Catalog Manager, Part 1 (Introduction, About, and Using)
	 Catalog Manager, Part 2 (Reference)
	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	 Authentication Manager
	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

