CHAPTER 9

Authentication Manager

This chapter describes the AOCE Authentication Manager, which provides
authentication services for users of PowerShare catalog servers. Providers of other
AOCE-compatible catalog servers can also use the Authentication Manager and the
AppleTalk Secure Data Stream Protocol (ASDSP) to provide authentication services for
users of their catalog servers. The services provided by the Authentication Manager
ensure both ends of a connection that the entity on the other end is who or what it claims
to be. The Authentication Manager does not encrypt data or guarantee the integrity of
transmitted data. For other security services, see the chapter “Digital Signature
Manager” in this book.

The Authentication Manager application programming interface (API) provides the tools
you need to implement an authenticated connection between two entities. Also, the API
includes a function that provides a common server-based time service.

The Authentication Manager provides low-level functions that are called by the AOCE
Collaboration package, the AOCE Collaboration toolbox, the PowerTalk Key Chain, and
the PowerShare Admin program.

An application running in the background might call the Authentication Manager to get
a local identity or a specific identity. You might want to add your application to the
local-identity notification queue, so that the Authentication Manager calls your
notification routine when the local identity is locked or unlocked or when the
local-identity name is changed.

You must read this chapter if you want to create your own authentication service using
AOCE functions. For example, if you want to authenticate connections between users
who are not connected over an AppleTalk network, you can use the Authentication
Manager functions described in this chapter.

This chapter starts with a brief introduction to authentication, including an introduction
to the role of servers in authentication. The chapter then presents information to help
you use the Authentication Manager functions to

= generate and use encryption keys

= create and use authentication identities

= acquire and use credentials for mutual verification of users’ identities
» generate proxies and use them

» resolve creation IDs for records

= obtain the universal coordinated time

» implement your own challenge process for authenticating two entities

The language specific to this technology is defined as the concepts are introduced in the
chapter.

For a general overview of AOCE services, see the chapter “Introduction to Apple Open
Collaboration Environment” in this book.

9-399

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

Introduction to Authentication

9-400

To avoid fraud or impersonation, two users or services communicating over a network
may need to identify each other conclusively. For example, a user may want to verify
that a piece of electronic mail came from the sender named in the letter. In the world of
networking, verification of the identity of an entity on a network or of one end of a
communication link is called authentication.

The authentication process involves the exchange between two parties of a sequence of
messages referred to as challenges and replies. The Authentication Manager uses the Data
Encryption Standard (DES, a symmetric private-key encryption algorithm that uses the
same key for encryption and decryption) and a secret key derived from the user’s
password to encrypt each challenge or reply message. The authentication server knows
the keys of both ends of the connection. Keys are discussed in the next section.

These are the basic assumptions fundamental to authentication:

» Each user or service has a key, and that key is known only to the user and the
authentication server.

» The authentication server is trusted to reveal the secret key to no one.

The originator of a message is called the initiator; the addressee is the recipient. The
initiator and recipient do not share a key. If they did, they could use that key to encrypt
every message they exchange.

Keys

Encryption keys are numbers used by an encryption algorithm to encrypt and decrypt
data. The keys of the initiator and recipient are referred to as client keys . Because the
authentication process requires that a trusted third party know everyone’s keys,
Authentication Manager functions allow you to store client keys in a server-based
catalog.

The Authentication Manager uses client keys for encrypting requests to the server and
for encrypting the response the server returns to an initiator. The server also uses client
keys to verify that a user typed his or her password correctly.

During the authentication process, the authentication server creates a unique
time-limited session key, encrypts it, and transmits it to the initiator, who sends it to the
recipient. The initiator and recipient use the session key to exchange challenges and
replies. The section “Steps in the Authentication Process” beginning on page 9-401
describes the use of client keys and session keys.

Introduction to Authentication

CHAPTER 9

Authentication Manager

Credentials

Credentials consist of an identifier for the initiator and a session key, encrypted in the
key of the recipient. The initiator requests credentials from the authentication server and
sends them to the recipient. With these, the recipient can determine which initiator wants
to make an authenticated connection and can obtain the session key needed to complete
the authentication process. Because the credentials are encrypted in the recipient’s client
key, only the intended recipient can use them, and the initiator cannot alter them.
Therefore, the initiator can be sure that anyone responding with the correct session key is
the intended recipient, and the recipient can be sure of the identity of the initiator.

Credentials are valid only for a particular initiator and recipient and only for a specific
time period. After that time period, they cannot be used to establish a connection.
However, once a communication stream is open and authenticated, the two ends of a
connection can elect to maintain the connection even after the credentials have expired.

Steps in the Authentication Process

The authentication process consists of two phases: the precontact phase and the challenge
phase. Figure 9-1 on page 9-402 shows the authentication process; in this figure, step 1
and step 2 represent the precontact phase, and the remaining steps represent the
challenge phase of authentication. In Figure 9-1, For each step in the process, the figure
shows what key was used to encrypt the data, who sends the data and to whom, and the
nature of the data sent.

Introduction to Authentication 9-401

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

Figure 9-1

The authentication process

Authentication
Server

Initiator

Authentication
Server

s Ram]

Initiator

Key used to encrypt data
IIm Initiator's key
Recipient's key
Session key

Authentication
Server

Session key
|
Credentials
R

Initiator

Authentication
Server

Step 6

Initiator

Authentication
Server

Recipient

Initiator

Authentication
Server

Authentication
Server

s Rams)

9-402

Introduction to Authentication

CHAPTER 9

Authentication Manager

Here is what happens in the precontact phase of authentication:

1. The initiator encrypts both the name of the initiator and the name of the recipient in
the initiator’s client key and asks the server for credentials.

2. The server returns two quantities to the initiator: a session key and a credentials block.
The session key is encrypted in the initiator’s key. The credentials block is encrypted
in the recipient’s key so that not even the initiator can see what is in it.

Receipt of the credentials by the initiator completes the precontact phase of
authentication. Next, the initiator can either use AppleTalk Secure Data Stream Protocol
(ASDSP) to perform the challenge phase of authentication or else implement the
challenge phase as described below. See the chapter “AppleTalk Data Stream Protocol”
in Inside Macintosh: Networking for a discussion of ASDSP.

3. The initiator sends the credentials block to the recipient. This credentials block is
encrypted in the recipient’s key and contains the name of the initiator and a copy of
the session key.

Now both the initiator and the recipient have a copy of the same session key. They now
exchange challenges and replies to verify that each has the same session key.

4. The initiator selects a random number, encrypts it with the session key, and sends it to
the recipient as a challenge.

5. The recipient decrypts the challenge, adds 1 to the number, encrypts the sum with the
session key, and sends the new encrypted number to the initiator as a reply.

Because only the intended recipient can decrypt the credentials and therefore obtain the
session key, the initiator has now established that the challenge was not intercepted by
an impostor. The recipient must now issue a challenge to ensure that the initiator is truly
the entity identified in the credentials.

6. The recipient selects a new random number, encrypts it with the session key, and
sends it to the initiator as a challenge.

7. The initiator decrypts the number, adds 1, encrypts the sum with the session key, and
sends it as a reply.

After two entities desiring a connection successfully complete this authentication
process, they are ready to exchange authenticated messages. If you use ASDSP as the
transport mechanism between an initiator and a recipient, the challenge phase of the
authentication process is handled by the ASDSP function. If you are using another
transport protocol, such as TCP/IP (Transmission Control Protocol / Internet Protocol),
you can implement steps 4 through 7 of the authentication process using Authentication
Manager functions described in “Non-ASDSP Authentication Utilities” beginning on
page 9-450.

Identities

An identity, sometimes referred to as an authentication identity, is a number used as
shorthand for the name and key of a user or service. Many AOCE functions require an
identity to determine if the initiator is authorized to make a particular service request.
There are two types of authentication identities: local identities and specific identities.

Introduction to Authentication 9-403

JabBeuey uoneanuayiny n

9-404

CHAPTER 9

Authentication Manager

Whereas a local identity is associated with a particular computer, a specific identity is
associated with a particular server or service. In most cases you use the local identity
when you call an AOCE function, except when providing access to a service on behalf of
someone other than the principal user of the computer. Local identities and specific
identities are discussed in the following sections.

Local Identities

Because a user may have multiple “accounts” for a variety of applications or services,
the PowerTalk system software provides a Setup catalog that contains (in encrypted
form) the names and passwords for the services available to the user. A local identity is
a number used as shorthand for the name and password associated with the user of a
particular computer. This local identity is a “master” identity because it provides access
to all catalogs and services in the PowerTalk Setup catalog without requiring each
service’s password individually. Any AOCE function that requires an identity as input
can use the local identity.

The Standard Catalog Package function, SDPPr onpt For | D, described in the chapter
“Standard Catalog Package” in this book, prompts the user for his or her name and
password and uses this information to generate the local identity.

A background application can obtain the local identity generated by the

SDPPr onpt For | D function by calling the Authentication Manager’s

Aut hGet Local I dent i ty function, described on page 9-424. If a local identity is not set
up, you can install your application in a notification queue, so that the application is
notified when the local identity is created or unlocked.

By supplying a valid local identity to any AOCE function that requires an identity
parameter, you tell the AOCE toolbox what user is requesting the service. The toolbox
prepares an authenticated stream to the server, and during this process the server learns
the name of the user. Then the server checks the access controls for the user represented
by the identity to ensure that the user has the privileges necessary to access the
requested function. If the access controls are sufficient, the AOCE software provides the
requested service. Otherwise, you receive a result code stating that the user’s access
rights are insufficient. Access controls are discussed in the chapter “Catalog Manager” in
this book.

The functions you can use to manage local identities are described in “Local Identity
Management” beginning on page 9-424.

Locking and Unlocking Local Identities

The PowerTalk system software gives users the option of protecting their accounts from
unauthorized access. To do so, the user chooses Lock Key Chain from the Special menu
of the Finder or sets the PowerTalk Setup control panel to lock the Key Chain after some
specified period of inactivity. Upon returning, the user chooses Unlock Key Chain from
the Finder’s Special menu and is prompted for a password. You can also lock and unlock
the local identity from within your application.

If the local identity is locked, it is the responsibility of your application to disable its own
services appropriately. For example, if you are designing a mail application, you may

Introduction to Authentication

CHAPTER 9

Authentication Manager

want it to continue receiving mail even when the local identity is locked but would
probably not want to allow users to read mail that has been received.

Local Identity Status Notification

If your application needs to enable or disable features based on whether the local
identity is unlocked, you may want to be notified of changes in the status of the local
identity. If so, you can add your application to a notification queue. The applications in
this queue are notified when the local identity is unlocked or locked. Through the
notification queue, you can deny locking of the local identity when your application is in
use. For instance, you might want to deny locking when your application is engaged in
some process that would be seriously disrupted if the lock function succeeded.

Specific Identities

To provide a service to a user other than the principal user of a computer, you can use a
specific identity rather than the local identity. The specific identity is a number used as
shorthand for the name and key of the alternate user. You can use the specific identity in
any AOCE function that requires an identity.

The Standard Catalog Package function SDPPr onpt For | D prompts a user for a name
and password and returns a specific identity. The SDPPr onpt For | D function is
described in the chapter “Standard Catalog Package” in this book.

Guest Access

When your application needs to accommodate users with no accounts on the computer
or server, you can specify a “guest identity” by using the value 0 for the identity
parameter in AOCE functions.

The PowerTalk Setup Catalog

The AOCE Catalog Manager defines a special personal catalog called the PowerTalk
Setup catalog, which contains information about the catalogs and other services that are
available to the principal user of the computer. The PowerTalk Setup catalog is stored on
the user’s local disk. The records in the PowerTalk Setup catalog represent such entities
as PowerShare catalogs, external catalogs, and catalog service access modules (CSAMs).
Catalogs and CSAMs represented by records in the PowerTalk Setup catalog are said to
be “listed in the PowerTalk Setup catalog.” The contents of the Setup catalog and the
process of adding a CSAM or mail service access module (MSAM) to the Setup catalog
are described in the chapter “Service Access Module Setup” in Inside Macintosh: AOCE
Service Access Modules.

You can use the functions described in “PowerTalk Setup Catalog Management”
beginning on page 9-457 to set up, change, remove, or get information about items in the
PowerTalk Setup catalog.

Introduction to Authentication 9-405

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

Proxies

A proxy allows an alternate entity to be authenticated as the user for a limited time. It is
a privilege provided to an intermediary: a representative of the user or service. The
intermediary uses the proxy to obtain the credentials needed to complete the
authentication process. The proxy gives the intermediary access to a particular recipient
to perform some task on behalf of an initiator.

For example, suppose a user of your application plans to be away from the computer but
wants to back up some data when the server is not busy. In this case, your application
can request a proxy for the user. You may assign the proxy to an intermediary, who can
do the backup. With this proxy, the intermediary obtains credentials from the server and
then uses them to create an authenticated connection in the usual way. Functions you
can use to create and use proxies are described in “Credentials Management” beginning
on page 9-439.

About the Authentication Manager

9-406

The Authentication Manager, the Digital Signature Manager, the Catalog Manager, and
the Interprogram Messaging Manager together constitute the fundamental services of
the AOCE system software. The Standard Catalog Package and the Standard Mail
Package provide high-level interfaces to the Authentication Manager.

The Authentication Manager is a collection of functions that runs on the user’s computer
and communicates with the authentication server to set up authenticated connections.

The Authentication Manager includes routines that provide the following services:

= key management: translating passwords to keys and adding, changing, and deleting
keys in the server

= local identity management: determining the local identity for a computer; locking,
unlocking, creating, changing, and removing local identities; and adding applications
to and removing them from a notification queue for changes in the status of the local
identity

= specific identity management: binding, unbinding, and getting information about
specific identities

= credentials management: obtaining and using credentials and making and using
proxies

= resolution of creation IDs: resolving creation IDs when multiple records have the
same name and type

= time service: obtaining the universal coordinated time

= non-ASDSP authentication utilities: performing authentication as a step-by-step
process

= PowerTalk Setup catalog management: setting up, changing, removing, and getting
information about catalogs in the PowerTalk Setup catalog

About the Authentication Manager

CHAPTER 9

Authentication Manager

Using the Authentication Manager

This section discusses the techniques you can use to perform tasks related to
authentication. You can use the techniques in this section to

s perform the authentication process for initiators and recipients using ASDSP

= perform the precontact phase and challenge process of authentication for initiators
and recipients using a different transport mechanism

= use a proxy in either of the above authentication processes

= monitor the status of access to the PowerTalk Setup catalog by installing your
application in a notification queue

For more detailed descriptions of the routines described in this section, see
“Authentication Manager Functions” beginning on page 9-416.

Determining Whether the Collaboration Toolbox Is Available

Before calling any of the Authentication Manager functions, you should verify that the
Collaboration toolbox is available by calling the Gest al t function with the selector
gest al t OCETool boxAt t r. If the Collaboration toolbox is present but not running (for
example, if the user deactivated it from the PowerTalk Setup control panel), the

Gest al t function sets the bit gest al t OCETBPr esent in the r esponse parameter. If
the Collaboration toolbox is running and available, the function sets the bit

gest al t OCETBAvai | abl e in the r esponse parameter. The Gestalt Manager is
described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Ultilities.

If you want to be informed when the Authentication Manager starts up or shuts down,
you can install an entry in the AppleTalk Transition Queue (ATQ). Then the AppleTalk
LAP Manager calls your ATQ routine with the transition selector ATTr ansAut hSt ar t
when the Authentication Manager has finished starting up and with the selector

ATTr ansAut hShut down when the Authentication Manager has started to shut down.
The ATQ is described in the chapter “Link-Access Protocol (LAP) Manager” in Inside
Macintosh: Networking.

Determining the Version of the Authentication Manager

To determine the version of the Authentication Manager that is available, call the

Gest al t function with the selector gest al t OCETool boxVer si on. The function
returns the version number of the Collaboration toolbox in the low-order word of the

r esponse parameter. For example, a value of 0x0101 indicates version 1.0.1. If you are
using the Collaboration toolbox on a computer that has a PowerShare server, the
function returns the version number of the server in the high-order word of the

Using the Authentication Manager 9-407

JabBeuey uoneanuayiny n

9-408

CHAPTER 9

Authentication Manager

r esponse parameter. If the Collaboration toolbox or server is not present and available,
the Gest al t function returns 0 for the relevant version number. You can use the
constant gest al t OCETB for AOCE Collaboration toolbox version 1.0.

Authentication Using ASDSP

To establish mutual authentication between an initiator and a recipient, you use
credentials that you get from the server. When you use ASDSP as the transport
mechanism to complete the secure connection, you place these credentials in the
appropriate field of the parameter block for the sdspOpen function. ASDSP is discussed
in the chapter “AppleTalk Data Stream Protocol” in Inside Macintosh: Networking.

To get credentials, follow these steps:

1. Specify an expiration time for the Aut hGet Cr edent i al s function (page 9-439). It is
your responsibility to determine how long you want the connection to be available.
Credentials are valid for at most 8 hours after they are returned to an initiator by the
server. When you call the Aut hGet Cr edent i al s function you may use the expi ry
field to specify a shorter time for credentials to be valid. Two ways to determine your
expiration time are as follows:

o Call the Aut hGet UTCTi e function (page 9-449) to get the current universal
coordinated time (UTC) and an offset. Then, your expiration time is the UTC plus
the amount of time, in seconds, that you want the credentials to be valid.

o If you get credentials often, you may choose to remember the time provided by the
Aut hGet UTCTi ne function when you first call it and then add the results of the
Get Dat eTi ne function to that time along with the amount of time, in seconds, that
you want the credentials to be valid. Remembering the UTC makes it unnecessary
to call the Aut hGet UTCTi e function each time you need credentials. The
Get Dat eTi e function is described in Inside Macintosh: Operating System Utilities.

2. Determine the initiator’s identity and the recipient’s record ID. You can use either the
local identity or a specific identity for the initiator. A background application can get
the local identity by calling the Aut hGet Local | dent i t y function (page 9-424). A
foreground application can call the Pr onpt For | dent i t y function, which is
described in the chapter “Standard Catalog Package” in this book.

To get a specific identity for an initiator, first call the Aut hPasswor dToKey function
(page 9-417), providing the record ID and password for the initiator, to get the
initiator’s client key. Then call the Aut hBi ndSpeci fi cl denti ty function

(page 9-435) to get the specific identity.

You must provide your own means for obtaining the recipient’s record ID.

Using the Authentication Manager

CHAPTER 9

Authentication Manager

3. Call the Aut hGet Cr edent i al s function to get credentials. The Authentication
Manager expects you to provide the expected length of the credentials, as well as a
pointer to a memory block for the credentials. A buffer three times the size of a packed
record ID is usually sufficient for credentials. Use the kPackedRecor dl DVaxByt es
constant defined in the chapter “AOCE Utilities” in this book to determine the size of
a packed record ID.

4. To use the ASDSP transport mechanism, call the Device Manager’s PBCont r ol
function using the SDSPPar anBl ock parameter block defined in Inside Macintosh:
Networking.

Authentication for Non-ASDSP Users

To establish mutual authentication between users without using ASDSP, first complete
steps 1 through 3 of “Authentication Using ASDSP” on page 9-408. Then continue as
indicated in the following sections.

The Initiator's Authentication Process

To complete the authentication process as an initiator, follow these steps. Note that you
must devise your own protocol for exchanging the challenges and replies.

1. Call the Aut hMakeChal | enge function (page 9-451) to make a challenge. You
provide a buffer and a buffer size. The buffer must be at least 8 bytes in length. The
Aut hMakeChal | enge function returns the encrypted challenge in the buffer you
supplied, and also returns the actual length of the challenge.

2. Send the credentials and challenge to the specified recipient, using the available
transport mechanism.

3. Obtain the challenge reply from the recipient. The challenge reply includes both the
reply to your challenge and a counterchallenge from the recipient (steps 5 and 6 in
“Steps in the Authentication Process” beginning on page 9-401).

4. Call the Aut hVer i f yRepl y function (page 9-454) to verify the reply sent by the
recipient and to generate a reply to the recipient’s counterchallenge. You provide the
session key that was supplied by the server as well as the challenge and challenge
length returned by the Aut hMakeChal | enge function. You also provide the reply
and reply buffer length sent by the recipient. If the Aut hVer i f yRepl y function finds
that the recipient’s reply was not valid, it returns an error and does not generate a
reply to the counterchallenge.

5. If there was no error, then send the counterchallenge reply generated by the
Aut hVeri f yRepl y function to the recipient.

Using the Authentication Manager 9-409

JabBeuey uoneanuayiny n

9-410

CHAPTER 9

Authentication Manager

The Recipient’s Authentication Process

To complete authentication as a recipient, follow these steps:

1.

Call the Aut hDecr ypt Cr edent i al s function (page 9-455), passing it the credentials
sent by the initiator. The function returns the session key, the issue and expiration
times, and the record ID for the initiator. It is your responsibility to ensure that the
times are acceptable for your application. Additionally, if there is an intermediary and
you provide a pointer to a record ID for it, the Aut hDecr ypt Cr edent i al s function
provides the intermediary’s record ID to you.

. Call the Aut hMakeRepl y function (page 9-452) to generate a reply to the challenge

received from the initiator and to issue a challenge in return. The chal | enge pointer
and chal | engeLengt h fields are received from the initiator and supplied to this
function. The r epl y field contains the reply generated by the function and also the
counterchallenge generated by the function.

. Send this challenge reply and the counterchallenge to the initiator.
. Obtain the counterchallenge reply from the initiator.

. Call the Aut hVer i f yRepl y function to verify the reply sent by the initiator. You

provide the session key that was supplied by the server with the credentials, the
challenge and challenge length that you sent to the initiator, a pointer to the reply
buffer, and the length of the reply.

Authentication Using a Proxy

To use a proxy to authenticate a connection, you request and receive a proxy and then
give the proxy to an intermediary, who then uses the proxy to obtain credentials. After
the intermediary obtains the credentials, it uses them to create an authenticated
connection in the standard way, as described previously.

To obtain and use a proxy, follow these steps:

1.

Call the Aut hMakePr oxy function (page 9-441). You must specify the identity of the
initiator who wants to create a proxy, the record ID of the recipient with whom the
intermediary wishes to communicate, and the record ID of the intermediary.
Additionally, you provide times that you want the proxy to be become valid and to
expire, a pointer to the buffer into which the Aut hMakePr oxy function will place the
proxy, and the length of the buffer. A buffer twice the size of a packed record ID is
usually sufficient for the proxy. The kPackedRecor dl DMaxByt es constant,
described in the chapter “AOCE Utilities” in this book, defines the maximum size of a
packed record ID.

. Send the proxy and the recipient record ID to the intermediary.

. The intermediary calls the Aut hTr adePr oxyFor Cr edent i al s function

(page 9-443), supplying the pointer to the proxy buffer and the buffer length. It also
supplies its own identity and the recipient’s record ID. The intermediary provides a
pointer to the credentials and the expected length of the credentials. A buffer three
times the size of a packed record ID is usually sufficient for credentials.

Using the Authentication Manager

CHAPTER 9

Authentication Manager

Using the Notification Queue

You can add your application’s notification callback routine to a notification queue so
that it is notified when the local identity is locked or unlocked. When you no longer need
to know the status of the local identity, you can remove your callback routine from the
notification queue. The DoNot eQueue routine in Listing 9-1 checks for a local identity
and, if there is one, saves it in a global variable. It installs the SurfWriter application’s
notification callback routine in the notification queue, which informs it if the status of the
local identity changes. Finally, the DoNot eQueue routine removes the callback routine
from the queue.

If the local identity is locked and your application runs in the foreground, you should
disable any functions or commands that require the user to be authenticated. You can
then prompt the user to unlock or set up the local identity. If the application runs in the
background, you would probably postpone some operations until the local identity is
unlocked.

To install an application in or remove an application from the notification queue, you
first set up the header block, as shown in the Dol ni ti al i zeASPB function in Listing
9-1. Both the Dol nst al | Not i fi cati onPr oc function and

DoRenoveNot i fi cati onProc function call the Dol ni ti al i zeASPB function and
then initialize the remaining fields for their respective functions.

The MyNot i fi cati onProc function in Listing 9-1 is a sample notification routine for
the Aut hAddToLocal | dent i t yQueue and Aut hRenoveFr onlLocal | denti t yQueue
functions (page 9-426 and page 9-427). The MyNot i f i cat i onPr oc callback routine is
described on page 9-465.

In Listing 9-1, the notification routine updates a flag in the application’s global data (the

i denti tyl sLocked field in the My i ent Dat a structure) to notify the SurfWriter
application when access to the PowerTalk Setup catalog is locked or unlocked. If the

i dentityl sLocked field has the value t r ue, the identity might be locked or might not
be set up.

Listing 9-1 Using the notification queue

/* function to initialize header block */
pascal void Dol nitializeASPB(Aut hParanBl ock *aspb)

{
*(long *) &spb->header.serverHint = 0; /* set up serverHi nt */
aspb- >header.identity = 0; /* identity setup */

aspb- >header . dsRef Num = kRef Nunnknown; /* ref Num specifier */
}
/* function to install an application’s notification proc in the queue */
pascal OSErr Dolnstall NotificationProc(NotificationProc notificationProc,
Aut hNot i fi cations notifyFl ags,
StringPtr appNane,
| ong clientData)

Using the Authentication Manager 9-411

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

{
CSErr err;

Aut hPar anBl ock aspb;
DolnitializeASPB(&aspb); /* initialize header block */
aspb. header.clientData = clientData;
aspb.local IdentityQ nstall PB.fNotificationProc=notificationProc;
aspb. |l ocal IdentityQ nstal | PB. noti fyFl ags = noti fyFl ags;
aspb. local I dentityQ nstal | PB. appNane = appNarne;
err = Aut hAddTolLocal I dentityQueue(&aspb, false);
return err;
}
/* function to renpve an application’s notification proc fromthe queue */
pascal OSErr DoRermpveNotificationProc(NotificationProc notificationProc)
{
CSErr err;
Aut hPar anBl ock aspb
InitializeASPB(&aspb); /* Initialize header block */
aspb.local I dentityQ nstall PB.fNotificationProc=nNotificationProc;
err = Aut hRenoveFromnlLocal | dentityQueue(&aspb, false);
return err;
}
struct MydientData {
Local Identity | ocallD
Bool ean i dentityl sLocked;

1

pascal OSErr MyCetlLocal Identity(Localldentity *|ocal | D)
{
CSErr err;

Aut hPar anBl ock aspb;
DolnitializeASPB(&aspb); /* Initialize header block */
err = AuthGet Local I dentity(&aspb, false);
if (err == noErr)

*| ocal I D = aspb. getLocal I dentityPB.thelLocal Identity;
return err;

}

/* notification procedure for your application */

pascal Bool ean MyNoti ficationProc(long clientData,
Aut hLocal I dentityQOp cal | Val ue,
Aut hLocal I denti tyLockActi on acti onVal ue,
Local Identity identity)

9-412 Using the Authentication Manager

{

struct

CHAPTER 9

Authentication Manager

M/CientData *nyClientData = (struct MyClientData *)clientDat a;

if ((callValue == kAut hLockLocal I dentityQp) &&

(actionVal ue == kAut hLockW || BeDone)) {

myCl i ent Dat a- >i dentityl sLocked = true;
nmyCl i ent Dat a- >l ocal | D = 0;

}

el se
i f

(cal I Val ue == kAut hUnl ockLocal I dentityQp) {
nmyCl i ent Dat a- >i dentityl sLocked = fal se;
myCl i entData->local ID = identity;

}

return false; /* the sanple app never denies a | ock pending */

}

DoNot eQueue () /* using the notification queue for your application */

{
CSErr

struct

err =
if (er

nyCientData.identityl sLocked

el se {

nyClientData.identitylslLocked

/*

err =

/*

err;
MyCl i ent Data nyC i ent Dat a;

MyGet Local I dentity(&myCientData.local ID);
r == nokrr)

false; /* the function returned a
| ocal identity, therefore
it's not | ocked */

true; /* it's either not set up or

el se | ocked */

Set up the local IDif app is not in background, or else wait for
local IDto be set up and unlocked. |If the latter, when the |oca
IDis unlocked, you can get the local identity by |ooking at
the localID field in WO ientData. */

Dol nstal | Noti ficationProc(
MyNot i fi cati onProc, kNotifyLockMask| kNoti fyUnl ockMask,
"\pSurfWiter", (long)&mnydientData);

perform your application's functions */

Using the Authentication Manager 9-413

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

/* If identitylsLocked is true, postpone sone operations until local ID
becormes unl ocked. */

RenoveNot i fi cati onProc(MNoti ficationProc);
}

Authentication Manager Reference

This section describes the data structures and routines provided by the Authentication
Manager.

Data Structures

This section describes the data structures that are specific to the Authentication Manager.
See the chapter “AOCE Utilities” for descriptions of other data structures that you use to
provide information to or obtain information from Authentication Manager routines.

Parameter Block Header

Each Authentication Manager routine takes, as input, a pointer to a parameter block of
type Aut hPar anBl ockPt r. This parameter block defines a union of substructures, each
of which is a parameter block for one of the Authentication Manager functions. See the
descriptions of individual routines, beginning on page 9-416, for a listing of fields in the
corresponding parameter blocks. Each of these parameter blocks has the following
header:

#defi ne Aut hDi r Par anHeader

Ptr gLi nk; /* reserved */

| ong reservedl; /* reserved */

| ong reserved2; /[* reserved */

ProcPtr i oConmpl etion; /* your conpletion routine */

OSErr i oResul t; /* result code */

unsi gned | ong saveAb5; /* reserved */

short r eqCode; /* reserved */

| ong reserved[2] ; /* reserved */

Addr Bl ock server Hint; /* Power Share server AppleTal k
addr */

short dsRef Num /* Set to kRef Numnknown */

unsi gned long calllD /* reserved */

Aut hl dentity identity; /* initiator’'s identity */

| ong gReservedl; /* reserved */

9-414 Authentication Manager Reference

CHAPTER 9

Authentication Manager

| ong gReserved?; /* reserved */
| ong gReserved3; /* reserved */
| ong clientDat a; /* you define this field */

Field descriptions

gLi nk Reserved.
reservedl Reserved.
reserved2 Reserved.

i oConpl etion A pointer to a completion routine that you can provide. If you call
an Authentication Manager routine asynchronously, it calls your
completion function upon returning. Set this field to ni | if you do
not wish to provide a completion routine. The function ignores this
field if you call it synchronously.

i oResul t The result of the routine. When you execute the routine
asynchronously, the Authentication Manager sets this field to 1 as
soon as it queues the routine for execution. When the routine
completes execution, the Authentication Manager sets this field to
the result code.

saveA5 Reserved.
r eqCode Reserved.
reserved| 2] Reserved.
server H nt The AppleTalk address of the PowerShare server to which you want

to direct your request. Normally, you specify the value 0 for all
fields of this structure, and the Authentication Manager directs the
request to an appropriate PowerShare server. The Addr Bl ock data
structure is described in Inside Macintosh: Networking.

dsRef Num The personal catalog reference number. Because the Authentication
Manager works only with server-based catalogs, you must set this
parameter to the value kRef Numnknown for all Authentication
Manager functions.

callID Reserved.

identity The authentication identity of the entity calling a function. The
authentication identity can be either a local identity, a specific
identity, or 0 for guest access. The PowerShare server or CSAM uses
the identity to determine if the requestor has the access privileges
necessary to perform the requested operation. Functions that fail
because of insufficient access privileges return either the
kOCEReadAccessDeni ed or KOCEW i t eAccessDeni ed result
code. The Aut hGet Local | dent i ty function described on
page 9-424 returns the local identity, and the
Aut hBi ndSpeci fi cl denti ty function described on page 9-435
returns a specific identity. See the chapter “Catalog Manager” in this
book for more information about access controls.

gReservedl Reserved.
gReserved2 Reserved.
gReserved3 Reserved.

Authentication Manager Reference 9-415

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

clientData Available for your use. The Authentication Manager passes the
value in this field to your completion or callback routine. If you use
the same completion routine to process more than one
asynchronous request, for example, your routine can use the
cl i ent Dat a field to determine for which request it is processing
results. You may also use this field to store a pointer to your
application’s private data.

The Key Structures

Keys are translated passwords used in cryptographic algorithms. See “Keys” on
page 9-400. The client keys and session keys used by some Authentication Manager
functions are defined by a structure of type Aut hKey.

typedef unsigned | ong Aut hKeyType;
typedef Byte RC4AKey[kRC4AKeySi zel nByt es];
struct AuthKey {/* key type followed by its data */
Aut hKeyType keyType;
uni on {
DESKey des;
RCAKey rc4;
b,
1
typedef Aut hKey *Aut hKeyPtr;
struct DESKey {/* A DES key is 8 bytes of data */
unsi gned | ong a;
unsi gned | ong b;

b

Authentication Manager Functions

9-416

This section describes functions provided by the Authentication Manager for your use.
These functions make it possible for you to manage keys, local identities, specific
identities, and credentials; resolve creation IDs; obtain universal coordinated time;
implement non-ASDSP authentication, and manage the PowerTalk Setup catalog.

Note

As is generally true, to ensure that asynchronously called functions
operate correctly, you must allocate nonrelocatable memory for all
parameter blocks and any buffers required for the function. O

Authentication Manager Reference

CHAPTER 9

Authentication Manager

Assembly-Language Interface

To call an Authentication Manager function from assembly language, push the address
of the Aut hPar anBl ock parameter block and the async flag onto the stack using the
Pascal calling convention, and place the appropriate routine selector value in register DO.
Then invoke the _oceTBDi spat ch trap. Each function description includes the selector
value for that function. The function returns its result code in the i oResul t field of the
parameter block.

Key Management

The Authentication Manager provides functions to

» translate a password into a key (Aut hPasswor dToKey)

» add a key to a server-based catalog (Aut hAddKey)

» change a key in a server-based catalog (Aut hChangeKey)

» delete a key from a server-based catalog (Aut hDel et eKey)

The three functions that communicate with the server are subject to the access controls
specified in the record of the entity for whom you’re making the request. Access controls
are discussed in the chapter “Catalog Manager” in this book.

Note

These functions operate only on client keys, not on session keys. Session
keys are created by servers and are valid only for a limited time period.
See “Keys” on page 9-400. O

AuthPasswordToKey

The Aut hPasswor dToKey function translates a password string into a client key.

pascal OSErr Aut hPasswordToKey (Aut hParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Authentication Manager Reference 9-417

JabBeuey uoneanuayiny n

DESCRIPTION

CHAPTER 9

Authentication Manager

Parameter block

- i oConpl eti on ProcPtr Your completion routine
- i oResul t OSEr r Result code

- user Record Recordl DPt r Target’s record ID

o key Aut hKeyPt r Target’s key

- password RStringPtr Target’s password

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

user Record A pointer to the record ID of the user or service for which you want
a client key.

key A pointer to an Aut hKey structure you allocate. The function places
the key in this structure.

passwor d A pointer to the password string of the user or service whose record
ID you specified in the user Recor d parameter. Passwords must be
at least 5 bytes and not more than 255 bytes.

The Aut hPasswor dToKey function creates a new key from a new or changed
password. The Authentication Manager returns the key to your local computer only; it
does not store the key on the server.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

9-418

Trap macro Selector
_oceTBDi spat ch $020A

noErr 0 No error

k OCEPar aner r -50 Password too long

kCCEUndesi r abl eKey -1556 Password too short or resulting key is
undesirable

The Aut hKey structure is described in “The Key Structures” on page 9-416.

The Aut hPasswor dToKey function is used in an example in “Authentication Using
ASDSP” on page 9-408.

The Aut hAddKey function is discussed next.
The Aut hChangeKey function is described on page 9-420.
The Aut hDel et eKey function is described on page 9-422.

Authentication Manager Reference

CHAPTER 9

Authentication Manager

AuthAddKey

DESCRIPTION

The Aut hAddKey function adds a key for an authentication client to the server-based
catalog.

pascal OSErr Aut hAddKey (AuthParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t OSEr r Result code

> identity Aut hl dentity Initiator’s identity

- user Record Recor dl DPt r Target’s record ID

- user Key Aut hKeyPt r Target’s key

- password RStringPtr Target’s password

See page 9-415 for descriptions of the i oConpl eti on,i oResul t,and i denti ty fields.

Field descriptions

user Record A pointer to the record ID of the user or service whose key you are
adding to a catalog.

user Key A pointer to the new key you are providing.

passwor d A pointer to the password string of the user or service whose key
you are providing. Specify ni | for this field if you are not
providing a password. If you provide a password, the
Authentication Manager checks that the key was properly
translated from the password before adding the key to the catalog.

During the authentication process, the authentication server encrypts data using the
keys of both the initiator and the recipient. For this reason, the server must store the key
of every user of the system.

You must provide an identity to this function so that the server can check whether the
caller has permission to add a key to the user’s record.

Call the Aut hPasswor dToKey function before calling the Aut hAddKey function to
obtain a key corresponding to the user’s password.

Authentication Manager Reference 9-419

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0207

RESULT CODES
NoErr 0 No error
kOCEAW i t eAccessDeni ed -1541 Write access denied
kOCEKeyAl r eadyRegi st er ed -1554 A key already exists
kCCEMal For medKey -1555 Key not derived properly
from password
kOCEUnknownl D -1567 Identity passed is not valid
kOCENot Local -1610 Internal AOCE error
kCOCETar get Di rect oryl naccessi bl e -1613 Catalog server not responding
kOCENoSuchDNode -1615 The dNode was not found
kOCEBadRecor dI D -1617 Name and type incorrect for
creation ID
kOCENoSuchRecord -1618 No such record
kOCESt r eanCr eat i onErr -1625 An error occurred in creating
the stream
SEE ALSO
The use of keys in the authentication process is described in “Steps in the Authentication
Process” beginning on page 9-401.
Access controls are discussed in the chapter “Catalog Manager” in this book.
Use the Aut hPasswor dToKey function (page 9-417) to create a key.
Use the Aut hChangeKey function, described next, to replace a key already stored in the
server-based catalog.
AuthChangeKey
The Aut hChangeKey function changes a user’s key stored in a server-based catalog.
pascal OSErr Aut hChangeKey (AuthParanBl ockPtr paranBl ock,
Bool ean async);
par amBl ock
A pointer to a parameter block.
async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.
9-420 Authentication Manager Reference

DESCRIPTION

CHAPTER 9

Authentication Manager

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t CSErr Result code

- identity Aut hl dentity Initiator’s identity

- user Record Recor dl DPt r Target’s record ID

- user Key Aut hKeyPt r Target’s key

- passwor d RStringPtr Target’s password

See page 9-415 for descriptions of the i oConpl eti on,i oResul t,and i denti ty fields.

Field descriptions

user Record A pointer to the record ID of the user or service whose changed key
you are storing in a catalog.

user Key A pointer to the new key you are providing.

passwor d A pointer to the password string of the user or service whose key
you are providing. Specify ni | for this field if you are not
providing a password. If you provide a password, the
Authentication Manager checks that the key was properly
translated from the password before adding the key to the catalog.

Call the Aut hChangeKey function when a password has been changed and you need to
store a new key in a server-based catalog. Call the Aut hPasswor dToKey function
before calling the Aut hChangeKey function to obtain a key corresponding to the new
password.

You must provide an identity to this function so that the server can verify that the caller
has permission to change a key in the user’s record.

SPECIAL CONSIDERATIONS

If you change a key for a user or service and later attempt to use a local or specific
identity that was created using the old key, the function may fail. It is important to
update identities when changes are made to the passwords and therefore to the keys.
Before executing some functions, the Collaboration toolbox communicates with the
server to check identities and keys relative to each other.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0208

Authentication Manager Reference 9-421

JabBeuey uoneanuayiny n

RESULT CODES

SEE ALSO

CHAPTER 9

Authentication Manager

noErr 0 No error

KOCEAW i t eAccessDeni ed -1541 Write access denied

k OCENoKey Found -1550 No key was found

kCCEMal For medKey -1555 Key not derived properly
from password

kCCEUnknownl D -1567 Identity passed is not valid

kOCENot Local -1610 Internal AOCE error

kOCETar get Di r ect or yl naccessi bl e -1613 Catalog server not responding

kOCENoSuchDNode -1615 The dNode was not found

kOCEBadRecor dI D -1617 Name and Type incorrect for
creation ID

kOCENoSuchRecor d -1618 No such record

kOCESt r eanCr eat i onErr -1625 An error occurred in creating
the stream

Use the Aut hBi ndSpeci fi cl dent ity function (page 9-435) to update an identity
when you change a key.

The Aut hPasswor dToKey function is described on page 9-417.
The Aut hAddKey function is discussed on page 9-419.
The Aut hDel et eKey function is described next.

AuthDeleteKey

9-422

Call the Aut hDel et eKey function to delete a key for a specified authentication client
from the server-based catalog.

pascal OSErr Aut hDel et eKey (AuthParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t CSEr r Result code

- identity Aut hl dentity Initiator’s identity

- user Recor d Recordl DPt r Target’s record ID

See page 9-415 for descriptions of the i oConpl eti on,i oResul t,and i denti ty fields.

Authentication Manager Reference

DESCRIPTION

CHAPTER 9

Authentication Manager

Field descriptions

user Record A pointer to the record ID of the user or service whose key is to be
deleted.

Call the Aut hDel et eKey function to remove a key from the server-based catalog.

If you wish a new key to take the place of the deleted one in the server-based catalog,
you can call the Aut hPasswor dToKey function and then the Aut hAddKey function.

SPECIAL CONSIDERATIONS

When you remove a key for a user or service from the server-based catalog, the
Authentication Manager can no longer create an authentication identity for that user or
service, build credentials, or have others build credentials to authenticate connections to
the user or service.

If you remove a key for a user and then later attempt to use a local or specific identity
that was created using the key, the function may fail. It is important to update identities
when changes are made to passwords and therefore to keys. Identities and keys are
checked relative to each other before some functions are allowed.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0209

noErr 0 No error

kOCEAW i t eAccessDeni ed -1541 Write access denied

kCCENoKeyFound -1550 No key was found

kCCEUnknownl D -1567 Identity passed is not valid

k OCENot Local -1610 Internal AOCE error

kOCETar get Di r ect or yl naccessi bl e -1613 Catalog server not responding

kOCENoSuchDNode -1615 The dNode was not found

kOCEBadRecor dI D -1617 Name and type incorrect for
creation ID

kOCENoSuchRecor d -1618 No such record

kOCESt r eanCr eat i onErr -1625 An error occurred in creating
the stream

The Aut hPasswor dToKey function is described on page 9-417.
The Aut hAddKey function is discussed on page 9-419

Authentication Manager Reference 9-423

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

The Aut hChangeKey function is described on page 9-420.

Use the Aut hBi ndSpeci fi cl dent ity function (page 9-435) to update an identity
when you change a key.

Local Identity Management

Alocal identity provides transparent access to the PowerTalk Setup catalog: it gives the
user access to all catalogs and services in the PowerTalk Setup catalog without the user
having to log on to each one individually. Any AOCE Catalog Manager or
Authentication Manager function that requires an i dent i t y parameter can use a local
identity. See “Local Identities” on page 9-404 for a discussion of local identities.

The Authentication Manager provides functions that you can use to
= get the local identity number (Aut hGet Local | denti ty)

= add an application to the local identity notification queue
(Aut hAddToLocal | denti t yQueue)

= remove an application from the local identity notification queue
(Aut hRenmoveFr omlLocal | denti t yQueue)

The Authentication Manager also provides functions that the PowerTalk Key Chain uses
to

= set up the local identity (Aut hSet upLocal | dentity)

» change the local identity (Aut hChangeLocal | dentity)
» lock the local identify (Aut hLockLocal | dentity)

» unlock the local identity (Aut hUnl ockLocal | dentity)

= remove the local identity (Aut hRempveLocal | dentity)

AuthGetLocalldentity

9-424

Call the Aut hGet Local | denti ty function to get the local identity.

pascal OSErr AuthCetlLocal Identity (AuthParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Authentication Manager Reference

DESCRIPTION

CHAPTER 9

Authentication Manager

Parameter block

- i oCompl etion ProcPtr Your completion routine
- i oResul t OSEr r Result code
- t heLocal I dentity Local I dentity The local identity

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

t heLocal I dentity
The local identity.

You can call the Aut hGet Local | denti ty function to obtain the local identity. If the
local identity has not been set up, the Aut hGet Local | dent i ty function returns a
kOCECCESet upRequi r ed result code. If the local identity is locked, the

Aut hGet Local | dent i ty function returns a KOCELocal Aut henti cati onFai | result
code.

If your application is not a background application, you can call the SDPPr onpt For | D
function to prompt the user to unlock the local identity.

If your application runs only in the background, you can register with the
Authentication Manager using the Aut hAddToLocal | denti t yQueue function. Then
your application is notified when the local identity is created or unlocked.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0204

noErr 0 No error
kCCELocal Aut henti cat i onFai | -1561 Local identity locked
kOCESet upRequi r ed -1633 Setup of local identity required

The Aut hGet Local | dent i t y function is used in an example in the section
“Authentication Using ASDSP” on page 9-408.

The SDPPr onpt For | D function is described in the chapter “Standard Catalog Package”
in this book.

The Aut hAddToLocal | dent i t yQueue function is discussed next.

Authentication Manager Reference 9-425

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

AuthAddToLocalldentityQueue

DESCRIPTION

9-426

Call the Aut hAddToLocal | dent i t yQueue function to add an application to the
Authentication Manager’s local identity notification queue.

pascal OSErr Aut hAddToLocal | dentityQueue
(Aut hPar amBl ockPtr par anBl ock, Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t OSEr r Result code

- clientData | ong For your use

N noti fyProc Noti ficati onProc Notification function

N noti f yFl ags Aut hNot i fi cati ons Notification flags

N appNane StringPtr Application name

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

clientdata A value for your use. The Authentication Manager passes the value
in this field to your notification routine.

noti fyProc A pointer to your notification routine. You must provide a
notification routine to be called by the notification queue.

noti f yFl ags A flag byte that specifies when you want your notification routine
to be called: when the local identity is about to be locked, when it is
unlocked, when the user changes the name in the PowerTalk Key
Chain, or for some combination of these events.

appNane A pointer to the name of your application.

You call the Aut hAddToLocal | denti t yQueue function to add your notification
routine to the Authentication Manager’s notification queue.

You set the not i f yFl ags field to specify when you want your notification routine
called. Possible values for this field are as follows:

enum {kNoti fyLockBit, kNotifyUnl ockBit, kNotifyNanmeChangeBit};
enum
{kNot i f yLockMask = 1L << kNotifyLockBit,

Authentication Manager Reference

CHAPTER 9

Authentication Manager

kNot i f yUnl ockMask = 1L << kNotifyUnl ockBit
kNot i f yNaneChangeMask= 1L << kNoti f yNaneChangeBi t

b

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0205

noErr 0 No error

For an example of the use of the Aut hAddToLocal | dent i t yQueue function, see
Listing 9-1 on page 9-411.

The notification routine is described on page 9-465.

AuthRemoveFromLocalldentityQueue

Call the Aut hRermoveFr onlocal | dent i t yQueue function to remove your notification
routine from the Authentication Manager’s notification queue.

pascal OSErr Aut hRenpbveFroniocal | dentityQueue
(Aut hPar anBl ockPtr par anBl ock, Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t CSErr Result code
- noti f yProc Noti fi cati onProc Notification function

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

notifyProc The notification routine you provided when you called the
Aut hAddTolLocal | denti t yQueue function.

Authentication Manager Reference 9-427

JabBeuey uoneanuayiny n

DESCRIPTION

CHAPTER 9

Authentication Manager

You call the Aut hRermoveFr onlLocal | denti t yQueue function to remove your
notification routine from the Authentication Manager’s notification queue. The
Authentication Manager informs the routines in the notification queue of changes in the
state of the local identity access.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0206

noErr 0 No error

For an example of the use of the Aut hRermoveFr onLocal | denti t yQueue function,
see Listing 9-1 on page 9-411.

You use the Aut hAddToLocal | dent i t yQueue function (page 9-426) to add a routine
to the notification queue.

The notification procedure is described on page 9-465.

AuthSetupLocalldentity

9-428

The Aut hSet upLocal | dent i ty function sets up the user name and password for the
local identity.

pascal OSErr AuthSetuplLocal | dentity (AuthParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t OSEr r Result code

- user Nanme RStringPtr The user name

- passwor d RStringPtr The user password

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Authentication Manager Reference

DESCRIPTION

CHAPTER 9

Authentication Manager

Field descriptions
user Nane The name of the principal user of the local computer.

passwor d The password to assign to the principal user of the local computer.

You can use this function to set up the user name and password for the local identity.
Normally, however, the user sets up a local identity by specifying a name and password
in the PowerTalk Key Chain. You can call the SDPPr onpt For | D function to prompt a
user for a password to unlock the local identity when necessary.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0216

nokErr 0 No error

kOCELocal | denti t ySet upExi sts -1562 Local identity setup exists, use
Aut hChangelLocal | dentity
instead

You can use the Aut hGet Local | dent i ty function (page 9-424) to obtain a local
identity once it has been set up.

Use the SDPPr onpt For | D function, which is described in the chapter “Standard
Catalog Package” in this book, to prompt the user for a name and password to unlock
the local identity. This function also returns the local identity.

AuthChangeLocalldentity

The Aut hChangelLocal | dent i ty function changes the password for the local identity.

pascal OSErr Aut hChangelLocal I dentity
(Aut hPar anBl ockPtr par anBl ock
Bool ean async);

par anBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Authentication Manager Reference 9-429

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

Parameter block

- i oCompl etion ProcPtr Your completion routine
- i oResul t OSEr r Result code

. user Nane RStringPtr The user name

. passwor d RStringPtr The user password

- newPasswor d RStringPtr The new user password

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

user Nane The name of the principal user of the local computer.
passwor d The current password for the principal user of the local computer.
newPasswor d The new password you want to assign to the principal user of the

local computer.

DESCRIPTION

You can use this function to change the password for the local identity from within your
application. Normally, however, the user uses the PowerTalk Key Chain to change the
password for the local identity.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0217

RESULT CODES

noErr 0 No error

kCCELocal Aut hent i cat i onFai | -1561 Local identity locked

k OCECCESet upRequi r ed -1633 Setup of local identity required
SEE ALSO

You can use the Aut hSet upLocal | denti t y function (page 9-428) to set up a local
identity.

9-430 Authentication Manager Reference

CHAPTER 9

Authentication Manager

AuthLockLocalldentity

DESCRIPTION

The Aut hLockLocal | denti t y function locks the local identity.

pascal OSErr AuthLockLocal Identity (AuthParanBl ockPtr paranBl ock
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine

- i oResul t OSEr r Result code

- t heLocal I dentity Local I dentity The local identity

- appNane StringPtr The name of the application

that denied locking (if any)
See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions
t heLocal I dentity
The local identity.

appNarre The name of the application that denied locking, if the function fails
and returns the KOCEQper at i onDeni ed result code. Allocate a
pointer to a St r 31 data type for this parameter.

To lock the local identity, a user can choose the Lock Key Chain command from the
Special menu of the Finder or set the PowerTalk Setup control panel to lock the Key
Chain after some specified period of inactivity. You can use the

Aut hLockLocal | dent ity function to lock the local identity from within your
application.

When you call the Aut hLockLocal | dent i ty function, the Authentication Manager
calls every routine in its notification queue to give it an opportunity to deny the lock
operation. If any application denies the operation, the Aut hLockLocal | denti ty
function returns the KOCEOper at i onDeni ed result code and the appNane field points
to the name of the application that denied the locking operation.

Authentication Manager Reference 9-431

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0215

NoErr 0 No error
kCOCEQper at i onDeni ed -1568 Local identity operation denied

The notification queue is described in “Local Identity Status Notification” on page 9-405.

You use the Aut hAddToLocal | dent i t yQueue function (page 9-426) to add a routine
to the notification queue.

You can use the Aut hUnl ockLocal | dent i t y function (described next) to unlock a
local identity.

AuthUnlockLocalldentity

9-432

Call the Aut hUnl ockLocal | denti ty function to unlock the local identity.

pascal OSErr AuthUnl ockLocal I dentity
(Aut hPar anBl ockPtr par anBl ock
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t OSEr r Result code

- t heLocal I dentity Local I dentity The local identity

- user Nanme RStringPtr The name of the user

- passwor d RStringPtr The user password

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Authentication Manager Reference

DESCRIPTION

CHAPTER 9

Authentication Manager

Field descriptions
theLocal I dentity

The local identity.
user Nane The name of the principal user of the local computer.
passwor d The password for the principal user of the local computer.

To unlock a local identity, the user can choose the Unlock Key Chain command from the
Finder’s Special menu. You can also call the SDPPr onpt For | D function to prompt the
user for a password and unlock the local identity. Alternatively, you can use the

Aut hUnl ockLocal | dent i ty function to unlock the local identity from within your
application. If the local identity does not exist, this function creates one.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0214

NoErr 0 No error
k OCECCESet upRequi r ed -1633 Setup of local identity required

The Aut hLockLocal | denti ty function is described on page 9-431.
The Aut hSet upLocal | denti ty function is described on page 9-428.

The SDPPr onpt For | D function is described in the chapter “Standard Catalog Package”
in this book.

AuthRemoveLocalldentity

Call the Aut hRenpvelLocal | dent ity function to remove the local identity.

pascal OSErr Aut hRenovelLocal I dentity
(Aut hPar anBl ockPt r par anBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

Authentication Manager Reference 9-433

JabBeuey uoneanuayiny n

DESCRIPTION

CHAPTER 9

Authentication Manager

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl et i on ProcPtr Your completion routine
- i oResul t OSEr r Result code

- user Nanme RStringPtr The name of the user.

= passwor d RStringPtr The user password.

See page 9-415 for descriptions of the i oConpl et i on and i oResul t fields.

Field descriptions
user Nane The name of the principal user of the local computer
passwor d The password for the principal user of the local computer

Normally, a user cannot remove a local identity from a PowerTalk system without
replacing it with a new local identity or reinstalling the PowerTalk system software. The
user normally uses the Key Chain to change a local identity. You can use the

Aut hRenpvelocal | denti ty function to remove the local identity, effectively
rendering the Key Chain inoperable. The user then is prompted to set up a local identity
the next time he or she attempts to use the PowerTalk system software.

IMPORTANT

Because removing the local identity disrupts the use of the PowerTalk
system software on the user’s computer, warn users before allowing
them to remove a local identity. a

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

9-434

Trap macro Selector
_oceTBDi spat ch $0218

noErr 0 No error
kOCELocal Aut hent i cat i onFai | -1561 Local identity locked
k OCECCESet upRequi r ed -1633 Setup of local identity required

To lock a local identity so that the user must enter the password before using PowerTalk,
use the Aut hLockLocal | denti ty function (page 9-431).

Authentication Manager Reference

CHAPTER 9

Authentication Manager

Specific Identity Management

A specific identity is a shorthand representation for the name and key of an alternate
user. See “Specific Identities” on page 9-405 for a further discussion.

The Authentication Manager provides the following specific identity management
services:

» binding a new specific identity number to a user’s record ID and key
(Aut hBi ndSpeci ficldentity)

= unbinding a specific identity number from a user’s record ID and key
(Aut hUnbi ndSpeci ficldentity)

= using a specific identity to get a user’s record ID
(Aut hGet Speci ficldentityl nfo)

AuthBindSpecificldentity

Call the Aut hBi ndSpeci ficl dentity function to bind an identity number to a
specified authentication client’s record ID and key.

pascal OSErr Aut hBi ndSpecificldentity
(Aut hPar anBl ockPt r par anBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t CSErr Result code

- userldentity Aut hl dentity Binding identity

- user Record Recor dl DPt r Entity’s record ID

- user Key Aut hKeyPt r Entity’s key

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

userldentity The specific identity.

user Record A pointer to the record ID of the authentication client.
user Key A pointer to the user or service key for the client.

Authentication Manager Reference 9-435

JabBeuey uoneanuayiny n

DESCRIPTION

CHAPTER 9

Authentication Manager

Call the Aut hBi ndSpeci fi cl denti ty function to bind an identity to a record ID and
key you provide. The Authentication Manager contacts the catalog containing the record
identified by the user Recor d field to verify the name and key. If the name is valid and
the key is correct, the Aut hBi ndSpeci fi cl denti ty function returns an identity.

You can use the identity returned by this function as an input to any AOCE function that
requires an identity. The AOCE software uses the identity to check whether the
authentication client has sufficient access privileges to do the operation requested.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

9-436

Trap macro Selector
_oceTBDi spat ch $0200

nokErr 0 No error

kCOCENoKeyFound -1550 Client has no key

kOCEW ongl dent i t yOr Key -1557 Incorrect key for client

kOCEUnknown! D -1567 Identity passed is not valid

k OCENot Local -1610 Internal AOCE error

kCOCETar get Di rect oryl naccessi bl e -1613 Catalog server not responding

k OCENoSuchDNode -1615 The dNode was not found

kOCEBadRecor dl D -1617 Name and type incorrect for
creation ID

kOCENoSuchRecor d -1618 Record ID doesn’t exist

kCOCESt r eanCr eat i onErr -1625 An error occurred in creating
the stream

The Aut hBi ndSpeci fi cl denti ty function is used in an example in the section
“Authentication Using ASDSP” on page 9-408.

You can use the Aut hPasswor dToKey function (page 9-417) to get a key from a
password.

The Aut hUnbi ndSpeci fi cl denti ty function is described next.

Authentication Manager Reference

CHAPTER 9

Authentication Manager

AuthUnbindSpecificldentity

DESCRIPTION

The Aut hUnbi ndSpeci fi cl dentity function unbinds an identity from a user’s
name and key.

pascal OSErr Aut hUnbi ndSpecificldentity
(Aut hPar amBl ockPtr par anBl ock, Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t OSEr r Result code
- userldentity Aut hl dentity Binding identity

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions
userldentity The identity to be deleted.

Call the Aut hUnbi ndSpeci fi cl dent ity function to remove permanently an identity
you no longer need; for example, when your application quits.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0201

noErr 0 No error
kOCENot Local I dentity -1565 You cannot unbind a local identity
kOCEUnknown! D -1567 Identity passed is not valid

The Aut hBi ndSpeci fi cl denti ty function is described on page 9-435.

The Aut hGet Speci fi cl denti tyl nf o function (described next) returns the record ID
associated with a specific identity.

Authentication Manager Reference 9-437

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

AuthGetSpecificldentityInfo

DESCRIPTION

Call the Aut hGet Speci fi cl denti t yl nf o function to get the record ID (but not the
user or service key) associated with the specified identity.

pascal OSErr AuthCet Specificldentitylnfo
(Aut hPar anBl ockPt r par anBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl eti on ProcPtr Your completion routine
- i oResul t OSErr Result code

- userldentity Aut hl dentity Identity

- user Recor d Recordl DPt r Entity’s record ID

See page 9-415 for descriptions of the i oConpl et i on and i oResul t fields.

Field descriptions
userldentity The identity whose record ID is desired.

user Record A pointer to the record ID structure for the record, in which the
record ID is returned.

Call the Aut hGet Speci fi cl denti tyl nf o function to obtain the record ID associated
with a particular identity.

The user Recor d field must contain a pointer to a r ecor dl Dstructure of maximum
size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

9-438

Trap macro Selector
_oceTBDi spat ch $0203

noErr 0 No error

kOCENot Local I dentity -1565 You cannot unbind a local identity
kOCEUnknown! D -1567 Identity passed is not valid
Authentication Manager Reference

CHAPTER 9

Authentication Manager

SEE ALSO
The chapter “AOCE Utilities” in this book describes how to allocate space for a record ID.

The Aut hBi ndSpeci fi cl denti ty function is described on page 9-435.
The Aut hUnbi ndSpeci fi cl denti ty function is described on page 9-437.

Credentials Management

Credentials enable initiators and recipients to verify each other’s identities. See
“Credentials” on page 9-401 for more information. The Authentication Manager
provides functions to

= get credentials from the server(Aut hCGet Cr edent i al s)
= obtain a proxy with which to get credentials (Aut hMakePr oxy)

= use a proxy to get credentials from the server (Aut hTr adePr oxyFor Cr edent i al s)

AuthGetCredentials

Call the Aut hGet Cr edent i al s function to obtain credentials from the authentication
server.

pascal OSErr AuthCGet Credentials (AuthParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine

- i oResul t OSEr r Result code

- userldentity Aut hl dentity Initiator identity

- reci pi ent Recordl DPt r Record ID of recipient

- sessi onKey Aut hKeyPt r Session key

- expiry UTCTi ne Desired / actual times

o credenti al sLength unsi gned | ong Bulffer size and credentials size
o credential s Ptr Credentials buffer

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Authentication Manager Reference 9-439

JabBeuey uoneanuayiny n

DESCRIPTION

CHAPTER 9

Authentication Manager

Field descriptions
userldentity The identity of the initiator.
recipi ent A pointer to the record ID of the recipient.

sessi onKey A pointer to a buffer that you supply to the function. The function
puts the session key into this buffer.

expiry When you call the function, you use the expi ry field to specify the
time at which you want the credentials to expire. When the function
completes, this field specifies the actual expiration time: your
desired expiration time or the current time plus 8 hours, whichever
is sooner.

credenti al sLength
When you call the function, you use this field to specify the size of
the buffer pointed to by the cr edent i al s field. A buffer three
times the size of a packed record ID is usually sufficient for
credentials. Use the kPackedRecor dl DMaxByt es constant
defined in the chapter “AOCE Utilities” in this book to determine
the size of a packed record ID. When the function completes, this
field indicates the actual amount of data written into the buffer.

credentials A pointer to the buffer you provide to hold the returned credentials.

Call the Aut hGet Cr edent i al s function to get credentials to establish an authenticated
connection with the named recipient. Any entity can request credentials for any other
entity.

Your application should call the Aut hGet UTCTi ne function before calling the

Aut hGet Cr edent i al s function because the expiration time you specify is based on
universal coordinated time (UTC). You add the desired number of seconds to the current
time returned by the Aut hGet UTCTi nme function.

If the Aut hGet Cr edent i al s function is successful, the buffer pointed to by the
credenti al s field contains encrypted credentials and the sessi onKey field contains
the key to use during the challenge portion of the authentication process. The credentials
returned by the server to the initiator are encrypted in the key of the recipient.

If the buffer you provide is not large enough to hold the credentials, the function returns
the kOCEMbr eDat a result code. You can increase the buffer size and call the function
again.

ASSEMBLY-LANGUAGE INFORMATION

9-440

Trap macro Selector
_oceTBDi spat ch $020B

Authentication Manager Reference

CHAPTER 9

Authentication Manager

RESULT CODES
noErr 0 No error
kOCECr edent i al sExpi red -1546 Desired expiration time has
passed
kOCEReci pi ent KeyNot Found -1552 The recipient key was not
found
KCCEl ni ti at or KeyPr obl em -1558 No key, or initiator’s key
changed
kOCEUnknown! D -1567 Identity passed is not valid
kCOCENot Local -1610 Internal AOCE error
kCCETar get Di rect oryl naccessi bl e -1613 Catalog server not responding
kOCENoSuchDNode -1615 The dNode was not found
kOCEBadRecor dI D -1617 Name and type incorrect for
creation ID
kCOCEMbr eDat a -1623 Buffer was too small to hold
all available data
kOCESt r eanCr eat i onErr -1625 An error occurred in creating
the stream
SEE ALSO
The authentication process is described in “Steps in the Authentication Process”
beginning on page 9-401.
The Aut hGet Cr edent i al s function is used in an example in the section
“ Authentication Using ASDSP” on page 9-408.
The Aut hGet UTCTi ne function is discussed on page 9-449.
The Aut hDecr ypt Cr edent i al s function is discussed on page 9-455.
AuthMakeProxy

Call the Aut hMakePr oxy function to create a proxy.

pascal OSErr Aut hMakeProxy (AuthParanBl ockPtr paranBl ock
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Authentication Manager Reference 9-441

JabBeuey uoneanuayiny n

DESCRIPTION

9-442

CHAPTER 9

Authentication Manager

Parameter block

- i oConpl eti on
- i oResul t

- userldentity
- reci pi ent

- firstvalid

- expiry

- aut hDat aLengt h
- aut hDat a

o pr oxyLengt h

o pr oxy

- i nternedi ary

ProcPtr

CSEr r

Aut hl dentity
Recordl DPt r
UTCTi e
UTCTi e

unsi gned | ong
Ptr

unsi gned | ong
Ptr
Recordl DPt r

Your completion routine
Result code

Principal identity
Recipient record ID

Time proxy becomes valid
Time proxy expires

Must be 0

Must be ni |

Buffer size and proxy size
Proxy buffer
Intermediary record ID

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions
userldentity

reci pi ent
firstvalid
expiry

aut hDat aLengt h

The identity of the user or service for which you are requesting the
proxy.

A pointer to the record ID of the recipient.

The time that the proxy is to become valid.

The last time at which you want the proxy to be valid

aut hDat a
proxylLength

pr oxy

i nternedi ary

Reserved. Set this parameter to 0.

Reserved. Set this parameter to ni | .

The length of the buffer to which the pr oxy field points. A buffer
twice the size of a packed record ID is usually sufficient for a proxy.
Use the kPackedRecor dl DMaxByt es constant defined in the
chapter “AOCE Utilities” in this book to determine the size of a
packed record ID. The function returns the actual length of the
proxy in this parameter.

A pointer to the proxy buffer, in which the function returns the
proxy.

A pointer to the record ID of the intermediary that will use the
proxy to obtain credentials in your behalf.

Call the Aut hMakePr oxy function to create a proxy. A proxy is granted to an
intermediary for use with a particular recipient during a specified time period only. The
Aut hMakePr oxy function creates a proxy and returns it to you. You can then pass it to
an intermediary to use on your behalf. The proxy is valid only until the expiration time
you specify in the expi ry field. To obtain credentials, the intermediary must call the
Aut hTr adePr oxyFor Cr edent i al s function.

Authentication Manager Reference

CHAPTER 9

Authentication Manager

If the function returns a K OCEMbr eDat a result code, you can call the Aut hMakePr oxy
function again after increasing the buffer size.

SPECIAL CONSIDERATIONS

The Authentication Manager provides no mechanism for sending a proxy from an
initiator to an intermediary. You must devise your own mechanism and protocol for this
purpose.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0212

noErr 0 No error
k OCEMbr eDat a -1623 Buffer was too small to hold all available data

The Aut hMakePr oxy function is used in an example in the section “Authentication
Using a Proxy” on page 9-410.

See “Proxies” on page 9-406 for a discussion of proxies and “Steps in the Authentication
Process” beginning on page 9-401 for a description of the authentication process.

The Aut hTr adePr oxyFor Cr edent i al s function is described next.

AuthTradeProxyForCredentials

Call the Aut hTr adePr oxyFor Cr edent i al s function to trade a proxy for credentials.

pascal OSErr Aut hTradeProxyFor Credential s
(Aut hPar anBl ockPtr par anBl ock, Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Authentication Manager Reference 9-443

JabBeuey uoneanuayiny n

DESCRIPTION

9-444

CHAP

TER 9

Authentication Manager

Parameter block

- i oConpl eti on ProcPtr Your completion routine

- i oResul t CSEr r Result code

- userldentity Authldentity Intermediary identity

- reci pi ent Recordl DPt r Recipient name

o sessi onKey Aut hKeyPt r Session key

o expiry UTCTi e Credentials expiration times

credenti al sLength

unsi gned | ong

Buffer size and credentials size

o credential s Ptr Credentials buffer

- pr oxyLengt h unsi gned | ong Actual proxy size

- pr oxy Ptr Proxy buffer

- princi pal Recor dl DPt r Record ID of principal

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions
userldentity
reci pi ent
sessi onKey

The identity of the intermediary.
A pointer to the record ID of the recipient.

A pointer to the session key buffer that you supply. The function
returns the session key in this buffer.

The desired expiration time for the credentials. The function returns
the actual expiration time.

credenti al sLength
As an input, the size of the buffer you are providing to hold the
returned credentials. Use the kPackedRecor dl DVaxByt es
constant defined in the chapter “AOCE Utilities” in this book to
determine the size needed. On return, this field holds the actual size
of the credentials.

expiry

credentials A pointer to the buffer in which the function places the encrypted

credentials.

proxyLengt h The size of the proxy.

pr oxy A pointer to the buffer containing the proxy used to get the
credentials.

princi pal A pointer to the record ID of the user or service who created the

Pproxy.

Calling the Aut hTr adePr oxyFor Cr edent i al s function is very similar to calling the
Aut hGet Cr edent i al s function, except that the creator of the proxy first calls the

Aut hMakePr oxy function to obtain a proxy and gives the proxy to an intermediary;
then the intermediary calls the Aut hTr adePr oxyFor Cr edent i al s function for
credentials. In the pri nci pal field, you specify the entity who made the proxy.

The expiration time of the credentials depends on the maximum lifetime permitted by
the Authentication Manager, the period during which the proxy is valid, and the
expiration time you request for the credentials. For example, assume that the proxy has
an expiration time of 3:00 PM. on a given day of a given month of a given year. Assume

Authentication Manager Reference

CHAPTER 9

Authentication Manager

all other times in this example are for the same day, month, and year as the proxy
expiration time. First, if it is 3:15 PM. when the intermediary requests credentials, the
Authentication Manager refuses the request because the proxy has expired. If, however,
the intermediary requests credentials at 5:00 A.M., the credentials expire at 1:00 P.M.
even though you requested a 3:00 P.M. expiration, because the server enforces a
maximum lifetime for credentials of 8 hours. If you request credentials at any time
between 7:01 A.M. and 2:59 PM.,, the credentials expire at 3:00 P.M., because credentials
must expire at or before the time specified by the proxy expiration time.

You can use the Aut hTr adePr oxyFor Cr edent i al s function to request credentials as
many times as you wish during the lifetime of the proxy.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0213

RESULT CODES

nokErr 0 No error

k OCEPar ankr r -50 No recipient, or invalid
recipient dNode

kOCEAccessRi ght sl nsuf fi ci ent -1542 Intermediary’s record ID does
not appear in the proxy

k OCEPr oxy| mrat ur e —1547 Proxy not yet valid

k OCEPr oxyExpi r ed 1548 Proxy has expired

kOCEDi sal | owedReci pi ent -1549 Recipient record ID does not
appear in proxy

kOCEReci pi ent KeyNot Found -1552 No key found

kOCEAgent KeyNot Found -1553 Intermediary’s key not found

kCOCEI ni t i at or KeyPr obl em -1558 Can’t decipher instructions or
the principal’s key was not
found

kOCEUnknownl D -1567 Identity passed is not valid

kOCENot Local -1610 Internal AOCE error

kOCETar get Di r ect or yl naccessi bl e -1613 Catalog server not responding

kOCENoSuchDNode -1615 The dNode was not found

kCCEBadRecor dl D -1617 Name and type incorrect for
creation ID of recipient or
principal

kCOCEMbr eDat a -1623 Buffer was too small to hold
all available data

kOCESt r eanCr eat i onErr -1625 An error occurred in creating
the stream

SEE ALSO

The Aut hTr adePr oxyFor Cr edent i al s function is used in an example in the section
“Authentication Using a Proxy” on page 9-410.

Authentication Manager Reference 9-445

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

See “Proxies” on page 9-406 for a discussion of proxies and “Steps in the Authentication
Process” beginning on page 9-401 for a description of the authentication process.

The Aut hGet Cr edent i al s function is discussed on page 9-439.
The Aut hMakePr oxy function is discussed on page 9-441.

Creation ID Resolution

Creation IDs are unique identifiers for records. The are described in detail in the chapters
“AOCE Utilities” and “Catalog Manager” in this book. The Aut hResol veCr eat i onl D
function returns the creation ID of a record with the name and type that you supply. If
there are multiple records with the same name and type, then it returns the creation IDs
of all of the records that match the name and type.

AuthResolveCreationID

9-446

Call the Aut hResol veCr eat i onl D function to obtain all the dNode numbers and
creation IDs for all the records that have a given name and type.

pascal OSErr Aut hResol veCreationl D (Aut hPar anBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine

- i oResul t CSEr r Result code

> identity Aut hl dentity Identity; must be 0

- user Record Recor dl DPt r A record ID

> buf f er Lengt h unsi gned | ong Buffer size

- buf f er Ptr Data buffer

- t ot al Mat ches unsi gned | ong Number of matches found

- act ual Mat ches unsi gned | ong Number of matches returned

See page 9-415 for descriptions of the i oConpl eti on,i oResul t,and i denti ty fields.

Field descriptions

user Record A pointer to the record ID of the entity whose dNode number and
creation ID are to be returned. You must specify the name and type
for the entity. The RLI must include the dNode number or the

Authentication Manager Reference

DESCRIPTION

CHAPTER 9

Authentication Manager

pathname of the dNode in which you expect the user’s record to be
located. The ci d field of the record ID must be set to NULL before
the function is called.

buf f er Length The size of the buffer for holding dNode numbers and creation IDs.
buf f er A pointer to the buffer to hold dNode numbers and creation IDs.
t ot al Mat ches Total number of matching names found in the server catalog.

act ual Mat ches Number of matches returned in the buffer. This number is

determined by how many dNode numbers and creation IDs fit in
the buffer.

The creation ID is a unique identifier for a given record. If you don’t know this identifier
but know the record ID, you can determine the creation ID by calling the

Aut hResol veCr eat i onl Dfunction. There may be several records with the same name
and type. It is the responsibility of your user application to prompt users to choose the
record desired from those provided by this function.

In most cases, you should search the Users and Groups folder, which has the dNode
number 3, for the record. This folder normally contains the User record or an alias to the
User record of every user with an account on the PowerShare server. If the Collaboration
toolbox finds a record with the name and type you specify, it returns the dNode number
and creation ID of that record. If it finds an alias to a record with the name and type you
specify, it resolves the alias and returns the dNode number and creation ID of the
original record.

You must set the creation ID of the record ID to NULL before calling the
Aut hResol veCr eat i onl Dfunction. You do this by calling the
OCESet Cr eat i onl DToNul | function.

The server finds all records in the catalog whose name and type match those in the
user Recor d field. Depending on the number of matches, the following results are
returned

= Exactly one match: the dNode number and creation ID are put in the buffer.

= More than one match if the buffer is large enough to hold all matches: The buffer
contains the dNode numbers and creation IDs of all records with matching names and
types. A kOCEAnDi guousMat ches result code is returned.

= More than one match if the buffer is not large enough to hold all the matches: the
t ot al Mat ches field contains the number of matches that were found in the server
catalog. The act ual Mat ches field contains how many of the dNode numbers and
creation IDs fit in the buffer, and the buffer contains as many dNode numbers and
creation IDs as fit, packed one after the other. A KOCEMdr eDat a result code is
returned.

s No matches: a KOCENoSuchRecor d result code is returned.

Authentication Manager Reference 9-447

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

When you have more than one match and the buffer is not large enough, you can call
this function again using an appropriately sized buffer. The dNode numbers and
creation IDs are loaded into the user buffer in an array the size of the act ual Mat ches
field.

SPECIAL CONSIDERATIONS

This function does not check access controls. You must pass a 0 in the i denti ty field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0202

noErr 0 No error

k OCEPar antr r -50 Invalid parameter

kOCEUnknownl D -1567 Identity passed is not valid

k OCEAmbi guousMat ches -1569 More than one match

k OCENot Local -1610 Internal AOCE error

kCOCETar get Di rect oryl naccessi bl e -1613 Catalog server not responding

k OCENoSuchDNode -1615 The dNode was not found

kOCENoSuchRecor d -1618 No such record found with
creation ID

k OCEMor eDat a -1623 Buffer was too small to hold
all available data

kOCESt r eantCr eat i onErr -1625 An error occurred in creating
the stream

The OCESet Cr eat i onl DToNul | function is described in the chapter “AOCE Utilities”
in this book.

Time Service

9-448

In a distributed system of many computers, you need a common time for
communication. The Authentication Manager provides the universal coordinated time
(UTC), also known as Greenwich Mean Time. You can use UTC to specify issue and
expiration times for credentials and for other possible uses in your application. Call the
Aut hGet UTCTi ne function to get the current UTC.

Authentication Manager Reference

CHAPTER 9

Authentication Manager

AuthGetUTCTime

The Aut hGet UTCTi e function returns the current universal coordinated time (UTC)
that is maintained by a catalog server.

pascal OSErr Aut hGet UTCTi me (Aut hParanBl ockPtr paranBl ock,

par amBl ock

Bool ean async);

A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine

- i oResul t CSEr r Result code

N pRLI PackedRLI Pt r Packed RLI of the node

- t heUTCTi ne UTCTi me UTC seconds east of Greenwich
- t heUTCO f set UTCO f set Offset from UTC

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions
pRLI

t heUTCTi ne

t heUTCO f set

Indicates which catalog to consult to determine the UTC. Time
servers within a catalog communicate among themselves to
determine their UTC. Servers in a different catalog might have a
different value of UTC. If you pass a valid record location
information structure (RLI), you get that catalog’s version of UTC. If
you pass ni | as the value of the pRLI field, the Authentication
Manager calculates the values of the t heUTCTi ne and

t heUTCO f set fields according to the clock in the user’s
Macintosh computer and the settings in the Map control panel.
Packed record location information structures are described in the
chapter “AOCE Utilities” in this book.

The function returns the current universal coordinated time (UTC)
expressed as the number of seconds since 12:00 midnight, 1 January,
1904.

The function returns the difference between the user’s Macintosh
computer’s clock and UTC at Greenwich, England, expressed as the
number of seconds. A negative number indicates that the user’s
computer is west of Greenwich according to the setting in the Map
control panel.

Authentication Manager Reference 9-449

JabBeuey uoneanuayiny n

DESCRIPTION

CHAPTER 9

Authentication Manager

Call the Aut hGet UTCTi e function to obtain the current UTC. When you provide a
valid RLI for a catalog, the function determines the UTC from the catalog server and
local time from the settings in the Map control panel. The function returns the current
UTC seconds since 1/1/1904 along with the offset from UTC in seconds of the local time,
based on the distance of the local computer from Greenwich, England. Other
Authentication Manager functions require input parameters based on UTC.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $021A

noErr 0 No error

kOCEUnknownl D -1567 Identity passed is not valid

k OCENot Local -1610 Internal AOCE error

kOCETar get Di r ect or yl naccessi bl e -1613 Catalog server not responding

k OCENoSuchDNode -1615 The dNode was not found

kOCESt r eantCr eat i onErr -1625 An error occurred in creating
the stream

The Aut hGet UTCTi e function is used in an example in the section “Authentication
Using ASDSP” on page 9-408.

Non-ASDSP Authentication Utilities

9-450

After obtaining credentials using the Aut hGet Cr edent i al s function or the

Aut hTr adePr oxyFor Cr edent i al s function, if you are not using the ASDSP transport
mechanism, you can call functions to help you complete the challenge phase of
authentication directly. This process for authenticating users is described in
“Authentication for Non-ASDSP Users” beginning on page 9-409.

The Authentication Manager provides functions to

= make a challenge (Aut hMakeChal | enge)

generate a reply to the challenge and a counterchallenge (Aut hMakeRepl y)

verify the reply and reply to the counterchallenge (Aut hVeri f yRepl y)

extract information from the credentials (Aut hDecr ypt Cr edent i al s)

Authentication Manager Reference

CHAPTER 9

Authentication Manager

AuthMakeChallenge

DESCRIPTION

Call the Aut hMakeChal | enge function to generate a challenge, encrypted in the session
key.

pascal OSErr Aut hMakeChal | enge (Aut hParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t CSEr r Result code

N key Aut hKeyPt r Session key

o chal | enge Ptr Challenge buffer

- chal | engeBuf ferLength unsi gned | ong Challenge buffer size

- chal | engelLengt h unsi gned | ong Challenge length

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

key A pointer to the session key.
chal | enge A pointer to a buffer you provide in which to put the encrypted
challenge.

chal | engeBuf f er Lengt h
The size of the challenge buffer. The buffer must be at least 8 bytes
in size.

chal | engeLengt h
The length of the encrypted challenge.

An application that does not use ASDSP as the transport mechanism calls the

Aut hMakeChal | enge function when it begins the process of setting up a new
authenticated connection. Prior to calling this function, the application must obtain
credentials from the authentication server using the Aut hGet Cr edent i al s function or
the Aut hTr adePr oxyFor Cr edent i al s function

The Aut hMakeChal | enge function generates a token (a random number as described
in the section “Steps in the Authentication Process” beginning on page 9-401), and
encrypts it with the session key to create a challenge. You must then send the challenge
to the recipient. Only initiators call this function.

Authentication Manager Reference 9-451

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $020F

NoErr 0 No error
kOCELengt hEr r or -1637 The supplied buffer was too small

The Aut hMakeChal | enge function is used in an example in the section
“Authentication for Non-ASDSP Users” on page 9-409.

The Aut hGet Cr edent i al s function is described on page 9-439.
The Aut hTr adePr oxyFor Cr edent i al s function is described on page 9-443.

The recipient uses the Aut hMakeRepl y function, described next, to reply to the
challenge.

AuthMakeReply

9-452

The Aut hMakeRepl y function uses the token from an initial challenge to generate
another token to be used as a challenge reply and also makes a counterchallenge.

pascal OSErr Aut hMakeReply (AuthParanBl ockPtr paranBl ock,
Bool ean async);

par anBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed

asynchronously. Set this parameter to t r ue if you want the function to be

executed asynchronously.

Parameter block

- i oConpl eti on ProcPtr Your completion routine
- i oResul t OSEr r Result code

- key Aut hKeyPt r Session key

- chal | enge Ptr Challenge

o reply Ptr Reply buffer pointer

- repl yBuf f er Lengt h unsi gned | ong Reply buffer length

- chal | engelLengt h unsi gned | ong Challenge length

- repl yLength unsi gned | ong Length of reply

See page 9-415 for descriptions of the i oConpl et i on and i oResul t fields.

Authentication Manager Reference

DESCRIPTION

CHAPTER 9

Authentication Manager

Field descriptions

key The session key.
chal | enge The challenge that was received from the initiator.
reply A pointer to the buffer you supply into which the function puts the

reply and the counterchallenge.
repl yBuf f erLengt h
The length of the challenge reply buffer.

chal | engeLengt h
The length of the challenge.

replyLength The length of the reply.

The Aut hMakeRepl y function decrypts a challenge created by the

Aut hMakeChal | enge function, increments by 1 the number contained in the challenge,
and then encrypts that new number in the session key. The result is the challenge reply. If
you are a recipient, you call the Aut hMakeRepl y function after you use the

Aut hDecr ypt Credent i al s function to decrypt the credentials—which are encrypted
in your client key—to obtain the session key.

The Aut hMakeRepl y function places in your buffer the reply to the challenge plus a
counterchallenge. After you send the reply and counterchallenge to the initiator, the
initiator calls the Aut hVer i f yRepl y function to verify the reply, thus continuing the
challenge phase for authenticating a connection. The Aut hMakeRepl y function is called
only by recipients.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0210

noErr 0 No error
kOCELengt hEr r or -1637 The supplied buffer was too small

The Aut hMakeRepl y function is used in an example in the section “Authentication for
Non-ASDSP Users” on page 9-409.

Use the Aut hDecr ypt Cr edent i al s function (page 9-455) to extract the session key
from the encrypted credentials.

The Aut hMakeChal | enge function is described on page 9-451. The Aut hVeri f yRepl y
function is discussed next.

Authentication Manager Reference 9-453

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

AuthVerifyReply

DESCRIPTION

9-454

The Aut hVer i f yRepl y function verifies a challenge reply and makes a reply to the
counterchallenge.

pascal OSErr AuthVerifyReply (AuthParanBl ockPtr paranBl ock,
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl eti on ProcPtr Your completion routine
- i oResul t CSErr Result code

S key Aut hKeyPt r Session key

- chal | enge Ptr Challenge

o reply Ptr Reply buffer

N chal | engeLengt h unsi gned | ong Length of challenge

o repl yLength unsi gned | ong Length of reply

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

key A pointer to the session key.
chal | enge A pointer to the challenge you sent last.
reply A pointer to a buffer containing the reply returned by the other end

of the connection.

chal | engeLengt h
The length of the challenge.

repl yLengt h The length of the reply.

Call the Aut hVer i f yRepl y function to verify a challenge reply and to make a reply to
the counterchallenge during the challenge phase of setting up a secure connection. Both
the initiator and the recipient call this function to verify the challenge replies they receive.

This function returns the result code noEr r if the reply, after decryption, equals the
challenge sent plus 1. A value of KOCEAut hent i cat i onTr oubl e is returned by the
Aut hVeri f yRepl y function if the reply cannot be verified. In that case, authentication
has failed, and you should either terminate communication with the other party or
continue communication with the understanding that the other party is not an
authenticated entity.

Authentication Manager Reference

CHAPTER 9

Authentication Manager

After calling this function, the initiator should send the recipient the contents of the
buffer pointed to by the r epl y field.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0211

RESULT CODES

noErr 0 No error
kOCEAut henti cati onTroubl e -1571 Reply incorrect for the challenge sent

SEE ALSO

The Aut hVer i f yRepl y function is used in an example in the section “Authentication
for Non-ASDSP Users” on page 9-409.

The Aut hMakeRepl y function is described on page 9-452.

AuthDecryptCredentials

The Aut hDecr ypt Cr edent i al s function decrypts credentials, extracting the session
key, a pointer to the initiator’s record ID, and the issue and expiration times for the
credentials. Additionally, if an intermediary used a proxy to generate the credentials, the
function returns a pointer to the record ID for the intermediary.

pascal OSErr AuthDecryptCredential s (Aut hParanBl ockPtr paranBl ock
Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Authentication Manager Reference 9-455

JabBeuey uoneanuayiny n

DESCRIPTION

9-456

CHAPTER 9

Authentication Manager

Parameter block

- i oConpl etion ProcPtr Your completion routine
- i oResul t OSEr r Result code

- userldentity Aut hl dentity Recipient’s identity

- initiatorRecord Recordl DPt r Initiator’s record ID

- sessi onKey Aut hKeyPt r Session key

- expiry UTCTi e Credentials expiry time
- i ssueTi ne UTCTi e Credentials issue time

- credenti al sLength unsi gned | ong Actual credentials size
- credentials Ptr Credentials to be decrypted
- hasl nt er nedi ary Bool ean Intermediary found flag
o i ntermedi ary Recordl DPt r Intermediary who called

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions
userldentity Theidentity of the recipient wanting to decrypt credentials. The
Authentication Manager gets your client key from your user record.

initiatorRecord
The record ID of the entity initiating the challenge process. If you
pass a local identity in the user | dent i t y field, you must pass in
thei ni tiat or Recor d field a record ID containing a record
location information structure (RLI struct) that specifies the catalog
of the recipient. The function returns the record ID of the initiator in

this field.
sessi onKey The session key.
expiry The expiration time for the credentials.
i ssueTi nme The credentials issue time.

credenti al sLength
The size of the credentials.

credentials A pointer to the buffer holding the credentials to be decrypted.

hasl nt er nedi ary
A Boolean value indicating whether the credentials were sent by an
intermediary. If t r ue, these credentials were obtained via a proxy
by calling the Aut hTr adePr oxyFor Cr edent i al s function.

i ntermedi ary A pointer to the record ID of an intermediary, if any. You must
allocate the record ID structure when you call the function. If you
specify ni | for this pointer, the function does not return the
intermediary’s record ID.

When you are not using ASDSP as the transport mechanism, a recipient can use the
Aut hDecr ypt Cr edent i al s function to decrypt credentials received during a
challenge. ASDSP decrypts credentials for its users, so you do not need to call the
Aut hDecr ypt Credent i al s function if you are using ASDSP.

Authentication Manager Reference

CHAPTER 9

Authentication Manager

Because the credentials are encrypted in the client key of the intended recipient, the
function fails (with the result code kOCEUnsuppor t edCr edent i al sVer si on) if you
were not the intended recipient.

The sessi onKey field is also given to the user or service requesting the decrypted
credentials so that communicating users or services can share a key temporarily. You use
this information to make encrypted challenge and challenge reply messages to complete
the authentication process.

It is up to the user or service to refuse service if the credentials are premature or have
expired.

If the function completes successfully, thei ni ti at or Recor d, sessi onKey, expi ry,
i ssueTi ne, and i nt er medi ary fields contain plain text information extracted from
the credentials.

SPECIAL CONSIDERATIONS

The recipient and initiator must be using the same PowerShare catalog for this function
to succeed.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $020C

nokErr 0 No error
kOCEUnsupport edCr edent i al sVer si on -1543 Problem reading the
credentials

The Aut hDecr ypt Cr edent i al s function is used in an example in the section
“Authentication for Non-ASDSP Users” on page 9-409.

The Aut hGet Cr edent i al s function is discussed on page 9-439.
The Aut hTr adePr oxyFor Cr edent i al s function is described on page 9-443.

PowerTalk Setup Catalog Management

The PowerTalk Setup catalog is a special personal catalog that contains information
about the catalogs and electronic mail systems that are available to the principal user of
the computer (see “The PowerTalk Setup Catalog” on page 9-405). Only CSAM and
personal-MSAM template developers need to use the functions described in this section.
If you are writing an application, you do not need to use these functions. See the chapter

Authentication Manager Reference 9-457

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

“Service Access Module Setup” in Inside Macintosh: Service Access Modules for a complete
description of setup templates and the PowerTalk Setup catalog.

The Authentication Manager provides functions associated with the PowerTalk Setup
catalog to

» get the record ID and native name for a catalog in the PowerTalk Setup catalog
(CCESet upGet Di rect oryl nf o)

» install catalogs and their passwords in the PowerTalk Setup catalog
(CCESet upAddDi r ect oryl nf o)

s change the password used to access a catalog in the PowerTalk Setup catalog
(CCESet upChangeDi r ect or yl nf o)

= remove a catalog from the PowerTalk Setup catalog
(CCESet upRenoveDi rect or yl nf o)

OCESetupGetDirectorylnfo

9-458

Call the OCESet upGet Di r ect or yl nf o function to get the record ID and native name
of a specified catalog,.

pascal OSErr OCESetupGetDirectorylnfo
(Aut hPar amBl ockPtr par anBl ock, Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

. i oConpl etion ProcPtr Your completion routine
- i oResul t OSEr r Result code

- di rect or yName Di rect oryNanmePt r Catalog name

- di scri m nat or DirDi scri m nator Catalog discriminator

- recordl D Recordl DPt r Catalog record ID

o nati veNane RStringPtr User’s name

o passwor d RStringPtr Password

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions
directoryName A pointer to the catalog name.

di scrimnator A value that differentiates two catalogs with the same name. It is
part of the RLI structure.

recordl D A pointer to a record ID structure into which the function places the
record ID of the catalog.

Authentication Manager Reference

DESCRIPTION

CHAPTER 9

Authentication Manager

nati veNanme A pointer to an RSt r i ng structure into which the function places
the native name. Allocate a buffer large enough to hold an
RSt ri ng64 structure to hold this name.

passwor d For non-PowerShare catalogs, a pointer to an RSt r i ng structure
into which the function places the user or service password.
Allocate a buffer large enough to hold an RSt r i ng64 structure to
hold this password. This field is undefined for PowerShare catalogs.

Call the OCESet upGet Di r ect or yI nf o function to obtain the native name and record
ID for a particular catalog installed in the PowerTalk Setup catalog. You specify the
catalog name and discriminator. The native name is generally the user’s name or account
name in the external catalog, if it is different from the name of the user’s User record.
The CSAM or MSAM developer specifies this native name when installing the SAM in
the Setup catalog.

The Collaboration toolbox returns the password only for non-PowerShare catalogs. An
MSAM or CSAM can use this function to obtain from the Setup catalog the password
required by the external system the SAM supports.

You must provide the buffers for the record ID, native name, and password that are
returned.

SPECIAL CONSIDERATIONS

The local ID must be unlocked before you call this function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $020E

nokErr 0 No error
kOCELocal Aut hent i cat i onFai | -1561 Local identity locked
kCOCEDi r ect oryl denti t ySet upDoesNot Exi st -1564 Specific catalog has

not been set up

See “The PowerTalk Setup Catalog” on page 9-405 for a description of the PowerTalk
Setup catalog. See the chapter “Service Access Module Setup” in Inside Macintosh: Service
Access Modules for a complete description of setup templates.

Record IDs and RLI structures are described in the chapter “AOCE Utilities” in this book.

The chapter “AOCE Utilities” in this book shows sample code that allocates space for a
record ID.

Authentication Manager Reference 9-459

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

OCESetupAddDirectorylInfo

DESCRIPTION

9-460

Call the OCESet upAddDi r ect or yI nf o function to add a catalog and its associated
password to the PowerTalk Setup catalog.

pascal OSErr OCESet upAddDirectorylnfo
(Aut hPar amBl ockPtr par anBl ock, Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

- i oConpl etion ProcPtr Your completion routine

- i oResul t CSEr r Result code

- di rectoryRecordCl D Creationl D Creation ID of catalog record
- recordl D Recordl DPt r Record ID for catalog

N passwor d RStringPtr Password

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

di rect oryRecordCl D
The creation ID of the Combined record or Catalog record in the
Setup catalog. You can use the kDETcnuGet DSSpec template
callback function to determine the creation ID of the Combined
record or Catalog record.

recordl D A pointer to the record ID specifying the user for the catalog.
password A pointer to the password associated with the record ID in the
catalog.

Only a setup template for a service access module (SAM) calls the
OCESet upAddDi r ect or yI nf o function. Before calling the
OCESet upAddDi r ect or yI nf o function, be sure the local identity is unlocked.

The RLI data structure within the user’s record ID must contain the catalog name to be
added to the Combined record or Catalog record.

The AOCE software encrypts the password before putting it in the PowerTalk Setup
catalog.

Authentication Manager Reference

CHAPTER 9

Authentication Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0219

noErr 0 No error

kOCELocal Aut hent i cat i onFai | -1561 Local identity locked

kOCEDi rect oryl denti t ySet upExi st's -1563 Identity has already been set
up

kOCEDi r ect or yNot FoundEr r -1630 Catalog was not found in the
list

Creation IDs and the RLI structure are discussed in the chapter “AOCE Utilities” in this
book.

The kDETcndGet DSSpec template callback function is described in the chapter “AOCE
Templates” in this book.

Setup templates and the procedure for adding a SAM to the Setup catalog are described
in the chapter “Service Access Module Setup” in Inside Macintosh: Service Access Modules.

OCESetupChangeDirectorylnfo

Call the OCESet upChangeDi r ect or yI nf o function to change the record ID and
password for an existing catalog in the PowerTalk Setup catalog. The Authentication
Manager verifies the current catalog password before changing it to the new password.

pascal OSErr OCESet upChangeDirectorylnfo
(Aut hPar amBl ockPtr par anBl ock, Bool ean async);

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block

. i oConpl etion ProcPtr Your completion routine
- i oResul t OSEr r Result code

- di rectoryRecordCl D Creationl D Catalog creation ID

- recordl D Recordl DPt r User’s record ID

- passwor d RStringPtr Password

- newPasswor d RStringPtr New password

Authentication Manager Reference 9-461

JabBeuey uoneanuayiny n

DESCRIPTION

CHAPTER 9

Authentication Manager

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

di rect oryRecordCl D
The creation ID of the Combined record or Catalog record in the
Setup catalog. You can use the kDETcnuGet DSSpec template
callback function to determine the creation ID of the Combined
record or Catalog record.

recordl D A pointer to the new record ID for the user. If you don’t want to
change the record ID, specify the old record ID.

password A pointer to the current password associated with the record ID.

newPasswor d A pointer to the new password to be associated with the record ID.
If you don’t want to change the password, repeat the old password
in this field.

Only a setup template for a SAM calls this function. Before calling the
OCESet upChangeDi r ect or yI nf o function, be sure the local identity is unlocked.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $021B

NnoErr 0 No error
kCOCELocal Aut henti cat i onFai | -1561 Local identity locked
kKCCEDi r ect or yNot FoundEr r -1630 Catalog was not found in the list

Creation IDs and record IDs are discussed in the chapter “AOCE Utilities” in this book.

The kDETcndGet DSSpec template callback function is described in the chapter “AOCE
Templates” in this book.

OCESetupRemoveDirectorylInfo

9-462

Call the OCESet upRenpveDi r ect or yI nf o function to remove a catalog from the
PowerTalk Setup catalog.

pascal OSErr OCESet upRenoveDirectorylnfo
(Aut hPar amBl ockPtr par anBl ock, Bool ean async);

Authentication Manager Reference

DESCRIPTION

CHAPTER 9

Authentication Manager

par amBl ock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to t r ue if you want the function to be
executed asynchronously.

Parameter block
. i oConpl etion ProcPtr Your completion routine

- i oResul t OSEr r Result code
- di rectoryRecordCl D Creationl D Catalog creation ID

See page 9-415 for descriptions of the i oConpl eti on and i oResul t fields.

Field descriptions

di rect oryRecordCl D
The creation ID for the Catalog record or Combined record
associated with the catalog to be removed from the PowerTalk
Setup catalog. You can use the kDETcndGet DSSpec template
callback function to determine the creation ID of the Combined
record or Catalog record.

Only a setup template for a SAM can call the OCESet upRenoveDi rect oryl nf o
function. This function removes from the Catalog or Combined record in the PowerTalk
Setup catalog the attributes that were added by the OCESet upAddDi r ect oryl nfo
function.

Before calling the OCESet upRenoveDi r ect or yl nf o function, be sure the local
identity is unlocked.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $020D

noErr 0 No error
k OCENoSuchRecor d -1618 No such record

The kDETcnmdGet DSSpec template callback function is described in the chapter “AOCE
Templates” in this book.

Use the OCESet upAddDi r ect or yI nf o function (page 9-460) to add a catalog and its
associated password to the PowerTalk Setup catalog.

Authentication Manager Reference 9-463

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

Use the OCESet upChangeDbi r ect or yI nf o function (page 9-461) to change the record
ID and password for an existing catalog in the PowerTalk Setup catalog.

Application-Defined Functions

This section describes the completion routine required for asynchronous use of
authentication functions and the notification routine that you provide to Authentication
Manager functions that use a notification queue.

MyCompletion

DESCRIPTION

An Authentication Manager completion routine has the following syntax:
void MyConpl etion (Ptr paranBl k) ;

paranBl k A pointer to the parameter block that you provided when you called the
Authentication Manager function.

When you execute an Authentication Manager function asynchronously (by setting its
async parameter to t r ue) you can specify a completion routine by passing the routine’s
address in the i oConpl et i on field of the parameter block. A function called
asynchronously returns control to your application with the result code noEr r as soon
as the function is placed in the execution queue. This result code does not indicate that
the function has successfully completed but indicates only that the function was
successfully placed in the queue. To determine when the function is actually completed,
you can inspect the i oResul t field of the parameter block. This field is set to 1 when the
function is called and set to the actual result code when the function is completed. If you
specify a completion routine, it is executed after the result code is placed in the

i oResul t field.

SPECIAL CONSIDERATIONS

9-464

Because a completion routine may be executed at interrupt time, it should not allocate,
move, or purge memory (either directly or indirectly) and should not depend on the
validity of handles to unlocked blocks.

When the Authentication Manager calls your completion routine, it sets the A5 register
to the value it contained when you called the function that set up the completion routine.

Authentication Manager Reference

CHAPTER 9

Authentication Manager

ASSEMBLY-LANGUAGE INFORMATION

When your completion routine is called, register A0 contains a pointer to the parameter
block of the function called, and register DO contains the result code. The value in
register DO is always identical to the value in the i oResul t field of the parameter block.

A completion routine must preserve all registers other than A0, A1, and D0-D2.

MpyNotificationProc

DESCRIPTION

The MyNot i fi cat i onPr oc function is a notification routine you must provide when
you use the notification queue.

pascal Bool ean MyNotificationProc (long clientData,
Aut hLocal I dentityQp cal |l Val ue,
Aut hLocal I denti tyLockActi on acti onVal ue,
Local Identity identity);

clientData
The value that you provided in the ¢l i ent Dat a field of the parameter
block that you passed to the Aut hAddToLocal | denti t yQueue
function. This field provides a way for you to pass a parameter to your
notification routine.

cal | Val ue When the Authentication Manager calls your notification routine, it sets
this parameter to kAut hLockLocal | dent i t yOp to indicate a lock
operation, kAut hUnl ockLocal I denti t yOp to indicate an unlock
operation, or to kAut hLocal | dent i t yNameChangeOp to indicate a
name change. In the case of a lock operation, you must also check the
value of the act i onVal ue parameter.

actionVval ue
When the Authentication Manager calls your notification routine with the
kAut hLockLocal | denti t yOp value in the cal | Val ue parameter, it
sets the act i onVal ue parameter to either kAut hLockPendi ng,
indicating a lock is pending, or to kAut hLockW | | BeDone when a lock
is about to be done.

identity Thelocal identity.

The AOCE toolbox calls the notification procedure you provide each time the local
identity access to a user’s computer is locked or unlocked, or when the user changes in
the name in the Key Chain, so that the applications in the notification queue can be
informed of changes in the access to catalogs listed in the PowerTalk Setup catalog.

Applications registered in the notification queue are notified when a user locks his or her
local identity because he or she is leaving a computer unattended, and again when the
user returns and provides his or her password to the system.

Authentication Manager Reference 9-465

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

When it plans to lock local identity access, the Authentication Manager notifies all
applications installed in the notification queue. To do so, the Authentication Manager
passes the value kAut hLockPendi ng in the act i onVal ue parameter. Your notification
procedure can return t r ue to deny permission to lock the local identity. If none of the
applications in the queue refuse the lock operation, the Collaboration toolbox passes the
value kAut hLockW | | BeDone to notify the applications that the lock is imminent.

You should deny locking only if you are performing some operation that would be
seriously disrupted if the lock function succeeded.

The Authentication Manager handles the buffers associated with pointers that it passes
to a notification procedure. You must copy the data in these buffers if you want to refer
to it after your notification procedure completes execution.

SPECIAL CONSIDERATIONS

SEE ALSO

9-466

This routine should not allocate, move, or purge memory (either directly or indirectly).
Like completion routines, your notification procedure should not call the

Wai t Next Event, Event Avai |, OSEvent Avai | , or Syst enTTask routines or any
routine that might call those functions.

For an example of the use of the MyNot i f i cati onPr oc function, see Listing 9-1 on
page 9-411.

See “Locking and Unlocking Local Identities” on page 9-404 for more information about
locking and unlocking users’ computers.

See “The PowerTalk Setup Catalog” on page 9-405 for more information about the
PowerTalk Setup catalog.

The Aut hAddToLocal | dent i t yQueue function is discussed on page 9-426.
The Aut hRenpveFr onLocal | dent i t yQueue function is discussed on page 9-427.

Authentication Manager Reference

CHAPTER 9

Authentication Manager

Summary of the Authentication Manager

C Summary

Constants and Data Types

enum {
/* val ues for key sizes */
kRCAKeySi zel nByt es = 8, /* size of an RC4A key */
kRef Nunmnknown =0 /* dsRef Num specifier */
1
enum {
/* val ues of AuthLocal ldentityQp for notification routine */
kAut hLockLocal I dentityQp = 1,
kAut hUnl ockLocal I dentityOp = 2,
kAut hLocal | denti t yNameChangeQp =3
1
enum {
/* val ues of AuthLocal ldentityLockAction for notification routine */
kAut hLockPendi ng = 1,
kAut hLockW | | BeDone =2
b

/* values of notifyFlags field of AuthAddToLocal | dentityQueue function*/
enum {kNoti fyLockBit, kNotifyUnl ockBit, kNotifyNanmeChangeBit};
enum {
kNot i f yLockMask
kNot i f yUnl ockMask
kNot i f yNameChangeMask

1L << kNotifyLockBit,
1L << kNoti fyUnl ockBit
1L << kNoti f yNaneChangeBi t

Summary of the Authentication Manager 9-467

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

Identity Declarations
t ypedef unsigned | ong Authldentity; /* identity */
typedef Authldentity Local ldentity; /* local identity */

typedef unsigned | ong AuthLocal | dentityQp;
t ypedef unsigned | ong AuthLocal | dentityLockAction
t ypedef unsigned | ong AuthNotifications;

Key Structures

struct DESKey { /* A DES key is 8 bytes of data */
unsi gned long a;
unsi gned | ong b;

1

t ypedef struct DESKey DESKey;

t ypedef Byte RCAKey[kRC4KeySi zel nByt es];

t ypedef unsigned | ong Aut hKeyType;

struct Aut hKey { /* key type followed by its data */
Aut hKeyType keyType;
uni on {
DESKey des;
RCAKey rc4;
Hu;
1

t ypedef struct Aut hkey AuthKey;
typedef Aut hKey *Aut hKeyPtr;

Parameter Block Header

#def i ne Aut hDi r Par anHeader

Ptr gLi nk; /* reserved */

| ong reservedl; /* reserved */

| ong reserved2; /* reserved */

ProcPtr i oConmpl etion; /* your conpletion function */

OSEr r i oResul t; /* result code */

unsi gned | ong saveAb5; /* reserved */

short r eqCode; /* reserved */

| ong reserved[2]; /* reserved */

Addr Bl ock serverH nt; /* Power Share server’s Appl eTal k address */
short dsRef Num /* reserved */

unsi gned long calllD; /* reserved */

Aut hl dentity identity; /* initiator’s authentication identity */
| ong gReservedl; /* reserved */

9-468 Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

| ong gReserved?; /* reserved */

| ong gReserved3; /* reserved */

| ong clientDat a; /* you define this field */
Parameter Blocks

struct Aut hPasswor dToKeyPB {
Aut hDi r Par anmHeader

Recor dl DPt r user Record; /* User record */
Aut hKeyPt r key;
RStringPtr passwor d; /* pointer to the new password string */

1
typedef struct Aut hPasswor dToKeyPB Aut hPasswor dToKeyPB;

struct Aut hAddKeyPB {
Aut hDi r Par anHeader

Recordl DPt r userRecord; /* User record */
Aut hKeyPt r user Key; /* ACCE key for the user */
RStringPtr passwor d; /* pointer to password string */

1
t ypedef struct Aut hAddKeyPB Aut hAddKeyPB;

struct Aut hChangeKeyPB {
Aut hDi r Par anHeader

Recor dl DPt r userRecord; /* User record */
Aut hKeyPt r user Key; /* new ACCE key for the user */
RStri ngPt r passwor d; /* pointer to the new password string */

1
t ypedef struct Aut hChangeKeyPB Aut hChangeKeyPB;

struct Aut hDel et eKeyPB {

Aut hDi r Par anHeader

Recordl DPt r user Record; /* User record */
b
typedef struct Aut hDel et eKeyPB Aut hDel et eKeyPB;

struct AuthGetLocal ldentityPB {

Aut hDi r Par anHeader

Local I dentity t heLocal Identity; /* local identity */
b
typedef struct Aut hGetLocal I dentityPB Aut hGetLocal | dentityPB;

struct Aut hAddToLocal | dentityQueuePB {
Aut hDi r Par anHeader
Noti fi cati onProc noti f yProc; /* notification procedure */

Summary of the Authentication Manager 9-469

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

Aut hNot i fi cati ons noti fyFl ags; /* notifyFlags */
StringPtr appNane; /* name of application to be
returned in Delete/ Stop */
1
typedef struct Aut hAddToLocal I dentityQueuePB Aut hAddToLocal | dentityQueuePB;

struct Aut hRemoveFromlocal | dentityQueuePB {
Aut hDi r Par anHeader
Noti ficati onProc noti fyProc; /* notification procedure */
1
t ypedef struct Aut hRemoveFromnlocal | dentityQueuePB
Aut hRenoveFroniocal | dentityQueuePB;

struct Aut hSetupLocal I dentityPB {
Aut hDi r Par anHeader

| ong aReserved;
RStringPtr user Nare; /* user name */
RStringPtr passwor d; [* user password */

1
typedef struct AuthSetupLocal I dentityPB Aut hSetuplLocal I dentityPB;

struct Aut hChangelLocal I dentityPB {
Aut hDi r Par anmHeader

| ong aReserved;

RStri ngPtr user Name; /* user name */
RStringPtr passwor d; /* current password */
RStringPtr newPasswor d; /* new password */

1
t ypedef struct Aut hChangelLocal | dentityPB Aut hChangelLocal | dentityPB;

struct Aut hLockLocal | dentityPB {
Aut hDi r Par anHeader
Local I dentity t heLocal Identity; /* local identity */
StringPtr nane; /* nane of the app that
deni ed delete */
1
t ypedef struct AuthLockLocal | dentityPB AuthLockLocal | dentityPB,;

struct Aut hUnl ockLocal I dentityPB {
Aut hDi r Par anHeader
Local I dentity t heLocal Identity; /* local identity */
RStringPtr user Nane; /* user nane */

9-470 Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

RStringPtr passwor d; /* user password */
b
typedef struct AuthUnl ockLocal I dentityPB Aut hUnl ockLocal | dentityPB;

struct Aut hRenovelLocal I dentityPB {
Aut hDi r Par anHeader

| ong aReserved
RStringPtr user Nare; [* user name */
RStringPtr passwor d; /* current password */

1
t ypedef struct Aut hRenmovelocal | dentityPB Aut hRenovelocal | dentityPB;

struct Aut hBi ndSpeci ficldentityPB {
Aut hDi r Par anHeader

Aut hl dentity userldentity; /* binding identity */
Recor dl DPt r user Recor d; /* User record */
Aut hKeyPt r user Key; /* AOCE key for the user */

1
t ypedef struct Aut hBi ndSpecificldentityPB Aut hBi ndSpecificldentityPB;

struct Aut hUnbi ndSpeci ficldentityPB {
Aut hDi r Par anHeader
Aut hl dentity userldentity; /* identity to be deleted */
i
typedef struct Aut hUnbi ndSpecificldentityPB Aut hUnbi ndSpeci ficldentityPB;

struct AuthGet SpecificldentitylnfoPB {
Aut hDi r Par anmHeader
Aut hl dentity userldentity; /* identity of initiator */
Recor dl DPt r user Recor d; /* User record */
1
typedef struct AuthGet SpecificldentitylnfoPB Aut hGet SpecificldentitylnfoPB

struct Aut hGet Credential sPB {
Aut hDi r Par amHeader

Aut hl dentity userldentity; /* identity of initiator */

Recor dl DPt r reci pi ent; /* ACCE nane of recipient */

Aut hKeyPt r sessi onKey; /* session key */

UTCTi ne expiry; /* desired/actual expiration */
unsi gned | ong credenti al sLengt h;/* max/actual credentials size */
Ptr credenti al s; /* buffer where credentials

are returned */
b
t ypedef struct Aut hGet Credenti al sPB Aut hGet Credenti al sPB

Summary of the Authentication Manager 9-471

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

struct Aut hMakePr oxyPB {
Aut hDi r Par anHeader

Aut hl dentity userldentity; /* identity of principal */
Recordl DPt r reci pi ent; /* ACCE nane of recipient */
UTCTi ne firstvalid, /* time at which proxy

becones valid */
UTCTi ne expiry; /* time at which proxy expires */
unsi gned | ong aut hDat aLengt h;/* size of authorization data */
Ptr aut hDat a; /* pointer to authorization data */
unsi gned | ong pr oxyLengt h; /* max/actual proxy size */
Ptr pr oxy; /* buffer where proxy is returned */
Recor dl DPt r intermediary; /* record ID of intermediary */

1
typedef struct Aut hMakePr oxyPB Aut hMakePr oxyPB;

struct Aut hTr adePr oxyFor Credenti al sPB {
Aut hDi r Par anmHeader

Aut hl dentity userldentity; /* identity of intermediary */
Recor dl DPt r reci pi ent; /* ACCE name of recipient */
Aut hKeyPt r sessi onKey; /* session key */
UTCTi ne expiry; /* desired/actual expiration */
unsi gned | ong credenti al sLengt h;/* max/actual credentials size */
Ptr credenti al s; /* buffer where credentials

are returned */
unsi gned | ong pr oxyLengt h; /* actual proxy size */
Ptr pr oxy; /* buffer containing proxy */
Recordl DPt r princi pal ; /* record ID of principal */

1
t ypedef struct Aut hTradeProxyFor Credenti al sPB Aut hTr adePr oxyFor Cr edent i al sPB;

struct Aut hResol veCreati onl DPB {
Aut hDi r Par anHeader

Recor dl DPt r user Record; /* User record */

unsi gned | ong buf f er Lengt h; /* buffer Size */

Ptr buf fer; /* buffer to hold creation IDs */

unsi gned | ong t ot al Mat ches; /* total nunber of matching
names found */

unsi gned | ong act ual Mat ches; /* nunber of matches returned in

the buffer */
1
typedef struct AuthResol veCreationl DPB Aut hResol veCreati onl DPB;

9-472 Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

struct Aut hGet UTCTi nePB {
Aut hDi r Par anHeader

of the dNode */

since 1/1/1904 */

PackedRLI Pt r pRLI; /* packed RL
UTCTi e t heUTCTi ne; /* current
UTCOf f set t heUTCO f set ;

east of

s

/* offset from UTC(GMI) seconds

Greenwi ch */

typedef struct AuthGet UTCTi mePB Aut hGet UTCTi nePB;

struct Aut hMakeChal | engePB {
Aut hDi r Par anHeader

Aut hKeyPt r key; /*
Ptr chal | enge; /*
unsi gned | ong chal | engeBuf ferLength; /*
unsi gned | ong chal | engelLengt h; /*

1
typedef struct Aut hMakeChal | engePB Aut hivakeChal

struct Aut hMakeRepl yPB {
Aut hDi r Par anHeader

Aut hKeyPt r key; /*
Ptr chal | enge; /*
Ptr reply; /*
unsi gned | ong repl yBuf f er Lengt h; /*
unsi gned | ong chal | engelLengt h; /*
unsi gned | ong repl yLengt h; /*

1
typedef struct Aut hMakeRepl yPB Aut hMakeRepl yPB;

struct Aut hVerifyRepl yPB {
Aut hDi r Par anHeader

Aut hKeyPt r key; /*
Ptr chal | enge; /*
Pt r reply; I*
unsi gned | ong chal | engelLengt h; /*
unsi gned | ong repl yLengt h; /*

b

unencrypted session
encrypted chal | enge
| ength of chall enge
| ength of encrypted
chal | enge */

engePB;

unencrypted session
encrypted chal |l enge
encrypted reply */

I ength of challenge
| ength of encrypted
chal | enge */

I ength of encrypted

unencrypted session
encrypted chal | enge
encrypted reply */

| ength of encrypted
chal | enge */

| ength of encrypted

typedef struct AuthVerifyRepl yPB Aut hVerifyRepl yPB;

Summary of the Authentication Manager

UTC(GMI) tinme in seconds

key */
*/
buffer */

key */
*/

buf fer */

reply */

key */
*/

reply */

9-473

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

struct Aut hDecrypt Credenti al sPB {

}s

Aut hDi r Par anHeader

Aut hl dentity userldentity;

/*
/*
/*
/*
/*
/*
/*

/*

Recordl DPt r initiatorRecord;

Aut hKeyPt r sessi onKey;

UTCTi ne expiry;

unsi gned | ong credenti al sLengt h;/*
Ptr credenti al s;

UTCTi ne i ssueTi ne;

Bool ean hasl nt er nedi ary;
Recordl DPt r i nternediary;

user's identity */

ACCE name of the initiator */
sessi on key */

credentials expiration time */
actual credentials size */
credentials to be decrypted */
credentials expiration time */
if true, an internmediary record
was found in credentials */
record ID of the intermediary */

typedef struct AuthDecrypt Credenti al sPB Aut hDecrypt Credenti al sPB;

struct OCESet upGet DirectorylnfoPB {

b

t ypedef struct OCESet upGet Directoryl nfoPB

struct OCESet upAddDi rectoryl nfoPB {

}s

typedef struct OCESet upAddDirectoryl nfoPB

struct OCESet upChangeDi rect oryl nf oPB {
Aut hDi r Par amHeader

b

Aut hDi r Par anHeader
Di rect oryNanmePt r
Di rDi scri m nat or

di rect or yNane;
di scri m nat or;

Recordl DPt r recordl D
RStringPtr nat i veNaneg;
RStri ngPtr passwor d;

Aut hDi r Par anHeader

/*
/*
/*
/*
/*

Creationl D di rect oryRecor dCl D,
Recordl DPt r recordl D,
RStringPtr passwor d;

Creationl D di rect oryRecor dCl D
Recor dl DPt r recordl D,
RStringPtr passwor d;
RStringPtr newPasswor d;

cat al og name */

di scrimnator for the catal og */
record ID for the catal og */

user nane in the catalog world */
password in the catalog world */

OCESet upCGet Di r ect or yl nf oPB;

/* creation ID for the catal og */
/* record ID for the identity */

/* password in the catalog world */

OCESet upAddDi r ect or yl nf oPB;

/* creation ID for the catal og */
/* record ID for the identity */

/* password in the catalog world */

/* new password in the catal og */

typedef struct OCESet upChangeDirectoryl nfoPB OCESet upChangeDi r ect or yl nf oPB;

9-474

Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

struct OCESet upRenoveDirectoryl nfoPB {
Aut hDi r Par anHeader
CreationlD di rect oryRecor dCl D;

}s

/* creation ID for the catalog */

typedef struct OCESet upRenoveDirectoryl nf oPB OCESet upRenoveDi rect oryl nf oPB;

Parameter Block Union Structure

uni on Aut hPar anBl ock {
struct {AuthDir Par anHeader } header ;
Aut hBi ndSpeci ficldentityPB
Aut hUnbi ndSpeci ficldentityPB
Aut hResol veCr eat i onl DPB
Aut hGet Speci ficldentityl nfoPB
Aut hAddKeyPB
Aut hChangeKeyPB
Aut hDel et eKeyPB
Aut hPasswor dToKeyPB
Aut hCGet Cr edent i al sPB
Aut hDecr ypt Cr edent i al sPB
Aut hMakeChal | engePB
Aut hvakeRepl yPB
Aut hVeri f yRepl yPB
Aut hGet UTCTi nePB
Aut hivakePr oxyPB
Aut hTr adePr oxyFor Credent i al sPB
Aut hGet Local | denti tyPB
Aut hUnl ockLocal | dentityPB
Aut hLockLocal | dentityPB
Aut hAddToLocal | denti t yQueuePB
Aut hRenoveFr onlocal | dentityQueuePB
Aut hSet upLocal I dentityPB
Aut hChangelLocal | dentityPB
Aut hRenmovelLocal | dentityPB
OCESet upAddDi r ect or yl nf oPB
OCESet upChangeDi r ect or yl nf oPB
OCESet upRenoveDi r ect oryl nf oPB
OCESet upGet Di r ect oryl nf oPB

b

bi ndl dent i t yPB;

unbi ndl denti t yPB;

resol veCreati onl DPB;

getl dentityl nf oPB;
addKeyPB;

changeKeyPB;

del et eKeyPB;

passwor dToKeyPB;

get Credenti al sPB;

decrypt Credenti al sPB;
makeChal | engePB;

nmakeRepl yPB;

veri f yRepl yPB;

get UTCTi nePB;

makePr oxyPB;

t radePr oxyFor Credent i al sPB;
get Local | denti t yPB;
unLockLocal | denti t yPB;

| ockLocal | dent it yPB;

| ocal IdentityQ nstall PB;

| ocal I denti t yQrRenovePB,;
set upLocal | denti t yPB;
changelLocal | dent it yPB;
renovelLocal | denti t yPB;
setupDirectoryl dentityPB;
changeDi rectoryl dentityPB;
renmoveDirectoryl dentityPB;
getDirectoryldentityl nfoPB,;

t ypedef uni on Aut hParanBl ock Aut hPar anBl ock;
t ypedef Aut hPar anBl ock *Aut hPar anBl ockPtr;

Summary of the Authentication Manager

9-475

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

Authentication Manager Functions

Key Management

pascal

pascal

pascal

pascal

OSErr Aut hPasswor dToKey
(Aut hPar anBl ockPt r
Bool ean async);

OSErr Aut hAddKey (Aut hPar anBl ockPt r
Bool ean async);

OSErr Aut hChangeKey (Aut hParanBl ockPtr
Bool ean async);

OSErr Aut hDel et eKey (Aut hPar anBl ockPt r
Bool ean async);

Local Identity Management

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

9-476

OSErr Aut hCet Local I dentity
(Aut hPar anBl ockPt r
Bool ean async);
OSErr Aut hAddToLocal | dentit yQueue
(Aut hPar anBl ockPt r
Bool ean async);
OSErr Aut hRenoveFromLocal | dentit yQueue
(Aut hPar anBl ockPt r
Bool ean async);
OSErr Aut hSetupLocal I dentity
(Aut hPar anBl ockPt r
Bool ean async);
OSErr Aut hChangelLocal | dentity
(Aut hPar anBl ockPt r
Bool ean async);
OSErr Aut hLockLocal I dentity
(Aut hPar anBl ockPt r
Bool ean async);
OSErr Aut hUnl ockLocal I dentity
(Aut hPar anBl ockPt r
Bool ean async);
OSErr Aut hRenovelLocal | dentity
(Aut hPar anBl ockPt r
Bool ean async);

Summary of the Authentication Manager

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

CHAPTER 9

Authentication Manager

Specific Identity Management

pascal OSErr Aut hBi ndSpecificldentity
(Aut hPar anBl ockPt r
Bool ean async);

pascal OSErr Aut hUnbi ndSpecificldentity
(Aut hPar anBl ockPt r
Bool ean async);

pascal OSErr AuthGet Specificldentitylnfo
(Aut hPar anBl ockPt r
Bool ean async);

Credentials Management

pascal OSErr AuthCet Credentials
(Aut hPar anBl ockPt r
Bool ean async);

pascal OSErr Aut hMakeProxy (Aut hParamBl ockPtr

pascal OSErr Aut hTradeProxyFor Credential s
(Aut hPar anBl ockPt r
Bool ean async);

Creation ID Resolution Management

pascal OSErr AuthResol veCreationl D
(Aut hPar anBl ockPt r
Bool ean async);

Time Service

pascal OSErr Aut hGet UTCTi me (Aut hParanBl ockPtr

Non-ASDSP Authentication Utilities

pascal OSErr Aut hMakeChal | enge
(Aut hPar anBl ockPt r
Bool ean async);
pascal OSErr Aut hMakeReply (Aut hParanBl ockPtr
pascal OSErr AuthVerifyReply
(Aut hPar anBl ockPt r

pascal OSErr AuthDecryptCredentials
(Aut hPar anBl ockPt r
Bool ean async);

Summary of the Authentication Manager

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

par anmBl ock,

par anBl ock,

par anBl ock,

par anBl ock,

Bool ean async);

Bool ean async);

Bool ean async);

Bool ean async);

9-477

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

AOCE Setup Catalog Management

pascal

pascal

pascal

pascal

OSErr OCESet upGetDi rectoryl nfo

(Aut hPar anBl ockPtr par anmBl ock,

Bool ean async);

OSErr OCESet upAddDi rectoryl nfo

(Aut hPar anBl ockPtr par anmBl ock,

Bool ean async);

OSErr OCESet upChangeDi rectoryl nfo
(Aut hPar anBl ockPtr par anmBl ock,

Bool ean async);

OSErr OCESet upRenoveDi rectoryl nfo
(Aut hPar anBl ockPtr par anmBl ock,

Bool ean async);

Application-Defined Functions

void MyConpl eti on

pascal

Bool ean MyNot i fi cati onProc

(long clientData,

(Ptr paranBl k) ;

Aut hLocal I dentityQp cal | Val ue,
Aut hLocal I dentityLockActi on actionVal ue,
Local Identity identity);

Pascal Summary

Constants

CONST

9-478

{val ues for key sizes}
kRCAKeySi zel nByt es
kRef Nurmnknown

{val ues of AuthLocal |l dentityQp}
kAut hLockLocal I dentityQp

kAut hUnl ockLocal I dentityQp

kAut hLocal I denti t yNameChangeQp

{val ues of AuthLocal ldentityLockAction}

kAut hLockPendi ng
kAut hLockW I | BeDone

Summary of the Authentication Manager

1,
2;

{size of an RC4 key}
{dsRef Num speci fier}

CHAPTER 9

Authentication Manager

{val ues of AuthNotifications}

kNot i f yLockBi t = 0;
kNot i f yUnl ockBi t = 1;
kNot i f yNameChangeBi t = 2;
kNot i f yLockMask = $00000001; {1<<kNotifyLockBit}
kNot i f yUnl ockMask = $00000002; {1l<<kNoti fyUnl ockBit}
kNot i f yNameChangeMask = $00000004; {1<<kNoti fyNaneChangeBit}
Data Types
Aut hl dentity = Longl nt; {unique identifier for an identity}
Local ldentity = Authldentity; {unbrella local identity}
Aut hLocal | dentityQp = Longl nt;
Aut hLocal I denti tyLockActi on = Longl nt;
Aut hNot i fi cati ons = Longl nt;
Key Structures
TYPE
DESKey =
RECORD { a DES key is 8 bytes of data }
a: Longlnt;
b: Longlnt;
END;
RCAKey = PACKED ARRAY[1. . kRC4KeySi zel nByt es] OF Byte;
Aut hKeyType = Longlnt;
Aut hKey =
RECORD { key type followed by its data }

keyType: Aut hKeyType;
CASE | NTEGER OF
1: (des: DESKey);
2: (rc4: RCAKey);
END;

Aut hKeyPt r = ~Aut hKey;

Parameter Block Header

Aut hDi r Par anHeader = RECORD
gLi nk: Ptr;
reservedl: Longl nt;

Summary of the Authentication Manager 9-479

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

reserved2: Longl nt;
i oConmpl etion: ProcPtr
i oResul t: CSErr;
saveA5: Longl nt;
r eqCode: I nt eger;
reserved: ARRAY[1. .2] OF Longlnt;
serverHint: Addr Bl ock;
dsRef Num I nt eger;
cal Il 1D Longl nt ;
identity: Aut hl dentity;
gReservedl: Longl nt ;
gReserved2: Longl nt ;
gReserved3: Longl nt;
clientData: Longl nt ;
END;
Parameter Blocks

Aut hPasswor dToKeyPB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved2: Longl nt ;

i oCompl etion: ProcPtr;

i oResul t: OSErr

saveAb: Longl nt ;

r eqCode: I nt eger;

reserved: ARRAY[1. .2] OF Longlnt;

server Hi nt: Addr Bl ock;

dsRef Num I nt eger;

call 1D Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt;

gReserved2: Longl nt ;

gReserved3: Longl nt;

cl i ent Dat a: Longl nt;

user Recor d: Recordl DPtr; {User record}

key: Aut hKeyPtr;

passwor d: RStringPtr; {pointer to the new password string}
END;

Aut hAddKeyPB = RECORD

gLi nk: Ptr;
reservedl: Longl nt;
reserved2: Longl nt ;

9-480 Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

i oConpl etion:
i oResul t:
saveA5:

r eqCode:
reserved:
serverHi nt:
dsRef Num
calllD:
identity:
gReservedl:
gReserved2:
gReserved3:
clientData:
user Recor d:
user Key:
passwor d:

END;

Aut hChangeKeyPB =

gLi nk:
reservedl:
reserved2:

i oConpl etion:
i oResul t:
saveA5:

r eqCode:
reserved:
serverHint:
dsRef Num
call 1D
identity:
gReservedl:
gReserved2:
gReserved3:
cl i ent Dat a:
user Record:
user Key:
passwor d:

END;

Aut hDel et eKeyPB =

gLi nk:
reservedl:
reserved2:

ProcPtr;

OSErr;

Longl nt ;

I nt eger;

ARRAY[1..2] OF Longlnt;

Addr Bl ock;

I nt eger;

Longl nt;

Aut hl dentity;

Longl nt;

Longl nt;

Longl nt ;

Longl nt;

Recordl DPtr; {User record}

Aut hKeyPtr; { ACCE key for the user}
RStringPtr; {pointer to password string}

RECORD
Ptr;
Longl nt;
Longl nt ;
ProchPtr;
OSErr;
Longl nt ;
I nt eger;
ARRAY[1. .2] OF Longlnt;

Addr Bl ock;

I nt eger;

Longl nt;

Aut hl dentity;

Longl nt;

Longl nt;

Longl nt ;

Longl nt;

Recordl DPtr; {User record}

Aut hKeyPt r; {new ACCE key for the user}
RStringPtr;

RECORD
Ptr;
Longl nt;
Longl nt;

Summary of the Authentication Manager

{pointer to the new password string}

9-481

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

i oCompl etion: ProcPtr;

i oResul t: OSEr r

saveAb: Longl nt ;

r eqCode: I nt eger;

reserved: ARRAY[1..2] OF Longlnt;

server H nt: Addr Bl ock;

dsRef Num I nt eger;

call I D Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt;

gReserved2: Longl nt ;

gReserved3: Longl nt;

cl i ent Dat a: Longl nt;

user Recor d: Recordl DPtr; {User record}
END;

Aut hGet Local | dentityPB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved2: Longl nt ;

i oConpl etion: ProcPtr

i oResul t: OSErr

saveAb: Longl nt;

r eqCode: I nt eger;

reserved: ARRAY[1. .2] OF Longlnt;

server Hi nt: Addr Bl ock;

dsRef Num I nt eger;

calllD: Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt;

gReserved2: Longl nt ;

gReserved3: Longl nt;

cl i ent Dat a: Longl nt;

t heLocal Identity: Local ldentity; {local identity}
END;

Aut hAddToLocal | denti t yQueuePB = RECORD

gLi nk: Ptr;
reservedl: Longl nt ;
reserved2: Longl nt;
i oConmpl etion: ProcPtr
i oResul t: CSErr;
saveA5: Longl nt;
r eqCode: I nt eger;

9-482 Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

reserved:
serverHi nt:
dsRef Num
cal I D
identity:
gReservedl:
gReserved2
gReserved3
cl i ent Dat a:
noti fyProc:
noti fyFl ags:
appNane:

END;

ARRAY[1. .2] OF Longlnt;

Addr Bl ock;

I nt eger;

Longl nt;

Aut hl dentity;
Longl nt ;

Longl nt;

Longl nt;

Longl nt ;

Not i fi cati onProc;
Aut hNot i fi cati ons;
StringPtr;

{notification procedure}

{notification flags}

{name of application to be
returned in Del ete/Stop}

Aut hRenmoveFr onlocal | dentityQueuePB = RECORD

gLi nk:
reservedl:
reserved2:
i oConpl etion:
i oResul t:
saveA5:
r eqCode:
reserved:
serverHint:
dsRef Num
call 1D
identity:
gReservedl:
gReserved2
gReserved3
cl i ent Dat a:
noti fyProc:
END;

Ptr;
Longl nt;
Longl nt ;
ProchPtr;
OSErr;
Longl nt ;
I nt eger;

ARRAY[1. .2] OF Longlnt;

Addr Bl ock;

I nt eger;

Longl nt;

Aut hl dentity;
Longl nt;

Longl nt;

Longl nt ;

Longl nt;

Not i fi cati onProc;

Aut hSet upLocal | dentityPB = RECORD

gLi nk:
reservedl:
reserved2:

i oConpl etion:
i OResul t:
saveA5:

r eqCode:
reserved:

Ptr;
Longl nt;
Longl nt ;
ProchPtr;
OSErr;
Longl nt ;
I nt eger;

{notification procedure}

ARRAY[1..2] OF Longlnt;

Summary of the Authentication Manager

9-483

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

serverHint: Addr Bl ock;

dsRef Num I nt eger;

cal Il 1D Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt ;

gReserved2: Longl nt ;

gReserved3: Longl nt;

clientData: Longl nt ;

aReser ved: Longl nt ;

user Nane: RStringPtr; {user nane}

passwor d: RStringPtr; {user password}
END;

Aut hChangelLocal | dentityPB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved2: Longl nt ;

i oConpl etion: ProcPtr

i oResul t: OSErr

saveAb: Longl nt;

r eqCode: I nt eger;

reserved: ARRAY[1. .2] OF Longlnt;

server Hi nt: Addr Bl ock;

dsRef Num I nt eger;

calllD: Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt;

gReserved2: Longl nt ;

gReserved3: Longl nt;

cl i ent Dat a: Longl nt;

aReserved: Longl nt ;

user Nane: RStringPtr; {user nane}

passwor d: RStringPtr; {current password}

newPasswor d: RStringPtr; {new passwor d}
END;

Aut hLockLocal I dentityPB = RECORD

gLi nk: Ptr;
reservedl: Longl nt ;
reserved2: Longl nt;
i oConpl eti on: ProcPtr
i oResul t: CSErr;
saveA5: Longl nt;
r eqCode: I nt eger;

9-484 Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

reserved:
serverHint:
dsRef Num
call I D
identity:
gReservedl:
gReserved2
gReserved3
clientData:
t heLocal I dentity:
name:

END;

Aut hUnl ockLocal | dent
gLi nk:
reservedl:
reserved2:

i oConpl etion:
i oResul t:
saveAb:
r eqCode:
reserved:
serverH nt:
dsRef Num
cal l I D
identity:
gReservedl:
gReserved2
gReserved3
cl i ent Dat a:
t heLocal I dentity:
user Nane:
passwor d:
END;

Aut hRenpvelLocal | dent

ARRAY[1. .2] OF Longlnt;
Addr Bl ock;

I nt eger;

Longl nt;

Aut hl dentity;
Longl nt ;

Longl nt;

Longl nt;

Longl nt ;

Local Identity; {loca
StringPtr;

tyPB = RECORD
Ptr;

Longl nt ;

Longl nt;
ProcPtr;
OSErr;

Longl nt;

I nt eger;
ARRAY[1. .2] OF Longlnt;
Addr Bl ock;

I nt eger;
Longl nt ;

Aut hl dentity;
Longl nt;
Longl nt ;

Longl nt;

Longl nt;
Local I dentity;
RSt ringPtr
RStringPtr;

tyPB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved?2: Longl nt ;

i oCompl etion: ProcPtr;

i oResul t: OSErr

saveAb: Longl nt ;

r eqCode: I nt eger;

reserved: ARRAY[1..2] OF Longlnt;

Summary of the Authentication Manager

i dentity}
{nanme of the app that denied del ete}

{l ocal
{user
{user

identity}
nane}
passwor d}

9-485

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

serverHint: Addr Bl ock;

dsRef Num I nt eger;

cal Il 1D Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt ;

gReserved2: Longi nt;

gReserved3: Longl nt;

clientData: Longl nt ;

aReser ved: Longl nt ;

user Nane: RStringPtr; {user nane}

passwor d: RStri ngPtr; {current password}
END;

Aut hBi ndSpeci ficl dentityPB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved2: Longl nt ;

i oConpl etion: ProcPtr

i oResul t: OSErr

saveAb: Longl nt;

r eqCode: I nt eger;

reserved: ARRAY[1. .2] OF Longlnt;

server Hi nt: Addr Bl ock;

dsRef Num I nt eger;

calllD: Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt;

gReserved2: Longl nt ;

gReserved3: Longl nt;

cl i ent Dat a: Longl nt;

userldentity: Authldentity; {binding identity}

user Recor d: Recordl DPt r; {User record}

user Key: Aut hKeyPt r; {ACCE key for the user}
END;

Aut hUnbi ndSpeci ficl dentityPB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved?2: Longl nt ;

i oCompl etion: ProcPtr;

i oResul t: OSEr r

saveAb: Longl nt ;

r eqCode: I nt eger;

reserved: ARRAY[1..2] OF Longlnt;

9-486 Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

serverHint: Addr Bl ock;

dsRef Num I nt eger;

cal Il 1D Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt ;

gReserved2: Longl nt;

gReserved3: Longl nt;

clientData: Longl nt ;

userldentity: Authldentity; {identity to be del eted}
END;

Aut hGet Speci ficldentityl nfoPB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved2: Longl nt;

i oCompl etion: ProcPtr

i oResul t: OSEr r

saveA5: Longl nt;

r eqCode: I nt eger;

reserved: ARRAY[1..2] OF Longlnt;

serverHint: Addr Bl ock;

dsRef Num I nt eger;

cal |l 1 D Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt ;

gReserved2: Longl nt ;

gReserved3: Longl nt;

cl i ent Dat a: Longl nt ;

userldentity: Authldentity; {identity of initiator}

user Record: Recordl DPtr; {User record}
END;

Aut hCGet Credent i al sPB = RECORD

gLi nk: Ptr;
reservedl: Longl nt ;
reserved?2: Longl nt ;

i oConpl etion: ProcPtr;

i oResul t: OSEr r
saveAb: Longl nt ;

r eqCode: I nt eger;
reserved: ARRAY[1. .2] OF Longlnt;
server H nt: Addr Bl ock
dsRef Num I nt eger;
call I D Longl nt ;

Summary of the Authentication Manager 9-487

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

identity:
gReservedl:
gReserved2
gReserved3

cl i ent Dat a:
userldentity:
reci pi ent:
sessi onKey:
expiry:

credenti al sLengt h:

credenti al s:

END;

Aut hl dentity;

Longl nt;
Longl nt ;
Longl nt;
Longl nt;

Aut hl dentity;
Recordl DPtr;
Aut hKeyPt r;

UTCTi ne;
Longl nt;
Ptr;

Aut hMakePr oxyPB = RECORD

gLi nk:
reservedl:
reserved2:

i oConpl etion:
i oResul t:
saveAb:

r eqCode:
reserved:
serverH nt:
dsRef Num
calllD:
identity:
gReservedl:
gReserved2
gReserved3
clientData:
userldentity:
reci pi ent:
firstvalid:
expiry:

aut hDat aLengt h:

aut hDat a:

pr oxyLengt h:
proxy:

i nternediary:

END;

Ptr;
Longl nt ;
Longl nt;
ProchPtr;
OSErr;
Longl nt;
I nt eger;

{identity of
{ ACCE nane of

{sessi on key}

{desi
{ max/

ARRAY[1. .2] OF Longlnt;

Addr Bl ock;

I nt eger;
Longl nt ;

Aut hl dentity;
Longl nt;
Longl nt ;
Longl nt;
Longl nt;

Aut hl dentity;
Recordl DPtr;
UTCTi ne;
UTCTi ne;
Longl nt;

Ptr;

Longl nt ;

Ptr;

Recordl DPtr;

red/ act ual
act ual

{identity of principal}

{ ACCE nane of

{tinme at which proxy becones vali d}
{tinme at which proxy expires}

recipient}

{size of authorization data}

{pointer to authorization data}

{max/ act ual pr
{proxy buffer}
{record ID of

Aut hTr adePr oxyFor Cr edent i al sPB = RECORD

9-488

gLi nk:
reservedl:

Summary of the Authentication Manager

Ptr;
Longl nt;

oxy size}

i ntermedi ary}

initiator}
recipient}

expi ration}
credential s size}
{credentials buffer}

CHAPTER 9

Authentication Manager

JabBeuey uoneanuayiny n

reserved2: Longl nt;

i oConpl eti on: ProcPtr

i oResul t: CSErr;

saveA5: Longl nt;

r eqCode: I nt eger;

reserved: ARRAY[1..2] OF Longlnt;

serverHint: Addr Bl ock

dsRef Num I nt eger;

cal Il 1D Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt ;

gReserved2: Longl nt;

gReserved3: Longl nt;

clientData: Longl nt ;

userldentity: Aut hl dentity; {identity of internediary}

reci pi ent: Record| DPt r; { ACCE nane of recipient}

sessi onKey: Aut hKeyPt r; {sessi on key}

expiry: UTCTi ne; {desired/ actual expiration}

credenti al sLengt h: Longl nt; {max/ actual credentials size}

credenti al s: Ptr; {credentials buffer}

proxylLengt h: Longl nt; {actual proxy size}

pr oxy: Ptr; {buf fer containing proxy}

princi pal : Recordl DPtr; {record ID of principal}
END;

Aut hResol veCreati onl DPB = RECORD

gLi nk: Ptr;
reservedl: Longl nt ;
reserved2: Longl nt ;

i oConpl etion: ProcPtr

i oResul t: OSErr

saveAb: Longl nt;

r eqCode: I nt eger;
reserved: ARRAY[1. .2] OF Longlnt;
server Hi nt: Addr Bl ock;
dsRef Num I nt eger;
calllD: Longl nt ;
identity: Aut hl dentity;
gReservedl: Longl nt;
gReserved2: Longl nt ;
gReserved3: Longl nt;

cl i ent Dat a: Longl nt;

user Recor d: Recordl DPtr; {User record}
buf ferLength: Longlnt; {buffer size}

Summary of the Authentication Manager 9-489

CHAPTER 9

Authentication Manager

buf fer: Ptr; {buffer to hold creation |Ds}

total Mat ches: Longlnt; {total nunber of matchi ng nanmes found}

act ual Mat ches: Longlnt; {nunber of matches returned in the buffer}
END;

Aut hGet UTCTi nePB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved2: Longl nt;

i oCompl etion: ProcPtr

i oResul t: OSEr r

saveA5: Longl nt;

r eqCode: I nt eger;

reserved: ARRAY[1..2] OF Longlnt;

serverHint: Addr Bl ock;

dsRef Num I nt eger;

cal |l 1 D Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt ;

gReserved2: Longl nt ;

gReserved3: Longl nt;

cl i ent Dat a: Longl nt ;

pRLI : PackedRLI Ptr; {packed RLI of the dNode}

t heUTCTi ne: UTCTi ne; {current UTC(GMI) tine in seconds
since 1/1/1904}

t heUTCOF fset: UTCO f set; {offset from UTC(GMI seconds east
of Greenw ch}

END;

Aut hMakeChal | engePB = RECORD

gLi nk: Ptr;
reservedl: Longl nt ;
reserved?2: Longl nt ;

i oConpl etion: ProcPtr

i oResul t: OSEr r

saveAb: Longl nt ;

r eqCode: I nt eger;
reserved: ARRAY[1. .2] OF Longlnt;
server H nt: Addr Bl ock
dsRef Num I nt eger;

call I D Longl nt ;
identity: Aut hl dentity;
gReservedl: Longl nt;
gReserved2: Longl nt ;

9-490 Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

gReserved3: Longl nt;

clientData: Longl nt ;

key: Aut hKeyPt r; {unencrypt ed sessi on key}

chal | enge: Ptr; {encrypted chal | enge}

chal | engeBufferLength: Longlnt; {l ength of challenge buffer}

chal | engeLengt h: Longl nt; {length of encrypted chall enge}
END;
Aut hMakeRepl yPB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved2: Longl nt;

i oConpl etion: ProcPtr

i oResul t: OSEr r

saveA5: Longl nt;

r eqCode: I nt eger;

reserved: ARRAY[1..2] OF Longlnt;

serverHint: Addr Bl ock

dsRef Num I nt eger;

cal |l 1 D Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt ;

gReserved2: Longl nt ;

gReserved3: Longl nt;

cl i ent Dat a: Longl nt ;

key: Aut hKeyPt r; {unencrypt ed sessi on key}

chal | enge: Ptr; {encrypted chal | enge}

reply: Ptr; {encrypted reply}

repl yBuf f er Lengt h: Longl nt ; {length of challenge buffer}

chal | engelLengt h: Longl nt; {length of encrypted chall enge}

repl yLengt h: Longl nt ; {length of encrypted reply}

JabBeuey uoneanuayiny n

END;

Aut hVeri f yRepl yPB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved2: Longl nt;

i oConpl eti on: ProcPtr

i oResul t: CSErr;

saveA5: Longl nt;

r eqCode: I nt eger;

reserved: ARRAY[1. .2] OF Longlnt;
serverHint: Addr Bl ock;

dsRef Num I nt eger;

Summary of the Authentication Manager

9-491

CHAPTER 9

Authentication Manager

cal I D
identity:
gReservedl:
gReserved2
gReserved3
cl i ent Dat a:
key:
chal | enge:
reply:

chal | engelLengt h:
repl yLengt h:

END;

gLi nk:
reservedl:
reserved2:

i oConpl etion:
i oResul t:
saveA5:

r eqCode:
reserved:
serverH nt:
dsRef Num
cal l I D
identity:
gReservedl:
gReserved2
gReserved3

cl i ent Dat a:
userldentity:
initiatorRecord:
sessi onKey:

expiry:

credenti al sLengt h:

credenti al s:
i ssueTi ne:
hasl nt er nedi ary:

i nternediary:

END;

Longl nt;
Aut hl dentity;
Longl nt ;
Longl nt;
Longl nt;
Longl nt ;
Aut hKeyPt r;
Ptr;

Ptr;

Longl nt;
Longl nt;

Aut hDecr ypt Credenti al sPB = RECORD

Ptr;
Longl nt ;
Longl nt;
ProcPtr;
OSErr;
Longl nt;
I nt eger;

{unencrypt ed sessi on key}
{encrypted chal |l enge}
{encrypted reply}

{length of encrypted chall enge}
{length of encrypted reply}

ARRAY[1. .2] OF Longlnt;

Addr Bl ock;

I nt eger;
Longl nt ;

Aut hl dentity;
Longl nt;
Longl nt ;
Longl nt;
Longl nt;

Aut hl dentity;
Recordl DPtr;
Aut hKeyPt r;
UTCTi ne;
Longl nt;

Ptr;

UTCTi ne;

Bool ean

Recordl DPt r;

Summary of the Authentication Manager

{user's identity}

{ACCE nane of the initiator}
{session key}

{credentials expiration tine}
{actual credentials size}
{credentials to be decrypted}
{credentials expiration tine}
{if true, an internediary record
was found in credential s}
{record ID of the internedi ary}

CHAPTER 9

Authentication Manager

gLi nk:
reservedl:
reserved2:

i oConpl eti on:
i oResul t:
saveA5:

r eqCode:
reserved:
serverHi nt:
dsRef Num
call 1D
identity:
gReservedl:
gReserved2:
gReserved3:
clientData:

di rect or yNane:
di scrim nator:

recordl D:
nat i veName:
passwor d:

END;

gLi nk:
reservedl:
reserved2:

i oConpl etion:
i oResul t:
saveA5:

r eqCode:
reserved:
serverHint:
dsRef Num
call 1D
identity:
gReservedl:
gReserved2:
gReserved3:
cl i ent Dat a:

di rect oryRecor dCl D:

Summary of the Authentication Manager

OCESet upCGet Di rect oryl nf oPB = RECORD

Ptr;

Longl nt ;

Longl nt;

ProcPtr;

CSErr;

Longl nt;

I nt eger;

ARRAY[1..2] OF Longlnt;
Addr Bl ock;

I nt eger;

Longl nt ;

Aut hl dentity;
Longl nt;

Longl nt ;

Longl nt;

Longl nt;

Di rect oryNamePtr;
DirDiscrimnator; {discrimnator for the catal og}
Recordl DPtr; {record ID for the catal og}
RStringPtr; {user nanme in the catal og worl d}
RStringPtr; {password in the catal og worl d}

{cat al og nane}

OCESet upAddDi r ect oryl nf oPB = RECORD

Ptr;

Longl nt;
Longl nt ;
ProcPtr;
OSErr;

Longl nt ;

I nt eger;
ARRAY[1..2] OF Longlnt;
Addr Bl ock;

I nt eger;
Longl nt;

Aut hl dentity;
Longl nt;
Longl nt;
Longl nt ;
Longl nt;

Creationl D, {creation ID for the catal og}

9-493

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

Recordl DPt r;
RStri ngPtr;

recordl D
passwor d:
END;

{record ID for the identity}
{password in the catal og worl d}

OCESet upChangeDi r ect oryl nf oPB = RECORD

gLi nk: Ptr;

reservedl: Longl nt ;

reserved2: Longl nt ;

i oConpl etion: ProcPtr

i oResul t: OSErr

saveAb: Longl nt;

r eqCode: I nt eger;

reserved: ARRAY[1. .2] OF Longlnt;

server Hi nt: Addr Bl ock

dsRef Num I nt eger;

calllD: Longl nt ;

identity: Aut hl dentity;

gReservedl: Longl nt;

gReserved2: Longl nt ;

gReserved3: Longl nt;

cl i ent Dat a: Longl nt;

directoryRecordCI D: CreationlD; {creation ID for the catal og}

recordl D: Recordl DPtr; {record ID for the identity}

passwor d: RStringPtr; {password in the catal og worl d}

newPasswor d: RStringPtr; {new password in the catal og}
END;

OCESet upRenoveDi rect oryl nf oPB = RECORD

9-494

gLi nk: Ptr;
reservedl: Longl nt ;
reserved2: Longl nt;

i oConpl eti on: ProcPtr

i oResul t: CSErr;
saveA5: Longl nt;

r eqCode: I nt eger;
reserved: ARRAY[1..2] OF Longlnt;
serverHint: Addr Bl ock
dsRef Num I nt eger;

cal Il 1 D Longl nt ;
identity: Aut hl dentity;
gReservedl: Longl nt ;
gReserved2: Longl nt;

gReserved3

Longl nt;

Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

cl i ent Dat a: Longl nt;
directoryRecordCID: Creationl D

END;

Parameter Block Case Statement

Aut hPar anBl ock = RECORD
CASE | NTEGER OF

©COoNoORONE

NNMNNNNNNNNRRRRPRPRRRRRR
O ~NOUDNWNROOOWNOOUMNWNIERLO

END;

(header:

(bi ndl dentityPB:

(unbi ndl denti t yPB:
(resol veCreati onl DPB:
(getldentityl nfoPB:
(addKeyPB:
(changeKeyPB:

(del et eKeyPB:
(passwor dToKeyPB:

:(get Credenti al sPB:

: (decrypt Credenti al sPB:

: (makeChal | engePB:

: (makeRepl yPB:

:(verifyRepl yPB:

: (get UTCTi nmePB:

: (makePr oxyPB:

: (tradeProxyFor Credenti al sPB:
: (get Local I dentityPB:

: (unLockLocal I denti t yPB:

: (1 ockLocal I dentit yPB:
:(localldentityQ nstall PB:
:(local I dentityQRenovePB:

: (setupLocal | dentityPB:

: (changelLocal I denti t yPB:
:(renmovelLocal I denti t yPB:
:(setupDirectoryldentityPB:

: (changeDi rectoryl dentityPB:
:(removeDirectoryldentityPB:
29:

(getDirectoryldentityl nfoPB:

Aut hPar anBl ockPtr = ~Aut hPar anBl ock;

Summary of the Authentication Manager

{creation ID for the catal og}

Aut hDi r Par antHeader) ;

Aut hBi ndSpeci fi cl dentityPB);
Aut hUnbi ndSpeci fi cl dentityPB);
Aut hResol veCr eat i onl DPB) ;

Aut hGet Speci ficldentitylnfoPB);
Aut hAddKeyPB) ;

Aut hChangeKeyPB) ;

Aut hDel et eKeyPB) ;

Aut hPasswor dToKeyPB) ;

Aut hGet Cr edent i al sPB);

Aut hDecr ypt Credent i al sPB);

Aut hMakeChal | engePB) ;

Aut hMakeRepl yPB) ;

Aut hVeri f yRepl yPB) ;

Aut hGet UTCTi mePB) ;

Aut hMakePr oxyPB) ;

Aut hTr adePr oxyFor Cr edent i al sPB) ;
Aut hGet Local | denti t yPB) ;

Aut hUnl ockLocal | denti tyPB);

Aut hLockLocal | denti t yPB);

Aut hAddToLocal I denti t yQueuePB) ;
Aut hRenoveFr oniocal | dentityQueuePB);
Aut hSet upLocal | denti t yPB);

Aut hChangelLocal | denti t yPB);

Aut hRenovelLocal | dent it yPB);
OCESet upAddDi r ect or yl nf oPB) ;
OCESet upChangeDi r ect oryl nf oPB) ;
OCESet upRenoveDi r ect oryl nf oPB) ;
OCESet upGet Di r ect oryl nf oPB) ;

9-495

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

Authentication Manager Functions

Key Management

FUNCTI ON Aut hPasswor dToKey (par anBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;

FUNCTI ON Aut hAddKey (paranBl ock: Aut hPar anBl ockPtr;
async: Bool ean): OSErr;

FUNCTI ON Aut hChangeKey (paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OCSErr;

FUNCTI ON Aut hDel et eKey (par anBl ock: Aut hPar anBl ockPtr;

async: Bool ean): OCSErr;

Local Identity Management

FUNCTI ON Aut hGet Local I dentity
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;
FUNCTI ON Aut hAddToLocal I denti t yQueue
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;
FUNCTI ON Aut hRenoveFr omLocal | dentit yQueue
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;
FUNCTI ON Aut hSet upLocal I dentity
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;
FUNCTI ON Aut hChangelLocal | dentity
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;
FUNCTI ON Aut hLockLocal I dentity
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;
FUNCTI ON Aut hUnl ockLocal I dentity
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;
FUNCTI ON Aut hRenovelocal | dentity
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;

9-496 Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

Specific Identity Management

FUNCTI ON Aut hBi ndSpeci ficldentity
(paranBl ock: Aut hParanBl ockPtr ;
async: Bool ean): OCSErr;

FUNCTI ON Aut hUnbi ndSpeci ficldentity
(paranBl ock: Aut hParanBl ockPtr ;
async: Bool ean): OCSErr;

FUNCTI ON Aut hGet Speci ficldentitylnfo
(paranBl ock: Aut hParanBl ockPtr ;
async: Bool ean): OCSErr;

Credentials Management

FUNCTI ON Aut hGet Credentials (paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OCSErr;

FUNCTI ON Aut hvakePr oxy (paranmBl ock: Aut hParanBl ockPtr;
async: Bool ean): CSErr;

FUNCTI ON Aut hTr adePr oxyFor Credenti al s
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): CSErr;

Creation ID Resolution Management

FUNCTI ON Aut hResol veCreati onl D
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;

Time Service

UNCTI ON Aut hGet UTCTi ne (paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OCSErr;

Non-ASDSP Authentication Utilities

FUNCTI ON Aut hvakeChal | enge (paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): CSErr;

FUNCTI ON Aut hvakeRepl y (paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;

FUNCTI ON Aut hVeri fyRepl y (paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OSErr;

FUNCTI ON Aut hDecrypt Credenti al s

(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OCSErr;

Summary of the Authentication Manager

9-497

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

AOCE Setup Catalog Management

FUNCTI ON OCESet upGet Di rectoryl nfo
(paranBl ock: Aut hParanBl ockPtr;
async: Bool ean): OCSErr;
FUNCTI ON OCESet upAddDi rect oryl nfo
(paranBl ock: Aut hParanBl ockPtr ;
async: Bool ean): OCSErr;
FUNCTI ON OCESet upChangeDi rect oryl nfo
(paranBl ock: Aut hParanBl ockPtr ;
async: Bool ean): OCSErr;
FUNCTI ON OCESet upRenoveDi rectoryl nfo
(paranBl ock: Aut hParanBl ockPtr ;
async: Bool ean): OCSErr;

Application-Defined Routines

PROCEDURE MyConpl eti on (paranBl ock: Aut hParanBl ockPtr);

FUNCTI ON Noti ficati onProc (clientData: Longlnt;
cal | Val ue: AuthLocal I dentityQp;
actionVal ue: AuthLocal I dentitylLockAction;
identity: Localldentity): Bool ean;

Assembly-Language Summary

Trap Macros

Trap Macro Requiring Routine Selectors

_oceTBDi spat ch

Selector Routine

$0200 Aut hBi ndSpeci ficldentity

$0201 Aut hUnbi ndSpeci ficldentity

$0202 Aut hResol veCreationl D

$0203 Aut hGet Speci ficldentitylnfo

$0204 Aut hGet Local I dentity

$0205 Aut hAddToLocal | denti t yQueue

$0206 Aut hRenoveFr omLocal | denti t yQueue
$0207 Aut hAddKey

$0208 Aut hChangeKey

9-498 Summary of the Authentication Manager

CHAPTER 9

Authentication Manager

Selector Routine

$0209 Aut hDel et eKey

$020A Aut hPasswor dToKey

$020B Aut hCet Credent i al s

$020C Aut hDecr ypt Credenti al s
$020D OCESet upRenoveDi rect oryl nfo
$020E OCESet upGet Directorylnfo
$020F Aut hMakeChal | enge

$0210 Aut hMakeRepl y

$0211 Aut hVeri fyReply

$0212 Aut hMakePr oxy

$0213 Aut hTr adePr oxyFor Credenti al s
$0214 Aut hUnl ockLocal | dentity
$0215 Aut hLockLocal I dentity

$0216 Aut hSet upLocal I dentity

$0217 Aut hChangelLocal | dentity
$0218 Aut hRenovelLocal I dentity
$0219 OCESet upAddDi r ect oryl nfo
$021A Aut hGet UTCTi ne

$021B OCESet upChangeDi rect oryl nfo

Result Codes

Result codes in the range of —1540 to —1609 are reserved for the Authentication Manager.
Routines may also return result codes from other AOCE managers and standard
Macintosh result codes such as noEr r 0 (No error) and f nf Er r —43 (File not found).

noErr

k OCEPar antr r
kOCEReadAccessDeni ed

kOCEW i t eAccessDeni ed
kOCEAccessRi ght sl nsuf fi ci ent

kOCEUnsupport edCr edent i al sVer si on

kOCECr edent i al sProbl em

Summary of the Authentication Manager

-50
-1540
-1541
-1542

-1543

-1544

No error

Parameter error

Read access denied

Write access denied

Stream needs to be authenticated,
or not authorized, or someone other
than agent trying to TPFC, or
problem in server-to-server
authentication

Can’t read this version of the
credentials

Couldn’t decrypt credentials

9-499

JabBeuey uoneanuayiny n

CHAPTER 9

Authentication Manager

kOCECr edent i al sl nmat ur e
kOCECr edent i al sExpi red

k OCEPr oxy| mmat ur e
k OCEPr oxyExpi r ed

kCOCEDi sal | onedReci pi ent

k OCENoKeyFound
kQOCEPr i nci pal KeyNot Found

kOCEReci pi ent KeyNot Found
k OCEAgent KeyNot Found
kOCEKeyAl r eadyRegi st ered
k CCEMal For nedKey

kCOCEUndesi r abl eKey

kOCEW ongl dent i t yOr Key
kCOCEl ni ti at or KeyPr obl em
kOCEBadEncr ypt i onMet hod

kOCELocal | dent i t yDoesNot Exi st
kOCELocal Aut henti cati onFai |
kOCELocal | dent i t ySet upExi st's

kCOCEDi rectoryl dentitySet upExi sts
kOCEDi r ect oryl denti t ySet upDoesNot Exi st
kOCENot Local I dentity

k OCENoMor el Ds

k OCEUnknownl D

kOCEQper at i onDeni ed

k OCEAnbi guousMat ches

k OCENo ASDSPWor kSpace
kOCEAut henti cati onTr oubl e

k OCENot Local

kOCETar get Di rect oryl naccessi bl e
k OCENoSuchDNode

kOCEBadRecor dl D

kOCENoSuchRecord
kOCEMbr eDat a

kOCESt r eantCr eat i onErr
kCOCEDi r ect or yNot FoundEr r

k OCECCESet upRequi r ed
kOCELengt hEr r or

9-500 Summary of the Authentication Manager

-1545
-1546

—1547
—-1548

—-1549

-1550
-1551

—-1552
—-1553
—-1554
—-1555

-1556

-1557
—-1558
-1559

-1560
-1561
-1562

-1563
-1564
-1565
-1566
-1567
-1568
-1569

-1570
-1571

-1610
-1613
-1615
-1617

-1618
-1623

-1625
-1630

-1633
-1637

Credentials not yet valid

Current time is later than
credentials expiration time

Proxy not yet valid

Current time is later than proxy
expiration time

Recipient record ID does not appear
in proxy

No key was found

Couldn’t decode proxy because
principal has no key

The recipient key was not found
Intermediary’s key not found
Akey already exists

Key not derived properly from
password

Password too short or resulting key
is undesirable

Incorrect key for client

No key, or initiator’s key changed
The specified encryption method is
not supported

Local identity has not been set up
Local identity locked

Local identity setup exists, use
Aut hChangelLocal I dentity
instead

Catalog has already been set up
Catalog has not been set up

You cannot unbind a local identity
Identity table is full

Identity passed is not valid

Local identity operation denied
Ambiguous matches found in
resolving CIDs

No ASDSP workspace passed
Reply incorrect for the challenge
sent

Internal AOCE error

Catalog server not responding
The dNode was not found

Name and type incorrect for
creation ID

No such record

Buffer was too small to hold all
available data

An error occurred in creating the
stream

Catalog was not found in the list
Setup of local identity required
The supplied buffer was too small

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	 AOCE Utilities
	 Standard Mail Package TOC
	 Standard Mail Package
	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	 Digital Signature Manager
	 Interprogram Messaging Manager TOC
	 Interprogram Messaging Manager
	 Catalog Manager TOC
	 Catalog Manager, Part 1 (Introduction, About, and Using)
	 Catalog Manager, Part 2 (Reference)
	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	Authentication Manager
	Introduction to Authentication
	Keys
	Credentials
	Steps in the Authentication Process
	Identities
	Local Identities
	Specific Identities
	Guest Access

	The PowerTalk Setup Catalog
	Proxies

	About the Authentication Manager
	Using the Authentication Manager
	Determining Whether the Collaboration Toolbox Is A...
	Determining the Version of the Authentication Mana...
	Authentication Using ASDSP
	Authentication for Non-ASDSP Users
	The Initiator’s Authentication Process
	The Recipient’s Authentication Process

	Authentication Using a Proxy
	Using the Notification Queue

	Authentication Manager Reference
	Data Structures
	Parameter Block Header
	The Key Structures

	Authentication Manager Functions
	Assembly-Language Interface
	Key Management
	Local Identity Management
	Specific Identity Management
	Credentials Management
	Creation ID Resolution
	Time Service
	Non-ASDSP Authentication Utilities
	PowerTalk Setup Catalog Management

	Application-Defined Functions

	Summary of the Authentication Manager
	C Summary
	Constants and Data Types
	Authentication Manager Functions
	Application-Defined Functions

	Pascal Summary
	Constants
	Data Types
	Authentication Manager Functions
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

