

C H A P T E R 3

3

S
tandard M

ail P
ackage

Standard Mail Package 3

This chapter describes the AOCE Standard Mail Package. The AOCE Standard Mail
Package provides a high-level interface that makes it easy for you to add electronic-mail
capabilities to your applications.

The Standard Mail Package provides two separate services:

■ an easy way to send a letter or a file from within your application without user
intervention

■ a complete user interface that you can use to convert any of your application’s
documents into electronic mail

In addition, you can use the Standard Catalog Package to provide a user interface for
browsing AOCE catalogs and selecting records from within your application.

If you want to design and implement your own electronic messaging service using the
AOCE toolbox, see the chapter “Interprogram Messaging Manager” in this book.

About the Standard Mail Package 3

The AOCE Standard Mail Package provides a high-level interface to the AOCE
Interprogram Messaging (IPM) Manager. It works together with the Catalog Browser
and the Digital Signature Manager to present a consistent and easy-to-use user interface
for addressing letters, signing letters, and sending your application’s documents as
electronic mail.

The Standard Mail Package can be divided into two main parts: the send-letter functions
and the mailer functions. The Standard Mail Package relies on other components of the
Apple Open Collaboration Environment, but you do not have to call the underlying
AOCE services directly to add electronic-mail capabilities to your application.

The Send-Letter Functions 3
The Standard Mail Package provides a basic, very easily implemented method of
sending documents and other files that can be used either by users of applications or by
applications acting without user intervention (agents). You can use the Standard Mail
Package functions (described in “Send-Letter Functions” on page 3-37) to enclose a file
with an AppleMail letter and then send the letter, to send a document as an image file, or
to send a file so that it appears in the recipient’s In Tray not as a letter but as the original
file.

The send-letter functions provide no interface for opening a letter from within your
application. When the user double-clicks a document in the In Tray, the Finder attempts
to launch the application that was used to send the letter, and that application opens the
document. If that application is not present, the Finder displays a dialog box asking the
user whether it should open the letter with the AppleMail application provided with the
AOCE software.
About the Standard Mail Package 3-3

C H A P T E R 3

Standard Mail Package

The Mailer Functions 3
The Standard Mail Package also provides a more sophisticated electronic-mail interface.
This interface adds a new region—known as a mailer—to any window.

“Providing Mailers in Your Windows” on page 3-45 describes functions to create a new
mailer, reposition a mailer in your window, control the way the user cycles through
fields in the mailer and your document using the Tab key, and dispose of a mailer.

You can use the functions described in “Handling Events in Mailers” beginning on
page 3-63 to handle events and Apple events that pertain to mailers and to make sure
that your menu commands accurately reflect the state of the mailer while a user is
working in it.

You use the functions described in “Sending and Saving Mail” beginning on page 3-72 to
send, save, or read a document containing a mailer. Use the routines in “Printing
Mailers” beginning on page 3-107 when you want to print a document containing a
mailer.

You can use the functions described in “Getting and Setting Information in the Mailer”
beginning on page 3-110 to read and set values in mailer fields and send options from
within your program instead of through the mailer or the standard dialog boxes
provided by the mailer.

You use the SMPOpenLetter function, described in “Reading Mail” beginning on
page 3-93, to open a letter to read its contents.

Mailers 3

The mailer lets the sender enter addresses and subject information, enclose other files
and folders in the letter, and add a digital signature to the letter. It lets the recipient read
all of this information and verify the digital signature. Figure 3-1 shows a mailer in an
application window. Each time the user forwards a letter, another mailer holding
addresses for the forwarder and the new recipients is added to the letter. The mailers for
a forwarded letter are collectively referred to as a mailer set.
3-4 About the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3

S
tandard M

ail P
ackage

Figure 3-1 Mailer in an application window

The preferred user interface for an AOCE Standard Mail Package letter is to place the
mailer inside your document’s windows, just below the title bar. However, if your
application’s windows are not suitable for displaying mailers, you can place the mailer
in its own, separate window. The user can display the mailer in either of two states:
contracted or expanded. Figure 3-2 shows a sample mailer in the contracted state and
Figure 3-3 shows the same mailer in the expanded state.

Figure 3-2 Mailer in the contracted state

Figure 3-3 Mailer in the expanded state
About the Standard Mail Package 3-5

C H A P T E R 3

Standard Mail Package

The user can drag an address from the Finder or another mailer into the Recipients field
or can open an addressing panel, as shown in Figure 3-4. The user can select among four
versions of the addressing panel by clicking one of the icons at the left side of the panel.
These versions of the addressing panel allow the user to select an address from the
default personal catalog or from any AOCE catalog, to find a record by typing in all or
part of the name of the record, or to type in the entire address. These four versions of the
panel are shown in Figure 3-5.

Figure 3-4 Mailer with addressing panel open

Figure 3-5 The four versions of the addressing panel
3-6 About the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3

S
tandard M

ail P
ackage

Letter Formats 3

When you use a mailer to send a document as a letter, you can send the document in a
“native” format (that is, any one of the document formats supported by your
application), you can send an image of your document, you can send the content of your
document in a special format called standard interchange format, or you can send the
document in any two or all three of these formats simultaneously.

You may choose to employ the AOCE Standard Mail Package at either of two levels: full
mailer support or basic mailer support. An application that offers full mailer support can
read and write both standard interchange format and images. An application that offers
basic mailer support can send either images or standard interchange format or both.
Either type of application might also send documents in one of the application’s native
formats.

When you send your document, the Standard Mail Package delivers it to the addressees’
In Trays. When a recipient double-clicks a document in the In Tray, the application used
to send the document (if present) opens it, and the mailer appears at the top of the
window. If the file includes an image of the document or a standard interchange format
version of its content, any application that offers full mailer support can open it.

Each user who has AOCE software has the AppleMail application, which provides full
mailer support. Thus, every user who has AOCE software can read, either as an image or
in standard interchange format, every document sent by an application that provides
either full or basic mailer support. In addition, if your application can send and read
documents sent in its own native formats, users who have your application have access
to the complete document when they receive it.

A letter consists of a header that contains addressing and priority information, followed
by blocks of data, followed by enclosures. Certain types of data blocks have standard
definitions, such as the image block and standard interchange format blocks. The image
block contains an image of the document being sent; you must provide an
image-drawing routine (page 3-123) to draw each page. The SMPImage function
(page 3-88) creates the image block and adds it to the letter. Standard interchange format
blocks contain a version of your document that can include text, styled text, sounds,
pictures, and QuickTime movies. Standard interchange format can be converted by
access modules and read by any standard letter application (such as the AppleMail
application provided with the AOCE software). You can define other blocks in any way
you wish. You use the SMPAddBlock function (page 3-91) to add blocks to a letter.

You can send your own document in one of its native formats as an enclosure to the
letter, known as a main enclosure (also referred to as a content enclosure), or incorporate
it into data blocks, as you wish. The Standard Mail Package user interface also allows the
user to enclose other files. (The main enclosure is not visible to the user as an enclosure.)
About the Standard Mail Package 3-7

C H A P T E R 3

Standard Mail Package

Note
If you are using the IPM Manager or the MSAM API to send letters to
the Standard Mail Package, you should avoid sending any nested letters
that contain standard content. If the Standard Mail Package receives a
letter that contains a nested letter, it ignores any content (standard
interchange format or image format) within the nested letter. It displays
the header and nesting information of the nested letter as a forwarded
mailer. ◆

The Standard Catalog Package 3
The Standard Catalog Package provides authentication and letter-addressing services
that complement the routines described in this chapter. See the chapter “Standard
Catalog Package” in this book for more information.

Using the Standard Mail Package 3

This section describes how to initialize the Standard Mail Package and use it to create a
mailer, send mail, receive mail, forward and reply to mail, close a letter, and handle
events in the mailer.

Initializing the Standard Mail Package 3
Before you can enable Standard Mail Package features in your application, you must use
the Gestalt Manager to ensure that the system on which your application is running
supports the Standard Mail Package.

To determine the version of the Standard Mail Package mailer functions, call the
Gestalt function with the selector gestaltSMPMailerVersion. The function returns
the version number of the mailers in the low-order word of the response parameter.
For example, a value of 0x0101 indicates version 1.0.1. If the Standard Mail Package is
not present and available, the Gestalt function returns 0 for the version number.
Similarly, to determine the version of the send-letter functions, use the selector
gestaltSMPSendLetterVersion.

Listing 3-1 shows a function that returns true only if the Standard Mail Package is
installed and available.

Listing 3-1 Testing for the presence of Standard Mail Package services

Boolean MyTestForStandardMail(void)

{

OSErr err;

long response;
3-8 Using the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3

S
tandard M

ail P
ackage

err = Gestalt(gestaltSMPMailerVersion, &response);

if ((err!=noErr) || (response==0))

return false;

return true;

}

If the Standard Mail Package is not available, you should disable those features of your
application while allowing the user to use its other features normally.

After determining that the Standard Mail Package is available, you must initialize it
using the SMPInitMailer function, passing in the version number of the package
current for the services incorporated into your application. If, at run time, the current
version of the Standard Mail Package is later than the one with which you compiled
your application, the package initializes in compatibility mode, supporting the older
version’s functions. If, conversely, the run-time version is earlier, SMPInitMailer
returns an error. The code in Listing 3-2 calls the initialization function.

Listing 3-2 Initializing the Standard Mail Package

OSErr MyInitStandardMail(void)

{

OSErr err;

SetCursor(&gWatchCursor);

err = SMPInitMailer(kSMPVersion);

SetCursor(&qd.arrow);

return err;

}

Creating a Mailer 3
The Standard Mail Package enables any application to add support for mailing
documents directly to other users on the network without going through intermediate
mail applications. It provides standard user interface elements needed to address, send,
and receive documents through the mailer, which appears as a special pane in the
window of the document to be sent. This section describes how to add a mailer to a
window.

Listing 3-3 uses the SMPGetDimensions (page 3-48) function to find the dimensions of
the standard mailer window, and it creates a document window just large enough to
accommodate the mailer. More typically, you would size your application windows
according to the requirements of your application and use SMPGetDimensions to place
the mailer and perform actions such as adjusting the content area of your window. The
function then creates the mailer by calling the SMPNewMailer function (page 3-46), and
it makes the mailer the initial target of user actions with the SMPBecomeTarget
Using the Standard Mail Package 3-9

C H A P T E R 3

Standard Mail Package

function (page 3-54), specifying the target field within the mailer as kSMPOther (that is,
a field other than the Recipients, From, or other enumerated field as described on
page 3-32). The application-defined MyErrorAlert function in the listings throughout
this section reports errors to the user in a standard manner.

Listing 3-3 Creating a mailer

void

MyBuildMailerWindow(void)

{

Rect boundsRect;

Point mailerCorner;

short mailerWidth;

short mailerContractedHeight;

short mailerExpandedHeight;

boundsRect = qd.screenBits.bounds;

boundsRect.top += ((GetMBarHeight() + 1) * 2);

InsetRect(&boundsRect, 4, 4);

gStatus = SMPGetDimensions(

&mailerWidth,

&mailerContractedHeight,

&mailerExpandedHeight

);

if (gStatus != noErr)

MyErrorAlert(gStatus, "\pSMPGetDimensions");

else {

boundsRect.right = boundsRect.left + mailerWidth;

boundsRect.bottom = boundsRect.top + mailerExpandedHeight;

}

gMailerWindow = NewWindow(

NULL, /* no window storage */

&boundsRect, /* window shape */

"\pMiniMailer", /* window title */

TRUE, /* visible */

documentProc, /* document, no zoom box */

(WindowPtr) -1L, /* in front */

TRUE, /* has close box */

0 /* refCon (ignored) */

);

if (gMailerWindow == NULL) {

MyErrorAlert(MemError(), "\pNewWindow (fatal)");

ExitToShell();
3-10 Using the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3

S
tandard M

ail P
ackage

}

SetPort(gMailerWindow); /* set port to be safe */

SetPt(&mailerCorner, 0, 0);/* locate mailer in window */

gStatus = SMPNewMailer(/* create Standard Mailer */

gMailerWindow, /* in this window */

mailerCorner, /* mailer top-left */

FALSE, /* cannot contract */

TRUE, /* initially expanded */

0, /* default identity */

nil, /* no prepare-to-draw callback */

0 /* no client data */

);

if (gStatus != noErr) {

MyErrorAlert(gStatus, "\pSMPNewMailer (fatal)");

ExitToShell();

}

}

The SMPNewMailer function call shown in Listing 3-3 passes a value of 0 for the
identity of the caller, which invokes the most recently authenticated user identity (see
“Authenticating a User” on page 3-36). Note that setting the Boolean parameter
canContract of the SMPNewMailer function to FALSE is unusual; Listing 3-3 does it
because the window exists only to accommodate the mailer. To add a mailer to an
existing document window, call the SMPNewMailer function, passing in the window
pointer, followed by the SMPGetDimensions function, to adjust the size of the window
content area.

Sending Mail 3
The first step in sending a letter is to display the send-options dialog box. This dialog
box is similar to the standard print dialog box, offering the user options as to how the
letter should be sent. Listing 3-4 illustrates a way to display the send-options dialog box.
The code assumes that your application stores as a resource a list of formats in which it
can send letters; these formats should be those in which your application can save
documents. It also assumes that your application stores user preference values, including
send options, in a global struct named gPreferences.

Listing 3-4 Displaying the send-options dialog box

GetResString(nativeFormat, kAppNameID, kAppName);

GetWTitle(window, docTitle);

nativeFormatArray[0] = (StringPtr)nativeFormat;

SetCursor(&qd.arrow);

err = SMPSendOptionsDialog(window, docTitle, nativeFormatArray, 1,
Using the Standard Mail Package 3-11

C H A P T E R 3

Standard Mail Package

kSMPNativeMask | kSMPImageMask | kSMPStandardInterchangeMask,

&gPreferences.sendFormat, nil, 0L, &gPreferences.sendFormat,

&gPreferences.sendOptions);

if (err == userCanceledErr)

return;

if (err !== noErr) {

MyErrorAlert(err, "\pSMPSendOptionsDialog");

return;

}

The SMPSendOptionsDialog function (page 3-73) prompts the user for send options.
It returns the name of the format that should be used to send the letter, which is used in
the next part of the process. The process of sending a letter is begun by calling the
SMPBeginSend function (page 3-81), passing in the user’s send options (see Listing 3-5).
The Standard Mail Package uses this information to build the header for the letter. Any
subsequent content-adding function calls apply to the letter specified in the
SMPBeginSend call. Listing 3-5 shows how to perform the send operation.

Listing 3-5 Performing the send operation

SetCursor(&gWatchCursor);

/* Use creator if you have native format, else use AppleMail. */

if ((gPreferences.sendFormat.whichFormats & kSMPNativeMask != 0) {

letterCreator = kMyAppCreator;

letterType = kMyLtrMsgType;

}

else {

letterCreator = 'lap2';

letterType = kMailLtrMsgType;

}

err = SMPBeginSend(window, letterCreator, letterType,

&gPreferences.sendOptions, &mustAddContent);

if (err != noErr) {

SetCursor(&qd.arrow);

MyErrorAlert(err, "\pSMPBeginSend");

return;

}

if (mustAddContent) {

err = MyAddLetterBlocks(window, infoPtr,

&gPreferences.sendFormat);

if (err != noErr)

MyErrorAlert(err);

}

3-12 Using the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3

S
tandard M

ail P
ackage

err = SMPEndSend(window, (err == noErr));

if (err != noErr)

MyErrorAlert(err, "\pSMPEndSend");

The application-defined MyAddLetterBlocks function adds the actual blocks of
content to the letter. It adds blocks only if the mustAddContent Boolean value,
returned from SMPBeginSend, is set to true; there is no need to add content blocks to a
letter forwarded unchanged. The function adds blocks in any combination of the three
types of content formats: native application format, standard interchange (AppleMail)
format, and image format. The MyAddLetterBlocks function calls appropriate
subroutines to add the blocks.

Finally, you must call the SMPEndSend function (page 3-84) to send the letter. Its second
parameter is a Boolean value that specifies whether to execute the send operation or to
cancel the send process begun with SMPBeginSend. The example in Listing 3-5 uses this
parameter to ensure that if MyAddLetterBlocks or any of its subroutines returns a
nonzero error code, the send operation is canceled.

The MyAddLetterBlocks function and its subroutine functions are illustrated in
Listing 3-6. The MyAddLetterBlocks function checks the sendFormat parameter
returned from the SMPSendOptionsDialog function to determine which formats to
add, and it calls one, two, or all three of the functions that actually add the content
blocks.

Listing 3-6 Adding the letter content

OSErr MyAddLetterBlocks(WindowPtr window, WInfoPtr infoPtr,

SMPSendFormat *sendFormat, StringPtr nativeFormatName)

{

OSErr err = noErr;

/* Add image (snapshot). */

if (!sendFormat ||

(sendFormat->whichFormats & kSMPImageMask)) {

err = MyAddLetterImage(window, infoPtr);

if (err != noErr)

return err;

}

/* Add standard letter interchange format (AppleMail). */

if (!sendFormat ||

(sendFormat->whichFormats & kSMPStandardInterchangeMask)) {

err = MyAddAppleMailContent(window, infoPtr);

if (err != noErr)

return err;

}

Using the Standard Mail Package 3-13

C H A P T E R 3

Standard Mail Package
/* Add main content enclosure (native). */

if (!sendFormat ||

(sendFormat->whichFormats & kSMPNativeMask)) {

err = MyAddNativeContent(window,infoPtr,nativeFormatName);

if (err != noErr)

return err;

}

return err;

}

Native application content is stored in files accessed by file system FSSpec data
structures. Thus, to add native content you must save the content to a temporary file
before adding it to the letter. You can use an application-defined utility routine (the
MySaveFileToTemp function, not shown here) for this purpose. Once the temporary
file is available, the MyAddNativeContent function (Listing 3-7) calls
SMPAddMainEnclosure (page 3-90), passing in the letter window pointer and the file
specification. Finally, the MyAddNativeContent function calls the SMPAddBlock
function (page 3-91) to add a block indicating the name of the native format used in the
letter.

Listing 3-7 Adding the application’s native-format content

OSErr MyAddNativeContent(WindowPtr window, WInfoPtr infoPtr,

StringPtr nativeFormatName)

{

OSErr err;

FSSpec fSpec;

OCECreatorType blockType;

/* Save file temporarily so you can add by FSSpec. */

err = MySaveFileToTemp(infoPtr, &fSpec);

if (err != noErr)

return err;

err = SMPAddMainEnclosure(window, &fSpec);

FSpDelete(&fSpec);

/* Add native-format name string block. */

if (err == noErr) {

blockType.msgCreator = kMailAppleMailCreator;

blockType.msgType = kSMPNativeFormatName;
3-14 Using the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
err = SMPAddBlock(window, &blockType, false,

&nativeFormatName[1], nativeFormatName[0],

kMailFromStart, 0);

}

return err;

}

In Listing 3-8, the MyAddAppleMailContent function creates and adds a content block
segment in one of the AppleMail standard interchange formats. This example represents
data in PICT format, indicated by the constant kMailPictSegmentType, passed as a
parameter to the SMPAddContent function (page 3-85). Other standard interchange
formats handle text, styled text, sound, and movies.

Listing 3-8 Adding AppleMail standard interchange-format content

OSErr MyAddAppleMailContent(WindowPtr window, WInfoPtr infoPtr)

{

OSErr err;

PicHandle thePicture;

thePicture = MyDrawImageToPicture(window, infoPtr);

if (thePicture) {

HLock((Handle)thePicture);

err = SMPAddContent(window, kMailPictSegmentType, false,

*thePicture, GetHandleSize((Handle)thePicture),

nil, true, smRoman);

KillPicture(thePicture);

}

else return kInternalError;

return err;

}

The code shown in Listing 3-9 creates an image from your document and adds it to the
letter. The SMPImage function (page 3-88) requires you to pass in a pointer to a callback
routine, an application-defined function (described on page 3-123) that actually draws
the image of your document.

The SMPImage function adds the image blocks to the letter. You provide it with input
parameters of the pointer to the letter window, a pointer to your image-drawing callback
function (MyDrawImageProc, in Listing 3-9), a reference constant (used to pass a
pointer to a block of information about the window in this example), and a Boolean
value indicating whether your image-drawing function can draw in color (in Listing 3-9,
it does not). The MyDrawImageProc function first sets up the resolution and size of the
page using information in the print record for the window (in this example, a pointer to
the print record is contained in the window information block passed in the reference
Using the Standard Mail Package 3-15

C H A P T E R 3

Standard Mail Package
constant). Next, MyDrawImageProc calls the SMPNewPage function (page 3-41) to set
up the graphics drawing port, as your image-drawing routine must do before drawing
each page, then calls MyDrawAllShapes to image the page.

The application-defined MyDrawAllShapes function (called in Listing 3-9 but not
shown) images the entire page with QuickDraw calls. The same function is called in the
application-defined MyDrawImageToPicture function, which is used to add standard
interchange format AppleMail content to a letter (see Listing 3-8). In that case the
MyDrawImageToPicture function must provide a graphics port for QuickDraw to
draw into.

Listing 3-9 Adding image-format content

OSErr MyAddLetterImage(WindowPtr window, WInfoPtr infoPtr)

{

return SMPImage(window, MyDrawImageProc, (long)infoPtr, false);

}

pascal void MyDrawImageProc(long refCon, Boolean inColor)

{

#pragma unused (inColor)

OpenCPicParams newHeader;

OSErr err;

Point zeroPt = (0, 0);

WInfoPtr infoPtr;

TPrPtr prInfo;

infoPtr = (WInfoPtr)refCon;

prInfo = (**(infoPtr->printRecord)).prInfo;

newHeader.srcRect = prInfo.rPage;

newHeader.hRes = FixRatio(prInfo.iHRes, 1);

newHeader.vRes = FixRatio(prInfo.iVRes, 1);

newHeader.version = -2;

newHeader.reserved1 = 0;

newHeader.reserved2 = 0L;

err = SMPNewPage(&newHeader);

if (err != noErr)

MyErrorAlert(err, "\pSMPNewPage");

MyDrawAllShapes(infoPtr, zeroPt);

}

3-16 Using the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Receiving Mail 3
A mail-aware application can receive mail in either of two ways: the user can
double-click the letter in the mailbox In Tray or in the Finder. In either case, this action
generates an Open Documents core Apple event ('aevt' 'odoc') that the Finder
sends to your application. If the letter is on disk, the Apple event includes a file
specification of type FSSpec; if it is in the In Tray, the Apple event includes instead a
letter specification of type LetterSpec. The portion of an Apple event handler shown
in Listing 3-10 shows how to process both file and letter specifications. The Standard
Mail Package handles both file and letter specifications through the letter descriptor
structure, which includes both formats.

Listing 3-10 Apple event handler processing both file and letter specifications

AECountItems(&docList, &itemsInList);

for (index = 1; index <= itemsInList; index++) {

err = AESizeOfNthItem(&docList, index, &returnedType, &size);

if (err != noErr)

return err;

if (returnedType == typeLetterSpec) {

diskForm = false;

err = AEGetNthPtr(&docList, index, typeLetterSpec, &keywd,

&returnedType, (Ptr)&myLetterSpec, sizeof(LetterSpec),

&actualSize);

} else if ((returnedType == typeAlias) ||

(returnedType == typeFSS)) {

diskForm = true;

err = AEGetNthPtr(&docList, index, typeFSS, &keywd,

&returnedType, (Ptr)&myFSS, sizeof(myFSS),

&actualSize);

}

if (err != noErr)

return err;

if ((returnedType == typeLetterSpec) ||

(returnedType == typeAlias) ||

(returnedType == typeFSS)) {

err = MyHandleOpenDoc(diskForm, &myFSS, &myLetterSpec);

if (err != noErr)

return err;

}

}

The MyHandleOpenDoc function shown in Listing 3-11 uses this information to open a
letter in the mailbox or on disk. The SMPOpenLetter function (page 3-94) registers with
Using the Standard Mail Package 3-17

C H A P T E R 3

Standard Mail Package
the Standard Mail Package the window passed to it and associates it with the letter
identified in the LetterDescriptor structure. The SMPGetMainEnclosureFSSpec
function (page 3-103) then extracts the native format document from the letter, and an
application-defined content-drawing routine (MyDrawLetterContent, in this example)
draws the document into the window.

Listing 3-11 Opening a letter

OSErr MyHandleOpenDoc(Boolean diskForm, FSSpec *myFSS,

LetterSpec *myLetterSpec)

{

OSErr err;

LetterDescriptor letterDesc;

Point upLeft = (0, 0);

Rect newWindowRect;

letterDesc.diskForm = diskForm;

if (diskForm)

{

letterDesc.fileSpec = *myFSS;

}

else

{

letterDesc.fileSpec = *myLetterSpec;

}

newWindow = MyMakeWindow(kDrawMailerWindow, &newWindowRect,

"\pTitle", false);

if (newWindow == NULL)

{

MyErrorAlert(memFullErr, "\pSMPOpenLetter");

return memFullErr;

}

err = SMPOpenLetter(&letterDesc, newWindow, upLeft, true,

gPreferences.expandOnOpen, nil, 0L);

if (err != noErr)

{

MyErrorAlert(err, "\pSMPOpenLetter");

return err;

}

err = SMPGetMainEnclosureFSSpec(newWindow, &enclSpec);
3-18 Using the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
if (err != noErr)

{

MyErrorAlert(err, "\pSMPOpenLetter");

return err;

}

return MyDrawLetterContent(newWindow, &enclSpec);

}

Forwarding and Replying to Mail 3
After opening a letter, the user has the option to reply or to forward it. The user can also
remove the mailer, changing the letter into a regular document.

To forward a letter, you must add a new mailer to the existing letter. A letter has a new
mailer attached each time it is forwarded. The mailers form a set with each mailer
superimposed upon the preceding mailers. The user can view the mailers in the set by
clicking a dog-ear in the corner of the mailer window pane to cycle through the set or by
choosing among the names in a pop-up menu appearing in the Forwarded By field.

The first step in forwarding a letter is to expand the existing mailer, if it is contracted.
Next, you call the SMPMailerForward function (page 3-49) to create the new mailer
and add it to the letter. Finally, you should adjust your menu items in the configuration
appropriate for sending mail, which is done in Listing 3-12 by an application-defined
function MyFixMailerMenus. The parameter constant kDefaultIdentity has a
value of 0, with the effect described in “Authenticating a User” on page 3-36.

Listing 3-12 Forwarding a letter

err = SMPExpandOrContract(window, true);

/* Ignore errors if window is already expanded. */

err = SMPMailerForward(window, kDefaultIdentity);

if (err != noErr)

MyErrorAlert(err, "\pSMPMailerForward");

MyFixMailerMenus(window);

The first step in replying to a letter is to create a new window in which the user will
write the reply. When this new window exists, you can call the SMPMailerReply
function (page 3-51), passing in among other parameters the new window and the
existing letter window. The function causes the reply letter to be created, automatically
addressed to the originator of the original letter. The code shown in Listing 3-13
illustrates how to handle replying to a letter.
Using the Standard Mail Package 3-19

C H A P T E R 3

Standard Mail Package
Listing 3-13 Replying to a letter

replyWindow = MyMakeWindow(kDrawMailerWindow, &newWindowRect,

newTitle, false);

err = SMPMailerReply(window, replyWindow, replyToAll, topLeft,

true, true, kDefaultIdentity, nil, 0L);

if (err != noErr)

MyErrorAlert(err, "\pSMPMailerReply");

ShowWindow(replyWindow);

The application-defined function MyMakeWindow creates a window and adjusts its
content area to accommodate the mailer. The SMPMailerReply function adds the
mailer, and the ShowWindow function causes the window to become visible.

Closing a Letter 3
Closing a letter window requires you to adhere to a short procedure: displaying the
close-options dialog box, checking for open enclosures and in-progress copy operations,
removing the mailer from the window, and closing the window.

Before closing a letter window, you can display the close-options dialog box, which gives
the user an opportunity to delete the letter or tag it before closing it. Listing 3-14 assumes
the existence of a data structure gPreferences containing user-preference flags,
including one determining whether or not you should display the close-options dialog
box. The code uses these preferences also to fill in the default values in the close-options
dialog box when it is displayed by the SMPCloseOptionsDialog function (page 3-60).

Listing 3-14 Preparing to close a letter

if (gPreferences.closeOptionsDialog) {

SetCursor(&qd.arrow);

err = SMPCloseOptionsDialog(window

 &gPreferences.closeOptions);

if (err != noErr)

returnValue = false;

}

The next step in the letter-closing procedure is to ensure that there are no open
enclosures attached to the letter, that there are no Finder copy operations in progress,
and that there are no other conditions that prevent closing the window. Finder copy
operations occur when the user is in the process of copying a document to or from the
enclosures list. If either situation is true, or if for some other reason a nonzero result was
returned from the SMPPrepareToClose function, the application-defined function
MyStopAlert notifies the user and prevents the letter from closing. Listing 3-15
illustrates these checks.
3-20 Using the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Listing 3-15 Checking status prior to closing a letter

err = SMPPrepareToClose(window);

if (err == kSMPHasOpenAttachments) {

SetCursor(&qd.arrow);

MyStopAlert(kMyHasOpenAttachID, nil);

returnValue = false;

}

else if (err == kSMPCopyInProgress) {

SetCursor(&qd.arrow);

MyStopAlert(kMyCopyInProgress, nil);

returnValue = false;

}

else if (err != noErr) {

SetCursor(&qd.arrow);

MyStopAlert(kMyCannotCloseWindow, nil);

returnValue = false;

}

The final steps in the closing procedure are to remove the mailer from the window and
close the window, as shown in Listing 3-16. The SMPDisposeMailer function
(page 3-61) removes the mailer from the window passed in as a parameter and releases
the memory associated with the letter window. Then the application-defined routine
MyDestroyWindow disposes of the rest of the window and document structures in
memory.

Listing 3-16 Closing the letter

err = SMPDisposeMailer(window, closeOptions);

if (err != noErr)

MyErrorAlert(err, "\pSMPDisposeMailer");

return MyDestroyWindow(window);

Handling Mailer Events 3
The general strategy for handling events in a window with a mailer is to hand the events
to the Standard Mail Package first. The Standard Mail Package has built-in routines to
handle many events, including mouse-down events, key-down events, update events for
the mailer, activate events, deactivate events, and null events. The Standard Mail
Package then hands the event back to the application with an indication that either it
handled the event or your application must handle the event.

Your application should retrieve events in the normal manner, with the
WaitNextEvent system call. When a mailer window is frontmost, call the
SMPMailerEvent function (page 3-63), passing in the event record. The
Using the Standard Mail Package 3-21

C H A P T E R 3

Standard Mail Package
SMPMailerEvent function returns a set of flags in its whatHappened parameter
indicating what action it took, if any, and whether your application must handle the
event. (These flags, of type SMPMailerResult, are described on page 3-65.) Your
application can then process the event appropriately. The event-handling function
shown in Listing 3-17 receives the event record following a WaitNextEvent call, calls
SMPMailerEvent, and passes the SMPMailerResult value to an application-defined
routine named MyProcessWhatHappened. The parameter of type WInfoPtr is a
pointer to an application-defined data structure containing status information about the
mailer window.

Listing 3-17 Processing events in a mailer window

void *MyMailerEventHandler(WindowPtr window, WInfoPtr infoPtr,

EventRecord *ev)

{

SMPMailerResult whatHappened;

OSErr err;

err = SMPMailerEvent(ev, &whatHappened, nil, 0L);

if (err != noErr)

MyErrorAlert(err, "\pSMPMailerEvent");

return (void *)(MyProcessWhatHappened(window, infoPtr,

whatHappened));

}

Boolean MyProcessWhatHappened(WindowPtr window, WInfoPtr infoPtr,

SMPMailerResult whatHappened)

{

OSErr err;

SMPMailerState state;

long *lastChanged;

/* Check if mailer has changed since last menu adjustment. */

err = SMPGetMailerState(window, &state);

if (err != noErr)

MyErrorAlert(err, "\pSMPGetMailerState");

lastChanged = (long *)&infoPtr->otherData[kLastChangedData];

if (*lastChanged != state.changeCount) {

*lastChanged = state.changeCount;

infoPtr->changed = true;

MyFixMailerMenus(window, infoPtr);

}

if ((whatHappened & kSMPContractedMask) != 0)
3-22 Using the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
MyHandleContract(window,infoPtr);

if ((whatHappened & kSMPExpandedMask) != 0)

MyHandleExpand(window, infoPtr);

if ((whatHappened & kSMPMailerBecomesTargetMask) != 0 ||

(whatHappened & kSMPAppBecomesTargetMask) != 0))

MyFixMailerMenus(window, infoPtr);

/* Check menus for every event the mailer handles. */

if ((whatHappened & kSMPAppShouldIgnoreEventMask) != 0)

MyFixMailerMenus(window, infoPtr);

if ((whatHappened & kSMPAppMustHandleEventMask) != 0)

return false; /* app must handle this event */

else return true; /* mailer handled this event completely */

}

Most of the postprocessing of the event involves adjusting the menus, because the mailer
event may have affected which commands should be active. In addition, if the
kSMPContractedBit flag or kSMPExpandedBit flag is set as a a result of the event,
the code calls one of the application-defined routines: MyHandleContract or
MyHandleExpand. These routines call the SMPGetDimensions function to determine
the size of the expanded or contracted mailer, so that the application can adjust the size
of the content region of the window. If the user wants to expand the mailer, you must
then call the SMPExpandOrContract function (page 3-56) to expand the mailer to its
full size. However, if the user wants to contract the mailer to a single line, you need not
call SMPExpandOrContract because the Standard Mail Package performs the
contraction; you need only adjust the size of your content region and invalidate it to
update its content.

In addition, the Standard Mail Package requires you to add some logic to your
application’s mouse-click handler for a window that includes a mailer. You must notify
the Standard Mail Package before you allow the user to change the content of a letter, to
accommodate the needs of its digital signature capability. Before changing the letter, you
must call the SMPPrepareToChange function (page 3-83); if the letter has been digitally
signed, a dialog box appears warning the user that the impending change will invalidate
the signature. As in Listing 3-18, your routine should check the return value from
SMPPrepareToChange and exit if the user has clicked the Cancel button in the dialog
box.

The Standard Mail Package maintains its own undo buffer to support undoing mailer
operations. You must clear this buffer before doing operations on data in the content area
of your window so that only one undo operation is pending for the window. After
calling the application’s click-handler function, if the letter’s contents have changed, you
should call the SMPContentChanged function (page 3-76).
Using the Standard Mail Package 3-23

C H A P T E R 3

Standard Mail Package
Listing 3-18 Handling a mouse click in a mailer window

void *MyMailerMouseClickHandler(WindowPtr window,

WInfoPtr infoPtr)

{

void *returnVal;

OSErr err;

Boolean alreadyChanged;

/* Make sure you can change the letter. */

alreadyChanged = infoPtr->changed;

if (!alreadyChanged) {

err = SMPPrepareToChange(window);

if (err == userCanceledErr)

return nil;

}

/* Since content is changing, clear mailer undo buffer. */

err = SMPClearUndo(window);

if (err != noErr)

MyErrorAlert(err, "\pSMPClearUndo");

/* Call app's click handler. */

returnVal = MyClickHandler(window, infoPtr);

if (!alreadyChanged && infoPtr->changed) {

err = SMPContentChanged(window);

if (err != noErr)

MyErrorAlert(err, "\pSMPContentChanged");

}

return returnVal;

}

The previous section alluded to the undo buffer kept by the Standard Mail Package to
support undo operations in the mailer portion of letters. The Standard Mail Package
supports the Clipboard-based edit commands Cut, Copy, Paste, Clear, Select All, as well
as the Undo command. The function shown in Listing 3-19 is a mailer Cut command
handler; it shows how to support the Clipboard by calling the
SMPMailerEditCommand function (page 3-67), then processing the result by calling the
application-defined MyProcessWhatHappened function. You can use a similar strategy
for the Copy, Paste, Clear, Select All, and Undo commands.
3-24 Using the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Listing 3-19 Supporting the Clipboard in a mailer edit command

void *MyMailerCutCommand(WindowPtr window, WInfoPtr infoPtr)

{

OSErr err;

SMPMailerResult whatHappened;

err = SMPMailerEditCommand(window, kSMPCutCommand,

 &whatHappened);

if (err != noErr)

MyErrorAlert(err, "\pSMPMailerEditCommand");

return (void *)(MyProcessWhatHappened(window, infoPtr,

whatHappened));

}

Standard Mail Package Reference 3

This section describes the data types and routines provided by the Standard Mail
Package.

Data Structures 3
The Standard Mail Package routines use the data types described in this section.

Recipient Descriptor 3

The recipient descriptor, used by the SMPSendLetter and SMPResolveToRecipient
functions, describes an addressee for a message or letter.

Note
You must call the DisposePtr function to deallocate the recipient
field before you can dispose of the recipient descriptor. ◆

struct SMPRecipientDescriptor

{

struct SMPRecipientDescriptor *next; /* pointer to next element */

OSErr result; /* result code */

OCEPackedRecipient *recipient; /* packed recipient address */

unsigned long size; /* size of recipient address */

MailRecipient theAddress; /* unpacked recipient address */

RecordID theRID; /* record ID of recipient */

};
Standard Mail Package Reference 3-25

C H A P T E R 3

Standard Mail Package
Field descriptions

next A pointer to the next element in a linked list of recipient descriptors.
This field must be set to nil in the last descriptor in the list.

result The result code returned by the SMPSendLetter function. If the
SMPSendLetter function fails because of a bad recipient
descriptor, you can examine this field in each of the recipient
descriptors to determine which caused the problem.

recipient A pointer to the packed address of the recipient of the letter.
size The length, in bytes, of the recipient’s address.
theAddress The unpacked address of the recipient.
theRID The record ID of the recipient. If the SMPSendLetter function fails

because of a bad recipient descriptor, you can use this record ID to
determine the name of the addressee that caused the error.

Enclosure Descriptor 3

The enclosure descriptor is an element of a linked list that describes an enclosure to be
sent with a letter. See the description of the SMPSendLetter function on page 3-37 for
more information about the use of this data structure.

struct SMPEnclosureDescriptor

{

struct SMPEnclosureDescriptor *next; /* pointer to next element */

OSErr result; /* result code */

FSSpec fileSpec; /* file specifier */

/* of enclosure */

OSType fileCreator; /* creator of enclosure */

OSType fileType; /* file type of enclosure */

};

Field descriptions

next A pointer to the next element in the linked list. If this is the only or
last element in the list, set this field to nil. If you use the
SMPResolveToRecipient function to create the linked list, the
function fills in this field for you.

result The result code returned by the SMPSendLetter function. If the
SMPSendLetter function fails because of a bad enclosure
descriptor, you can examine this field in each of the enclosure
descriptors to determine which caused the problem.

fileSpec File specifier of the enclosure.
fileCreator File creator of the enclosure. The SMPSendLetter function uses

this field only if you send the enclosure directly as a file (that is, you
set the sendAs field of the parameter block for the
SMPSendLetter function to kSMPSendFileOnlyMask).
3-26 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
fileType File type of the enclosure. The SMPSendLetter function uses this
field only if you send the enclosure directly as a file (that is, you set
the sendAs field of the parameter block for the SMPSendLetter
function to kSMPSendFileOnlyMask).

Letter Descriptor 3

The letter descriptor, used by the SMPOpenLetter (page 3-94) and
SMPGetNextLetter (page 3-97) functions, identifies a letter in the In Tray or on disk.

struct LetterDescriptor {

Boolean onDisk;

union {

FSSpec fileSpec;

LetterSpec mailboxSpec;

}u;

};

Field descriptions

onDisk A Boolean value that indicates whether the letter is on disk or in the
In Tray. If this value is set to true, the file is on disk.

fileSpec The file specification structure of the letter. Use this field of the
structure if the file is on disk.

mailboxSpec The letter specification structure of the letter. Use this field if the
letter is in the In Tray. When the user double-clicks a letter in the In
Tray and the letter’s creator is your application, you receive an
'aevt' 'odoc' Apple event that includes this specifier. The
LetterSpec structure is defined on page 3-35.

Letter Information Structure 3

The letter information structure, which is used by the SMPGetLetterInfo (page 3-93)
function, describes a letter in the In Tray.

struct SMPLetterInfo {

OSType letterCreator;

OSType letterType;

RString32 subject;

RString32 sender;

};

Field descriptions

letterCreator The creator of the letter. The field indicates what application created
the letter and is identical to the creator used by the application for
files.
Standard Mail Package Reference 3-27

C H A P T E R 3

Standard Mail Package
letterType The letter type, which is identical to the file type that the creating
application would use for the letter. Letters containing only AOCE
standard content are of type 'lttr'.

subject The contents of the Subject field in the mailer.
sender The contents of the From field in the mailer.

Creator Type Structure 3

The Standard Mail Package uses the creator type structure to specify block types. The
creator type structure is defined by the OCECreatorType data type.

struct OCECreatorType {

OSType msgCreator; /* block creator */

OSType msgType; /* block type */

};

Field descriptions

msgCreator The creator of the block. You can specify any four-character value in
this field; usually it is the signature of your application that adds
the block of data to the letter. For example, the creator of a block
added by the AppleMail application provided with the AOCE
software is 'apml'.

msgType The type of the block. You can define your own four-character block
types to serve your own purposes. Apple Computer, Inc., reserves
all block types consisting entirely of lowercase letters. For example,
the type of an image block as defined by the AppleMail application
is 'imag'.

Image Block Information Structure 3

An image block in a letter (a block with a creator type of 'apml' and a block type of
'imag') starts with an image block information structure, defined by the TPfPgDir
data type (defined by the Printing Manager).

struct TPfPgDir{

short iPages; /* number of pages in image block */

long iPgPos[129]; /* array [0..iPfMaxPgs] of offsets */

};

Field descriptions

iPages The number of pages in the image. The image block contains one
PICT resource for each page.

iPgPos An array of offsets from the start of the block to the picture elements
that follow the TPfPgDir structure.
3-28 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
The iPgPos array contains offsets to the picture elements that follow the TPfPgDir
structure. The offset from the start of the image block to the image of page n + 1 is
iPgPos[n] (because page numbers start at 1 and the array elements start at 0). The
array contains iPgPos[n + 1] elements for a document of n pages. The last element is
the offset of the end of the last page from the beginning of the block. You can determine
the size of a page by subtracting the offset of the current page from the offset of the next
page, that is, the size of page n is iPgPos[n] – iPgPos[n – 1].

Allocate and lock down a buffer equal to the size of the page. Then call the
SMPReadBlock function (page 3-106) with the pointer to that buffer in the buffer
parameter and the offset iPgPos[n – 1] in the dataOffset parameter.

Letter Parameter Block 3

The SMPSendLetter function uses the SMPLetterPB parameter block. The fields of
the parameter block are described with the SMPSendLetter function on page 3-38.

struct SMPLetterPB

{

OSErr result; /* function result */

RStringPtr subject; /* subject of letter */

AuthIdentity senderIdentity;/* identity of sender */

SMPRecipientDescriptorPtr toList; /* list of addressees */

SMPRecipientDescriptorPtr ccList; /* list of cc addressees */

SMPRecipientDescriptorPtr bccList; /* list of bcc addressees */

ScriptCode script; /* script code for language */

Size textSize; /* length of body data */

Ptr textBuffer; /* body of the letter */

SMPPSendAs sendAs; /* file, enclosure, or image */

Byte padByte; /* reserved */

SMPEnclosureDescriptorPtr enclosures; /* files to be enclosed */

SMPDrawImageProcPtr drawImageProc; /* your imaging routine */

long imageRefCon; /* for your use */

Boolean supportsColor; /* true for a color grafPort */

};

Close-Options Structure 3

The SMPCloseOptionsDialog function (page 3-60) and the SMPDisposeMailer
function (page 3-61) use the close-options structure to specify what actions the Standard
Mail Package should take when the user closes a letter in the In Tray. The close-options
structure is defined by the SMPCloseOptions data type.
Standard Mail Package Reference 3-29

C H A P T E R 3

Standard Mail Package
struct SMPCloseOptions {

Boolean moveToTrash;

Boolean addTag;

RString32 tag;

};

Field descriptions

moveToTrash Move the letter from the In Tray to the Trash. You should not set this
field to true if the addTag field is set to true.

addTag Tag the letter with the value in the tag field. You should not set this
field to true if the moveToTrash field is set to true.

tag The tag to attach to the letter. This field must contain a valid tag if
the addTag field is set to true. A tag can be any alphanumeric
string up to 32 bytes in length.

Mailer-State Structure 3

The SMPGetMailerState function (page 3-69) uses the mailer-state structure to return
information about a mailer in a specified window. The mailer-state structure is defined
by the SMPMailerState data type.

struct SMPMailerState {

short mailerCount;

short currentMailer;

Point upperLeft;

Boolean hasBeenReceived;

Boolean isTarget;

Boolean isExpanded;

Boolean canMoveToTrash;

Boolean canTag;

Byte padByte2;

unsigned long changeCount;

SMPMailerComponent targetComponent;

Boolean canCut;

Boolean canCopy;

Boolean canPaste;

Boolean canClear;

Boolean canSelectAll;

Byte padByte3;

SMPUndoState undoState;

Str63 undoWhat;

};
3-30 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Field descriptions

mailerCount The number of mailers in the mailer set associated with the
window. This number is incremented by 1 each time the letter is
forwarded. You should enable the Reply item in the Mail menu if
the mailerCount field is greater than 1.

currentMailer The number of the mailer that the user is currently looking at. The
original mailer for the letter is number 1, and each forwarding
mailer is numbered sequentially.

upperLeft The upper-left corner of the mailer in the window’s local
coordinates.

hasBeenReceived
A Boolean value that indicates whether the most recent mailer has
been received (that is, it was sent to the current user). If set to true
(that is, if the mailer has been received), then the user cannot edit
the fields in the mailer but can forward or reply to the letter. You
should enable the Forward and Reply items in the Mail menu. If it
is set to false, the current user is the originator of the letter or has
added a new mailer to forward the letter, and might still be working
on the letter, so you should disable the Forward item.

isTarget A Boolean value that indicates whether the mailer is the target; that
is, whether the user is working in the mailer so that key-down
events apply to the mailer rather than to the portion of the window
that you control. Note that the Event Manager sends all events that
take place in your window— including in the mailer—to your
application. If you pass every event to the SMPMailerEvent
function (page 3-63), that function returns a value that tells you
whether you have to handle the event.

isExpanded A Boolean value that indicates whether the mailer is in the
expanded state or contracted state.

canMoveToTrash
A Boolean value that indicates whether to enable the Close and
Delete item in the File menu. The standard interface is to enable this
item for a letter that is in the In Tray, but not for one that has been
saved to disk.

canTag A Boolean value that indicates whether to enable the Tag item in the
Mail menu. The user can add a tag to a letter that is in the In Tray,
but not to a letter that has been saved to disk. See the
SMPTagDialog function (page 3-58) to see how to implement the
Tag item in the Mail menu.

changeCount A value that indicates whether the mailer has been changed. If this
field is set to a nonzero value, the mailer has been changed since the
last time it was saved. If this number has changed since the last time
you checked it, then the mailer has been changed during that
period.

targetComponent
A constant that indicates which of the fields in the mailer the user is
working in. Possible values for this field are listed immediately
following these field descriptions.
Standard Mail Package Reference 3-31

C H A P T E R 3

Standard Mail Package
canCut A Boolean value that indicates whether you should enable the Cut
item in the Edit menu. This field is significant only if the isTarget
field is set to true.

canCopy A Boolean value that indicates whether you should enable the Copy
item in the Edit menu. This field is significant only if the isTarget
field is set to true.

canPaste A Boolean value that indicates whether you should enable the Paste
item in the Edit menu. This field is significant only if the isTarget
field is set to true.

canClear A Boolean value that indicates whether you should enable the Clear
item in the Edit menu. This field is significant only if the isTarget
field is set to true.

canSelectAll A Boolean value that indicates whether you should enable the
Select All item in the Edit menu. This field is significant only if the
isTarget field is set to true.

undoState A constant that you can use to determine whether you should
enable the Undo item in the Edit menu. See the description of the
SMPClearUndo function on page 3-70 for information on clearing
the undo buffer. The possible values for this field are described
following these field descriptions.

undoWhat A string that indicates the action that the reader should undo or
redo. You should use this string in place of the word “Undo” or
“Redo” in the Edit menu. For example, if the user just used the Edit
menu to cut a word from the subject field in the mailer, the
undoWhat field is set to the string Undo Cut. This field is
significant only if the undoState field equals kMailerUndo.

Here are the possible values for the targetComponent field. These values are also used
by the SMPBecomeTarget function (page 3-54), the SMPGetComponentSize function
(page 3-110), the SMPGetComponentInfo function (page 3-111), and the
SMPGetListItemInfo function (page 3-113).

enum {

kSMPOther = -1,

kSMPFrom = 32,

kSMPTo = 20,

kSMPRegarding = 22,

kSMPSendDateTime = 29,

kSMPAttachments = 26,

kSMPAddressOMatic = 16

};

typedef unsigned long SMPMailerComponent;
3-32 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Constant descriptions

kSMPOther No field, or some field other than those indicated by the other
enumerated values (such as the Signature field).

kSMPFrom The From field in a mailer for a new letter, or the Forwarded By
field in a mailer for a forwarded letter.

kSMPTo The Recipients field.
kSMPRegarding The Subject field.
kSMPSendDateTime

The Sent field.
kSMPAttachments

The Enclosures field.
kSMPAddressOMatic

The addressing panel (see Figure 3-4 on page 3-6).

Your application and the mailer maintain independent undo buffers. The mailer keeps
track of which undo buffer should currently be in use and passes this information to you
in the undoState field of the mailer-state structure. You can use this information to
determine which items in the Edit menu to enable and whether to clear your
application’s undo buffer. The possible values for the undoState field are as follows:

enum {

kSMPUndoDisabled,

kSMPAppMayUndo,

kSMPMailerUndo

};

typedef unsigned short SMPUndoState;

Constant descriptions

kSMPUndoDisabled
The Standard Mail Package has cleared its undo buffer after
executing a command that the user cannot undo. Therefore, there is
currently no action in the mailer or in your application that the user
can undo. You should disable the Undo item in the Edit menu and
clear your application’s undo buffer.

kSMPAppMayUndo
The Standard Mail Package has not executed a command that the
user may undo. Therefore, there is no action in the mailer that the
user can undo, but the Standard Mail Package can’t tell whether
there is an action in your application that the user can undo. You
should enable the Undo item in the Edit menu only if your
application has executed a command that the user may undo. If the
user has taken an action in the content portion of the window that
the user can undo or that should cause the undo buffer to be
cleared, you must also call the SMPClearUndo function (page 3-70)
to tell the Standard Mail Package to clear its undo buffer.
Standard Mail Package Reference 3-33

C H A P T E R 3

Standard Mail Package
kSMPMailerUndo
The Standard Mail Package has executed a command that the user
may undo. Therefore, the latest action that the user can undo was in
the mailer, and there is no action in your application that the user
can undo. You should enable the Undo item in the Edit menu and
display the string returned in the undoWhat field of the
SMPMailerState structure. You should also clear your
application’s undo buffer. If the user chooses the Undo item in the
Edit menu, call the SMPMailerEditCommand function to allow the
Standard Mail Package to handle the undo operation.

Send-Options Structure 3

The Standard Mail Package maintains a set of options for each letter. There is a default
value for each option, but before you send a letter, you should give the user the
opportunity to change the send options for that letter. You can call the
SMPSendOptionsDialog function (page 3-73) to provide the user with a dialog box
that sets these options. The SMPSendOptionsDialog function returns the send-options
structure, defined by the SMPSendOptions data type.

struct SMPSendOptions {

Boolean signWhenSent;

IPMPriority priority;

};

Field descriptions

signWhenSent A Boolean value that indicates whether a digital signature should
be added to the letter when you send it. If this field is set to true,
the Standard Mail Package prompts the user for a signature when
you send the letter.

priority A constant that indicates the priority of the message. The Standard
Mail Package includes the priority information in the In and Out
Trays.

Send-Format Structure 3

The Standard Mail Package uses two standard formats and allows applications to send
or open letters in any number of “native” formats known to the application. The two
standard formats used by the Standard Mail Package are standard interchange format
and image format. Native formats for the SurfWriter word processing program might be
SurfWriter, TIFF, and SGML, for example.

Before you send a letter using the Standard Mail Package, you call the
SMPSendOptionsDialog function (page 3-73). This function displays a dialog box that
lets the user indicate which format or formats to use when sending the letter and returns
the user’s choices to you in a send-format structure.
3-34 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
The send-format structure includes a whichFormats field that indicates whether you
should send the document in a format designed to be read by your application
(kSMPNativeBit), as an image designed to be read by any application that reads AOCE
image files (kSMPImageBit), or in standard interchange format
(kSMPStandardInterchangeBit).

enum {

kSMPNativeBit,

kSMPImageBit,

kSMPStandardInterchangeBit

};

/* values of SMPSendFormatMask */

enum {

kSMPNativeMask = 1<<kSMPNativeBit,

kSMPImageMask = 1<<kSMPImageBit,

kSMPStandardInterchangeMask = 1<<kSMPStandardInterchangeBit,

};

typedef unsigned long SMPSendFormatMask;

The send-format structure is defined by the SMPSendFormat data type.

struct SMPSendFormat {

SMPSendFormatMask whichFormats;

short whichNativeFormat; /* 0 based */

};

The whichNativeFormat field is an index number (starting with 0) that indicates
which one of your application’s native formats has been selected by the user, or, in the
case of a received letter, which native format is currently in the letter. The index number
refers to the array of string pointers you pass to the SMPSendOptionsDialog function
in the nativeFormatNames parameter. The whichNativeFormat field is significant
only if the whichFormats field has the kSMPNativeBit set to 1.

Letter-Specification Structure 3

The letter-specification structure is a data structure that you receive from an 'aevt'
'odoc'Apple event and pass to the SMPOpenLetter function (page 3-94). The content
of this data structure is private to the AOCE toolbox.

struct LetterSpec

{

unsigned long spec[3];

};
Standard Mail Package Reference 3-35

C H A P T E R 3

Standard Mail Package
Standard Mail Package Functions 3
The following sections describe the routines provided by the AOCE Standard Mail
Package. Several Standard Mail Package routines require you to provide an
authentication identity as input. The chapter “Standard Catalog Package” in this book
describes a routine that prompts the user for a name and password, authenticates the
user, and returns the authentication identity number to your application.

The routines in this chapter are divided into two main sections, reflecting the two parts
of the Standard Mail Package:

■ Send-letter functions, which provide a very simple way to send a letter or a file.

■ Mailer functions, which provide a standard user interface for sending and opening
your application’s documents as letters.

A final section, “Application-Defined Functions,” describes some callback routines that
you can provide to support Standard Mail Package features.

Assembly-Language Interface 3

To call a Standard Mail Package routine from assembly language, you must do the
following:

1. Push space for the function result and all routine parameters (in Pascal
calling-convention order) on the stack.

2. Put in the D0 register a long word consisting of the parameter word count for the
routine followed by the routine selector. The parameter word count indicates how
many words of parameters you are placing on the stack; for example, if the function
has two parameters and each is a pointer, the parameter word count for the function is
$0004.

3. Call the Standard Mail Package trap, $AA5D.

Each routine description in the following sections lists the parameter word count and
routine selector for that routine.

Authenticating a User 3

Before the first time you send a message, you must provide identification to prove that
the caller is an authorized user of the system. The SDPPromptForID function described
in the chapter “Standard Catalog Package” in this book provides dialog boxes that allow
the user to identify himself or herself as one of the authorized users of the system and
returns an identification number (the authentication identity) for the user. You can use the
authentication identity in all subsequent calls to Standard Mail Package and other AOCE
routines that require it.
3-36 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
However, the Standard Mail Package implements a special scheme to ease handling
authentication identities for its routines. That is, you can pass a value of 0 for the
authentication identity parameter to those functions requiring it. The effect of passing
the 0 parameter value varies according to the situation. The first time you pass 0 after
initializing the Standard Mail Package, the system uses the local identity (see the chapter
“Standard Catalog Package” in this book for a description of local and specific identities).

If you forward or reply to a letter, the Standard Mail Package uses the identity for
the mailbox the letter was in: a visitor’s mailbox produces the visitor’s identity; the main
mailbox produces the local identity. In all other cases, if you pass 0 for the authentication
identity parameter, the Standard Mail Package uses the last identity (local or specific)
used by the user.

Send-Letter Functions 3

You can use the functions in this section to send a document as a letter with enclosures,
as an image, or as a file. The SMPSendLetter function sends the document. If you want
to send the document as an image, you must provide an image-drawing routine that
calls the SMPNewPage function each time it images a page of the document.

You can obtain catalog system specification (DSSpec) structures for the recipients of the
letter by using the dialog boxes or the Catalog-Browsing panel described in the chapter
“Standard Catalog Package” in this book. You can use the SMPResolveToRecipient
function described in this section to transform the DSSpec structures into a linked list of
mail addresses, and you can use this linked list as input to the SMPSendLetter function.

The SMPSendLetter function includes as a parameter a pointer to a parameter block.
The routine description includes a list of the parameter block fields for which you must
provide values or that return values to you. Each parameter block field list in the routine
description consists of four columns, as described in the Preface of this book.

SMPSendLetter 3

The SMPSendLetter function sends a letter, an image, or a file.

pascal OSErr SMPSendLetter(SMPLetterPBPtr theLetter);

theLetter Pointer to a parameter block.
Standard Mail Package Reference 3-37

C H A P T E R 3

Standard Mail Package
Parameter block

Field descriptions

result The function result. This field contains the same result code as the
function return value.

subject The subject string for the letter.
senderIdentity

Authentication identity of the sender.
toList A pointer to a linked list of recipient descriptors for the main

addressees of the letter. You can use the
SMPResolveToRecipient function to create this list.

ccList A pointer to a linked list of recipient descriptors for the “carbon
copy” (cc) addressees of the letter. You can use the
SMPResolveToRecipient function to create this list.

bccList A pointer to a linked list of recipient descriptors for the “blind
carbon copy” (bcc) addressees of the letter. You can use the
SMPResolveToRecipient function to create this list.

script Language of letter text. This is a script code from the Script
Manager. You cannot use the values smSystemScript or
smCurrentScript for this parameter. The function ignores this
field if you set the sendAs field to kSMPSendFileOnlyMask.

textSize Number of bytes in the text of the letter. The function ignores this
field if you set the sendAs parameter to kSMPSendFileOnlyMask.

textBuffer A pointer to the buffer that contains the text of the letter. The
function ignores this field if you set the sendAs field to
kSMPSendFileOnlyMask.

← result OSErr Result code
→ subject RStringPtr Subject of letter
→ senderIdentity AuthIdentity Identity of sender
→ toList SMPRecipientDescriptorPtr List of recipients
→ ccList SMPRecipientDescriptorPtr List of cc recipients
→ bccList SMPRecipientDescriptorPtr List of bcc

recipients
→ script ScriptCode Script code
→ textSize Size Length of text
→ textBuffer Ptr Letter text
→ sendAs SMPPSendAs Letter, image, or

file
→ enclosures SMPEnclosureDescriptorPtr Enclosed files
→ drawImageProc SMPDrawImageProcPtr Image-drawing

routine
→ imageRefCon long For your use
→ supportsColor Boolean Set to true for a

color graphics port
3-38 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
sendAs A constant that indicates whether to send the message as an image
(kSMPSendAsImageMask), to send the message as a letter with
enclosures (kSMPSendAsEnclosureMask), to send an enclosed file
so that it appears in the In Tray as the file itself rather than as a
letter (kSMPSendFileOnlyMask), or to send some combination of
these formats. You cannot combine the send-file-only and
send-as-enclosure formats.

enclosures A pointer to a linked list of enclosure descriptors. If you specify
kSMPSendFileOnlyMask for the sendAs field, you can include
only one enclosure. In this case, the enclosure descriptor must
provide values for the file creator and type that are appropriate for
the file being sent in order for the Finder to display the file correctly.

drawImageProc A pointer to your image-drawing routine. If you want to send a
letter as an image, you must provide a routine to draw the image.
The procedure declaration for this routine is described on
page 3-123. The function ignores this field if you do not set the
sendAs field to send the file as an image.

imageRefCon A reference constant for your use. The function passes this value to
your image-drawing routine.

supportsColor A Boolean value that indicates whether the procedure pointed to by
the drawImageProc parameter is capable of drawing in color. The
Standard Mail Package provides a color graphics port to your
image-drawing routine only if you specify true for the
supportsColor field and the user has color QuickDraw.

DESCRIPTION

The SMPSendLetter function provides no user interface. Your application must
determine the subject, text, enclosures, and addressees for the letter either by providing
its own user interface or through some other means. You can use the
SDPGetDirectories, SDPFindRecord, SDPNewPanel, or SDPGetNewPanel
functions to provide a user interface for selecting an addressee.

If the SMPSendLetter function returns with a result code that indicates a bad recipient
descriptor or a bad enclosure descriptor, you can check the result field of each
descriptor in the linked list to determine which one was bad. Look in the filename
field of the bad enclosure descriptor for the name of the file that caused the problem. The
theRID field of the recipient descriptor contains the record ID containing the name of
the addressee. For example, an RStringPtr structure pointing to the name of the
addressee represented by the first recipient descriptor of the Recipients list is located in
theLetter->toList->theRID.local.name.

You cannot specify the values smSystemScript or smCurrentScript for the script
parameter. To obtain the system script, call the GetScriptManagerVariable function
with a selector of smSysScript. To obtain the current script, call the FontScript
function.

The SMPSendLetter function can send a letter as a note with optional enclosures, as an
image of the note and enclosures, as the document file alone, or as some combination of
Standard Mail Package Reference 3-39

C H A P T E R 3

Standard Mail Package
these formats. Use one or a combination of the following constants in the sendAs field
to specify the format for the letter:

enum {

kSMPSendAsEnclosureBit, /* appears as letter with enclosures */

kSMPSendFileOnlyBit, /* appears as a file in mailbox. */

kSMPSendAsImageBit /* letter includes image of content */

};

/* values of SMPPSendAs */

enum {

kSMPSendAsEnclosureMask = 1<<kSMPSendAsEnclosureBit,

kSMPSendFileOnlyMask = 1<<kSMPSendFileOnlyBit,

kSMPSendAsImageMask = 1<<kSMPSendAsImageBit

};

typedef Byte SMPPSendAs;

Constant descriptions

kSMPSendAsEnclosureMask
The SMPSendLetter function sends the letter as a note with the
text pointed to by the textBuffer parameter and the enclosure
specified by the enclosure descriptor.

kSMPSendFileOnlyMask
The enclosed file appears directly in the recipient’s In Tray as the
file itself rather than as a letter with an enclosure. If you specify this
value for the sendAs parameter, the letter can contain only one
enclosure.

kSMPSendAsImageMask
The SMPSendLetter function converts the note into an image and
calls your image-drawing routine to convert the enclosures into an
image.

To combine formats, perform a bitwise OR operation on the appropriate constants. For
example, to send a document as both a note with enclosures and as an image, set the
sendAs parameter to kSMPSendAsEnclosureMask PLUS kSMPSendAsImageMask
in Pascal or kSMPSendAsEnclosureMask OR kSMPSendAsImageMask in assembly
language or C. You cannot combine the send-as-file format (kSMPSendFileOnlyMask)
with the note-with-enclosures format (kSMPSendAsEnclosureMask).

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

You cannot combine the document-only format (kSMPSendFileOnlyMask) with the
note-with-enclosures format (kSMPSendAsEnclosureMask). If you attempt to do so,
the function returns the paramErr result code.
3-40 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The procedure declaration for your image-drawing routine is described on page 3-123.

The enclosure descriptor is defined in “Enclosure Descriptor” on page 3-26.

The recipient descriptor is defined in “Recipient Descriptor” on page 3-25.

The StGetScriptManagerVariable function and FontScript function are
described in Inside Macintosh: Text in the chapter “Script Manager.”

You can obtain record IDs for the recipients of the letter by using the dialog boxes or the
Catalog-Browsing panel described in the chapter “Standard Catalog Package” in this
book.

You can create a linked list of record descriptors from the recipient record IDs by calling
the SMPResolveToRecipient function described on page 3-44.

SMPNewPage 3

The SMPNewPage function creates a new page for use by your image-drawing routine.

pascal OSErr SMPNewPage(OpenCPicParams *newHeader);

newHeader Pointer to an OpenCPicParams structure (see the chapter “Color
QuickDraw” in Inside Macintosh: Imaging With QuickDraw). The
SMPNewPage function sets the size of your graphics port rectangle equal
to the size of the source rectangle you specify in this structure, and sets
the image’s horizontal and vertical resolutions to those you specify in this
structure. For the normal resolution of the Macintosh screen, use 72 pixels
per inch for both the vertical and horizontal resolutions.

DESCRIPTION

The SMPSendLetter or SMPImage function calls your image-drawing routine when
you add an image to a letter you are sending. Your image-drawing routine then calls the
SMPNewPage function before it draws each new page of an image file.

Parameter count Routine selector

$0002 $01F4

noErr 0 No error
paramErr –50 Error in a parameter value
Standard Mail Package Reference 3-41

C H A P T E R 3

Standard Mail Package
Note
You use the hRes and vRes fields in the OpenCPicParams structure to
specify the horizontal and vertical resolutions of the image. Both of these
fields are of type Fixed, which is a long word that contains an integer
part in the high-order word and a binary fraction in the low-order word.
To set the horizontal resolution to 72 dpi, for example, you specify a
value of 0x00480000 for the hRes field to indicate an integer part with a
value of 72 and no fractional part. If by mistake you simply specified a
value of 72 (that is, 0x00000048) for the hRes field, you would be
indicating an integer part with a value of 0 and a fractional part of
9/8192. Note also that you can use the FixRatio routine to create a
value of type Fixed from two integer values representing a numerator
and denominator. ◆

SPECIAL CONSIDERATIONS

If you change the graphics port within your image-drawing routine, you must change it
back before calling the SMPNewPage function.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SMPSendLetter function is described on page 3-37.

The procedure declaration for your image-drawing routine is described on page 3-123.

The OpenCPicParams structure is described in the chapter “Color QuickDraw” in
Inside Macintosh: Imaging With QuickDraw. The FixRatio routine is described in Inside
Macintosh: Operating System Utilities.

SMPImageErr 3

The SMPImageErr function returns result codes from image-drawing routines.

pascal OSErr SMPImageErr(void);

Parameter count Routine selector

$0002 $0834

noErr 0 No error
kSMPTooManyPages –1927 Image is more than 127 pages
3-42 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
DESCRIPTION

The SMPSendLetter or SMPImage function calls your image-drawing routine when
you add an image to a letter you are sending. Your image-drawing routine calls the
SMPImageErr function instead of calling the QDError function after it calls each
QuickDraw routine. The SMPImageErr function returns both QuickDraw errors and
errors returned by the SMPAddBlock function.

SPECIAL CONSIDERATIONS

If you change the graphics port within your image-drawing routine, you must change it
back before calling the SMPImageErr function.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SMPSendLetter function is described on page 3-37.

The procedure declaration for your image-drawing routine is described on page 3-123.

The QDError function is described in the chapter “Color QuickDraw” in Inside
Macintosh: Imaging With QuickDraw.

The SMPImageErr function returns both QuickDraw errors and errors returned by the
SMPAddBlock function (page 3-91).

Parameter count Routine selector

$0000 $0835

noErr 0 No error
dskFulErr –34 Disk full
pixmapTooDeepErr –148 Pixel map structure is deeper than 1 bit per pixel
mfStackErr –149 Insufficient stack
rgnTooBigErr –500 Bitmap would convert to a region greater than 64 KB
Standard Mail Package Reference 3-43

C H A P T E R 3

Standard Mail Package
SMPResolveToRecipient 3

The SMPResolveToRecipient function takes a pointer to a PackedDSSpec structure
and returns a pointer to a linked list of mail addresses.

pascal OSErr SMPResolveToRecipient(PackedDSSpecPtr dsSpec,

SMPRecipientDescriptorPtr *recipientList,

AuthIdentity identity);

dsSpec A pointer to a PackedDSSpec structure containing the record ID and
location information for a user record or group record.

recipientList
A pointer to a linked list of recipients for a letter. You can use this
parameter as input to the SMPSendLetter function, or you can use the
recipient field of the recipient descriptor as input to the
SMPAddAddress function.

identity The authentication identity of the caller. The catalog uses this identity to
determine whether the caller has the access privileges necessary to
resolve specific mail addresses.

DESCRIPTION

When the user selects a record from one of the standard dialog boxes or from the
Catalog-Browsing panel, you can use a pointer to the PackedDSSpec structure for that
record as input to the SMPResolveToRecipient function.

If the PackedDSSpec structure holds a single address, the function returns a linked list
with only one item. If the record is for a group address (that is, if the type of the record is
Group) and the record is in a personal catalog, then the function resolves it into a linked
list of all the members of the group, including all the members of any personal catalog
groups in that group. The function performs this service for group addresses in personal
catalogs because the recipient is unlikely to have the same information in his or her
personal catalog. The function does not expand groups that are not in personal catalogs,
because the recipient is assumed to have access to the catalog server to expand those
groups.

You can use the linked list returned by the SMPResolveToRecipient function as input
to the SMPSendLetter function.

SPECIAL CONSIDERATIONS

The SMPResolveToRecipient function allocates each recipient descriptor in the
current heap. To dispose of a recipient descriptor you must first call the DisposePtr
function to deallocate the recipient field in the recipient descriptor, and then call the
DisposePtr function again to dispose of the recipient descriptor itself.

This function may move or purge memory; you should not call this function at interrupt
time.
3-44 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The routines for displaying and obtaining information from standard catalog dialog
boxes and the Catalog-Browsing panel are described in the chapter “Standard Catalog
Package” in this book.

Recipient descriptors are described in “Recipient Descriptor” on page 3-25.

The SMPSendLetter function is described on page 3-37. The SMPAddAddress function
is described on page 3-118.

Providing Mailers in Your Windows 3

The routines in this section add a mailer to a window and help you to make the mailer
appear to be an integral part of your application. You must call the SMPInitMailer
function before calling any of the other mailer functions.

The SMPNewMailer function (page 3-46) adds a new mailer to a window. The
SMPGetDimensions function (page 3-48) lets you determine the size of a mailer so you
can decide how to fit it in your window. You can add a new mailer to the mailer set of a
received letter with the SMPMailerForward function (page 3-49) or create a new mailer
for a reply letter with the SMPMailerReply function (page 3-51).

The SMPExpandOrContract function (page 3-56) lets you expand or contract a mailer
from within your application, and the SMPMoveMailer function (page 3-61) lets you
move a mailer within your window.

You can use the SMPGetTabInfo (page 3-53) and SMPBecomeTarget (page 3-54)
functions to let the user navigate seamlessly among fields in the mailer and your
application window using the Tab key.

You can call the SMPPrepareToClose function (page 3-59) to determine whether you
can close a window that contains a mailer. You use the SMPDisposeMailer function
(page 3-61) to remove a mailer from a window and release the memory used by the
mailer.

Parameter count Routine selector

$0006 $044C

noErr 0 No error
memFullErr –108 Out of memory
Standard Mail Package Reference 3-45

C H A P T E R 3

Standard Mail Package
SMPInitMailer 3

The SMPInitMailer function initializes the mailer routines of the Standard Mail
Package.

pascal OSErr SMPInitMailer(long mailerVersion);

mailerVersion
The version number of the Standard Mail Package.

DESCRIPTION

You must call this function before the first time you call any other Standard Mail Package
function that applies to mailers. If you do not call this function, other mailer functions
return the result code kSMPMailerNotInitialized when you call them.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SMPNewMailer 3

The SMPNewMailer function allocates a new mailer for a window you specify.

pascal OSErr SMPNewMailer(WindowPtr window,

Point upperLeft,

Boolean canContract,

Boolean initiallyExpanded,

AuthIdentity identity,

const PrepareMailerForDrawingProcPtr

 prepareMailerForDrawingCB,

long clientData);

Parameter count Routine selector

$0002 $1285

noErr 0 No error
memFullErr –108 Out of memory
3-46 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
window The window in which you want the mailer to appear.

upperLeft The upper-left corner of the mailer, in the window’s local coordinates.
This position is normally (0, 0).

canContract
A Boolean value that specifies whether it should be possible to contract
and expand the mailer. Specify true if you want the mailer to have this
ability; this parameter should always be set to true unless the mailer is
in its own, separate window.

initiallyExpanded
A Boolean value that specifies whether the mailer is to be expanded or
contracted when initially displayed. Specify true if you want it to be
expanded initially. The function ignores this parameter if the
canContract parameter is set to false.

identity The authentication identity of the sender of the letter. Specify 0 to use the
identity of the most recently authenticated user. The SMPNewMailer
function uses the identity to fill in the From field in the mailer.

prepareMailerForDrawingCB
A pointer to your drawing-preparation function. If you change the clip
region, coordinates, or other aspects of your window’s graphics port, you
must provide this function to restore the graphics port to a standard state
so that the Standard Mail Package can draw a mailer in your window. The
drawing-preparation function is described on page 3-122. Specify nil for
this parameter if you are not providing a drawing-preparation function.

clientData
Reserved for your use. The SMPNewMailer function passes this value
unaltered to your drawing callback routine.

DESCRIPTION

You should call the SMPNewMailer function whenever you want to have a mailer
appear in a window; for example, when the user chooses the Add Mailer item from the
Mail menu in your application. When you call this function, the Standard Mail Package
adds a mailer to the window you specify. The next time the user chooses the Save or
Save As commands, you should save the document in the letter file format rather than in
your application’s file format.

If you want the mailer to appear in a modeless, movable dialog box, or for some other
reason do not want to provide the user with the ability to expand and contract the
mailer, set the canContract parameter to false.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.
Standard Mail Package Reference 3-47

C H A P T E R 3

Standard Mail Package
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SMPBeginSave function (page 3-77) to save a document in the letter file format.

Use the SMPDisposeMailer function (page 3-61) to dispose of a mailer.

Use the SMPMailerForward function (page 3-49) to add a mailer to a letter that you
want to forward.

Use the SMPMailerReply function (page 3-51) to add a reply mailer to a window.

SMPGetDimensions 3

The SMPGetDimensions function returns the standard dimensions of a mailer.

pascal OSErr SMPGetDimensions(short *width,

short *contractedHeight,

short *expandedHeight);

width A pointer to the minimum width, in QuickDraw coordinates, that bounds
all of the fields in a mailer.

contractedHeight
A pointer to the height, in QuickDraw coordinates, of a mailer in the
contracted state.

expandedHeight
A pointer to the height, in QuickDraw coordinates, of a mailer in the
expanded state.

DESCRIPTION

The SMPGetDimensions function lets you determine the standard dimensions of a
mailer from within your program so that your application will continue to work
correctly if Apple ever changes the size of a mailer. When the user expands or contracts a
mailer, it is up to you to update the content part of your document’s window
appropriately. You can use the heights returned by the SMPGetDimensions function to
determine how large an area of your window is affected. You can use the width returned

Parameter count Routine selector

$000C $125D

noErr 0 No error
memFullErr –108 Out of memory
kSMPMailerNotInitialized –1902 The mailer has not been initialized
kSMPMailerAlreadyInWindow –1911 A mailer was previously allocated
3-48 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
by this function to help determine the size to make a window when the user clicks the
zoom box. Clicking the zoom box should never make a window with a mailer in it
smaller than the minimum size of the mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the SMPMailerEvent function (page 3-63) to determine when the user has
contracted or expanded the mailer.

SMPMailerForward 3

The SMPMailerForward function creates a new mailer for a letter that is to be
forwarded.

pascal OSErr SMPMailerForward(WindowPtr window,

AuthIdentity from);

window A pointer to the window containing the letter you want to forward.

from The authentication identity of the sender of the letter. Specify 0 to use the
identity of the user whose mailbox contains the received letter. The
SMPMailerForward function uses the identity to fill in the From field in
the mailer.

DESCRIPTION

When the user has received a letter and chooses the Forward item in the Mail menu, you
call the SMPMailerForward function to add a new mailer to the mailer set. The
function superimposes the new mailer on the existing mailers in the specified window
and, if this is only the second mailer in the mailer set, adds a pop-up menu to the From
field in the mailer. If there are already two or more mailers in the mailer set, the function

Parameter count Routine selector

$0006 $125C

noErr 0 No error
kSMPMailerNotInitialized –1902 The mailer has not been initialized
Standard Mail Package Reference 3-49

C H A P T E R 3

Standard Mail Package
adds the new mailer to the existing pop-up menu. The user can use this menu to view
any of the mailers in the mailer set. Figure 3-6 shows the top mailer and the pop-up
menu for a letter that has been forwarded once.

You can call the SMPMailerForward function to add a new mailer to a mailer set only if
the top mailer in the set is a received mailer. You can use the hasBeenReceived field of
the SMPMailerState structure to get this information.

Figure 3-6 Mailer for a forwarded letter

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0004 $1261
3-50 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
RESULT CODES

SEE ALSO

Use the SMPNewMailer function (page 3-46) to add a new mailer to a window that has
no mailer.

Use the SMPMailerReply function (described next) to add a new mailer to a letter to
which you want to reply.

Use the SMPGetMailerState function (page 3-69) to obtain an SMPMailerState
structure. The SMPMailerState structure is described in “Mailer-State Structure” on
page 3-30.

SMPMailerReply 3

The SMPMailerReply function helps you reply to a letter by adding a new mailer to a
window you specify and addressing the reply mailer by copying information from the
original mailer.

pascal OSErr SMPMailerReply(WindowPtr originalLetter,

WindowPtr newLetter,

Boolean replyToAll,

Point upperLeft,

Boolean canContract,

Boolean initiallyExpanded,

AuthIdentity identity,

const PrepareMailerForDrawingProcPtr

 prepareMailerForDrawingCB,

long clientData);

originalLetter
A pointer to the window containing the mailer for the original letter to
which the user wishes to reply.

newLetter A pointer to the window that you are providing for the reply. The
function adds a mailer to this window; the window must not already
contain a mailer.

replyToAll
A Boolean value that indicates whether all the original “To” and “cc”
recipients should be included as addressees for the reply.

upperLeft The upper-left corner of the mailer in the window’s local coordinates.
This position is normally (0, 0).

noErr 0 No error
kOCEUnknownID –1567 Authentication identity passed is not valid
kSMPNoMailerInWindow –1909 No mailer is in the specified window
Standard Mail Package Reference 3-51

C H A P T E R 3

Standard Mail Package
canContract
A Boolean value that specifies whether it should be possible to contract
and expand the mailer. Specify true if you want the mailer to have this
ability; this parameter should always be set to true unless the mailer is
in its own, separate window.

initiallyExpanded
A Boolean value that specifies whether the mailer is to be expanded or
contracted when initially displayed. Specify true if you want it to be
expanded initially. The function ignores this parameter if the
canContract parameter is set to false.

identity The authentication identity of the sender of the letter. Specify 0 to use the
identity of the user whose mailbox contains the received letter. The
SMPMailerReply function uses the identity to fill in the From field in
the mailer.

prepareMailerForDrawingCB
A pointer to your drawing-preparation function. If you change the clip
region, coordinates, or other aspects of your window’s graphics port, you
must provide this function to restore the graphics port to a standard state
so that the Standard Mail Package can draw a mailer in your window. The
drawing-preparation function is described on page 3-122. Specify nil for
this field if you are not providing a drawing-preparation function.

clientData
Reserved for your use. The SMPMailerReply function passes this value
unaltered to your callback routine.

DESCRIPTION

When the user chooses the Reply or Reply to All items in the Mail menu, you should
create a new document window and call the SMPMailerReply function. This function
places a mailer in the window, copies the subject from the original letter, places the string
“Re>” in front of it, and places it in the Subject field of the new mailer. Then it copies the
From address from the original letter and places it in the Recipients field of the reply
mailer. If the user chose the Reply to All item, you should set the parameter
replyToAll to true, and the SMPMailerReply function also copies all the recipients
in the Recipients field— including the “cc” recipients—of the received mailer and places
them in the corresponding fields of the reply mailer.

If the original letter has been forwarded, the SMPMailerReply function takes the
subject and addresses from the original letter’s most recent mailer; that is, from the
mailer that was added the last time the letter was forwarded.

You should call the SMPMailerReply function only if the top mailer in the mailer set is
a received mailer. You can use the hasBeenReceived field of the SMPMailerState
structure to get this information.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.
3-52 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SMPNewMailer function (page 3-46) to add a new mailer to a window that has
no mailer.

Use the SMPMailerForward function (page 3-49) to add a mailer to a letter that you
want to forward.

Use the SMPGetMailerState function (page 3-69) to obtain an SMPMailerState
structure. The SMPMailerState structure is described in “Mailer-State Structure” on
page 3-30.

SMPGetTabInfo 3

The SMPGetTabInfo function tells you which fields in the mailer are the first and last to
be highlighted when the user presses the Tab key repeatedly to move from one field to
another.

pascal OSErr SMPGetTabInfo(SMPMailerComponent *firstTab,

SMPMailerComponent *lastTab);

firstTab The first field highlighted.

lastTab The last field highlighted.

DESCRIPTION

When the user first clicks in a mailer, the Standard Mail Package makes one field the
target for user actions and highlights that field. If the user presses the Tab key, the
Standard Mail Package makes another field the target, and so on, eventually returning to
the first field. You can intercept this sequence and make a field in your window active
when the user presses the Tab key, returning to the mailer after you have given the user
the opportunity to modify one or more fields in your window. The SMPGetTabInfo
function tells you which field is the first one to be made a target by the Standard Mail
Package and which is the last, so you know where to intercept the sequence and where

Parameter count Routine selector

$000F $1262

noErr 0 No error
kOCEUnknownID –1567 Authentication identity is not valid
kSMPNoMailerInWindow –1909 No mailer is in the specified window
kSMPMailerAlreadyInWindow –1911 Specified window already has a mailer
Standard Mail Package Reference 3-53

C H A P T E R 3

Standard Mail Package
to return to it. This sequence is not dependent on the state of the mailer; you need call it
only once.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The possible values for the SMPMailerComponent data type are shown on page 3-32.

You use the SMPBecomeTarget function (described next) to return the Tab sequence to
the mailer.

You use the SMPGetMailerState function (page 3-69) to determine which field is
currently the target.

SMPBecomeTarget 3

The SMPBecomeTarget function specifies whether your window or the mailer is the
target of user action and, if the mailer is the target, specifies which field in the mailer is
active.

pascal OSErr SMPBecomeTarget(WindowPtr window,

Boolean becomeTarget,

SMPMailerComponent whichField);

window The window containing the mailer.

becomeTarget
A Boolean value that specifies whether the mailer in this window should
become the target of the user’s actions. If this parameter is set to true,
the mailer becomes the target. If it is set to false, the Standard Mail
Package does not highlight any field, and the SMPMailerEvent function
assumes that key-down events are intended for your application.

Parameter count Routine selector

$0004 $1274

noErr 0 No error
kSMPMailerNotInitialized –1902 Mailer has not been initialized
3-54 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
whichField
If the becomeTarget parameter is set to true, this parameter specifies
which field should be active. If the becomeTarget parameter is set to
false, the function ignores this field. Possible values for this field are
shown on page 3-32.

DESCRIPTION

The user can use the Tab key to cycle through the fields in the mailer. Each time the user
presses the Tab key, you receive a key-down event. In most cases, you would call the
SMPMailerEvent function to handle the event. However, if you want one or more
fields in your application’s window to be included in the set of fields that the user can
select with the Tab key, you must determine the nature of the key-down event yourself.
If the user pressed the Tab key, you can call the SMPGetMailerState function
(page 3-69) to determine which field in the mailer is currently the target. You can then
check the results of the SMPGetTabInfo function to find out which field is the last one
in the sequence. If the current field is the one returned in the lastTab parameter of the
SMPGetTabInfo function, you can call the SMPBecomeTarget function with the
becomeTarget parameter set to false. You can then activate and highlight whichever
field in your window you wish.

When you have finished cycling through the fields in your window, call the
SMPBecomeTarget function again, this time with the becomeTarget parameter set to
true and the whichField parameter set to the value returned in the firstTab
parameter of the SMPGetTabInfo function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The possible values for the SMPMailerComponent data type are shown on page 3-32.

Parameter count Routine selector

$0005 $1273

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in this window
kSMPIllegalComponent –1918 Bad field name parameter
kSMPMailerAlreadyNotTarget –1919 This mailer is not the target
kSMPComponentIsAlreadyTarget –1920 The selected field is the target
Standard Mail Package Reference 3-55

C H A P T E R 3

Standard Mail Package
You can call the SMPGetMailerState function (page 3-69) to determine which field in
the mailer is currently the target.

You can call the SMPGetTabInfo function (page 3-53) to find out which fields are the
first and last in the selection sequence.

You can call the SMPMailerEvent function (page 3-63) each time you receive an event.
This function returns a value telling you how the Standard Mail Package handled the
event and whether your application has to process it as well.

SMPExpandOrContract 3

The SMPExpandOrContract function expands or contracts a mailer.

pascal OSErr SMPExpandOrContract(WindowPtr window,

Boolean expand);

window The window containing the mailer.

expand A Boolean value that specifies whether the mailer in this window should
be expanded (true) or contracted (false).

DESCRIPTION

The user indicates a desire to expand or contract a mailer by clicking the triangle in the
upper-left corner of the mailer (see Figure 3-2 and Figure 3-3 on page 3-5). If the user
wants to expand the mailer, the SMPMailerEvent function returns the flag kExpanded.
You must update your window to make room for the expanded mailer and then call the
SMPExpandOrContract function to expand the mailer. (When the user contracts the
mailer, by contrast, you have to update the content portion of your window but do not
have to call the SMPExpandOrContract function.)

The SMPExpandOrContract function also lets you expand or contract the mailer
entirely from within your application, for example, to implement an Expand or Contract
menu command.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0003 $1272
3-56 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
RESULT CODES

SEE ALSO

You set the initial state of the mailer (expanded or contracted) with the SMPNewMailer
function (page 3-46), the SMPMailerReply function (page 3-51), or the
SMPOpenLetter function (page 3-94).

You can call the SMPGetMailerState function (page 3-69) to determine whether the
mailer is currently expanded or contracted.

You call the SMPGetDimensions function (page 3-48) to determine the size of an
expanded or contracted mailer.

SMPMoveMailer 3

The SMPMoveMailer function moves a mailer within your window.

pascal OSErr SMPMoveMailer(WindowPtr window,

short dh,

short dv);

window The window containing the mailer you want to move.

dh The horizontal distance, in QuickDraw coordinates, by which you want to
move the mailer. Use a positive number to move the mailer to the right
and a negative number to move the mailer to the left.

dv The vertical distance, in QuickDraw coordinates, by which you want to
move the mailer. Use a positive number to move the mailer down and a
negative number to move the mailer up.

DESCRIPTION

You set the initial location of a mailer in your window when you call the
SMPNewMailer function or the SMPMailerReply function. You can use the
SMPMoveMailer function to move a mailer if, for example, you need to make space for
a tool palette at the top or left edge of your window.

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in

specified window
kSMPMailerCannotExpandOrContract –1916 Mailer created with

canContract
parameter set to false

kSMPMailerAlreadyExpandedOrContracted –1917 Mailer is already in
requested state
Standard Mail Package Reference 3-57

C H A P T E R 3

Standard Mail Package
SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You set the initial location of the mailer with the SMPNewMailer function (page 3-46),
the SMPMailerReply function (page 3-51), or the SMPOpenLetter function (page 3-94).

SMPTagDialog 3

The SMPTagDialog function displays a dialog box that allows a user to add a tag to a
letter that was opened from the mailbox.

pascal OSErr SMPTagDialog(WindowPtr window,

 RString32 *theTag);

window The window containing the mailer.

theTag A pointer to the tag to be associated with the letter. If you specify a tag
when you call the function, it is displayed as the default value in the
dialog box. The function uses this parameter to return the tag specified by
the user.

DESCRIPTION

The PowerTalk mailbox allows the user to sort and display letters according to tags that
the user has specified for each letter. Your application can provide a Tag item in the Mail
menu. If the user chooses this item, you should call the SMPTagDialog function to let
the user specify the tag. You should call the SMPGetMailerState function to
determine whether to enable the Tag command.

The AOCE software stores the tag with the letter and displays it for the user in the In and
Out Trays. It is not necessary for you to specify this tag in the close-options structure
when you call the SMPCloseOptionsDialog or SMPDisposeMailer functions. When
you save the letter to disk, the letter becomes an HFS object and no longer has a tag.

Parameter count Routine selector

$0004 $126A

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
3-58 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Call the SMPGetMailerState function (page 3-69) to determine whether to enable the
Tag command.

SMPPrepareToClose 3

The SMPPrepareToClose function tells you whether a mailer can be closed.

pascal OSErr SMPPrepareToClose(WindowPtr window);

window The window containing the mailer that you would like to close.

DESCRIPTION

In certain circumstances—for instance, when an enclosure is open—you can’t dispose of
a mailer. The SMPPrepareToClose function returns an error when you can’t dispose of
a mailer, so you can display a dialog box informing the user of the situation rather than
closing the window containing the mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0004 $128B

noErr 0 No error
paramErr –50 Error in a parameter value
kSMPNoMailerInWindow –1909 No mailer is in specified window

Parameter count Routine selector

$0002 $1287
Standard Mail Package Reference 3-59

C H A P T E R 3

Standard Mail Package
RESULT CODES

SEE ALSO

You should call the SMPPrepareToClose function before closing a window containing
a mailer or attempting to call the SMPDisposeMailer function (page 3-61).

SMPCloseOptionsDialog 3

The SMPCloseOptionsDialog function displays a dialog box that allows a user to
delete letters or add tags to letters that were opened from the mailbox.

pascal OSErr SMPCloseOptionsDialog(WindowPtr window,

SMPCloseOptionsPtr closeOptions);

window The window containing the mailer.

closeOptions
A pointer to a close-options structure that specifies the initial settings to
be displayed in the dialog box. After the function call returns, this
structure contains the new settings entered by the user in the
close-options dialog box.

DESCRIPTION

Your application should provide a user preference option that specifies whether
attempting to close a letter should cause the close-options dialog box to appear. If the
user elects to see the dialog box, you should call the SMPCloseOptionsDialog
function whenever a user closes a window containing a mailer and before you call the
SMPDisposeMailer function. If the user opened the letter from the mailbox, the
SMPCloseOptionsDialog function displays the close-options dialog box; otherwise,
the function does nothing.

You can use the closeOptions parameter to provide default settings for the dialog
box. If you provide a Close and Delete item in the File menu and the user chooses this
item, you should specify true for the moveToTrash field of the structure pointed to by
the closeOptions parameter.

You can use the tag field of the structure pointed to by the closeOptions parameter to
specify a default tag for the letter. If the letter already has a tag value, either because the
user added it the last time the letter was closed or because you called the
SMPTagDialog function, the Standard Mail Package puts that tag in the tag field of the
dialog box. It is not necessary for you to specify this tag in the close-options structure
when you call the SMPCloseOptionsDialog function.

noErr 0 No error
kSMPCopyInProgress –1901 Finder is copying an enclosure
kSMPHasOpenAttachments –1906 One or more enclosures are open
kSMPNoMailerInWindow –1909 No mailer is in specified window
3-60 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
The Standard Mail Package stores the options the user selects and executes them when
you call the SMPDisposeMailer function (if the closeOptions parameter in the
SMPDisposeMailer function is not set to nil).

SPECIAL CONSIDERATIONS

If you specify true for both the moveToTrash field and the addTag field of the
close-options structure, the SMPCloseOptionsDialog function returns the paramErr
result code.

If you specify true for the addTag field of the close-options structure, you must also
specify a valid tag for the letter. If you specify true for the addTag field and you specify
a zero-length string for the tag field, the function returns the paramErr result code.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The close-options structure is described in “Close-Options Structure” on page 3-29.

You can call the SMPTagDialog function (page 3-58) to display a dialog box that allows
the user to add a tag to a letter in the In Tray.

Call the SMPDisposeMailer function (described next) to execute the close options.

SMPDisposeMailer 3

The SMPDisposeMailer function deallocates the mailer set in the specified window
and erases the mailer set.

pascal OSErr SMPDisposeMailer(WindowPtr window,

SMPCloseOptionsPtr closeOptions);

window The window containing the mailer set you want to deallocate.

Parameter count Routine selector

$0004 $1288

noErr 0 No error
paramErr –50 Error in a parameter value
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-61

C H A P T E R 3

Standard Mail Package
closeOptions
A pointer to a close-options structure specifying actions the Standard
Mail Package should take in addition to disposing of the mailer set. If you
specify nil for this parameter, the function disposes of the mailer set
without taking any other action.

DESCRIPTION

You should call the SMPDisposeMailer function when the user chooses the Remove
Mailer item from a menu or when you close a window that contains a mailer. This
function removes the mailer set from the window you specify and deallocates all the
data structures associated with that mailer set. If the user removes the mailer from the
window, the next time the user chooses the Save or Save As commands, you should save
the document in your application’s file format rather than the letter file format.

You use the closeOptions parameter to specify close options. For example, you can
provide a Close and Delete item in the File menu. If the user chooses this item, you
should specify true for the moveToTrash field of the structure pointed to by the
closeOptions parameter.

Your application may provide a user preference option that specifies whether attempting
to close a letter should cause the close-options dialog box to appear. If the user elects to
see the dialog box, you should call the SMPCloseOptionsDialog function whenever
the user closes a window containing a mailer. Then use the pointer to the close-options
structure that you provided to the SMPCloseOptionsDialog function as the value of
the closeOptions parameter of the SMPDisposeMailer function.

Before you close a window that contains a mailer, call the SMPPrepareToClose
function to make sure that you can dispose of the mailer.

SPECIAL CONSIDERATIONS

If you specify true for both the moveToTrash field and the addTag field of the
close-options structure, the SMPDisposeMailer function returns the paramErr result
code.

If you specify true for the addTag field of the close-options structure, you must also
specify a valid tag for the letter. If you specify true for the addTag field and you specify
a zero-length string for the tag field, the function returns the paramErr result code.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0004 $125E
3-62 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
RESULT CODES

SEE ALSO

The SMPPrepareToClose function (page 3-59) tells you whether it’s possible to dispose
of a mailer.

The close-options structure is described in “Close-Options Structure” on page 3-29.

The SMPCloseOptionsDialog function (page 3-60) displays a dialog box that lets the
user select close options for a letter that was opened from the mailbox.

Handling Events in Mailers 3

Whenever you receive an event for a window that contains a mailer, you can pass that
event directly to the SMPMailerEvent function (described next). The Standard Mail
Package handles the event if it applied to the mailer and returns a value that tells you
what action it took and whether you have to take any further action. You can also use the
SMPMailerEditCommand function (page 3-67) to handle events related to standard
items in the Edit menu.

When the user is working in the mailer, you must enable and disable items in the Edit
menu as appropriate. The SMPGetMailerState function (page 3-69) lets you
determine which items should be enabled or disabled. You must ensure that the Undo
command works consistently whether the user is working in the mailer or in your
application. You use the SMPGetMailerState function to determine when to clear
your application’s undo buffer, and you use the SMPClearUndo function (page 3-70) to
tell the mailer when to clear its Undo buffer.

Finally, you can use the SMPDrawMailer function (page 3-72) to redraw the mailer if
you want to handle update events yourself or if you need to redraw the mailer for some
other reason.

SMPMailerEvent 3

The SMPMailerEvent function processes events that you pass to it, gives you
information about how the Standard Mail Package responded to the event, and informs
you of further action that you must take.

pascal OSErr SMPMailerEvent(const EventRecord *event,

SMPMailerResult *whatHappened,

const FrontWindowProcPtr frontWindowCB,

long clientData);

noErr 0 No error
paramErr –50 Error in a parameter value
kSMPHasOpenAttachments –1906 One or more enclosures are open
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-63

C H A P T E R 3

Standard Mail Package
event A pointer to the event record of an event returned to your application by
the WaitNextEvent function.

whatHappened
A pointer to a set of flags informing you what action the
SMPMailerEvent function took.

frontWindowCB
A pointer to your front-window routine. This routine, described on
page 3-124, returns a pointer to the window that your application wants
the Standard Mail Package to consider as the front window. Specify nil
for this field if you do not want to provide a front-window routine. If you
do not provide a front-window routine, the Standard Mail Package uses
the Window Manager’s FrontWindow routine.

clientData
Reserved for your use. The SMPMailerEvent function passes this value
unaltered to your callback routine.

DESCRIPTION

Each time your application calls the WaitNextEvent function, it can pass the event
record immediately to the SMPMailerEvent function. The SMPMailerEvent function
determines whether the Standard Mail Package should handle the event, your
application should handle the event, or action is required by both the Standard Mail
Package and your application. If the SMPMailerEvent function has to take any further
action, it does so before returning control to your application. In any case, the
whatHappened parameter returns a set of flags that tell you what action, if any, the
function took, and whether your application must handle the event.

If the event record does not include a window pointer, the SMPMailerEvent function
uses your front-window callback routine to determine to which window the event
applies. If you do not provide a front-window callback routine, the SMPMailerEvent
function uses the Window Manager’s FrontWindow routine.

If you decide instead to check the event record first and pass to the SMPMailerEvent
function only events that the Standard Mail Package must handle, call the
SMPBecomeTarget function when the mailer is no longer the target (for example, when
the user clicks in the content region of the window). In that case, you must still pass null
events to the SMPMailerEvent function frequently so that the Standard Mail Package
can control the appearance of the cursor, implement Balloon Help, and pass null events
to the Catalog-Browsing panel and Find-Record panel.

IMPORTANT

To use the Standard Mail Package, your application must be aware of
high-level events. You must pass all high-level events (including Apple
events) to the SMPMailerEvent function before calling the
AEProcessAppleEvent or AcceptHighLevelEvent routines. If you
do not do so, some Standard Mail Package features, such as enclosing
files and folders, may not work correctly. ▲
3-64 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
The flags returned by the whatHappened parameter are as follows:

enum {

kSMPAppMustHandleEventBit,

kSMPAppShouldIgnoreEventBit,

kSMPContractedBit,

kSMPExpandedBit,

kSMPMailerBecomesTargetBit,

kSMPAppBecomesTargetBit,

kSMPCursorOverMailerBit,

kSMPCreateCopyWindowBit,

kSMPDisposeCopyWindowBit

};

You can use the following masks to test for these bits:

enum {

kSMPAppMustHandleEventMask = 1<<kSMPAppMustHandleEventBit,

kSMPAppShouldIgnoreEventMask = 1<<kSMPAppShouldIgnoreEventBit,

kSMPContractedMask = 1<<kSMPContractedBit,

kSMPExpandedMask = 1<<kSMPExpandedBit,

kSMPMailerBecomesTargetMask = 1<<kSMPMailerBecomesTargetBit,

kSMPAppBecomesTargetMask = 1<<kSMPAppBecomesTargetBit,

kSMPCursorOverMailerMask = 1<<kSMPCursorOverMailerBit,

kSMPCreateCopyWindowMask = 1<<kSMPCreateCopyWindowBit,

kSMPDisposeCopyWindowMask = 1<<kSMPDisposeCopyWindowBit

};

typedef unsigned long SMPMailerResult;

Bit descriptions

kSMPAppMustHandleEventBit
The application must process the event. The event was either an
event the Standard Mail Package couldn’t process, or it was one that
both the application and the Standard Mail Package must process
(such as activate and update events). The function always sets
either this flag or the kSMPAppShouldIgnoreEventBit flag.

kSMPAppShouldIgnoreEventBit
The application should ignore the event. It was handled by the
Standard Mail Package. The function always sets either this flag or
the kSMPAppMustHandleEventBit flag.
Standard Mail Package Reference 3-65

C H A P T E R 3

Standard Mail Package
kSMPContractedBit
The user clicked the triangle at the left edge of the mailer (see
Figure 3-3 on page 3-5), switching the mailer to the contracted state.
Because your application does not have to read the event record, the
function also sets the kSMPAppShouldIgnoreEventBit flag.
However, you must update the content portion of your
application’s frontmost window when you receive this flag.

kSMPExpandedBit
The user clicked the triangle at the left edge of the mailer (see
Figure 3-2 on page 3-5), indicating a desire to switch the mailer to
the expanded state. Because your application does not have to read
the event record, the function also sets the
kSMPAppShouldIgnoreEventBit flag. However, you must
update the content portion of your application’s frontmost window
and call the SMPExpandOrContract function (page 3-56) to finish
expanding the mailer when you receive this flag.

kSMPMailerBecomesTargetBit
The user had been working in the application’s part of the window
but has now clicked in the mailer or contracted the mailer. Because
your application does not have to read the event record, the
function also sets the kSMPAppShouldIgnoreEventBit flag.
However, you might want to take other action, such as removing
highlighting from the content portion of the window or stopping an
insertion-point caret from blinking.

kSMPAppBecomesTargetBit
The user had been working in the mailer but has now clicked in the
application’s part of the window. Because you must handle this
event, the function also sets the kSMPAppMustHandleEventBit
flag.

kSMPCursorOverMailerBit
When this flag is set, the cursor is in the mailer in the frontmost
window, so the Standard Mail Package is controlling Balloon Help
and the appearance of the cursor. When this flag is cleared, the
cursor is not in the mailer, so you must control the appearance of
the cursor. The function also sets the
kSMPAppMustHandleEventBit flag when it sets or clears the
kSMPCursorOverMailerBit flag. Because the Standard Mail
Package can detect the position of the cursor only when you give it
some processing time, the function sets or clears this flag only when
you pass it a null event.

kSMPCreateCopyWindowBit
The Standard Mail Package is using the Finder to copy files and has
displayed a modal dialog box showing the status of the copy
operation. You should continue to send events to the
SMPMailerEvent function.

kSMPDisposeCopyWindowBit
The Standard Mail Package has removed the copy status dialog box.
Your application should resume normal operation.
3-66 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
SPECIAL CONSIDERATIONS

The Standard Mail Package reserves all high-level events of class 'cwin' for its own
use. Do not install an event handler for events of this class. (There is no problem if you
have installed an Apple event handler with class and ID of typeWildCard, because the
Standard Mail Package removes that handler before calling the
AEProcessAppleEvent routine and reinstalls it afterward.)

The SMPMailerEvent function may move or purge memory; you should not call this
function at interrupt time.

The SMPMailerEvent function preserves your application’s A5 world when it calls
your front-window routines. Therefore, you have access to your application’s global
variables from these routines.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The front-window callback function is described on page 3-124.

If you check the event record first and pass to the SMPMailerEvent function only
events that the Standard Mail Package must handle, call the SMPBecomeTarget
function (page 3-54) when the mailer is no longer the target.

Call the SMPGetMailerState function (page 3-69) to determine the current state of the
mailer.

SMPMailerEditCommand 3

The SMPMailerEditCommand function handles Edit menu commands when they apply
to fields in the mailer.

pascal OSErr SMPMailerEditCommand(WindowPtr window,

SMPEditCommand command,

SMPMailerResult *whatHappened);

window A pointer to the window containing the mailer.

command The Edit menu command that the user chose.

Parameter count Routine selector

$0008 $125F

noErr 0 No error
Standard Mail Package Reference 3-67

C H A P T E R 3

Standard Mail Package
whatHappened
A pointer to a set of flags that indicate what action the function took and
whether you must take any action. This function sets either the
kSMPAppMustHandleEventBit or the
kSMPAppShouldIgnoreEventBit flag.

DESCRIPTION

When the user chooses one of the standard Edit menu commands (Undo, Cut, Copy,
Paste, Clear, or Select All), you can call the SMPMailerEditCommand function
immediately. If the user has selected something in the mailer, the
SMPMailerEditCommand function handles the requested action, sets the
kSMPAppShouldIgnoreEventBit flag in the whatHappened parameter, and returns.
If the user has not selected anything in the mailer, the function sets the
kSMPAppMustHandleEventBit flag and returns to you immediately. Use the
SMPGetMailerState function to determine which of the Edit menu commands to
enable.

The possible values for the command parameter are as follows:

enum {

kSMPUndoCommand,

kSMPCutCommand,

kSMPCopyCommand,

kSMPPasteCommand,

kSMPClearCommand,

kSMPSelectAllCommand

};

typedef unsigned short SMPEditCommand;

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0005 $1260
3-68 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
RESULT CODES

SEE ALSO

The flag field for the whatHappened parameter is completely defined on page 3-65.

You can use the SMPGetMailerState function (page 3-69) to determine whether the
user is working in the mailer and, if so, which of the Edit menu commands to enable.

You can call the SMPMailerEvent function (page 3-63) each time you receive an event.
This function returns a value telling you how the Standard Mail Package handled the
event and whether your application has to process it as well. The SMPMailerEvent
function returns the value kSMPAppMustHandleEventBit when the event is an Edit
menu command.

SMPGetMailerState 3

The SMPGetMailerState function returns the state of the specified mailer.

pascal OSErr SMPGetMailerState(windowPtr window,

SMPMailerState *itsState);

window The window containing the mailer whose state you want to know.

itsState A pointer to a structure containing the state of the mailer. The
SMPMailerState data type is defined and all of its fields are described
in “Mailer-State Structure” on page 3-30.

DESCRIPTION

The SMPGetMailerState function lets you determine whether the user is working in
the mailer, and if so, which Edit menu and Mail menu commands you should enable. For
example, if both the isTarget and canCut fields are set to true, then you should
enable the Cut item in the Edit menu. This function also returns a value that helps you
determine whether to clear your application’s undo buffer. You should call this function
when you need to display the Edit menu (that is, before calling the MenuSelect
function) or the Mail menu or when the user presses a keyboard equivalent for an Edit
menu command or Mail menu command.

This function also returns other information about the mailer, such as its current state
(contracted or expanded), its location in the window, and the number of mailers in the
mailer set.

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPIllegalComponent –1918 Bad command parameter value
Standard Mail Package Reference 3-69

C H A P T E R 3

Standard Mail Package
SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SMPMailerState data type is defined and all of its fields are described in
“Mailer-State Structure” on page 3-30.

You can call the SMPMailerEvent function (page 3-63) each time you receive an event.
This function returns a value telling you how the Standard Mail Package handled the
event and whether your application has to process it as well.

SMPClearUndo 3

The SMPClearUndo function tells the Standard Mail Package to clear its undo buffer.

pascal OSErr SMPClearUndo(WindowPtr window);

window A pointer to the window containing the mailer.

DESCRIPTION

The Macintosh Human Interface Guidelines call for an Undo item in the Edit menu and
specify that only the latest action can be undone. Furthermore, certain actions that
cannot be undone should cause you to disable the Undo item and some should not; for
example, you should disable the Undo item after the user saves a file but not after the
user scrolls through the window. Even though the Standard Mail Package maintains its
own undo buffer, you are responsible for enabling and disabling the Undo item in the
Edit menu whether the user is working in the content portion of your window or in the
mailer. The SMPClearUndo function lets you coordinate the Standard Mail Package’s
undo facility with that of your application so that it appears to the user that there is only
one undo buffer for the entire window.

Parameter count Routine selector

$0004 $1263

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
3-70 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
You should call the SMPGetMailerState function when you need to display the Edit
menu (that is, before calling the MenuSelect routine) or when the user presses a
keyboard equivalent for an Edit menu command. If the SMPGetMailerState function
indicates that the user is working in the content portion of the window, you must
determine whether the user can undo the action, and you must enable or disable the
Undo item in the Edit menu accordingly. If the action can be undone or if it causes you to
disable the Undo item, you must call the SMPClearUndo function to tell the Standard
Mail Package to clear its undo buffer. If you fail to do so, the Standard Mail Package will
not update the mailer state correctly.

Conversely, if the user’s last action was in the mailer, you must call the
SMPGetMailerState function to find out whether to enable or disable the Undo item
in the Edit menu and whether to clear your application’s undo buffer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can call the SMPMailerEvent function (page 3-63) each time you receive an event.
This function returns a value telling you how the Standard Mail Package handled the
event and whether your application has to process it as well.

The SMPGetMailerState function (page 3-69) returns a mailer-state structure; see
“Mailer-State Structure” on page 3-30. The undoState field of the mailer-state structure,
described on page 3-33, returns a value that tells you whether to clear your application’s
undo buffer and whether to disable the Undo item in the Edit menu.

You can use the SMPMailerEditCommand function (page 3-67) to handle edit
commands when they apply to the mailer.

Parameter count Routine selector

$0002 $1275

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-71

C H A P T E R 3

Standard Mail Package
SMPDrawMailer 3

The SMPDrawMailer function redraws the mailer in the window you specify.

pascal OSErr SMPDrawMailer(WindowPtr window);

window A pointer to the window containing the mailer you want to draw.

DESCRIPTION

You use the SMPDrawMailer function to redraw a mailer when you need to do so but
have not received an update event, or if you want to handle an update event yourself
rather than passing it to the SMPMailerEvent function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can have the Standard Mail Package draw the mailer by passing update events to
the SMPMailerEvent function (page 3-63).

Sending and Saving Mail 3

The SMPBeginSend function (page 3-81) starts the process of creating a letter that is to
be mailed. Immediately before you call the SMPBeginSend function, you should call the
SMPSendOptionsDialog function (page 3-73) to let the user set send options.

The SMPSendOptionsDialog function returns the user’s choice: whether to send the
letter as an image, as standard interchange format, in one of your application’s native
formats, or in some combination of these three options. To send the letter as an image,
you must call the SMPImage function (page 3-88) to put an image block in the letter. Call
the SMPAddContent function (page 3-85) to add a standard interchange format block to
the letter and the SMPAddMainEnclosure function (page 3-90) to add a document in

Parameter count Routine selector

$0002 $1269

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
3-72 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
one of its native formats to the letter. You can also call the SMPAddBlock function
(page 3-91) to add one or more blocks of your own design to the letter.

You can enclose files or folders in a letter by calling the SMPAddAttachment function
(page 3-119) or the SMPAttachDialog function (page 3-119).

When you are ready to send the letter, call the SMPEndSend function (page 3-84).

The process of saving a letter to disk is similar to the process of sending one. First you
call the SMPBeginSave function (page 3-77) to create the letter. Then you can use the
SMPAddContent, SMPAddMainEnclosure, and SMPAddBlock functions to add
content to the letter. To save the letter, call the SMPEndSave function (page 3-80). You
can use the SMPOpenLetter function (page 3-94) to open a letter on disk for reading.

SMPSendOptionsDialog 3

The SMPSendOptionsDialog function displays the send-options dialog box and
returns the user’s selections.

pascal OSErr SMPSendOptionsDialog(WindowPtr window,

Str255 documentName,

StringPtr nativeFormatNames[],

unsigned short nameCount,

SMPSendFormatMask canSend,

SMPSendFormat *currentFormat,

SendOptionsFilterProc filterProc,

long clientData,

SMPSendFormat *shouldSend,

SMPSendOptionsPtr sendOptions);

window A pointer to the window containing the mailer.

documentName
The name of the document. This name is displayed at the top of the
send-options dialog box.

nativeFormatNames
An array of string pointers containing the names of the “native” formats
your application can use for the letter. These names should be the same as
the formats listed in the dialog box you display when the user chooses
Save As from the File menu. If your application can write data in only one
format, use the name of the application. The Standard Mail Package
displays the names you list here in a pop-up menu in the send-options
dialog box.

nameCount The number of string pointers in the nativeFormatNames parameter.
Standard Mail Package Reference 3-73

C H A P T E R 3

Standard Mail Package
canSend A set of flags indicating which types of format your application can send
for this letter. You can use any combination of the mask values
kSMPNativeMask, kSMPImageMask, and
kSMPStandardInterchangeMask.

currentFormat
A pointer to a send-format structure. If the user opened this letter from
the mail box or from disk, you should use this structure to indicate which
formats the letter currently contains. If this is a new letter, you should
indicate which formats you prefer to use for this letter. Do not include any
format you did not include in the canSend parameter.

filterProc
A pointer to a routine you can provide to add additional items to the
send-options dialog box. This routine is described on page 3-125.

clientData
A constant reserved for your use. The Standard Mail Package passes this
value to the routine you provide in the filterProc parameter.

shouldSend
A pointer to a send-format structure, allocated by your application, in
which the SMPSendOptionsDialog function returns the formats the
user has selected for sending the letter.

sendOptions
A pointer to a send-options structure. Pass this pointer to the
SMPBeginSend function when you are ready to send the letter. The
function only returns information in this structure; it ignores any values
in this structure that are set at the time you call the function.

DESCRIPTION

The send-options dialog box lets the user specify whether letters should be signed and
whether documents should be sent as application documents, images, or both.

Figure 3-7 shows a send-options dialog box.
3-74 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Figure 3-7 Send-options dialog box

To make it possible for any user to read letters sent by your application, even if the
recipient doesn’t have your application, you should be able to add either a standard
interchange format version of your document, an image version, or both to the letter. If
the standard interchange format does not completely describe your application’s
documents, you can also send a document in one of its native formats either as a main
enclosure to the letter or as a block or blocks that you add to the letter. You use the
canSend parameter to specify which formats you are prepared to add to a letter.

You should call the SMPSendOptionsDialog function before you use the
SMPBeginSend function to initiate the process of sending a letter. The SMPBeginSend
function returns a send-format structure that indicates whether the user wants to send
an image, standard interchange format, one of the document formats supported by your
application, or some combination of the three. If the reader wants to send an image, you
must call the SMPImage function so that the Standard Mail Package can provide the
image. If the reader wants to send standard interchange format, call the
SMPAddContent function. If the user wants to send the letter as a document, the
send-format structure also indicates which of your application’s document formats to
use.
Standard Mail Package Reference 3-75

C H A P T E R 3

Standard Mail Package
To add your own items to the send-options dialog box, provide a send-options filter
routine.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

The SMPSendOptionsDialog function only returns the user’s selections. You cannot
use this function to set default values for the fields in the send-options dialog box.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See the descriptions of the SMPBeginSend (page 3-81) and SMPEndSend (page 3-84)
functions for more information about sending mail.

The send-format structure is defined in “Send-Format Structure” on page 3-34. The
send-options structure is defined in “Send-Options Structure” on page 3-34.

You can specify a routine to add items to the send-options dialog box. See the description
of the MySendOptionsFilterProc routine on page 3-125 for more information.

Call the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a
letter. Call the SMPAddContent function (page 3-85) to add standard interchange format
content to a letter. Call the SMPImage function (page 3-88) to add an image to the letter.

SMPContentChanged 3

The SMPContentChanged function informs the Standard Mail Package that the content
of the letter has changed.

pascal OSErr SMPContentChanged(WindowPtr window);

window A pointer to the window containing the mailer.

Parameter count Routine selector

$0013 $1388

noErr 0 No error
paramErr –50 Error in a parameter value
userCanceledErr –128 User clicked Cancel button
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPIllegalSendFormats –1923 Format not in canSend parameter
3-76 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
DESCRIPTION

You must call the SMPContentChanged function to inform the Standard Mail Package
when the user changes the content of a letter. The Standard Mail Package can then
indicate to the user that the signature is not valid. The Standard Mail Package also needs
this information to determine whether it can save or send a forwarded letter without
requiring you to rebuild the content of the letter.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To forward a letter, see the SMPMailerForward function (page 3-49).

To save a letter, see the SMPBeginSave function (page 3-77). To send a letter, see the
SMPBeginSend function (page 3-81).

Before you allow the user to change the content of a letter, call the
SMPPrepareToChange function (page 3-83).

SMPBeginSave 3

You must call the SMPBeginSave function before you save a letter.

pascal OSErr SMPBeginSave(WindowPtr window,

const FSSpec *diskLetter,

OSType creator,

OSType filetype,

SMPSaveType saveType,

Boolean *mustAddContent);

window The window containing the letter to be saved.

Parameter count Routine selector

$0002 $126F

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-77

C H A P T E R 3

Standard Mail Package
diskLetter
A pointer to a file system specification structure indicating the name and
location you want to use for the file.

creator The creator for the file, which also becomes the letter’s creator. Use the
same creator that you use for all of your application’s documents.

filetype The file type, which also becomes the letter type. Letters containing only
AOCE standard content should be of type 'lttr'.

saveType The type of save: kSMPSave, kSMPSaveAs, or kSMPSaveACopy.

mustAddContent
A pointer to a Boolean value returned by the function that tells you
whether you have to add any blocks or enclosures to the letter. If this
parameter is set to false, call the SMPEndSave function immediately
without adding blocks or enclosures to the letter.

DESCRIPTION

When you save a document to which you have added a mailer, you must save it in letter
file format rather than the document format normally used by your application. A letter
consists of a header, data blocks, and enclosures. Every block has a block creator and
type, and every letter has a letter creator and type. When you save the letter, the
Standard Mail Package assigns the file the same creator and type as the letter. Your
application should provide icon resources and a file reference resource for your
application’s letters so that users can distinguish them from standard documents.

To begin the process of saving a letter, you call the SMPBeginSave function. This
function prepares the letter file into which you can save your document. You can create a
new file format for your application’s documents that takes advantage of the block
structure of a letter file, or you can save your document in one of your application’s
native formats to a temporary file on disk and then add that file as the main enclosure to
the letter. The letter is not actually saved to disk until you call the SMPEndSave function.

If neither your application nor the user has changed the content of a received letter, the
SMPBeginSave function returns a value of false for the mustAddContent parameter.
In that case you can call the SMPEndSave function immediately to save the letter. If you
have changed the content of the letter, however, the mustAddContent parameter
returns true and you must build the letter (adding the appropriate combination of
blocks, main enclosure, standard interchange format block, and image block) just as if it
were a new letter. The Standard Mail Package handles enclosures added by the user.
Note that, if you make changes to the enclosed original letter, you invalidate any digital
signature.

IMPORTANT

Be sure to call the SMPContentChanged function whenever the user
changes the content of a letter. If you do not call the
SMPContentChanged function, then the SMPBeginSave function
doesn’t know that the letter has been changed and won’t return true as
the value of mustAddContent. ▲
3-78 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Note
The SMPBeginSave and SMPEndSave function pair perform a “safe
save”; that is, they save the document into a temporary file and then, if
the document has been saved before, replace the original file with the
temporary file. ◆

When you call the SMPBeginSave function you must specify the type of save, as
follows:

enum {kSMPSave, kSMPSaveAs, kSMPSaveACopy};

typedef unsigned short SMPSaveType;

Constant descriptions

kSMPSave Save an existing file, overwriting the older version, and keeping the
file open.

kSMPSaveAs Save the file with a new name, close the original file (if any) without
changing it, and open the new file.

kSMPSaveACopy Save a copy of the file with a new name, leaving the original file
open.

SPECIAL CONSIDERATIONS

Any time the user changes the content of a letter, you must call the
SMPContentChanged function immediately. The SMPBeginSave function needs this
information to operate correctly.

The SMPBeginSave function may move or purge memory; you should not call this
function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Before letting the user change the content of a letter, call the SMPPrepareToChange
function (page 3-83). If the user changes the content of a letter, you must call the
SMPContentChanged function (page 3-76) immediately.

Parameter count Routine selector

$000B $1266

noErr 0 No error
dskFulErr –34 Disk is full
fnfErr –43 File not found
fBsyErr –47 File is busy
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-79

C H A P T E R 3

Standard Mail Package
When you have finished building your letter, you call the SMPEndSave function
(described next) to save it. To cancel a save operation any time after you call the
SMPBeginSave function, call the SMPEndSave function with the okToSave parameter
set to false.

Letter file format is briefly discussed in “The Mailer Functions” beginning on page 3-4.

Use the SMPAddContent function (page 3-85) to add a standard interchange format
block to a letter.

Use the SMPAddMainEnclosure function (page 3-90) to add an application document
as a main enclosure to a letter.

Use the SMPImage function (page 3-88) to add an image block to a letter.

Use the SMPAddBlock function (page 3-91) to add a block to a letter.

SMPEndSave 3

The SMPEndSave function saves a letter to disk.

pascal OSErr SMPEndSave(WindowPtr window,

Boolean okToSave);

window The window containing the letter to be saved.

okToSave A Boolean value that you can use to cancel the process of saving a letter.
Specify false to cancel the save operation.

DESCRIPTION

After you have used the SMPBeginSave function to initiate the process of saving a letter
and have added content or a main enclosure to the letter by calling the
SMPAddContent, SMPAddBlock, or SMPAddMainEnclosure functions, you call the
SMPEndSave function to save the letter to disk. You use the saveType parameter in the
SMPBeginSave function to specify which File menu operation this represents: Save,
Save As, or Save A Copy. In any case, some version of the file remains open after the file
has been saved to disk.

To cancel a save operation any time after you call the SMPBeginSave function, call the
SMPEndSave function with the okToSave parameter set to false.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.
3-80 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You begin the process of saving a letter by calling the SMPBeginSave function
(page 3-77).

Call the SMPReadContent function (page 3-98) to read the standard interchange
contents of a letter.

Call the SMPGetMainEnclosureFSSpec function (page 3-103) to obtain the file system
specification for the main enclosure of a letter.

SMPBeginSend 3

You must call the SMPBeginSend function before you send a letter.

pascal OSErr SMPBeginSend(WindowPtr window,

OSType creator,

OSType fileType,

SMPSendOptionsPtr sendOptions,

Boolean *mustAddContent);

window The window containing the letter to be sent.

creator The creator for the file, which also becomes the letter’s creator for a new
letter. Use the same creator that you use for all of your application’s
documents.

filetype The file type, which also becomes the letter type for a new letter. Letters
containing only AOCE standard content should be of type 'lttr'.

sendOptions
The pointer to a send-options structure that was returned by the
SMPSendOptionsDialog function.

mustAddContent
A pointer to a Boolean value returned by the function that tells you
whether you have to add any blocks or enclosures to the letter. If this
parameter is set to false, call the SMPEndSave function immediately
without adding blocks or enclosures to the letter.

Parameter count Routine selector

$0002 $1270

noErr 0 No error
dskFulErr –34 Disk is full
kSMPNoMailerInWindow –1909 No mailer is in window
kSMPNoMatchingBegin –1913 SMPBeginSave was not called
Standard Mail Package Reference 3-81

C H A P T E R 3

Standard Mail Package
DESCRIPTION

When you send a letter, it is in letter file format rather than the document format
normally used by your application. A letter consists of a header, data blocks, and
enclosures. Every block has a creator and type, and every letter has a creator and type.

Before you send a letter, you should call the SMPSendOptionsDialog function to let
the user set the send options for that letter. To begin the process of sending a letter, you
call the SMPBeginSend function. This function prepares a letter file into which you can
place your document.

If the user elected to send the letter as a document, you can create a new file format for
the document that takes advantage of the block structure of a letter file, or you can save
the document in one of your application’s native formats to a temporary file on disk and
then add that file as the main enclosure to the letter. You should also add a standard
interchange format block to the letter. If the user elected to send the letter as an image,
you must also add an image block to the letter. The Standard Mail Package does not
actually send the letter until you call the SMPEndSend function.

If neither your application nor the user has changed the content of a received letter, the
SMPBeginSend function returns a value of false for the mustAddContent parameter.
In that case you can call the SMPEndSend function immediately to send the letter. If you
have changed the content of the letter, however, the mustAddContent parameter
returns true and you must build the letter (adding the appropriate combination of
blocks, main enclosure, standard interchange format block, and image block) just as if it
were a new letter. The Standard Mail Package handles enclosures added by the user.
Note that, if you make changes to the enclosed original letter, you invalidate any digital
signature.

IMPORTANT

Be sure to call the SMPContentChanged function whenever the user
changes the content of a letter. If you do not call the
SMPContentChanged function, then the SMPBeginSend function does
not know that the letter has been changed and won’t return true as the
value of mustAddContent. ▲

SPECIAL CONSIDERATIONS

Any time the user changes the content of a letter, you must call the
SMPContentChanged function immediately. The SMPBeginSend function needs this
information to operate correctly.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$000A $1267
3-82 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
RESULT CODES

SEE ALSO

Call the SMPSendOptionsDialog function (page 3-73) before calling the
SMPBeginSend function to let the user set send options.

If the user changes the content of a letter, you must call the SMPContentChanged
function (page 3-76) immediately.

When you have finished building your letter, you call the SMPEndSend function
(page 3-84) to send it. To cancel a send operation any time after you call the
SMPBeginSend function, call the SMPEndSend function with the okToSend parameter
set to false.

Letter file format is briefly discussed in “The Mailer Functions” beginning on page 3-4.

Use the SMPAddContent function (page 3-85) to add a standard interchange format
block to a letter.

Use the SMPAddMainEnclosure function page 3-90) to add an application document as
a main enclosure to a letter.

Use the SMPImage function (page 3-88) to add an image block to a letter.

Use the SMPAddBlock function (page 3-91) to add other blocks to a letter.

SMPPrepareToChange 3

The SMPPrepareToChange function checks whether the letter has any digital
signatures that might be invalidated if the user changes the content.

pascal OSErr SMPPrepareToChange(WindowPtr window)

window A pointer to the window containing the mailer.

DESCRIPTION

Before making a change in the content of a letter, call the SMPPrepareToChange
function. If the letter has any digital signatures that might be invalidated by the change,
the function displays a dialog box alerting the user and providing a chance to cancel the
change. If the user does not cancel the change, you should implement the change and
then call the SMPContentChanged function. If the user cancels the change, the function
returns the userCanceledErr result code.

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in window
kMSPCannotSendReceivedLetter –1914 Letter is received; cannot send
Standard Mail Package Reference 3-83

C H A P T E R 3

Standard Mail Package
SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

After changing the content of a letter, call the SMPContentChanged function
(page 3-76).

SMPEndSend 3

The SMPEndSend function sends a letter.

pascal OSErr SMPEndSend(WindowPtr window,

Boolean okToSend);

window The window containing the letter to be sent.

okToSend A Boolean value that you can use to cancel the process of sending a letter.
Specify false to cancel the send operation.

DESCRIPTION

After you have used the SMPBeginSend function to initiate the process of sending a
letter and have created the letter by calling some or all of the SMPAddContent,
SMPAddBlock, SMPImage, and SMPAddMainEnclosure functions, you call the
SMPEndSend function to send the letter.

To cancel a send operation any time after you call the SMPBeginSend function, call the
SMPEndSend function with the okToSend parameter set to false.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

Parameter count Routine selector

$0002 $1289

noErr 0 No error
userCanceledErr –128 User clicked Cancel in dialog box
kSMPNoMailerInWindow –1909 No mailer is in specified window
3-84 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You begin the process of sending a letter by calling the SMPBeginSend function
(page 3-81).

To read the standard interchange contents of a letter you call the SMPOpenLetter
function (page 3-94) and SMPReadContent function (page 3-98).

SMPAddContent 3

The SMPAddContent function adds a segment of a standard interchange format block to
a letter.

pascal OSErr SMPAddContent(WindowPtr window,

MailSegmentType segmentType,

Boolean appendFlag,

void *buffer,

unsigned long bufferSize,

StScrpRec *textScrap,

Boolean startNewScript,

ScriptCode script);

window The window containing the letter.

segmentType
A constant that indicates the type of data segment that you want to add to
the letter. Letter segments may be text, picture, sound, styled text, or
QuickTime movies. You can specify only one segment type in this
parameter each time you call the SMPAddContent function. It may be
any of the following constants:

kMailTextSegmentType
Text segment

kMailPictSegmentType
Picture segment

Parameter count Routine selector

$0002 $1271

noErr 0 No error
userCanceledErr –128 User clicked Cancel button
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPNoMatchingBegin –1913 SMPBeginSend was not called
Standard Mail Package Reference 3-85

C H A P T E R 3

Standard Mail Package
kMailSoundSegmentType
Sound segment

kMailStyledTextSegmentType
Styled text segment

kMailMovieSegmentType
Movie segment

The Standard Mail Package also defines another MailSegmentType
constant, kMailInvalidSegmentType, which you can use to initialize a
variable, for example, in a type-safe manner without indicating that a
valid segment has been passed.

appendFlag
A Boolean value that indicates whether you want the SMPAddContent
function to write the data in your buffer to a new segment or append it to
the current segment. Set this parameter to false when you first call the
SMPAddContent function. On subsequent calls to the function, set this
parameter to false if you want to start a new segment. Set this
parameter to true if you want to append the data in your buffer to the
segment currently being written by the SMPAddContent function.

buffer A pointer to the data you want to add to the letter.

bufferSize
The number of bytes of data you want to add to the letter.

textScrap A pointer to an StScrpRec structure that contains style information. You
must provide this style information when your buffer contains styled text.
Set this parameter to nil if you are not passing styled text data to the
function.

startNewScript
A Boolean value that indicates whether the text in your buffer uses a new
character set. Set this parameter to true each time you call the
SMPAddContent function to start a text segment. After that, set this
parameter to true only if the data in your buffer is in a different
character set than the data you previously provided to the function for
that segment. The function ignores this parameter when you set the
segmentType parameter to any value other than
kMailTextSegmentType or kMailStyledTextSegmentType.

script A value that indicates the character set (Roman, Arabic, Kanji, etc.) of the
data in your buffer. If you set the startNewScript parameter to true,
set this parameter to the code for the text segment’s character set. You
cannot use the values smSystemScript or smCurrentScript for this
parameter. The SMPAddContent function ignores this parameter when
you set the segmentType parameter to any value other than
kMailTextSegmentType or kMailStyledTextSegmentType.

DESCRIPTION

After you have called the SMPBeginSend or SMPBeginSave function, you can call the
SMPAddContent function to add standard interchange format data to the letter that is in
the window that you specify. The first time you call the function for a given letter, it
3-86 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
creates a new block and puts the data into the block. You then call the function
repeatedly until you have finished adding standard interchange format data to the letter.
Each time you call the SMPAddContent function, it adds data to that same block.

A standard interchange format block consists of data segments, each of a specific type.
You add one segment or a portion of a segment of data each time you call the
SMPAddContent function. The function adds the segments in the order that you
provide them. A single letter may contain more than one segment of a given type.

A text segment contains one or more script runs. A script run is a string of text in the
same character set. The SMPAddContent function can accommodate only one script at a
time. Therefore, if you want to create a segment that contains several script runs, you
must call this function once for each script run in the segment. Use the script
parameter to specify the character set of the script run. Set the startNewScript
parameter to true when you start a new text segment and to begin a new script run in
the current text segment. To append text to the current script run, set the
startNewScript parameter to false and the appendFlag parameter to true. If you
add a segment of styled text, you must provide the style information in the textScrap
parameter.

You cannot specify the values smSystemScript or smCurrentScript for the script
parameter. To obtain the system script, call the GetScriptManagerVariable function
with a selector of smSysScript. To obtain the current script, call the FontScript
function.

Because font numbers are local to a given Macintosh computer, the fonts originally used
in a letter might be different from those with the same font numbers on the receiving
computer. For this reason, the SMPAddContent function creates a font table that
associates a font name with each font number in the standard interchange format block
of the letter. When you receive a letter, you can use the SMPGetFontNameFromLetter
function to recover the names of the fonts originally used in a letter.

Once you begin creating a letter’s standard interchange format block, you must not call
other Standard Mail Package functions until you finish writing that block.

The data for picture segments must be in PICT format.

The data for sound segments must be in Audio Interchange File Format (AIFF).

The data for text and styled text segments must consist of 1-byte or 2-byte character
codes, depending on the value in the script parameter. For styled text you must also
provide a pointer to an StScrpRec structure in the textScrap parameter.

The data for QuickTime movie segments must be in the QuickTime movie format
('MooV').

ASSEMBLY LANGUAGE INFORMATION

Parameter count Routine selector

$000D $127A
Standard Mail Package Reference 3-87

C H A P T E R 3

Standard Mail Package
RESULT CODES

SEE ALSO

See “Summary of the Script Manager” at the end of the “Script Manager” chapter of
Inside Macintosh: Text, for a list of script code constants.

See Inside Macintosh: Imaging With QuickDraw for more information about PICT images.

See Inside Macintosh: Sound for more information about AIFF.

The StScrpRec structure is described in Inside Macintosh: Text in the chapter “TextEdit.”

The StGetScriptManagerVariable function and FontScript function are
described in Inside Macintosh: Text in the chapter “Script Manager.”

The SMPReadContent function is described on page 3-98.

You can use the SMPGetFontNameFromLetter function (page 3-102) to recover the
names of the fonts originally used in a letter.

Call the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a
letter. Call the SMPImage function (described next) to add an image to the letter. Use the
SMPAddBlock function (page 3-91) to add other blocks to a letter.

SMPImage 3

The SMPImage function adds an image of a document to a letter.

pascal OSErr SMPImage (WindowPtr window,

SMPDrawImageProcPtr drawImageProc,

long imageRefCon,

Boolean supportsColor);

window The window containing the letter.

drawImageProc
A pointer to your image-drawing routine. If you want to send a letter as
an image, you must provide a routine to draw the image. The procedure
declaration for this routine is described on page 3-123.

imageRefCon
A reference constant for your use. The function passes this constant to
your image-drawing routine.

noErr 0 No error
dskFulErr –34 Disk is full
memFullErr –108 Not enough room in heap zone
kSMPShouldNotAddContent –1903 You cannot add content to this letter
kSMPNoMailerInWindow –1909 No mailer is in specified window
3-88 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
supportsColor
A Boolean value that indicates whether the procedure pointed to by the
drawImageProc parameter is capable of drawing in color. The Standard
Mail Package provides a color graphics port to your image-drawing
routine only if you specify true for the supportsColor field and the
user has color QuickDraw.

DESCRIPTION

You can use the Standard Mail Package to send a letter as an image. You use the
SMPImage function to create an image from your document and add it to a letter. When
you call the SMPImage function, you provide a pointer to your drawing routine. The
SMPImage function calls the drawing routine to draw the image of your document.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The procedure declaration for your image-drawing routine is on page 3-123.

Mailers are described in “The Mailer Functions” beginning on page 3-4.

Call the SMPSendOptionsDialog function (page 3-73) to let the user set send options.

Call the SMPBeginSend function (page 3-81) to start the process of sending a letter that
contains a mailer.

Call the SMPAddMainEnclosure function (described next) to add a main enclosure to a
letter. Call the SMPAddContent function (page 3-85) to add standard interchange format
content to a letter. Use the SMPAddBlock function (page 3-91) to add other blocks to a
letter.

When you have finished building your letter, you call the SMPEndSend function
(page 3-84) to send it.

Parameter count Routine selector

$0002 $1282

noErr 0 No error
dskFulErr –34 Disk is full
memFullErr –108 Not enough room in heap zone
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-89

C H A P T E R 3

Standard Mail Package
SMPAddMainEnclosure 3

The SMPAddMainEnclosure function adds a main enclosure to a letter.

pascal OSErr SMPAddMainEnclosure(WindowPtr window,

const FSSpec *enclosure);

window The window containing the letter.

enclosure A pointer to a file system specification structure that identifies the file that
you want to enclose.

DESCRIPTION

When you are creating a letter, you can include a document in one of your application’s
native formats by first saving the document to disk and then calling the
SMPAddMainEnclosure function to add the document to the letter as a main enclosure.
If you must create a temporary file for this operation, create it in the Temporary Items
folder at the root level of the startup volume. The main enclosure is not listed as an
enclosure in the mailer.

SPECIAL CONSIDERATIONS

When you save the letter, the file system specification for the main enclosure changes so
that the FSSpec structure you specified in the enclosure parameter is no longer valid.
Use the SMPGetMainEnclosureFSSpec function to obtain the file system specification
of the main enclosure of a letter.

ASSEMBLY LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Call the SMPAddContent function (page 3-85) to add standard interchange format
content to a letter. Call the SMPImage function (page 3-88) to add an image to the letter.
Use the SMPAddBlock function (page 3-91) to add other blocks to a letter.

You can use the SMPGetMainEnclosureFSSpec function (page 3-103) to obtain the
FSSpec structure for the main enclosure of a letter.

Parameter count Routine selector

$0004 $127D

noErr 0 No error
fnfErr –43 File not found
memFullErr –108 Not enough room in heap zone
kSMPNoMailerInWindow –1909 No mailer is in specified window
3-90 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
The Temporary Items folder is described in the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.

SMPAddBlock 3

The SMPAddBlock function adds data to a block in a letter.

pascal OSErr SMPAddBlock(WindowPtr window,

const OCECreatorType *blockType,

Boolean append,

void *buffer,

unsigned long bufferSize,

MailBlockMode mode,

unsigned long offset);

window The window containing the letter.

blockType A pointer to a data structure that specifies the creator and type of the
block you want to add. You may specify any value in the msgCreator
field of the structure; usually your application signature. The msgType
field identifies the type of block. You can define your own block types to
serve your purposes. Apple Computer, Inc., reserves all block types
consisting entirely of lowercase letters.

append A Boolean value that indicates whether you want the SMPAddBlock
function to append the data in your buffer to the current block. Set this
parameter to false when you call the function to start a new block. If
you set this parameter to true, the function uses the mode and offset
parameters to determine where to start writing.

buffer A pointer to your data buffer.

bufferSize
The number of bytes of data to write to the block.

mode The mode in which the offset parameter is to be interpreted. The function
uses this field to determine whether to begin writing data relative to the
end of the last data written, to the beginning of the message, or to the end
of the block. See the discussion following these parameter descriptions for
details. The function ignores this parameter if you set the append
parameter to false.

offset An offset that the function uses when it calculates the starting point of the
write operation. Set this value to 0 when you start a new block. See the
following discussion for details. The function ignores this parameter if
you set the append parameter to false.
Standard Mail Package Reference 3-91

C H A P T E R 3

Standard Mail Package
DESCRIPTION

You call the SMPAddBlock function to write data into a block whose type you specify in
the blockType field.

You can write data to a block that is too large to be written all at once by setting the
append parameter to true after the first time you call the function and then calling the
function repeatedly until you have written the entire block.

The Standard Mail Package uses a mark to point to the current location within a block
that you are writing. After the SMPAddBlock function completes, the mark points to the
end of the last byte written.

You use the mode and offset parameters to specify the point in the block at which the
SMPAddBlock function starts writing. You can set the mode parameter to any one of the
following values:

enum {

kMailFromStart = 1,

kMailFromLEOB = 2,

kMailFromMark = 3

};

Constant descriptions

kMailFromStart
The function interprets the value in the offset parameter as an
offset from the beginning of the block. When you use this mode,
you cannot set the offset parameter to a negative value.

kMailFromLEOB The function interprets the value in the offset parameter as an
offset from the current end of the block. The offset must always be
negative and cannot extend beyond the beginning of the block.

kMailFromMark The function interprets the value in the offset parameter as an
offset from the current position of the mark. Use a negative offset
value to indicate a starting point prior to the current position of the
mark and a positive offset value to indicate a starting point
following the current position of the mark. You cannot specify a
negative offset that extends beyond the beginning of the block.

To use the SMPAddBlock function to write data in several pieces sequentially into a
block, call the function as many times as necessary, setting the mode parameter to
kIPMFromMark and the offset parameter to 0 each time.

You can overwrite data you have already written to a block but cannot modify a
completed block once you start a new block.

SPECIAL CONSIDERATIONS

Once you begin writing a block in a letter, you must finish writing the block, calling the
SMPAddBlock function as many times as necessary to complete the block before starting
another block or calling the SMPAddContent or SMPAddMainEnclosure functions.
3-92 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCECreatorType structure is described in “Creator Type Structure” on page 3-28.

Call the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a
letter. Call the SMPAddContent function (page 3-85) to add standard interchange format
content to a letter. Call the SMPImage function (page 3-88) to add an image to the letter.

Reading Mail 3

If you are retrieving mail using the Standard Mail Package, use the SMPOpenLetter
function (page 3-94) to gain access to an existing letter. If the letter is in the In Tray, you
can use the use the SMPGetLetterInfo function before you call SMPOpenLetter. The
SMPGetLetterInfo function returns the name and type of the letter. Once you have
opened a letter in the In Tray, you can use the SMPGetNextLetter function (page 3-97)
to open the next or preceding letter in the tray.

While a letter is open, you can examine the standard interchange contents of the letter by
calling the SMPReadContent function (page 3-98) and can examine the letter’s main
enclosure by calling the SMPGetMainEnclosureFSSpec function (page 3-103). You can
use the SMPGetFontNameFromLetter function (page 3-102) to determine the original
fonts used in the standard interchange content block of a letter. You can use the
SMPEnumerateBlocks function (page 3-104) to list all the blocks in a letter and the
SMPReadBlock function (page 3-106) to read any block in a letter, including an image
block.

SMPGetLetterInfo 3

The SMPGetLetterInfo function returns information about a letter in the In Tray.

pascal OSErr SMPGetLetterInfo(LetterSpec *mailboxSpec,

SMPLetterInfo *info);

mailboxSpec
A pointer to a letter-specification structure. The LetterSpec structure is
defined on page 3-35.

Parameter count Routine selector

$000C $127F

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-93

C H A P T E R 3

Standard Mail Package
info A pointer to a letter information structure. The SMPLetterInfo
structure is defined on page 3-27.

DESCRIPTION

The SMPGetLetterInfo function lets you determine the creator and letter type of a
letter in the In Tray, together with the subject and sender of the letter. You can use this
information to title windows or in a dialog box if you cannot open the letter for some
reason.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SMPOpenLetter function (described next) to open a letter for reading.

SMPOpenLetter 3

The SMPOpenLetter function opens a letter so you can read the contents.

pascal OSErr SMPOpenLetter(const LetterDescriptor *letter,

WindowPtr window,

Point upperLeft,

Boolean canContract,

Boolean initiallyExpanded,

const PrepareMailerForDrawingProcPtr

 prepareMailerForDrawingCB,

long clientData);

Parameter count Routine selector

$0004 $128A

noErr 0 No error
kSMPMailboxNotFound –1904 Cannot find mailbox
3-94 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
letter A pointer to the letter descriptor of the letter you want to open. The letter
descriptor specifies whether the letter is on disk or in the In Tray and
provides the file system specification structure or letter-specification
structure of the letter.

window The window in which you want to display the opened letter. This
window must not contain a mailer at the time you call the
SMPOpenLetter function.

upperLeft The upper-left corner of the mailer in your window’s local coordinates.
This position is normally (0, 0).

canContract
A Boolean value that specifies whether it should be possible to contract
and expand the mailer. Specify true if you want the mailer to have this
ability.

initiallyExpanded
A Boolean value that indicates whether you want the mailer displayed
initially in its expanded or contracted state. Specify true to display the
mailer initially expanded.

prepareMailerForDrawingCB
A pointer to your drawing-preparation function. If you change the clip
region, coordinates, or other aspects of your window’s graphics port, you
must provide this function to restore the graphics port to a standard state
so that the Standard Mail Package can draw a mailer in your window. The
drawing-preparation function is described on page 3-122. Specify nil for
this parameter if you are not providing a drawing-preparation function.

clientData
Reserved for your use. The SMPOpenLetter function passes this value
unaltered to your callback routine.

DESCRIPTION

You call the SMPOpenLetter function when you receive an Apple event to open a letter
or when the user chooses the Open command. This function displays a mailer in the
window you specify and opens the letter so you can read its contents.

The user can double-click an icon in the In Tray to open a letter or double-click the icon
for a letter file on disk. Your Open item in the File menu should also open letter files on
disk. There is no way to open a letter in the In Tray from a menu in your application; the
user must use the Finder to open the letter. The Finder determines the owner of the letter
and sends an 'aevt' 'odoc' Apple event to the appropriate application, which can
then open it. The Apple event contains the letter-specification structure, which you put
in the letter descriptor and pass to the SMPOpenLetter function. If the user chooses the
Open command to open the letter, you can get the file system specification structure
from the Standard File Package.

Whether a letter is on disk or not, the Standard Mail Package treats the letter’s
enclosures as if they are stored in a folder in an external file system. That folder contains
all of the enclosures added by the user through the mailer or by the
SMPAddAttachment function, and might contain the letter’s main enclosure, if any.
Standard Mail Package Reference 3-95

C H A P T E R 3

Standard Mail Package
(You can use the SMPAddMainEnclosure function to add a main enclosure to a letter.
The main enclosure is not displayed in the Enclosures field of a mailer.)

The Standard Mail Package displays the enclosures added by the user in the Enclosures
field of the mailer and handles the user interface for those enclosures. To obtain the file
system specification structure of the main enclosure to a letter, use the
SMPGetMainEnclosureFSSpec function. Use the SMPGetListItemInfo function to
get the file system specification for the enclosures added by the user.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The LetterDescriptor data type is described in “Letter Descriptor” on page 3-27.

Use the SMPGetMainEnclosureFSSpec function (page 3-103) to obtain the file system
specification structure of the main enclosure of a letter.

Use the SMPGetListItemInfo function (page 3-113) to get the file system specification
for the enclosures added by the user.

You can use the SMGetComponentInfo function (page 3-111) to obtain the file system
specification structure of the enclosures folder for the letter.

You can use the SMPGetNextLetter function (described next) to determine which
letter in the In Tray is the oldest unread letter.

Parameter count Routine selector

$000C $1268

noErr 0 No error
kSMPMailerAlreadyInWindow –1911 Specified window has a mailer
kMailInvalidSeqNum –15041 Invalid letter sequence number
3-96 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
SMPGetNextLetter 3

The SMPGetNextLetter function returns the letter descriptor of the In Tray item to be
opened next.

pascal OSErr SMPGetNextLetter(

 OSType *typesList,

short numTypes,

LetterDescriptor *adjacentLetter);

typesList A pointer to a list of letter types and file types. The function returns letter
descriptors only for items with the letter types and file types specified in
this list. Letters containing only AOCE standard content are of type
'lttr'. Use the wildcard letter type 'ltr*' if you want the function to
return letter descriptors for all the items in the In Tray.

numTypes The number of letter types and file types in the types list pointed to by the
typesList parameter.

adjacentLetter
The letter descriptor returned by the function identifying the next item to
open.

DESCRIPTION

The letter descriptor returned by the SMPGetNextLetter function is that of the oldest
unread letter in the In Tray. You can use this function to open letters in age sequence.

You can use the typesList parameter to specify what letter types and file types the
function should include when it returns a letter descriptor.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0008 $1286

noErr 0 No error
kSMPMailboxNotFound –1904 Cannot find mailbox
kSMPNoNextLetter –1905 There is no next letter in the In Tray
Standard Mail Package Reference 3-97

C H A P T E R 3

Standard Mail Package
SEE ALSO

Use the SMPOpenLetter function (page 3-94) to open a letter for reading.

The letter descriptor (LetterDescriptor data type) is described in “Letter Descriptor”
on page 3-27.

SMPReadContent 3

The SMPReadContent function reads a segment from a letter’s standard interchange
format block.

pascal OSErr SMPReadContent(WindowPtr window,

MailSegmentMask segmentTypeMask,

void *buffer,

unsigned long bufferSize,

unsigned long *dataSize,

StScrpRec *textScrap,

ScriptCode *script,

MailSegmentType *segmentType,

Boolean *endOfScript,

Boolean *endOfSegment,

Boolean *endOfContent,

long *segmentLength,

long *segmentID);

window The window containing the letter.

segmentTypeMask
The type of segment that you want to retrieve. You can request a
combination of segment types by performing a bitwise OR operation on
the following constants:

kMailTextSegmentMask
Text segment

kMailPictSegmentMask
Picture segment

kMailSoundSegmentMask
Sound segment

kMailStyledTextSegmentMask
Styled text segment

kMailMovieSegmentMask
Movie segment

You can request any combination of segment types, except that you
cannot combine the kMailTextSegmentMask and
kMailStyledTextSegmentMask constants in the same request. If you
request styled text segments, the function returns both plain text and
3-98 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
styled text segments. If you request plain text segments, it returns any
plain text segments that are in the letter and also converts styled text
segments to plain text segments and returns them to you.

The SMPReadContent function reads this parameter only the first time
you call it for a given letter. The next and subsequent times you call this
function for the same letter, it ignores this parameter. The function returns
data of a single segment type each time you call it.

buffer A pointer to the buffer you are providing to hold the data read from the
letter.

bufferSize
The size of the buffer you are providing.

dataSize A pointer to the amount of data returned in your buffer.

textScrap A pointer to an StScrpRec structure. You must allocate this pointer. Set
the first field of this structure (scrpNStyles) to the number of styles
your buffer can hold. When the function writes styled text to your buffer,
it returns style information in this structure and sets the scrpNStyles
field to the actual number of styles returned.

script A pointer to the script code, which indicates the character set (Roman,
Arabic, Kanji, etc.) of the text that the function placed in your buffer. If the
function placed nontext data in your buffer, it does not set this parameter
and you should ignore it.

segmentType
A constant that indicates the type of data segment that the
SMPReadContent function returned in your buffer. It may be any of the
following constants:

kMailTextSegmentType
Text segment

kMailPictSegmentType
Picture segment

kMailSoundSegmentType
Sound segment

kMailStyledTextSegmentType
Styled text segment

kMailMovieSegmentType
Movie segment

The Standard Mail Package also defines another MailSegmentType
constant, kMailInvalidSegmentType, which you can use to initialize a
variable, for example, in a type-safe manner without indicating that a
valid segment has been passed.

endOfScript
A pointer to a Boolean value returned by the function that indicates
whether the text placed in your buffer is the end of a script run. A script
run is a sequence of text in a single character set. If there is more text in
the current script run, the function sets this parameter to false.
Standard Mail Package Reference 3-99

C H A P T E R 3

Standard Mail Package
endOfSegment
A pointer to a Boolean value returned by the function that indicates
whether you have received all of the data in the segment. The
SMPReadContent function sets this parameter to true when it has
returned all of the data in a given segment. It sets this parameter to
false when there is more data in that segment to return.

endOfContent
A pointer to a Boolean value returned by the function that indicates if
there is more data in the standard interchange format block of the letter to
be read. If the SMPReadContent function has returned the entire
contents of the block, it sets the endOfContent parameter to true;
otherwise, it sets this parameter to false.

segmentLength
A pointer to the size of the current segment. The SMPReadContent
function returns a valid value for this parameter the first time you call the
function to read a particular segment.

segmentID A pointer to the ID of this segment. If you specify 0 for this parameter, the
SMPReadContent function reads the next segment sequentially,
returning the segment ID in this parameter. If you specify a value,
SMPReadContent reads the segment with the specified ID. Note that this
number is not an index number; it is an ID that is unique for the
beginning of each segment. The number returned by the function in this
parameter when you continue reading in the middle of a segment is
undefined. You must set this parameter to 0 the first time you call the
function.

DESCRIPTION

You call the SMPReadContent function to read some or all of a letter’s standard
interchange format block. You must call the SMPOpenLetter function before the first
time you call the SMPReadContent function for a given letter. You then call the
SMPReadContent function repeatedly to read all of the segments of the types you
specified the first time you called the function. Once the SMPReadContent function has
returned true for the endOfContent parameter, you must call the SMPOpenLetter
function again before you can call the SMPReadContent function again.

The SMPReadContent function examines the value of the segmentTypeMask
parameter the first time you call it for a given letter and uses that same value until you
start the sequence over by calling the SMPOpenLetter function again. The
SMPReadContent function returns segments in the order that they are stored in the
letter.

If you request styled text segments, the function returns both plain text and styled text
segments. If you request plain text segments, it returns any plain text segments that are
in the letter and also converts styled text segments to plain text segments and returns
them to you.

A text segment contains one or more script runs. A script run is a string of text in the
same character set. When the SMPReadContent function returns text data (that is, when
the function sets the segmentType parameter to kMailTextSegmentType), it
3-100 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
indicates the character set by setting the script parameter. The function identifies the
end of a script run by setting the endOfScript parameter to true.

The SMPReadContent function returns, in the dataSize parameter, a pointer to the
actual number of bytes written to your buffer. If your buffer is not large enough to hold
all of the data in a segment, the function sets the endOfSegment parameter to false.
You can call the function again to continue reading data from that segment.

If a single segment of styled text contains more styles than your StScrpRec structure
can hold, the SMPReadContent function stops writing data to your buffer and sets the
endOfSegment parameter to false. You can use the dataSize parameter to
determine how many bytes of text were written to your buffer. The next time to call the
function, it continues writing text from the same segment into your buffer and putting
text styles in your StScrpRec structure. In this case, the offsets in the scrpStartChar
field of the script table of the StScrpRec structure apply only to the data currently in
your data buffer, not to the offsets in the original segment in the letter.

For example, suppose that the next segment in the letter to be read is a styled text
segment that is 120 bytes long and contains 12 different styles. The 11th style starts at an
offset of 90 (that is, at the 91st byte of the segment). Suppose further that your text buffer
is 200 bytes but your StScrpRec structure can hold only 10 styles. In this case, the
SMPReadContent function stops writing data to your buffer after it has placed 10 styles
in your StScrpRec structure. Because these 10 styles applied to the first 90 bytes of text,
the dataSize parameter indicates that 90 bytes of data were written to your buffer and
the endOfSegment parameter is false.

The next time you call the SMPReadContent function, it writes the last 30 bytes of text
into your buffer and puts the last two styles into your StScrpRec structure. It returns a
value of 2 in the scrpNStyles field of your StScrpRec structure and sets the
endOfSegment parameter to true. In this case, the first offset in the scrpStartChar
field of the script table of the StScrpRec structure is 0, indicating that the first style in
the text scrap starts with the first byte of text currently in your buffer. (The offset is not
90, as it would have been for this portion of text had your StScrpRec structure been
able to hold all of the styles at once.)

The data for picture segments is in PICT format.

The data for sound segments is in Audio Interchange File Format (AIFF).

The data for text and styled text segment consists of 1-byte or 2-byte character codes,
depending on the value in the script parameter. For styled text the function also
returns a pointer to an StScrpRec structure in the textScrap parameter.

The data for QuickTime movie segments must be in the QuickTime movie format
('MooV').

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0019 $127B
Standard Mail Package Reference 3-101

C H A P T E R 3

Standard Mail Package
RESULT CODES

SEE ALSO

See Inside Macintosh: Imaging With QuickDraw for more information about PICT images.

See Inside Macintosh: Sound for more information about AIFF.

The StScrpRec structure is described in the chapter “TextEdit” of Inside Macintosh: Text.

SMPGetFontNameFromLetter 3

The SMPGetFontNameFromLetter function converts the font numbers in the standard
interchange format block of a letter into font names.

pascal OSErr SMPGetFontNameFromLetter(WindowPtr window,

short fontNum,

str255 fontName,

Boolean doneWithFontTable);

window The window containing the letter.

fontNum The font number you read from the text scrap (the TextEdit structure)
for the text.

fontName The name of the font associated with the font number.

doneWithFontTable
A Boolean value that you set to indicate that this is the last request for a
font name.

DESCRIPTION

You can use the SMPGetFontNameFromLetter function to recover the names of the
fonts originally used in a letter. Because font numbers are local to a given Macintosh
computer, the fonts originally used in a received letter might be different from those with
the same font numbers on the local computer. For this reason, when the Standard Mail
Package sends a letter, it creates a font table that associates a font name with each font
number in the standard interchange format block of the letter.

To recover the font names, you must first call the SMPReadContent function to read the
standard content block of the letter, and then read the font numbers from the
StScrpRec structure associated with each styled-text segment in that block. Then you
can call the SMPGetFontNameFromLetter function once for each font number.

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
kMailMalformedContent –15061 A mailed structure is malformed
3-102 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Set the doneWithFontTable parameter to true the last time you call the
SMPGetFontNameFromLetter function. Doing so signals the Standard Mail Package to
release the memory it has reserved for the font table.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The StScrpRec structure is described in the chapter “TextEdit” of Inside Macintosh: Text.

SMPGetMainEnclosureFSSpec 3

The SMPGetMainEnclosureFSSpec function returns the file specification of the main
enclosure file for a letter.

pascal OSErr SMPGetMainEnclosureFSSpec (WindowPtr window,

FSSpec *enclosureDir);

window The window containing the letter.

enclosureDir
A pointer to the file system specification structure of the main enclosure.

DESCRIPTION

You can call the SMPGetMainEnclosureFSSpec function to get the file system
specification for the main enclosure file for a letter. The main enclosure contains the
letter’s content, usually in your application’s native document format. You can then use
standard File Manager routines to open and read the main enclosure. The file system
specification returned by this function is valid until the mailer is disposed of or until the
next time the user saves the letter. You must call the SMPOpenLetter function before
you call the SMPGetMainEnclosureFSSpec function.

If the letter does not contain a main enclosure, the function returns the result code
fnfErr (file not found).

Parameter count Routine selector

$0006 $127C

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-103

C H A P T E R 3

Standard Mail Package
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a
letter.

File Manager routines are described in Inside Macintosh: Files.

SMPEnumerateBlocks 3

The SMPEnumerateBlocks function returns information about the blocks in a letter.

pascal OSErr SMPEnumerateBlocks (WindowPtr window,

unsigned short startIndex,

void *buffer,

unsigned long bufferSize,

unsigned long *dataSize,

unsigned short *nextIndex,

Boolean *more);

window The window containing the letter.

startIndex
The sequence number of the next block for which you want the function
to return information. Sequence numbers start with 1. When you call the
SMPEnumerateBlocks function and there is insufficient space in the
buffer you provide to hold information about all of the remaining blocks,
the function returns, in the nextIndex parameter, the sequence number
of the next block. Use that number as the value of the startIndex
parameter the next time you call the function.

buffer A pointer to a buffer you provide to hold the information returned by the
function. The block information is in the form of a count byte, indicating
the number of blocks in the letter, followed by a block information
structure for each block.

bufferSize
The length, in bytes, of the buffer you are providing.

Parameter count Routine selector

$0004 $127E

noErr 0 No error
fnfErr –43 File not found
kSMPNoMailerInWindow –1909 No mailer is in specified window
3-104 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
dataSize The address at which the function places the number of bytes written to
your buffer.

nextIndex The address at which the function places the sequence number of the first
block whose information did not fit into your buffer. The function sets
this field when your buffer is too small to hold all the information you
requested. If there is no more information to return, the function sets the
sequence number to 0.

more A Boolean value returned by the function indicating whether there is
more block information to be returned. If your buffer is too small to hold
all of the information that you requested, the SMPEnumerateBlocks
function sets this parameter to true and returns, in the nextIndex
parameter, the sequence number of the next item to be returned.

DESCRIPTION

You can use the SMPEnumerateBlocks function to determine the number of blocks that
are contained in a letter and each block’s type and size. You can use this information to
read specific blocks in the letter. You must call the SMPOpenLetter function before the
first time you call the SMPEnumerateBlocks function for a given letter.

Apple Computer, Inc., reserves all block types that consist of all lowercase letters for its
own use. Use the SMPReadBlock function to read image blocks and blocks of types that
you define. Use the SMPReadContent function to read the standard interchange format
block.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SMPReadBlock function (described next) to read the contents of a block.

Use the SMPReadContent function (page 3-98) to read the standard interchange format
block in a letter.

Parameter count Routine selector

$000D $1281

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-105

C H A P T E R 3

Standard Mail Package
SMPReadBlock 3

The SMPReadBlock function reads a block from a letter that you specify.

pascal OSErr SMPReadBlock (WindowPtr window,

const OCECreatorType *blockType,

unsigned short blockIndex,

void *buffer,

unsigned long bufferSize,

unsigned long dataOffset,

unsigned long *dataSize,

Boolean *endOfBlock,

unsigned long *remaining);

window The window containing the letter.

blockType A pointer to a structure that specifies the creator and the type of the block
that you want to read.

blockIndex
The relative position of the block of type blockType that you want to
read. To read all blocks of a specific block type, set this field to 1 the first
time you call the SMPReadBlock function and increment it by 1 each
subsequent time you call the function until you have read all blocks of
that type in the letter.

buffer A pointer to your data buffer. The SMPReadBlock function writes the
information that you request into your buffer and sets the dataSize field
to the number of bytes written.

bufferSize
The length, in bytes, of the buffer you are providing.

dataOffset
The offset relative to the beginning of the block of the byte at which you
want the SMPReadBlock function to begin reading. Set this field to 0 to
read from the beginning of the block.

dataSize A pointer to the number of bytes written to your buffer.

endOfBlock
A pointer to a Boolean value that indicates if the SMPReadBlock function
has reached the end of the block. If the buffer that you provide is not large
enough to contain the data remaining in the block, the SMPReadBlock
function sets this parameter to false. You can call the function again
with an updated value in the dataOffset parameter to retrieve
additional data.

remaining A pointer to the number of bytes of data remaining in the block. You can
use the value returned by this parameter to adjust the size of your data
buffer before the next time you call the function. When the function sets
the endOfBlock parameter to true, it sets the number of bytes
remaining to 0.
3-106 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
DESCRIPTION

You call the SMPReadBlock function to read data from a specific block in a letter. You
identify the block that you want to read by the values of the blockType and
blockIndex parameters.

You can use this function to read an image block (a block with creator type 'apml' and
block type 'imag') or any block of a type you define.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPEnumerateBlocks function (page 3-104) to list the block types and
sizes of blocks in a letter.

The OCECreatorType data structure is described in “Creator Type Structure” on
page 3-28.

The section “Image Block Information Structure” on page 3-28 describes how to read an
image block.

Printing Mailers 3

If you are printing or imaging a letter, you should print or image the mailers as cover
pages. You use the SMPPrepareCoverPages function (described next) to determine the
total number of cover pages and the SMPDrawNthCoverPage function (page 3-108) to
draw each cover page.

SMPPrepareCoverPages 3

The SMPPrepareCoverPages function prepares cover pages for a letter and returns the
number of cover pages that are needed to print all of the mailers for the letter.

pascal OSErr SMPPrepareCoverPages(windowPtr window,

short *pageCount);

Parameter count Routine selector

$0012 $1280

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-107

C H A P T E R 3

Standard Mail Package
window The window for which you want the number of cover pages.

pageCount A pointer to the number of cover pages necessary to print all the mailers
in the specified window.

DESCRIPTION

When you print or image a letter, you can print or image the mailers as cover pages. You
must call the SMPPrepareCoverPages function from within your printing or imaging
routine to prepare the cover pages and to determine the number of cover pages before
calling the SMPDrawNthCoverPage function.

SPECIAL CONSIDERATIONS

The SMPPrepareCoverPages function makes a number of calculations that are used
by the SMPDrawNthCoverPage function. You must make sure that the mailer does not
change between the time you call these two functions.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You call the SMPDrawNthCoverPage function, described next, to draw a cover page to
the current graphics port.

SMPDrawNthCoverPage 3

The SMPDrawNthCoverPage function draws a cover page for a letter.

pascal OSErr SMPDrawNthCoverPage(WindowPtr window,

short pageNumber,

Boolean doneDrawingCoverPages);

Parameter count Routine selector

$0004 $1264

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
3-108 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
window A pointer to the window for which you want to draw a cover page.

pageNumber
The number of the cover page you want to print.

doneDrawingCoverPages
A Boolean value that you set to true when you call the function for your
last cover page. Doing so allows the Standard Mail Package to release the
memory that it uses for drawing cover pages.

DESCRIPTION

Before you print or image a letter, you should include the mailers for that letter as cover
pages. The SMPDrawNthCoverPage function draws or images one cover page. You
must use the SMPPrepareCoverPages function first to prepare the cover pages and to
determine the total number of cover pages for a given letter. You call these functions
from within your drawing or imaging routine, and they draw to whatever graphics port
you provide. You can use these routines for printing, preparing an image of your letter to
be sent as electronic mail, or for display on the screen.

SPECIAL CONSIDERATIONS

The SMPDrawNthCoverPage function uses a number of calculations that are made by
the SMPPrepareCoverPages function. You must make sure that the mailer does not
change between the time you call these two functions.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SMPPrepareCoverPages function is described on page 3-107.

For the sequence of routines you must call to image a letter, see the description of the
image-drawing callback routine on page 3-123.

Parameter count Routine selector

$0004 $1265

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
Standard Mail Package Reference 3-109

C H A P T E R 3

Standard Mail Package
Getting and Setting Information in the Mailer 3

You can use the functions in this section to determine the contents of the fields of a
mailer and to change the information in those fields without user interaction.

The SMPGetListItemInfo function (page 3-113) returns information from the
Recipients or Enclosures fields of any mailer. The SMPGetComponentInfo function
(page 3-111) returns information from any other field. Before calling either of these
functions, you call the SMPGetComponentSize function (described next) to determine
the size of the buffer to allocate.

You can put information into the fields of a mailer with the functions SMPSetSubject
(page 3-116), SMPSetFromIdentity (page 3-117), SMPAddAddress (page 3-118), and
SMPAddAttachment (page 3-119).

SMPGetComponentSize 3

The SMPGetComponentSize function returns the size of the buffer that would be
required to hold all of the information in a specific field of the mailer you specify.

pascal OSErr SMPGetComponentSize(WindowPtr window,

unsigned short whichMailer,

SMPMailerComponent whichField,

unsigned short *size);

window The window containing the mailer from which you want information.

whichMailer
The sequence number of the mailer from which you want information.
The original mailer for the letter is number 1, and each forwarding mailer
is numbered sequentially.

whichField
The field from which you want to extract the information.

size A pointer to the number of bytes of data in the field you specified. For all
fields except the Recipients and Enclosures fields, you should allocate a
buffer of this size and call the SMPGetComponentInfo function to obtain
the contents of that field. The Recipients and Enclosures fields might
contain more data than it is practical to retrieve all at once; see the
description of the SMPGetListItemInfo function (page 3-113) for more
information.

DESCRIPTION

The SMPGetComponentSize function returns the number of bytes of data in any of the
fields in a mailer. You specify which field by using one of the following constants for the
whichField parameter: kSMPFrom, kSMPTo, kSMPRegarding, kSMPSendDateTime,
or kSMPAttachments.
3-110 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
If you specify any other value for the whichField parameter, the function returns the
kSMPIllegalComponent result code.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to get the total number of
mailers for a given letter.

Use the SMPGetComponentInfo function (described next) to get data from any field
except the Recipients and Enclosures fields. Use the SMPGetListItemInfo function
(page 3-113) to get data from the Recipients and Enclosures fields.

All possible values for the SMPMailerComponent data type are shown on page 3-32.

SMPGetComponentInfo 3

The SMPGetComponentInfo function returns information from the From, Subject, and
Sent fields of a mailer.

pascal OSErr SMPGetComponentInfo(WindowPtr window,

unsigned short whichMailer,

SMPMailerComponent whichField,

void *buffer);

window The window containing the mailer from which you want information.

whichMailer
The sequence number of the mailer from which you want information.
The original mailer for the letter is number 1, and each forwarding mailer
is numbered sequentially.

Parameter count Routine selector

$0007 $1277

noErr 0 No error
paramErr –50 Error in user parameter list
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPIllegalComponent –1918 Illegal value for whichField parameter
Standard Mail Package Reference 3-111

C H A P T E R 3

Standard Mail Package
whichField
The field from which you want to extract the information.

buffer A pointer to a buffer you provide into which the function places the
information you requested. Use the SMPGetComponentSize function to
determine what size to make this buffer.

DESCRIPTION

The SMPGetComponentInfo function returns information from a mailer. You specify
which field by using one of the following constants for the whichField parameter:
kSMPFrom (for the From field), kSMPRegarding (for the Subject field), or
kSMPSendDateTime (for the Sent field).

If you specify any other value for the whichField parameter, the function returns the
kSMPIllegalComponent result code.

If you request information from the Subject field, then the function returns an RString
structure containing the text of the field.

If you request information from the From field of a draft mailer, the function returns an
AuthIdentity structure identifying the sender, followed by an RString structure
containing the text in the From field. If you request information from the From field of a
received mailer, the function returns an OCEPackedRecipient structure containing the
address of the sender. Only the top mailer in a mailer set can be a draft mailer; use the
hasBeenReceived field of the SMPMailerState structure to determine whether the
top mailer has been received.

If you request information from the Date field of the mailer, then the function returns a
MailTime structure. The time is defined with respect to the local computer that records
it. The offset field in the MailTime structure corrects UTC time (also known as
Greenwich Mean Time) for the local time zone. The offset field is in seconds; it is
positive if east of Greenwich and negative if west of Greenwich.

typedef struct MailTime {

UTCTime time; /* current UTC (GMT) time */

UTCOffset offset; /* in seconds from GMT */

};

typedef struct MailTime MailTime;

typedef unsigned long UTCTime; /* seconds since 1/1/1904 */

typedef long UTCOffset; /* correct for local time */

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.
3-112 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to get the total number of
mailers for a given letter and to determine if the top mailer has been received.

Use the SMPGetComponentSize function (page 3-110) to determine the size of the
buffer to provide. Use the SMPGetListItemInfo function (described next) to get data
from the Recipients and Enclosures fields.

All possible values for the SMPMailerComponent data type are shown on page 3-32.

SMPGetListItemInfo 3

The SMPGetListItemInfo function returns information from the Recipients or
Enclosures fields of a mailer.

pascal OSErr SMPGetListItemInfo(WindowPtr window,

unsigned short whichMailer,

SMPMailerComponent whichField,

void *buffer,

unsigned long bufferLength,

unsigned short startItem,

unsigned short *itemCount,

unsigned short *nextItem,

Boolean *more);

window The window containing the mailer from which you want information.

whichMailer
The sequence number of the mailer from which you want information.
The original mailer for the letter is number 1, and each forwarding mailer
is numbered sequentially.

whichField
The field from which you want information; either kSMPAttachments or
kSMPTo.

Parameter count Routine selector

$0007 $1278

noErr 0 No error
paramErr –50 Error in user parameter list
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPIllegalComponent –1918 Illegal value for whichField parameter
Standard Mail Package Reference 3-113

C H A P T E R 3

Standard Mail Package
buffer A pointer to a buffer you provide to hold the information returned by the
function.

bufferLength
The length, in bytes, of the buffer you are providing.

startItem The sequence number of the first address or enclosure that the function
should return. Sequence numbers start with 0. When you call the
SMPGetListItemInfo function and there is insufficient space in the
buffer you provide to hold all of the remaining items, the function
returns, in the nextItem parameter, the sequence number of the next
item. Use that number for the startItem parameter the next time you
call the function. If there is insufficient space in the buffer to hold even
one item, the number the function returns in the nextItem parameter is
the same as the number you put in the startItem parameter. In that
case, you must increase the buffer size before calling the function again.

itemCount A pointer to the number of items that the function has placed in the
buffer. If the buffer is too small to hold the item you specify in the
startItem parameter, then the itemCount parameter returns 0, and the
more parameter returns true. If you specify nil for the buffer
parameter and 0 for the bufferLength parameter, the itemCount
parameter returns a pointer to the total number of items in the mailer
field.

nextItem A pointer to the sequence number of the next item to be returned. If the
more parameter returns true, set the startItem parameter to the
number returned in the nextItem parameter and call the function again.

more A pointer to a Boolean value returned by the function indicating whether
there is more information to be returned. If your buffer was not large
enough to hold all of the requested data, the function sets this parameter
to true and returns, in the nextItem parameter, the sequence number of
the next item to be returned.

DESCRIPTION

Before you call the SMPGetListItemInfo function, call the SMPGetComponentSize
function with a value of kSMPTo or kSMPAttachments for the whichField parameter.
The SMPGetComponentSize function returns the total number of bytes of storage space
required to hold all of the information you requested. You can then allocate a buffer to
hold the data returned by the SMPGetListItemInfo function. If you can’t (or don’t
want to) provide a buffer large enough to hold all of the information at once, you can
allocate a smaller buffer.

If you cannot allocate a buffer large enough to hold all of the items at once, the function
returns the sequence number of the next item in the nextItem parameter and it returns
true for the more parameter. If the buffer is not large enough to hold even one item, the
sequence number returned in the nextItem parameter is the same as the number you
passed in the startItem parameter. You can then increase the size of your buffer if
necessary, set the startItem parameter to the number just returned in the nextItem
parameter, and call the function again.

You can specify either kSMPTo or kSMPAttachments for the whichField parameter.
3-114 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
If you request information from the Recipients field, for each address the function
returns a short value indicating the type of address followed by an
OCEPackedRecipient structure containing the address. The address type can be any
of the following values:

enum {

kSMPToAddress = kMailToBit,

kSMPCCAddress = kMailCcBit,

kSMPBCCAddress = kMailBccBit

};

typedef MailAttributeID SMPAddressType;

If you request information from the Enclosures field, the function returns a file system
specification structure (FSSpec data type) identifying the letter’s enclosure folder. You
can then use File Manager routines to determine the contents of that folder.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to get the total number of
mailers for a given letter.

Use the SMPGetComponentSize function (page 3-110) to determine the size of the
buffer to provide.

Use the SMPGetComponentInfo function (page 3-111) to get data from mailer fields
other than the Recipients and Enclosures fields.

Parameter count Routine selector

$0010 $1279

noErr 0 No error
paramErr –50 Error in user parameter list
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPIllegalComponent –1918 Illegal value for whichField parameter
Standard Mail Package Reference 3-115

C H A P T E R 3

Standard Mail Package
SMPSetSubject 3

The SMPSetSubject function specifies the subject string for the top mailer in the
window you specify.

pascal OSErr SMPSetSubject(WindowPtr window,

const RString *text);

window The window containing the mailer.

text A pointer to the subject string you want to place in the mailer.

DESCRIPTION

The Standard Mail Package provides a user interface that lets a user enter a subject string
in a mailer. You can use the SMPSetSubject function to set the subject string directly
from your application. You can use this function, for example, to place an initial, default
subject string in the subject field of a new mailer.

The SMPSetSubject function sets only the string in the most recent mailer for the
window you specify, and then only if it is a draft mailer (that is, if it is not a received
mailer). You can use the hasBeenReceived field of the SMPMailerState structure (a
parameter of the SMPGetMailerState function) to determine whether the mailer is a
draft mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to determine if the top
mailer is for a received letter.

Parameter count Routine selector

$0004 $126B

noErr 0 No error
paramErr –50 Error in user parameter list
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPMailerUneditable –1912 Mailer cannot be edited
kSMPSubjectTooBig –1925 Subject string exceeds 127 characters
3-116 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
SMPSetFromIdentity 3

The SMPSetFromIdentity function sets the authentication identity for the sender of a
letter.

pascal OSErr SMPSetFromIdentity(WindowPtr window,

AuthIdentity from);

window The window containing the mailer.

from The authentication identity you want to use for that mailer. Specify 0 to
use the identity of the most recently authenticated user.

DESCRIPTION

The SMPSetFromIdentity function lets you change the contents of the From field of a
mailer from within your application. The SMPSetFromIdentity function modifies
only the most recent mailer in the specified window, and then only if it is not a received
mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SDPPromptForID function in the chapter “Standard Catalog Package” in this
book to obtain an authentication identity.

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to determine if the top
mailer is for a received letter.

Parameter count Routine selector

$0004 $126C

noErr 0 No error
kOCEUnknownID –1567 Identity passed is not valid
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPMailerUneditable –1912 Mailer cannot be edited
Standard Mail Package Reference 3-117

C H A P T E R 3

Standard Mail Package
SMPAddAddress 3

The SMPAddAddress function adds an address to the Recipients field of a mailer.

pascal OSErr SMPAddAddress(WindowPtr window,

SMPAddressType addrType,

OCEPackedRecipient *address);

window The window containing the mailer.

addrType The type of address you want to add. You can specify the value
kSMPToAddress to add a primary addressee, or kSMPCCAddress to add
a “copy to” addressee.

address The address that you want to add to the mailer.

DESCRIPTION

The Standard Mail Package provides a user interface that lets a user enter an address in
the Recipients field of a mailer. You can use the SMPAddAddress function to add an
address directly from your application. You can use this function, for example, to place
an initial, default address in the Recipients field of a reply mailer. If you specify an
address type of kSMPCCAddress, the mailer flags the address as a “copy to” address
(see Figure 3-3 on page 3-5). The values of the SMPAddressType data type are defined
as follows:

enum {

kSMPToAddress = kMailToBit,

kSMPCCAddress = kMailCcBit,

kSMPBCCAddress = kMailBccBit

};

typedef MailAttributeID SMPAddressType;

The SMPAddAddress function adds addresses only to the most recent mailer in the
specified window, and then only if it is not a received mailer. You can use the
hasBeenReceived field of the SMPMailerState structure (a parameter of the
SMPGetMailerState function) to determine whether the top mailer has been received.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0005 $126D
3-118 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
RESULT CODES

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to determine if the top
mailer is for a received letter.

You can use the SMPGetListItemInfo function (page 3-113) to get the addresses that
the user entered in the Recipients field of a mailer.

SMPAddAttachment 3

The SMPAddAttachment function adds a disk file as an enclosure to a letter.

pascal OSErr SMPAddAttachment(WindowPtr window,

const FSSpec *attachment);

window The window containing the mailer.

attachment
A pointer to the file system specification structure of the disk file that you
want to add as an enclosure.

DESCRIPTION

The Standard Mail Package provides a user interface that lets a user add a disk file or
folder as an enclosure to a letter. You can use the SMPAddAttachment function to add
an enclosure directly from your application in case you want to provide an Add
Enclosures command. The SMPAddAttachment function adds enclosures only to the
most recent mailer in the specified window, and then only if it is not a received mailer.
You can use the hasBeenReceived field of the SMPMailerState structure (a
parameter of the SMPGetMailerState function) to determine whether the top mailer
has been received.

Use the SMPAddMainEnclosure function to add a main enclosure to the letter. The
mailer does not display the contents of the letter’s main enclosure in the Enclosures field.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

The enclosure is not actually added until well after this function has returned. Therefore,
after calling the SMPAddAttachment function, you should call the WaitNextEvent

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPMailerUneditable –1912 Mailer cannot be edited
kSMPAddressAlreadyInList –1922 Specified address is in Recipients field
Standard Mail Package Reference 3-119

C H A P T E R 3

Standard Mail Package
routine so that you yield time to the Finder to process Apple events while in the
background. You must wait until the Standard Mail Package has finished copying the
enclosure into the letter before you add anything else to the letter or try to send or save
the letter. The SMPMailerEvent function uses the kSMPCreateCopyWindowBit and
kSMPDisposeCopyWindowBit status bits to inform you of the progress of the copy
operation.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPAttachDialog function (described next) to display a dialog box
that lets the user add an enclosure to a mailer.

You can use the SMPGetMailerState function (page 3-69) to determine if the top
mailer is for a received letter.

You can use the SMPGetListItemInfo function (page 3-113) to list the enclosures that
the user entered in the Enclosures field of a mailer.

Call the SMPMailerEvent function (page 3-63) to handle mailer events and to
determine the status of the copy operation that occurs when you call the
SMPAddMainEnclosure function.

Use the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a letter.

SMPAttachDialog 3

The SMPAttachDialog function displays a dialog box that lets the user add a disk file
as an enclosure to a letter.

pascal OSErr SMPAttachDialog (WindowPtr window);

window The window containing the mailer.

Parameter count Routine selector

$0004 $126E

noErr 0 No error
fnfErr –43 File not found
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPMailerUneditable –1912 Mailer cannot be edited
kSMPTooManyEnclosures –1928 More than 50 total files and folders
3-120 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
DESCRIPTION

The Standard Mail Package provides a dialog box that lets a user add a disk file or folder
as an enclosure to a letter (Figure 3-8). You can use the SMPAttachDialog function to
display this same dialog box as an easy way to provide an Add Enclosures command.
The SMPAttachDialog function adds enclosures only to the most recent mailer in the
specified window, and then only if it is not a received mailer. You can use the
hasBeenReceived field of the SMPMailerState structure (a parameter of the
SMPGetMailerState function) to determine whether the top mailer is editable.

Figure 3-8 Add Enclosure dialog box

Use the SMPAddMainEnclosure function to add a main enclosure to the letter. The
mailer does not display the contents of the letter’s main enclosure in the Enclosures field.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

The enclosure is not actually added until well after this function has returned. Therefore,
after calling the SMPAttachDialog function, you should call the WaitNextEvent
routine so that you yield time to the Finder to process Apple events while in the
background. You must wait until the Standard Mail Package has finished copying the
enclosure into the letter before you add anything else to the letter or try to send or save
the letter. The SMPMailerEvent function uses the kSMPCreateCopyWindowBit and
kSMPDisposeCopyWindowBit status bits to inform you of the progress of the copy
operation.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0002 $1276
Standard Mail Package Reference 3-121

C H A P T E R 3

Standard Mail Package
RESULT CODES

SEE ALSO

You can use the SMPAddAttachment function (page 3-119) if you want to provide your
own interface that lets the user add an enclosure to a mailer.

You can use the SMPGetMailerState function (page 3-69) to determine if the top
mailer is for a received letter and is therefore uneditable.

Call the SMPMailerEvent function (page 3-63) to handle mailer events and to
determine the status of the copy operation that occurs when you call the
SMPAddMainEnclosure function.

Use the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a letter.

Application-Defined Functions 3
This section describes the callback routines that you may provide for Standard Mail
Package functions. Your MyPrepareMailerForDrawing routine restores your window
port to a standard state so the Standard Mail Package can draw into it. Your
MyDrawImage routine (page 3-123) images a document for the Standard Mail Package.
The Standard Mail Package calls your MyFrontWindowCB routine (page 3-124) to
determine which window is active when processing a key-down event.

MyPrepareMailerForDrawing 3

You may need to provide a MyPrepareMailerForDrawing routine to the
SMPNewMailer function to make sure that the Standard Mail Package can draw a mailer
in your window.

pascal void MyPrepareMailerForDrawing (WindowPtr window,

long clientData);

window A pointer to the window into which the Standard Mail Package wants to
draw.

clientData
Reserved for your use. You specify this value when you call the
SMPNewMailer function, and that function passes the value unaltered to
your callback routine.

noErr 0 No error
userCanceledErr –128 User clicked Cancel button
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPMailerUneditable –1912 Mailer cannot be edited
kSMPTooManyEnclosures –1928 More than 50 total files and folders
3-122 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
DESCRIPTION

If you ever change the clip region, coordinates, or other aspects of your window’s
graphics port, you must provide a drawing-preparation routine that restores the window
to its original state. The Standard Mail Package calls this routine before it draws into
your window to add a new mailer or alter an existing mailer. You provide a pointer to
your drawing-preparation routine when you call the SMPNewMailer function, the
SMPMailerReply function, and the SMPOpenLetter function.

SPECIAL CONSIDERATIONS

You must make sure that your code for this routine is in a locked segment.

The SMPNewMailer function preserves your application’s A5 world when it calls your
drawing-preparation routine. Therefore, you have access to your application’s global
variables from this routine.

SEE ALSO

The SMPNewMailer function is described on page 3-46.

The SMPMailerReply function is described on page 3-51.

The SMPOpenLetter function is described on page 3-94.

MyDrawImage 3

The MyDrawImage function is a callback routine you must provide if you call the
SMPImage function or if you specify kSMPSendAsImageMask for the sendAs field of
the parameter block used by the SMPSendLetter function.

pascal void MyDrawImage (long refcon, Boolean inColor);

refcon A reference constant that you can use for your own purposes.

inColor A Boolean value that indicates whether the Standard Mail Package is
providing a color graphics port to your image-drawing routine. This
parameter is significant only in image-information structures passed to
image-drawing routines.

DESCRIPTION

You provide a pointer to your image-drawing routine in the drawImageProc parameter
when you call the SMPImage function and in the drawImageProc field of the
parameter block when you call the SMPSendLetter function. Your image-drawing
routine must call the SMPNewPage function before it draws each page of the document.
You should call the SMPImageErr function rather than the QDError function after each
QuickDraw routine you call. When you are finished imaging the document, just return.
Standard Mail Package Reference 3-123

C H A P T E R 3

Standard Mail Package
If the user has color QuickDraw and you specified true for the supportsColor
parameter of the SMPImage function or the supportsColor field of the parameter
block used by SMPSendLetter, then the Standard Mail Package provides you with a
color graphics port when it calls your image-drawing routine.

If you are imaging a letter that includes one or more mailers, you should image the
mailers as cover pages before imaging the document. To do so, your image-drawing
routine should first call the SMPPrepareCoverPages function to prepare the cover
pages and to determine the total number of cover pages. Then for each cover page, you
should call the SMPNewPage function and then the SMPDrawNthCoverPage function.

SPECIAL CONSIDERATIONS

If you change the graphics port within your image-drawing routine, you must change it
back before calling the SMPNewPage or SMPImageErr functions.

SEE ALSO

The SMPSendLetter function is described on page 3-37. The SMPImage function is
described on page 3-88.

You must call the SMPNewPage function (page 3-41) before you draw each page.

You should call the SMPImageErr function (page 3-41) after each QuickDraw routine
you call.

To prepare cover pages for a mailer, you must call the SMPPrepareCoverPages
function (page 3-107). To draw each cover page, you call the SMPDrawNthCoverPage
function (page 3-108).

You can call the GetPort routine to determine the current graphics port. The GetPort
routine is described in Inside Macintosh: Imaging With QuickDraw.

MyFrontWindowCB 3

The MyFrontWindowCB function is a callback routine you can provide with the
SMPMailerEvent function. If you provide this function, the Standard Mail Package
calls your MyFrontWindowCB function to determine which is the active window when
processing a key-down event.

pascal WindowPtr MyFrontWindowCB (long clientData);

clientData
Reserved for your use. You specify this value when you call the
SMPMailerEvent function, and that function passes the value unaltered
to your callback routine.
3-124 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
DESCRIPTION

You can provide a pointer to your front-window routine when you call the
SMPMailerEvent function. Your front-window routine returns a pointer to the window
that you want the SMPMailerEvent function to treat as the frontmost window. You
might use this callback routine, for example, if your application displays a status dialog
box in front of your application’s main window on the screen, but you want any
key-down events to apply to your application’s main window. If, as is the case with most
applications, you do not have any windows in front of your main application window,
specify nil for the frontWindowCB parameter of the SMPMailerEvent function. In
that case the Standard Mail Package uses the Window Manager’s FrontWindow routine
to determine the frontmost window.

SPECIAL CONSIDERATIONS

The SMPMailerEvent function preserves your application’s A5 world when it calls
your front-window routine. Therefore, you have access to your application’s global
variables from this routine.

SEE ALSO

The SMPMailerEvent function is described on page 3-63.

MySendOptionsFilterProc 3

The send-options filter procedure is a routine you can provide when you call the
SMPSendOptionsDialog function. This routine extends the send-options dialog box.

pascal Boolean MySendOptionsFilterProc (DialogPtr theDialog,

 EventRecord* theEvent,

short itemHit,

long clientData);

theDialog A pointer to the dialog structure for the send-options dialog box.

theEvent The event that was just received by the send-options dialog box.

itemHit If the dialog box has just received a mouse-down event, this parameter
indicates the number of the dialog item in which the mouse-down event
occurred.

clientData
A constant reserved for your use. You specify this value when you call the
SMPSendOptionsDialog function.
Standard Mail Package Reference 3-125

C H A P T E R 3

Standard Mail Package
DESCRIPTION

If you provide a filter routine when you call the SMPSendOptionsDialog function, the
Standard Mail Package calls your filter routine each time it receives an event for the
send-options dialog box. If your filter routine returns true, the Standard Mail Package
assumes you handled the event. If your filter routine returns false, the Standard Mail
Package handles the event normally. You can alter the event before returning false.

To allow your filter routine to add new items to the send-options dialog box and to clean
up before it removes the dialog box, the Standard Mail Package sends your function two
pseudoevents:

enum {

kSMPSendOptionsStart = -1,

kSMPSendOptionsEnd = -2

};

When your filter routine receives the kSMPSendOptionsStart event, you can call the
CountDITL routine to determine the number of items already in the dialog box. You can
then call the AppendDITL function to add new items to the dialog box, as follows:

AppendDITL(theDialog, myDITL, appendDITLBottom)

The parameter myDITL describes the new items you wish to add to the dialog box. When
you begin numbering new items, increment by 1 the number returned by the
CountDITL routine. When your filter routine receives the kSMPSendOptionsStart
event, you can also allocate memory, initialize menus, and so forth.

Immediately before closing the send-options dialog box, the Standard Mail Package
sends a kSMPSendOptionsEnd event to your filter routine. You should then deallocate
any memory that you allocated earlier.

SPECIAL CONSIDERATIONS

Do not make any assumptions about the number or position of the standard items in the
send-options dialog box, as Apple Computer, Inc., reserves the right to change this
dialog box at any time.

SEE ALSO

The SMPSendOptionsDialog function is described on page 3-73.
3-126 Standard Mail Package Reference

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Summary of the Standard Mail Package 3

C Summary 3

Constants and Data Types 3

#define gestaltSMPMailerVersion'malr'

#define gestaltSMPSPSendLetterVersion'spsl'

#define kSMPNativeFormatName'natv'

#define typeLetterSpec'lttr'

/* wildcard used for filtering letter types */

enum {

FilterAnyLetter='ltr*',

FilterAppleLetterContent='ltc*',

FilterImageContent='lti*'

};

/* SMPPSendAs values. You may add the following values together to

determine how the file is sent, but you may not set both

kSMPSendAsEnclosureMask and kSMPSendFileOnlyMask. */

enum {

kSMPSendAsEnclosureBit, /* appears as letter with enclosures */

kSMPSendFileOnlyBit, /* appears as a file in mailbo. */

kSMPSendAsImageBit /* letter includes image of content */

};

/* values of SMPPSendAs */

enum {

kSMPSendAsEnclosureMask = 1<<kSMPSendAsEnclosureBit,

kSMPSendFileOnlyMask = 1<<kSMPSendFileOnlyBit,

kSMPSendAsImageMask = 1<<kSMPSendAsImageBit

};

typedef Byte SMPPSendAs;
Summary of the Standard Mail Package 3-127

C H A P T E R 3

Standard Mail Package
enum {

kSMPAppMustHandleEventBit,

kSMPAppShouldIgnoreEventBit,

kSMPContractedBit,

kSMPExpandedBit,

kSMPMailerBecomesTargetBit,

kSMPAppBecomesTargetBit,

kSMPCursorOverMailerBit,

kSMPCreateCopyWindowBit,

kSMPDisposeCopyWindowBit

};

/* values of SMPMailerResult */

enum {

kSMPAppMustHandleEventMask = 1<<kSMPAppMustHandleEventBit,

kSMPAppShouldIgnoreEventMask = 1<<kSMPAppShouldIgnoreEventBit,

kSMPContractedMask = 1<<kSMPContractedBit,

kSMPExpandedMask = 1<<kSMPExpandedBit,

kSMPMailerBecomesTargetMask = 1<<kSMPMailerBecomesTargetBit,

kSMPAppBecomesTargetMask = 1<<kSMPAppBecomesTargetBit,

kSMPCursorOverMailerMask = 1<<kSMPCursorOverMailerBit,

kSMPCreateCopyWindowMask = 1<<kSMPCreateCopyWindowBit,

kSMPDisposeCopyWindowMask = 1<<kSMPDisposeCopyWindowBit

};

typedef unsigned long SMPMailerResult;

/* values of SMPMailerComponent*/

enum {

kSMPOther = -1,

kSMPFrom = 32,

kSMPTo = 20,

kSMPRegarding = 22,

kSMPSendDateTime = 29,

kSMPAttachments = 26,

kSMPAddressOMatic = 16

};

typedef unsigned long SMPMailerComponent;
3-128 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
enum {

kSMPToAddress = kMailToBit,

kSMPCCAddress = kMailCcBit,

kSMPBCCAddress = kMailBccBit

};

typedef MailAttributeID SMPAddressType;

enum {

kSMPUndoCommand,

kSMPCutCommand,

kSMPCopyCommand,

kSMPPasteCommand,

kSMPClearCommand,

kSMPSelectAllCommand

};

typedef unsigned short SMPEditCommand;

enum {

kSMPUndoDisabled,

kSMPAppMayUndo,

kSMPMailerUndo

};

typedef unsigned short SMPUndoState;

/* SMPSendFormatMask: Bitfield indicating which combinations of formats are

included in, should be included in, or can be included in a letter. */

enum {

kSMPNativeBit,

kSMPImageBit,

kSMPStandardInterchangeBit

};

/* values of SMPSendFormatMask */

enum {

kSMPNativeMask = 1<<kSMPNativeBit,

kSMPImageMask = 1<<kSMPImageBit,

kSMPStandardInterchangeMask = 1<<kSMPStandardInterchangeBit

};

typedef unsigned long SMPSendFormatMask;
Summary of the Standard Mail Package 3-129

C H A P T E R 3

Standard Mail Package
/* pseudo-events passed to the client's filter proc for initialization and

cleanup */

enum {

kSMPSendOptionsStart = -1,

kSMPSendOptionsEnd = -2

};

enum {

kSMPSave,

kSMPSaveAs,

kSMPSaveACopy

};

typedef unsigned short SMPSaveType;

/* values of MailSegmentType */

enum {

kMailInvalidSegmentType = 0,

kMailTextSegmentType = 1,

kMailPictSegmentType = 2,

kMailSoundSegmentType = 3,

kMailStyledTextSegmentType = 4,

kMailMovieSegmentType = 5

};

typedef unsigned short MailSegmentType;

/* values of MailBlockMode */

enum {

kMailFromStart = 1, /* offset calculated from start of block */

kMailFromLEOB = 2, /* offset calculated from end of block */

kMailFromMark = 3 /* offset calculated from current mark */

};

typedef short MailBlockMode;

struct SMPRecipientDescriptor

{

struct SMPRecipientDescriptor *next; /* pointer to next element */

OSErr result; /* result code */

OCEPackedRecipient *recipient; /* packed recipient address */

unsigned long size; /* size of recipient address */
3-130 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
MailRecipient theAddress; /* unpacked recipient address */

RecordID theRID; /* record ID of recipient */

};

typedef struct SMPRecipientDescriptor SMPRecipientDescriptor;

typedef SMPRecipientDescriptor *SMPRecipientDescriptorPtr;

struct SMPEnclosureDescriptor

{

struct SMPEnclosureDescriptor *next; /* pointer to next element */

OSErr result; /* result code */

FSSpec fileSpec; /* file specifier of

enclosure */

OSType fileCreator; /* creator of enclosure */

OSType fileType; /* file type of enclosure */

};

typedef struct SMPEnclosureDescriptor SMPEnclosureDescriptor;

typedef SMPEnclosureDescriptor *SMPEnclosureDescriptorPtr;

struct LetterDescriptor {

Boolean onDisk;

union {

FSSpec fileSpec;

LetterSpec mailboxSpec;

}u;

};

typedef struct LetterDescriptor LetterDescriptor;

struct SMPLetterPB

{

OSErr result; /* function result */

RStringPtr subject; /* subject of letter */

AuthIdentity senderIdentity;/* identity of sender */

SMPRecipientDescriptorPtr toList; /* list of addressees */

SMPRecipientDescriptorPtr ccList; /* list of cc addressees */

SMPRecipientDescriptorPtr bccList; /* list of bcc addressees */

ScriptCode script; /* script code for language */

Size textSize; /* length of body data */

Ptr textBuffer; /* body of the letter */

SMPPSendAs sendAs; /* file, enclosure, or image */

Byte padByte; /* reserved */

SMPEnclosureDescriptorPtr enclosures; /* files to be enclosed */

SMPDrawImageProcPtr drawImageProc; /* your imaging routine */
Summary of the Standard Mail Package 3-131

C H A P T E R 3

Standard Mail Package
long imageRefCon; /* for your use */

Boolean supportsColor; /* true for a color grafPort */

};

typedef struct SMPLetterPB SMPLetterPB;

typedef SMPLetterPB *SMPLetterPBPtr;

struct SMPCloseOptions {

Boolean moveToTrash;

Boolean addTag;

RString32 tag;

};

typedef struct SMPCloseOptions SMPCloseOptions;

typedef SMPCloseOptions *SMPCloseOptionsPtr;

struct SMPMailerState {

short mailerCount;

short currentMailer;

Point upperLeft;

Boolean hasBeenReceived;

Boolean isTarget;

Boolean isExpanded;

Boolean canMoveToTrash;

Boolean canTag;

Byte padByte2;

unsigned long changeCount;

SMPMailerComponent targetComponent;

Boolean canCut;

Boolean canCopy;

Boolean canPaste;

Boolean canClear;

Boolean canSelectAll;

Byte padByte3;

SMPUndoState undoState;

Str63 undoWhat;

};

typedef struct SMPMailerState SMPMailerState;

struct SMPSendOptions {

Boolean signWhenSent;

IPMPriority priority;

};
3-132 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
typedef struct SMPSendOptions SMPSendOptions;

typedef SMPSendOptions *SMPSendOptionsPtr, **SMPSendOptionsHandle;

/* SMPSendFormat: Structure describing the format of a letter. If

kSMPNativeMask bit is set, the whichNativeFormat field indicates which of

the client-defined formats to use. */

struct SMPSendFormat {

SMPSendFormatMask whichFormats;

short whichNativeFormat; /* zero-based */

};

typedef struct SMPSendFormat SMPSendFormat;

struct LetterSpec

{

unsigned long spec[3];

};

struct SMPLetterInfo {

OSType letterCreator;

OSType letterType;

RString32 subject;

RString32 sender;

};

typedef struct SMPLetterInfo SMPLetterInfo;

typedef struct MailTime {

UTCTime time; /* current UTC (GMT) time */

UTCOffset offset; /* in seconds from GMT */

};

typedef struct MailTime MailTime;

typedef unsigned long UTCTime; /* seconds since 1/1/1904 */

typedef long UTCOffset; /* correct for local time */

/* pointers to functions for application-defined callback functions */

typedef pascal void (*SMPDrawImageProcPtr)(long refcon, Boolean inColor);

typedef pascal WindowPtr (*FrontWindowProcPtr) (long clientData);

typedef pascal void (*PrepareMailerForDrawingProcPtr) (WindowPtr window,

long clientData);
Summary of the Standard Mail Package 3-133

C H A P T E R 3

Standard Mail Package
typedef pascal Boolean (*SendOptionsFilterProc) (DialogPtr theDialog,

EventRecord* theEvent,

short itemHit,

long clientData);

Standard Mail Package Functions 3

Send-Letter Functions

pascal OSErr SMPSendLetter (SMPLetterPBPtr theLetter);

pascal OSErr SMPNewPage (OpenCPicParams *newHeader);

pascal OSErr SMPImageErr (void);

pascal OSErr SMPResolveToRecipient
(PackedDSSpecPtr dsSpec,
SMPRecipientDescriptorPtr *recipientList,
AuthIdentity identity);

Providing Mailers in Your Windows

pascal OSErr SMPInitMailer (long mailerVersion);

pascal OSErr SMPNewMailer (WindowPtr window,
Point upperLeft,
Boolean canContract,
Boolean initiallyExpanded,
AuthIdentity identity,
const PrepareMailerForDrawingProcPtr
 prepareMailerForDrawingCB,
long clientData);

pascal OSErr SMPGetDimensions
(short *width,
short *contractedHeight,
short *expandedHeight);

pascal OSErr SMPMailerForward
(WindowPtr window,
AuthIdentity from);
3-134 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
pascal OSErr SMPMailerReply
(WindowPtr originalLetter,
WindowPtr newLetter,
Boolean replyToAll,
Point upperLeft,
Boolean canContract,
Boolean initiallyExpanded,
AuthIdentity identity,
const PrepareMailerForDrawingProcPtr
prepareMailerForDrawingCB,
long clientData);

pascal OSErr SMPGetTabInfo (SMPMailerComponent *firstTab,
SMPMailerComponent *lastTab);

pascal OSErr SMPBecomeTarget
(WindowPtr window,
Boolean becomeTarget,
SMPMailerComponent whichField);

pascal OSErr SMPExpandOrContract
(WindowPtr window,
Boolean expand);

pascal OSErr SMPMoveMailer (WindowPtr window,
short dh,
short dv);

pascal OSErr SMPTagDialog (WindowPtr window,
RString32 *theTag);

pascal OSErr SMPPrepareToClose
(WindowPtr window);

pascal OSErr SMPCloseOptionsDialog
(WindowPtr window,
SMPCloseOptionsPtr closeOptions);

pascal OSErr SMPDisposeMailer
(WindowPtr window,
SMPCloseOptionsPtr closeOptions);

Handling Events in Mailers

pascal OSErr SMPMailerEvent
(const EventRecord *event,
SMPMailerResult *whatHappened,
const FrontWindowProcPtr frontWindowCB,
long clientData);

pascal OSErr SMPMailerEditCommand
(WindowPtr window,
SMPEditCommand command,
SMPMailerResult *whatHappened);
Summary of the Standard Mail Package 3-135

C H A P T E R 3

Standard Mail Package
pascal OSErr SMPGetMailerState
(windowPtr window,
SMPMailerState *itsState);

pascal OSErr SMPClearUndo (WindowPtr window);

pascal OSErr SMPDrawMailer (WindowPtr window);

Sending and Saving Mail

pascal OSErr SMPSendOptionsDialog
(WindowPtr window,
Str255 documentName,
StringPtr nativeFormatNames[],
unsigned short nameCount,
SMPSendFormatMask canSend,
SMPSendFormat *currentFormat,
SendOptionsFilterProc filterProc,
long clientData,
SMPSendFormat *shouldSend,
SMPSendOptionsPtr sendOptions);

pascal OSErr SMPContentChanged
(WindowPtr window);

pascal OSErr SMPBeginSave (WindowPtr window,
const FSSpec *diskLetter,
OSType creator,
OSType filetype,
SMPSaveType saveType,
Boolean *mustAddContent);

pascal OSErr SMPEndSave (WindowPtr window,
Boolean okToSave);

pascal OSErr SMPBeginSend (WindowPtr window,
OSType creator,
OSType fileType,
SMPSendOptionsPtr sendOptions,
Boolean *mustAddContent);

pascal OSErr SMPPrepareToChange
(WindowPtr window);

pascal OSErr SMPEndSend (WindowPtr window,
Boolean okToSend);
3-136 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
pascal OSErr SMPAddContent (WindowPtr window,
MailSegmentType segmentType,
Boolean appendFlag,
void *buffer,
unsigned long bufferSize,
StScrpRec *textScrap,
Boolean startNewScript,
ScriptCode script);

pascal OSErr SMPImage (WindowPtr window,
SMPDrawImageProcPtr drawImageProc,
long imageRefCon,
Boolean supportsColor);

pascal OSErr SMPAddMainEnclosure
(WindowPtr window,
const FSSpec *enclosure);

pascal OSErr SMPAddBlock (WindowPtr window,
const OCECreatorType *blockType,
Boolean append,
void *buffer,
unsigned long bufferSize,
MailBlockMode mode,
unsigned long offset);

Reading Mail

pascal OSErr SMPGetLetterInfo
(LetterSpec *mailboxSpec,
SMPLetterInfo *info);

pascal OSErr SMPOpenLetter (const LetterDescriptor *letter,
WindowPtr window,
Point upperLeft,
Boolean canContract,
Boolean initiallyExpanded,
const PrepareMailerForDrawingProcPtr
 prepareMailerForDrawingCB,
long clientData);

pascal OSErr SMPGetNextLetter
(OSType *typesList,
short numTypes,
LetterDescriptor *adjacentLetter);
Summary of the Standard Mail Package 3-137

C H A P T E R 3

Standard Mail Package
pascal OSErr SMPReadContent
(WindowPtr window,
MailSegmentMask segmentTypeMask,
void *buffer,
unsigned long bufferSize,
unsigned long *dataSize,
StScrpRec *textScrap,
ScriptCode *script,
MailSegmentType *segmentType,
Boolean *endOfScript,
Boolean *endOfSegment,
Boolean *endOfContent,
long *segmentLength,
long *segmentID);

pascal OSErr SMPGetFontNameFromLetter
(WindowPtr window,
short fontNum,
str255 fontName,
Boolean doneWithFontTable);

pascal OSErr SMPGetMainEnclosureFSSpec
(WindowPtr window,
FSSpec *enclosureDir);

pascal OSErr SMPEnumerateBlocks
(WindowPtr window,
unsigned short startIndex,
void *buffer,
unsigned long bufferSize,
unsigned long *dataSize,
unsigned short *nextIndex,
Boolean *more);

pascal OSErr SMPReadBlock (WindowPtr window,
const OCECreatorType *blockType,
unsigned short blockIndex,
void *buffer,
unsigned long bufferSize,
unsigned long dataOffset,
unsigned long *dataSize,
Boolean *endOfBlock,
unsigned long *remaining);

Printing Mailers

pascal OSErr SMPPrepareCoverPages
(windowPtr window,
short *pageCount);
3-138 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
pascal OSErr SMPDrawNthCoverPage
(WindowPtr window,
short pageNumber,
Boolean doneDrawingCoverPages);

Getting and Setting Information in the Mailer

pascal OSErr SMPGetComponentSize
(WindowPtr window,
unsigned short whichMailer,
SMPMailerComponent whichField,
unsigned short *size);

pascal OSErr SMPGetComponentInfo
(WindowPtr window,
unsigned short whichMailer,
SMPMailerComponent whichField,
void *buffer);

pascal OSErr SMPGetListItemInfo
(WindowPtr window,
unsigned short whichMailer,
SMPMailerComponent whichField,
void *buffer,
unsigned long bufferLength,
unsigned short startItem,
unsigned short *itemCount,
unsigned short *nextItem,
Boolean *more);

pascal OSErr SMPSetSubject (WindowPtr window,
const RString *text);

pascal OSErr SMPSetFromIdentity
(WindowPtr window,
AuthIdentity from);

pascal OSErr SMPAddAddress (WindowPtr window,
SMPAddressType addrType,
OCEPackedRecipient *address);

pascal OSErr SMPAddAttachment
(WindowPtr window,
const FSSpec *attachment);

pascal OSErr SMPAttachDialog
(WindowPtr window);
Summary of the Standard Mail Package 3-139

C H A P T E R 3

Standard Mail Package
Application-Defined Functions 3

pascal void MyPrepareMailerForDrawing
(WindowPtr window,
long clientData);

pascal void MyDrawImage (long refcon, Boolean inColor);

pascal WindowPtr MyFrontWindowCB
(long clientData);

pascal Boolean MySendOptionsFilterProc
(DialogPtr theDialog,
EventRecord* theEvent,
short itemHit,
long clientData);

Pascal Summary 3

Constants 3

CONST

gestaltSMPMailerVersion = 'malr';

gestaltSMPSPSendLetterVersion = 'spsl';

kSMPNativeFormatName = 'natv';

typeLetterSpec = 'lttr';

{ wildcard used for filtering letter types }

FilterAnyLetter = 'ltr*';

FilterAppleLetterContent = 'ltc*';

FilterImageContent = 'lti*';

{ SMPPSendAs values. You may add the following values together to determine

how the file is sent, but you may not set both kSMPSendAsEnclosureMask and

kSMPSendFileOnlyMask. }

kSMPSendAsEnclosureBit = 0; { appears as letter with enclosures }

kSMPSendFileOnlyBit = 1; { appears as a file in mailbox }

kSMPSendAsImageBit = 2; { letter includes image of content }
3-140 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
{ values of SMPPSendAs }

kSMPSendAsEnclosureMask = $01; {1<<kSMPSendAsEnclosureBit}

kSMPSendFileOnlyMask = $02; {1<<kSMPSendFileOnlyBit}

kSMPSendAsImageMask = $04; {1<<kSMPSendAsImageBit}

kSMPAppMustHandleEventBit = 0;

kSMPAppShouldIgnoreEventBit = 1;

kSMPContractedBit = 2;

kSMPExpandedBit = 3;

kSMPMailerBecomesTargetBit = 4;

kSMPAppBecomesTargetBit = 5;

kSMPCursorOverMailerBit = 6;

kSMPCreateCopyWindowBit = 7;

kSMPDisposeCopyWindowBit = 8;

{ values of SMPMailerResult }

kSMPAppMustHandleEventMask = $00000001; {1<<kSMPAppMustHandleEventBit}

kSMPAppShouldIgnoreEventMask = $00000002; {1<<kSMPAppShouldIgnoreEventBit}

kSMPContractedMask = $00000004; {1<<kSMPContractedBit}

kSMPExpandedMask = $00000008; {1<<kSMPExpandedBit}

kSMPMailerBecomesTargetMask = $00000010; {1<<kSMPMailerBecomesTargetBit}

kSMPAppBecomesTargetMask = $00000020; {1<<kSMPAppBecomesTargetBit}

kSMPCursorOverMailerMask = $00000040; {1<<kSMPCursorOverMailerBit}

kSMPCreateCopyWindowMask = $00000080; {1<<kSMPCreateCopyWindowBit}

kSMPDisposeCopyWindowMask = $00000100; {1<<kSMPDisposeCopyWindowBit}

{ values of SMPMailerComponent }

kSMPOther = -1;

kSMPFrom = 32;

kSMPTo = 20;

kSMPRegarding = 22;

kSMPSendDateTime = 29;

kSMPAttachments = 26;

kSMPAddressOMatic = 16;

kSMPToAddress = kMailToBit;

kSMPCCAddress = kMailCcBit;

kSMPBCCAddress = kMailBccBit;

kSMPUndoCommand = 0;

kSMPCutCommand = 1;

kSMPCopyCommand = 2;
Summary of the Standard Mail Package 3-141

C H A P T E R 3

Standard Mail Package
kSMPPasteCommand = 3;

kSMPClearCommand = 4;

kSMPSelectAllCommand = 5;

kSMPUndoDisabled = 0;

kSMPAppMayUndo = 1;

kSMPMailerUndo = 2;

{ SMPSendFormatMask: Bitfield indicating which combinations of formats are

included in, should be included in, or can be included in a letter. }

kSMPNativeBit = 0;

kSMPImageBit = 1;

kSMPStandardInterchangeBit = 2;

{ values of SMPSendFormatMask }

kSMPNativeMask = $00000001; {1<<kSMPNativeBit}

kSMPImageMask = $00000002; {1<<kSMPImageBit}

kSMPStandardInterchangeMask = $00000004; {1<<kSMPStandardInterchangeBit}

{ pseudo-events passed to the client's filter proc for initialization and

cleanup }

kSMPSendOptionsStart= -1;

kSMPSendOptionsEnd= -2;

kSMPSave = 0;

kSMPSaveAs = 1;

kSMPSaveACopy = 2;

{ values of MailSegmentType }

kMailInvalidSegmentType= 0;

kMailTextSegmentType= 1;

kMailPictSegmentType= 2;

kMailSoundSegmentType= 3;

kMailStyledTextSegmentType= 4;

kMailMovieSegmentType= 5;

{ values of MailBlockMode }

kMailFromStart= 1;{ offset calculated from start of block }

kMailFromLEOB= 2; { offset calculated from end of block }

kMailFromMark= 3; { offset calculated from the current mark }
3-142 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Data Types 3

TYPE

SMPSendFormatMask = LONGINT;

SMPSaveType = INTEGER;

SMPMailerResult = LONGINT;

SMPMailerComponent = LONGINT;

SMPAddressType = MailAttributeID;

SMPEditCommand = INTEGER;

SMPUndoState = INTEGER;

SMPPSendAs = Byte;

MailBlockMode = INTEGER;

MailSegmentType = INTEGER;

SMPRecipientDescriptor = RECORD

next: ^SMPRecipientDescriptor; { pointer to next element }

result: OSErr; { result code }

recipient: ^OCEPackedRecipient; { packed recipient address }

size: LONGINT; { size of recipient address }

theAddress: MailRecipient; { unpacked recipient address }

theRID: RecordID; { record ID of recipient }

END;

SMPRecipientDescriptorPtr = ^SMPRecipientDescriptor;

SMPEnclosureDescriptor = RECORD

next: ^SMPEnclosureDescriptor; { pointer to next element }

result: OSErr; { result code }

fileSpec: FSSpec; { file specifier of enclosure }

fileCreator: OSType; { creator of enclosure }

fileType: OSType; { file type of enclosure }

END;

SMPEnclosureDescriptorPtr = ^SMPEnclosureDescriptor;
Summary of the Standard Mail Package 3-143

C H A P T E R 3

Standard Mail Package
LetterDescriptor = RECORD

onDisk: BOOLEAN;

CASE INTEGER OF

1: (fileSpec: FSSpec);

2: (mailboxSpec: LetterSpec);

END;

SMPLetterPB = PACKED RECORD

result: OSErr; { function result }

subject: RStringPtr; { subject of letter }

senderIdentity:AuthIdentity; { identity of sender }

toList: SMPRecipientDescriptorPtr; { list of addressees }

ccList: SMPRecipientDescriptorPtr; { list of cc addressees }

bccList: SMPRecipientDescriptorPtr; { list of bcc addressees }

script: ScriptCode; { script code for language }

textSize: Size; { length of body data }

textBuffer: Ptr; { body of the letter }

sendAs: SMPPSendAs; { letter,enclosure, or image }

padByte: Byte; { reserved }

enclosures: SMPEnclosureDescriptorPtr; { files to be enclosed }

drawImageProc: SMPDrawImageProcPtr; { your imaging routine }

imageRefCon: LONGINT; { for your use }

supportsColor: BOOLEAN; { true for a color grafPort }

END;

SMPLetterPBPtr = ^SMPLetterPB;

SMPCloseOptions = RECORD

moveToTrash: BOOLEAN;

addTag: BOOLEAN;

tag: RString32;

END;

SMPCloseOptionsPtr = ^SMPCloseOptions;

SMPMailerState = RECORD

mailerCount: INTEGER;

currentMailer: INTEGER;

upperLeft: Point;

hasBeenReceived: BOOLEAN;

isTarget: BOOLEAN;

isExpanded: BOOLEAN;

canMoveToTrash: BOOLEAN;

canTag: BOOLEAN;
3-144 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
{padByte2: Byte;}

changeCount: LONGINT;

targetComponent: SMPMailerComponent;

canCut: BOOLEAN;

canCopy: BOOLEAN;

canPaste: BOOLEAN;

canClear: BOOLEAN;

canSelectAll: BOOLEAN;

{padByte3: Byte;}

undoState: SMPUndoState;

undoWhat: Str63;

END;

SMPSendOptions = RECORD

signWhenSent: BOOLEAN;

priority: IPMPriority;

END;

SMPSendOptionsPtr = ^SMPSendOptions;

SMPSendOptionsHandle = ^SMPSendOptionsPtr;

{ SMPSendFormat: Structure describing the format of a letter. If

kSMPNativeMask bit is set, the whichNativeFormat field indicates which of

the client-defined formats to use. }

SMPSendFormat = RECORD

whichFormats: SMPSendFormatMask;

whichNativeFormat: INTEGER;{ 0 based }

END;

LetterSpec = RECORD

spec: ARRAY[1..3] OF LONGINT;

END;

SMPLetterInfo = RECORD

letterCreator: OSType;

letterType: OSType;

subject: RString32;

sender: RString32;

END;
Summary of the Standard Mail Package 3-145

C H A P T E R 3

Standard Mail Package
MailTime = RECORD

time: UTCTime; { current UTC (GMT) time }

offset: UTCOffset;{ in seconds from GMT (positive is east) }

END;

UTCTime = LONGINT; { seconds since 1/1/1904 }

UTCOffset = LONGINT; { correct for local time }

{ pointers to functions for application-defined callback functions }

SMPDrawImageProcPtr = ProcPtr;

{ FUNCTION SMPDrawImageProcPtr(refcon: LONGINT; inColor: BOOLEAN): void;}

FrontWindowProcPtr = ProcPtr;

{ FUNCTION FrontWindowProcPtr(clientData: LONGINT): WindowPtr;}

PrepareMailerForDrawingProcPtr = ProcPtr;

{ FUNCTION PrepareMailerForDrawingProcPtr(window: WindowPtr;

clientData: LONGINT): void;}

SendOptionsFilterProc = ProcPtr;

{ FUNCTION SendOptionsFilterProc(theDialog: DialogPtr;

VAR theEvent: EventRecord;

itemHit: INTEGER;

clientData: LONGINT): BOOLEAN;}

Standard Mail Package Functions 3

Send-Letter Functions

FUNCTION SMPSendLetter (theLetter: SMPLetterPBPtr): OSErr;

FUNCTION SMPNewPage (VAR newHeader: OpenCPicParams): OSErr;

FUNCTION SMPImageErr: OSErr;

FUNCTION SMPResolveToRecipient
(dsSpec: PackedDSSpecPtr;
VAR recipientList: SMPRecipientDescriptorPtr;
identity: AuthIdentity): OSErr;
3-146 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Providing Mailers in Your Windows
FUNCTION SMPInitMailer (mailerVersion: LONGINT): OSErr;

FUNCTION SMPNewMailer (window: WindowPtr; upperLeft: Point;
canContract: BOOLEAN;
initiallyExpanded: BOOLEAN;
identity: AuthIdentity;
prepareMailerForDrawingCB:
PrepareMailerForDrawingProcPtr;
clientData: LONGINT): OSErr;

FUNCTION SMPGetDimensions (VAR width: INTEGER; VAR contractedHeight:
INTEGER; VAR expandedHeight: INTEGER): OSErr;

FUNCTION SMPMailerForward (window: WindowPtr; from: AuthIdentity): OSErr;

FUNCTION SMPMailerReply (originalLetter: WindowPtr; newLetter:
WindowPtr; replyToAll: BOOLEAN; upperLeft:
Point; canContract: BOOLEAN;
initiallyExpanded: BOOLEAN;
identity: AuthIdentity;
prepareMailerForDrawingCB:
PrepareMailerForDrawingProcPtr;
clientData: LONGINT): OSErr;

FUNCTION SMPGetTabInfo (VAR firstTab: SMPMailerComponent;
VAR lastTab: SMPMailerComponent): OSErr;

FUNCTION SMPBecomeTarget (window: WindowPtr; becomeTarget: BOOLEAN;
whichField: SMPMailerComponent): OSErr;

FUNCTION SMPExpandOrContract
(window: WindowPtr; expand: BOOLEAN): OSErr;

FUNCTION SMPMoveMailer (window: WindowPtr; dh: INTEGER; dv: INTEGER):
OSErr;

FUNCTION SMPTagDialog (window: WindowPtr; theTag: RString32Ptr):
OSErr;

FUNCTION SMPPrepareToClose (window: WindowPtr): OSErr;

FUNCTION SMPCloseOptionsDialog
(window: WindowPtr;
closeOptions: SMPCloseOptionsPtr): OSErr;

FUNCTION SMPDisposeMailer (window: WindowPtr;
closeOptions: SMPCloseOptionsPtr): OSErr;
Summary of the Standard Mail Package 3-147

C H A P T E R 3

Standard Mail Package
Handling Events in Mailers
FUNCTION SMPMailerEvent (event: EventRecord;

VAR whatHappened: SMPMailerResult;
frontWindowCB: FrontWindowProcPtr;
clientData: LONGINT): OSErr;

FUNCTION SMPMailerEditCommand
(window: WindowPtr; command: SMPEditCommand;
VAR whatHappened: SMPMailerResult): OSErr;

FUNCTION SMPGetMailerState (window: WindowPtr; VAR itsState:
SMPMailerState): OSErr;

FUNCTION SMPClearUndo (window: WindowPtr): OSErr;

FUNCTION SMPDrawMailer (window: WindowPtr): OSErr;

Sending and Saving Mail
FUNCTION SMPSendOptionsDialog

(window: WindowPtr; documentName: Str255;
VAR nativeFormatNames: StringPtr;
nameCount: INTEGER;
canSend: SMPSendFormatMask;
VAR currentFormat: SMPSendFormat;
filterProc: SendOptionsFilterProc;
clientData: LONGINT;
VAR shouldSend: SMPSendFormat;
sendOptions: SMPSendOptionsPtr): OSErr;

FUNCTION SMPContentChanged
(window: WindowPtr): OSErr;

FUNCTION SMPBeginSave (window: WindowPtr; diskLetter: FSSpec;
creator: OSType; fileType: OSType;
saveType: SMPSaveType;
VAR mustAddContent: BOOLEAN): OSErr;

FUNCTION SMPEndSave (window: WindowPtr; okToSave: BOOLEAN): OSErr;

FUNCTION SMPBeginSend (window: WindowPtr; creator: OSType; fileType:
OSType; sendOptions: SMPSendOptionsPtr;
VAR mustAddContent: BOOLEAN): OSErr;

FUNCTION SMPPrepareToChange
(window: WindowPtr): OSErr;

FUNCTION SMPEndSend (window: WindowPtr; okToSend: BOOLEAN): OSErr;
3-148 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
FUNCTION SMPAddContent (window: WindowPtr; segmentType:
MailSegmentType; appendFlag: BOOLEAN; buffer:
UNIV Ptr; bufferSize: LONGINT; textScrap:
StScrpPtr; startNewScript: BOOLEAN; script:
ScriptCode): OSErr;

FUNCTION SMPImage (window: WindowPtr; drawImageProc:
SMPDrawImageProcPtr; imageRefCon: LONGINT;
supportsColor: BOOLEAN): OSErr;

FUNCTION SMPAddMainEnclosure
(window: WindowPtr; enclosure: FSSpec): OSErr;

FUNCTION SMPAddBlock (window: WindowPtr; blockType: OCECreatorType;
append: BOOLEAN; buffer: UNIV Ptr;
bufferSize: LONGINT; mode: MailBlockMode;
offset: LONGINT): OSErr;

Reading Mail
FUNCTION SMPGetLetterInfo (VAR mailboxSpec: LetterSpec;

VAR info: SMPLetterInfo): OSErr;

FUNCTION SMPOpenLetter (letter: LetterDescriptor; window: WindowPtr;
upperLeft: Point; canContract: BOOLEAN;
initiallyExpanded: BOOLEAN;
prepareMailerForDrawingCB:
PrepareMailerForDrawingProcPtr;
clientData: LONGINT): OSErr;

FUNCTION SMPGetNextLetter (VAR typesList: OSType; numTypes: INTEGER;
VAR adjacentLetter: LetterDescriptor): OSErr;

FUNCTION SMPReadContent (window: WindowPtr; segmentTypeMask:
MailSegmentMask; buffer: UNIV Ptr; bufferSize:
LONGINT;
VAR dataSize: LONGINT;
VAR textScrap: StScrpRec;
VAR script: ScriptCode;
VAR segmentType: MailSegmentType;
VAR endOfScript: BOOLEAN;
VAR endOfSegment: BOOLEAN;
VAR endOfContent: BOOLEAN;
VAR segmentLength: LONGINT;
VAR segmentID: LONGINT): OSErr;

FUNCTION SMPGetFontNameFromLetter
(window: WindowPtr; fontNum: INTEGER; fontName:
Str255; doneWithFontTable: BOOLEAN): OSErr;
Summary of the Standard Mail Package 3-149

C H A P T E R 3

Standard Mail Package
FUNCTION SMPGetMainEnclosureFSSpec
(window: WindowPtr;
VAR enclosureDir: FSSpec): OSErr;

FUNCTION SMPEnumerateBlocks (window: WindowPtr; startIndex: INTEGER;
buffer: UNIV Ptr; bufferSize: LONGINT;
VAR dataSize: LONGINT; VAR nextIndex: INTEGER;
VAR more: BOOLEAN): OSErr;

FUNCTION SMPReadBlock (window: WindowPtr; blockType: OCECreatorType;
blockIndex: INTEGER; buffer: UNIV Ptr;
bufferSize: LONGINT; dataOffset: LONGINT;
VAR dataSize: LONGINT; VAR endOfBlock:
BOOLEAN; VAR remaining: LONGINT): OSErr;

Printing Mailers
FUNCTION SMPPrepareCoverPages

(window: WindowPtr; VAR pageCount: INTEGER):
OSErr;

FUNCTION SMPDrawNthCoverPage
(window: WindowPtr; pageNumber: INTEGER;
doneDrawingCoverPages: BOOLEAN): OSErr;

Getting and Setting Information in the Mailer
FUNCTION SMPGetComponentSize

(window: WindowPtr; whichMailer: INTEGER;
whichField: SMPMailerComponent;
VAR size: INTEGER): OSErr;

FUNCTION SMPGetComponentInfo
(window: WindowPtr; whichMailer: INTEGER;
whichField: SMPMailerComponent;
buffer: UNIV Ptr): OSErr;

FUNCTION SMPGetListItemInfo (window: WindowPtr; whichMailer: INTEGER;
whichField: SMPMailerComponent;
buffer: UNIV Ptr; bufferLength: LONGINT;
startItem: INTEGER; VAR itemCount: INTEGER;
VAR nextItem: INTEGER; VAR more: BOOLEAN):
OSErr;

FUNCTION SMPSetSubject (window: WindowPtr; text: RString): OSErr;

FUNCTION SMPSetFromIdentity
(window: WindowPtr; from: AuthIdentity): OSErr;

FUNCTION SMPAddAddress (window: WindowPtr; addrType: SMPAddressType;
address: OCEPackedRecipientPtr): OSErr;

FUNCTION SMPAddAttachment (window: WindowPtr; attachment: FSSpec): OSErr;

FUNCTION SMPAttachDialog (window: WindowPtr): OSErr;
3-150 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Application-Defined Functions 3

FUNCTION MyPrepareMailerForDrawing
(window: WindowPtr; clientData: LONGINT): void;

FUNCTION MyDrawImage (refcon: LONGINT; inColor: BOOLEAN): void;

FUNCTION MyFrontWindowCB (clientData: LONGINT): WindowPtr;

FUNCTION MySendOptionsFilterProc
(theDialog: DialogPtr;
VAR theEvent: EventRecord; itemHit: INTEGER;
clientData: LONGINT): BOOLEAN;

Assembly-Language Summary 3

Trap Macros 3

Trap Requiring Routine Selectors

$AA5D

Selector Count Routine

$01F4 $0002 SMPSendLetter

$044C $0006 SMPResolveToRecipient

$0834 $0002 SMPNewPage

$0835 $0000 SMPImageErr

$125C $0006 SMPGetDimensions

$125D $000C SMPNewMailer

$125E $0004 SMPDisposeMailer

$125F $0008 SMPMailerEvent

$1260 $0005 SMPMailerEditCommand

$1261 $0004 SMPMailerForward

$1262 $000F SMPMailerReply

$1263 $0004 SMPGetMailerState

$1264 $0004 SMPPrepareCoverPages

$1265 $0004 SMPDrawNthCoverPage

$1266 $000B SMPBeginSave

$1267 $000A SMPBeginSend

$1268 $000C SMPOpenLetter

$1269 $0002 SMPDrawMailer

continued
Summary of the Standard Mail Package 3-151

C H A P T E R 3

Standard Mail Package
$126A $0004 SMPMoveMailer

$126B $0004 SMPSetSubject

$126C $0004 SMPSetFromIdentity

$126D $0005 SMPAddAddress

$126E $0004 SMPAddAttachment

$126F $0002 SMPContentChanged

$1270 $0002 SMPEndSave

$1271 $0002 SMPEndSend

$1272 $0003 SMPExpandOrContract

$1273 $0005 SMPBecomeTarget

$1274 $0004 SMPGetTabInfo

$1275 $0002 SMPClearUndo

$1276 $0002 SMPAttachDialog

$1277 $0007 SMPGetComponentSize

$1278 $0007 SMPGetComponentInfo

$1279 $0010 SMPGetListItemInfo

$127A $000D SMPAddContent

$127B $0019 SMPReadContent

$127C $0006 SMPGetFontNameFromLetter

$127D $0004 SMPAddMainEnclosure

$127E $0004 SMPGetMainEnclosureFSSpec

$127F $000C SMPAddBlock

$1280 $000C SMPReadBlock

$1281 $000D SMPEnumerateBlocks

$1282 $0002 SMPImage

$1285 $0002 SMPInitMailer

$1286 $0008 SMPGetNextLetter

$1287 $0002 SMPPrepareToClose

$1288 $0004 SMPCloseOptionsDialog

$1289 $0002 SMPPrepareToChange

$128A $0004 SMPGetLetterInfo

$128B $0004 SMPTagDialog

$1388 $0013 SMPSendOptionsDialog

Selector Count Routine
3-152 Summary of the Standard Mail Package

C H A P T E R 3

Standard Mail Package

3
S

tandard M
ail P

ackage
Result Codes 3
The allocated range of result codes for the Standard Mail Package is –1900 through
–1949. Routines may also return standard Macintosh result codes such as noErr 0 (no
error) and fnfErr –43 (file not found).

kSMPNotEnoughMemoryForAllRecips –1900 Too many recipients in mailer
kSMPCopyInProgress –1901 Enclosure being copied to mailer
kSMPMailerNotInitialized –1902 Mailer has not been initialized
kSMPShouldNotAddContent –1903 You cannot add content to letter
kSMPMailboxNotFound –1904 Cannot find mailbox
kSMPNoNextLetter –1905 There is no next letter in In Tray
kSMPHasOpenAttachments –1906 One or more enclosures are open
kSMPFinderNotRunning –1907 The Finder is not running
kSMPCommandDisabled –1908 Requested command unavailable
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPNoSuchAddress –1910 Requested address not found
kSMPMailerAlreadyInWindow –1911 A mailer was previously allocated
kSMPMailerUneditable –1912 Mailer cannot be edited
kSMPNoMatchingBegin –1913 End function called without begin
kSMPCannotSendReceivedLetter –1914 Letter is received; cannot be sent
kSMPIllegalForDraftLetter –1915 Operation cannot be completed
kSMPMailerCannotExpandOrContract –1916 Mailer created with canContract

false
kSMPMailerAlreadyExpandedOrContracted –1917 Mailer is already in requested state
kSMPIllegalComponent –1918 Bad field name parameter
kSMPMailerAlreadyNotTarget –1919 This mailer is not the target
kSMPComponentIsAlreadyTarget –1920 The selected field is the target
kSMPRecordDoesNotContainAddress –1921 Address is not in this record
kSMPAddressAlreadyInList –1922 Specified address is in Recipients field
kSMPIllegalSendFormats –1923 Format is not in canSend parameter
kSMPInvalidAddressString –1924 Address string is invalid
kSMPSubjectTooBig –1925 Subject string exceeds 127 characters
kSMPParamCountErr –1926 Enclosure count should be 1
kSMPTooManyPages –1927 Image is more than 127 pages
kSMPTooManyEnclosures –1928 More than 50 total files and folders
Summary of the Standard Mail Package 3-153

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	 AOCE Utilities
	 Standard Mail Package TOC
	Standard Mail Package
	About the Standard Mail Package
	The Send-Letter Functions
	The Mailer Functions
	Mailers
	Letter Formats

	The Standard Catalog Package

	Using the Standard Mail Package
	Initializing the Standard Mail Package
	Creating a Mailer
	Sending Mail
	Receiving Mail
	Forwarding and Replying to Mail
	Closing a Letter
	Handling Mailer Events

	Standard Mail Package Reference
	Data Structures
	Recipient Descriptor
	Enclosure Descriptor
	Letter Descriptor
	Letter Information Structure
	Creator Type Structure
	Image Block Information Structure
	Letter Parameter Block
	Close-Options Structure
	Mailer-State Structure
	Send-Options Structure
	Send-Format Structure
	Letter-Specification Structure

	Standard Mail Package Functions
	Assembly-Language Interface
	Authenticating a User
	Send-Letter Functions
	Providing Mailers in Your Windows
	Handling Events in Mailers
	Sending and Saving Mail
	Reading Mail
	Printing Mailers
	Getting and Setting Information in the Mailer

	Application-Defined Functions

	Summary of the Standard Mail Package
	C Summary
	Constants and Data Types
	Standard Mail Package Functions
	Application-Defined Functions

	Pascal Summary
	Constants
	Data Types
	Standard Mail Package Functions
	Application-Defined Functions

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	 Digital Signature Manager
	 Interprogram Messaging Manager TOC
	 Interprogram Messaging Manager
	 Catalog Manager TOC
	 Catalog Manager, Part 1 (Introduction, About, and Using)
	 Catalog Manager, Part 2 (Reference)
	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	 Authentication Manager
	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

