

C H A P T E R 8

8

C
atalog M

anager

Catalog Manager 8

This chapter describes the Catalog Manager, which provides access to AOCE catalogs,
including PowerShare server-based catalogs, personal catalogs, and external catalogs.
AOCE catalogs are repositories of information that have a standard interface defined
by AOCE system software. Although AOCE catalogs are commonly used to store
addresses for mail and messaging services, there are no restrictions on the type or
internal structure of the data they may contain. This chapter tells you how to use the
Catalog Manager to create, modify, and read information in AOCE catalogs.

You can add a catalog-browsing interface to your application with the routines described
in the chapter “Standard Catalog Package” in this book. Users can browse and modify
the information in AOCE catalogs through the Finder when they install PowerTalk
system software. The AOCE Catalogs Extension to the Finder is described in the chapter
“AOCE Templates,” which also tells you how to extend the catalog browser to handle
new types of data.

This chapter describes the nature and types of AOCE catalogs and presents the low-level
interface to AOCE catalogs. You can use the routines in this chapter if you want to
provide capabilities to access catalogs beyond those provided by the Standard Catalog
Package and the catalog browser. If you are creating an AOCE catalog service access
module for another type of catalog, you need the information in this chapter plus the
chapter “Catalog Service Access Modules,” in Inside Macintosh: AOCE Service Access
Modules.

This chapter starts with a general introduction to AOCE catalogs, followed by an
introduction to the Catalog Manager. Then it describes how you can use the Catalog
Manager to

■ get information about AOCE catalogs and catalog nodes

■ create, open, and close personal catalogs

■ manage the organization of an AOCE catalog

■ manage the content of an AOCE catalog

■ control access to a catalog and to the contents of a catalog

Apple’s PowerShare serves include a catalog and authentication server. The
authentication process determines whether a user should be granted access to a
PowerShare catalog. The application program interface (API) for the identification and
authentication of users is handled by the Authentication Manager, described in the
chapter “Authentication Manager” in this book.

For a general overview of AOCE, see the chapter “Introduction to the Apple Open
Collaboration Environment” in this book.
8-161

C H A P T E R 8

Catalog Manager

Introduction to AOCE Catalogs 8

There are three types of AOCE catalogs: PowerShare server-based catalogs, personal
catalogs, and external catalogs. You use the same set of Catalog Manager routines to read
and modify the contents of any of these catalogs. The term “AOCE catalog” may refer to
any or all of these types of catalogs.

A PowerShare server uses the Apple Catalog and Authentication Protocol to
communicate with the AOCE Catalog and Authentication Managers. A PowerShare
server can be installed on an AppleTalk network to provide catalog services to any
number of entities on that network. In addition to providing a PowerShare catalog, a
PowerShare server can identify and authenticate users to ensure that only authorized
people or agents gain access to the catalog information. For each user, the server
administrator can restrict access to the entire catalog or to any portion of the data in the
catalog.

A personal catalog is an HFS (Hierarchical File System) file located on a user’s local
disk. A personal catalog can store anything that can be kept in a PowerShare catalog and
is often used to store frequently used information from such a catalog.

An information card is a type of personal catalog that contains a single record. Typically,
it contains all of a user’s electronic address information. Because it contains only one
record, it can be sent quickly and easily to other users as needed.

An external catalog is one that is accessible to your application through the Catalog
Manager API by means of a catalog service access module (CSAM). You access and use
an external catalog exactly as you do a PowerShare catalog. The services of the Catalog
Manager can be extended to any catalog through a catalog service access module. You do
not need to know about catalog service access modules to gain access to external catalogs
through the Catalog Manager.

Every catalog provides a set of capability flags that define which features of the Catalog
Manager API the catalog supports. In general, your application uses the capability flags
to determine what it can do relative to a given catalog; the underlying catalog type
(PowerShare, personal, or external) is, with few exceptions, irrelevant. The capability
flags are discussed in “Feature Flag Bit Array” beginning on page 8-186. That section also
contains information about what features are supported by all PowerShare catalogs and
all personal catalogs.

Each catalog is identified by a name and a reference number known as a catalog
discriminator. The combination of name and discriminator is almost certain to be
unique, and you must use both when calling Catalog Manager routines to address
PowerShare or external catalogs. The Catalog Manager returns a personal catalog reference
number when you open a personal catalog, and you use that number when addressing a
personal catalog through the Catalog Manager API.
8-162 Introduction to AOCE Catalogs

C H A P T E R 8

Catalog Manager

8

C
atalog M

anager

Catalog Nodes 8
AOCE catalogs contain information arranged in a hierarchical structure similar to that of
the Macintosh hierarchical file system (HFS). At the root level of the hierarchy is the
AOCE catalog itself. Each catalog can contain any number of nodes; a catalog node (or
dNode) is a container that can hold other dNodes, records, or both dNodes and records.
A dNode is analogous to an HFS folder, which can contain other folders, files, or both
folders and files. A record is analogous to an HFS file. A record contains the actual data
stored in the catalog.

You can identify a specific node within a catalog in three ways. You can specify a dNode
by its pathname. A pathname consists of the name of each dNode in the catalog tree
starting from the first node after the root node and including each intervening node to
the node in question. In addition, some catalogs assign a unique number, called a dNode
number, to each dNode. For such catalogs, you can use the dNode number rather than
the pathname to identify a particular dNode. A partial pathname specification is the
third way to identify a dNode. Not all catalogs accept a partial pathname. A partial
pathname consists of a dNode number plus the name of each dNode starting from the
one after the dNode specified by the dNode number and continuing to the node in
question.

Figure 8-1 on page 8-164 illustrates the structure of a sample AOCE catalog. In this
example, the catalog, named Forms, contains personnel and accounting forms for a small
company. The stacks of documents in the figure represent catalog nodes, and the
individual documents in the figure represent records containing forms. Immediately
under the catalog are two nodes, named Accounting and Personnel, and one record
containing a form to request new forms. Notice that any given node can contain both
records and other nodes. In this example, the pathname for the node containing
time-off-request forms is Personnel:Requests:Time off, and the pathname for the node
containing purchase orders is Accounting:Purchase. (The colons in the pathname are
included for readability only; they are not part of the actual pathname.)

Unlike HFS pathnames, which include the volume name, AOCE pathnames do not
include the name of the root catalog. Assume that the nodes named Personnel, Requests,
and Time off have the dNode numbers 10, 20, and 30, respectively. In this case, you can
either identify the node containing time-off-request forms with a partial pathname that
consists of the dNode number 10 and the path Requests:Time off or with the dNode
number 20 and the path Time off.

Note that a specific type of catalog might support all or only part of this model. For
example, a personal catalog contains only records, no dNodes. An external catalog may
support all or any part of this catalog structure.
Introduction to AOCE Catalogs 8-163

C H A P T E R 8

Catalog Manager

Figure 8-1 Structure of an AOCE catalog

Catalog Records and Attributes 8
A record is uniquely identified by a record ID that allows the Catalog Manager to
classify and locate the record. The Catalog Manager defines the structure of a record but
places no restrictions on the type of data it may contain.

A record ID consists of

■ record location information

■ a record name

■ the record type

■ a creation ID

The record location information consists of the catalog name and discriminator, the
dNode number, and the pathname for the dNode containing the record. The record
name can be any string of type RString (type RString is described in the chapter
“AOCE Utilities” in this book). The record type indicates the type of entity represented
by the record; for example, Printer, User, or Icon. Apple Computer, Inc., defines certain

Health Plan

Accounting

Forms

Purchasing

Personnel

Expense

report

New

form

request

Requests

External

PO

External

PO

Vacation Sick Leave

Time offEquip-

ment Medical Dental
8-164 Introduction to AOCE Catalogs

C H A P T E R 8

Catalog Manager

8

C
atalog M

anager

record types to facilitate collaboration within the AOCE environment; you can define
additional record types. The record creation ID , assigned by the catalog, is a number
that uniquely identifies the record within the catalog. Typically, a user interface uses the
record name and type to identify the record, whereas software uses the record creation
ID. Not all catalogs support record creation IDs. If a catalog does not support record
creation IDs, you use the record name and record type to identify a record.

The information in a record is stored in attribute. An attribute is completely specified by
an attribute type, an attribute creation ID, an attribute tag, and the actual attribute value.
Attribute values are grouped together by attribute type. The attribute type reflects the
type of data stored in the attribute value; for example, telephone number, mailing
address, or picture. Apple defines a number of attribute types; you can define additional
attribute types. An attribute type may have zero or more attribute values associated with
it. An attribute creation ID uniquely identifies the attribute value. Some catalogs may
not support attribute creation IDs. If a catalog does not support attribute creation IDs,
you use the attribute value itself and the attribute type to identify an attribute value. An
attribute tag indicates the format of the attribute value. Apple Computer has defined a
few attribute tags for use by Apple’s PowerShare catalogs; developers of catalog service
access modules can define their own attribute tags to support collaborative applications.
There is a maximum size for attribute values stored in PowerShare and personal
catalogs, but there are no restrictions on their content. The Attribute,
AttributeType and AttributeValue data types are described in the chapter “AOCE
Utilities” in this book.

Aliases and Pseudonyms 8
Some catalogs support the use of alternative names (or pseudonyms) for catalog records.
For example, the record “Sally Simon” might have the pseudonym “Simon, Sally”. You
can use a pseudonym in any Catalog Manager routine that requires a record name.

The Catalog Manager also allows you to create aliases for records. A record alias is itself
a record and so can be placed in any catalog. The Catalog Manager creates the record
and marks it as an alias. It is up to you to store the information that your application
requires to resolve the alias. For example, you might store the record location
information for the original record in an attribute value in the alias record. Not all
catalogs support the ability to create aliases.

Access Controls 8
The Catalog Manager defines access controls for dNodes, records, and attribute types.
Types of access privilege include the ability to add and delete attribute types within
records, to see attribute values, to add and delete records within dNodes, and so forth.
Service requesters are either authenticated, that is, represented by a record in the catalog
that contains the dNode, record, or attribute type to which they seek access, or they are
guests. There are several categories of authenticated requesters. Access controls are
discussed in more detail in the section “Getting Access Controls” on page 8-169.
Introduction to AOCE Catalogs 8-165

C H A P T E R 8

Catalog Manager

PowerShare catalogs support a full range of access controls. External catalogs can
support any level of access controls up to the full set defined by the Catalog Manager.
Personal catalogs do not support Catalog Manager access controls as such. Instead,
personal catalogs derive their access controls from the read and read/write privileges
allowed by the Macintosh file system. However, you can use the Catalog Manager to
read the access controls for a personal catalog. In that case, the Catalog Manager maps
file system settings into its own access control settings.

Identities and the PowerTalk Setup Catalog 8

The PowerTalk system software creates a special personal catalog called the PowerTalk
Setup catalog. The PowerTalk Setup catalog contains information about the catalogs and
electronic mail systems that are available to the principal user of the computer. The
PowerTalk Setup catalog is a personal catalog stored on the user’s local disk. The records
in the PowerTalk Setup catalog represent, among other things, PowerShare catalogs,
external catalogs, and catalog service access modules. Catalogs and catalog service
access modules represented by records in the PowerTalk Setup catalog are said to be
“listed in PowerTalk Setup.” The Catalog Manager provides routines that allow you to
add and remove records from this and other personal catalogs.

Most Catalog Manager routines take an identity as an input. An identity is a number
derived from a user name and password.

A “master” name and password protect the information in the PowerTalk Setup catalog.
When a user enters his or her name and password after starting up PowerTalk, the
Authentication Manager transforms the name and password into a special value called
the local identity. The local identity is a “master” identity that provides you with
transparent access to all of the specific names and passwords stored in the PowerTalk
Setup catalog. You can obtain the local identity by calling the Authentication Manager’s
AuthGetLocalIdentity function.

There is another type of identity called specific identity. A specific identity is derived
from the name and password of a user who has an account on a specific server. This user
can be the principle user of the computer or an alternate user (or visitor). Specific
identities make it possible for several people to use the same Macintosh to gain access to
their PowerShare catalog services. You can obtain a specific identity by calling the
Authentication Manager’s AuthBindIdentity function.

The identity that you provide is used to determine if the requester is authorized to make
the service request. In any Catalog Manager function, you may specify either a local
identity, a specific identity, or 0, which indicates guest access. If you specify the local
identity, you do not need to know the requester’s specific identity for a particular
catalog. The Catalog Manager uses the local identity to obtain the specific identity before
processing the request.

PowerShare catalogs require an identity for most service requests; external catalogs may
not. Personal catalogs do not require an identity with service requests.

For more information about the PowerTalk Setup catalog, see the chapter “Service
Access Module Setup” in Inside Macintosh: AOCE Service Access Modules. For more
8-166 Introduction to AOCE Catalogs

C H A P T E R 8

Catalog Manager

8

C
atalog M

anager

information about local identity and specific identities, see the chapter “Authentication
Manager” in this book.

About the Catalog Manager 8

The Catalog Manager, the Interprogram Messaging Manager, and the Authentication
Manager together constitute the fundamental AOCE services. The Catalog Browser and
the Standard Catalog Package provide high-level interfaces to the Catalog Manager, and
catalog service access modules provide a way for developers to extend AOCE catalog
services to external catalogs. See the chapter “Introduction to the Apple Open
Collaboration Environment for a description of the position of the Catalog Manager
within the AOCE software architecture.

The Catalog Manager includes routines that provide the following services:

■ getting information about catalogs, including the catalogs that are listed in the
PowerTalk Setup catalog, getting information about a specific catalog’s capabilities,
getting information about the icons that represent a specific external catalog, and
obtaining the name of the network in which a catalog is located

■ getting information about a catalog hierarchy, including enumerating dNodes,
mapping dNode numbers to pathnames and vice versa, detecting changes in dNodes,
and getting information about a specific dNode

■ managing the PowerTalk Setup catalog, including listing a PowerShare catalog in
PowerTalk Setup, removing a PowerShare catalog from PowerTalk Setup, and
searching a network for PowerShare catalogs that you want to use

■ creating, opening, and closing personal catalogs

■ managing records, including adding and deleting records and aliases, listing records
and aliases, getting and setting the name and type of a record, getting information
about a record, and adding, deleting, and listing pseudonyms

■ managing attribute values and types, including adding and deleting attribute values,
changing attribute values, looking for specific attribute values, looking up attribute
values, and listing attribute types

■ determining access to dNodes, records, and attribute types

Note that the Catalog Manager API does not provide routines for catalog configuration
and administration that allow you to create a catalog, to name or rename a catalog, to
add and delete nodes, and so forth. These functions, unique to each type of catalog, are
handled by the catalog’s administration software and are beyond the scope of the
Catalog Manager.

Get/Parse Function Pairs 8
The Catalog Manager API supplies several get/parse function pairs that work together
to provide you with information about dNodes, records, access controls, and so forth.
The “get” routine of each of these pairs writes the data in a format that is private to the
About the Catalog Manager 8-167

C H A P T E R 8

Catalog Manager

Catalog Manager into a buffer that you supply. The corresponding “parse” routine
extracts the data from the buffer and passes it in logical chunks to a callback routine that
you supply.

For example, the DirEnumerateDirectoriesGet function stores in a buffer
information about all of the catalogs that are listed in the PowerTalk Setup catalog. The
DirEnumerateDirectoriesParse function parses that information and calls your
callback routine for each catalog about which there is information in the buffer. Each
time it calls your callback routine, the parse function passes it a catalog name, the catalog
discriminator, and information about the features supported by the catalog.

Callback Routines 8
When you call a Catalog Manager parse function, you pass it a pointer to a callback
routine that you provide. If you call the parse function synchronously, the same
execution environment (low-memory global variables, A5 world, stack, interrupt state,
and any programming restrictions) that was in effect when the Catalog Manager began
executing the parse function is also in effect when your callback routine is executed.
Therefore, if it is safe to allocate memory or make synchronous calls when you call the
parse routine, then your callback routine can also allocate memory or make synchronous
calls.

If you call the parse function asynchronously, it saves only the A5 world and restores it
when it calls your callback routine. In this case you have access to your application’s
global variables, but you cannot allocate memory or make synchronous calls.

Callback routines should not call Catalog Manager functions, call the WaitNextEvent
or SystemTask routines, invoke the Notification Manager, or call any function that calls
any of these routines.

One of the parameters a parse function passes to your callback routine is the value you
placed in the clientData field of the parse function’s parameter block. You can use this
value for whatever purpose you wish; for example, you can use it to distinguish between
asynchronous parse requests if you have more than one pending completion or use it to
point to a private data area.

The parameters that a parse function passes to a callback routine are described under
each routine in the section “Application-Defined Functions” beginning on page 8-308.

Every callback routine returns a Boolean result. If you want the parse function to
continue parsing the data in your buffer, return false; otherwise, return true.

Determining Features Supported 8

A catalog may not support all the features of the Catalog Manager API. You call the
DirGetDirectoryInfo function to determine the features that a catalog supports
before calling other Catalog Manager functions that address that catalog. The feature
information is specified in a feature flag bit array. The bits are defined in “Feature Flag
Bit Array” beginning on page 8-186.
8-168 About the Catalog Manager

C H A P T E R 8

Catalog Manager

8

C
atalog M

anager

Getting Access Controls 8
The information discussed in this section applies primarily to PowerShare catalogs.
Access controls for personal catalogs consist of read and read/write settings
implemented by the File Manager. These are mapped into the Catalog Manager access
control privileges when you ask for the access controls for a personal catalog.

Three interrelated components to the access controls are available through the Catalog
Manager. The first component is the container whose access is controlled. Consider
dNodes, records, and attribute types as sets of nested abstract containers. DNodes may
contain records, aliases, pseudonyms and other dNodes; records may contain attribute
types; and attribute types may contain attribute values. The second component is the
requester seeking access to a container. The third component is the kind of access
privilege that the requester seeks. DNodes, records, and attribute types are discussed in
“Access Controls” on page 8-165. Requesters and access privileges are discussed in the
following sections.

Types of Requesters 8

PowerShare catalogs classify all requesters into five categories. Each dNode, record, and
attribute type maintains a set of access privileges for each of the categories. A single
requester may fall into one or more categories.

An external catalog, by contrast, does not necessarily use requester categories. It may
maintain access privileges for each individual requester. Alternatively, it may use
categories different from those used by PowerShare catalogs.

You use a variable of type CategoryMask to specify the type of requestor about which
you want information.

typedef unsigned long CategoryMask;

The bits in the CategoryMask data type are defined as follows:

enum {
kThisRecordOwnerBit = 0,

kFriendsBit = 1,

kAuthenticatedInDNodeBit = 2,

kAuthenticatedInDirectoryBit = 3,

kGuestBit = 4,

kMeBit = 5

};

You can use the following values to set and test the bits in a variable of type
CategoryMask.

enum { /* Values of CategoryMask */

kThisRecordOwnerMask = (1L << kThisRecordOwnerBit),

kFriendsMask = (1L << kFriendsBit),
About the Catalog Manager 8-169

C H A P T E R 8

Catalog Manager
kAuthenticatedInDNodeMask = (1L << kAuthenticatedInDNodeBit),

kAuthenticatedInDirectoryMask = (1L << kAuthenticatedInDirectoryBit),

kGuestMask = (1L << kGuestBit),

kMeMask = (1L << kMeBit)};

Descriptions

kThisRecordOwnerMask
A requester in this category is the owner of the record or attribute
type to which the requester wants access. (This category has no
meaning at the dNode level.) At most, only one requester can
belong in this category for each record or attribute type. The owner
of a record is the person or process represented by the record. The
owner of an attribute type is the person or process represented by
the record that contains the attribute type. The creation ID of the
requester’s own record is the same as the creation ID of the record
to which access is sought. (Or the record names and record types
are the same in catalogs that do not support creation IDs.)

kFriendsMask A requester in this category is specially selected and may have
different (usually broader) access privileges to a dNode, record, or
attribute type than those available to requesters who belong to the
more general categories. For PowerShare catalogs, the attribute type
kOwnersAttrTypeNum is defined to identify persons or processes
as friends. An attribute value of attribute type
kOwnersAttrTypeNum is a DSSpec data structure that contains a
record ID. Every requester represented by such a value in the
kOwnersAttrTypeNum attribute type belongs by definition to the
friends category. You can add a person or process to the friends
category by adding a value specifying that person or process to the
kOwnersAttrTypeNum attribute type. Note that to do this you
need a level of access privilege that allows you to change the access
control privileges for a dNode, record, or attribute type as well as to
add values. In PowerShare catalogs, the requesters in the friends
category for any attribute type within a record are exactly the same
as the requesters in the friends category for the record itself.

kAuthenticatedInDNodeMask
A requester in this category is represented by a record located in the
same dNode as the dNode, record, or attribute type to which the
requester wants access.

kAuthenticatedInDirectoryMask
A requester in this category is represented by a record located in the
same catalog as the dNode, record, or attribute type to which the
requester wants access.

kGuestMask A requester in this category is not represented by a record that
resides in the same catalog as the dNode, record, or attribute type
that the requester wants to access.
8-170 About the Catalog Manager

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
kMeMask This is a quasi-category called “me.” The
DirGetxxxAccessControlGet functions provide it as an output
category when the requester asks only for information on his or her
own access privileges. It is a convenient way of providing access
privilege information that pertains to the requester regardless of the
categories to which that requester belongs.

Types of Access Privileges 8

The Catalog Manager defines different kinds of access privileges. These kinds of
privileges are specified by the access control bit masks that are described next.

Mask descriptions

kNoPrivs This mask specifies that the requester has no access to a dNode, a
record, or an attribute type.

kSeeMask When the container is a dNode, this mask specifies the ability to
view the records, aliases, and pseudonyms of the dNode. When the
container is a record, this mask specifies the ability to view the
contents of the record. When the container is an attribute type, this
mask specifies the ability to view the contents of the attribute type.

kAddMask When the container is a dNode, this mask specifies the ability to
add records, aliases, pseudonyms, and dNodes to the dNode. When
the container is a record, this mask specifies the ability to add
attribute types to the record. When the container is an attribute
type, this mask specifies the ability to add values to the attribute
type.

kDeleteMask When the container is a dNode, this mask specifies the ability to
delete records, aliases, pseudonyms, and dNodes from the dNode.
When the container is a record, this mask specifies the ability to
delete attribute types from the record. When the container is an
attribute type, this mask specifies the ability to delete values from
an attribute type.

kChangeMask When the container is a record, this mask specifies the ability to
change the contents of the record; that is, to replace some or all of
the record’s contents without changing the record’s creation ID.
When the container is an attribute type, this mask specifies the
ability to change the contents of an attribute type; that is, to replace
an attribute value without changing the attribute creation ID.
Changing the contents of a dNode is undefined and not supported.

kRenameMask When the container is a dNode or a record, this mask specifies the
ability to rename it by changing its record name and record type.
Renaming an attribute type is not supported.
About the Catalog Manager 8-171

C H A P T E R 8

Catalog Manager
kChangePrivsMask
This mask specifies the ability to change the access control
privileges for a dNode, a record, or an attribute type. The ability to
change access privileges for a container includes the ability to
change privileges for the content of the container as well. If you can
change access privileges for a dNode, you can also change access
privileges for the records and attribute types within the dNode.
Likewise, if you can change access privileges for a record, you can
also change access privileges for the attribute types within the
record.

kSeeFoldersMask
When the container is a dNode or a record, this mask specifies the
ability to view dNodes within the container dNode.

kAllPrivs This mask specifies the sum of all the specific access privileges just
described for a dNode, a record, or an attribute type.

Access Control Lists 8

PowerShare catalogs maintain an access control list for each dNode, record, and attribute
type in the catalog. Each entry in an access control list specifies a category and the
category’s access privileges with respect to that dNode, record, or attribute type. Each
access control list consists of five entries, one for each category.

The Catalog Manager API, however, does not restrict access control lists to the
PowerShare implementation. An external catalog may maintain access control lists that
consist of individual requesters and their access privileges, instead of categories of
requesters. Or it may consist of the PowerShare categories or different categories or some
combination of these. The access control list of an external catalog may have any number
of entries.

A personal catalog has a single entry in its access control list to which every requester
belongs. For a personal catalog, every requester has exactly the same access privileges.

Regardless of the type of access control list that a catalog maintains, all catalogs should
be able to provide a requester with the access privileges that apply to that requester.
(This is the quasi-category “me” for PowerShare catalogs.)

PowerShare catalogs implement access controls for most catalog service requests.
The PowerShare catalog identifies the categories to which the requester belongs and
determines if a requester in those categories has sufficient access to perform the
requested action.

The Catalog Manager provides a get/parse pair of functions for each type of container so
that you can obtain access control information about the container. A
DirGetxxxAccessControlGet function obtains access control information from the
access control list associated with a dNode, record, or attribute type and stores the
information in a buffer that you provide. A DirGetxxxAccessControlParse function
retrieves information for one access control list entry at a time from your buffer and
passes it to your callback routine. You can request access control information for every
entry on the access control list, for a subset of entries, or for only the requester (specified
in the identity field of the DirParamBlock parameter block).
8-172 About the Catalog Manager

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Note
The utility routine OCEGetAccessControlDSSpec converts a category
mask into the catalog service specification that you need to pass to a
DirGetxxxAccessControlGet function. This routine is described on
page 8-290. ◆

For PowerShare catalogs and personal catalogs, the information that a
DirGetxxxAccessControlParse function passes to your callback routine consists of a
catalog service specification that identifies a category plus the access control masks that
apply to that category. The access control masks may be described as either active or
default. An active access control mask is a mask that currently applies to a dNode,
record, or attribute type; it specifies which operations a requester in the category is
authorized to perform on the dNode, record, or attribute type. A default access control
mask is the mask that is applied to new objects within the container at the time they are
created. For example, any new records that are created within a dNode automatically
acquire the access controls that are specified by the dNode’s default access control mask
for records.

When you request dNode access control information, you get the active access control
mask for the dNode as well as the default access control masks that apply to newly
created records and attribute types within the dNode. When you request record access
control information, you get the active access control masks for the record and the
dNode containing the record. You also get the default access control mask that applies to
newly created attribute types within the record. When you request attribute type access
control information, you get the active access control masks for the attribute type as well
as the record and the dNode containing the attribute type.

Using the Catalog Manager 8

The Catalog Manager API supplies several get/parse function pairs that work together
to provide you with information about dNodes, records, access controls, and so forth.
The “get” routine of each of these pairs writes the data in a format that is private to the
Catalog Manager into a buffer that you supply. The corresponding “parse” routine
extracts the data from the buffer and passes it in logical chunks to a callback routine that
you supply.

If the initial buffer size is not sufficient to hold all the data, there are two different ways
in which the get/parse function pairs work—depending on which Catalog Manager
routines are called. The first example, “Getting Attribute Value Information” beginning
on page 8-174 shows how the DirLookupGet and DirLookupParse work together to
extract information. These two functions use identical parameter blocks They are the
only get/parse function pair that work this way.

The example, “Getting Attribute Type Information” beginning on page 8-178 illustrates
how all other get/parse function pairs work.
Using the Catalog Manager 8-173

C H A P T E R 8

Catalog Manager
There is also one “get” function, DirGetExtendedDirectoryInfo, that has no
corresponding “parse” routine. In this case, you must write your own “parse” routine.
See “Getting Extended Catalog Information” beginning on page 8-182 for an example
that shows how to do this.

Determining Whether the Collaboration Toolbox Is Available 8
Before calling any of the Catalog Manager functions, you should verify that the
Collaboration toolbox is available by calling the Gestalt function with the selector
gestaltOCEToolboxAttr. If the Collaboration toolbox is present but not running (for
example, if the user deactivated it from the PowerTalk Setup control panel), the
Gestalt function sets the bit gestaltOCETBPresent in the response parameter. If
the Collaboration toolbox is running and available, the function sets the bit
gestaltOCETBAvailable in the response parameter. The Gestalt Manager is
described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.

If you want to be informed when the Catalog Manager starts up or shuts down, you can
install an entry in the AppleTalk Transition Queue (ATQ). Then the AppleTalk LAP
Manager calls your ATQ routine with the transition selector ATTransDirStart when
the Catalog Manager has finished starting up and with the selector
ATTransDirShutdown when the Catalog Manager has started to shut down. The ATQ
is described in the chapter “Link-Access Protocol (LAP) Manager” in Inside Macintosh:
Networking.

Determining the Version of the Catalog Manager 8
To determine the version of the Catalog Manager that is available, call the Gestalt
function with the selector gestaltOCEToolboxVersion. The function returns the
version number of the Collaboration toolbox in the low-order word of the response
parameter. For example, a value of 0x0101 indicates version 1.0.1. If you are using the
Collaboration toolbox on a computer that has a PowerShare server, the function returns
the version number of the server in the high-order word of the response parameter. If
the Collaboration toolbox or server is not present and available, the Gestalt function
returns 0 for the relevant version number. You can use the constant gestaltOCETB for
AOCE Collaboration toolbox version 1.0.

Getting Attribute Value Information 8
The DoProcessAttributeValues function in Listing 8-1 lists the attribute values for
a particular catalog. It uses two Catalog Manager routines: DirLookupGet (page 8-276)
and DirLookupParse (page 8-279). Because these two routines have the same
parameter block, you can call DirLookupGet as many times as necessary, using the
same parameter block you last passed to DirLookupParse, if the buffer you allocate is
too small to hold all the data that DirLookupGet returns. Listing 8-2 on page 8-179
shows how to use a pair of get/parse functions that have different parameter blocks.
8-174 Using the Catalog Manager

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
When DoProcessAttributeValues is called, it is passed two parameters, a pointer to
the catalog browser and a pointer to the current attribute type. It then calls the
DoEnumerateAttributeValues function, passing it parameters to specify the
identification of the requester; to identify the current catalog, record and attribute type;
to name a callback routine; and to match calls to this routine to particular calls to the
DirLookupParse function.

When DoEnumerateAttributeValues returns, DoProcessAttributeValues calls
DoSelectNthAttributeValue—which is not shown here—to extract the current
attribute value and display its contents.

The DoEnumerateAttributeValues function sets up the parameter block that
DirLookupGet uses and then sets the initial values. It includes a do/while loop in
which DirLookupGet and DirLookupParse do the work of extracting the attribute
value information. If the buffer is too small to hold all the data, the DirLookupParse
function returns kOCEMoreData, and the loop repeats. The same parameter block that
was passed to DirLookupParse is passed on subsequent calls to DirLookupGet. The
reason this works is that when DirLookupParse completes, it returns values in the
lastRecordIndex, lastAttributeIndex, and lastAttribute fields that are at
the same offsets in the parameter block as the values of the startingRecordIndex,
startingAttrTypeIndex, and startingAttribute fields on a subsequent call to
the DirLookupGet function. The DirLookupGet function continues retrieving
information from the point at which it stopped during its previous invocation.

The DirLookupParse function calls the callback routine MyForEachAttrValue for
each attribute value that it finds. The callback routine calls the DoAddAttribueValue
function—which is not shown here—passing it the data structure containing the
attribute values. The DoAddAttribueValue function stores the values.

Listing 8-1 Listing the attribute values for a catalog

 /* Enumerate all attribute types for the currently-selected

 catalog. Attribute types are added to the type list as

 they are found. */

static pascal Boolean MyForEachAttrValue(

long clientData,

const Attribute *theAttribute

);

 /* DoProcessAttributeValues is called when a new attribute type

 is selected.

 Globals

 DOC.currentDsRefNum

 Current personal directory RefNum

 DOC.currentRecordID
Using the Catalog Manager 8-175

C H A P T E R 8

Catalog Manager
Current record to examine */

void

DoProcessAttributeValues(

register CatalogBrowserPtr dbp,

const AttributeTypePtr attributeTypePtr

)

{

OSErr status;

 /* Make sure to start with a clean slate.*/

ClearAttributeValueList(dbp);

status = DoEnumerateAttributeValues(

DOC.userIdentity,

DOC.currentDsRefNum,

&DOC.currentRecordID,

attributeTypePtr,

MyForEachAttrValue,

(long) dbp

);

LOG(status, "\pDoEnumerateAttributeValues");

DoSelectNthAttributeValue(dbp, 0);

}

/* MyForEachAttrValue is called by the DirLookupParse function.

 The attribute value is an RString that is put into the list. */

static pascal Boolean

MyForEachAttrValue(

long clientData,

const Attribute *theAttribute

)

{

register CatalogBrowserPtr dbp;

Boolean stopParse;

dbp = (CatalogBrowserPtr) clientData;

stopParse = FALSE;

TRY {

AddAttributeValue(dbp, theAttribute);

}

CATCH {
8-176 Using the Catalog Manager

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
LOG(STATUS, "\pCan't add attribute value");

NO_PROPAGATE;

stopParse = TRUE;

}

ENDTRY;

return (stopParse);

}

#ifndef kMyBufferSize

#define kMyBufferSize 4096

#endif

/* DoEnumerateAttributeValues is called when a new attribute type

 is selected. */

OSErr

DoEnumerateAttributeValues(

AuthIdentity userIdentity,

short dsRefNum,

RecordIDPtr recordIDPtr,

const AttributeTypePtr theAttributeType,

ForEachAttrValue MyForEachAttrValue,

long clientData

)

{

OSErr status;

AttributeTypePtr attrTypeList[1];

RecordIDPtr recordIDList[1];

DirParamBlock dirParamBlock;

Ptr myBuffer;

#define GET (dirParamBlock.lookupGetPB)

#define PARSE (dirParamBlock.lookupParsePB)

myBuffer = NewPtr(kMyBufferSize);

if (myBuffer == NULL)

status = MemError();

else {

CLEAR(dirParamBlock);

recordIDList[0] = recordIDPtr;

attrTypeList[0] = theAttributeType;

GET.identity = userIdentity;

GET.ioCompletion = NULL;

GET.dsRefNum = dsRefNum;

GET.clientData = clientData;
Using the Catalog Manager 8-177

C H A P T E R 8

Catalog Manager
GET.aRecordList = recordIDList;

GET.attrTypeList = attrTypeList;

GET.recordIDCount = 1;

GET.attrTypeCount = 1;

GET.includeStartingPoint = FALSE;

GET.getBuffer = myBuffer;

GET.getBufferSize = kMyBufferSize;

GET.startingRecordIndex = 1;

GET.startingAttrTypeIndex = 1;

CLEAR(GET.startingAttribute);

do {

status = DirLookupGet(&dirParamBlock, SYNC);

if (status == noErr || status == kOCEMoreData) {

PARSE.eachRecordID = NULL;

PARSE.eachAttrType = NULL;

PARSE.eachAttrValue = MyForEachAttrValue;

status = DirLookupParse(&dirParamBlock, SYNC);

}

} while (status == kOCEMoreData);

DisposePtr(myBuffer);

}

return (status);

#undef GET

#undef PARSE

}

Getting Attribute Type Information 8

The routines in Listing 8-2 return the attribute types for a specified catalog. They use the
Catalog Manager DirEnumerateAttributeTypesGet (page 8-285) and
DirEnumerateAttributeTypesParse (page 8-288) functions. As the example shows,
if the buffer is too small to hold all the data returned by
DirEnumerateAttributeTypesGet, it can be called again in a loop, using the last
attribute type parameter that DirEnumerateAttributeTypesParse passed to the
callback routine. Listing 8-1 on page 8-175 shows how a different get/parse pair work
together.

The structure CallBackData is used to hold data including the current attribute type.

The DoEnumerateAttributeTypes function is called by a higher-level routine and is
passed parameters to authenticate the user; identify the catalog, the record, and the
current attribute; and to match calls to this routine to particular calls to the
DirEnumerateAttributeTypesParse function. It then allocates a buffer and sets up
the parameter block with initial values.
8-178 Using the Catalog Manager

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
The DoEnumerateAttributeTypes function contains a do/while loop that enables
DirEnumerateAttributeTypesGet and DirEnumerateAttributeTypesParse to
extract the attribute type information. For each attribute type extracted,
DirEnumerateAttributeTypesParse calls the
MyEnumerateEachAttributeType callback routine.

If the buffer is too small to hold all the information returned by
DirEnumerateAttributeTypesGet, the loop repeats. The
DirEnumerateAttributeTypesGet function uses as its starting attribute type, the
last attribute type that DirEnumerateAttributeTypesParse passed to the callback
routine.

The callback routine, MyEnumerateEachAttributeType, provides a data type to store
the attribute type information extracted by DirEnumerateAttributeTypesParse. It
also stores the last attribute type that it received from
DirEnumerateAttributeTypesParse in case it needs to pass it back to
DirEnumerateAttributeTypesGet for another run through the loop.

Listing 8-2 Listing the attribute types for a catalog

 /* Enumerate all attribute types for the specified catalog. The caller

 provides a callback function (which takes the same parameters as the AOCE

 DirEnumerateAttributeTypesParse function) that is called with each

 returned attribute type. */

#ifndef kMyBufferSize

#define kMyBufferSize4096

#endif

static pascal Boolean MyEnumerateEachAttributeType(

long clientData,

const AttributeType *aType

);

/* This data is passed to MyEnumerateEachAttributeType */

 typedef struct CallBackData {

ForEachAttrType eachAttrType;

long clientData;

AttributeType currentAttrType;

} CallBackData, *CallBackDataPtr;

/* DoEnumerateAttributeTypes is called when a new record is selected. It

 calls a user function for each attribute type stored in that record. */

OSErr
Using the Catalog Manager 8-179

C H A P T E R 8

Catalog Manager
DoEnumerateAttributeTypes(

AuthIdentity userIdentity,

short dsRefNum,

RecordIDPtr recordIDPtr,

ForEachAttrType eachAttrType,

long clientData

)

{

OSErr status;

Boolean first;

CallBackData callBackData;

DirParamBlock dirParamBlock;

Ptr myBuffer;

#define GET (dirParamBlock.enumerateAttributeTypesGetPB)

#define PARSE (dirParamBlock.enumerateAttributeTypesParsePB)

myBuffer = NewPtr(kMyBufferSize);

if (myBuffer == NULL)

status = MemError();

else {

callBackData.eachAttrType = eachAttrType;

callBackData.clientData = clientData;

CLEAR(callBackData.currentAttrType);

CLEAR(dirParamBlock);

first = TRUE;

do {

GET.identity = userIdentity;

GET.dsRefNum = dsRefNum;

GET.clientData = (long) &callBackData;

GET.aRecord = recordIDPtr;

if (first) {

GET.startingAttrType = NULL;

first = FALSE;

}

else {

/* This is the last attribute type that was fetched

 by the parser callback. */

GET.startingAttrType = &callBackData.currentAttrType;

}

GET.includeStartingPoint = FALSE;

GET.getBuffer = myBuffer;

GET.getBufferSize = kMyBufferSize;

status = DirEnumerateAttributeTypesGet(&dirParamBlock, SYNC);
8-180 Using the Catalog Manager

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
if (status != kOCEMoreData)

LOG(status, "\pDirEnumerateAttributeTypesGet");

if (status == noErr || status == kOCEMoreData) {

 /* There is a record, or there is a record and more

 data to read. Parse the data: this will call

 the callback function.*/

PARSE.eachAttrType = MyEnumerateEachAttributeType;

status = DirEnumerateAttributeTypesParse(&dirParamBlock,

SYNC);

if (status != kOCEMoreData)

LOG(status, "\pDirEnumerateAttributeTypesParse");

}

} while (status == kOCEMoreData);

DisposePtr(myBuffer);

}

return (status);

#undef GET

#undef PARSE

}

/* MyEnumerateEachAttributeType is called by the

 DirEnumerateAttributeTypesParse function. Remember the attribute type for

 the next call and call the application handler. */

static pascal Boolean

MyEnumerateEachAttributeType(

register long clientData,

const AttributeType *aType

)

{

Boolean stopParse;

#define CALLBACK(*((CallBackDataPtr) clientData))

 /* Grab a copy of the attribute type for the next "get more

 data" call. */

OCECopyRString(

(const RStringPtr) aType,

(RStringPtr) &CALLBACK.currentAttrType,

kAttributeTypeMaxBytes

);
Using the Catalog Manager 8-181

C H A P T E R 8

Catalog Manager
stopParse = CALLBACK.eachAttrType(CALLBACK.clientData, aType);

return (stopParse);

}

Getting Extended Catalog Information 8
The DirGetExtendedDirectoriesInfo function (page 8-212) returns extended
information about a catalog. The DirGetExtendedDirectoriesInfo function
returns a packed structure that you must unpack. The sample routines in Listing 8-3
show how to call the DirGetExtendedDirectoriesInfo function and how to
examine the information it returns.

The sample routines make use of the structure type, MyExtendedInfoType, which can
hold the extended information for a single catalog.

The DoProcessExtendedCatalogInfo routine declares two pointers: myBufferPtr,
the pointer to the data buffer that will be passed to the
DirGetExtendedDirectoriesInfo function, and extendedInfoPtr, a pointer to
an extended information structure (MyExtendedInfo). It sets both pointers to nil.

Next, the function calls the DoGetExtendedCatalogInfo routine to get the extended
information from the Catalog Manager. If the routine returns successfully,
DoProcessExtendedCatalogInfo allocates enough memory to store the extended
information for all of the catalogs on which the Catalog Manager has returned
information.

Then DoProcessExtendedCatalogInfo calls the
DoUnpackExtendedCatalogInfo routine to extract the extended information from
the data buffer and put it in the array of extended information structures. The
DoUtilizeExtendedCatalogInformation routine, not shown here, acts on the
extended information. You would include a similar routine to do whatever is
appropriate to your application. Finally, DoProcessExtendedCatalogInfo disposes
of the memory that has been allocated before it returns.

Unlike some Catalog Manager functions, DirGetExtendedDirectoriesInfo cannot
be called to retrieve a portion of the information and then called again to retrieve more.
It always attempts to return all of the information at once, and it completes with the
kOCEMoreData result code if the buffer you pass is too small. The purpose of the
DoGetExtendedCatalogInfo routine is to call the
DirGetExtendedDirectoriesInfo function with a buffer that is large enough to
hold all the information that DirGetExtendedDirectoriesInfo will return. The
DoGetExtendedCatalogInfo routine allocates a buffer of kWorkBufferSize bytes
and then calls the DirGetExtendedDirectoriesInfo function.
If DirGetExtendedDirectoriesInfo function returns kOCEMoreData,
DoGetExtendedCatalogInfo disposes of the buffer and allocates a larger one.
It does this repeatedly, increasing the size of the buffer in increments
of kWorkBufferSize bytes until the buffer is large enough to contain all
the information DirGetExtendedDirectoriesInfo can return. If
DirGetExtendedDirectoriesInfo completes successfully,
8-182 Using the Catalog Manager

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DoGetExtendedCatalogInfo passes back via its actualEntriesPtr parameter the
number of catalogs for which extended information now exists in the buffer. Otherwise,
it disposes of the buffer.

The DoUnpackExtendedCatalogInfo routine extracts the extended information
about each catalog from the buffer and stores the information in MyExtendedInfo
structures. It does the same thing as the “parse” routines in Listing 8-1 on page 8-175 and
Listing 8-2 on page 8-179, but you have to write this routine yourself because
DirGetExtendedDirectoriesInfo has no corresponding “Parse” routine. Note that
variables in an extended information structure point to data in the packed buffer.

Because the data in the buffer is of variable length, the sizeof function is required to
determine the length of the data. The INCR macro aligns the data on a word boundary.

Listing 8-3 Getting extended information for a catalog

typedef struct MyExtendedInfo {

PackedRLIPtr pRLIPtr; /* Catalog’s packed RLI */

unsigned short pRLILength; /* Length of packed RLI */

OSType entnType; /* Catalog address type */

long hasMailSlot; /* Nonzero if mail slot */

RStringPtr realName; /* Catalog’s true name */

RStringPtr comment; /* More info for display */

long dataLength; /* Additional data length */

Ptr dataPtr; /* Additional information */

} MyExtendedInfoType, *MyExtendedInfoPtrType;

OSErr DoProcessExtendedCatalogInfo(void) {

OSErr status;

Ptr myBufferPtr;

MyExtendedInfoPtrType extendedInfoPtr;

unsigned long actualEntries;

myBufferPtr = nil;

extendedInfoPtr = nil;

status = DoGetExtendedCatalogInfo(&myBufferPtr, &actualEntries);

if (status == noErr) {

extendedInfoPtr = (MyExtendedInfoPtrType) NewPtrClear(actualEntries *

sizeof(MyExtendedInfo));

status = MemError();

}

if (status == noErr) {

status = DoUnpackExtendedCatalogInfo(myBufferPtr, extendedInfoPtr,

actualEntries);
Using the Catalog Manager 8-183

C H A P T E R 8

Catalog Manager
status = DoUtilizeExtendedCatalogInformation(extendedInfoPtr,

actualEntries);

}

if (extendedInfoPtr != nil)

DisposePtr((Ptr) extendedInfoPtr);

if (myBufferPtr != nil)

DisposePtr((Ptr) myBufferPtr);

return (status);

}

OSErr DoGetExtendedCatalogInfo(

Ptr *resultBuffer, /* address of ptr to buffer */

unsigned long *actualEntriesPtr)

{

#define kWorkBufferSize (512)

OSErr status;

DirParamBlock myParamBlock;

unsigned long bufferLength;

#define GET (myParamBlock.getExtendedDirectoriesInfoPB)

bufferLength = 0;

*resultBuffer = nil;

do {

if (*resultBuffer != nil)

DisposePtr(*resultBuffer);

bufferLength += kWorkBufferSize;

*resultBuffer = NewPtr(bufferLength);

if ((status = MemError()) != noErr)

break;

ClearMemory(&myParamBlock, sizeof myParamBlock);

GET.identity = gUserIdentity;

GET.buffer = *resultBuffer;

GET.bufferSize = bufferLength;

status = DirGetExtendedDirectoriesInfo(&myParamBlock, false);

} while (status == kOCEMoreData);

if (status == noErr)

*actualEntriesPtr = GET.actualEntries;

else if (*resultBuffer != nil) {

DisposePtr(*resultBuffer);

*resultBuffer = nil;

}

return (status);

#undef GET

}

8-184 Using the Catalog Manager

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
OSErr DoUnpackExtendedCatalogInfo(

register Ptr bufPtr, /* pointer to buffer

containing packed

extended catalog

information */

register MyExtendedInfoPtrType extendedInfoPtr, /* pointer to array

of MyExtendedInfo structures */

unsigned long actualEntries)

{

unsigned long dataLength; /* working value */

unsigned long i; /* current entry count */

/* Scan through the buffer to extract the extended catalog

 information. The INCR macro increments bufPtr by some amount,

 making sure that it is aligned on a word boundary. Its argument

 must not have side-effects.*/

#define INCR(v) (bufPtr += ((v) + ((v) & 0x01)))

#define RESULT (*extendedInfoPtr)

for (i = 0; i < actualEntries; i++, extendedInfoPtr++) {

RESULT.pRLIPtr = (PackedRLIPtr) bufPtr;

RESULT.pRLILength = pRLIPtr->dataLength;

INCR(pRLILength + sizeof (ProtoPackedRLI));

RESULT.entnType = *((OSType *) bufPtr);

INCR(sizeof (OSType));

RESULT.hasMailSlot = *((long *) bufPtr);

INCR(sizeof (long));

RESULT.realName = (RStringPtr) bufPtr;

dataLength = RESULT.realName->dataLength;

INCR(dataLength + sizeof (ProtoRString));

RESULT.comment = (RStringPtr) bufPtr;

dataLength = RESULT.comment->dataLength;

INCR(dataLength + sizeof (ProtoRString));

RESULT.dataLength = *((long *) bufPtr);

INCR(sizeof (long));

RESULT.dataPtr = (Ptr) bufPtr;

INCR(RESULT.dataLength); /* Step over the rest */

}

#undef INCR

#undef RESULT

}

Using the Catalog Manager 8-185

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	 AOCE Utilities
	 Standard Mail Package TOC
	 Standard Mail Package
	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	 Digital Signature Manager
	 Interprogram Messaging Manager TOC
	 Interprogram Messaging Manager
	 Catalog Manager TOC
	Catalog Manager, Part 1 (Introduction, About, and Using)
	Introduction to AOCE Catalogs
	Catalog Nodes
	Catalog Records and Attributes
	Aliases and Pseudonyms
	Access Controls
	Identities and the PowerTalk Setup Catalog

	About the Catalog Manager
	Get/Parse Function Pairs
	Callback Routines
	Determining Features Supported
	Getting Access Controls
	Types of Requesters
	Types of Access Privileges
	Access Control Lists

	Using the Catalog Manager
	Determining Whether the Collaboration Toolbox Is A...
	Determining the Version of the Catalog Manager
	Getting Attribute Value Information
	Getting Attribute Type Information
	Getting Extended Catalog Information

	 Catalog Manager, Part 2 (Reference)
	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	 Authentication Manager
	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

