

C H A P T E R 8

Catalog Manager 8

Catalog Manager Reference 8

This section describes the feature flag bit array, and the data types and functions
provided by the Catalog Manager.

Feature Flag Bit Array 8
Each catalog provides information so that you can determine which features it supports.
This information is specified in a feature flag bit array. The bits are defined next.

Bit name

kSupportsDNodeNumberBit

kSupportsRecordCreationIDBit

kSupportsAttributeCreationIDBit

kSupportsMatchAllBit

kSupportsBeginsWithBit

kSupportsExactMatchBit

kSupportsEndsWithBit

kSupportsContainsBit

kSupportsOrderedEnumerationBit

kCanSupportNameOrderBit

kCanSupportTypeOrderBit

kSupportSortBackwardsBit

kSupportIndexRatioBit

kSupportsEnumerationContinueBit

kSupportsLookupContinueBit

kSupportsEnumerateAttributeTypeContinueBit

kSupportsEnumeratePseudonymContinueBit

kSupportsAliasesBit

kSupportsPseudonymsBit

kSupportsPartialPathNamesBit

kSupportsAuthenticationBit

kSupportsProxiesBit

kSupportsFindRecordBit
8-186 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8

C
atalog M

anager

Bit descriptions

kSupportsDNodeNumberBit
If this bit is set, you can reference a dNode by using a dNode
number in the RLI data structure and setting the pathname pointer
to nil. If this bit is not set, you can reference a dNode only by
specifying its pathname information in the RLI data structure; in
this case, you must set the dNode number to 0.

kSupportsRecordCreationIDBit
If this bit is set, you can reference a record by specifying its record
creation ID for most Catalog Manager functions. If this bit is not set,
you must reference a record by specifying its record name and
record type in its record ID.

kSupportsAttributeCreationIDBit
If this bit is set, you can reference an attribute value by specifying
its attribute creation ID and attribute type.

The next five bits indicate what combination of browsing, finding, and matching
capabilities a catalog supports when you enumerate the contents of a dNode in that
catalog.

kSupportsMatchAllBit
If this bit is set, a catalog supports browsing of record names and
record types. When you call the DirEnumerateGet function, such
a catalog can accept an enumeration specification with the
matchNameHow and matchTypeHow fields set to kMatchAll, in
which case, a search matches any record name or record type.

kSupportsBeginsWithBit
If this bit is set, a catalog supports finding record names and record
types beginning with a certain string. When you call the
DirEnumerateGet function, such a catalog can accept an
enumeration specification with the matchNameHow and
matchTypeHow fields set to kBeginsWith; in this case, a search
matches any record name or record type that begins with the string
pointed to by the recordName or typesList field, respectively.

kSupportsExactMatchBit
If this bit is set, a catalog supports finding a record based on an
exact match with a record name or record type. When you call the
DirEnumerateGet function, such a catalog can accept an
enumeration specification with the matchNameHow and
matchTypeHow fields set to kMatchExact; in this case, a search
matches only the record name or record type pointed to by the
recordName or typesList field, respectively.

kSupportsEndsWithBit
If this bit is set, a catalog supports finding record names and record
types ending with a certain string. When you call the
DirEnumerateGet function, such a catalog can accept an
enumeration specification with the matchNameHow and
matchTypeHow fields set to kEndingWith; in this case, a search
matches any record name or record type that ends with the string
pointed to by the recordName or typesList field, respectively.
Catalog Manager Reference 8-187

C H A P T E R 8

Catalog Manager

kSupportsContainsBit
If this bit is set, a catalog supports finding record names and record
types that contain a certain string. When you call the
DirEnumerateGet function, such a catalog can accept an
enumeration specification with the matchNameHow and
matchTypeHow fields set to kContaining; in this case, a search
matches any record name or record type that contains the string
pointed to by the recordName or typesList field, respectively.

kSupportsOrderedEnumerationBit
If this bit is set, a catalog returns requested information in a sorted
order when you call the DirEnumerateGet function. It may return
the information sorted by name or by type, in which case one of the
two following bits will also be set. The catalog may also return the
information in an unspecified sorted order.

kCanSupportNameOrderBit
If this bit is set, a catalog supports the sorting by name option in the
DirEnumerateGet function.

kCanSupportTypeOrderBit
If this bit is set, a catalog supports the sorting by type option in the
DirEnumerateGet function.

kSupportsSortBackwardsBit
If this bit is set, a catalog supports the backward sort direction
option in the DirEnumerateGet function.

kSupportIndexRatioBit
If this bit is set, a catalog supports the index ratio feature in the
DirEnumerateGet function. That is, the catalog can return the
approximate position of a record among all records that match the
search criteria in a dNode.

kSupportsEnumerationContinueBit
If this bit is set, a catalog supports the continue feature in the
DirEnumerateGet function.

kSupportsLookupContinueBit
If this bit is set, a catalog supports the continue feature in the
DirLookupGet function.

kSupportsEnumerateAttributeTypeContinueBit
If this bit is set, a catalog supports the continue feature in the
DirEnumerateAttributeTypesGet function.

kSupportsEnumeratePseudonymContinueBit
If this bit is set, a catalog supports the continue feature in the
DirEnumeratePseudonymGet function.

kSupportsAliasesBit
If this bit is set, a catalog supports the DirAddAlias function. It
also supports deleting an alias with the DirDeleteRecord
function and enumerating aliases with the DirEnumerateGet
function.
8-188 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8

C
atalog M

anager

kSupportsPseudonymsBit
If this bit is set, a catalog supports the DirAddPseudonym,
DirDeletePseudonym, and DirEnumeratePseudonymGet
functions. It also supports enumerating pseudonyms with the
DirEnumerateGet function.

kSupportsPartialPathnamesBit
If this bit is set, you can specify a catalog node by using the dNode
number of an intermediate dNode and a partial pathname starting
from the intermediate dNode to the target dNode.

kSupportsAuthenticationBit
If this bit is set, a catalog supports all Authentication Manager
functions except those that relate to proxies. Support for proxies is
specified by a separate bit.

kSupportsProxiesBit
If this bit is set, a catalog supports the Authentication Manager
functions that relate to proxies.

kSupportsFindRecordBit
If this bit is set, a catalog supports the DirFindRecordGet and
DirFindRecordParse functions.

You can use the following mask values to set the bits in a variable that specifies the
features supported by a given catalog. Such variables are of type DirGestalt.

enum {

kSupportsDNodeNumberMask = 1L<<kSupportsDNodeNumberBit,

kSupportsRecordCreationIDMask = 1L<<kSupportsRecordCreationIDBit,

kSupportsAttributeCreationIDMask = 1L<<kSupportsAttributeCreationIDBit,

kSupportsMatchAllMask = 1L<<kSupportsMatchAllBit,

kSupportsBeginsWithMask = 1L<<kSupportsBeginsWithBit,

kSupportsExactMatchMask = 1L<<kSupportsExactMatchBit,

kSupportsEndsWithMask = 1L<<kSupportsEndsWithBit,

kSupportsContainsMask = 1L<<kSupportsContainsBit,

kSupportsOrderedEnumerationMask = 1L<<kSupportsOrderedEnumerationBit,

kCanSupportNameOrderMask = 1L<<kCanSupportNameOrderBit,

kCanSupportTypeOrderMask = 1L<<kCanSupportTypeOrderBit,

kSupportSortBackwardsMask = 1L<<kSupportSortBackwardsBit,

kSupportIndexRatioMask = 1L<<kSupportIndexRatioBit,

kSupportsEnumerationContinueMask = 1L<<kSupportsEnumerationContinueBit,

kSupportsLookupContinueMask = 1L<<kSupportsLookupContinueBit,

kSupportsEnumerateAttributeTypeContinueMask =

1L<<kSupportsEnumerateAttributeTypeContinueBit,

kSupportsEnumeratePseudonymContinueMask =

1L<<kSupportsEnumeratePseudonymContinueBit,

kSupportsAliasesMask = 1L<<kSupportsAliasesBit,

kSupportsPseudonymsMask = 1L<<kSupportsPseudonymsBit,

kSupportsPartialPathNamesMask = 1L<<kSupportsPartialPathNamesBit,
Catalog Manager Reference 8-189

C H A P T E R 8

Catalog Manager
kSupportsAuthenticationMask = 1L<<kSupportsAuthenticationBit,

kSupportsProxiesMask = 1L<<kSupportsProxiesBit

kSupportsFindRecordMask = 1L<<kSupportsFindRecordBit

};

Data Types 8
This section describes the data types that are specific to the Catalog Manager. See the
chapter “AOCE Utilities” for descriptions of other data types that you use to provide
information to or obtain information from Catalog Manager functions.

The Parameter Block Header 8

Every Catalog Manager routine takes a pointer to a DirParamBlock parameter block as
input. The DirParamBlock parameter block defines a union of substructures, each of
which is a parameter block for one of the Catalog Manager routines. Each routine
description in “Catalog Manager Routines” starting on page 8-196 lists the fields of that
routine’s parameter block. Each parameter block contains the following header.

#define AuthDirParamHeader \

Ptr qLink; /* reserved */\

long reserved_H1; /* reserved */\

long reserved_H2; /* reserved */\

ProcPtr ioCompletion; /* your completion routine */\

OSErr ioResult; /* result code */\

unsigned long saveA5; /* reserved */\

short reqCode; /* CSAM request code*/\

long reserved[2]; /* reserved */\

AddrBlock serverHint; /* PowerShare server’s AppleTalk address */\

short dsRefNum; /* personal catalog reference number */\

unsigned long callID; /* reserved */\

AuthIdentity identity; /* requester’s authentication identity */\

long gReserved1; /* reserved */\

long gReserved2; /* reserved */\

long gReserved3; /* reserved */\

long clientData; /* you define this field */

Field descriptions

qLink Reserved.
reserved_H1 Reserved.
reserved_H2 Reserved.
8-190 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
ioCompletion A pointer to a completion routine that you can provide. When a
Catalog Manager function that you called asynchronously
completes execution, it calls your completion routine. Set this field
to nil if you do not wish to provide a completion routine. The
function ignores this field if you call it synchronously.

ioResult The result of the function. When you execute the function
asynchronously, the function sets this field to 1 as soon as the
routine has been queued for execution. When the function
completes execution, it sets this field to the actual result code.

saveA5 Reserved.
reqCode This field is reserved when you call a Catalog Manager function.

However, when the Catalog Manager passes a DirParamBlock
parameter block to a CSAM, the reqCode field contains a constant
that identifies which member of the DirParamBlock union type
is being passed

reserved[2] Reserved.
serverHint The AppleTalk address of the PowerShare server to which you want

to direct your request. Normally, you specify nil for all fields of
this structure and the Catalog Manager directs the request to an
appropriate PowerShare server. However, PowerShare server
administration software (PowerShare Admin) may need to specify a
particular server, and the DirAddADAPDirectory function
requires a specific PowerShare server address. You can obtain the
AppleTalk address of a PowerShare server from the NBPLookup
function. The AddrBlock data structure is defined in Inside
Macintosh: Networking.

dsRefNum The reference number of the personal catalog to which the request
applies. The DirOpenPersonalDirectory function returns this
reference number when you open a personal catalog. If you are not
addressing a personal catalog, set this field to 0.

callID Reserved.
identity The authentication identity of the requester. The authentication

identity can be either the local identity of the owner of the computer
or a specific identity. Typically, you set this field to the local identity
to gain transparent access to all installed catalogs. You may also set
this field to a specific identity. You can obtain the local identity from
the Authentication Manager’s AuthGetLocalIdentity function
and a specific identity from the AuthBindIdentity function. See
the chapter “Authentication Manager” in this book for more
information about obtaining identities. Specify 0 for this field for
guest access; that is, no identity.
Functions that fail due to an insufficient level of access privilege
return either the kOCEReadAccessDenied or
kOCEWriteAccessDenied result code.

gReserved1 Reserved.
gReserved2 Reserved.
gReserved3 Reserved.
Catalog Manager Reference 8-191

C H A P T E R 8

Catalog Manager
clientData Reserved for your use. The Catalog Manager passes the value in
this field to your callback routines. If you have the same callback or
completion routine processing more than one asynchronous
request, your routine can use the clientData field to determine
for which request it is processing results.

The dNode ID 8

A dNode ID consists of a dNode number that uniquely identifies a dNode within a
catalog plus the name of the dNode. A dNode ID is defined by the DNodeID data
structure. In the Catalog Manager API, it is not used as a stand-alone data structure; it is
a member of the union part of the DirEnumSpec data structure, described on page 8-193.

struct DNodeID {

DNodeNum dNodeNumber; /* dNode number */

long reserved1; /* reserved */

RStringPtr name; /* name of the dNode */

long reserved2; /* reserved */

};

The Enumeration Choice Type 8

The bits in a variable of type DirEnumChoices indicate types of entities. You use a
variable of type DirEnumChoices to specify the type of entities about which you want
information when you call the DirEnumerateGet function.

typedef unsigned long DirEnumChoices;

The bits in the DirEnumChoices data type are defined as follows:

enum {

kEnumDistinguishedNameBit,

kEnumAliasBit,

kEnumPseudonymBit,

kEnumDNodeBit,

kEnumInvisibleBit

};

You can use the following values to set and test the bits in a variable of type
DirEnumChoices.

enum { /* values of DirEnumChoices */

kEnumDistinguishedNameMask = 1L<<kEnumDistinguishedNameBit,

kEnumAliasMask = 1L<<kEnumAliasBit,

kEnumPseudonymMask = 1L<<kEnumPseudonymBit,
8-192 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
kEnumDNodeMask = 1L<<kEnumDNodeBit,

kEnumInvisibleMask = 1L<<kEnumInvisibleBit

};

#define kEnumAllMask (kEnumDistinguishedNameMask | kEnumAliasMask |

kEnumPseudonymMask | kEnumDNodeMask |

kEnumInvisibleMask)

Descriptions

kEnumDistinguishedNameMask
This setting specifies a record.

kEnumAliasMask
This setting specifies an alias.

kEnumPseudonymMask
This setting specifies a pseudonym.

kEnumDNodeMask
This setting specifies a dNode.

kEnumInvisibleMask
As an input, this setting specifies all dNodes, records, aliases, and
pseudonyms, both visible and invisible. As an output, it is set in
conjunction with either kEnumDistinguishedNameMask,
kEnumAliasMask, kEnumPseudonymMask, or kEnumDNodeMask,
and indicates that the specified entity is invisible.

kEnumAllMask As an input, this setting specifies all visible records, aliases,
pseudonyms, and dNodes. It is not used as an output.

The Enumeration Specification 8

The DirEnumSpec data structure contains information about either a record, an alias, a
pseudonym, or a dNode. The value of the enumFlag field indicates the type of entity to
which the rest of the information applies as well as the format of that information.

When you want to enumerate the contents of a dNode starting from a specific dNode,
record, alias, or pseudonym, you provide a DirEnumSpec structure to the
DirEnumerateGet function that specifies the record, alias, pseudonym, or dNode at
which you want the DirEnumerateGet function to start the enumeration. The
DirEnumerateParse function passes a DirEnumSpec structure to your callback
routine for each record, alias, pseudonym, or dNode that it finds in the buffer.

struct DirEnumSpec {

DirEnumChoices enumFlag; /* type of entity */

unsigned short indexRatio; /* approximate record position */

union {

LocalRecordID recordIdentifier; /* record information */
Catalog Manager Reference 8-193

C H A P T E R 8

Catalog Manager
DNodeID dnodeIdentifier; /* dNode info */

}u;

};

Field descriptions

enumFlag A value that indicates the type of entity about which information is
provided in the u field. The following constants indicate whether
the information applies to a record, an alias, a pseudonym, or a
dNode: kEnumDistinguishedNameMask, kEnumAliasMask,
kEnumPseudonymMask, or kEnumDNodeMask. The
kEnumInvisibleMask constant indicates whether the entity is
invisible or visible.

indexRatio The approximate position, expressed as a percentile ranging from 1
to 100, of a record among all records in a dNode. This is a hint that
can be used with a scroll box (or some other mechanism) to show
how far you have moved through a list of records. If a catalog does
not support this feature, it sets this field to 0.

u.recordIdentifier
If the enumFlag field is set to kEnumDistinguishedNameMask,
kEnumAliasMask or kEnumPseudonymMask, this field contains a
LocalRecordID data structure. The local record ID specifies a
record’s name, type, and creation ID.

u.dnodeIdentifier
If the enumFlag field is set to kEnumDNodeMask, this field contains
a DNodeID data structure. A dNode ID specifies a dNode’s name
and its dNode number. If a catalog does not support dNode
numbers, the dNodeNumber field is set to 0.

The Script Structure 8

The script structure SLRV, returned by the DirEnumerateGet function, identifies the
script, language, and region that the function uses to sort the entries in your buffer.

struct SLRV {

ScriptCode script; /* script code in which entries are sorted */

short language; /* language code in which entries are sorted */

short regionCode; /* region code in which entries are sorted */

short version; /* version of AOCE sorting software */

};
8-194 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Field descriptions

script The script code identifies the script that the DirEnumerateGet
function uses in sorting.

language The language code identifies the language that the
DirEnumerateGet function uses in sorting.

regionCode The region code identifies the region that the DirEnumerateGet
function uses in sorting.

version The constant kCurrentOCESortVersion. It identifies the version
of AOCE sorting software that the DirEnumerateGet function
uses.

The Matching Criteria Type 8

You use the DirMatchWith data type to indicate a matching mode when you
enumerate the contents of a dNode. You always use a variable of type DirMatchWith in
conjunction with a search string. The DirMatchWith variable specifies the criteria that
the DirEnumerateGet function uses to determine when it has found a match with your
search string.

typedef unsigned char DirMatchWith;

The possible values of the DirMatchWith data type are defined as follows:

enum { /* values of DirMatchWith */

kMatchAll,

kExactMatch,

kBeginsWith,

kEndingWith,

kContaining

};

Descriptions

kMatchAll Match any string.
kExactMatch Match only those strings that are exactly the same as the search

string.
kBeginsWith Match any string that begins with the search string.
kEndingWith Match any string that ends with the search string.
kContaining Match any string that contains the search string.
Catalog Manager Reference 8-195

C H A P T E R 8

Catalog Manager
Catalog Manager Functions 8
This section describes the Catalog Manager functions that provide services such as
getting information about catalogs and dNodes, managing the PowerTalk Setup catalog,
managing records and attribute values and types, and controlling access to dNodes,
records, and attribute types.

All of the Catalog Manager functions take a pointer to a catalog parameter block as
input. Each routine description includes a list of the fields in the parameter block that are
used by the function. Each list of parameter block fields has four columns. See the
Preface to this book for a description of the type of information that each column
contains.

To call a Catalog Manager function from assembly language, push the address of the
DirParamBlock parameter block and the async flag onto the stack using the Pascal
calling convention, and place the selector value for the _oceTBDispatch trap macro in
register D0. Each function description includes the selector value for that function. The
function returns its result code in the ioResult field of the parameter block.

Getting Information About Catalogs 8

You can use the functions in this section to get a variety of information about the
catalogs that are listed in the PowerTalk Setup catalog. The
DirEnumerateDirectoriesGet and DirEnumerateDirectoriesParse functions
work together to provide the catalog name, discriminator value, and feature flags for
some or all of the catalogs listed in the PowerTalk Setup catalog. You can discover the
features that a specific catalog supports by calling the DirGetDirectoryInfo
function. The DirGetLocalNetworkSpec function provides you with the name of the
network on which a PowerShare catalog is located. You can get information about the
icons that represent a catalog by calling the DirGetDirectoryIcon function. The
DirGetExtendedDirectoriesInfo function provides additional information about
an external catalog that is specific to that catalog.

DirEnumerateDirectoriesGet 8

The DirEnumerateDirectoriesGet function returns information about catalogs that
are listed in the PowerTalk Setup catalog.

pascal OSErr DirEnumerateDirectoriesGet

(DirParamBlockPtr paramBlock,

Boolean async);
8-196 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, and clientData fields.

Field descriptions

directoryKind A value that indicates the type of catalog about which you are
requesting information. Use the constant kDirADAPKind to request
information about PowerShare catalogs. Use the constant
kDirDSAMKind to request information about external catalogs. To
request information about both PowerShare and external catalogs,
use the constant kDirAllKinds. You can also supply a specific
signature value to get information on catalogs having that
signature. The function does not return information about personal
catalogs.

startingDirectoryName
A pointer to the name of the catalog at which you want the
DirEnumerateDirectoriesGet function to begin the
enumeration. Set this field to nil to start with the first catalog. If
the DirEnumerateDirectoriesGet function completes with the
kOCEMoreData result code, set this field to the value of the last
dirName parameter passed to your callback routine by the
DirEnumerateDirectoriesParse function to continue the
enumeration. You must coordinate the value you provide in this
field with the value you provide in the
startingDirDiscriminator field; that is, both values are
required, and both must apply to the same catalog.

startingDirDiscriminator
The discriminator value of the catalog at which you want the
DirEnumerateDirectoriesGet function to begin the
enumeration. Set the fields of this structure to 0 to start with the first
catalog. If the DirEnumerateDirectoriesGet function
completes with the kOCEMoreData result code, set this field to the
value of the last discriminator parameter passed to your

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long You define this field
→ directoryKind OCEDirectoryKind Catalog type
→ startingDirectoryName DirectoryNamePtr Starting catalog name
→ startingDirDiscriminator DirDiscriminator Starting discriminator value
→ includeStartingPoint Boolean Begin enumeration with

starting point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
Catalog Manager Reference 8-197

C H A P T E R 8

Catalog Manager
callback routine by the DirEnumerateDirectoriesParse
function to continue the enumeration. You must coordinate the
value you provide in this field with the value you provide in the
startingDirectoryName field; that is, both values are required,
and both must apply to the same catalog

includeStartingPoint
A Boolean value that tells the DirEnumerateDirectoriesGet
function how to interpret the startingDirectoryName and
startingDirDiscriminator fields. Set this field to true if you
want the DirEnumerateDirectoriesGet function to return
information about catalogs beginning with the one specified by the
startingDirectoryName and startingDirDiscriminator
fields. If you set this field to false, the function returns
information starting with the catalog immediately after the one
specified by the startingDirectoryName and
startingDirDiscriminator fields.

getBuffer A pointer to the buffer in which the function stores the name, the
discriminator value, and the capability flags for each catalog listed
in the PowerTalk Setup catalog. You provide this buffer.

getBufferSize The number of bytes in the buffer.

DESCRIPTION

You call the DirEnumerateDirectoriesGet function to obtain information about
PowerShare catalogs and external catalogs that are listed in the PowerTalk Setup catalog.
You can request information about either PowerShare catalogs or external catalogs, or
about both. You can also request information about catalogs that share a specific
signature that you specify. For example, if there are several X.500 catalogs listed in the
PowerTalk Setup catalog and they used the same signature value, you could request
information about that set of catalogs.

For each catalog about which you have requested information, the function places the
catalog’s name, its discriminator value, and its feature flags in the buffer you provide. If
your buffer is not large enough to contain all of the information you requested, the
function places as many sets of catalog name, discriminator value, and feature flags as
will fit in your buffer and returns the kOCEMoreData result code.

When the function completes with either the noErr or kOCEMoreData result codes, you
can provide a pointer to your buffer to the DirEnumerateDirectoriesParse
function, which extracts the catalog information from the buffer and passes it to a
callback routine that you provide.

If your buffer is too small to hold all of the information you requested, you can continue
to obtain information by calling the DirEnumerateDirectoriesGet function again,
after calling the DirEnumerateDirectoriesParse function. For the values of the
startingDirectoryName and startingDirDiscriminator fields, use the values
that the DirEnumerateDirectoriesParse function last passed to the dirName and
8-198 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
discriminator parameters of your callback routine. The
DirEnumerateDirectoriesGet function will continue the enumeration starting with
the next catalog as determined by the value of the includeStartingPoint field.

Because personal catalogs are not listed in the PowerTalk Setup catalog, the
DirEnumerateDirectoriesGet function does not return information about them. To
obtain the name, discriminator value, and feature flags of a personal catalog, locate the
catalog using the routines in the Standard File Package; open the catalog by calling the
DirOpenPersonalDirectory function, and call the DirGetDirectoryInfo
function to get the information.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirEnumerateDirectoriesParse function is described next.

The DirGetDirectoryInfo function is described on page 8-206.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all
the information you requested, see “Getting Attribute Type Information” on page 8-178.

DirEnumerateDirectoriesParse 8

The DirEnumerateDirectoriesParse function parses the data returned by the
DirEnumerateDirectoriesGet function and returns information about catalogs, one
catalog at a time, by repeatedly calling your callback routine.

pascal OSErr DirEnumerateDirectoriesParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

Trap macro Selector

_oceTBDispatch $011A

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available
Catalog Manager Reference 8-199

C H A P T E R 8

Catalog Manager
async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, and clientData fields.

Field descriptions

eachDirectory A pointer to your callback routine. The function declaration for this
routine is described on page 8-311.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirEnumerateDirectoriesGet function.

getBufferSize The number of bytes in the buffer. Use the same value that you
provided to the DirEnumerateDirectoriesGet function.

DESCRIPTION

You call the DirEnumerateDirectoriesParse function to extract the catalog
information placed in your buffer by the DirEnumerateDirectoriesGet function.
You must provide a callback routine that the DirEnumerateDirectoriesParse
function calls for each set of catalog information that it finds in the buffer. Each time it
calls your callback routine, the function passes it the name, discriminator value, and the
feature flags of a catalog.

The DirEnumerateDirectoriesParse function completes when it has finished
parsing the contents of your buffer or when your callback routine returns true. The
function returns the kOCEMoreData result code if it reaches the end of the buffer and
finds that the DirEnumerateDirectoriesGet function did not return all the data
requested. To continue the enumeration, call the DirEnumerateDirectoriesGet
function again. Get the values of the dirName and discriminator parameters that the
DirEnumerateDirectoriesParse function last passed to your callback routine. In
your next call to the DirEnumerateDirectoriesGet function, use these as the values
of the startingDirectoryName and startingDirDiscriminator fields.

If your callback routine returns true, the DirEnumerateDirectoriesParse function
completes with the noErr result code.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long You define this field
→ eachDirectory ForEachDirectory Your callback routine
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
8-200 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Because the DirEnumerateDirectoriesGet function returns information about
PowerShare and external catalogs only, the DirEnumerateDirectoriesParse
function can retrieve information only about these types of catalogs. To obtain the name,
discriminator value, and feature flags of a personal catalog, locate the catalog using the
routines in the Standard File Package; open the catalog by calling the
DirOpenPersonalDirectory function, and call the DirGetDirectoryInfo
function to get the information.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The function declaration for your callback routine is described on page 8-311.

The DirGetDirectoryInfo function is described on page 8-206.

The DirEnumerateDirectoriesGet function is described on page 8-196.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesParse function) when the buffer is too small to hold
all the information you requested, see “Getting Attribute Type Information” on
page 8-178.

DirFindRecordGet 8

The DirFindRecordGet function returns information about the records, aliases, and
pseudonyms contained in a catalog that you specify.

pascal OSErr DirFindRecordGet (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Trap macro Selector

_oceTBDispatch $0106

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available
Catalog Manager Reference 8-201

C H A P T E R 8

Catalog Manager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

startingPoint A pointer to the record, alias, or pseudonym at which you want the
function to start the enumeration. Set this field to nil when you
call the DirFindRecordGet function for the first time. If the
function completes with the kOCEMoreData result code, you can
set this field to the value of the last enumSpec parameter passed to
your callback routine by the DirFindRecordParse function to
continue the enumeration from the next record, alias, or pseudonym.

nameMatchString
A pointer to the name of the record, alias, or pseudonym about
which you want information. You specify the mode in which you
want the function to match the name in the matchNameHow field. If
you specify kMatchAll in the matchNameHow field, the function
ignores this field. The DirFindRecordGet function returns only
records, aliases, or pseudonyms whose names match the value that
you specify according to the match criteria that you specify.

typesList A pointer to an array of pointers. Each element in the array points
to a record type about which you want information. Your array may
include both AOCE-defined record types and record types that you
define. You specify the mode in which you want the function to
match the type in the matchTypeHow field. If you specify
kMatchAll in the matchTypeHow field, the function ignores this
field.

typeCount The number of pointers to record types in your array of types.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ startingPoint DirEnumSpec* Starting point for enumeration
→ nameMatchString RStringPtr Name of record, alias, or pseudonym you

want returned
→ typesList RStringPtr* List of types you want returned
→ typeCount unsigned long Number of types in the list
→ matchNameHow DirMatchWith Match criteria for names
→ matchTypeHow DirMatchWith Match criteria for types
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
→ directoryName DirectoryNamePtr Catalog name
→ discriminator Discriminator Discriminator value
8-202 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
matchNameHow A value that specifies the matching mode by which the function
determines matches with the name you provide in the
nameMatchString field. The possible values for exact and
wildcard matching are described on page 8-195.

matchTypeHow A value that specifies the matching mode by which the function
determines matches with the values you provide in the typesList
field. The possible values for exact and wildcard matching are
described on page 8-195. If you specify kMatchAll, the function
returns information on each record, alias, or pseudonym whose
name matches the value pointed to by the nameMatchString field.

getBuffer A pointer to the buffer in which the function stores the requested
information. You provide this buffer.

getBufferSize The number of bytes in the buffer.
directoryName A pointer to the name of the catalog whose records you want to

enumerate. You provide the name buffer.
discriminator A unique value associated with a catalog that distinguishes it from

other catalogs with the same name.

DESCRIPTION

You call the DirFindRecordGet function to obtain a list of records, aliases,
pseudonyms, or all of these for a catalog that you specify. This function allows you to
specify matching criteria for both names and types.

The sort order of the information returned by the function is undefined.

The DirFindRecordGet function places a local record ID for each record, alias, or
pseudonym that it finds in your buffer. The function provides only whole units of
information for each entity. That is, it will not provide the creation ID for a record
without also providing its name and type. If your buffer is not large enough to contain
all of the information requested, the DirFindRecordGet function provides complete
information on as many records, aliases, or pseudonyms as will fit and returns the
kOCEMoreData result code.

When the function completes with either the noErr or kOCEMoreData result codes, you
use a pointer to your buffer as input to the DirFindRecordParse function, which
extracts the information from the buffer.

If the DirFindRecordGet function returned the kOCEMoreData result code, you can
request additional information by calling it again after calling the
DirFindRecordParse function. Get the value of the enumSpec parameter that
the DirFindRecordParse function last passed to your callback routine. When you call
DirFindRecordParse again, use this value in the startingPoint field. Use the
same values for the nameMatchString and typesList fields that you used in your
original call to the DirFindRecordGet function. The DirFindRecordGet function
will continue the enumeration starting with the next record, alias, or pseudonym.
Catalog Manager Reference 8-203

C H A P T E R 8

Catalog Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirFindRecordParse function is described next.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all
the information you requested, see “Getting Attribute Type Information” on page 8-178.

To obtain the value for the discriminator field, call the DirGetDirectoryInfo
function on page 8-206.

DirFindRecordParse 8

The DirFindRecordParse function parses the data returned by the
DirFindRecordGet function and returns information on each record, alias, or
pseudonym by repeatedly calling your callback routine.

pascal OSErr DirFindRecordParse (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $0140

noErr 0 No error
kOCEMoreData –1623 More data available

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ startingPoint DirEnumSpec * Starting point for enumeration
→ nameMatchString RStringPtr Name of record, alias, or pseudonym you

want returned
→ typesList RStringPtr * List of types you want returned
8-204 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

startingPoint Use the value you provided in the startingPoint field of the
DirFindRecordGet function.

nameMatchString
Use the value you provided in the nameMatchString field of the
DirFindRecordGet function.

typesList Use the value you provided in the typesList field of the
DirFindRecordGet function.

typeCount Use the value you provided in the typeCount field of the
DirFindRecordGet function.

matchNameHow Use the value you provided in the matchNameHow field of the
DirFindRecordGet function.

matchTypeHow Use the value you provided in the matchTypeHow field of the
DirFindRecordGet function.

getBuffer Use the value you provided in the getBuffer field of the
DirFindRecordGet function.

getBufferSize Use the value you provided in the getBufferSize field of the
DirFindRecordGet function.

directoryName Use the value you provided in the directoryName field of the
DirFindRecordGet function.

discriminator Use the value you provided in the discriminator field of the
DirFindRecordGet function.

forEachRecordFunc
A pointer to your callback routine.

DESCRIPTION

You call the DirFindRecordParse function to extract the information that the
DirFindRecordGet function placed in your buffer. You must provide a callback
routine that the DirFindRecordParse function calls for each record, alias, or
pseudonym about which there is information in the buffer. The DirFindRecordParse
function provides a local record ID for each record, alias, or pseudonym. See the
description of your callback routine on page 8-317 for more information.

→ typeCount unsigned long Number of types in the list
→ matchNameHow DirMatchWith Match criteria for names
→ matchTypeHow DirMatchWith Match criteria for types
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
→ directoryName DirectoryNamePtr Catalog name
→ discriminator Discriminator Discriminator value
→ forEachRecordFunc ForEachRecord Your callback routine
Catalog Manager Reference 8-205

C H A P T E R 8

Catalog Manager
The DirFindRecordParse function completes when it has finished parsing the
contents of your buffer or when your callback routine returns true. The function returns
the kOCEMoreData result code if it reaches the end of the buffer and finds that the
DirFindRecordGet function did not return all the data requested. To continue the
enumeration, call the DirFindRecordGet function again. In your next call to the
DirFindRecordGet function, for the value of the startingPoint field, use the value
that your callback routine last received in the enumSpec parameter.

If your callback routine returns true, the DirFindRecordParse function completes
with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The function declaration for your callback routine is described on page 8-317.

The DirFindRecordGet function is described on page 8-201.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesParse function) when the buffer is too small to hold
all the information you requested, see “Getting Attribute Type Information” on
page 8-178.

DirGetDirectoryInfo 8

The DirGetDirectoryInfo function returns information about a catalog that you
specify.

pascal OSErr DirGetDirectoryInfo (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Trap macro Selector

_oceTBDispatch $0141

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available
8-206 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

directoryName A pointer to the name of the catalog about which you want
information. You provide the name buffer. You specify the catalog
name unless you are requesting information about a personal
catalog. In that case, you may provide either the personal catalog’s
name and discriminator value or its reference number. If you
specify its reference number in the dsRefNum field, the function
returns, in the buffer supplied for the directoryName field, the
volume name on which the personal catalog resides. To obtain the
file specification for the personal catalog, call the
DirMakePersonalDirectoryRLI function first. Then call
OCEExtractAlias using the record location information you
obtained to extract the File Manager alias for the personal catalog.

discriminator A unique value that distinguishes a catalog from other catalogs
with the same name. You specify this field unless you are requesting
information about a personal catalog. In that case, you may provide
either the personal catalog’s name and discriminator value or its
reference number. If you specify its reference number in the
dsRefNum field, the function returns the discriminator value in this
field.

features A set of bit flags that describe the features that a catalog supports.
The function returns these flags for the catalog that you specify.

DESCRIPTION

You call the DirGetDirectoryInfo function to determine the features that a catalog
supports before calling other Catalog Manager functions that address that catalog.

In addition to returning a catalog’s feature flags, the DirGetDirectoryInfo function
may also return the name and discriminator value for a catalog. The function first
examines the dsRefNum field. If you specify a nonzero value for the dsRefNum field
(that is, if your target catalog is a personal catalog), the DirGetDirectoryInfo

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
↔ directoryName DirectoryNamePtr The name of the catalog
↔ discriminator DirDiscriminator Discriminator value
← features DirGestalt Feature flags
Catalog Manager Reference 8-207

C H A P T E R 8

Catalog Manager
function returns the name, the discriminator value, and the feature flags for the personal
catalog that you identified. If the dsRefNum field is set to 0, the function examines the
serverHint field. A special case arises when you request information about a
PowerShare catalog and you specify the AppleTalk address of a server for that catalog in
the serverHint field. In this case, you do not need to provide the catalog name and
discriminator. The function returns those values as well the feature flags.

To test the bits in the features field, you can use the mask values shown on page 8-189.

Note
The DirEnumerateDirectoriesGet function also returns the name,
discriminator value, and feature flags for PowerShare and external
catalogs. Unlike the DirGetDirectoryInfo function, which requires
that you know some information about a specific catalog before you can
request additional information about that catalog, the
DirEnumerateDirectoriesGet function returns catalog information
without you needing to provide any. However, the
DirEnumerateDirectoriesGet function returns information only
about the PowerShare and external catalogs listed in the PowerTalk
Setup catalog. ◆

SPECIAL CONSIDERATIONS

The DirFindADAPDirectoryByNetSearch and DirAddADAPDirectory functions
allow you to make a catalog available for your use without adding it to the PowerTalk
Setup catalog. You can call the DirGetDirectoryInfo function for any catalog that
you have made privately available.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirEnumerateDirectoriesGet function is described on page 8-196.

You obtain a reference number for a personal catalog from the
DirOpenPersonalDirectory function, which is described on page 8-242.

Trap macro Selector

_oceTBDispatch $0119

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
8-208 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DirGetLocalNetworkSpec 8

The DirGetLocalNetworkSpec function returns the name of the network on which a
PowerShare catalog resides.

pascal OSErr DirGetLocalNetworkSpec (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

directoryName A pointer to the name of the PowerShare catalog to which the
request applies.

discriminator The discriminator value of the PowerShare catalog to which the
request applies. A catalog discriminator differentiates between two
or more catalogs with the same name.

networkSpec A pointer to a buffer in which the function places the name of the
network in which the catalog resides. You provide this buffer. The
buffer should be big enough to hold a maximum size
NetworkSpec data structure.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ directoryName DirectoryNamePtr Catalog name
→ discriminator DirDiscriminator Discriminator value
↔ networkSpec NetworkSpecPtr Network name
Catalog Manager Reference 8-209

C H A P T E R 8

Catalog Manager
DESCRIPTION

You call the DirGetLocalNetworkSpec function when you want to know the name of
the network on which a specific ADAP catalog resides. You provide the catalog name
and discriminator value. The function returns in the networkSpec field a pointer to the
name of the network. The information that this function provides may be useful in an
environment containing multiple interconnected networks.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The NetworkSpec data structure is described in the chapter “AOCE Utilities” in this
book.

DirGetDirectoryIcon 8

The DirGetDirectoryIcon function returns information about an icon representing a
catalog that you specify.

pascal OSErr DirGetDirectoryIcon (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Trap macro Selector

_oceTBDispatch $0124

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
8-210 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

pRLI A pointer to packed record location information for the catalog
whose icon you want to obtain. The function ignores this field when
you provide a nonzero value in the dsRefNum field to specify a
personal catalog.

iconType The type of icon about which you want information. Specify one of
the following: 'ICN#', 'icl8', 'icl4', 'ics8' 'ics4', or 'ics#'.

iconBuffer A pointer to the buffer in which the function stores the icon data.
You provide this buffer.

bufferSize On input, you set this field to the size of the buffer pointed to by the
iconBuffer field. On output, the function sets this field to the size
of the icon it placed in your buffer. If the function completes with
the kOCEBufferTooSmall result code, it sets this field to the size
of the icon.

DESCRIPTION

You call the DirGetDirectoryIcon function to get icon information for a catalog so
that you may display the icon.

This function is not supported by PowerShare and personal catalogs. A catalog service
access module may support this function for its catalog.

If your buffer is not large enough to hold the icon you requested, the function returns the
kOCEBufferTooSmall result code. In that case, the bufferSize field contains the size
of the icon. You should increase the size of your buffer to the icon size and call the
function again.

SPECIAL CONSIDERATIONS

Apple Computer, Inc., does not publish the size of icon resources. They are subject to
change.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ pRLI PackedRLIPtr Target catalog
→ iconType OSType The type of icon
↔ iconBuffer Ptr Your buffer
↔ bufferSize unsigned long Size of buffer on input; data bytes in

buffer on output
Catalog Manager Reference 8-211

C H A P T E R 8

Catalog Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is
described in the chapter “AOCE Utilities” in this book.

For information about the different icon types and the format of the data associated with
those types, see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.

DirGetExtendedDirectoriesInfo 8

The DirGetExtendedDirectoriesInfo function returns extended information about
catalogs.

pascal OSErr DirGetExtendedDirectoriesInfo

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $0121

noErr 0 No error
kOCEBufferTooSmall –1503 Buffer too small for data requested

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
↔ buffer Ptr Your output buffer
→ bufferSize unsigned long Size of buffer;
← totalEntries unsigned long Number of catalogs found
← actualEntries unsigned long Number of entries returned
8-212 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

buffer A pointer to your buffer in which the function stores the
information you request.

bufferSize The number of bytes in your buffer. You set this field to the size of
your buffer in bytes.

totalEntries The total number of external catalogs that the
DirGetExtendedDirectoriesInfo function found listed in the
PowerTalk Setup catalog.

actualEntries The number of catalogs about which the function has returned
information in your buffer.

DESCRIPTION

You call the DirGetExtendedDirectoriesInfo function to get information about
catalogs. The function provides more information than is available from the
DirEnumerateDirectoriesGet function. For example, it might return information
on the addressing scheme used by an external catalog. Typically, an AOCE address
template calls this function to help construct an address for a messaging service access
module. Unlike the DirEnumerateDirectoriesGet function,
DirGetExtendedDirectoriesInfo has no associated parse routine. Thus, you must
parse the contents of the buffer yourself.

For each catalog, the DirGetExtendedDirectoriesInfo function stores information
in your buffer in the following format:

struct EachDirectoryData {

PackedRLI pRLI; /* packed RLI for catalog */

OSType entnType; /* address type */

long hasMailSlot; /* catalog has mail slot? */

ProtoRString realName; /* real name */

ProtoRString comment; /* comment for display */

long length; /* data length */

char data[length]; /* data */

};

Field descriptions

pRLI Packed record location information that identifies the catalog.
entnType The address type.
hasMailSlot The DirGetExtendedDirectoriesInfo function sets this field

to 1 if the catalog is associated with a mail slot. Otherwise, it sets
this field to 0.
Catalog Manager Reference 8-213

C H A P T E R 8

Catalog Manager
realName The name of the catalog in its native environment. This may differ
from its catalog name within an AOCE system. It is word aligned.

comment Information that the catalog provider stores in its record in the
PowerTalk Setup catalog for display to a user. Typically, this
information further identifies and describes the catalog to the user.
For example, it might say “This catalog is located in Paris, France.
You are connected to it via a public packet-switched network.” It is
word aligned.

length The number of bytes in the data field.
data Information about the catalog, padded to an even boundary.

Your buffer must be large enough to accommodate the total number of entries that the
function finds. If your buffer is not large enough to hold all of the information,
the function completes with the kOCEMoreData result code. In that case, use the value
of the totalEntries field as a guide in allocating a bigger buffer and then call the
function again. Because the function returns data that is of variable length for each
catalog, this is a trial-and-error method.

Note that there is no way to have the DirGetExtendedDirectoriesInfo function
return only data it has not previously returned. It always attempts to return information
on every catalog that it finds.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirEnumerateDirectoriesGet function is described on page 8-196.

For information on messaging service access modules, see the chapter “Messaging
Service Access Modules” in Inside Macintosh: AOCE Service Access Modules.

The chapter “Service Access Module Setup” in Inside Macintosh: AOCE Service Access
Modules describes address templates.

For an example of using the DirEnumerateDirectoriesGet function, see “Getting
Extended Catalog Information” beginning on page 8-182.

Getting Information About dNodes 8

You can use the functions in this section to get a variety of information about dNodes.
The DirEnumerateGet and DirEnumerateParse functions work together to provide

Trap macro Selector

_oceTBDispatch $0136

noErr 0 No error
kOCEMoreData –1623 More data available
8-214 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
information about the contents of a dNode. You can detect changes in a dNode by calling
the DirGetDNodeMetaInfo function which indicates whether a specific dNode is a leaf
node in a catalog tree. If you know the pathname information for a dNode, you can
obtain its dNode number and vice versa by using the functions
DirMapDNodeNumberToPathName and DirMapPathNameToDNodeNumber.

DirEnumerateGet 8

The DirEnumerateGet function returns information about the contents of a dNode
that you specify. The contents of a dNode include records, aliases, pseudonyms, and
dNodes.

pascal OSErr DirEnumerateGet (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRLI PackedRLIPtr Target dNode
→ startingPoint DirEnumSpec* Starting point for enumeration
→ sortBy DirSortOption Return data in name or type order
→ sortDirection DirSortDirection Search forward or backward for info
→ nameMatchString RStringPtr Name of record, alias, pseudonym,

or dNode you want returned
→ typesList RStringPtr* List of types you want returned
→ typeCount unsigned long Number of types in the list
→ enumFlags DirEnumChoices Types of entities about which you

want information
→ includeStartingPoint Boolean Begin enumeration with starting

point?
→ matchNameHow DirMatchWith Match criteria for names
→ matchTypeHow DirMatchWith Match criteria for types
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
← responseSLRV SLRV Script information
Catalog Manager Reference 8-215

C H A P T E R 8

Catalog Manager
See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRLI A pointer to packed record location information that identifies the
dNode for which you want a list of records, aliases, pseudonyms, or
dNodes. You use the enumFlags field to specify the type of entity
about which you want information. The function ignores the aRLI
field when you provide a nonzero value in the dsRefNum field to
specify a personal catalog.

startingPoint A pointer to the record, alias, pseudonym, or dNode at which you
want the function to start the enumeration. You specify the type of
entity in the enumFlag field of the DirEnumSpec data structure
and provide either a LocalRecordID or a DNodeID data structure
to identify the specific entity from which you want the function to
start returning information. Set this field to nil to start with the
first record, alias, pseudonym, or dNode in the dNode. If the
DirEnumerateGet function completes with the kOCEMoreData
result code, you can continue the enumeration as follows: Set the
startingPoint field to the value of the last enumSpec parameter
passed to your callback routine by the DirEnumerateParse
function.

sortBy A constant that specifies whether the function returns the records
and dNodes sorted by name or sorted by type. Set this field to the
constant kSortByName if you want the data ordered alphabetically
by name. Set this field to the constant kSortByType if you want
the data ordered alphabetically by type.

sortDirection A constant that specifies whether the function returns the
information you requested in forward sort order or reverse sort
order. Set this field to the constant kSortForwards if you want
your data in forward sort order. Set it to the constant
kSortBackwards if you want your data in reverse sort order.

nameMatchString
A pointer to the name of the record, alias, pseudonym, or dNode
about which you want information. Use the matchNameHow field to
specify the mode in which you want the function to match the
name. If you specify kMatchAll in the matchNameHow field, the
function ignores this field. The DirEnumerateGet function returns
only records, aliases, pseudonyms, or dNodes whose names match
the value that you specify according to the match criteria that you
specify.

typesList A pointer to an array of pointers. Each element in the array points
to a record type about which you want information. Your array may
include both AOCE-defined record types and record types that you
define. In the matchTypeHow field, specify the mode in which you
want the function to match the type. If you specify kMatchAll in
the matchTypeHow field, the function ignores this field.

typeCount The number of pointers to record types in your array of types.
8-216 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
enumFlags A mask value that specifies whether you want the
DirEnumerateGet function to return information about records,
aliases, pseudonyms, dNodes, or some combination of these. The
mask constants that you can specify are described in the section
“The Enumeration Choice Type” on page 8-192. With the enumFlag
field of the DirEnumSpec data structure and with either a
LocalRecordID or a DNodeID data structure that you provide in
that data structure, you identify the specific entity from which you
want the function to start returning information.

includeStartingPoint
A Boolean value that tells the function how to interpret the
startingPoint field. Set includeStartingPoint to true if
you want DirEnumerateGet to return information beginning with
the entity specified by the startingPoint field. Set this field to
false if you want the DirEnumerateGet function to return
information beginning with the entity immediately after the entity
specified by the startingPoint field.

matchNameHow A value that specifies the matching mode used to determine
matches with the name specified by nameMatchString. The
possible values for exact and wildcard matching are described on
page 8-195.

matchTypeHow A value that specifies the matching mode used to determine
matches with the values specified by typesList. The possible
values for matching are described in “The Matching Criteria Type”
on page 8-195. If you specify kMatchAll, the function returns
information on each instance of a target entity whose name matches
the value pointed to by the nameMatchString field. (You specify
target entities in the enumFlags field.)

getBuffer A pointer to the buffer in which the function stores the requested
information. You provide this buffer.

getBufferSize The number of bytes in the buffer.
responseSLRV A structure in which the function returns the script code, language

code, and region code of the character set that the function used to
sort the entries in your buffer.

DESCRIPTION

You call the DirEnumerateGet function to obtain a list of records, aliases, pseudonyms,
dNodes, or any combination of these for a dNode that you specify. This function allows
you to specify a starting point for the enumeration, a sort indicator (by name or by type),
and a sort direction, as well as matching criteria for both names and types.

Note that a given catalog may not support the sort indicator that you specify. For
example, a catalog may support an ordered enumeration by creation times, but not a sort
by name or by type. Your results would come back in an unspecified order. (A catalog
indicates its sorting capabilities through its feature flags. See “Feature Flag Bit Array”
beginning on page 8-186 for more information.)
Catalog Manager Reference 8-217

C H A P T E R 8

Catalog Manager
The sort order of the data returned to you is determined by the target catalog’s sorting
capabilities and the value you provide in the sortDirection field. If the catalog
supports sorting by name or sorting by type, the data is sorted in alphabetical or
reverse-alphabetical order. If the catalog supports an unspecified ordered enumeration,
the catalog determines the meaning of a forward or backward order. For example, if a
catalog supports only an ordered enumeration by creation times, it may return the data
in a most recent first or oldest first order.

PowerShare and personal catalogs do not provide secondary sorting. If you specify
sorting by name and there are several entities with the same name, those entities are not
additionally sorted by type. Similarly, if you specify sorting by type, entities of the same
type are not additionally sorted by name. Some external catalogs may have a secondary
sort capability; however, the DirEnumerateGet function does not provide a way for
you to specify a secondary sort order.

Note
The enumFlags field indicates the type of entity about which you want
information. You can set it to any combination of the mask constants
kEnumDistinguishedNameMask, kEnumAliasMask,
kEnumPseudonymMask, and kEnumDNodeMask to request information
about records, aliases, pseudonyms, and dNodes, respectively. If you
want information about all visible entities, set the mask to
kEnumAllMask. If you want information about all entities, visible and
invisible, set the mask to kEnumInvisibleMask. ◆

If the DirEnumerateGet function is enumerating dNodes, it obtains a dNode name
and number for each dNode and places the names and numbers in your buffer. If the
DirEnumerateGet function is enumerating records, aliases, or pseudonyms, it obtains
a local record ID for each record, alias, or pseudonym and places these IDs in your
buffer. The function provides only whole units of information for each entity. That is, it
will not provide the name for a dNode without also providing the dNode number.
Similarly, it will not provide the creation ID for a record without also providing its name
and type. If your buffer is not large enough to contain all of the information requested,
the DirEnumerateGet function provides complete information on as many records,
aliases, pseudonyms, or dNodes as will fit and returns the kOCEMoreData result code.

When the function completes with either the noErr or kOCEMoreData result codes, you
use a pointer to your buffer as input to the DirEnumerateParse function, which
extracts the information from the buffer.

If the DirEnumerateGet function returns the kOCEMoreData result code, you can
request additional information by calling it again after calling the DirEnumerateParse
function. In your next call to the DirEnumerateGet function, for the value of the
startingPoint field, use the value that your callback routine last received in the
enumSpec parameter. Use the same values for the aRLI, nameMatchString, and
typesList fields that you used in your original call to the DirEnumerateGet
function. The DirEnumerateGet function continues the enumeration starting with the
next entity as determined by the value of the includeStartingPoint field.
8-218 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
To enumerate the contents of the root node of a PowerShare or external catalog,
construct a PackedRLI data structure in which the dNode number is set to
kRootDNodeNumber and the pointer to the pathname is set to nil. Then set the aRLI
field to point to your PackedRLI data structure.

SPECIAL CONSIDERATIONS

If you target a PowerShare or personal catalog and you specify sorting by type, you can
provide only one type in the types list. If you provide more than one type, the function
returns an error.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

To create a PackedRLI data structure use the OCEPackRLI utility routine, also
described in the chapter “AOCE Utilities.”

The DirEnumSpec data structure is described on page 8-193.

The DirEnumerateParse function is described next.

Feature flags are described in “Feature Flag Bit Array” beginning on page 8-186.

The enumeration mask constants are described in the section “The Enumeration Choice
Type” on page 8-192.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all
the information you requested, see “Getting Attribute Type Information” beginning on
page 8-178.

Trap macro Selector

_oceTBDispatch 0x111

noErr 0 No error
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCEUnknownID –1567 Authentication identity is not

valid
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEMoreData –1623 More data available
kOCEStreamCreationErr –1625 Error in creating connection to

server
Catalog Manager Reference 8-219

C H A P T E R 8

Catalog Manager
DirEnumerateParse 8

The DirEnumerateParse function parses the data returned by the DirEnumerateGet
function and returns information on each record, alias, pseudonym, or dNode by
repeatedly calling your callback routine.

pascal OSErr DirEnumerateParse (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRLI The pointer to the dNode for which you want a list of records,
aliases, pseudonyms, or dNodes. Use the same value that you
provided to the associated DirEnumerateGet function.

eachEnumSpec The pointer to your callback routine. The function declaration for
this routine is described on page 8-315.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the DirEnumerateGet function.

getBufferSize The number of bytes in the buffer. Use the same value that you
provided to the associated DirEnumerateGet function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRLI PackedRLIPtr Target dNode
→ eachEnumSpec ForEachDirEnumSpec Your callback routine
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
8-220 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DESCRIPTION

You call the DirEnumerateParse function to extract the information placed in your
buffer by the DirEnumerateGet function. You must provide a callback routine that the
DirEnumerateParse function calls for each record, alias, pseudonym, or dNode about
which there is information in the buffer. The DirEnumerateParse function provides
the dNode name and number if the entity about which it returns information is a dNode.
It provides a local record ID if the entity is a record, an alias, or a pseudonym. See the
description of your callback routine on page 8-315 for more information.

The DirEnumerateParse function completes when it has finished parsing the contents
of your buffer or when your callback routine returns true. The function returns the
kOCEMoreData result code if it reaches the end of the buffer and finds that the
DirEnumerateGet function did not return all the data requested. To continue the
enumeration, call the DirEnumerateGet function again. For the value of the
startingPoint field, use the value that your callback routine last received in the
enumSpec parameter.

If your callback routine returns true, the DirEnumerateParse function completes
with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The function declaration for your callback routine is described on page 8-315.

The DirEnumerateGet function is described on page 8-215.

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesParse function) when the buffer is too small to hold
all the information you requested, see “Getting Attribute Type Information” beginning
on page 8-178.

Trap macro Selector

_oceTBDispatch 0x101

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available
Catalog Manager Reference 8-221

C H A P T E R 8

Catalog Manager
DirGetDNodeMetaInfo 8

The DirGetDNodeMetaInfo function returns a numeric value that you can use to
determine whether a dNode has changed since you last called this function.

pascal OSErr DirGetDNodeMetaInfo (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

pRLI A pointer to packed record location information that identifies the
dNode to which the request applies. The function ignores this field
when you provide a non-zero value in the dsRefNum field to
specify a personal catalog.

metaInfo A numeric value that the DirGetDNodeMetaInfo function
returns. The Catalog Manager updates this value when a catalog
node changes. You use it to determine if the catalog node has
changed.

DESCRIPTION

You call the DirGetDNodeMetaInfo function to find out if there has been a change in
the content of a dNode that you specify. The function returns the metaInfo value
associated with the dNode. You must call the function once to get an initial value. When
you call the function again, compare the initial value with the new value. If the values
match, the dNode has not changed since your previous call to the
DirGetDNodeMetaInfo function. Any change in the information associated with that

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ pRLI PackedRLIPtr Target dNode
← metaInfo DirMetaInfo Comparison value
8-222 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
dNode causes the value of the metaInfo field to change. Records, aliases, pseudonyms,
or dNodes may have been added, deleted or renamed. Attribute types or attribute values
may have been added, deleted, or changed. Access controls for the dNode, its records, or
attribute types may have changed.

If you detect a change in a dNode, you should do whatever is appropriate in your
application to update the information you need. For example, you can call the
DirEnumerate function to retrieve current information for the dNode. If your
application is displaying information about the dNode, you can refresh your window.

The metaInfo field contains the following structure:

struct DirMetaInfo {

unsigned long info[4];

};

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is
also described in the chapter “AOCE Utilities.”

DirMapDNodeNumberToPathName 8

The DirMapDNodeNumberToPathName function returns pathname information for a
dNode that you specify.

pascal OSErr DirMapDNodeNumberToPathName (DirParamBlockPtr

 paramBlock,Boolean async);

Trap macro Selector

_oceTBDispatch 0x118

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
Catalog Manager Reference 8-223

C H A P T E R 8

Catalog Manager
paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

directoryName A pointer to the name of the catalog in which the target dNode
resides.

discriminator The discriminator value of the catalog in which the dNode resides.
This value differentiates two or more catalogs with the same name.

dNodeNumber The dNode number whose pathname you want to obtain.
path A pointer to a buffer in which the function stores packed pathname

information. You must provide a buffer big enough to hold all of the
path information that the function returns. A buffer size of
kPathNameMaxBytes can hold any packed pathname. Before you
can read the packed pathname information, you must unpack it
with the OCEUnpackPathName routine.

lengthOfPathName
This field is used for both input and output. You set this field to the
size of your buffer in bytes before you call the
DirMapDNodeNumberToPathName function. The function sets this
field to the number of bytes in the pathname information that you
requested. If the function completes successfully, this field
represents the number of bytes that the function placed in your
buffer. If your buffer is too small to hold the entire pathname, the
function returns a kOCEMoreData result code and does not store
any information in your buffer. If this occurs, the value in this field
represents the minimum size of a buffer capable of holding the
packed pathname information. You must increase the size of your
buffer to at least the minimum size and call the function again.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ directoryName DirectoryNamePtr Catalog name
→ discriminator DirDiscriminator Discriminator value
→ dNodeNumber DNodeNum The dNode number
↔ path PackedPathNamePtr Your buffer
↔ lengthOfPathName unsigned short Length of your buffer, pathname
8-224 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DESCRIPTION

You call the DirMapDNodeNumberToPathName function when you know a dNode
number and want to obtain the corresponding full pathname. If the catalog you specify
does not support dNode numbers (this includes all personal catalogs), the function
returns the kOCENoSuchDNode error.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCEUnpackPathName routine is described in the chapter “AOCE Utilities” in this
book.

The PackedPathName data structure is also described in the chapter “AOCE Utilities.”

To obtain the dNode number when you know the pathname, use the
DirMapPathNameToDNodeNumber function, described next.

DirMapPathNameToDNodeNumber 8

The DirMapPathNameToDNodeNumber function returns the dNode number for a
dNode identified by a pathname and catalog that you specify.

pascal OSErr DirMapPathNameToDNodeNumber

(DirParamBlockPtr paramBlock, Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch 0x123

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEUnknownID –1567 Authentication identity is not

valid
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEMoreData –1623 Buffer too small
kOCEStreamCreationErr –1625 Error in creating connection to

server
Catalog Manager Reference 8-225

C H A P T E R 8

Catalog Manager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

directoryName The name of the catalog containing the dNode whose dNode
number you want to obtain.

discriminator The discriminator value of the catalog containing the dNode whose
dNode number you want to obtain. This value differentiates two or
more catalogs with the same name.

dNodeNumber A number that uniquely identifies a dNode within a catalog. The
function returns this number.

path A pointer to the buffer that contains the packed pathname for the
dNode whose dNode number you want to obtain. You create a
packed pathname with the OCEPackPathName utility routine.

DESCRIPTION

You call the DirMapPathNameToDNodeNumber function when you know the path of a
particular dNode and you want to obtain its dNode number. If the catalog you specify
does not support dNode numbers (this includes all personal catalogs), the function
returns the kOCENoSuchDNode error.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ directoryName DirectoryNamePtr Catalog name
→ discriminator DirDiscriminator Discriminator value
← dNodeNumber DNodeNum DNode number
→ path PackedPathNamePtr Pathname

Trap macro Selector

_oceTBDispatch 0x122
8-226 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
RESULT CODES

SEE ALSO

The OCEPackPathName routine is described in the chapter “AOCE Utilities” in this
book.

The PackedPathName data structure is also described in the chapter “AOCE Utilities.”

To obtain the pathname when you know the DNode number, use the
DirMapDNodeNumberToPathName function, described on page 8-223.

DirGetDNodeInfo 8

The DirGetDNodeInfo function indicates whether a dNode that you specify can
contain records and whether it is a foreign node.

pascal OSErr DirGetDNodeInfo (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ pRLI PackedRLIPtr Target dNode
← descriptor DirNodeKind DNode descriptor
↔ networkSpec NetworkSpecPtr Network name
Catalog Manager Reference 8-227

C H A P T E R 8

Catalog Manager
Field descriptions

pRLI A pointer to packed record location information that identifies the
catalog and dNode to which the request applies. The function
ignores this field when you provide a nonzero value in the
dsRefNum field to specify a personal catalog.

descriptor A value that the function returns by which you can determine
whether the dNode you specified can contain records and whether
it is a foreign node. Use the mask kCanContainRecords to
determine whether the dNode can contain records. To find out if the
dNode you specified is a foreign node, use the mask
kForeignNode.

networkSpec A pointer to the name of the network in which the dNode resides.
The function sets this field only if the dNode can contain records.

DESCRIPTION

The DirGetDNodeInfo function is usually called by PowerShare Admin software. Most
applications do not need to use this function. However, messaging service access
modules may call it to determine if a dNode is a foreign dNode. Foreign dNodes
represent external messaging systems that are connected to an AOCE system.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The NetworkSpec data structure is described in the chapter “AOCE Utilities” in this
book.

The PackedRLI data structure is also described in the chapter “AOCE Utilities.”

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is
also described in the chapter “AOCE Utilities.”

Trap macro Selector

_oceTBDispatch 0x125

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEStreamCreationErr –1625 Error in creating connection to

server
8-228 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Maintaining the PowerTalk Setup Catalog 8

A catalog that is listed in the PowerTalk Setup catalog is available for use by any
application that uses the Catalog Manager. Setup templates use the
DirAddADAPDirectory and DirRemoveDirectory routines to add and remove
records that represent PowerShare catalogs from the PowerTalk Setup catalog. The
DirRemoveDirectory function also removes records that represent external catalogs.
For information on adding records that represent external catalogs, see the chapter
“Access Module Setup” in Inside Macintosh: AOCE Service Access Modules.

Note
A shorthand way of saying that a record representing a catalog is added
or removed from the PowerTalk Setup catalog is to say that the catalog is
added or removed from the PowerTalk Setup catalog. However, a
catalog itself is never added or removed from the PowerTalk Setup
catalog; only records that represent catalogs are added or removed. ◆

The DirNetSearchADAPDirectoryGet and DirNetSearchADAPDirectoryParse
routines work together to provide information about all of the PowerShare catalogs on a
network.

If you know a PowerShare catalog’s name and discriminator value, you can call the
DirFindADAPDirectoryByNetSearch function to locate a catalog and add it to the
PowerTalk Setup catalog if you choose.

The DirAddADAPDirectory and DirFindADAPDirectoryByNetSearch functions
provide the option of making a PowerShare catalog temporarily available for the
PowerTalk Key Chain’s use, without adding it to the PowerTalk Setup catalog. This
condition of private availability lasts only until the computer is restarted.

The DirGetOCESetupRefnum function provides the reference number of the
PowerTalk Setup catalog.

To get information about all of the catalogs that are listed in the PowerTalk Setup
catalog, you can call the DirEnumerateDirectoriesGet function. It is described in
the section “Getting Information About Catalogs” beginning on page 8-196.

DirAddADAPDirectory 8

The DirAddADAPDirectory function makes a PowerShare catalog that you specify
available for use with other Catalog Manager functions. At your option, it also adds the
catalog to the PowerTalk Setup catalog.

pascal OSErr DirAddADAPDirectory (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.
Catalog Manager Reference 8-229

C H A P T E R 8

Catalog Manager
async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, and clientData fields.

Field descriptions

directoryName A pointer to the name of the PowerShare catalog that you want to
use.

discriminator A value that differentiates two or more catalogs with the same
name.

addToOCESetup A Boolean value that specifies whether you want to add the catalog
to the PowerTalk Setup catalog. Set this field to true if you want to
add the catalog to the PowerTalk Setup catalog.

directoryRecordCID
The creation ID of the record representing the PowerShare catalog
that you specify in the directoryName and discriminator
fields. The function creates a record for the catalog, adds it to the
PowerTalk Setup catalog, and returns the record creation ID only
when you set addToOCESetup to true.

DESCRIPTION

You call the DirAddADAPDirectory function when you want to make a PowerShare
catalog that is not listed in the PowerTalk Setup catalog available for use with other
Catalog Manager functions. You must specify a valid AppleTalk address in the
serverHint field in the parameter block header for this function. If the serverHint
field is set to nil or does not point to a PowerShare server for that catalog, the
DirAddADAPDirectory function returns an error.

Note
The PowerTalk Key Chain uses this function. In general, there is no
reason for an application to use this function. ◆

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ clientData long You define this field
→ directoryName DirectoryNamePtr Name of the catalog
→ discriminator DirDiscriminator Discriminator value
→ addToOCESetup Boolean Add to PowerTalk Setup?
← directoryRecordCID CreationID Creation ID of catalog
8-230 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
When the function completes successfully, you can use the catalog with other Catalog
Manager functions. If you set the addToOCESetup field to true, the function adds the
catalog to the PowerTalk Setup catalog. All catalogs listed in the PowerTalk Setup catalog
are visible to the DirEnumerateDirectories function and thus available to any
application using the services of the Catalog Manager. Furthermore, the catalogs listed in
the PowerTalk Setup catalog remain available until they are explicitly removed by the
DirRemoveDirectory function.

If you set addToOCESetup to false, the DirAddADAPDirectory function makes the
catalog available to you privately, and you may specify it when you call other Catalog
Manager functions. This availability lasts until the computer is restarted. Once the
computer is restarted, the catalog is no longer available to you. A catalog that you do not
add to the PowerTalk Setup catalog is not visible to the DirEnumerateDirectories
function; therefore, it is not available to other applications nor is it visible to a user.

If you want to use a PowerShare catalog that is not listed in the PowerTalk Setup catalog,
but you do not know the address of a PowerShare server for that catalog, you can call
the DirFindADAPDirectoryByNetSearch function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirEnumerateDirectoriesGet function is described on page 8-196.

The DirFindADAPDirectoryByNetSearch function is described next.

The DirRemoveDirectory function is described on page 8-237.

For more information on the PowerTalk Setup catalog, see “Identities and the PowerTalk
Setup Catalog” on page 8-166.

Trap macro Selector

_oceTBDispatch 0x137

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEAlreadyExists –1510 The catalog being added

already exists
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
Catalog Manager Reference 8-231

C H A P T E R 8

Catalog Manager
DirFindADAPDirectoryByNetSearch 8

The DirFindADAPDirectoryByNetSearch function locates a PowerShare catalog
that you specify on a network and makes it available for use with other Catalog Manager
functions. At your option, it also adds the catalog to the PowerTalk Setup catalog.

pascal OSErr DirFindADAPDirectoryByNetSearch

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, and clientData fields.

Field descriptions

directoryName The name of the PowerShare catalog that you want to find.
discriminator The discriminator value for the named catalog. This value

differentiates two or more catalogs with the same name.
addToOCESetup A Boolean value that indicates whether you want to add the catalog

to the PowerTalk Setup catalog. Set this field to true if you want to
the catalog to the PowerTalk Setup catalog.

directoryRecordCID
The creation ID of the record representing the catalog that you
specify in the directoryName and discriminator fields. The
function creates a record for the catalog, adds it to the PowerTalk
Setup catalog, and returns the record creation ID only when you set
addToOCESetup to true.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long You define this field
→ directoryName DirectoryNamePtr Catalog name
→ discriminator DirDiscriminator Discriminator value
→ addToOCESetup Boolean Add to setup list?
← directoryRecordCID CreationID Creation ID of catalog

record
8-232 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DESCRIPTION

You call the DirFindADAPDirectoryByNetSearch function when you want to use a
PowerShare catalog and the catalog is not listed in the PowerTalk Setup catalog. You
must provide the catalog name and discriminator value. The function searches the
network for the catalog.

Note
The PowerTalk Key Chain uses this function. In general, there is no
reason for an application to use this function. ◆

If the function finds the catalog, you can use it with other Catalog Manager functions. If
you set the addToOCESetup field to true, the function adds the catalog to the
PowerTalk Setup catalog. All catalogs listed in the PowerTalk Setup catalog are visible to
the DirEnumerateDirectories function and thus are available to any application
using the services of the Catalog Manager. Furthermore, the catalogs listed in the
PowerTalk Setup catalog remain available until they are explicitly removed by the
DirRemoveDirectory function.

If you set addToOCESetup to false, the DirFindADAPDirectoryByNetSearch
function makes the catalog available to you privately and you may specify it when you
call other Catalog Manager functions. This availability lasts until the computer is
restarted. Once the computer is restarted, the catalog is no longer available to you.
Catalogs that you do not choose to add to the PowerTalk Setup catalog are not visible to
the DirEnumerateDirectories function; therefore, they are not available to other
applications nor are they visible to a user.

SPECIAL CONSIDERATIONS

The DirFindADAPDirectoryByNetSearch function makes a networkwide search for
the PowerShare catalog that you specify. Because this function consumes expensive
network resources, you should use it very sparingly. If you know a catalog’s name,
discriminator value, and the Apple talk address of a PowerShare server for the catalog,
you should use the DirAddADAPDirectory function. It too, makes a catalog available
for your use and can add it to the PowerTalk Setup catalog.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch 0x107
Catalog Manager Reference 8-233

C H A P T E R 8

Catalog Manager
RESULT CODES

SEE ALSO

The DirAddADAPDirectory function is described on page 8-229.

For more information on the PowerTalk Setup catalog, see “Identities and the PowerTalk
Setup Catalog” on page 8-166.

The DirRemoveDirectory function is described on page 8-237.

The DirNetSearchADAPDirectoriesGet function, described next, retrieves the
return address of a PowerShare catalog on a network. By saving and using this address
you can eliminate the need to search for a particular catalog with the
DirFindADAPDirectoryByNetSearch function each time the computer is rebooted.

DirNetSearchADAPDirectoriesGet 8

The DirNetSearchADAPDirectoriesGet function returns information about the
PowerShare catalogs on a network.

pascal OSErr DirNetSearchADAPDirectoriesGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, and clientData fields.

noErr 0 No error
kOCEAlreadyExists –1510 The catalog being added

already exists
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long You define this field
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
8-234 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Field descriptions

getBuffer A pointer to a buffer in which the function stores information about
each PowerShare catalog on the network: its name, discriminator
value, feature flags, and the AppleTalk address of its server. You
provide this buffer.

getBufferSize The number of bytes in the buffer.

DESCRIPTION

You call the DirNetSearchADAPDirectoriesGet function to obtain a list of the
PowerShare catalogs on a network.

If the buffer you provide is not large enough to contain all of the information, the
DirNetSearchADAPDirectoriesGet function returns the kOCEMoreData result
code.

If your buffer is too small to hold all of the information you requested, you must allocate
a bigger buffer and call the DirNetSearchADAPDirectoriesGet function again to
get it all. At each call, the function attempts to return all the information you have
requested, starting from the beginning. Therefore, you will get duplicate information on
subsequent calls.

When the function completes with either the noErr or kOCEMoreData result codes, you
use a pointer to your buffer as input to the DirNetSearchADAPDirectoriesParse
function, which extracts the catalog information from the buffer.

SPECIAL CONSIDERATIONS

The DirNetSearchADAPDirectoriesGet function makes a networkwide search for
PowerShare catalogs. Because this search consumes expensive network resources, you
should use this function very sparingly.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirNetSearchADAPDirectoriesParse function is described next.

Trap macro Selector

_oceTBDispatch 0x108

noErr 0 No error
kOCEMoreData –1623 More data available
Catalog Manager Reference 8-235

C H A P T E R 8

Catalog Manager
DirNetSearchADAPDirectoriesParse 8

The DirNetSearchADAPDirectoriesParse function parses the data returned by the
DirNetSearchADAPDirectoriesGet function and returns information on each
PowerShare catalog by repeatedly calling your callback routine.

pascal OSErr DirNetSearchADAPDirectoriesParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, and clientData fields.

Field descriptions

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirNetSearchADAPDirectoriesGet function.

getBufferSize The number of bytes in the buffer. Use the same value that you
provided to the DirNetSearchADAPDirectoriesGet function.

eachADAPDirectory
A pointer to your callback routine. The function declaration for this
routine is described on page 8-318.

DESCRIPTION

You call the DirNetSearchADAPDirectoriesParse function to extract the
information about PowerShare catalogs placed in your buffer by the
DirNetSearchADAPDirectoriesGet function. You must provide a callback routine
that the DirNetSearchADAPDirectoriesParse function calls for each set of catalog
information in the buffer. The DirNetSearchADAPDirectoriesParse function
passes your callback routine the following information about each catalog: a catalog
name and discriminator value, its feature flags, and the AppleTalk address of a
PowerShare server for that catalog.

→ ioCompletion ProcPtr Your completion
routine

← ioResult OSErr Result code
→ clientData long You define this field
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
→ eachADAPDirectory ForEachADAPDirectory Your callback routine
8-236 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
The DirNetSearchADAPDirectoriesParse function completes when it has finished
parsing the contents of your buffer or when your callback routine returns true. The
function returns the kOCEMoreData result code if it reaches the end of the buffer and
finds that the DirNetSearchADAPDirectoriesGet function did not return all the
data requested.

If your callback routine returns true, the DirNetSearchADAPDirectoriesParse
function completes with the noErr result code.

Once you have the name and discriminator value for a PowerShare catalog, you can call
the DirAddADAPDirectory function to make the catalog available for use and, if you
choose, to add it to the PowerTalk Setup catalog.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The function declaration for your callback routine is described on page 8-318.

The DirNetSearchADAPDirectoriesGet function is described on page 8-234.

The DirAddADAPDirectory function is described on page 8-229.

DirRemoveDirectory 8

The DirRemoveDirectory function removes a record that represents a catalog from
the PowerTalk Setup catalog.

pascal OSErr DirRemoveDirectory (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch 0x105

noErr 0 No error
kOCEMoreData –1623 More data available
Catalog Manager Reference 8-237

C H A P T E R 8

Catalog Manager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

directoryRecordCID
The creation ID of a record in the PowerTalk Setup catalog. This
record represents the catalog that you want to remove.

DESCRIPTION

You call the DirRemoveDirectory function to remove an external or PowerShare
catalog that you specify from the PowerTalk Setup catalog.

A catalog that you remove from the PowerTalk Setup catalog is no longer visible to the
DirEnumerateDirectoriesGet function. You cannot specify it in calls to other
Catalog Manager functions until you again add it to the PowerTalk Setup catalog or
make it available privately to your application through the DirAddADAPDirectory or
the DirFindADAPDirectoryByNetSearch function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the DirAddDSAMDirectory function, which is described in the chapter “Catalog
Service Access Modules” in Inside Macintosh: AOCE Service Access Modules, to add a
catalog to the PowerTalk Setup catalog.

You can also use the DirAddADAPDirectory function, which is described on
page 8-229, to add a catalog to the PowerTalk Setup catalog.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ directoryRecordCID CreationID Creation ID of catalog

Trap macro Selector

_oceTBDispatch 0x135

noErr 0 No error
kOCEDirectoryNotFoundErr –7945 Can’t find specified catalog
8-238 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
The DirFindADAPDirectoryByNetSearch function is described on page 8-232.

The DirEnumerateDirectoriesGet function is described on page 8-196.

DirGetOCESetupRefnum 8

The DirGetOCESetupRefnum function returns the reference number of the PowerTalk
Setup catalog.

pascal OSErr DirGetOCESetupRefnum (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, dsRefNum, identity, and clientData fields.

Field descriptions

oceSetupRecordCID
The creation ID of the record identifying the PowerTalk Setup
catalog.

DESCRIPTION

You call the DirGetOCESetupRefnum function if you need to read from or write to the
PowerTalk Setup catalog. The function returns the dsRefNum value for the PowerTalk
Setup catalog. You need this value to perform operations on the PowerTalk Setup catalog.

The function also returns the creation ID of the record that contains summary
information about the contents of the PowerTalk Setup catalog.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
← dsRefNum short PowerTalk Setup catalog

reference number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
← oceSetupRecordCID CreationID Creation ID of the record

identifying the PowerTalk
Setup catalog
Catalog Manager Reference 8-239

C H A P T E R 8

Catalog Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For more information on the PowerTalk Setup catalog and local identity, see “Identities
and the PowerTalk Setup Catalog” on page 8-166 as well as the chapter “Authentication
Manager” in this book.

Creating, Opening, and Closing Personal Catalogs 8

A personal catalog is a Hierarchical File System (HFS) file. You can use the functions in
this section to create new personal catalogs as well as to open and close existing personal
catalogs. In addition, the DirMakePersonalDirectoryRLI function provides
information you can use to locate a personal catalog that you opened even if it has been
closed, moved, or renamed.

You can use File Manager functions to browse for a personal catalog. Use the constants
kPersonalDirectoryFileType and kPersonalDirectoryFileCreator to
specify the file type and file creator, respectively, for a personal catalog.

DirCreatePersonalDirectory 8

The DirCreatePersonalDirectory function creates a new personal catalog.

pascal OSErr DirCreatePersonalDirectory

(DirParamBlockPtr paramBlock);

paramBlock
Pointer to a parameter block.

Parameter block

See “The Parameter Block Header” on page 8-190 for a description of the ioResult
field.

Trap macro Selector

_oceTBDispatch 0x128

noErr 0 No error

← ioResult OSErr Result code
→ fsSpec FSSpecPtr File system specification
→ fdType OSType File type
→ fdCreator OSType File creator
8-240 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Field descriptions

fsSpec A pointer to the file system specification record that identifies the
personal catalog you want to create. You can obtain the file system
specification record from the FSMakeFSSpec function.

fdType The file type for the new personal catalog. If you want to create an
ordinary personal catalog, set this field to the constant
kPersonalDirectoryFileType. If you want to create an
information card, set this field to the constant
kBusinessCardFileType.

fdCreator The file creator for the new personal catalog. Set this field to the
constant kPersonalDirectoryFileCreator, for both an
ordinary personal catalog and an information card.

DESCRIPTION

You call the DirCreatePersonalDirectory function to create a personal catalog.

You can provide values for the file creator and file type other than those specified in the
field descriptions above. However, if you do so, the Finder and AOCE software will not
be able to display the icons that represent the personal catalog or information card to the
user.

To open the new personal catalog, use the DirOpenPersonalDirectory function,
described next.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

An information card is a personal catalog containing a single record. For more
information about information cards, see the section “Introduction to AOCE Catalogs”
beginning on page 8-162.

For information about file system specification records, see the chapter “File Manager” in
Inside Macintosh: Files.

Trap macro Selector

_oceTBDispatch 0x11F

noErr 0 No error
dupFNErr –48 Filename already exists
kOCEParamErr –50 Invalid parameter
dirNFErr –120 Catalog not found
Catalog Manager Reference 8-241

C H A P T E R 8

Catalog Manager
DirOpenPersonalDirectory 8

The DirOpenPersonalDirectory function opens a personal catalog and returns a
reference number for it.

pascal OSErr DirOpenPersonalDirectory

(DirParamBlockPtr paramBlock);

paramBlock
Pointer to a parameter block.

Parameter block

See “The Parameter Block Header” on page 8-190 for a description of the ioResult and
dsRefNum fields.

Field descriptions

fsSpec A pointer to a file system specification record for the personal
catalog that you want to open.

accessRequested
The access that you are requesting for this personal catalog. Set this
field to fsRdPerm if you are requesting permission to read the
personal catalog. If you also want permission to write to
the personal catalog, set this field to fsRdWrPerm.

accessGranted
The catalog access that the Catalog Manager grants. The function
returns either fsRdPerm or fsRdWrPerm in this field, granting you
read-only or read/write access, respectively.

features A set of bit flags indicating the features that the personal catalog
supports. The bit flags are described in “Feature Flag Bit Array”
beginning on page 8-186.

DESCRIPTION

You call the DirOpenPersonalDirectory function to open a personal catalog
(including information cards, which are a type of personal catalog). In the dsRefNum
field of the parameter block header, the function returns the reference number that
uniquely identifies the personal catalog. You must use this reference number in all
subsequent Catalog Manager requests directed to this personal catalog.

The function also returns the access that you have to the personal catalog file and a set of
bit flags that specify what features the personal catalog supports.

← ioResult OSErr Result code
← dsRefNum short Personal catalog reference number
→ fsSpec FSSpecPtr File system specification
→ accessRequested char Permissions requested
← accessGranted char Permissions granted
← features DirGestalt Feature flags
8-242 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
SPECIAL CONSIDERATIONS

If the user moves a personal catalog to a computer whose operating system uses a
different script system from the one last used to sort the catalog, the personal catalog
must be resorted before the Catalog Manager can open it. If the
DirOpenPersonalDirectory function returns the error kOCEVersionErr, you must
call the SDPSortPersonalDirectory function to resort the personal catalog and then
call the DirOpenPersonalDirectory function again to open the catalog.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For a description of catalog feature flags, see “Feature Flag Bit Array” beginning on
page 8-186.

To close a personal catalog that you have opened, use the
DirClosePersonalDirectory function, described next.

The SDPSortPersonalDirectory function is described in the chapter “Standard
Catalog Package” in this book.

For information about file system specifications, see the chapter “File Manager” in Inside
Macintosh: Files.

DirClosePersonalDirectory 8

The DirClosePersonalDirectory function closes an open personal catalog.

pascal OSErr DirClosePersonalDirectory

(DirParamBlockPtr paramBlock);

paramBlock
Pointer to a parameter block.

Trap macro Selector

_oceTBDispatch 0x11E

noErr 0 No error
tmfoErr –42 Too many files open
fnfErr –43 File not found
kOCEParamErr –50 Invalid parameter
permErr –54 Permissions error
dirNFErr –120 Catalog not found
kOCEVersionErr –1504 Need to sort personal catalog
Catalog Manager Reference 8-243

C H A P T E R 8

Catalog Manager
Parameter block

Field descriptions

ioResult The result of the function.
dsRefNum The catalog reference number that identifies the personal catalog to

be closed. After this function successfully completes execution, that
reference number is no longer valid.

DESCRIPTION

You call the DirClosePersonalDirectory function to close any personal catalog that
has been opened by the DirOpenPersonalDirectory function. This includes
information cards, which are a type of personal catalog.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirOpenPersonalDirectory function is described on page 8-242.

DirMakePersonalDirectoryRLI 8

The DirMakePersonalDirectoryRLI function provides you with packed record
location information for a personal catalog that you specify.

pascal OSErr DirMakePersonalDirectoryRLI

(DirParamBlockPtr paramBlock);

paramBlock
Pointer to a parameter block.

← ioResult OSErr Result code
→ dsRefNum short Reference number

Trap macro Selector

_oceTBDispatch 0x131

noErr 0 No error
kOCERefNumBad –1624 Reference number is not valid
8-244 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Parameter block

See “The Parameter Block Header” on page 8-190 for a description of the ioResult and
dsRefNum fields.

Field descriptions

fromFSSpec A pointer to a file system specification record. It specifies the folder
within which the personal catalog must reside for the Alias
Manager to find it. Set this field to nil if you do not want to limit
the Alias Manager’s search.

pRLIBufferSize
The size, in bytes, of the buffer that you provide for the packed
record location information.

pRLISize The length of the packed record location information. If the function
returns the noErr result code, this is the number of bytes of data
that the function placed in your buffer. If the function returns the
kOCEMoreData result code, you can use the value of this field to
determine how large a buffer is required, allocate a buffer of that
size, and call the function again.

pRLI A pointer to the buffer in which the function stores the packed
record location information. You provide this buffer.

DESCRIPTION

You call the DirMakePersonalDirectoryRLI function to obtain record location
information for a personal catalog. You identify the personal catalog about which you
want record location information by setting the dsRefNum field in the parameter block
header to the personal catalog’s reference number. You obtain the reference number from
the DirOpenPersonalDirectory function.

You can use the record location information to find the personal catalog if it has been
closed, moved, or renamed. For example, if you are developing an electronic mail
application, you might have to handle the following sequence of events. A user may
open a personal catalog and copy an address from it to a letter being prepared. The user
may then close the personal catalog and send the letter at a later time. To send the letter,
you may need additional information from the personal catalog. You can locate it using
the record location information that the DirMakePersonalDirectoryRLI function
returns to you.

← ioResult OSErr Result code
→ dsRefNum short Reference number
→ fromFSSpec FSSpecPtr Catalog to search
→ pRLIBufferSize unsigned short Size of your buffer
← pRLISize unsigned short Size of the PackedRLI data

structure
↔ pRLI PackedRLIPtr Your buffer
Catalog Manager Reference 8-245

C H A P T E R 8

Catalog Manager
To make sure that you can locate a personal catalog even if it has been moved, renamed,
or closed, call the DirMakePersonalDirectoryRLI function after opening the
personal catalog. The function actually creates an alias for the personal catalog and
returns record location information for the alias. To find the personal catalog, pass the
PackedRLI data structure returned by the DirMakePersonalDirectoryRLI function
to the OCEExtractAlias utility routine, which returns an alias record. Pass that alias
record to the ResolveAlias function, which locates the personal catalog and returns its
file system specification. You can then open the personal catalog with the
DirOpenPersonalDirectory function using the FSSpec data structure returned by
the ResolveAlias function.

If you provided a file system specification record in the fromFSSpec field, the
ResolveAlias routine looks for the catalog only in that folder and any folders enclosed
within it. This results in a speedier search. However, if the personal catalog has been
moved elsewhere, the ResolveAlias routine cannot find it and returns an error.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is
also described in the chapter “AOCE Utilities.”

The OCEExtractAlias utility routine is also described in the chapter “AOCE Utilities.”

The ResolveAlias routine is described in the chapter “Alias Manager” in Inside
Macintosh: Files.

The DirOpenPersonalDirectory function is described on page 8-242.

Trap macro Selector

_oceTBDispatch 0x132

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available
kOCERefNumBad –1624 Reference number is not valid
8-246 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Managing Records 8

The functions described in this section provide the following services:

■ adding and deleting records

■ adding and deleting pseudonyms

■ listing the pseudonyms for a record

■ detecting a change in a record

■ setting and obtaining a record’s name and type

■ adding an alias for a record

You can also list all of the records, pseudonyms, and aliases within a dNode. To do this,
use the DirEnumerateGet and DirEnumerateParse functions described in “Getting
Information About dNodes” beginning on page 8-214.

DirAddRecord 8

The DirAddRecord function adds a new record to a dNode in a catalog that you specify.

pascal OSErr DirAddRecord (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
↔ aRecord RecordIDPtr Target record
→ allowDuplicate Boolean Allow duplicate record name?
Catalog Manager Reference 8-247

C H A P T E R 8

Catalog Manager
Field descriptions

aRecord A pointer to a partially specified record ID for the record that you
want to add. If you want to add a record to a personal catalog, you
must provide the record’s name and type. If you want to add a
record to a PowerShare or external catalog, you must specify
everything in the record ID except the cid field. The function places
the creation ID for the new record in the cid field. If a catalog does
not support creation IDs, the function sets the cid field to 0.

allowDuplicate
A Boolean value specifying whether the function should create a
record if another record, alias, or pseudonym with the same name
and type already exists. Set this field to true if you want the
function to create the new record without checking the dNode for a
duplicate name and type. If you set the allowDuplicate field to
false, the function checks the name and type of all records, aliases,
and pseudonyms in the dNode and returns the
kOCENoDupAllowed result code if it finds a duplicate name.

DESCRIPTION

You call the DirAddRecord function to add a record to a dNode.

SPECIAL CONSIDERATIONS

If you set the allowDuplicate field to false, the function will not add the record if a
record with the same name and type already exists. However, this does not guarantee
that a duplicate record will not be created by a requester who sets the allowDuplicate
field to true. The prohibition on duplicates applies only at the time you call this
function; it does not guarantee that the record name and record type will be unique at a
later time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_oceTBDispatch $0109

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoDupAllowed –1641 Duplicate name and type
8-248 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

DirDeleteRecord 8

The DirDeleteRecord function deletes the record that you specify.

pascal OSErr DirDeleteRecord (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record you want to
delete. You must provide the record location information unless the
record exists in a personal catalog. If the catalog in which the record
resides supports record creation IDs, you must provide the creation
ID; otherwise, you must provide the record name and type.

DESCRIPTION

You call DirDeleteRecord to delete a record within a catalog. The function also
deletes any pseudonyms for the record. The function does not automatically delete
aliases that point to the record you want to delete.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
Catalog Manager Reference 8-249

C H A P T E R 8

Catalog Manager
Note
Although, you can call the DirDeleteRecord function to delete a
record that is an alias for another record, there is no way to
automatically identify any aliases that point to a record you have
deleted. The situation is much the same as for HFS files. When a file is
deleted, its aliases remain intact, but of course the aliases return an error
if someone attempts to use them. ◆

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

DirGetRecordMetaInfo 8

The DirGetRecordMetaInfo function returns a numeric value that you can use to
determine if a record has changed since you last called this function.

pascal OSErr DirGetRecordMetaInfo (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $010A

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEBadRecordId –1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord –1618 Can’t find specified record
8-250 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record to which the
request applies. You must provide the record location information
unless the record exists in a personal catalog. If the catalog in which
the record resides supports record creation IDs, you must provide
the creation ID; otherwise, you must provide the record name and
type.

metaInfo A numeric value returned by DirGetRecordMetaInfo. The
Catalog Manager updates this value when the content of a record
changes. You use it to determine if the record has changed.

DESCRIPTION

You call the DirGetRecordMetaInfo function to find out if there has been a change in
the contents of a record that you specify. The function returns the metaInfo value
associated with the record. You must call the function once to get an initial value. When
you call the function again, compare the initial value with the new value. If the values
match, the record has not changed since your previous call to the
DirGetRecordMetaInfo function. Any change to the value of the metaInfo field
indicates a change in the information associated with that record. Attribute types may
have been added or deleted; attribute values may have been added, deleted, or changed;
or access controls for the records or its attribute types may have changed.

If you detect a change in a record, you should do whatever is appropriate in your
application to update the information you need. For example, you can call the
DirEnumerateAttributeTypes function, followed by the DirLookupGet and
DirLookupParse functions, to retrieve current information about attribute types and
values in the record. If your application is displaying information about the record, you
can refresh your window.

The metaInfo field contains the following structure:

struct DirMetaInfo {

long info[4];

};

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
← metaInfo DirMetaInfo Comparison value
Catalog Manager Reference 8-251

C H A P T E R 8

Catalog Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

DirGetNameAndType 8

The DirGetNameAndType function returns a record’s name and type.

pascal OSErr DirGetNameAndType (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Trap macro Selector

_oceTBDispatch $0116

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEBadRecordID –1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord –1618 Can’t find specified record

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
↔ aRecord RecordIDPtr Target record
8-252 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Field descriptions

aRecord A pointer to a record ID that identifies the record whose name and
type you are requesting. You must provide the record creation ID.
Unless the catalog containing the record is a personal catalog, you
must also provide packed record location information. The name
and type buffers that you provide must be large enough to hold a
maximum-length RString data structure. If the function is
successful, it places the record’s name and type in these buffers.

DESCRIPTION

If you know the creation ID of a record and the catalog and dNode in which it resides,
you can use the DirGetNameAndType function to obtain its name and type. A record’s
name and type may change, but its creation ID always remains the same. You can store
the record creation ID as an always valid value and use it as needed to retrieve the
changeable name and type.

You may also prefer to store only the record creation ID because it requires less memory
and use this function to retrieve the record name and type when you need it.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The RString data structure is also described in the chapter “AOCE Utilities.”

You use the DirSetNameAndType function to change a record’s name and type. It is
described next.

Trap macro Selector

_oceTBDispatch $0114

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
Catalog Manager Reference 8-253

C H A P T E R 8

Catalog Manager
DirSetNameAndType 8

The DirSetNameAndType function changes the name, the type, or both the name and
type of a record that you specify.

pascal OSErr DirSetNameAndType (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record whose name or
type you want to change.You must provide the record location
information unless the record exists in a personal catalog. If the
catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

allowDuplicate
A Boolean value that specifies whether you want to change the
name and type even if this change results in a duplicate name and
type. If you set this field to true, the function does not check the
dNode for a duplicate name and type. It simply locates the record
and executes the change.

newName A pointer to a buffer that contains the new name for the record. You
provide this buffer.

newType A pointer to a buffer that contains the new type for the record. You
provide this buffer.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ allowDuplicate Boolean Are duplicate name and type OK?
→ newName RStringPtr New record name
→ newType RStringPtr New record type
8-254 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DESCRIPTION

If allowDuplicate is set to false, the DirSetNameAndType function returns the
kOCENoDupAllowed result code if it finds another record with the same name and the
same type as the new name and type that you specified.

To change the record name without changing the type, set the value of the new type to
the current type. To change the record type without changing the name, set the value of
the new name to the current name.

If either the newName or newType field is set to nil, the function returns the
kOCEParamErr result code.

SPECIAL CONSIDERATIONS

If you set the allowDuplicate field to false, the function will not set the new name
and type if a record with the same name and type already exists. However, this does not
guarantee that a duplicate record will not be created by a requester who sets the
allowDuplicate field to true. The prohibition on duplicates applies only at the time
you call this function; it does not guarantee that the record name and record type will be
unique at a later time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

Trap macro Selector

_oceTBDispatch $0115

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEBadRecordID –1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord –1618 Can’t find specified record
kOCEOperationNotSupported –1626 Specified catalog does not

support this operation
kOCENoDupAllowed –1641 Duplicate name and type
Catalog Manager Reference 8-255

C H A P T E R 8

Catalog Manager
DirAddPseudonym 8

The DirAddPseudonym function adds an alternative name and type for a record that
you specify.

pascal OSErr DirAddPseudonym (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record for which you
want to add a pseudonym. You must provide the record location
information unless the record exists in a personal catalog. If the
catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

pseudonymName A pointer to the alternative name that you want to add.
pseudonymType A pointer to the alternative type that you want to add.
allowDuplicate

A Boolean value that indicates whether the function will add a
name and type if another record, alias, or pseudonym with the same
name and type already exists in the dNode. Set this field to true if
you want the function to add the new pseudonym without checking
for a duplicate name and type. If you set the allowDuplicate
field to false, the function checks the name and type fields of all

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ pseudonymName RStringPtr Alternative name
→ pseudonymType RStringPtr Alternative type
→ allowDuplicate Boolean Are duplicate name and type OK?
8-256 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
records, aliases, and pseudonyms in the dNode and returns the
kOCENoDupAllowed result code if it finds a duplicate.

DESCRIPTION

You call the DirAddPseudonym function when you want to add an alternative name
and type for a record. You can discover all of the existing pseudonyms for a record by
calling the DirEnumeratePseudonymGet and DirEnumeratePseudonymParse
functions.

 Pseudonyms are automatically deleted when the target record is deleted.

You must specify both a name and a type. If either the pseudonymName or
pseudonymType field is set to nil, the function returns the kOCEParamErr result code.

SPECIAL CONSIDERATIONS

If you set the allowDuplicate field to false, the function will not add the
pseudonym if a pseudonym with the same name and type already exists. However, this
does not guarantee that a duplicate pseudonym will not be created by a requester who
sets the allowDuplicate field to true. The prohibition on duplicates applies only at
the time you call this function; it does not guarantee that the pseudonym name and
pseudonym type will be unique at a later time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DirEnumeratePseudonymGet and DirEnumeratePseudonymParse functions
are described on page 8-259 and page 8-262 respectively.

Trap macro Selector

_oceTBDispatch $010F

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCEBadRecordID –1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord –1618 Can’t find specified record
kOCEStreamCreationErr –1625 Error in connection to server
kOCENoDupAllowed –1641 Duplicate name and type
Catalog Manager Reference 8-257

C H A P T E R 8

Catalog Manager
You can use the DirEnumerateGet and DirEnumerateParse functions, described on
page 8-215 and page 8-220, respectively, to enumerate all of the pseudonyms that exist in
a dNode.

To remove a pseudonym that you have added, use the DirDeletePseudonym function,
described next.

DirDeletePseudonym 8

The DirDeletePseudonym function deletes an alternative name and type of a record
that you specify.

pascal OSErr DirDeletePseudonym (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record whose alternative
name and type you want to delete. You must provide the record
location information unless the record exists in a personal catalog. If
the catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

pseudonymName A pointer to the alternative name that you want to delete.
pseudonymType A pointer to the alternative type that you want to delete.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ pseudonymName RStringPtr Alternative name
→ pseudonymType RStringPtr Alternative type
8-258 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DESCRIPTION

If you no longer want to refer to a record by an alternate name or type, you can call this
function to delete the name and the type.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

To add a pseudonym to a record, use the DirAddPseudonym function, described on
page 8-256.

DirEnumeratePseudonymGet 8

The DirEnumeratePseudonymGet function returns information about the
pseudonyms for a record that you specify.

pascal OSErr DirEnumeratePseudonymGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0110

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCEBadRecordID –1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchPseudonym –1620 Can’t find specified

pseudonym
kOCEStreamCreationErr –1625 Error in creating connection to

server
Catalog Manager Reference 8-259

C H A P T E R 8

Catalog Manager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record for which you
want to obtain pseudonyms. You must provide the record location
information unless the record is in a personal catalog. If the catalog
in which the record resides supports record creation IDs, you must
provide the creation ID; otherwise, you must provide the record
name and type.

startingName A pointer to the alternative name from which you want the function
to begin the enumeration. Set this field to nil to start with the first
alternative name for the record. If the
DirEnumeratePseudonymGet function completes with the
kOCEMoreData result code, you can continue the enumeration by
setting this field to the value of the name field in the last recordID
parameter passed to your callback routine from the
DirEnumeratePseudonymParse function. You must coordinate
the value you provide in this field with the value you provide in the
startingType field; that is, both values are required, and both
must belong to the same pseudonym.

startingType A pointer to the alternative type from which you want the function
to begin the enumeration. Set this field to nil to start with the first
alternative type for the record. If the
DirEnumeratePseudonymGet function completes with the
kOCEMoreData result code, you can continue the enumeration by
setting this field to the value of the type field in the last recordID
parameter passed to your callback routine from the
DirEnumeratePseudonymParse function. You must coordinate
the value you provide in this field with the value you provide in the
startingName field; that is, both values are required, and both
must belong to the same pseudonym.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ startingName RStringPtr Name to start enumeration from
→ startingType RStringPtr Type to start enumeration from
→ includeStartingPoint Boolean Begin enumeration with starting point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
8-260 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
includeStartingPoint
A Boolean value that tells the function how to interpret the
startingName and startingType fields. Set this field to true if
you want the DirEnumeratePseudonymGet function to return
information about pseudonyms beginning with the one specified by
the startingName and startingType fields. If you set this field
to false, the function returns information starting with the
pseudonym after the one specified by the startingName and
startingType fields.

getBuffer A pointer to the buffer in which the function stores the list of
pseudonyms that you requested. You provide this buffer.

getBufferSize The number of bytes in the buffer.

DESCRIPTION

You call the DirEnumeratePseudonymGet function to obtain a list of the pseudonyms
for a record that you specify.

If the buffer you provide is not large enough to contain all of the information you
requested, the DirEnumeratePseudonymGet function returns the kOCEMoreData
result code.

When the function completes with either the noErr or kOCEMoreData result codes, you
use a pointer to your buffer as input to the DirEnumeratePseudonymParse function,
which extracts the pseudonyms from the buffer.

If the DirEnumeratePseudonymGet function returns the kOCEMoreData result code,
you can request additional information by calling the DirEnumeratePseudonymGet
function again, after calling the DirEnumeratePseudonymParse function. As the
values of the startingName and startingType fields, use the values of the name and
type fields in the last recordID parameter passed to your callback routine from the
DirEnumeratePseudonymParse function. The DirEnumeratePseudonymGet
function will continue the enumeration starting with the next record as determined by
the value of the includeStartingPoint field.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0113
Catalog Manager Reference 8-261

C H A P T E R 8

Catalog Manager
RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DirEnumeratePseudonymParse function is described next.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all
the information you requested, see “Getting Attribute Type Information” beginning on
page 8-178.

DirEnumeratePseudonymParse 8

The DirEnumeratePseudonymParse function parses the data returned by the
DirEnumeratePseudonymGet function and returns a pointer to each pseudonym by
repeatedly calling your callback routine.

pascal OSErr DirEnumeratePseudonymParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can't find specified record
kOCEMoreData –1623 More data available
8-262 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record for which you
want to obtain pseudonyms. Use the same value that you provided
to the DirEnumeratePseudonymGet function.

eachRecordID A pointer to your callback routine. The function declaration for this
routine is described on page 8-309.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirEnumeratePseudonymGet function.

getBufferSize The number of bytes in the buffer. Use the same value that you
provided to the DirEnumeratePseudonymGet function.

DESCRIPTION

You call the DirEnumeratePseudonymParse function to extract the pseudonyms
placed in a buffer by the DirEnumeratePseudonymGet function. You must provide a
callback routine that the DirEnumeratePseudonymParse function calls for each
pseudonym it finds in the buffer.

The DirEnumeratePseudonymParse function completes when it has finished parsing
the contents of your buffer or when your callback routine returns true. The function
returns the kOCEMoreData result code if it reaches the end of the buffer and finds that
the DirEnumeratePseudonymGet function did not return all the data requested. If you
want to continue the enumeration, you can call the DirEnumeratePseudonymGet
function again. In your next call to the DirEnumeratePseudonymGet function, set the
startingName and startingType fields to the values of the name and type fields of
the last recordID parameter passed to your callback routine from the
DirEnumeratePseudonymParse function.

If your callback routine returns true, the DirEnumeratePseudonymParse function
completes with the noErr result code.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ eachRecordID ForEachRecordID Your callback routine
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
Catalog Manager Reference 8-263

C H A P T E R 8

Catalog Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The function declaration for your callback routine is described on page 8-309.

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DirEnumeratePseudonymGet function is described on page 8-259.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesParse function) when the buffer is too small to hold
all the information you requested, see “Getting Attribute Type Information” beginning
on page 8-178.

DirAddAlias 8

The DirAddAlias function adds an alias record to a catalog.

pascal OSErr DirAddAlias (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $0104

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
↔ aRecord RecordIDPtr Target record
→ allowDuplicate Boolean Is duplicate name and type OK?
8-264 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a partially specified record ID for the alias record that
you want to add. If you want to add an alias record to a personal
catalog, you must provide the alias record’s name and type. If you
want to add an alias record to an external catalog, you must specify
everything in the record ID except the cid field. The function places
the creation ID for the new alias record in the cid field. If the
catalog does not support creation IDs, the function sets the cid
field to nil.

allowDuplicate
A Boolean value specifying whether the function should create an
alias if another record, alias, or pseudonym with the same name
and type already exists. Set this field to true if you want the
function to create the alias without checking the dNode for a
duplicate name and type. If you set the allowDuplicate field to
false, the function checks the name and type of all records, aliases,
and pseudonyms in the dNode and returns the
kOCENoDupAllowed result code if it finds a duplicate.

DESCRIPTION

This function works just like the DirAddRecord function in that it adds a record. It also
marks the new record as an alias. Your application is responsible for storing the
information you need to resolve the alias. You should add to the new alias record an
attribute whose type is referenced by the attribute type index kAliasAttrTypeNum and
whose value is a DSSpec structure that points to the record that this is an alias to.

You can enumerate aliases with the DirEnumerateGet and DirEnumerateParse
functions. You can use the DirDeleteRecord function to remove an alias record that
you added.

The catalog feature bit flag kSupportsAliasMask indicates whether a catalog supports
the DirAddAlias function.

SPECIAL CONSIDERATIONS

If you set the allowDuplicate field to false, the function will not add the alias if a
record, pseudonym, or alias with the same name and type already exists. However, this
does not guarantee that a duplicate alias will not be created by a requester who sets the
allowDuplicate field to true. The prohibition on duplicates applies only at the time
you call this function; it does not guarantee that the name and type will be unique at a
later time.
Catalog Manager Reference 8-265

C H A P T E R 8

Catalog Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DirDeleteRecord function is described on page 8-249.

For a description of catalog feature flags, see “Feature Flag Bit Array” beginning on
page 8-186.

The DirEnumerateGet function is described on page 8-215 and the
DirEnumerateParse function is described on page 8-220.

The DirAddRecord function is described on page 8-247.

For more information on aliases and pseudonyms, see “Aliases and Pseudonyms” on
page 8-165.

Managing Attribute Types and Values 8

The functions described in this section provide the following services:

■ adding and deleting attribute values

■ changing and verifying attribute values

■ searching for an occurrence of specific data in an attribute value

■ reading the attribute values in a record or records

■ deleting an attribute type

■ listing the attribute types in a record

Trap macro Selector

_oceTBDispatch $011C

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoDupAllowed –1641 Same name and type already

exists
8-266 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DirAddAttributeValue 8

The DirAddAttributeValue function adds an attribute value to an existing record.

pascal OSErr DirAddAttributeValue (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record to which you
want to add an attribute value. You must provide the record
location information unless the record exists in a personal catalog. If
the catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

attr A pointer to an Attribute data structure. You must completely
specify the type and value substructures of the Attribute data
structure. The function returns the attribute creation ID.

DESCRIPTION

You call the DirAddAttributeValue function to add an attribute value to a record
that you specify. PowerShare and personal catalogs do not check for already existing
attributes having the same type and value; they simply add the attribute you specify.
Therefore, you may add duplicate attribute values to PowerShare and personal catalog
records. The Catalog Manager assigns them unique attribute creation IDs.

If the attribute type that you specify does not already exist within the record, the
function first adds the new attribute type and then adds the value.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
↔ attr AttributePtr Attribute structure
Catalog Manager Reference 8-267

C H A P T E R 8

Catalog Manager
For PowerShare and personal catalogs, you can specify an attribute value up to
kAttrValueMaxBytes bytes in length. If you specify an attribute value that is larger
than kAttrValueMaxBytes bytes, the function returns the
kOCEAttributeValueTooBig result code. The maximum size for an attribute value
stored in an external catalog is undefined.

SPECIAL CONSIDERATIONS

Note that there is no function in the Catalog Manager API that explicitly adds an
attribute type. To add a new attribute type to a record, begin by setting all fields of the
value substructure to 0 or nil and the type substructure to the attribute type that you
want to add. Then call the DirAddAttributeValue function. If that attribute type
already exists within the record, the function returns without an error result code.

Although the Catalog Manager imposes no restrictions on the number of attribute values
of a particular attribute type that you can add to a record, the Finder has limited ability
to display multivalued attribute types. See the chapter “AOCE Templates” in this book
for more information.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The Attribute data structure is also described in the chapter “AOCE Utilities.”

You can delete an attribute value with the DirDeleteAttributeValue function,
described next.

You can delete an attribute type within a record with the DirDeleteAttributeType
function, described on page 8-284.

Trap macro Selector

_oceTBDispatch $010B

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can't find specified record
kOCEAttributeValueTooBig –1621 Attribute value larger than

kAttrValueMaxBytes bytes
8-268 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DirDeleteAttributeValue 8

The DirDeleteAttributeValue function deletes an attribute value from a record that
you specify.

pascal OSErr DirDeleteAttributeValue (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record in which the
target attribute value is located. You must provide the record
location information unless the record exists in a personal catalog. If
the catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

attr A pointer to an Attribute data structure. If you want to delete an
attribute value from a catalog that supports attribute creation IDs,
you identify the attribute value to be deleted by specifying the
attribute creation ID and attribute type. To delete an attribute value
from a catalog that does not support attribute creation IDs, specify
the attribute type and attribute value.

DESCRIPTION

You call the DirDeleteAttributeValue function to delete an attribute value from a
record. Deleting the last attribute value of a given attribute type does not delete the
attribute type.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ attr AttributePtr Target attribute value
Catalog Manager Reference 8-269

C H A P T E R 8

Catalog Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The Attribute data structure is also described in the chapter “AOCE Utilities.”

You can add an attribute value to a record with the DirAddAttributeValue function,
described on page 8-267.

You can delete an attribute type with the DirDeleteAttributeType function,
described on page 8-284.

DirChangeAttributeValue 8

The DirChangeAttributeValue function changes an attribute value that you specify.

pascal OSErr DirChangeAttributeValue (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $010C

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchAttributeValue –1619 Can’t find specified attribute

value
8-270 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record containing the
attribute value that you want to change. You must provide the
record location information unless the record exists in a personal
catalog. If the catalog in which the record resides supports record
creation IDs, you must provide the creation ID; otherwise, you must
provide the record name and type.

currentAttr A pointer to the Attribute data structure that specifies the
attribute value that you want to change. For catalogs that support
attribute creation IDs, you identify the attribute value to change by
providing its attribute creation ID and attribute type; otherwise,
you need to provide the attribute value and attribute type.

newAttr A pointer to an Attribute data structure that contains the new
attribute value. In the value field, you provide the new attribute
value and its length in bytes. You must also provide a type in the
type field or a ParamErr is returned.

DESCRIPTION

You call the DirChangeAttributeValue function to change an attribute value
without changing its associated attribute creation ID. If you want to assign a new
attribute creation ID to the attribute value, use the DirDeleteAttributeValue
function to delete the old value and the DirAddAttributeValue function to add the
new value.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ currentAttr AttributePtr Existing attribute value
→ newAttr AttributePtr New attribute value

Trap macro Selector

_oceTBDispatch $010D
Catalog Manager Reference 8-271

C H A P T E R 8

Catalog Manager
RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The Attribute data structure is also described in the chapter “AOCE Utilities.”

DirVerifyAttributeValue 8

The DirVerifyAttributeValue function indicates whether the specified attribute
value exists in the record.

pascal OSErr DirVerifyAttributeValue (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchAttributeValue –1619 Can’t find specified attribute

value

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ attr AttributePtr Target attribute value
8-272 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Field descriptions

aRecord A pointer to a record ID that identifies the record in which the
target attribute value resides. You must provide the record location
information unless the record exists in a personal catalog. If the
catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

attr A pointer to an Attribute data structure. You must specify the
type and value fields. You may also provide the attribute creation
ID if you know it. Otherwise, set the cid field of this structure to 0.

DESCRIPTION

If you provide the attribute creation ID, the DirVerifyAttributeValue function
verifies that an attribute value having the specified attribute type, attribute creation ID,
and actual attribute value exists in the record you specify.

SPECIAL CONSIDERATIONS

If you set the attribute creation ID to 0, the function verifies that an attribute value
having the specified actual attribute value and attribute type exists in the record you
specify and returns its attribute creation ID in the cid field of your Attribute data
structure. Note that duplicate attribute values may exist in the same record. The attribute
creation ID that the function returns may belong to any of the duplicate attribute values.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The Attribute data structure is also described in the chapter “AOCE Utilities.”

Trap macro Selector

_oceTBDispatch $010E

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchAttributeValue –1619 Can’t find specified attribute

value
Catalog Manager Reference 8-273

C H A P T E R 8

Catalog Manager
DirFindValue 8

The DirFindValue function searches the records in a dNode that you specify for an
occurrence of an attribute value.

pascal OSErr DirFindValue (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRLI A pointer to the dNode in which you want to search for an attribute
value. The function ignores this field when you provide a nonzero
value in the dsRefNum field to specify a personal catalog.

aRecord A pointer to a local record ID. If you set this field to a nonzero
value, the search for matching data is restricted to the record you

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s

authentication identity
→ clientData long You define this field
→ aRLI PackedRLIPtr Target dNode
→ aRecord LocalRecordIDPtr Target record
→ attrType AttributeTypePtr Target attribute type
→ startingRecord LocalRecordIDPtr Record to start search from
→ startingAttribute AttributePtr Attribute value to start

search from
↔ recordFound LocalRecordIDPtr Record containing

matching data
← attributeFound Attribute Attribute containing

matching data
→ matchSize unsigned long Length of data to match
→ matchingData Ptr Data to match
→ sortDirection DirSortDirection Search forward or

backward?
8-274 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
specify here. Set this field to nil if you do not want to restrict your
search to a single record.

attrType A pointer to an attribute type. If you set this field to a nonzero
value, the search for matching data is restricted to the attribute type
that you specify here. Set this field to nil if you do not want to
restrict your search to a single attribute type.

startingRecord
A pointer to a local record ID. Set this field to nil if you wish to
start the search with the first record in the dNode. If you have
already called the DirFindValue function and found an
occurrence of matching data, you can set this field to the value of
the recordFound field to search for the next occurrence.

startingAttribute
A pointer to an Attribute data structure. Set this field to nil if
you wish to start the search with the first attribute value in the first
record to be searched. If you have already called the
DirFindValue function, you can set this field to the value of the
attributeFound field to search for the next occurrence.

recordFound A pointer to the local record ID that identifies the record in which
the DirFindValue function found a matching attribute value. You
can set the startingRecord field to this field in a subsequent call
to the DirFindValue function.

attributeFound
An Attribute data structure that specifies the attribute value
within which the function found matching data. You can set the
startingAttribute field to the address of this structure in a
subsequent call to the DirFindValue function. If you are
searching a PowerShare or personal catalog, the function returns
only the attribute creation ID in the Attribute data structure. If
the catalog in which you are searching does not support attribute
creation IDs, the function may return a complete attribute value. In
that case, you must provide a buffer large enough to hold a
maximum size attribute value as part of your Attribute data
structure.

matchSize The number of bytes of data to be matched.
matchingData A pointer to a buffer that contains the data to be matched.
sortDirection A constant that specifies the search direction. Set this field to

kSortForwards to have the function search in a forward direction
through the dNode and the record for a match. Set this field to
kSortBackwards to have the function search in a backward
direction.

DESCRIPTION

The DirFindValue function examines up to the first 32 bytes of data in an attribute
value to find a match when it is searching in a PowerShare or personal catalog. The
match is to any string that begins with the search string.
Catalog Manager Reference 8-275

C H A P T E R 8

Catalog Manager
The function returns the type and creation ID of the attribute value in which it finds a
match. You may call DirLookupGet to obtain the complete attribute value.

IMPORTANT

Personal catalogs and the PowerShare catalog server do not support the
DirFindValue function. An external catalog may or may not support
this function, and it may match more or less than 32 characters. ▲

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirLookupGet function is described next.

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is
described in the chapter “AOCE Utilities.”

The LocalRecordID data structure is also described in the chapter “AOCE Utilities.”

The Attribute data structure is also described in the chapter “AOCE Utilities.”

DirLookupGet 8

The DirLookupGet function returns the attribute values of the attribute types that you
specify for a list of records that you provide.

pascal OSErr DirLookupGet (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0126

noErr 0 No error
8-276 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecordList A pointer to an array of pointers to record IDs. The record IDs
represent the records in which you want to look up attribute values.
You must provide record location information in each record ID
unless the record exists in a personal catalog. If the catalog in which
the record resides supports record creation IDs, you must provide
the record creation ID; otherwise, you must provide the record
name and type. The record IDs in your list should be unique.
For PowerShare catalogs, all of the records that you specify must
reside in the same dNode. This is not necessarily true for external
catalogs.

attrTypeList A pointer to an array of pointers to attribute types. The attribute
types are those for which you want to look up attribute values. The
attribute types in your list should be unique.

recordIDCount The number of elements in your array of pointers to record IDs.
attrTypeCount The number of elements in your array of pointers to attribute types.
includeStartingPoint

A Boolean value that determines how the DirLookupGet function
interprets the startingRecordIndex,
startingAttrTypeIndex, and startingAttribute fields. Set
this field to true if you want the DirLookupGet function to return
information from the record, attribute type, and attribute value
specified by the starting fields. If you set this field to false, the
function returns information starting with the record, attribute type,
and attribute value immediately following the one specified by the
starting fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock Address of the PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecordList RecordIDPtr* List of record IDs
→ attrTypeList AttributeTypePtr* List of attribute types
→ recordIDCount unsigned long Number of IDs in list
→ attrTypeCount unsigned long Number of types in list
→ includeStartingPoint Boolean Begin enumeration with starting

point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
→ startingRecordIndex unsigned long Record to start from
→ startingAttrTypeIndex unsigned long Attribute type to start from
→ startingAttribute Attribute Attribute value to start from
Catalog Manager Reference 8-277

C H A P T E R 8

Catalog Manager
getBuffer A pointer to the buffer in which the function stores the requested
information. You provide this buffer.

getBufferSize The number of bytes in the buffer.
startingRecordIndex

An index into the array of pointers to record IDs. It represents the
record at which the DirLookupGet function begins the lookup. To
start at the first record specified by the array, set this value to 1. The
value of the startingRecordIndex field must always be less
than or equal to the value of the recordIDCount field.

startingAttrTypeIndex
An index into the array of pointers to attribute types. It represents
the attribute type at which the function begins the lookup. To start
at the first attribute type specified by the array, set this value to 1.
The value of the startingAttrTypeIndex field must always be
less than or equal to the value of the attrTypeCount field.

startingAttribute
An Attribute data structure that specifies the attribute value at
which the DirLookupGet function begins the lookup. If the
catalog in which you are requesting the lookup supports creation
IDs, the attribute creation ID is a sufficient specification. If you set
the attribute creation ID to 0, the function begins the search from
the first attribute value of the type specified by the
startingAttrTypeIndex field. If you specify a nonzero attribute
creation ID and the function does not find an attribute value with a
matching creation ID, DirLookupGet terminates with a
kOCENoSuchAttributeValue result code. You should not call
DirLookupParse after getting this error.
If the catalog in which you are requesting the lookup does not
support attribute creation IDs, you must specify the entire structure.
Set every field in the structure to 0 if you want the function to begin
the search from the first attribute value of the type specified by the
startingAttrTypeIndex field.

DESCRIPTION

You call the DirLookupGet function to obtain the attribute values of particular attribute
types in records that you specify. You must specify a record, an attribute type, and an
attribute value at which you want the function to start the lookup.

The DirLookupGet function places the requested attribute values in your buffer. It also
provides the local record IDs identifying the records in which the attribute values are
located. Last, it provides the attribute type and associated access control information that
apply to each attribute value. If the buffer you provide is not large enough to contain all
of the information requested, the DirLookupGet function returns the kOCEMoreData
result code.
8-278 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
When the DirLookupGet function completes with either the noErr or kOCEMoreData
result codes, call the DirLookupParse function to extract the attribute information
from your buffer. You can pass DirLookupParse the same parameter that you passed
to DirLookupGet.

If the DirLookupGet function completes with the kOCEMoreData result code, you may
wish to continue the lookup. When the DirLookupParse function completes, it returns
values in the lastRecordIndex, lastAttributeIndex, and lastAttribute fields.
You may use these as the values of the startingRecordIndex,
startingAttrTypeIndex, and startingAttribute fields on a subsequent call to
the DirLookupGet function. Therefore, you can simply pass the same parameter block
to the DirLookupGet function as you passed to the DirLookupParse function and
call the DirLookupGet function to continue retrieving information from the point at
which it stopped during its previous invocation.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirLookupParse function is described next.

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The Attribute data structure is also described in the chapter “AOCE Utilities.”

For an example of continuing the enumeration using the DirLookupGet function when
the buffer is too small to hold all the information you requested, see “Getting Attribute
Value Information” beginning on page 8-174.

Trap macro Selector

_oceTBDispatch $0117

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchAttributeValue –1619 Can’t find specified attribute

value
kOCEMoreData –1623 More data available
kOCEBadStartingRecord –1638 Starting record index out of

range
kOCEBadStartingAttribute –1639 Starting attribute index out of

range
kOCERLIsDontMatch –1645 RLIs of different records in the

record list are not the same
Catalog Manager Reference 8-279

C H A P T E R 8

Catalog Manager
DirLookupParse 8

The DirLookupParse function parses the data returned by the DirLookupGet
function and returns each attribute value to your application by repeatedly calling your
callback routine. It also returns information about record IDs and attribute types when
you specify callback routines for these purposes.

pascal OSErr DirLookupParse (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRecordList RecordIDPtr* List of record IDs
→ attrTypeList AttributeTypePtr* List of attribute types
→ eachRecordID ForEachLookupRecordID Your callback routine for record

information
→ eachAttrType ForEachAttrTypeLookup Your callback routine for

attribute type information
→ eachAttrValue ForEachAttrValue Your callback routine for

attribute values
→ recordIDCount unsigned long Number of IDs in list
→ attrTypeCount unsigned long Number of types in list
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
← lastRecordIndex unsigned long Last record ID retrieved
← lastAttributeIndex unsigned long Last attribute type retrieved
← lastAttribute Attribute Last attribute value retrieved
← attrSize unsigned long Length of the attribute value that

was too big to fit
8-280 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Field descriptions

aRecordList A pointer to an array of pointers to record IDs. Use the same value
that you provided to the corresponding DirLookupGet function.

attrTypeList A pointer to an array of pointers to attribute types.Use the same
value that you provided to the corresponding DirLookupGet
function.

eachRecordID A pointer to your callback routine for record information. The
function declaration for this routine is described on page 8-312. The
DirLookupParse function calls this routine for each record ID in
the buffer. If you are looking up attribute values in a single record,
you may not want to provide this callback routine. Set this field to
nil if you do not want to specify this callback routine.

eachAttrType A pointer to your callback routine for attribute type information.
The DirLookupParse function passes your callback routine a
pointer to an attribute type and the access control mask that applies
to the requester for that attribute type. The attribute type always
belongs in the record identified in the most recent call to your
MyForEachRecordID routine. You may set this field to nil if you
do not want to specify this callback routine. If you are looking up
only one attribute type, or you prefer to read the type from the
Attribute data structure that the DirLookupParse function
passes to the MyForEachAttrValue routine, you may not want to
provide this callback routine. However, it is recommended that you
supply this callback routine to get the access control information for
a given attribute type. Access controls may prohibit you from
reading an attribute value. In that case, the DirLookupParse
function does not call your MyForEachAttrValue callback
routine even though the attribute value exists. If you do not supply
the MyForEachAttrType callback routine, you have no way of
knowing whether attribute values of the requested type exist for
which you are denied read access. The function declaration for this
routine is described on page 8-313.

eachAttrValue A pointer to your callback routine for attribute values
(MyForEachAttrValue). You must provide this callback routine.
The function declaration for this routine is described on page 8-314.

recordIDCount The number of elements in the array of pointers to record IDs. Use
the same value that you provided to the corresponding
DirLookupGet function.

attrTypeCount The number of elements in the array of pointers to attribute types.
Use the same value that you provided to the corresponding
DirLookupGet function.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the DirLookupGet function.

getBufferSize The number of bytes in the buffer.
lastRecordIndex

The index value of the last record that the DirLookupParse
function retrieved from your buffer.
Catalog Manager Reference 8-281

C H A P T E R 8

Catalog Manager
lastAttributeIndex
The index value of the last attribute type that the
DirLookupParse function retrieved from your buffer.

lastAttribute An Attribute data structure that specifies the last attribute value
that the DirLookupParse function retrieved from your buffer.

attrSize The length of an attribute value that is too large to fit in the buffer. If
your buffer is too small to hold an attribute value, the
DirLookupParse function sets this field to the length of the
attribute value that cannot fit in your buffer and returns the
kOCEMoreAttrValue result code. In this case, the value in this
field represents the minimum size of a buffer capable of holding the
attribute value. You must increase the size of your buffer to at least
the minimum size and call the DirLookupGet function again.
When the function does not return the kOCEMoreAttrValue result
code, this field is undefined.

DESCRIPTION

You call the DirLookupParse function to extract the information on attribute values,
attribute types, and records placed in a buffer by the DirLookupGet function.

When you provide callback routines for record and attribute type information, the
DirLookupGet function returns the record IDs and attribute types in the same order as
you provided in your list of record IDs and attribute types.

You should provide a callback routine for record information if you request information
on more than one record. All of the attribute values that the DirLookupParse function
passes to your callback routine for attribute values (MyForEachAttrValue) belong to
the record identified in the most recent call to your callback routine for record
information (MyForEachRecordID). If you do not provide this routine, you cannot
determine the record to which an attribute type or value belongs. In addition, a callback
routine for record information allows you to distinguish between the case where a record
exists but an attribute type does not exist and the case where a record does not exist.

Although it is optional, you should provide a callback routine for attribute types
(MyForEachAttrType) because it receives access control information about every
attribute type in your buffer. If you do not have read access to an attribute type, the
DirLookupParse function does not call your callback routine for the corresponding
attribute values even though those attribute values are present in your buffer. By
providing a callback routine for attribute types, you can detect the presence of attribute
values for which you do not have read access.

The DirLookupParse function returns the kOCEMoreData result code if it reaches the
end of the buffer and finds that the DirLookupGet function did not return all the data
requested. In this case, you can call the DirLookupGet function again to retrieve more
data. The DirLookupParse function sets the values of the lastRecordIndex,
lastAttributeIndex, and lastAttribute fields in the parameter block to indicate
the last items it retrieved from your buffer. These fields correspond to the
startingRecordIndex, startingAttrTypeIndex, and startingAttribute
fields in the DirLookupGet function’s parameter block. You can use the same
8-282 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
parameter block when you call the DirLookupGet function again, and it will continue
retrieving data at the point where it stopped the first time you called it.

If the DirLookupParse function returns the kOCEMoreAttrValue result code, you
must increase the size of your buffer before calling the DirLookupGet function again.
There are two conditions in which an attribute value may not fit in your buffer. The first
occurs when your buffer already contains some data and the remaining space is
insufficient to store the next Attribute data structure. In this case, DirLookupGet
returns the kOCEMoreData result code. Such an attribute value will be stored in your
buffer the next time you call the DirLookupGet function. The second condition occurs
when the size of an attribute value exceeds the size of your buffer. Such an attribute
value will not fit even when your buffer is empty. In this second case, the
DirLookupGet function completes with the kOCEMoreData result code; the
corresponding DirLookupParse function call stores the length of the oversized
attribute value in the attrSize field and returns the kOCEMoreAttrValue result code.
Before calling the DirLookupGet function again, you must increase the size of your
buffer to accommodate the oversized attribute value.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirLookupGet function is described on page 8-276.

The function declaration for your callback routine that processes record information is
described on page 8-312.

The function declaration for your callback routine that processes attribute type
information is described on page 8-313.

The function declaration for your callback routine that processes attribute value
information is described on page 8-314.

For an example of continuing the enumeration using the DirLookupParse function
when the buffer is too small to hold all the information you requested, see “Getting
Attribute Value Information” beginning on page 8-174.

Trap macro Selector

_oceTBDispatch $0102

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEReadAccessDenied –1540 Identity lacks read access privileges
kOCEMoreData –1623 More data available
kOCEMoreAttrValue –1640 Buffer too small for a single attribute value
Catalog Manager Reference 8-283

C H A P T E R 8

Catalog Manager
DirDeleteAttributeType 8

The DirDeleteAttributeType function deletes an attribute type and its associated
values from a particular record.

pascal OSErr DirDeleteAttributeType (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record in which the
target attribute type is located. You must provide the record location
information unless the record exists in a personal catalog. If the
catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

attrType A pointer to the attribute type that you want to delete.

DESCRIPTION

You call the DirDeleteAttributeType function to delete an existing attribute type. If
any attribute values exist for that type, the function first deletes the values and then
deletes the attribute type. If you do not have access privileges to delete the attribute
type, the function returns the kOCEWriteAccessDenied result code.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ attrType AttributeTypePtr Target attribute type
8-284 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The AttributeType data structure is also described in the chapter “AOCE Utilities.”

Access controls are discussed in the section “Getting Access Controls” beginning on
page 8-169.

Records and attributes are described in the section “Catalog Records and Attributes”
beginning on page 8-164.

DirEnumerateAttributeTypesGet 8

The DirEnumerateAttributeTypesGet function returns information about the
attribute types in a record.

pascal OSErr DirEnumerateAttributeTypesGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0130

noErr 0 No error
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchAttributeType –1642 Can’t find specified attribute

type
Catalog Manager Reference 8-285

C H A P T E R 8

Catalog Manager
Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record about which you
are requesting attribute type information. You must provide the
record location information unless the record exists in a personal
catalog. If the catalog in which the record resides supports record
creation IDs, you must provide the creation ID; otherwise, you must
provide the record name and type.

startingAttrType
A pointer to the attribute type within the record at which you want
the DirEnumerateAttributeTypesGet function to begin the
enumeration. Set this field to nil to start with the first attribute
type in the record. If the DirEnumerateAttributeTypesGet
function completes with the kOCEMoreData result code, you can
continue the enumeration by setting this field to the value of the last
attrType parameter passed to your callback routine by the
DirEnumerateAttributeTypesParse function.

includeStartingPoint
A Boolean value that determines how this function interprets the
startingAttrType field. Set this field to true if you want the
DirEnumerateAttributeTypesGet function to return
information about attribute types beginning with the one you
specify in the startingAttrType field. If you set this field to
false, the function returns information starting with the attribute
type immediately after the one specified by the
startingAttrType field.

getBuffer A pointer to the buffer in which the function stores the attribute
types it found in the specified record. You provide this buffer.

getBufferSize The number of bytes in the buffer.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ startingAttrType AttributeTypePtr Attribute type to start from
→ includeStartingPoint Boolean Begin enumeration with starting

point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
8-286 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DESCRIPTION

You call the DirEnumerateAttributeTypesGet function to obtain a list of the
attribute types that are present in a particular record.

If your buffer is not large enough to contain all of the information requested, the
DirEnumerateAttributeTypesGet function returns the kOCEMoreData result code.

When the DirEnumerateAttributeTypesGet function completes with either the
noErr or kOCEMoreData result codes, you provide a pointer to your buffer to the
DirEnumerateAttributeTypesParse function, which extracts the attribute type
information from the buffer.

If your buffer is too small to hold all of the requested information, you can get additional
information by calling the DirEnumerateAttributeTypesGet function again. As the
value of the startingAttrType field, use the value of the last attrType parameter
passed to your callback routine by the DirEnumerateAttributeTypesParse
function. The DirEnumerateAttributeTypesGet function will continue the
enumeration starting with the next attribute type as determined by the value of the
includeStartingPoint field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The AttributeType data structure is also described in the chapter “AOCE Utilities.”

The DirEnumerateAttributeTypesParse function is described next.

For an example of continuing the enumeration using the
DirEnumerateAttributeTypesGet function when the buffer is too small to hold all
the information you requested, see “Getting Attribute Type Information” beginning on
page 8-178.

Trap macro Selector

_oceTBDispatch $0112

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCEMoreData –1623 More data available
kOCEDirectoryNotFoundErr –1630 Can’t find catalog
Catalog Manager Reference 8-287

C H A P T E R 8

Catalog Manager
DirEnumerateAttributeTypesParse 8

The DirEnumerateAttributeTypesParse function parses the data returned by the
DirEnumerateAttributeTypesGet function and returns each attribute type to your
application by repeatedly calling your callback routine.

pascal OSErr DirEnumerateAttributeTypesParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record about
which you want to obtain attribute type information.
Use the same value that you provided to the corresponding
DirEnumerateAttributeTypesGet function.

eachAttrType A pointer to your callback routine. The function declaration for this
routine is described on page 8-310.

getBuffer A pointer to the buffer containing the attribute types to parse.
Use the same buffer that you provided to the corresponding
DirEnumerateAttributeTypesGet function.

getBufferSize The number of bytes in the buffer. Use the same value
that you provided to the corresponding
DirEnumerateAttributeTypesGet function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ eachAttrType ForEachAttrType Your callback routine
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
8-288 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
DESCRIPTION

You call the DirEnumerateAttributeTypesParse function to extract the attribute
types placed in a buffer by the DirEnumerateAttributeTypesGet function. You
must provide a callback routine that the DirEnumerateAttributeTypesParse
function calls for each attribute type that it finds in the buffer.

The DirEnumerateAttributeTypesParse function completes when it has finished
parsing the contents of your buffer or when your callback routine returns true. The
function returns the kOCEMoreData result code if it reaches the end of the buffer and
finds that the DirEnumerateAttributeTypesGet function did not return all the data
requested. If you want to continue the enumeration, you can call the
DirEnumerateAttributeTypesGet function again. In your next call to the
DirEnumerateAttributeTypesGet function, set startingAttrType to the value
of the last attrType parameter passed to your callback routine by the
DirEnumerateAttributeTypesParse function.

If your callback routine returns true, the DirEnumerateAttributeTypesParse
function completes with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The function declaration for your callback routine is described on page 8-310.

The DirEnumerateAttributeTypesGet function is described on page 8-285.

For an example of continuing the enumeration using the
DirEnumerateAttributeTypesParse function when the buffer is too small to hold
all the information you requested, see “Getting Attribute Type Information” beginning
on page 8-178.

Trap macro Selector

_oceTBDispatch $0103

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available
Catalog Manager Reference 8-289

C H A P T E R 8

Catalog Manager
Reading Access Controls for dNodes, Records, and Attribute Types 8

The functions in this section identify requestor categories and access controls. There are
five categories of requestors. You use the OCEGetAccessControlDSSpec function to
read category masks that identify the type of requestor about which you want
information. See the section “Getting Access Controls” beginning on page 8-169 for more
information on access controls and requestor categories.

You can use the other functions described in this section to read the access control masks
for a dNode, a record, or an attribute type.

OCEGetAccessControlDSSpec 8

The OCEGetAccessControlDSSpec function returns a DSSpec that you can use to get
access controls.

pascal DSSpec *OCEGetAccessControlDSSpec (const CategoryMask

categoryBitMask);

categoryBitMask
A value indicating the type of DSSpec you want
OCEGetAccessControlDSSpec to return.

DESCRIPTION

Given one of the categoryBitMask values, the OCEGetAccessControlDSSpec
function returns to you a pointer to a DSSpec structure that corresponds to the
particular categoryBitMask value. You can then use, in a
DirGetxxxAccessControlGet function, the DSSpec that is returned to you. The
categoryBitMask value identifies a type of requestor, such as owner or guest. For
more information on how to use the categoryBitMask value to obtain a DSSpec
structure, see “Types of Requesters” beginning on page 8-169.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

__OCEUtils $0345

noErr 0 No error
8-290 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
SEE ALSO

The CategoryMask data type is described in “Getting Access Controls” beginning on
page 8-169.

The DSSpec data structure is described in the chapter “Utility Manager” in this book.

DirGetDNodeAccessControlGet 8

The DirGetDNodeAccessControlGet function returns access control information for
a dNode that you specify.

pascal OSErr DirGetDNodeAccessControlGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ pRLI PackedRLIPtr Target dNode
→ forCurrentUserOnly Boolean Return only requester’s access controls?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with starting

point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
Catalog Manager Reference 8-291

C H A P T E R 8

Catalog Manager
Field descriptions

pRLI A pointer to packed record location information that specifies the
dNode about which you want access control information. The
function ignores this field when you specify a personal catalog in
the dsRefNum field.

forCurrentUserOnly
A Boolean value that indicates what access control information the
function returns. Set this field to true if you want only access
control information for the requester specified in the identity
field. If you set this field to false, the function returns access
control information for each object on the dNode’s access control
list.

startingPoint A pointer to the object on the access control list from which the
function begins to retrieve information. Set this field to nil to start
with the first object. If the function completes with the
kOCEMoreData result code, you can set this field to the value that
DirGetDNodeAccessControlParse last passed to the dsObj
parameter of your callback routine. Then call
DirGetDNodeAccessControlGet again to continue to obtain
information. The function ignores this field if you set
forCurrentUserOnly to true.

includeStartingPoint
A Boolean value that determines how the function interprets the
startingPoint field. Set this field to true if you want the
function to return access control information beginning with the
object specified by the startingPoint field. If you set this field to
false, the function returns information starting with the object
after the one specified by the startingPoint field. The function
ignores this field if you set forCurrentUserOnly to true.

getBuffer A pointer to the buffer in which the function stores the access
control information for the dNode you specify. You provide this
buffer.

getBufferSize The size, in bytes, of your buffer.

DESCRIPTION

You call the DirGetDNodeAccessControlGet function to obtain access control
information for a dNode that you specify. The information consists of catalog service
specifications that identify the objects on the access control list and of the access control
masks that apply to these objects. The mask specifies which access privileges the object
possesses.

If the buffer you provide is not large enough to contain all of the information requested,
the function returns the kOCEMoreData result code.

When the function completes with either the noErr or kOCEMoreData result codes, you
use a pointer to your buffer as input to the DirGetDNodeAccessControlParse
function, which extracts the information from the buffer.
8-292 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
If your buffer is too small to hold all of the requested information, you can get additional
information by calling the DirGetDNodeAccessControlGet function again, after
calling the DirGetDNodeAccessControlParse function. Set the startingPoint
field to the value that DirGetDNodeAccessControlParse last passed to the dsObj
parameter of your callback routine. The DirGetDNodeAccessControlGet function
will continue to return information starting with the next entry on the dNode’s access
control list as determined by the value of the includeStartingPoint field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is
also described in the chapter “AOCE Utilities.”

The catalog service specification, defined by the DSSpec data structure, is also described
in the chapter “AOCE Utilities.”

The DirGetDNodeAccessControlParse function is described next.

For information on the types of objects and the types of access controls specified in the
access control mask, see “Getting Access Controls” beginning on page 8-169.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all
the information you requested, see “Getting Attribute Type Information” beginning on
page 8-178.

Trap macro Selector

_oceTBDispatch $012A

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchdNode –1615 Can’t find specified dNode
kOCEMoreData –1623 More data available
Catalog Manager Reference 8-293

C H A P T E R 8

Catalog Manager
DirGetDNodeAccessControlParse 8

The DirGetDNodeAccessControlParse function parses the access control
information returned by the DirGetDNodeAccessControlGet function and returns a
pointer to each object and its access control mask by repeatedly calling your callback
routine.

pascal OSErr DirGetDNodeAccessControlParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

pRLI A pointer to packed record location information that specifies the
dNode about which you want access control information. Use the
same value that you provided to the
DirGetDNodeAccessControlGet function.

eachObject A pointer to your callback routine. The Catalog Manager passes
your callback routine the value that you provide in the
clientData field, a pointer to a catalog service specification that

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ pRLI PackedRLIPtr Target dNode
→ eachObject ForEachDNodeAccessControl Your callback routine
→ forCurrentUserOnly Boolean Return only requester’s access

info?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with

starting point?
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
8-294 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
identifies the object to which the access control masks apply, the
active access control mask for the target dNode, and the default
access control masks for newly created records and attribute types
within that dNode. The function declaration for this routine is
described on page 8-319.

forCurrentUserOnly
Use the same value that you provided to the
DirGetDNodeAccessControlGet function.

startingPoint Use the same value that you provided to the
DirGetDNodeAccessControlGet function.

includeStartingPoint
Use the same value that you provided to the
DirGetDNodeAccessControlGet function.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirGetDNodeAccessControlGet function.

getBufferSize The size, in bytes, of your buffer. Use the same value that you
provided to the DirGetDNodeAccessControlGet function.

DESCRIPTION

You call the DirGetDNodeAccessControlParse function to extract the access control
information placed in your buffer by the DirGetDNodeAccessControlGet function.
You must provide a callback routine that the DirGetDNodeAccessControlParse
function calls for each entry it finds in the buffer.

The DirGetDNodeAccessControlParse function completes when it has finished
parsing the contents of your buffer or when your callback routine returns true. The
function returns the kOCEMoreData result code if it reaches the end of the buffer and
finds that the DirGetDNodeAccessControlGet function did not return all the data
requested. If you want to continue to obtain information, you can call the
DirGetDNodeAccessControlGet function again. Set the value of the
startingPoint field to the value that DirGetDNodeAccessControlParse last
passed to the dsObj parameter of your callback routine.

If your callback routine returns true, the DirGetDNodeAccessControlParse
function completes with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_oceTBDispatch $012F

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available
Catalog Manager Reference 8-295

C H A P T E R 8

Catalog Manager
SEE ALSO

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

The DSSpec data structure is also described in the chapter “AOCE Utilities.”

The DirGetDNodeAccessControlGet function is described on page 8-291.

The function declaration for your callback routine is described on page 8-319.

For information on the types of access controls specified in the access control mask, see
“Getting Access Controls” beginning on page 8-169.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesParse function) when the buffer is too small to hold
all the information you requested, see “Getting Attribute Type Information” beginning
on page 8-178.

DirGetRecordAccessControlGet 8

The DirGetRecordAccessControlGet function returns the access controls of a
record that you specify.

pascal OSErr DirGetRecordAccessControlGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ forCurrentUserOnly Boolean Return only requester’s access controls?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with starting point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
8-296 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
Field descriptions

aRecord A pointer to a record ID that identifies the record about which you
want access control information. You must provide the record
location information unless the record resides in a personal catalog.
If the catalog in which the record resides supports record creation
IDs, you must provide the record creation ID; otherwise, you must
provide the record name and type.

forCurrentUserOnly
A Boolean value that indicates what access control information the
function returns. Set this field to true if you want access controls
only for the user specified in the identity field. If you set this
field to false, the function returns access controls for each object
on the record’s access control list.

startingPoint A pointer to the object from which the function begins returning
information. Set this field to nil to start with the first object. If the
function completes with the kOCEMoreData result code, you can
set this field to the value of the last dsObj parameter passed to
your callback routine by the parse function and call the function
again to continue to obtain information. The function ignores this
field if you set forCurrentUserOnly to true.

includeStartingPoint
A Boolean value that determines how the function interprets the
startingPoint field. Set this field to true if you want the
function to return access control information beginning with the
object specified by the startingPoint field. If you set this field to
false, the function returns information starting with the object
after the one specified by the startingPoint field. The function
ignores this field if you set forCurrentUserOnly to true.

getBuffer A pointer to the buffer in which the function stores the access
control information for the record you specify. You provide this
buffer.

getBufferSize The size, in bytes, of your buffer.

DESCRIPTION

You call the DirGetRecordAccessControlGet function to obtain access control
information for a record that you specify. The information consists of catalog service
specifications that identify the objects on the access control list and of the access control
masks that apply to these objects. The mask specifies which access privileges the object
possesses.

If the buffer you provide is not large enough to contain all of the information requested,
the function returns the kOCEMoreData result code.

When the function completes with either the noErr or kOCEMoreData result codes, you
use a pointer to your buffer as input to the DirGetRecordAccessControlParse
function, which extracts the information from the buffer.

If your buffer is too small to hold all of the requested information, you can get additional
information by calling the DirGetRecordAccessControlGet function again, after
Catalog Manager Reference 8-297

C H A P T E R 8

Catalog Manager
calling the DirGetRecordAccessControlParse function. Set the value of the
startingPoint field to the value that DirGetRecordAccessControlParse last
passed to the dsObj parameter of your callback routine. The
DirGetRecordAccessControlGet function will continue to return information
starting with the next entry as determined by the value of the includeStartingPoint
field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DSSpec data structure is also described in the chapter “AOCE Utilities.”

The DirGetRecordAccessControlParse function is described next.

For information on the types of access controls specified in the access control mask, see
“Getting Access Controls” beginning on page 8-169.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all
the information you requested, see “Getting Attribute Type Information” beginning on
page 8-178.

DirGetRecordAccessControlParse 8

The DirGetRecordAccessControlParse function parses the access control
information returned by the DirGetRecordAccessControlGet function and returns
a pointer to each object and its access control mask by repeatedly calling your callback
routine.

pascal OSErr DirGetRecordAccessControlParse

(DirParamBlockPtr paramBlock,

Boolean async);

Trap macro Selector

_oceTBDispatch $012C

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchdNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCEMoreData –1623 More data available
8-298 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record about which you
want access control information. Use the same value that you
provided to the DirGetRecordAccessControlGet function.

eachObject A pointer to your callback routine. The Catalog Manager passes
your callback routine the value that you provide in the
clientData field, a pointer to a catalog service specification that
identifies the object to which the access control masks apply, the
active access control masks for the target record and the dNode in
which it resides, and the default access control mask for newly
created attribute types within that record. The function declaration
for this routine is described on page 8-320.

forCurrentUserOnly
Use the same value that you provided to the
DirGetRecordAccessControlGet function.

startingPoint Use the same value that you provided to the
DirGetRecordAccessControlGet function.

includeStartingPoint
Use the same value that you provided to the
DirGetRecordAccessControlGet function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ eachObject ForEachRecordAccessControl Your callback routine
→ forCurrentUserOnly Boolean Return only requester’s

access info?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with

starting point?
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
Catalog Manager Reference 8-299

C H A P T E R 8

Catalog Manager
getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirGetRecordAccessControlGet function.

getBufferSize The size, in bytes, of your buffer. Use the same value that you
provided to the DirGetRecordAccessControlGet function.

DESCRIPTION

You call the DirGetRecordAccessControlParse function to extract the access
control information placed in your buffer by the DirGetRecordAccessControlGet
function. You must provide a callback routine that the
DirGetRecordAccessControlParse function calls for each entry it finds in the
buffer.

The DirGetRecordAccessControlParse function completes when it has finished
parsing the contents of your buffer or when your callback routine returns true. The
function returns the kOCEMoreData result code if it reaches the end of the buffer and
finds that the DirGetRecordAccessControlGet function did not return all the data
requested. If you want to continue to obtain information, you can call the
DirGetRecordAccessControlGet function again. Set the value of the
startingPoint field to the value that DirGetRecordAccessControlParse last
passed to the dsObj parameter of your callback routine.

If your callback routine returns true, the DirGetRecordAccessControlParse
function completes with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DSSpec data structure is also described in the chapter “AOCE Utilities.”

The DirGetRecordAccessControlGet function is described on page 8-296.

The function declaration for your callback routine is described on page 8-320.

Trap macro Selector

_oceTBDispatch $0134

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available
8-300 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
For information on the types of access controls specified in the access control mask, see
“Getting Access Controls” beginning on page 8-169.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesParse function) when the buffer is too small to hold
all the information you requested, see “Getting Attribute Type Information” beginning
on page 8-178.

DirGetAttributeAccessControlGet 8

The DirGetAttributeAccessControlGet function returns access control
information for an attribute type that you specify.

pascal OSErr DirGetAttributeAccessControlGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ aType AttributeTypePtr Target attribute type
→ forCurrentUserOnly Boolean Return only requester’s access info?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with starting

point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
Catalog Manager Reference 8-301

C H A P T E R 8

Catalog Manager
Field descriptions

aRecord A pointer to a record ID that identifies the record in which the
target attribute type resides. You must provide the record location
information unless the record resides in a personal catalog. If the
catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

aType A pointer to the attribute type about which you are requesting
access control information.

forCurrentUserOnly
A Boolean value that indicates what access controls the function
returns. Set this field to true if you want access controls only for
the user specified in the identity field. If you set this field to
false, the function returns access controls for each object on the
attribute type’s access control list.

startingPoint A pointer to the object from which the function begins to return
information. Set this field to nil to start with the first object. If the
function completes with the kOCEMoreData result code, you can
set this field to the value of the last dsObj parameter passed to
your callback routine by the parse function and call the function
again to continue to obtain information. The function ignores this
field if you set forCurrentUserOnly to true.

includeStartingPoint
A Boolean value that determines how the function interprets the
startingPoint field. Set this field to true if you want the
function to return access control information beginning with the
object specified by the startingPoint field. If you set this field to
false, the function returns information starting with the object
after the one specified by the startingPoint field. The function
ignores this field if you set forCurrentUserOnly to true.

getBuffer A pointer to the buffer in which the function stores the access
control information for the attribute type you specify. You provide
this buffer.

getBufferSize The size, in bytes, of your buffer.

DESCRIPTION

You call the DirGetAttributeAccessControlGet function to obtain access control
information for an attribute type that you specify. The information consists of catalog
service specifications that identify the objects on the access control list and of the access
control masks that apply to these objects. The mask specifies which access privileges the
object possesses.

If the buffer you provide is not large enough to contain all of the information requested,
the function returns the kOCEMoreData result code.
8-302 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
When the function completes with either the noErr or kOCEMoreData result code, you
use a pointer to your buffer as input to the DirGetAttributeAccessControlParse
function, which extracts the information from the buffer.

If your buffer is too small to hold all of the information requested, you can get additional
information by calling the DirGetAttributeAccessControlGet function again,
after calling the DirGetAttributeAccessControlParse function. Set the value of
the startingPoint field to the value that DirGetAttributeAccessControlParse
last passed to the dsObj parameter of your callback routine. The
DirGetAttributeAccessControlGet function will continue to return information
starting with the next object as determined by the value of the
includeStartingPoint field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The AttributeType data structure is also described in the chapter “AOCE Utilities.”

The DSSpec data structure is also described in the chapter “AOCE Utilities.”

The DirGetAttributeAccessControlParse function is described next.

For information on the types of access controls specified in the access control mask, see
“Getting Access Controls” beginning on page 8-169.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all
the information you requested, see “Getting Attribute Type Information” beginning on
page 8-178.

Trap macro Selector

_oceTBDispatch $012E

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchdNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchPseudonym –1619 Can’t find specified

pseudonym
kOCEMoreData –1623 More data available
Catalog Manager Reference 8-303

C H A P T E R 8

Catalog Manager
DirGetAttributeAccessControlParse 8

The DirGetAttributeAccessControlParse function parses the access control
information returned by the DirGetAttributeAccessControlGet function and
returns a pointer to each object and its access control mask by repeatedly calling your
callback routine.

pascal OSErr DirGetAttributeAccessControlParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-190 for descriptions of the
ioCompletion, ioResult, serverHint, dsRefNum, identity, and clientData
fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record in which the
target attribute type resides. Use the same value that you provided
to the DirGetAttributeAccessControlGet function.

aType A pointer to an attribute type about which you are requesting
access control information. Use the same value that you provided to
the DirGetAttributeAccessControlGet function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog

reference number
→ identity AuthIdentity Requester’s

authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ aType AttributeTypePtr Target attribute type
→ eachObject ForEachAttributeAccessControl Your callback routine
→ forCurrentUserOnly Boolean Return only requester’s

access controls?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with

starting point?
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
8-304 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
eachObject A pointer to your callback routine. The Catalog Manager passes
your callback routine the value that you provide in the
clientData field, a pointer to a catalog service specification that
identifies the object to which the access control masks apply, and
the active access control masks for the target attribute type as well
as those for the dNode and record within which it resides. The
function declaration for this routine is described on page 8-319.

forCurrentUserOnly
Use the same value that you provided to the
DirGetAttributeAccessControlGet function.

startingPoint Use the same value that you provided to the
DirGetAttributeAccessControlGet function.

includeStartingPoint
Use the same value that you provided to the
DirGetAttributeAccessControlGet function.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirGetAttributeAccessControlGet function.

getBufferSize The size, in bytes, of your buffer. Use the same value that you
provided to the DirGetAttributeAccessControlGet function.

DESCRIPTION

You call the DirGetAttributeAccessControlParse function to extract the access
control information placed in your buffer by the
DirGetAttributeAccessControlGet function. You must provide a callback routine
that the DirGetAttributeAccessControlParse function calls for each entry it finds
in the buffer.

The DirGetAttributeAccessControlParse function completes when it has
finished parsing the contents of your buffer or when your callback routine returns true.
The function returns the kOCEMoreData result code if it reaches the end of the buffer
and finds that the DirGetAttributeAccessControlGet function did not return all
the data requested. If you want to continue to obtain information, you can call the
DirGetAttributeAccessControlGet function again. Set the value of the
startingPoint field to the value that DirGetAttributeAccessControlParse last
passed to the dsObj parameter of your callback routine.

If your callback routine returns true, the DirGetAttributeAccessControlParse
function completes with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0138
Catalog Manager Reference 8-305

C H A P T E R 8

Catalog Manager
RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The AttributeType data structure is also described in the chapter “AOCE Utilities.”

The DSSpec data structure is also described in the chapter “AOCE Utilities.”

The DirGetAttributeAccessControlGet function is described on page 8-301.

The function declaration for your callback routine is described on page 8-319.

For information on the types of access controls specified in the access control mask, see
“Getting Access Controls” beginning on page 8-169.

For an example of continuing the enumeration (using the
DirEnumerateAttributeTypesParse function) when the buffer is too small to hold
all the information you requested, see “Getting Attribute Type Information” beginning
on page 8-178.

Cancelling a Catalog Manager Function 8

You use the function described in this section to cancel a Catalog Manager function that
has not completed execution.

DirAbort 8

The DirAbort function cancels a currently executing Catalog Manager function.

pascal OSErr DirAbort (DirParamBlockPtr paramBlock);

paramBlock
Pointer to a parameter block.

Parameter block

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ pb union DirParamBlock* Function to cancel
8-306 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
See “The Parameter Block Header” on page 8-190 for descriptions of the ioResult,
serverHint, dsRefNum, and identity fields.

Field descriptions

pb A pointer to the DirParamBlock parameter block for the function
you want to cancel.

DESCRIPTION

You call the DirAbort function to cancel a Catalog Manager function that has not
completed execution. If the function that you want to cancel addresses a PowerShare
catalog or a personal catalog, the Catalog Manager attempts the cancel operation. If the
function that you want to cancel addresses an external catalog, the CSAM driver
attempts the cancel operation. If the Catalog Manager or the CSAM driver does not
support the DirAbort function for the executing function that you specify, the function
returns the kOCEAbortNotSupportedForThisCall result code.

PowerShare and personal catalogs support the DirAbort function for the
DirFindADAPDirectoryByNetSearch and DirNetSearchADAPDirectoriesGet
functions only.

IMPORTANT

Because the DirAbort function makes references to fields in the
parameter block associated with the function that you want to cancel,
you must not alter or dispose of that parameter block before the
DirAbort function has completed. ▲

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirFindADAPDirectoryByNetSearch function is described on page 8-232.

The DirNetSearchADAPDirectoriesGet function is described on page 8-234.

Trap macro Selector

_oceTBDispatch $011B

noErr 0 No error
kOCEAbortNotSupportedForThisCall –1631 Abort not supported
Catalog Manager Reference 8-307

C H A P T E R 8

Catalog Manager
Application-Defined Functions 8
This section contains descriptions of the completion routine you can provide when you
call the Catalog Manager asynchronously and of the callback routines that you provide
to Catalog Manager functions that parse a buffer’s contents.

The information on callback routines in this introduction applies to all callback routines
and is not repeated in individual routine descriptions.

The Catalog Manager manages all of the buffers associated with pointers that it passes to
a callback routine. You must copy the data in these buffers if you want to refer to it after
your callback routine completes execution.

When a callback routine returns false, the parse function continues parsing the results
in your buffer. When a callback routine returns true, the parse function completes with
a noErr result code. If a parse function invokes a callback routine and passes it the last
item in the buffer and the callback routine returns false, the parse routine completes
with either a noErr or a kOCEMoreData result code, depending on the result code of
the corresponding “get” function.

A Catalog Manager function always calls a callback routine at deferred-task time so that
it will work properly if the computer is using virtual memory. Because these functions
restore the value of your application’s A5 register before calling a callback routine, a
callback routine has access to your application’s global variables. Your callback routine
can allocate memory if you make a synchronous call to the function that invokes it.

See “Callback Routines” on page 8-168 for more information about the restrictions that
apply to callback routines.

MyCompletionRoutine 8

You may provide a completion routine when you call a Catalog Manager function
asynchronously.

void MyCompletionRoutine (DirParamBlockPtr paramBlk);

paramBlk A pointer to the parameter block that you provided to the Catalog
Manager function that is calling your completion routine.

DESCRIPTION

You can provide a completion routine to any Catalog Manager functions that you can
call asynchronously by passing a pointer to the completion routine in the
ioCompletion field of the DirParamBlock parameter block. If you provide a
completion routine, it executes when the asynchronous request completes execution.

The Catalog Manager saves the value of your A5 register at the time you call a Catalog
Manager routine and then restores the A5 value before calling the completion routine.
8-308 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
The Catalog Manager always calls completion routines in deferred-task time. Running at
deferred-task time is a safe practice when using virtual memory.

You can write your completion routine in C, Pascal, or assembly language.

To declare a completion routine in Pascal, use the following statement:

PROCEDURE MyCompletion(paramBlk: DirParamBlockPtr);

Note that if you do not want to specify a completion routine for an asynchronous
function call, you can specify nil in the ioCompletion field and poll the ioResult
field of the parameter block header. When you call a Catalog Manager function
asynchronously, the function sets the ioResult field in the parameter block to 1 to
indicate that the routine has not yet completed execution. When the routine completes
execution, it sets the ioResult field to the actual function result. If you poll, you should
do so within a loop that calls the WaitNextEvent routine so that other processes get
execution time. If you poll in a tight loop, you may cause a deadlock condition.

ASSEMBLY-LANGUAGE INFORMATION

If you write it in assembly language, your completion routine gets a pointer to the
parameter block in the A0 register and the Catalog Manager function result code in the
D0 register. The function result code is also available in the ioResult field of the
parameter block.

MyForEachRecordID 8

The MyForEachRecordID function is a callback routine you must provide if you call
the DirEnumeratePseudonymParse function.

pascal Boolean MyForEachRecordID (long clientData,

const RecordID *recordID);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirEnumeratePseudonymParse function.
You can use this parameter for whatever purpose you choose. For
example, if you make multiple asynchronous calls to the
DirEnumeratePseudonymParse function, you can use this parameter
to match calls to this routine with a particular call to the
DirEnumeratePseudonymParse function.

recordID A pointer to a record ID containing the name, the type, and the creation
ID of a pseudonym. The record location information is unspecified
because the pseudonym resides in the same catalog and dNode as the
target record.
Catalog Manager Reference 8-309

C H A P T E R 8

Catalog Manager
DESCRIPTION

The DirEnumeratePseudonymParse function calls your callback routine for each
pseudonym it finds in a buffer previously filled by the DirEnumeratePseudonymGet
function.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

The DirEnumeratePseudonymParse function is described on page 8-262.

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

MyForEachAttrType 8

The MyForEachAttrType function is a callback routine you must provide if you call
the DirEnumerateAttributeTypesParse function.

pascal Boolean MyForEachAttrType (long clientData,

const AttributeType *attrType);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirEnumerateAttributeTypesParse
function. You can use this field for whatever purpose you choose. For
example, if you make multiple asynchronous calls to the
DirEnumerateAttributeTypesParse function, you can use this field
to match calls to this routine with a particular call to the
DirEnumerateAttributeTypesParse function.

attrType A pointer to an AttributeType data structure.

DESCRIPTION

The DirEnumerateAttributeTypesParse function calls your callback routine for
each attribute type that it finds in a buffer previously filled by the
DirEnumerateAttributeTypesGet function.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

The DirEnumerateAttributeTypesParse function is described on page 8-288

The AttributeType data structure is described in the chapter “AOCE Utilities” in this
book.
8-310 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
MyForEachDirectory 8

The MyForEachDirectory function is a callback routine you must provide if you call
the DirEnumerateDirectoriesParse function.

pascal Boolean MyForEachDirectory (long clientData,

const DirectoryName *dirName,

const DirDiscriminator *discriminator,

DirGestalt features);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirEnumerateDirectoriesParse
function. You can use this parameter for whatever purpose you choose.
For example, if you make multiple asynchronous calls to the
DirEnumerateDirectoriesParse function, you can use this
parameter to match calls to this routine with a particular call to the
DirEnumerateDirectoriesParse function.

dirName A pointer to the name of a catalog.

discriminator
A pointer to a DirDiscriminator data structure that differentiates
between catalogs that share the same name.

features A set of flags that indicates the features that the catalog supports.

DESCRIPTION

The DirEnumerateDirectoriesParse function calls your callback routine for each
catalog entry that it finds in a buffer previously filled by the
DirEnumerateDirectoriesGet function. Your callback routine receives a pointer to
the catalog’s name, a pointer to its discriminator value, and the feature flags that indicate
what features the catalog supports.

The DirEnumerateDirectoriesParse function does not supply information about
personal catalogs.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

The DirEnumerateDirectoriesParse function is described on page 8-199.

The DirDiscriminator data structure is described in the chapter “AOCE Utilities” in
this book.

For a description of catalog feature flags, see “Feature Flag Bit Array” beginning on
page 8-186.
Catalog Manager Reference 8-311

C H A P T E R 8

Catalog Manager
MyForEachLookupRecordID 8

The MyForEachLookupRecordID function is a callback routine that you may provide
if you call the DirLookupParse function and you want to get record information.

pascal Boolean MyForEachLookupRecordID (long clientData,

const RecordID *recordID);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirLookupParse function. You can use this
parameter for whatever purpose you choose. For example, if you make
multiple asynchronous calls to the DirLookupParse function, you can
use this field to match calls to this routine with a particular call to the
DirLookupParse function.

recordID A pointer to a record ID.

DESCRIPTION

The DirLookupParse function calls your callback routine for each record ID that it
finds in a buffer previously filled by the DirLookupGet function.

This callback routine is optional. If you look up attribute values only in a single record,
you may not want to provide this routine. However, then you cannot distinguish
between the case where a record exists but an attribute type does not exist and the case
where a record does not exist.

If you look up attribute values in multiple records, you need to provide this routine to
associate attribute types and attribute values with the record to which they belong.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DirLookupParse function is described on page 8-279.
8-312 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
MyForEachAttrTypeLookup 8

The MyForEachAttrTypeLookup function is a callback routine which you may
provide if you call the DirLookupParse function and you want to retrieve attribute
type information.

pascal Boolean MyForEachAttrTypeLookup (long clientData,

const AttributeType *attrType,

AccessMask myAttrAccMask);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirLookupParse function. You can use this
parameter for whatever purpose you choose. For example, if you make
multiple asynchronous calls to the DirLookupParse function, you can
use this parameter to match calls to this routine with a particular call to
the DirLookupParse function.

attrType A pointer to an AttributeType data structure.

myAttrAccMask
The requester’s access control mask for this attribute type. If the
myAttrAccMask parameter indicates that you do not have read access
permission for this attribute type, the DirLookupParse function does
not call your MyForEachAttrValue callback routine for this attribute
type.

DESCRIPTION

The DirLookupParse function calls this callback routine for each attribute type that it
finds in a buffer previously filled by the DirLookupGet function.

 If you provided a callback routine for record ID information
(MyForEachLookupRecordID), you can associate the attribute type that the function
passes here with the record ID that the DirLookupParse function most recently passed
to your MyForEachLookupRecordID callback routine.

This callback routine is optional. However, it provides access control information about
each attribute type that you requested. If you do not have read access to an attribute type
that you requested, you can still detect the presence of attribute values of that type in a
record. However, you cannot read those attribute values because the DirLookupParse
function does not call your attribute value callback routine (MyForEachAttrValue)
when you lack read access to the attribute type. If you do not provide this routine, you
have no way of knowing that attribute values that you requested exist in a record when
you lack read access to their attribute type.
Catalog Manager Reference 8-313

C H A P T E R 8

Catalog Manager
SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

The AttributeType data structure is described in the chapter “AOCE Utilities” in this
book.

The values of the access mask are described in “Getting Access Controls” beginning on
page 8-169.

The DirLookupParse function is described on page 8-279.

The DirLookupGet function is described on page 8-276.

The MyForEachLookupRecordID routine is described on page 8-312.

The MyForEachAttrValue routine is described next.

MyForEachAttrValue 8

The MyForEachAttrValue function is a callback routine you must provide if you call
the DirLookupParse function.

pascal Boolean MyForEachAttrValue (long clientData,

const Attribute *attribute);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirLookupParse function. You can use this
parameter for whatever purpose you choose. For example, if you make
multiple asynchronous calls to the DirLookupParse function, you can
use this parameter to match calls to this routine with a particular call to
the DirLookupParse function.

attribute A pointer to an Attribute data structure that specifies an attribute
value. Note that this attribute value has the attribute type specified in the
most recent call to your MyForEachAttrTypeLookup callback routine,
and it is contained in the record specified by the most recent call to your
MyForEachLookupRecordID callback routine.

DESCRIPTION

The DirLookupParse function calls this callback routine for each attribute value that it
finds in a buffer previously filled by the DirLookupGet function.

If you provided a callback routine for record ID information
(MyForEachLookupRecordID), you can associate the attribute value that the function
passes here with the local record ID that the DirLookupParse function most recently
passed to your MyForEachLookupRecordID callback routine. If you did not provide a
callback routine for record ID information and you are looking up attribute values in
8-314 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
multiple records, you must devise your own system of matching attribute values with
the records to which they belong.

If you provided a callback routine for attribute type information
(MyForEachAttrTypeLookup), you can associate the attribute value that the function
passes here with the access controls that the DirLookupParse function most recently
passed to your MyForEachAttrTypeLookup callback routine. If you did not provide a
callback routine for attribute type information, you cannot detect the presence of
attribute values in a record when you lack read access to their attribute types. The
DirLookupParse function does not call this callback routine for an attribute value if
you do not have read access to its attribute type.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

The DirLookupParse function is described on page 8-279.

The DirLookupGet function is described on page 8-276.

The Attribute data structure is described in the chapter “AOCE Utilities” in this book.

The MyForEachLookupRecordID routine is described on page 8-312.

The MyForEachAttrTypeLookup routine is described on page 8-313.

MyForEachDirEnumSpec 8

The MyForEachDirEnumSpec function is a callback routine you must provide if you
call the DirEnumerateParse function.

pascal Boolean MyForEachDirEnumSpec (long clientData,

const DirEnumSpec *enumSpec);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirEnumerateParse function.You can use
this parameter for whatever purpose you choose. For example, if you
make multiple asynchronous calls to the DirEnumerateParse function,
you can use this parameter to match calls to this routine with a particular
call to the DirEnumerateParse function.

enumSpec A pointer to an enumeration specification data structure. The value of the
enumFlag field of the DirEnumSpec data structure indicates the type of
entity about which information is being returned. Use the mask constants
kEnumDistinguishedNameMask, kEnumAliasMask,
kEnumPseudonymMask, and kEnumDNodeMask to determine if the
Catalog Manager Reference 8-315

C H A P T E R 8

Catalog Manager
entity is a record, alias, pseudonym, or dNode, respectively. Use the mask
constant kEnumInvisibleMask to determine if the entity is visible or
invisible.

If the DirEnumerateParse function is returning information about a
dNode or an invisible dNode, the u field of the DirEnumSpec structure
contains a DNodeID data structure. The dNode ID consists of the name of
the dNode and its dNode number. If the catalog does not support dNode
numbers, the dNode number is set to 0.

If the DirEnumerateParse function is returning information about a
record, an alias, or a pseudonym, the u field of the DirEnumSpec
structure contains a LocalRecordID data structure. The local record ID
consists of the record’s creation ID, name, and type. If the catalog does not
support creation IDs, the creation ID is set to 0.

DESCRIPTION

The DirEnumerateParse function calls your callback routine for each record, alias,
pseudonym, and dNode about which it finds information in a buffer previously filled by
the DirEnumerateGet function.

Invisible dNodes are typically foreign dNodes, that is, they represent external messaging
systems within an AOCE system. Invisible records are typically those that are used in
administering an AOCE system. Usually, you would not display information about these
to a user. It is up to your application to consider how to handle information about
invisible entities.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

The DirEnumerateParse function is described on page 8-220.

The DirEnumerateGet function is described on page 8-215.

The LocalRecordID data structure is described in the chapter “AOCE Utilities” in this
book.

The DirEnumSpec data structure is described on page 8-193.

The DNodeID data structure is described on page 8-192.
8-316 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
MyForEachRecord 8

The MyForEachRecord function is a callback routine you must provide if you call the
DirFindRecordParse function.

pascal Boolean MyForEachRecord (long clientData,

const DirEnumSpec *enumSpec,

pRLI PackedRLIPtr);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirFindRecordParse function.You can
use this parameter for whatever purpose you choose. For example, if you
make multiple asynchronous calls to the DirFindRecordParse
function, you can use this parameter to match calls to this routine with a
particular call to the DirFindRecordParse function.

enumSpec A pointer to an enumeration specification data structure. The value of the
enumFlag field of the DirEnumSpec data structure indicates the type of
entity about which information is being returned. Use the mask constants
kEnumDistinguishedNameMask, kEnumAliasMask, and
kEnumPseudonymMask to determine if the entity is a record, alias, or
pseudonym, respectively.

pRLI A pointer to packed record location information that specifies the dNode
within which the record, alias, or pseudonym is located.

DESCRIPTION

The DirFindRecordParse function calls your callback routine for each record, alias,
and pseudonym about which it finds information in a buffer previously filled by the
DirFindRecordGet function.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

The DirFindRecordParse function is described on page 8-204.

The DirFindRecordGet function is described on page 8-201.

The LocalRecordID data structure is described in the chapter “AOCE Utilities” in this
book.

The DirEnumSpec data structure is described on page 8-193.
Catalog Manager Reference 8-317

C H A P T E R 8

Catalog Manager
MyForEachADAPDirectory 8

The MyForEachADAPDirectory function is a callback routine you must provide if you
call the DirNetSearchADAPDirectoriesParse function.

pascal Boolean MyForEachADAPDirectory (long clientData,

const DirectoryName *directoryName,

const DirDiscriminator *discriminator,

DirGestalt features,

AddrBlock serverHint);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirNetSearchADAPDirectoriesParse
function. You can use this parameter for whatever purpose you choose.
For example, if you make multiple asynchronous calls to the
DirNetSearchADAPDirectoriesParse function, you can use this
parameter to match calls to this routine with a particular call to the
DirNetSearchADAPDirectoriesParse function.

directoryName
A pointer to the name of the catalog.

discriminator
A pointer to the value that differentiates two or more catalogs with the
same name.

features A set of feature bit flags for the catalog.

serverHint
The AppleTalk address of a PowerShare server that serves the catalog
specified in the directoryName and discriminator fields.

DESCRIPTION

The DirNetSearchADAPDirectoriesParse function calls your callback routine for
each PowerShare catalog that it finds in a buffer previously filled by the
DirNetSearchADAPDirectoriesGet function.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

The DirNetSearchADAPDirectoriesParse function is described on page 8-236.

The DirDiscriminator data structure is described in the chapter “AOCE Utilities” in
this book.

For a description of catalog feature flags, see “Feature Flag Bit Array” beginning on
page 8-186.

The AddrBlock data structure is described in the header file AppleTalk.h.
8-318 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
MyForEachDNodeAccessControl 8

The MyForEachDNodeAccessControl function is a callback routine you must provide
when you call the DirGetDNodeAccessControlParse function.

pascal Boolean MyForEachDNodeAccessControl (long clientData,

const DSSpec *dsObj,

AccessMask activeDnodeAccMask,

AccessMask defaultRecordAccMask,

AccessMask defaultAttributeAccMask);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirGetDNodeAccessControlParse
function. You can use this parameter for whatever purpose you choose.
For example, if you make multiple asynchronous calls to the
DirGetDNodeAccessControlParse function, you can use this
parameter to match calls to this routine with a particular call to the
DirGetDNodeAccessControlParse function.

dsObj A pointer to the object to which the access control mask applies.

activeDnodeAccMask
A mask that specifies the access controls that apply to the object in
relation to the dNode.

defaultRecordAccMask
A mask that specifies the default access controls that apply to new records
within the dNode.

defaultAttributeAccMask
A mask that specifies the default access controls that apply to new
attribute types within records in the dNode.

DESCRIPTION

The DirGetDNodeAccessControlParse function calls your callback routine for each
entry that it finds in a buffer previously filled by the
DirGetDNodeAccessControlGet function.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

The DirGetDNodeAccessControlGet function is described on page 8-291.

The DirGetDNodeAccessControlParse function is described on page 8-294.

The values of the access mask are described in “Getting Access Controls” beginning on
page 8-169.
Catalog Manager Reference 8-319

C H A P T E R 8

Catalog Manager
MyForEachRecordAccessControl 8

The MyForEachRecordAccessControl function is a callback routine you must
provide when you call the DirGetRecordAccessControlParse function.

pascal Boolean MyForEachRecordAccessControl (long clientData,

const DSSpec *dsObj,

AccessMask activeDnodeAccMask,

AccessMask activeRecordAccMask,

AccessMask defaultAttributeAccMask);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirGetRecordAccessControlParse
function. You can use this parameter for whatever purpose you choose.
For example, if you make multiple asynchronous calls to the
DirGetRecordAccessControlParse function, you can use this
parameter to match calls to this routine with a particular call to the
DirGetRecordAccessControlParse function.

dsObj A pointer to the object to which the access control mask applies.

activeDnodeAccMask
A mask that specifies the access controls that apply to the object in
relation to the dNode that contains the record.

activeRecordAccMask
A mask that specifies the access controls that apply to the object in
relation to the record.

defaultAttributeAccMask
A mask that specifies the default access controls that apply to new
attribute types within the record.

DESCRIPTION

The DirGetRecordAccessControlParse function calls your callback routine for
each entry that it finds in a buffer previously filled by the
DirGetRecordAccessControlGet function.

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

SEE ALSO

The DirGetRecordAccessControlGet function is described on page 8-296.

The DirGetRecordAccessControlParse function is described on page 8-298.

The values of the access mask are described in “Getting Access Controls” beginning on
page 8-169.
8-320 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

8
C

atalog M
anager
MyForEachAttributeAccessControl 8

The MyForEachAttributeAccessControl function is a callback routine you must
provide when you call the DirGetAttributeAccessControlParse function.

pascal Boolean MyForEachAttributeAccessControl (long clientData,

const DSSpec *dsObj,

AccessMask activeDnodeAccMask,

AccessMask activeRecordAccMask,

AccessMask activeAttributeAccMask);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirGetAttributeAccessControlParse
function. You can use this field for whatever purpose you choose. For
example, if you make multiple asynchronous calls to the
DirGetAttributeAccessControlParse function, you can use this
field to match calls to this routine with a particular call to the
DirGetAttributeAccessControlParse function.

dsObj A pointer to the object to which the access control mask applies.

activeDnodeAccMask
A mask that specifies the access controls that apply to the object in
relation to the dNode containing the record that contains the attribute
type.

activeRecordAccMask
A mask that specifies the access controls that apply to the object in
relation to the record that contains the attribute type.

activeAttributeAccMask
A mask that specifies the access controls that apply to the object in
relation to the attribute type.

DESCRIPTION

The DirGetAttributeAccessControlParse function calls your callback routine for
each entry that it finds in a buffer previously filled by the
DirGetAttributeAccessControlGet function.

Read the introduction to “Application-Defined Functions” on page 8-308 for important
information that applies to all callback routines.

SEE ALSO

The DirGetAttributeAccessControlGet function is described on page 8-301.

The DirGetAttributeAccessControlParse function is described on page 8-304.

The values of the access mask are described in “Getting Access Controls” beginning on
page 8-169.
Catalog Manager Reference 8-321

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	 AOCE Utilities
	 Standard Mail Package TOC
	 Standard Mail Package
	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	 Digital Signature Manager
	 Interprogram Messaging Manager TOC
	 Interprogram Messaging Manager
	 Catalog Manager TOC
	 Catalog Manager, Part 1 (Introduction, About, and Using)
	Catalog Manager, Part 2 (Reference)
	Catalog Manager Reference
	Feature Flag Bit Array
	Data Types
	The Parameter Block Header
	The dNode ID
	The Enumeration Choice Type
	The Enumeration Specification
	The Script Structure
	The Matching Criteria Type

	Catalog Manager Functions
	Getting Information About Catalogs
	Getting Information About dNodes
	Maintaining the PowerTalk Setup Catalog
	Creating, Opening, and Closing Personal Catalogs
	Managing Records
	Managing Attribute Types and Values
	Reading Access Controls for dNodes, Records, and A...
	Cancelling a Catalog Manager Function

	Application-Defined Functions

	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	 Authentication Manager
	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

