

C H A P T E R 6

6

D
igital S

ignature M
anager

Digital Signature Manager 6

This chapter describes the Digital Signature Manager, one of the AOCE security services.
The Digital Signature Manager is a set of routines that allows you to add electronic
signature capabilities to your application.

Read this chapter if you plan to let your users sign documents or other data
electronically, so that recipients can be confident of the authenticity of the signature and
the integrity of the signed data.

Note that other AOCE components provide limited use of digital signatures; the AOCE
Standard Mail Package allows users to add digital signatures to electronic mail and to
check the signatures of received mail. The Interprogram Messaging (IPM) Manager
provides an application program interface to add digital signatures to IPM messages and
to verify such signatures. A user who has the AOCE software installed can use the
Finder to add a digital signature to any file. If, however, you want to allow a user to sign
a file or verify a signature from within your application, you must use the routines
described in this chapter.

This chapter first introduces the concept of digital signatures, including a brief
introduction to public-key cryptography. It goes on to explain public-key certificates—
necessary documents for creating digital signatures. It then explains how to use the
Digital Signature Manager to create a signature for a file or portion of a file, and to verify
a signature. It also explains how to get information from a digital signature.

About Digital Signatures 6

A digital signature is an encrypted number that is associated with a particular set of
data. It has two purposes. First, it uniquely identifies the individual or entity that signed
or authorized the content of the data. Second, it ensures the integrity of the data; the
signature contains coded information that can be used to detect any changes made to the
data after the creation of the signature.

A digital signature can be applied to an entire set of data or to any portion of it; anything
that can be represented as a stream of bytes can be given a digital signature. You can use
the functions in this chapter to sign a file, one or more fields in a form, data in memory,
or even another digital signature. In terms of security and integrity, an item with a
verifiable digital signature is comparable to a paper document that is signed and
notarized. In most ways, digital signatures can provide better security than signed paper
forms, because a digital signature cannot be forged and because a digitally signed
document cannot be altered without the alteration being detected.

The digital signature capability is useful in networked organizations. Users on the
network can fill out forms and route them electronically for signature, thus saving time
and effort and enhancing security. Even users of computers that are not on a network can
sign electronic forms before mailing them or physically delivering them. Digital
signatures can also be used with data that is not transmitted at all; a user can assign a
digital signature to important data left on a computer or server to ensure that the data is
not tampered with. This capability could be used to detect viruses, for example.
About Digital Signatures 6-3

C H A P T E R 6

Digital Signature Manager

Cryptography and Digital Signatures 6
The digital signature technology used by the AOCE toolbox involves the use of two
keys , large unique numbers that are computationally applied to data to encrypt or
decrypt it.

The Digital Signature Manager does not encrypt documents; encryption and decryption
are applied to the digital signature only. When you send an electronically signed
document, the contents of the document are as public as the channel over which you
transmit.

Common cryptographic techniques typically involve a single key, one that both decrypts
and encrypts information. Any holder of the key used in the encryption can use it to
decrypt the information. Those wishing to exchange information must keep the key a
secret among themselves. This type of cryptography is called secret-key cryptography.

The AOCE services use another cryptographic technique, called public-key
cryptography. In this technique, key holders use a pair of keys to encrypt and decrypt
information. Each key pair consists of a private key and a public key . A key holder must
keep its private key secret and not share that key with anyone else. At the same time, it
may freely publish and exchange its public key without compromising security.

Both the private and public keys can be used to encrypt information and decrypt
information. Information encrypted with a private key can be decrypted only with its
paired public key. Similarly, information encrypted with a public key can be decrypted
only with its paired private key. Figure 6-1 illustrates the concept of public-key
encryption.

Figure 6-1 Principles of public-key encryption

Wendy’s private key

Encrypt

ABC

DEFG

HIJ...

Decrypt

Wendy’s public key

ABC

DEFG

HIJ...

Wendy (sender) Pablo (receiver)

@#1

{*&}

?/....
6-4 About Digital Signatures

C H A P T E R 6

Digital Signature Manager

6

D
igital S

ignature M
anager

The sender, Wendy, uses her own private key to encrypt an item. The receiver, Pablo, can
decrypt the item and read it because he has access to Wendy’s public key. Wendy’s
public key is widely available, so the contents of the item are not hidden to anyone with
the key. But because only Wendy’s public key can decrypt the item, anyone who
successfully decrypts the item knows that it must have come from Wendy.

Components of a Full Signature 6
As implemented by the Digital Signature Manager, an electronically signed item consists
of (1) the item itself, any collection of data; and (2) a full digital signature, a stream of
bytes that can be used to verify the integrity of the item’s data and that uniquely
identifies the signer.

A full signature has two components: the digital signature itself and the certificate set of
the signer. Figure 6-2 illustrates the components of a full signature. Certificate sets
provide the signer’s public key, verification of the authenticity of that key, and the
identity of the signer. They are described in “The Certificate Set” on page 6-6.

Figure 6-2 The components of a full signature

The Digital Signature 6

A digital signature is an encrypted digest. A digest is a 16-byte number, calculated by
the Digital Signature Manager from a set of data, that reflects the content of that data.
The digest is like a sophisticated checksum but far more reliable in verifying the integrity
of data. It is very nearly impossible for any two sets of data that differ in any way to
yield the same digest. The digest, therefore, ensures the integrity of the data; if someone
changes even a single bit of a signed item, a recalculation of that item’s digest will yield a
different number from the digest contained in the signature.

Full
signature

Certificate
set

Digital
signature

Data
About Digital Signatures 6-5

C H A P T E R 6

Digital Signature Manager

Once the digest is created, it is encrypted. The encrypted digest (or signed digest) is the
digital signature. The Digital Signature Manager encrypts the digest by applying the
signer’s private key to it. The encrypted digest is called a signed digest because it could
have been created only by the signer (the holder of that private key).

Verifying a digital signature requires decrypting the encrypted digest and comparing it
to a new digest of the same data. To decrypt the digest, the recipient of the signed data
applies the signer’s public key to it. Because an item encrypted with an individual’s
private key can be decrypted only with that same individual’s public key, the very act of
correctly decrypting a signature proves the identity of the signer.

Verifying a signature also requires making sure that the data has not changed since it
was signed. The Digital Signature Manager creates a digest of the data in its present state
and compares it with the decrypted digest from the signature. If they match, the signed
data is unchanged.

Finally, verifying a signature requires establishing the authenticity of the public key used
for the decryption. To allow for that, the Digital Signature Manager affixes a certificate
set (described next) to every digital signature it creates.

The Certificate Set 6

The second part of a full signature—the certificate set—has three purposes: it provides
the signer’s public key to allow decryption of the signature, it allows verification of the
authenticity of that public key, and it provides the identity of the signer.

Suppose, for example, that Mary (an impostor) claims to be Joe. She signs a document
with her own private key and sends it off as a document from Joe. If Mary also sends
along her own public key as Joe’s public key, then the recipient of the document might
use Mary’s public key, thinking it was Joe’s, to decrypt the signature. The decryption
would be successful—because Mary’s private key had performed the encryption—and
the recipient would mistakenly think the message had been signed by Joe.

As a safeguard against deceptions of this kind, each public key in use is registered with a
mutually trusted official issuing organization (such as a corporation or government
bureau). That agency publishes a public-key certificate , which includes not only the
public key itself but the name of the owner of the key and the name of the organization
that issued the certificate (as well as other information; see “About Public-Key
Certificates” beginning on page 6-8). See the AOCE user documentation for information
on how a user obtains a public-key certificate.

As a guarantee of authenticity, each public-key certificate is itself digitally signed by the
issuer of the certificate; it then becomes a signed certificate. No change to the name or
the public key in a signed certificate can go undetected.

The signature on a certificate must itself be verified before the certificate can be
considered authentic. For that reason each issuer also has a public-key certificate, signed
by its issuer. Verifying the signature on a certificate thus leads to another certificate
whose signature must be verified, and so on.

For each digital signature this chain of certificates, or certificate set, leads from the signer
through all intermediate issuers and up to the prime issuing organization. Verifying a
6-6 About Digital Signatures

C H A P T E R 6

Digital Signature Manager

6

D
igital S

ignature M
anager

digital signature requires verifying the signatures on all the certificates in the certificate
set associated with that signer. This certification process ensures that every public key in
every certificate is authentic, as long as one public key—that of the prime issuer—is
trusted.

For example, assume Joe has a certificate issued by Apple Computer, Inc. Joe’s certificate
includes his name and public key, and it is digitally signed by Apple. Apple’s certificate
includes Apple’s name and public key, and like Joe’s it is digitally signed. If, in this
example, RSA Data Security, Inc., had issued Apple’s certificate, then the certificate set in
Joe’s signed certificate would consist of two certificates, as shown in Figure 6-3.

Figure 6-3 A certificate set consisting of two signed certificates

RSA has no certificate because there is no authorizing agency to issue it. RSA in this case
is the prime issuer, so its public key cannot be verified. It must be trusted for reasons
other than verifiability, such as wide public availability. The Digital Signature Manager
has access to RSA’s public key, so the key is available on every user’s Macintosh
computer.

In summary, when a recipient verifies the signature, the Digital Signature Manager (1)
decrypts the digital signature with the public key provided in the certificate and
compares the resulting digest with one it recalculates from the data; and (2) verifies all
the digital signatures on the certificate set. If all the verifications are successful, the
signer’s public key is considered authentic.

Note
Because the number of attributes in a certificate is not limited, a full
digital signature can be fairly large—as much as several kilobytes. ◆

Public-key
certificate

Public-key
certificate

Digital

signature

Digital

signature

Joe's
signed certificate
(signed by Apple)

Apple's
signed certificate
(signed by RSA)
About Digital Signatures 6-7

C H A P T E R 6

Digital Signature Manager

Creating and Verifying Signatures 6
With the Digital Signature Manager you can let users sign documents, and you can
verify the signatures on documents received by users. The Digital Signature Manager
also provides routines with which you can get information from the certificate set.

When the user wants to sign a document, you call routines that prompt the user for
private-key and certificate information, create a digest of the document, and append the
user’s certificate set to make the full signature. You then attach or otherwise associate the
full signature with the document—in a way appropriate to your application—and it is
ready to be sent to its recipient by any normal means.

When the user wants to validate a signed document, you locate the full signature by
methods appropriate to your application, and you then call routines that verify the
signature by decrypting the encrypted digest, creating a new digest from the document
and comparing it with the decrypted one, and verifying the authenticity of the public
keys in the certificate set. To process a digital signature created in another application,
you must know how the other application created the signature.

You may also wish to record or provide the user with additional information, such as
who signed the document and when they signed it. To get that information you can
make calls that return information about a specified certificate within the full signature.

Note
Users can sign any file by dragging the file onto their signer file. They
can verify the signature in a file by clicking the button in the Get Info
window for the file. See “Dealing With Standard Signatures in Files” on
page 6-22 for information on how to deal with this possibility. ◆

About Public-Key Certificates 6

Public-key certificates are an integral part of the digital signature concept. Only with an
authentic public key can a signature be verified with confidence; the set of signed
public-key certificates that accompany every signature is used to ensure that authenticity.

A public-key certificate is an electronic document that verifies the identity of a signer. A
public-key certificate contains the following information:

■ identifying information for the certificate owner—the entity, person, or organization
that is authorized to use the certificate

■ the public key of the owner of the certificate

■ a time period (range of dates) during which the certificate is valid

■ identifying information for the organization that issued the certificate

■ a serial number (assigned by the issuer)
6-8 About Public-Key Certificates

C H A P T E R 6

Digital Signature Manager

6

D
igital S

ignature M
anager

A public-key certificate is not valid unless it is digitally signed by the issuing
organization of that certificate. It then becomes a signed certificate. The signature assures
the authenticity of the certificate owner’s name and public key.

A certificate can be owned by a person not affiliated with any organization, a person
who is a member of an organization, an organizational role (such as vice president or
administrator), or an issuer (a certified authority). A distinguished name is a set of
attributes that fully specify the owner or issuer of a certificate. For example, the
distinguished name of a private certificate owner consists of a common name (typically
the proper name by which the person is known), a country, a state or province, a locality
(such as a city), a zip code, and sometimes a street address.

The 1988 CCITT Recommendation X.520 sets guidelines for the definition and attributes
of a distinguished name. The Digital Signature Manager supports a subset of the
recommendation. Table 6-1 summarizes the attribute conventions supported by the
Digital Signature Manager.

As the table shows, for example, every certification authority (issuing organization) must
have either a country name or an organization name—and may have both—but cannot
have a common name. Conversely, an individual residential certificate owner must have
a common name but cannot have an organizational name or title.

IMPORTANT

When you display a distinguished name, be sure to show the entire set
of attributes for that distinguished name. If you show only a portion of
the distinguished name, the user might incorrectly identify the owner of
the certificate. There may be two identical names, for example, two
certificate owners named John Smith. ▲

Table 6-1 Conventions governing attributes of a distinguished name

Mandatory attributes Optional attributes Prohibited attributes

Attributes of a certification authority

Country or organization Country Title

Organization Common name

State or province

Locality

Organizational unit

Street address

Zip code

continued
About Public-Key Certificates 6-9

C H A P T E R 6

Digital Signature Manager

A distinguished name can have one or more attributes of each mandatory or optional
type, and the attributes can be arranged in a hierarchy to help indicate their
relationships. You can use this hierarchy when you display the distinguished name for a
user. Figure 6-4 illustrates a hierarchically arranged distinguished name of an
organizational person.

Attributes of a residential person

Country Street address Organization

State or province Organizational unit

Locality Title

Common name

Zip code

Attributes of an organizational person

Organization Country

Common name State or province

Locality

Street address

Organizational unit

Title

Zip code

Attributes of an organizational role

Organization Country Common name

Title State or province

Locality

Organizational unit

Street address

Zip code

Table 6-1 Conventions governing attributes of a distinguished name (continued)

Mandatory attributes Optional attributes Prohibited attributes
6-10 About Public-Key Certificates

C H A P T E R 6

Digital Signature Manager

6

D
igital S

ignature M
anager

Figure 6-4 Hierarchically arranged distinguished name

Using the Digital Signature Manager 6

In using the Digital Signature Manager, the main tasks your application needs to
perform are allowing the user to sign a document and verifying the signature on a
document that the user receives.

Other Digital Signature Manager features give you added convenience in extracting
certificate information—such as the name of the signer—from full signatures.

Note
Because the Digital Signature Manager is loaded into memory when it is
used, in general it is a good idea to keep your calls to the Digital
Signature Manager close together so that the memory is used only when
it is needed. For example, if you call the SIGNewContext function
when your application starts up, call several Digital Signature Manager
routines sometime later, and call the SIGDisposeContext function
when your application shuts down, the manager code segment remains
in memory the whole time. ◆

Determining the Version Number of the Digital Signature
Manager 6
To determine what version of the Digital Signature Manager is available, call the
Gestalt function, using the selector value gestaltDigitalSignatureVersion.
Upon completion of the call, the response parameter contains the version number in its
low-order word. For example, a value of 0x0101 indicates version 1.0.1.

Country: USA
Organization: Apple Computer, Inc.

Organizational unit: Research and Development
Organizational unit: Collaborative Software
Common name: Pablo Calamera
Common name: ID number 123456
Title: Software Engineer
Using the Digital Signature Manager 6-11

C H A P T E R 6

Digital Signature Manager

Using a Context 6
The Digital Signature Manager uses a private data structure called a context to hold
information and the results of calculations while it is processing data. Before you call
Digital Signature Manager routines to perform a specific task, you must call the
SIGNewContext function (see page 6-28) to create a context. This function returns a
pointer of type SIGContextPtr. You must provide this pointer to each subsequent
routine that you call to perform that task. When you first create a context, it can be used
for any task; however, once you pass a context to another routine (SIGSignPrepare,
SIGVerifyPrepare, or SIGDigestPrepare), it can be used only for that specific task.

For example, to create a signature you first call the SIGNewContext function to create a
context, then pass that context to the SIGSignPrepare, SIGProcessData, and
SIGSign functions (see the following section for details). When you are finished
creating the signature, you call the SIGDisposeContext function to dispose of the
context. Once you have passed the context pointer to the SIGSignPrepare function,
you cannot use that context to verify a signature or create a digest; you must create a
new context for each such operation.

Table 6-2 summarizes the Digital Signature Manager tasks and the functions required to
perform each task. The “Optional functions” column lists functions that you can call
with the same context you used for the preceding function in the “Required functions”
column.

Table 6-2 Digital Signature Manager tasks and functions

Task Required functions Optional functions

Creating a signature SIGNewContext

SIGSignPrepare SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGProcessData

SIGSign SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGDisposeContext
6-12 Using the Digital Signature Manager

C H A P T E R 6

Digital Signature Manager

6

D
igital S

ignature M
anager

Signing a file SIGNewContext

SIGSignPrepare SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGSignFile SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGDisposeContext

Checking for a standard
signature

SIGFileIsSigned

Verifying a file SIGNewContext

SIGVerifyPrepare

SIGProcessData

SIGVerify SIGShowSigner

SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGDisposeContext

Verifying a signature SIGNewContext

SIGVerifyFile SIGShowSigner

SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGDisposeContext

continued

Table 6-2 Digital Signature Manager tasks and functions (continued)

Task Required functions Optional functions
Using the Digital Signature Manager 6-13

C H A P T E R 6

Digital Signature Manager
Creating a Full Signature 6
When the user wants to sign a document or a portion of a document, you are responsible
for knowing the location and extent of the data to be signed and for attaching or
associating the full signature with that data once the signature is created. The Digital
Signature Manager expects you to provide a pointer to the data, a pointer to a memory
block where it is to place the full signature, and a context pointer.

To create a signature, follow these steps:

1. First, call the SIGNewContext function to allocate and initialize a context. The
function returns a context pointer. If the Digital Signature Manager is not already in
memory, the Operating System loads it into memory.

2. Call the SIGSignPrepare function, passing it the context pointer. It opens the signer
file you specify; if you do not specify one, it opens the default signer file, which is the
last signer file used. If there is no default signer file, it prompts the user for a
signer-file location. It also prompts the user for the password needed to decrypt the
signer’s private key. It returns to you the size that the full signature will be.

3. Call the SIGProcessData function as many times as necessary to process all of the
data to be signed. Either move a pointer through the data each time you call the
function, or create a buffer and put blocks of data into it. The SIGProcessData
function creates a digest of the data to be signed.

4. Create a properly sized memory block to hold the signature, and call the SIGSign
function. It encrypts the digest, assembles the full signature, and puts it in the
memory block you allocated. The SIGSign function periodically calls a callback
routine that you may provide, so that you can notify the user of the progress of the
signing operation or perform other background tasks.

5. If you are finished creating signatures for the current signer, go on to the next step. If
you are creating additional signatures on different data sets for the same signer, repeat
steps 3 and 4 for each signature in turn. The user will not be prompted for a password
or signer-file location as each additional signature is created.

6. When you are finished creating signatures for the current user, call the
SIGDisposeContext function to release the memory used by the signing routines
and to release the Digital Signature Manager from memory. The next time you call
SIGSignPrepare, the user is prompted once more for a password.

Creating a digest SIGNewContext

SIGDigestPrepare

SIGProcessData

SIGDigest

SIGDisposeContext

Table 6-2 Digital Signature Manager tasks and functions (continued)

Task Required functions Optional functions
6-14 Using the Digital Signature Manager

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
Listing 6-1 shows an example of a function that creates a full signature for a piece of
data. This function requires an application-defined function named
DoGetDataToProcess, which cycles through all the data that is to be signed. At the
end of the SignData function is a call to another application-defined function named
DoSaveSignature, which controls how and where to save the signature.

Listing 6-1 A sample signature-creation routine

OSErr SignData()

{

OSErr error;

Boolean moreToSign;

Size signatureSize;

Size dataSize;

SIGSignaturePtr signature = NULL;

SIGContextPtr context = NULL;

Ptr dataBuffer = NULL;

do {

/* Allocate a new context and prepare it for signing. */

if ((error = SIGNewContext(&context)) != noErr)

break;

if ((error = SIGSignPrepare(context, (FSSpecPtr)NULL, "\p",

&signatureSize)) != noErr)

break;

/* Retrieve the data to be signed, in your application-specific way

and pass it to the toolbox to generate the digest for our

signature. */

/* NOTE: DoGetDataToProcess can be the same function for signing and

verifying. */

do {

if (error = DoGetDataToProcess(&dataBuffer, &dataSize, &moreToSign))

break;

if (error = SIGProcessData(context, dataBuffer, dataSize))

break;

} while (moreToSign);

if (error != noErr)/* if encountered error above, go all the way out */

break;
Using the Digital Signature Manager 6-15

C H A P T E R 6

Digital Signature Manager
/* Allocate a buffer of the size returned from SIGSignPrepare to hold

the signature and create the signature by passing the buffer to

SIGSign. */

signature = (SIGSignaturePtr)NewPtr(signatureSize);

if (error = MemError())

break;

if (error = SIGSign(context, signature, (SIGStatusProcPtr)NULL))

break;

/* Save the signature in your application-specific way. */

error = DoSaveSignature(signature, signatureSize);

} while (0);

/* Free the context now, which forces user to reenter the password next

time the SIGSignPrepare call is made. */

if (context != NULL) SIGDisposeContext(context);

if (dataBuffer != NULL) DisposPtr(dataBuffer);

if (signature != NULL) DisposPtr((Ptr)signature);

return error;

}

Verifying a Full Signature 6
When the user wants to verify the signature on a document or a portion of a document,
you are responsible for knowing the location, processing order, and extent of the data to
be verified, and for locating the full signature that applies to that data. The Digital
Signature Manager expects you to provide a pointer to the data, a pointer to the full
signature, the signature size, and a context pointer.

To verify a signature, follow these steps:

1. First, call the SIGNewContext function to allocate and initialize a context. The
function returns a context pointer. If the Digital Signature Manager is not already in
memory, the Operating System loads it into memory.

2. Call the SIGVerifyPrepare function, passing it a pointer to the signature to be
verified, the signature size, and the context pointer. The SIGVerifyPrepare
function periodically calls a callback routine that you may provide, so that you can
notify the user of the progress of the operation or perform other background tasks.
6-16 Using the Digital Signature Manager

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
The SIGVerifyPrepare function verifies the authenticity and currency of all
certificates in the certificate set and returns the kSIGSignerErr result code if any of
the certificates have been altered.

3. Call the SIGProcessData function as many times as necessary to process all of your
data. Either move a pointer through your data each time you call the function, or
create a buffer and put blocks of data into it. The SIGProcessData function creates a
digest of the data whose signature is to be verified.

4. Call the SIGVerify function. It completes the digest and compares it with the digest
in the signature.

5. Check the result code returned by the SIGVerify function to see if the verification
was successful. A result code of noErr means the verification was successful and the
signature is valid. A result code of kSIGInvalidCredentialErr means the
verification was successful but the signer’s credential is either pending or expired. A
result code of kSIGVerifyFailedErr means the verification failed.

6. Call the SIGDisposeContext function to release the memory used by the
verification routines and to release the Digital Signature Manager from memory. To
verify another signature, you must start over from step 1.

After verifying a signature, you may want to get information about it and present that to
the user. See “Getting Information From a Signature or Certificate” beginning on
page 6-19.

Listing 6-2 shows an example of a function that verifies a signature. At the beginning of
this function is a call to DoRetrieveSignature, an application-defined function that
loads the signature in from where it is stored. The DoVerifyData function also requires
an application-defined function named DoGetDataToProcess to cycle through all the
data to be verified.

Listing 6-2 A sample signature-verification routine

OSErr DoVerifyData()

{

OSErr error;

Boolean moreToVerify;

Size signatureSize;

Size dataSize;

SIGSignaturePtr signature = NULL;

SIGContextPtr context = NULL;

Ptr dataBuffer = NULL;

do {

/* Get the signature and its size from wherever your application saved

it. */
Using the Digital Signature Manager 6-17

C H A P T E R 6

Digital Signature Manager
if (error = DoRetrieveSignature(&signature, &signatureSize))

break;

/* Allocate a new context and prepare it for verifying. */

if (error = SIGNewContext(&context))

break;

if (error = SIGVerifyPrepare(context, signature, signatureSize,

(SIGStatusProcPtr)NULL))

break;

/* Get the data to be verified in your application-specific way, and

pass it to the toolbox to generate a digest for verification. */

/* NOTE: DoGetDataToProcess can be the same function for signing and

verifying. */

do {

if (error = DoGetDataToProcess(&dataBuffer, &dataSize,

&moreToVerify))

break;

if (error = SIGProcessData(context, dataBuffer, dataSize))

break;

} while (moreToVerify);

if (error)/* if encountered error above, go all the way out */

break;

/* Now, perform verification. */

if (error = SIGVerify(context))

break;

/* Finally, display the name of the signer of the data. NOTE: you can

call SIGShowSigner even if a kSIGInvalidCredentialErr was returned

from SIGVerify. */

error = SIGShowSigner(context, "\p");

} while (0);

/* Free the context. */

if (context) SIGDisposeContext(context);

if (dataBuffer) DisposPtr(dataBuffer);
6-18 Using the Digital Signature Manager

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
if (signature) DisposPtr((Ptr)signature);

return error;

}

Creating a Simple (Unencrypted) Digest 6
As a convenience utility, the Digital Signature Manager allows you to create a digest of a
document (or any stream of data you manipulate). The digest thus created cannot be
encrypted or turned into a signature of the document, but its value as a sophisticated
checksum makes it useful for other purposes, such as checking reliability in data
transmission. And, like any data, the digest itself can be signed to ensure its integrity.

As one example, assume you are transmitting a massive document in separate blocks
across a network. You want to ensure that the blocks are assembled in the right order at
the receiving end. You can construct digests of individual blocks as they are sent and,
after all the blocks have been sent, concatenate all the digests into a single file and send
it. If the recipient has built a file of concatenated digests as the received blocks are
reassembled, the concatenated digests should match each other if there has been no
transmission or reassembly error. This method avoids the necessity of processing
massive amounts of data at once, as would be necessary to create or verify a single
signature on the entire document.

Creating a digest is similar to creating a signature. You first call the SIGNewContext
function, then you call the SIGDigestPrepare function. Next you call
SIGProcessData as many times as necessary to process all of your data. Finally you
call SIGDigest, which returns the finished digest to you.

To create another digest, call the SIGProcessData as many times as necessary, then call
the SIGDigest function. When you are finished creating digests, call the
SIGDisposeContext function.

Getting Information From a Signature or Certificate 6
When you add a signature to a block of data or verify a signature, you are informed only
of the success or failure of the operation. Neither you nor the user has direct access to
any information in the signature—not even the name of the signer.

If you want to know (or tell the user) who created a signature, when it was signed, who
issued the certificate to the signer, whether the signer’s certificate has expired, or any
other information available from the signature, you can call Digital Signature Manager
routines that return that information.

After you successfully verify a signature, you can display a dialog box containing the full
distinguished name of the signer by calling the SIGShowSigner function (page 6-46).

After you successfully verify a signature, after you call the SIGSignPrepare function
to initiate the signing process, or after you call the SIGSign function to sign a block of
data, you can call the SIGGetSignerInfo function (page 6-48) to determine when a
block of data was signed and how many certificates constitute the certificate set for the
Using the Digital Signature Manager 6-19

C H A P T E R 6

Digital Signature Manager
signature. The SIGGetSignerInfo function also tells you whether the entire certificate
set is valid and, if not, whether it has expired or has not yet become valid.

You can use the SIGGetCertInfo function (page 6-49) to obtain the beginning and
ending dates of a certificate’s validity, and the total number of attributes in the
distinguished names of the certificate’s signer and issuer.

You can use the SIGGetCertNameAttributes function (page 6-51) and the
SIGGetCertIssuerNameAttributes function (page 6-52) to obtain the attributes that
compose the distinguished names of the certificate’s signer and issuer.

To obtain complete information on a newly applied or verified signature, you might
follow a procedure something like this:

1. Call the SIGGetSignerInfo function to get the date of the signing and the total
number of certificates in the full signature.

2. Call the SIGGetCertInfo function for the first certificate in the signature to get the
dates for which the certificate is valid, the serial number of the certificate, and the
number of name attributes in the distinguished name of the certificate.

3. Call the SIGGetCertNameAttributes function once for each name attribute in the
certificate to get the full distinguished name for each certificate. This function returns
the string for each attribute and the type of the attribute. It also specifies whether the
attribute is the same level in the name hierarchy as the previous attribute (See “About
Public-Key Certificates” beginning on page 6-8 for a description of distinguished
names.)

4. Repeat steps 2 and 3 for each additional certificate in the certificate set. The certificates
are always in order: the signer’s certicate is first, the issuer of the signer’s certificate is
next, and so forth.

5. You can use the SIGGetCertIssuerNameAttributes function to get the full
distinguished name of the prime issuer.

Listing 6-3 is an example of a function that extracts information from a certificate set. The
DoDisplayCertificateSet sample function displays the name of the signer of a
verified signature and searches through a certificate set, displaying information about
the owner of each certificate. The DoDisplayCertificateSet function assumes that
the input is a valid context that has gone through a successful call to either the
SIGVerify, SIGSignPrepare, or SIGSign functions.

In addition, the DoDisplayCertificateSet function requires the following support
functions to actually display the data to the user: DoDisplaySignatureInfo,
DoDisplayCertificateInfo, and DoDisplayCertNameAttribute.
6-20 Using the Digital Signature Manager

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
Listing 6-3 A sample routine that returns information in a certificate set

OSErr DoDisplayCertificateSet(SIGContextPtr context)

{

unsigned short attrIndex;

SIGNameAttributesInfo attrInfo;

unsigned short certIndex;

SIGCertInfo certInfo;

SIGSignerInfo signerInfo;

OSErr error;

do {

/* Get and display general signature information first. */

if (error = SIGGetSignerInfo(context, &signerInfo))

break;

DoDisplaySignatureInfo(&signerInfo);

/* Traverse entire certificate set and for each certificate, display

its certificate information. Then traverse the name attribute

information for that certificate and display the attributes. */

for (certIndex = kSIGSignerCertIndex; certIndex < signerInfo.certCount;

certIndex++)

{

if (error = SIGGetCertInfo(context, certIndex, &certInfo))

break;

DoDisplayCertificateInfo(&certInfo);

for (attrIndex = 0; attrIndex < certInfo.certAttributeCount;

attrIndex++)

{

if (error = SIGGetCertNameAttributes(context, certIndex,

attrIndex, &attrInfo))

break;

DoDisplayCertNameAttribute(&attrInfo);

}

}

/* Finally, display the root issuers' name attributes. */
Using the Digital Signature Manager 6-21

C H A P T E R 6

Digital Signature Manager
/* NOTE: there's no certificate information for the root; it's always

valid.*/

for (attrIndex = 0; attrIndex < certInfo.issuerAttributeCount;

attrIndex++)

{

if (error = SIGGetCertIssuerNameAttributes(context, certIndex-1,

attrIndex, &attrInfo))

break;

DoDisplayCertNameAttribute(&attrInfo);

}

} while (0);

return error;

}

Dealing With Standard Signatures in Files 6
On the desktop, a user can add a standard signature to any file by dragging the icon for
the file to be signed onto the icon of his or her signer file. When a user signs a file this
way, the Digital Signature Manager adds a resource of type 'dsig' to the resource fork
of the file. Whenever you open a file, you should use the SIGFileIsSigned function to
determine if the file contains such a signature. If a file contains a standard signature, you
should not allow the user to alter the file without first displaying a dialog box warning
that the file has been signed and that changing the file in any way will invalidate the
signature. You should also not make any changes of your own to the file, such as saving
a new window position, unless the user has chosen to allow changes that invalidate the
signature.

All resources in the file are also signed, except any resources of type 'nods' (no digital
signature). You can store anything that you don’t want to be signed in this resource, such
as a new window position, and verification will still work.

Note
The 'dsig' resource is mentioned here for your information only and
may change in the future. Therefore, any attempt to manipulate this
resource directly could cause incompatibilities with future versions of
the Digital Signature Manager. ◆

You can verify a standard signature by calling the SIGVerifyFile function. You can
add a standard signature to a file from within your application or replace an existing
standard signature in a file by calling the SIGSignFile function. A user can also use
the Finder to verify the signature in a file signed in this way.
6-22 Using the Digital Signature Manager

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
You must call the SIGNewContext function before you call either the SIGSignFile
function or the SIGVerifyFile function. To add a standard signature to a file, you
must call the SIGSignPrepare function and the SIGSignFile function. The
SIGSignFile function processes the data and adds the signature to the file. To verify a
standard signature, you call the SIGVerifyFile function. You do not have to call the
SIGProcessData function when you are working with standard signatures in files. You
cannot add a standard signature to a file or verify such a signature if the file is in use.

Digital Signature Manager Reference 6

This section describes the data types and routines provided by the Digital Signature
Manager and the interface to a status callback routine that you may provide.

Constants and Data Types 6
This section describes the constants and data types that are used by the
SIGGetSignerInfo and SIGGetCertInfo functions to return information about
signers and certificates. The SIGDigestData data type is described with the
SIGDigest routine on page 6-44.

Signer Information Structure 6

The SIGGetSignerInfo function (page 6-48) uses a signer information structure to
return information about a signature. The signer information structure is defined by the
SIGSignerInfo data type.

struct SIGSignerInfo

{

unsigned long signingTime; /* local sign time */

unsigned long certCount; /* # of certificates

in the set */

unsigned long certSetStatusTime;/* expiration time*/

SIGSignatureStatus signatureStatus; /* certificate status */

};
Digital Signature Manager Reference 6-23

C H A P T E R 6

Digital Signature Manager
Field descriptions

signingTime The time at which the data was signed. The time is in standard
Macintosh format: the number of seconds elapsed since Midnight,
January 1, 1904. The time is converted from Greenwich Mean Time
(GMT) to the local time of the user’s Macintosh. To convert to local
time, the AOCE toolbox uses the local system clock and Map control
panel on the signer’s Macintosh computer. Thus, the time cannot be
considered reliable.

certCount The number of certificates in the certificate set.
certSetStatusTime

If all the certificates in the certificate set are valid, this field holds
the expiration time of the certificate that will be the first to expire. If
one or more certificates have expired, this field holds the time when
the first certificate in the set expired. If none of the certificates have
expired but one or more is not yet valid, this field holds the time
that the last pending certificate will become valid. The time is given
as the number of seconds elapsed since midnight, January 1, 1904.

signatureStatus
If all the certificates in the certificate set are valid, this field holds
the value kSIGValid. If any of the certificates have expired since
the data was signed, this field holds the value kSIGExpired. If any
of the certificates had already expired before the data was signed,
this field holds the value kSIGInvalid. If none of the certificates
have expired but any have not yet become valid, this field holds the
value kSIGPending.

This field can have any of the following values:

enum {

kSIGValid, /* all valid */

kSIGPending, /* none expired; some pending

or unknown */

kSIGExpired, /* some expired, unknown, or

pending */

kSIGInvalid /* some invalid, pending, expired

or unknown */

};

typedef unsigned short SIGSignatureStatus;
6-24 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
Certificate Information Structure 6

The SIGGetCertInfo function (page 6-49) uses a certificate information structure to
return information about a specific certificate in a signature. The certificate information
structure is defined by the SIGCertInfo data type.

struct SIGCertInfo

{

unsigned long startDate; /* validity start date */

unsigned long endDate; /* validity end date */

SIGCertStatus certStatus; /* certificate status */

unsigned long certAttributeCount; /* number of name

attributes in cert*/

unsigned long issuerAttributeCount;/* # of name attributes

in cert’s issuer */

Str255 serialNumber; /* cert serial number */

};

Field descriptions

startDate The time at which the certificate became (or will become) valid. The
time is in standard Macintosh format: the number of seconds
elapsed since midnight, January 1, 1904.

endDate The expiration time of the certificate in seconds since midnight,
January 1, 1904.

certStatus The status of the certificate: kSIGValid, kSIGPending, or
kSIGExpired.

certAttributeCount
The number of attributes in the distinguished name for this
certificate (see Table 6-1 on page 6-9). You can use the
SIGGetCertNameAttributes function (page 6-51) to list the
attributes.

issuerAttributeCount
The number of attributes in the distinguished name of the issuer of
this certificate (see Table 6-1 on page 6-9). You can use the
SIGGetCertIssuerNameAttributes function (page 6-52) to list
the attributes.

serialNumber A certificate number assigned by the issuer.
Digital Signature Manager Reference 6-25

C H A P T E R 6

Digital Signature Manager
Standard Signature Icon Suite 6

The Digital Signature Manager provides an icon suite that you use to represent a digital
signature in your document. This suite contains all bit depths and sizes.

#define kSIGSignatureIconResID -16797

#define kSIGValidSignatureIconResID -16799

#define kSIGInvalidSignatureIconResID -16798

Name Attribute Information Structure 6

The SIGGetCertNameAttributes function (page 6-51) and the
SIGGetCertIssuerNameAttributes function (page 6-52) use a name attribute
information structure to return information about a name attribute. The name attribute
information structure is defined by the SIGNameAttributesInfo data type.

struct SIGNameAttributesInfo

{

Boolean onNewLevel;

SIGNameAttributeType attributeType;

ScriptCode attributeScript;

Str255 attribute;

};

Field descriptions

onNewLevel A Boolean value that indicates whether the name attribute is at the
same level of the name hierarchy as the previous value returned.

attributeType The type of attribute returned.
attributeScript

The script code for the name attribute. Script codes are defined by
the Script Manager.

attribute The name attribute value.

The attributeType field can have any of the following values:

enum {

kSIGCountryCode,

kSIGOrganization,

kSIGStreetAddress,

kSIGState,

kSIGLocality,

kSIGCommonName,

kSIGTitle,
6-26 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
kSIGOrganizationUnit,

kSIGPostalCode

};

typedef unsigned short SIGNameAttributeType;

You can use the hierarchy information in the onNewLevel parameter to arrange the
distinguished name for display to the user.

Distinguished names and name hierarchies are described in detail in “About Public-Key
Certificates” beginning on page 6-8.

Digital Signature Manager Functions 6
You can use Digital Signature Manager functions to perform the following tasks: creating
a signature (page 6-31), verifying a signature (page 6-38), creating an unencrypted digest
(page 6-43), signing a file (page 6-36), and verifying a file (page 6-41). All of these tasks,
except signing and verifying a file, require you to process data (page 6-30). You begin
each of these operations by creating a new context and end the operation by disposing of
the context (page 6-28). After you prepare a context for a signature, create a signature, or
verify a signature, you can extract information from the certificate or signature
(page 6-45).

Assembly-Language Interface 6

To call a Digital Signature Manager function from assembly language, you must do the
following:

1. Allot space for the function result and all routine parameters (in Pascal
calling-convention order) on the stack.

2. In the D0 register, put a long word consisting of the parameter word count for the
routine followed by the routine selector. The parameter word count indicates how
many words of parameters you are placing on the stack; for example, if the function
has two parameters and each is a pointer, the parameter word count for the function is
$0004.

3. Call the Digital Signature Manager trap, $AA5D.

Each routine description in the following sections lists the parameter word count and
routine selector for that routine.
Digital Signature Manager Reference 6-27

C H A P T E R 6

Digital Signature Manager
Creating and Disposing of a Context 6

The Digital Signature Manager uses a private data structure called a context to hold
information and the results of calculations while it is processing data. Before you call
Digital Signature Manager routines to perform a specific task, you must call the
SIGNewContext function to create a context and obtain a context pointer. To free the
memory used by the context, call the SIGDisposeContext function.

You can use a new context for any type of operation; however, once you have called the
first task-specific function (SIGSignPrepare, SIGVerifyPrepare, or
SIGDigestPrepare), you can use the context only with other functions associated with
that task. Table 6-2 on page 6-12 summarizes the Digital Signature Manager tasks and
the functions required to perform each task.

SIGNewContext 6

The SIGNewContext function creates a new context and returns a context pointer.

pascal OSErr SIGNewContext (SIGContextPtr *context);

context A pointer to the new context created by this function.

DESCRIPTION

You must pass the context pointer returned by this function to either the
SIGSignPrepare, SIGVerifyPrepare, or SIGDigestPrepare function.

SPECIAL CONSIDERATIONS

This function causes the Digital Signature Manager to be loaded into memory if it is not
already in memory.

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0002 $076C

noErr 0 No error
paramErr –50 Illegal parameter value
memFullErr –108 Not enough room in heap
6-28 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
SEE ALSO

Use the SIGDisposeContext function (described next) to dispose of a context.

The SIGNewContext function is normally followed by either the SIGSignPrepare
function (page 6-31), the SIGVerifyPrepare function (page 6-38), or the
SIGDigestPrepare function (page 6-43).

SIGDisposeContext 6

The SIGDisposeContext function frees the memory used by a context.

pascal OSErr SIGDisposeContext (SIGContextPtr context));

context A pointer to the context you wish to dispose of.

DESCRIPTION

You must call the SIGDisposeContext function to dispose of a context when you are
finished creating a signature, verifying a signature, creating a digest, or extracting
information from a signature or certificate.

SPECIAL CONSIDERATIONS

Because this function removes the Digital Signature Manager (as well as the context)
from memory, you must call this function even if the previous function returned an error.

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0002 $076D

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGOperationIncompatibleErr –1970 Context in use for different type

of operation
Digital Signature Manager Reference 6-29

C H A P T E R 6

Digital Signature Manager
Processing Data to Generate a Digest 6

To process data during the creation or verification of a signature, or during the creation
of a digest, call the SIGProcessData function one or more times.

SIGProcessData 6

The SIGProcessData function processes the data passed to it and revises the digest
accordingly.

pascal OSErr SIGProcessData (SIGContextPtr context,

const void *data, Size dataSize);

context A pointer to the context that you passed to the SIGSignPrepare,
SIGVerifyPrepare, or SIGDigestPrepare function.

data A pointer to a buffer containing the data to be processed.

dataSize The number of bytes of data to be processed.

DESCRIPTION

Call the SIGProcessData function to generate a digest for a set of data. If you have
more data than is convenient to process all at once, you can call the function several
times, passing it a block of any size each time. Note, however, that it is more efficient to
process data in large blocks than in small blocks.

You can place each block of data into a buffer, or you can change the data parameter
each time to point at the next starting position in your data. You are responsible for
keeping track of where the data is and how much of it to process during each call to the
SIGProcessData function, and for knowing when all the data has been processed.

The data must be processed in the same order during the corresponding sign and verify
operations but need not be processed in blocks of the same size. To the
SIGProcessData function, the data is a continuous byte stream.

SPECIAL CONSIDERATIONS

You can call the SIGProcessData function at interrupt time; it does not move or purge
memory.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0006 $0774
6-30 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
RESULT CODES

SEE ALSO

The SIGProcessData function is preceded by a call to SIGSignPrepare (page 6-31),
SIGVerifyPrepare (page 6-38), or SIGDigestPrepare (page 6-43).

After calling SIGProcessData, you call either SIGSign (page 6-34), SIGVerify
(page 6-40), or SIGDigest (page 6-44).

Creating a Signature 6

To create a full signature, first call the SIGNewContext function (page 6-28) to create a
new context, then call the SIGSignPrepare function (described next).

Next, to sign some portion of the data in a file, call the SIGProcessData function
(page 6-30) as many times as necessary to process all the data. When you are finished
processing the data, call the SIGSign function (page 6-34). To create additional
signatures for the same signer, you can call the SIGProcessData and SIGSign
functions again, without first creating a new context or calling the SIGSignPrepare
function.

If you want to add a standard signature to a file, call the SIGSignFile function
(page 6-36) instead of the SIGProcessData and SIGSign functions. To add signatures
to additional files, you can call the SIGSignFile function again, without first creating a
new context or calling the SIGSignPrepare function.

When you no longer need the context you used for creating the signatures, call the
SIGDisposeContext function (page 6-29).

This section describes the SIGSignPrepare, SIGSign, and SIGSignFile functions.

SIGSignPrepare 6

The SIGSignPrepare function notifies the Digital Signature Manager that you are
about to create a signature.The function returns the size that the full signature will be
when it is created.

pascal OSErr SIGSignPrepare (SIGContextPtr context,

const FSSpec *signerFile,

ConstStr255Param prompt,

Size *signatureSize);

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGOperationIncompatibleErr –1970 Context in use for different type

of operation
kSIGInternalsErr –1977 Bad digest, context, or signature
Digital Signature Manager Reference 6-31

C H A P T E R 6

Digital Signature Manager
context A pointer to the context that the Digital Signature Manager will use while
creating the signature. Call the SIGNewContext function to obtain the
context pointer.

signerFile
A pointer to a file-specification structure for the user’s signer file. If you
specify NULL for this parameter, the function opens the previously used
signer file, or, if there is no record of a previously used signer file, the
function displays a Standard File dialog box prompting the user for the
location of a signer file.

prompt A string to display in the dialog box that prompts the user for a
password. Pass a zero-length Pascal-style string to use the default prompt.

signatureSize
A pointer to the size of the signature that is to be created. The function
returns this parameter.

DESCRIPTION

The SIGSignPrepare function displays a password-prompting dialog box into which
the user types the private-key password. The function displays a Standard File dialog
box prompting the user for a signer file if you do not specify a signer file in the
signerFile parameter and there is no default signer file.

If you pass NULL in the signerFile parameter, the first time the user signs something,
the function displays a Standard File dialog box prompting the user for the location of
the signer file. The Digital Signature Manager then stores an alias to that file in the user’s
Preferences folder. The next time you specify NULL in the signerFile parameter, the
SIGSignPrepare function uses that signer file as the default and does not display the
standard file dialog box.

If you already know the location of the user’s signer file, you can bypass the Standard
File dialog box by passing a pointer to the signer file’s file-specification structure in the
signerFile parameter. You can also use this procedure to override the default signer
file.

The prompt parameter can contain whatever string you wish displayed in the dialog
box to prompt the user for a private-key password. Use the parameter-text designator ^1
for the user’s name; the Digital Signature Manager replaces ^1 in your string with the
user’s common name or title (depending on whether the user is signing as a person or as
an organizational role—see Table 6-1 on page 6-9) as it appears in the signer file. If you
pass a zero-length string, the function uses the default string.

The password-prompting dialog box also contains a Signer button that allows the user to
select a different signer file. Figure 6-5 shows how the dialog box would appear to a user
whose common name is Pablo Calamera.

Note
If you specify a signer file to use, the password dialog box does not
contain a Signer button allowing users to switch signer files. ◆
6-32 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
Figure 6-5 The password-prompting dialog box

This function returns the size the signature will be once it is created. Use the result to
allocate memory for the signature before calling the SIGSign function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

This function is stack-intensive, requiring approximately 7 KB of memory for its stack.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0008 $076E

noErr 0 No error
paramErr –50 Illegal parameter value
memFullErr –108 Not enough room in heap zone
userCanceledErr –128 User canceled password-prompt

dialog box
kSIGOperationIncompatibleErr –1970 Context in use for different type

of operation
kSIGSignerErr –1975 Problem with the signer file or

signature
kSIGPasswordErr –1976 Password is incorrect
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGContextPrepareErr –1979 Context already prepared by

SIGVerifyPrepare,
SIGSignPrepare, or
SIGDigestPrepare

kSIGConversionErr –1981 Unable to convert an attribute to
Macintosh format

kSIGSignerNotValidErr –1982 Signer file has either expired or
is not yet valid
Digital Signature Manager Reference 6-33

C H A P T E R 6

Digital Signature Manager
SEE ALSO

Before you call the SIGSignPrepare function, you must call the SIGNewContext
function (page 6-28) to create a new context.

After calling the SIGSignPrepare function, you can extract information from the
certificate set; see “Getting Information From a Signature or Certificate” beginning on
page 6-45.

After you call the SIGSignPrepare function, call the SIGProcessData function
(page 6-30) as many times as necessary to process all the data.

SIGSign 6

The SIGSign function creates a full signature for the data most recently processed by
the SIGProcessData function, using signer-file information from the most recent call
to the SIGSignPrepare function.

pascal OSErr SIGSign (SIGContextPtr context,

SIGSignaturePtr signature,

SIGStatusProcPtr statusProc);

context The context pointer that you passed to the SIGSignPrepare function.

signature A pointer to a buffer you provide to hold the signature returned by the
function. Use the result of the SIGSignPrepare function to allocate a
buffer of the correct size.

statusProc
A pointer to a callback routine you may provide to notify the user of the
progress of the signature creation or to perform other background tasks.
Specify NULL for this parameter if you do not wish to provide a callback
routine.

DESCRIPTION

Call this function after having called the SIGProcessData function enough times to
finish processing the document or data that is to be signed. After creating a signature,
SIGSign places it in the buffer pointed to by the signature parameter.

Because the SIGSign function can take a long time to complete, you can provide a
pointer to a callback routine to notify the user of the progress of the operation, allow the
user to cancel it, and perform background tasks such as spinning the cursor.

To create additional signatures for the same signer, you can call the SIGProcessData
and SIGSign functions again, without first creating a new context or calling the
SIGSignPrepare function. Call the SIGDisposeContext function when you have
finished creating signatures with that signer.
6-34 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
Note
You should call the SIGDisposeContext function as soon as possible
after you finish creating signatures so that the Operating System can free
the memory used by the Digital Signature Manager. ◆

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You call the SIGSign function after calling SIGSignPrepare (page 6-31) to initiate the
signing process and SIGProcessData (page 6-30) to process the data.

You may provide a callback status routine when you call the SIGSign function; see
“Application-Defined Function” on page 6-54.

After calling the SIGSign function, you can extract information from the signature; see
“Getting Information From a Signature or Certificate” beginning on page 6-45.

As soon as possible after you finish creating signatures, call the SIGDisposeContext
(page 6-29) function to dispose of the context and to allow the Operating System to
remove the Digital Signature Manager from memory.

Parameter count Routine selector

$0006 $076F

noErr 0 No error
paramErr –50 Illegal parameter value
userCanceledErr –128 User canceled signing process
kSIGOperationIncompatibleErr –1970 Context in use for different type of

operation
kSIGSignerErr –1975 Problem with the signer file or

signature
kSIGInternalsErr –1977 Bad digest, context, or signature
Digital Signature Manager Reference 6-35

C H A P T E R 6

Digital Signature Manager
SIGSignFile 6

The SIGSignFile function adds a standard signature to a file.

pascal OSErr SIGSignFile (SIGContextPtr context,

Size signatureSize,

const FSSpec *fileSpec,

SIGStatusProcPtr statusProc);

context The context pointer that you passed to the SIGSignPrepare function.

signatureSize
The size of the signature as returned by the SIGSignPrepare function.

fileSpec A pointer to the file system specification structure for the file to which
you want to add a signature.

statusProc
A pointer to a callback routine you may provide to notify the user of the
progress of the signature creation or to perform other background tasks.
Specify NULL for this parameter if you do not wish to provide a callback
routine.

DESCRIPTION

The SIGSignFile function processes a signature for a complete file and places it in the
resource fork of the file as a resource of type 'dsig'. You must call the
SIGSignPrepare function before calling the SIGSignFile function.

Note
The 'dsig' resource is mentioned here for your information only.
Because it may change in the future, you should not attempt to
manipulate this resource directly. Any change could cause
incompatibilities with future versions of the Digital Signature
Manager. ◆

A signature you add to a file using this function is identical to one added by the Finder
when the user drags the icon for the file onto the icon of their signer file. If the file is
already signed, the SIGSignFile function creates a new signature and replaces the old
one.

All resources in the file are also signed, except any resources of type 'nods' (no digital
signature). You can store anything that you don’t want to be signed in this resource, such
as a new window position, and verification will still work.

Because the SIGSignFile function can take a long time to complete, you can provide a
pointer to a callback routine to perform background tasks such as spinning the cursor
and to allow the user to cancel the operation.

To sign additional files for the same signer, you can call the SIGSignFile function
again, without first creating a new context or calling the SIGSignPrepare function.
6-36 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
Call the SIGDisposeContext function when you are finished signing files for that
signer.

Note
You should call the SIGDisposeContext function as soon as possible
after you finish creating signatures so that the Operating System can free
the memory used by the Digital Signature Manager. ◆

IMPORTANT

The SIGSignFile function will not work on a file that is open. ▲

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You call the SIGSignFile function after initiating the signing process with the
SIGSignPrepare function (page 6-31).

Parameter count Routine selector

$0008 $09C5

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad name error
tmfoErr –42 Too many files open
fnfErr –43 File not found
fBsyErr –47 File is busy
opWrErr –49 File already open with write

permission
paramErr –50 Illegal parameter value
wrPermErr –61 File not available
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
userCanceledErr –128 User canceled signing process
addResFailed –194 Adding resource failed
rmvResFailed –196 Removing resource failed
kSIGOperationIncompatibleErr –1970 Context in use for different type of

operation
kSIGInternalsErr –1977 Bad digest, context, or signature
afpAccessDenied –5000 Disk full
Digital Signature Manager Reference 6-37

C H A P T E R 6

Digital Signature Manager
You may provide a callback status routine when you call the SIGSign function; see
“Application-Defined Function” on page 6-54.

You can use the SIGFileIsSigned function (page 6-45) to determine if a file already
contains a standard signature.

As soon as possible after you finish creating signatures, call the SIGDisposeContext
function (page 6-29) to dispose of the context and to allow the Operating System to
remove the Digital Signature Manager from memory.

Verifying a Signature 6

When you use the Digital Signature Manager to verify a signature, it checks the validity
of the certificate set, creates a digest of the data whose signature you wish to verify, and
compares that digest to the digest in the signature.

To verify a signature of some portion of data in a file, first call the SIGNewContext
function (page 6-28), then call the SIGVerifyPrepare function (described next). Next,
call the SIGProcessData function (page 6-30) as many times as necessary to prepare a
digest of the data. When you have finished processing the data, call the SIGVerify
function (page 6-40) to compare the digest you prepared with the one in the signature.

To verify a standard signature in a file (that is, one added by the Finder or by the
SIGSignFile function), first call the SIGNewContext function to create a new context,
then call the SIGVerifyFile function (page 6-41).

When you are finished with the context you used for verifying the signature, call the
SIGDisposeContext function (page 6-29).

This section describes the SIGVerifyPrepare function, the SIGVerify function, and
the SIGVerifyFile function.

SIGVerifyPrepare 6

The SIGVerifyPrepare function notifies the Digital Signature Manager that you have
a signature to be verified and initializes the verification process.

pascal OSErr SIGVerifyPrepare (SIGContextPtr context,

SIGSignaturePtr signature,

Size signatureSize,

SIGStatusProcPtr statusProc);

context A pointer to the context that the Digital Signature Manager will use while
verifying the signature. Call the SIGNewContext function to obtain the
context pointer.

signature A pointer to the full signature that is to be verified.

signatureSize
The size of the signature that is to be verified.
6-38 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
statusProc
A pointer to a callback routine you may provide to notify the user of the
progress of the verification operation or perform other background tasks.
Specify NULL for this parameter if you do not wish to provide a callback
routine.

DESCRIPTION

You must provide the SIGVerifyPrepare function with a pointer to the signature to
be verified and the size of the signature. You may release the memory used by the
signature after the SIGVerifyPrepare function has completed.

Because the SIGVerifyPrepare function verifies each certificate in the certificate set
and reads in the digest, it can take a long time to complete. You can provide a pointer to
a callback routine to perform background tasks such as spinning the cursor and to allow
the user to cancel the operation.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

This function is stack-intensive, requiring approximately 7 KB of memory for its stack.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Before you call the SIGVerifyPrepare function, you must call the SIGNewContext
function (page 6-28) to create a new context.

You may provide a callback status routine when you call the SIGVerifyPrepare
function; see “Application-Defined Function” on page 6-54.

Parameter count Routine selector

$0008 $0770

noErr 0 No error
paramErr –50 Illegal parameter value
memFullErr –108 Not enough room in heap zone
kSIGSignerErr –1975 Problem with the signer file or signature
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGContextPrepareErr –1979 Context already prepared by

SIGVerifyPrepare, SIGSignPrepare,
or SIGDigestPrepare

kSIGNoDigestErr –1980 No digest in the signature
Digital Signature Manager Reference 6-39

C H A P T E R 6

Digital Signature Manager
After you call the SIGVerifyPrepare function, call the SIGProcessData function
(page 6-30) as many times as necessary to process all the data whose signature you wish
to verify.

SIGVerify 6

The SIGVerify function tests the validity of the specified signature. To do so, it
compares the digest in the signature with the digest you prepared by calling the
SIGProcessData function. It also checks the validity of the credentials in the
signature’s certificate set.

pascal OSErr SIGVerify (SIGContextPtr context);

context The context pointer that you passed to the SIGVerifyPrepare function.

DESCRIPTION

Call this function after having called the SIGProcessData function enough times to
finish processing data whose signature is to be verified. Note that you must process the
data in the same sequence that it was processed when the signature was created.

Check the result code from this function to see if the signature verification was successful.

Note
You should call the SIGDisposeContext function as soon as possible
after you finish verifying a signature so that the Operating System can
free the memory used by the Digital Signature Manager. ◆

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0002 $0771

noErr 0 No error
ParamErr –50 Illegal parameter value
kSIGOperationIncompatibleErr –1970 Context in use for different type of

operation
kSIGVerifyFailedErr –1972 Verification failed
kSIGInvalidCredentialErr –1973 Verified OK but credential pending

or expired
kSIGInternalsErr –1977 Bad digest, context, or signature
6-40 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
SEE ALSO

You call the SIGVerify function after calling SIGVerifyPrepare (page 6-38) to
initiate the signing process and SIGProcessData (page 6-30) to process the data.

After a successful verification, you can extract information from the signature; see
“Getting Information From a Signature or Certificate” beginning on page 6-45.

As soon as possible after calling the SIGVerify function, call the
SIGDisposeContext (page 6-29) function to dispose of the context and allow the
Operating System to remove the Digital Signature Manager from memory.

SIGVerifyFile 6

The SIGVerifyFile function verifies a standard signature in a file.

pascal OSErr SIGVerifyFile (SIGContextPtr context,

const FSSpec *fileSpec,

SIGStatusProcPtr statusProc);

context A pointer to the context that the Digital Signature Manager will use while
verifying the signature. Call the SIGNewContext function to obtain the
context pointer.

fileSpec A pointer to the file system specification structure for the file whose
signature you want to verify.

statusProc
A pointer to a callback routine you may provide to notify the user of the
progress of the verification operation or perform other background tasks.
Specify NULL for this parameter if you do not wish to provide a callback
routine.

DESCRIPTION

If a file contains a standard signature, you can use the SIGVerifyFile function to
verify it.

Because the SIGVerifyFile function verifies each certificate in the certificate set and
reads in the digest, it can take a long time to complete. You can provide a pointer to a
callback routine to perform background tasks such as spinning the cursor and to allow
the user to cancel the operation.

Note
You should call the SIGDisposeContext function as soon as possible
after you finish verifying a signature so that the Operating System can
free the memory used by the Digital Signature Manager. ◆
Digital Signature Manager Reference 6-41

C H A P T E R 6

Digital Signature Manager
IMPORTANT

You cannot use the SIGVerifyFile function on a file that is in use by
another application. ▲

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Before you call the SIGVerifyFile function, you must call the SIGNewContext
function (page 6-28) to create a new context.

You may provide a callback status routine when you call the SIGVerifyFile function;
see “Application-Defined Function” on page 6-54.

You can call the SIGFileIsSigned function (page 6-45) to determine if a file contains a
standard signature.

Parameter count Routine selector

$0006 $09C6

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad name error
tmfoErr –42 Too many files open
fnfErr –43 File not found
fBsyErr –47 File is busy
opWrErr –49 File already open with write permission
paramErr –50 Illegal parameter value
permErr –54 Permissions error on file open
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
kSIGSignerErr –1975 Problem with the signer file or

signature
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGContextPrepareErr –1979 Context already prepared by

SIGVerifyPrepare, SIGSignPrepare,
or SIGDigestPrepare

kSIGNoDigestErr –1980 No digest in the signature
kSIGNoSignature –1983 Standard file signature not found
6-42 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
Creating a Digest 6

You can create an unencrypted digest of a document without creating a digital signature.
To create a digest, first call the SIGNewContext function (page 6-28) to create a new
context, then call the SIGDigestPrepare function (described next). Next, call the
SIGProcessData function (page 6-30) as many times as necessary to process all the
data. When you have finished processing the data, call the SIGDigest function
(page 6-44). To create additional digests, you can call the SIGProcessData and
SIGDigest functions again, without first creating a new context or calling the
SIGDigestPrepare function. When you no longer need the context you used for
creating the digests, call the SIGDisposeContext function (page 6-29).

This section describes the SIGDigestPrepare function and the SIGDigest function.

SIGDigestPrepare 6

The SIGDigestPrepare function notifies the Digital Signature Manager that you are
about to create a digest.

pascal OSErr SIGDigestPrepare (SIGContextPtr context);

context A pointer to the context that the Digital Signature Manager will use while
creating the digest. Call the SIGNewContext function to obtain the
context pointer.

DESCRIPTION

The SIGDigestPrepare function notifies the Digital Signature Manager that the
context is to be used to create a digest.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0002 $0772
Digital Signature Manager Reference 6-43

C H A P T E R 6

Digital Signature Manager
RESULT CODES

SEE ALSO

Before you call the SIGDigestPrepare function, you must call the SIGNewContext
function (page 6-28) to create a new context.

After you call the SIGDigestPrepare function, call the SIGProcessData function
(page 6-30) as many times as necessary to process all the data.

SIGDigest 6

The SIGDigest function returns a pointer to a digest of the data most recently
processed by the SIGProcessData function.

pascal OSErr SIGDigest (SIGContextPtr context,

SIGDigestData digest);

context The context pointer that you passed to the SIGDigestPrepare function.

digest A SIGDigestData array that you provide to hold the result of this
function.

DESCRIPTION

You can call the SIGProcessData function and the SIGDigest function as many times
as you wish to prepare digests of data without calling the SIGDigestPrepare function
again or creating a new context.

You must allocate a SIGDigestData structure to hold the digest before calling this
function.

#define kSIGDigestSize 16

typedef Byte SIGDigestData[kSIGDigestSize], *SIGDigestDataPtr;

Note
You should call the SIGDisposeContext function as soon as possible
after you finish making digests so that the Operating System can free the
memory used by the Digital Signature Manager. ◆

noErr 0 No error
paramErr –50 Illegal parameter value
memFullErr –108 Not enough room in heap zone
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGContextPrepareErr –1979 Context already prepared by

SIGVerifyPrepare, SIGSignPrepare,
or SIGDigestPrepare
6-44 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You call the SIGDigest function calling SIGDigestPrepare (page 6-43) to initiate the
digest process and SIGProcessData (page 6-30) to process the data.

As soon as possible after you finish preparing digests, call the SIGDisposeContext
(page 6-29) function to dispose of the context and to allow the Operating System to
remove the Digital Signature Manager from memory.

Getting Information From a Signature or Certificate 6

The first routine in this section, SIGFileIsSigned, indicates whether a file includes a
standard signature. Use the other routines in this section to get information about the
date, size, or contents of a full signature and its components.

SIGFileIsSigned 6

The SIGFileIsSigned function indicates whether a file contains a standard signature.

pascal OSErr SIGFileIsSigned(const FSSpec *fileSpec);

fileSpec A pointer to the file system specification structure for the file that you
want to check for a signature.

DESCRIPTION

A file that has been signed by the finder or by the SIGSignFile function contains a
digital signature in the form of a resource of type 'dsig'. The SIGFileIsSigned
function checks a file for this resource and returns a result code of noErr if it finds one.
If the function finds no such resource, it returns the result code kSIGNoSignature.

Parameter count Routine selector

$0004 $0773

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGOperationIncompatibleErr –1970 Context in use for different type of

operation
kSIGInternalsErr –1977 Bad digest, context, or signature
Digital Signature Manager Reference 6-45

C H A P T E R 6

Digital Signature Manager
Note
The 'dsig' resource is mentioned here for your information only.
Because it may change in the future, you should not attempt to
manipulate this resource directly. Any change could cause
incompatibilities with future versions of the Digital Signature
Manager. ◆

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can call the SIGVerifyFile function (page 6-41) to verify a standard signature in a
file.

You can add a standard signature to a file by calling the SIGSignFile function
(page 6-36).

SIGShowSigner 6

The SIGShowSigner function displays the entire distinguished name of the signer of a
block of data. You can call this function only after successfully verifying a signature.

pascal OSErr SIGShowSigner(SIGContextPtr context,

ConstStr255Param prompt);

context The context pointer you used the last time you called the SIGVerify or
SIGVerifyFile function.

prompt The prompt you want to appear in the dialog box displayed by the
SIGShowSigner function. If you specify a zero-length Pascal string for
this parameter, the function displays a default string.

Parameter count Routine selector

$0002 $09C4

noErr 0 File is signed
kSIGNoSignature –1983 Standard file signature not found
6-46 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
DESCRIPTION

After you call the SIGVerify function and it returns either the noErr or the
kSIGInvalidCredentialErr result code, you can call the SIGShowSigner function
to display a modal dialog box with the full distinguished name of the signer. Figure 6-6
shows an example of this dialog box.

Note
The time displayed is the local time determined by the user’s local
system clock and Map control panel. ◆

Figure 6-6 Show-signer dialog box

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0004 $0775

noErr 0 No error
paramErr –50 Illegal parameter value
memFullErr –108 Not enough room in heap zone
kSIGOperationIncompatibleErr –1970 Context in use for different type of

operation
kSIGSignerErr –1975 Problem with the signer file or

signature
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGConversionErr –1981 Unable to convert to Macintosh

format
Digital Signature Manager Reference 6-47

C H A P T E R 6

Digital Signature Manager
SEE ALSO

You cannot call the SIGShowSigner function until after you have called the
SIGVerify function (page 6-40) or the SIGVerifyFile function (page 6-41).

Distinguished names are defined in Table 6-1 on page 6-9.

SIGGetSignerInfo 6

The SIGGetSignerInfo function returns information about a signer.

pascal OSErr SIGGetSignerInfo (SIGContextPtr context,

SIGSignerInfo *signerInfo);

context The context pointer you used the last time you called the SIGVerify,
SIGVerifyFile, SIGSignPrepare, or SIGSign function.

signerInfo
A pointer to a signer information structure returning information about
the signer. You must allocate this structure.

DESCRIPTION

The SIGGetSignerInfo function returns information about the signer whose context
pointer you provide to the function. You can call the SIGGetSignerInfo function after
you call the SIGSignPrepare function, the SIGSign function, the SIGVerify
function, or the SIGVerifyFile function.

You allocate a signer information structure, and the function fills it in. The signer
information structure tells you the time (and date) that the data was signed, the number
of certificates in the certificate set, and the status of the certificate set. (Note that if you
call the SIGGetSignerInfo function immediately after calling the SIGSignPrepare
function, the time of signing is meaningless because the data has not yet been signed.) If
all the certificates are valid, the structure lists the earliest expiration date for any
certificate in the set. If one or more certificates have expired, the structure lists the
expiration date of the one that expired first. If none of the certificates have expired but
one or more are not yet valid, the structure lists the date at which the last certificate to
become valid will do so.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.
6-48 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can call the SIGGetSignerInfo function after you call the SIGSignPrepare
function (page 6-31), the SIGSign function (page 6-34), the SIGVerify function
(page 6-40), or the SIGVerifyFile function (page 6-41).

The signer information structure is described on page 6-23.

You can call the SIGShowSigner function (page 6-46) to display a modal dialog box
showing the distinguished name of the signer of a verified signature.

You can call SIGGetCertInfo function (described next) to get more information about
any certificate in the certificate set, including that of the signer.

SIGGetCertInfo 6

The SIGGetCertInfo function returns information about a specific certificate in a
certificate set.

pascal OSErr SIGGetCertInfo (SIGContextPtr context,

unsigned long certIndex,

SIGCertInfo *certInfo);

context The context pointer you used the last time you called the SIGVerify,
SIGVerifyFile, SIGSignPrepare, or SIGSign function.

certIndex The index number of the certificate about which you want information.
The certificates are always in order: the signer’s certicate has index
number 0, the issuer of the signer’s certificate has index number 1, and so
forth. You can use the SIGGetSignerInfo function to determine the
total number of certificates in the certificate set.

certInfo A pointer to a certificate information structure returning information
about the certificate. You must allocate this structure.

Parameter count Routine selector

$0004 $0776

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGCertificateQueryDenied –1971 Can’t query certificates with this

context
kSIGSignerErr –1975 Problem with the signer file or

signature
kSIGInternalsErr –1977 Bad digest, context, or signature
Digital Signature Manager Reference 6-49

C H A P T E R 6

Digital Signature Manager
DESCRIPTION

The SIGGetCertInfo function returns information about one certificate in the
certificate set of the signer whose context pointer you provide to the function. You
allocate a certificate information structure and specify the index number of the certificate
about which you want information, and the function fills in the structure. The certificate
information structure tells you the beginning and ending dates for the validity period of
the certificate, the status of the certificate (pending, expired, or valid), the number of
attributes in the distinguished name of the signer of the certificate, the number of
attributes in the distinguished name of the issuer of the certificate, and the serial number
of the certificate.

The serial number and issuer name together uniquely identify a certificate. This
information may be of use to a user who needs to contact the issuing organization (for
example, to ensure a certificate has not been revoked).

The certificate of the signer of the data always has index number 0. You can use the
following constant for this number:

#define kSIGSignerCertIndex 0

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can call the SIGGetCertInfo function after you call the SIGSignPrepare
function (page 6-31), the SIGSign function (page 6-34), the SIGVerify function
(page 6-40), or the SIGVerifyFile function (page 6-41).

Call the SIGGetSignerInfo function (page 6-48) to determine the total number of
certificates in the certificate set.

The certificate information structure is described on page 6-25.

Parameter count Routine selector

$0006 $0777

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGCertificateQueryDenied –1971 Can’t query certificates with this

context
kSIGIndexErr –1974 Index value is outside allowable

range
kSIGInternalsErr –1977 Bad digest, context, or signature
6-50 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
You can use the SIGGetCertNameAttributes function (described next) to obtain the
contents of each attribute in the distinguished name of the signer of the certificate.

You can use the SIGGetCertIssuerNameAttributes function (page 6-52) to obtain
the contents of each attribute in the distinguished name of the issuer of the certificate.

The attributes that compose a distinguished name are shown in Table 6-1 on page 6-9.

SIGGetCertNameAttributes 6

The SIGGetCertNameAttributes function returns information about a specific
attribute of a distinguished name in a specific certificate of a signature.

pascal OSErr SIGGetCertNameAttributes (SIGContextPtr context,

unsigned long certIndex,

unsigned long attributeIndex,

SIGNameAttributesInfo *attributeInfo);

context The context pointer you used the last time you called the SIGVerify,
SIGVerifyFile, SIGSignPrepare, or SIGSign function.

certIndex The index number of the certificate about which you want information.
The certificates are always in order: the signer’s certicate has index
number 0, the issuer of the signer’s certificate has index number 1, and so
forth. You can use the SIGGetSignerInfo function to determine the
total number of certificates in the certificate set.

attributeIndex
The index number of the name attribute about which you want
information. The SIGGetCertInfo function returns the total number of
attributes in a certificate.

attributeInfo
A pointer to a SIGNameAttributesInfo structure.

DESCRIPTION

After you use the SIGGetCertInfo function to determine the total number of
attributes in the distinguished name of a certificate, you can use the
SIGGetCertNameAttributes function to obtain the attribute strings.

The SIGNameAttributesInfo structure returns information about the hierarchical
level of the attribute, the type of name attribute, and the script code of the attribute, as
well as returning the attribute string. You can use the hierarchy information to arrange
the distinguished name for display to the user.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.
Digital Signature Manager Reference 6-51

C H A P T E R 6

Digital Signature Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can call the SIGGetNameAttributes function after you call the
SIGSignPrepare function (page 6-31), the SIGSign function (page 6-34), the
SIGVerify function (page 6-40), or the SIGVerifyFile function (page 6-41).

Call the SIGGetCertInfo function (page 6-49) to determine the total number of
attributes in the distinguished name. You can use the SIGGetSignerInfo function
(page 6-48) to determine the total number of certificates in the certificate set.

The SIGNameAttributesInfo structure is described on page 6-26.

You can use the SIGGetCertIssuerNameAttributes function (described next) to
obtain the contents of each attribute in the distinguished name of the issuer of the
certificate.

Distinguished names and name hierarchies are described in detail in “About Public-Key
Certificates” beginning on page 6-8.

SIGGetCertIssuerNameAttributes 6

The SIGGetCertIssuerNameAttributes function returns information about a
specific attribute of the distinguished name of the issuer of a specific certificate of a
signature.

pascal OSErr SIGGetCertIssuerNameAttributes

(SIGContextPtr context,

unsigned long certIndex,

unsigned long attributeIndex,

SIGNameAttributesInfo *attributeInfo);

Parameter count Routine selector

$0008 $0778

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGCertificateQueryDenied –1971 Can’t query certificates with this

context
kSIGIndexErr –1974 Index value is outside allowable

range
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGConversionErr –1981 Unable to convert an attribute to

Macintosh format
6-52 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
context The context pointer you used the last time you called the SIGVerify,
SIGVerifyFile, SIGSignPrepare, or SIGSign function.

certIndex The index number of the certificate about for whose issuer you want
information. The certificates are always in order: the signer’s certicate has
index number 0, the issuer of the signer’s certificate has index number 1,
and so forth. You can use the SIGGetSignerInfo function to determine
the total number of certificates in the certificate set.

attributeIndex
The index number of the name attribute about which you want
information. The SIGGetCertInfo function returns the total number of
attributes in the issuer of a certificate.

attributeInfo
A pointer to a SIGNameAttributesInfo structure.

DESCRIPTION

After you use the SIGGetCertInfo function to determine the total number of
attributes in the distinguished name of the issuer of a certificate, you can use the
SIGGetCertIssuerNameAttributes function to obtain the attribute strings.

The SIGNameAttributesInfo structure returns information about the hierarchical
level of the attribute, the type of name attribute, and the script code of the attribute, as
well as returning the attribute string. You can use the hierarchy information to arrange
the distinguished name for display to the user.

This function is useful if you want information about the issuer of a certificate. If you are
using the SIGCertInfo and SIGCertNameAttributes functions to obtain
information about all the certificates in a certificate set, then you must use the
SIGGetCertIssuerNameAttributes function to determine the prime issuer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0008 $0779
Digital Signature Manager Reference 6-53

C H A P T E R 6

Digital Signature Manager
RESULT CODES

SEE ALSO

You can call the SIGGetNameAttributes function after you call the
SIGSignPrepare function (page 6-31), the SIGSign function (page 6-34), the
SIGVerify function (page 6-40), or the SIGVerifyFile function (page 6-41).

Call the SIGGetCertInfo function (page 6-49) to determine the total number of
attributes in the distinguished name. You can use the SIGGetSignerInfo function
(page 6-48) to determine the total number of certificates in the certificate set.

The SIGNameAttributesInfo structure is described on page 6-26.

You can use the SIGGetCertNameAttributes function (page 6-51) to obtain the
contents of each attribute in the distinguished name of the signer of the certificate.

Distinguished names and name hierarchies are described in detail in “About Public-Key
Certificates” beginning on page 6-8.

Application-Defined Function 6
The SIGSign, SIGSignFile, SIGVerifyPrepare, and SIGVerifyFile functions all
take a statusProc parameter, which is a pointer to a callback routine. You may provide
this routine to notify the user of the progress of the signing or verification process. Your
routine may perform typical “busy-notification” actions, such as spinning the cursor, or
it may offer the user the opportunity to cancel the operation.

MyStatusCallBack 6

Your status callback function can perform background tasks during the signing and
verification processes.

pascal Boolean MyStatusCallBack (void);

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGCertificateQueryDenied –1971 Can’t query certificates with this

context
kSIGIndexErr –1974 Index value is outside allowable

range
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGConversionErr –1981 Unable to convert an attribute to

Macintosh format
6-54 Digital Signature Manager Reference

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
DESCRIPTION

To provide a status callback function, pass a pointer (of type SIGStatusProcPtr) to
your function in the statusProc parameter of the SIGSign, SIGSignFile,
SIGVerifyPrepare, and SIGVerifyFile functions. If you return false as your
function result, the Digital Signature Manager halts the signing or verifying operation.

This interface is available because the signing and verifying operations can take a
relatively long time to complete. Your status callback function should provide some sort
of feedback to the user, such as a spinning cursor or a dialog box, that indicates that the
process is proceeding. This function should poll for Command-period keystrokes and
return false if it detects one. Your status callback function can also perform any other
background tasks you wish.

In addition to this routine, you may wish to have other progress-notification routines
that are not callback routines. For example, you may wish to have a routine that keeps
the user posted of progress between calls to SIGProcessData.

Note
It is impossible to determine ahead of time how many times your
callback routine will be executed. ◆

SPECIAL CONSIDERATIONS

If you return false to halt the signing or verifying operation, the state of the context is
undefined.

On entry, this routine restores the A5 register to the value it had when the routine was
first called.

SEE ALSO

The SIGSign function is described on page 6-34.

The SIGSignFile function is described on page 6-36.

The SIGVerifyPrepare function is described on page 6-38.

The SIGVerifyFile function is described on page 6-41.

The SIGProcessData function is described on page 6-30.
Digital Signature Manager Reference 6-55

C H A P T E R 6

Digital Signature Manager
Summary of the Digital Signature Manager 6

C Summary 6

Constants and Data Types 6

#define kSIGDigestSize 16

#define kSIGSignerCertIndex 0

#define kSIGSignatureIconResID –16797

#define kSIGValidSignatureIconResID –16799

#define kSIGInvalidSignatureIconResID –16798

/* Name attribute types returned from SIGGetCertNameAttributes or

SIGGetCertIssuerNameAttributes */

typedef enum

{

kSIGCountryCode,

kSIGOrganization,

kSIGStreetAddress,

kSIGState,

kSIGLocality,

kSIGCommonName,

kSIGTitle,

kSIGOrganizationUnit,

kSIGPostalCode

} ;

typedef unsigned short SIGNameAttributeType;

/* Signature status codes returned in SIGCertInfo or SIGSignerInfo */

typedef enum {

kSIGValid, /* all valid */

kSIGPending, /* none expired; some pending or unknown */

kSIGExpired, /* some expired, unknown, or pending */
6-56 Summary of the Digital Signature Manager

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
kSIGInvalid /* some invalid, pending, expired, or unknown */

};

typedef unsigned short SIGCertStatus;

typedef unsigned short SIGSignatureStatus;

#define gestaltDigitalSignatureVersion 'dsig'

typedef Byte SIGDigestData[kSIGDigestSize], *SIGDigestDataPtr;

struct SIGSignerInfo

{

unsigned long signingTime; /* time of signing */

unsigned long certCount; /* number of certs in cert set */

unsigned long certSetStatusTime;/* expiration time */

SIGSignatureStatus signatureStatus; /* certificate status */

};

typedef struct SIGSignerInfo SIGSignerInfo;

typedef SIGSignerInfo *SIGSignerInfoPtr;

struct SIGCertInfo

{

unsigned long startDate; /* cert start validity date */

unsigned long endDate; /* cert end validity date */

SIGCertStatus certStatus; /* certificate status*/

unsigned long certAttributeCount; /* number of name attributes in cert*/

unsigned long issuerAttributeCount;/* number of name attributes in

 cert’s issuer */

Str255 serialNumber; /* cert serial number */

};

typedef struct SIGCertInfo SIGCertInfo;

typedef SIGCertInfo *SIGCertInfoPtr;

typedef Ptr SIGContextPtr;

typedef Ptr SIGSignaturePtr;

struct SIGNameAttributesInfo

{

Boolean onNewLevel;

SIGNameAttributeType attributeType;

ScriptCode attributeScript;

Str255 attribute;

};
Summary of the Digital Signature Manager 6-57

C H A P T E R 6

Digital Signature Manager
typedef struct SIGNameAttributesInfo SIGNameAttributesInfo;

typedef SIGNameAttributesInfo *SIGNameAttributesInfoPtr;

Digital Signature Manager Functions 6

Creating and Disposing of a Context

pascal OSErr SIGNewContext (SIGContextPtr *context);

pascal OSErr SIGDisposeContext
(SIGContextPtr context));

Processing Data to Generate a Digest

pascal OSErr SIGProcessData
(SIGContextPtr context,
const void *data,
Size dataSize);

Creating a Signature

pascal OSErr SIGSignPrepare
(SIGContextPtr context,
const FSSpec *signerFile,
ConstStr255Param prompt,
Size *signatureSize);

pascal OSErr SIGSign (SIGContextPtr context,
SIGSignaturePtr signature,
SIGStatusProcPtr statusProc);

pascal OSErr SIGSignFile (SIGContextPtr context,
Size signatureSize,
const FSSpec *fileSpec,
SIGStatusProcPtr statusProc)

Verifying a Signature

pascal OSErr SIGVerifyPrepare
(SIGContextPtr context,
SIGSignaturePtr signature,
Size signatureSize,
SIGStatusProcPtr statusProc);

pascal OSErr SIGVerify (SIGContextPtr context);
6-58 Summary of the Digital Signature Manager

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
pascal OSErr SIGVerifyFile (SIGContextPtr context,
const FSSpec *fileSpec,
SIGStatusProcPtr statusProc)

Creating a Digest

pascal OSErr SIGDigestPrepare
(SIGContextPtr context);

pascal OSErr SIGDigest (SIGContextPtr context,
SIGDigestData digest);

Getting Information From a Signature or Certificate

pascal OSErr SIGFileIsSigned
(const FSSpec *fileSpec);

pascal OSErr SIGShowSigner (SIGContextPtr context,
ConstStr255Param prompt);

pascal OSErr SIGGetSignerInfo
(SIGContextPtr context,
SIGSignerInfo *signerInfo);

pascal OSErr SIGGetCertInfo (SIGContextPtr context,
unsigned long certIndex,
SIGCertInfo *certInfo);

pascal OSErr SIGGetCertNameAttributes
(SIGContextPtr context,
unsigned long certIndex,
unsigned long attributeIndex,
SIGNameAttributesInfo *attributeInfo);

pascal OSErr SIGGetCertIssuerNameAttributes
(SIGContextPtr context,
unsigned long certIndex,
unsigned long attributeIndex,
SIGNameAttributesInfo *attributeInfo);

Application-Defined Function

pascal Boolean MyStatusCallBack
(void);
Summary of the Digital Signature Manager 6-59

C H A P T E R 6

Digital Signature Manager
Pascal Summary 6

Constants and Data Types 6

CONST

{ Number of bytes needed for a digest record when using SIGDigest }

kSIGDigestSize = 16;

kSIGSignerCertIndex = 0;

kSIGSignatureIconResID = –16197

kSIGValidSignatureIconResID = –16799

kSIGInvalidSignatureIconResID = –16798

{ values of SIGNameAttributeType }

kSIGCountryCode = 0;

kSIGOrganization = 1;

kSIGStreetAddress = 2;

kSIGState = 3;

kSIGLocality = 4;

kSIGCommonName = 5;

kSIGTitle = 6;

kSIGOrganizationUnit = 7;

kSIGPostalCode = 8;

{ values for SIGCertStatus or SIGSignatureStatus }

kSIGValid = 0; { possible for either a SIGCertStatus or

SIGSignatureStatus }

kSIGPending = 1; { possible for either a SIGCertStatus or

 SIGSignatureStatus }

kSIGExpired = 2; { possible for either a SIGCertStatus or

 SIGSignatureStatus }

kSIGInvalid = 3; { possible only for a SIGSignatureStatus }

{ Gestalt selector code - returns toolbox version in low-order word }

gestaltDigitalSignatureVersion = 'dsig';
6-60 Summary of the Digital Signature Manager

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
TYPE

SIGNameAttributeType = INTEGER;

SIGCertStatus = INTEGER;

SIGSignatureStatus = INTEGER;

SIGDigestData = PACKED ARRAY[1..kSIGDigestSize] OF Byte;

SIGDigestDataPtr = ^SIGDigestData;

SIGSignerInfo = RECORD

signingTime: LONGINT; { time of signing }

certCount: LONGINT; { number of certificates in cert set }

certSetStatusTime:LONGINT; { expiration time }

signatureStatus: SIGSignatureStatus;{ status of the certificate }

END;

SIGSignerInfoPtr = ^SIGSignerInfo;

SIGCertInfo = RECORD

startDate: LONGINT; { cert start validity date }

endDate: LONGINT; { cert end validity date }

certStatus: SIGCertStatus; { signature status}

certAttributeCount: LONGINT; { number of name attributes in this cert }

issuerAttributeCount: LONGINT;{ # of name attributes in certs issuer }

serialNumber: Str255; { cert serial number }

END;

SIGCertInfoPtr = ^SIGCertInfo;

SIGContextPtr = Ptr;

SIGSignaturePtr = Ptr;

SIGStatusProcPtr = ProcPtr; { FUNCTION SIGStatusProcPtr(): BOOLEAN;}

SIGNameAttributesInfo = RECORD

onNewLevel: BOOLEAN;

attributeType: SIGNameAttributeType;

attributeScript: ScriptCode;

attribute: Str255;

END;

SIGNameAttributesInfoPtr = ^SIGNameAttributesInfo;
Summary of the Digital Signature Manager 6-61

C H A P T E R 6

Digital Signature Manager
Digital Signature Manager Functions 6

Creating and Disposing of a Context
FUNCTION SIGNewContext (VAR context: SIGContextPtr): OSErr;

FUNCTION SIGDisposeContext (context: SIGContextPtr): OSErr;

Processing Data to Generate a Digest

FUNCTION SIGProcessData (context: SIGContextPtr; data: UNIV Ptr;
dataSize: Size): OSErr;

Creating a Signature
FUNCTION SIGSignPrepare (context: SIGContextPtr; signerFile: FSSpecPtr;

prompt: StringPtr; VAR signatureSize: Size):
OSErr;

FUNCTION SIGSign (context: SIGContextPtr; signature:
SIGSignaturePtr;statusProc: SIGStatusProcPtr):
OSErr;

FUNCTION SIGSignFile (context: SIGContextPtr; signatureSize: Size;
fileSpec: FSSpec;statusProc:
SIGStatusProcPtr): OSErr;

Verifying a Signature
FUNCTION SIGVerifyPrepare (context: SIGContextPtr; signature:

SIGSignaturePtr; signatureSize: Size;
statusProc: SIGStatusProcPtr): OSErr;

FUNCTION SIGVerify (context: SIGContextPtr): OSErr;

FUNCTION SIGVerifyFile (context: SIGContextPtr; fileSpec: FSSpec;
statusProc: SIGStatusProcPtr): OSErr;

Creating a Digest

FUNCTION SIGDigestPrepare (context: SIGContextPtr): OSErr;

FUNCTION SIGDigest (context: SIGContextPtr; digest:
SIGDigestData): OSErr;

Getting Information From a Signature or Certificate

FUNCTION SIGFileIsSigned (fileSpec: FSSpec): OSErr;

FUNCTION SIGShowSigner (context: SIGContextPtr; prompt: StringPtr):
OSErr;

FUNCTION SIGGetSignerInfo (context: SIGContextPtr;
VAR signerInfo: SIGSignerInfo): OSErr;
6-62 Summary of the Digital Signature Manager

C H A P T E R 6

Digital Signature Manager

6
D

igital S
ignature M

anager
FUNCTION SIGGetCertInfo (context: SIGContextPtr; certIndex: LONGINT;
VAR certInfo: SIGCertInfo): OSErr;

FUNCTION SIGGetCertNameAttributes
(context: SIGContextPtr; certIndex: LONGINT;
attributeIndex: LONGINT; VAR attributeInfo:
SIGNameAttributesInfo): OSErr;

FUNCTION SIGGetCertIssuerNameAttributes
(context: SIGContextPtr; certIndex: LONGINT;
attributeIndex: LONGINT; VAR attributeInfo:
SIGNameAttributesInfo): OSErr;

Application-Defined Function

FUNCTION MyStatusCallBack (): BOOLEAN;

Assembly-Language Summary 6

Trap Macros Requiring Routine Selectors

$AA5D

Selector Count Routine

$076C 2 SIGNewContext

$076D 2 SIGDisposeContext

$076E 8 SIGSignPrepare

$076F 6 SIGSign

$0770 8 SIGVerifyPrepare

$0771 2 SIGVerify

$0772 2 SIGDigestPrepare

$0773 4 SigDigest

$0774 6 SIGProcessData

$0775 4 SIGShowSigner

$0776 4 SIGGetSignerInfo

$0777 6 SIGGetCertInfo

$0778 8 SIGGetCertNameAttributes

$0779 8 SIGGetCertIssuerNameAttributes

$09C4 2 SIGFileIsSigned

$09C5 8 SIGSignFile

$09C6 6 SIGVerifyFile
Summary of the Digital Signature Manager 6-63

C H A P T E R 6

Digital Signature Manager
Result Codes 6
In addition to standard Macintosh Operating System errors such as memFullErr and
paramErr, the Digital Signature Manager returns the result codes listed in this section.

Result codes in the range of –1970 to –1999 are reserved for the Digital Signature
Manager.

kSIGOperationIncompatibleErr –1970 Context in use for different type of operation
kSIGCertificateQueryDenied –1971 Can’t query certificates with this context
kSIGVerifyFailedErr –1972 Verification failed
kSIGInvalidCredentialErr –1973 Verified OK but credential either pending or

expired
kSIGIndexErr –1974 Index given is outside the range of allowable

values
kSIGSignerErr –1975 Problem with the signer file or signature
kSIGPasswordErr –1976 Password is incorrect
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGToolboxNotPresentErr –1978 For servers; not returned by the toolbox
kSIGContextPrepareErr –1979 Context either corrupted or already prepared

with SIGVerifyPrepare, SIGSignPrepare,
or SIGDigestPrepare

kSIGNoDigestErr –1980 No digest in the signature
kSIGConversionErr –1981 Unable to convert an attribute to Macintosh

format
kSIGSignerNotValidErr –1982 Signer file has either expired or is not yet valid
kSIGNoSignature –1983 Standard file signature not found
6-64 Summary of the Digital Signature Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	 AOCE Utilities
	 Standard Mail Package TOC
	 Standard Mail Package
	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	Digital Signature Manager
	About Digital Signatures
	Cryptography and Digital Signatures
	Components of a Full Signature
	The Digital Signature
	The Certificate Set

	Creating and Verifying Signatures

	About Public-Key Certificates
	Using the Digital Signature Manager
	Determining the Version Number of the Digital Sign...
	Using a Context
	Creating a Full Signature
	Verifying a Full Signature
	Creating a Simple (Unencrypted) Digest
	Getting Information From a Signature or Certificat...
	Dealing With Standard Signatures in Files

	Digital Signature Manager Reference
	Constants and Data Types
	Signer Information Structure
	Certificate Information Structure
	Standard Signature Icon Suite
	Name Attribute Information Structure

	Digital Signature Manager Functions
	Assembly-Language Interface
	Creating and Disposing of a Context
	Processing Data to Generate a Digest
	Creating a Signature
	Verifying a Signature
	Creating a Digest
	Getting Information From a Signature or Certificat...

	Application-Defined Function

	Summary of the Digital Signature Manager
	C Summary
	Constants and Data Types
	Digital Signature Manager Functions

	Pascal Summary
	Constants and Data Types
	Digital Signature Manager Functions

	Assembly-Language Summary
	Result Codes

	 Interprogram Messaging Manager TOC
	 Interprogram Messaging Manager
	 Catalog Manager TOC
	 Catalog Manager, Part 1 (Introduction, About, and Using)
	 Catalog Manager, Part 2 (Reference)
	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	 Authentication Manager
	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

