CHAPTER 3

Standard Mail Package

This chapter describes the AOCE Standard Mail Package. The AOCE Standard Mail
Package provides a high-level interface that makes it easy for you to add electronic-mail
capabilities to your applications.

The Standard Mail Package provides two separate services:

= an easy way to send a letter or a file from within your application without user
intervention

» a complete user interface that you can use to convert any of your application’s
documents into electronic mail

In addition, you can use the Standard Catalog Package to provide a user interface for
browsing AOCE catalogs and selecting records from within your application.

If you want to design and implement your own electronic messaging service using the
AOCE toolbox, see the chapter “Interprogram Messaging Manager” in this book.

About the Standard Mail Package

The AOCE Standard Mail Package provides a high-level interface to the AOCE
Interprogram Messaging (IPM) Manager. It works together with the Catalog Browser
and the Digital Signature Manager to present a consistent and easy-to-use user interface
for addressing letters, signing letters, and sending your application’s documents as
electronic mail.

The Standard Mail Package can be divided into two main parts: the send-letter functions
and the mailer functions. The Standard Mail Package relies on other components of the
Apple Open Collaboration Environment, but you do not have to call the underlying
AOCE services directly to add electronic-mail capabilities to your application.

The Send-Letter Functions

The Standard Mail Package provides a basic, very easily implemented method of
sending documents and other files that can be used either by users of applications or by
applications acting without user intervention (agents). You can use the Standard Mail
Package functions (described in “Send-Letter Functions” on page 3-37) to enclose a file
with an AppleMail letter and then send the letter, to send a document as an image file, or
to send a file so that it appears in the recipient’s In Tray not as a letter but as the original
file.

The send-letter functions provide no interface for opening a letter from within your
application. When the user double-clicks a document in the In Tray, the Finder attempts
to launch the application that was used to send the letter, and that application opens the
document. If that application is not present, the Finder displays a dialog box asking the
user whether it should open the letter with the AppleMail application provided with the
AOCE software.

About the Standard Mail Package 3-3

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

The Mailer Functions

The Standard Mail Package also provides a more sophisticated electronic-mail interface.
This interface adds a new region—known as a mailer —to any window.

“Providing Mailers in Your Windows” on page 3-45 describes functions to create a new
mailer, reposition a mailer in your window, control the way the user cycles through
fields in the mailer and your document using the Tab key, and dispose of a mailer.

You can use the functions described in “Handling Events in Mailers” beginning on

page 3-63 to handle events and Apple events that pertain to mailers and to make sure
that your menu commands accurately reflect the state of the mailer while a user is
working in it.

You use the functions described in “Sending and Saving Mail” beginning on page 3-72 to
send, save, or read a document containing a mailer. Use the routines in “Printing

Mailers” beginning on page 3-107 when you want to print a document containing a
mailer.

You can use the functions described in “Getting and Setting Information in the Mailer”
beginning on page 3-110 to read and set values in mailer fields and send options from
within your program instead of through the mailer or the standard dialog boxes
provided by the mailer.

You use the SMPQpenLet t er function, described in “Reading Mail” beginning on
page 3-93, to open a letter to read its contents.

Mailers

The mailer lets the sender enter addresses and subject information, enclose other files
and folders in the letter, and add a digital signature to the letter. It lets the recipient read
all of this information and verify the digital signature. Figure 3-1 shows a mailer in an
application window. Each time the user forwards a letter, another mailer holding
addresses for the forwarder and the new recipients is added to the letter. The mailers for
a forwarded letter are collectively referred to as a mailer set.

About the Standard Mail Package

CHAPTER 3

Standard Mail Package

Figure 3-1 Mailer in an application window
S[I=——————— Sample Letter
= From Subject
| #lan Spragens | FPazzal Surnmaries
Recipients
= Paul Black To|{¢|
Enclosures
ik
= =

Hi Paul. Thanks for mailing me the Pascal interface files. I'll use them to make the
Pascal Summaries at the end of my chapters. Lemme see, what do you call a function
prototype in Paseal again? Duh, Haw quickly I farget—rmy mind is like a sieve{

i 2

wE

o] E2

The preferred user interface for an AOCE Standard Mail Package letter is to place the
mailer inside your document’s windows, just below the title bar. However, if your
application’s windows are not suitable for displaying mailers, you can place the mailer
in its own, separate window. The user can display the mailer in either of two states:
contracted or expanded. Figure 3-2 shows a sample mailer in the contracted state and
Figure 3-3 shows the same mailer in the expanded state.

(2}
—
QD
>
[oR
2
o
<
=h
e
QD
o
P
QD
«Q
[¢)

Figure 3-2 Mailer in the contracted state
|§DE Sample Letter
| [= From &lan Spragens Subject FPascal Summmaries
Figure 3-3 Mailer in the expanded state
El——————— Sample Letter EEEI
= From Subject
| Alan Spragens | Pazcal Summaries
Recipients
A Faul Elack Taf4#
Enclosures
ik
= &

About the Standard Mail Package 3-5

CHAPTER 3

Standard Mail Package

The user can drag an address from the Finder or another mailer into the Recipients field
or can open an addressing panel, as shown in Figure 3-4. The user can select among four
versions of the addressing panel by clicking one of the icons at the left side of the panel.
These versions of the addressing panel allow the user to select an address from the
default personal catalog or from any AOCE catalog, to find a record by typing in all or
part of the name of the record, or to type in the entire address. These four versions of the
panel are shown in Figure 3-5.

Figure 3-4 Mailer with addressing panel open
SI=——— Sample Lletter ="a00——"——————191-
= From Type-In Addressing
| #lan Spragens |]
Address
Recipients
B Paul Black Tafd#
Catalog [Internet |
| prmm—
[To |
Figure 3-5 The four versions of the addressing panel
Catalog Browser Personal Catalog
:
m Paul Elack ﬁ
APD &
AP
APG Adrmin
Apple Tech. University 6
Cee)
Find Address Type-In Addressing
Find :h-»- fizher Address
Searchl Apple "I
ks
—| Catalog Internet x
- | |
Cee)) o)

About the Standard Mail Package

CHAPTER 3

Standard Mail Package

Letter Formats

When you use a mailer to send a document as a letter, you can send the document in a
“native” format (that is, any one of the document formats supported by your
application), you can send an image of your document, you can send the content of your
document in a special format called standard interchange format, or you can send the
document in any two or all three of these formats simultaneously.

You may choose to employ the AOCE Standard Mail Package at either of two levels: full
mailer support or basic mailer support. An application that offers full mailer support can
read and write both standard interchange format and images. An application that offers
basic mailer support can send either images or standard interchange format or both.
Either type of application might also send documents in one of the application’s native
formats.

When you send your document, the Standard Mail Package delivers it to the addressees’
In Trays. When a recipient double-clicks a document in the In Tray, the application used
to send the document (if present) opens it, and the mailer appears at the top of the
window. If the file includes an image of the document or a standard interchange format
version of its content, any application that offers full mailer support can open it.

Each user who has AOCE software has the AppleMail application, which provides full
mailer support. Thus, every user who has AOCE software can read, either as an image or
in standard interchange format, every document sent by an application that provides
either full or basic mailer support. In addition, if your application can send and read
documents sent in its own native formats, users who have your application have access
to the complete document when they receive it.

A letter consists of a header that contains addressing and priority information, followed
by blocks of data, followed by enclosures. Certain types of data blocks have standard
definitions, such as the image block and standard interchange format blocks. The image
block contains an image of the document being sent; you must provide an
image-drawing routine (page 3-123) to draw each page. The SMP| mage function

(page 3-88) creates the image block and adds it to the letter. Standard interchange format
blocks contain a version of your document that can include text, styled text, sounds,
pictures, and QuickTime movies. Standard interchange format can be converted by
access modules and read by any standard letter application (such as the AppleMail
application provided with the AOCE software). You can define other blocks in any way
you wish. You use the SMPAddBI ock function (page 3-91) to add blocks to a letter.

You can send your own document in one of its native formats as an enclosure to the
letter, known as a main enclosure (also referred to as a content enclosure), or incorporate
it into data blocks, as you wish. The Standard Mail Package user interface also allows the
user to enclose other files. (The main enclosure is not visible to the user as an enclosure.)

About the Standard Mail Package 3-7

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Note

If you are using the IPM Manager or the MSAM API to send letters to
the Standard Mail Package, you should avoid sending any nested letters
that contain standard content. If the Standard Mail Package receives a
letter that contains a nested letter, it ignores any content (standard
interchange format or image format) within the nested letter. It displays
the header and nesting information of the nested letter as a forwarded
mailer. O

The Standard Catalog Package

The Standard Catalog Package provides authentication and letter-addressing services
that complement the routines described in this chapter. See the chapter “Standard
Catalog Package” in this book for more information.

Using the Standard Mail Package

This section describes how to initialize the Standard Mail Package and use it to create a
mailer, send mail, receive mail, forward and reply to mail, close a letter, and handle
events in the mailer.

Initializing the Standard Mail Package

Before you can enable Standard Mail Package features in your application, you must use
the Gestalt Manager to ensure that the system on which your application is running
supports the Standard Mail Package.

To determine the version of the Standard Mail Package mailer functions, call the

Gest al t function with the selector gest al t SMPMai | er Ver si on. The function returns
the version number of the mailers in the low-order word of the r esponse parameter.
For example, a value of 0x0101 indicates version 1.0.1. If the Standard Mail Package is
not present and available, the Gest al t function returns 0 for the version number.
Similarly, to determine the version of the send-letter functions, use the selector

gest al t SMPSendLet t er Ver si on.

Listing 3-1 shows a function that returns t r ue only if the Standard Mail Package is
installed and available.

Listing 3-1 Testing for the presence of Standard Mail Package services

3-8

Bool ean MyTest For St andar dMai | (voi d)

{
CSErr err;

| ong response;

Using the Standard Mail Package

CHAPTER 3

Standard Mail Package

err = Cestalt(gestaltSMPMil erVersion, & esponse);
if ((err!=noErr) || (response==0))
return false;

return true;

}

If the Standard Mail Package is not available, you should disable those features of your
application while allowing the user to use its other features normally.

After determining that the Standard Mail Package is available, you must initialize it
using the SMPI ni t Mai | er function, passing in the version number of the package
current for the services incorporated into your application. If, at run time, the current
version of the Standard Mail Package is later than the one with which you compiled
your application, the package initializes in compatibility mode, supporting the older
version’s functions. If, conversely, the run-time version is earlier, SMPI ni t Mai | er
returns an error. The code in Listing 3-2 calls the initialization function.

Listing 3-2 Initializing the Standard Mail Package

OSErr Myl nit St andar dMai | (voi d)

{
OSErr err;
Set Cur sor (&gWat chCur sor) ;
err = SMVPInitMailer(kSMPVersion);
Set Cur sor (&qd. arr ow) ;
return err;
}

Creating a Mailer

The Standard Mail Package enables any application to add support for mailing
documents directly to other users on the network without going through intermediate
mail applications. It provides standard user interface elements needed to address, send,
and receive documents through the mailer, which appears as a special pane in the
window of the document to be sent. This section describes how to add a mailer to a
window.

Listing 3-3 uses the SMPGet Di nensi ons (page 3-48) function to find the dimensions of
the standard mailer window, and it creates a document window just large enough to
accommodate the mailer. More typically, you would size your application windows
according to the requirements of your application and use SMPCGet Di nensi ons to place
the mailer and perform actions such as adjusting the content area of your window. The
function then creates the mailer by calling the SMPNewMhi | er function (page 3-46), and
it makes the mailer the initial target of user actions with the SMPBeconeTar get

Using the Standard Mail Package 3-9

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

function (page 3-54), specifying the target field within the mailer as kSMPQt her (that is,
a field other than the Recipients, From, or other enumerated field as described on

page 3-32). The application-defined MyEr r or Al ert function in the listings throughout
this section reports errors to the user in a standard manner.

3-10

Listing 3-3 Creating a mailer
voi d
MyBui | dMai | er W ndow(voi d)
{
Rect boundsRect ;
Poi nt mai | er Cor ner;
short mai | er W dt h;
short nmai | er Contr act edHei ght ;
short mai | er ExpandedHei ght ;

boundsRect = qd. screenBits. bounds;
boundsRect.top += ((GetMBarHeight() + 1) * 2);
I nset Rect (&boundsRect, 4, 4);
gSt at us = SMPGet Di nensi ons(
&mai | er W dt h,
&mai | er Cont r act edHei ght
&nmuai | er ExpandedHei ght
)
if (gStatus != noErr)
MyError Al ert(gStatus, "\pSMPGet D nensi ons");
el se {
boundsRect . right = boundsRect.left + mmil er Wdth;
boundsRect . bott om = boundsRect.top + mail er ExpandedHei ght ;

}
gMai | er W ndow = NewW ndow(
NULL, /* no w ndow storage */
&boundsRect , /* wi ndow shape */
"\ pM ni Mai l er", /* windowtitle */
TRUE, /[* visible */
docunent Proc, /* docunent, no zoom box */
(WndowPtr) -1L, /* in front */
TRUE, /* has cl ose box */
0 /* refCon (ignored) */

if (gMailerWndow == NULL) {
MErrorAlert(MenError(), "\pNewW ndow (fatal)");
Exi t ToShel | ();

Using the Standard Mail Package

CHAPTER 3

Standard Mail Package

}
Set Port (gMai | er W ndow) ; /* set port to be safe */

Set Pt (&ail erCorner, 0, 0);/* locate mailer in w ndow */
gSt at us = SMPNewMai | er (/* create Standard Mailer */

gMai | er W ndow, /* in this wi ndow */

mai | er Cor ner, /* mailer top-left */

FALSE, /* cannot contract */

TRUE, /[* initially expanded */

0, /* default identity */

nil, /* no prepare-to-draw cal |l back */
0 /* no client data */

);

if (gStatus != noErr) {
MyErrorAl ert (gStatus, "\pSMPNewMniler (fatal)");
Exi t ToShel | ();

}

The SMPNewMai | er function call shown in Listing 3-3 passes a value of 0 for the
identity of the caller, which invokes the most recently authenticated user identity (see
“Authenticating a User” on page 3-36). Note that setting the Bool ean parameter
canCont r act of the SMPNewMhi | er function to FALSE is unusual; Listing 3-3 does it
because the window exists only to accommodate the mailer. To add a mailer to an
existing document window;, call the SMPNewMai | er function, passing in the window
pointer, followed by the SMPGet Di mensi ons function, to adjust the size of the window
content area.

Sending Mall

The first step in sending a letter is to display the send-options dialog box. This dialog
box is similar to the standard print dialog box, offering the user options as to how the
letter should be sent. Listing 3-4 illustrates a way to display the send-options dialog box.
The code assumes that your application stores as a resource a list of formats in which it
can send letters; these formats should be those in which your application can save
documents. It also assumes that your application stores user preference values, including
send options, in a global struct named gPr ef er ences.

Listing 3-4 Displaying the send-options dialog box

Get ResString(nativeFormat, kAppNanel D, kAppNane) ;

Get WIi t I e(wi ndow, docTitle);

nati veFormat Array[0] = (StringPtr)nativeFormat;

Set Cur sor (&qd. arr ow) ;

err = SMPSendOpti onsDi al og(wi ndow, docTitle, nativeFormatArray, 1,

Using the Standard Mail Package 3-11

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

kSMPNat i veMask | kSMPI mageMask | kSMPSt andar dl nt er changeMask,

&gPref erences. sendFormat, nil, OL, &gPreferences. sendFornat,
&gPr ef er ences. sendOpt i ons) ;
if (err == userCancel edErr)
return;
if (err !==noErr) {
MyErrorAlert(err, "\pSMPSendOptionsDi al 0g");
return;

}

The SMPSendpt i onsDi al og function (page 3-73) prompts the user for send options.
It returns the name of the format that should be used to send the letter, which is used in
the next part of the process. The process of sending a letter is begun by calling the
SMPBegi nSend function (page 3-81), passing in the user’s send options (see Listing 3-5).
The Standard Mail Package uses this information to build the header for the letter. Any
subsequent content-adding function calls apply to the letter specified in the

SMPBegi nSend call. Listing 3-5 shows how to perform the send operation.

Listing 3-5 Performing the send operation

Set Cur sor (&gWat chCur sor) ;
/* Use creator if you have native format, el se use AppleMil. */
if ((gPreferences. sendFormat.whi chFormats & kSMPNati veMask !'= 0) {
| etterCreator = kMyAppCreator;
letter Type = kMyLtr MsgType;

}
el se {

letterCreator = 'lap2';

| etter Type = kMail Lt r MsgType;
}

err = SWMPBegi nSend(wi ndow, letterCreator, letterType,
&gPr ef er ences. sendOpti ons, &nmust AddCont ent) ;
if (err '= noErr) {
Set Cur sor (&qd. arr ow) ;
MyErrorAl ert(err, "\pSMPBegi nSend");
return;

i f (rmustAddContent) {
err = MyAddLett er Bl ocks(wi ndow, infoPtr,
&gPr ef er ences. sendFor mat) ;
if (err !'= noErr)
MyErrorAlert(err);

3-12 Using the Standard Mail Package

CHAPTER 3

Standard Mail Package

err = SMPEndSend(wi ndow, (err == noErr));
if (err !'= noErr)
MyErrorAlert(err, "\pSMPEndSend");

The application-defined MyAddLet t er Bl ocks function adds the actual blocks of
content to the letter. It adds blocks only if the must AddCont ent Boolean value,
returned from SMPBegi nSend, is set to t r ue; there is no need to add content blocks to a
letter forwarded unchanged. The function adds blocks in any combination of the three
types of content formats: native application format, standard interchange (AppleMail)
format, and image format. The MyAddLet t er Bl ocks function calls appropriate
subroutines to add the blocks.

Finally, you must call the SMPEndSend function (page 3-84) to send the letter. Its second
parameter is a Boolean value that specifies whether to execute the send operation or to
cancel the send process begun with SMPBegi nSend. The example in Listing 3-5 uses this
parameter to ensure that if MyAddLet t er Bl ocks or any of its subroutines returns a
nonzero error code, the send operation is canceled.

The MyAddLet t er Bl ocks function and its subroutine functions are illustrated in
Listing 3-6. The MyAddLet t er Bl ocks function checks the sendFor mat parameter
returned from the SMPSendpt i onsDi al og function to determine which formats to
add, and it calls one, two, or all three of the functions that actually add the content
blocks.

Listing 3-6 Adding the letter content

OSErr MyAddLett er Bl ocks(W ndowPt r wi ndow, WnfoPtr infoPtr,
SMPSendFor mat *sendFormat, StringPtr nativeFor nat Nane)

OSErr err = noErr;
/* Add inmage (snapshot). */
if (!sendFormat ||
(sendFor mat - >whi chFor mat s & kSMPI mageMask)) {
err = MyAddLetter| nage(w ndow, infoPtr);
if (err !'= noErr)
return err;

/* Add standard letter interchange format (AppleMil). */

if (!sendFormat ||
(sendFor mat - >whi chFor mat s & kSMPSt andar dl nt er changeMask)) {
err = MyAddAppl eMai | Cont ent (Wi ndow, infoPtr);
if (err !'= noErr)
return err;

Using the Standard Mail Package 3-13

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

/* Add main content enclosure (native). */

if (!sendFormat ||
(sendFor mat - >whi chFormat s & kSWMPNat i veMask)) {
err = MyAddNati veCont ent (wi ndow, i nf oPt r, nati veFor nat Nane) ;
if (err !'= noErr)
return err;

}

return err,

}

Native application content is stored in files accessed by file system FSSpec data
structures. Thus, to add native content you must save the content to a temporary file
before adding it to the letter. You can use an application-defined utility routine (the

M/ SaveFi | eToTenp function, not shown here) for this purpose. Once the temporary
file is available, the MyAddNat i veCont ent function (Listing 3-7) calls

SMPAddMai nEncl osur e (page 3-90), passing in the letter window pointer and the file
specification. Finally, the MyAddNat i veCont ent function calls the SMPAddBI ock
function (page 3-91) to add a block indicating the name of the native format used in the
letter.

Listing 3-7 Adding the application’s native-format content

OSErr MyAddNat i veCont ent (W ndowPtr wi ndow, WnfoPtr infoPtr,
StringPtr nativeFor mat Nane)

OSErr err;
FSSpec f Spec;
OCECr eat or Type bl ockType;

/* Save file tenmporarily so you can add by FSSpec. */

err = MySaveFil eToTenp(i nfoPtr, &f Spec);
if (err !'= noErr)

return err;
err = SMPAddMai nEncl osur e(w ndow, &f Spec);
FSpDel et e(& Spec) ;

/* Add native-format nane string block. */
if (err == noErr) {

bl ockType. nsgCreat or = kMai | Appl eMai | Creat or;
bl ockType. nsgType = kSMPNat i veFor mat Nane;

3-14 Using the Standard Mail Package

CHAPTER 3

Standard Mail Package

err = SMPAddBI ock(w ndow, &bl ockType, fal se,
&nati veFor mat Nare[1], nati veFor nat Nare[0] ,
kMai | Fronttart, 0);
}

return err;

}

In Listing 3-8, the MyAddAppl eMai | Cont ent function creates and adds a content block
segment in one of the AppleMail standard interchange formats. This example represents
data in PICT format, indicated by the constant kMai | Pi ct Segnent Type, passed as a
parameter to the SMPAddCont ent function (page 3-85). Other standard interchange
formats handle text, styled text, sound, and movies.

Listing 3-8 Adding AppleMail standard interchange-format content

OSErr MyAddAppl eMai | Cont ent (W ndowPt r wi ndow, WnfoPtr infoPtr)
{

OSErr err;

Pi cHandl e t hePi cture;

t hePi cture = MyDrawl mageToPi ct ure(wi ndow, infoPtr);
if (thePicture) {
HLock((Handl e) t hePi cture);
err = SMPAddCont ent (Wi ndow, kMai |l Pi ct Segnment Type, fal se,
*t hePi cture, GCetHandl eSize((Handl e)thePicture),
nil, true, snRonan);
KillPicture(thePicture);
}
el se return klnternal Error;
return err;

}

The code shown in Listing 3-9 creates an image from your document and adds it to the
letter. The SMPI mage function (page 3-88) requires you to pass in a pointer to a callback
routine, an application-defined function (described on page 3-123) that actually draws
the image of your document.

The SMPI mage function adds the image blocks to the letter. You provide it with input
parameters of the pointer to the letter window, a pointer to your image-drawing callback
function (MyDr awl magePr oc, in Listing 3-9), a reference constant (used to pass a
pointer to a block of information about the window in this example), and a Boolean
value indicating whether your image-drawing function can draw in color (in Listing 3-9,
it does not). The MyDr awl magePr oc function first sets up the resolution and size of the
page using information in the print record for the window (in this example, a pointer to
the print record is contained in the window information block passed in the reference

Using the Standard Mail Package 3-15

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

constant). Next, M/Dr awl magePr oc calls the SMPNewPage function (page 3-41) to set
up the graphics drawing port, as your image-drawing routine must do before drawing
each page, then calls MyDr awAl | Shapes to image the page.

The application-defined MyDr awAl | Shapes function (called in Listing 3-9 but not
shown) images the entire page with QuickDraw calls. The same function is called in the
application-defined MyDr awl mageToPi ct ur e function, which is used to add standard
interchange format AppleMail content to a letter (see Listing 3-8). In that case the

MyDr awl mageToPi ct ur e function must provide a graphics port for QuickDraw to
draw into.

Listing 3-9 Adding image-format content

OSErr MyAddLet ter | nage(W ndowPtr wi ndow, WnfoPtr infoPtr)

{
return SMPI nage(w ndow, MyDraw mageProc, (long)infoPtr, false);

pascal void MyDraw nageProc(l ong refCon, Bool ean inCol or)
{

#pragma unused (i nCol or)

OpenCPi cPar ans newHeader ;

CSErr err;

Poi nt zerobPt = (0, 0);

WnfoPtr infoPtr;

TPr Pt r pr | nf o;

infoPtr = (WnfoPtr)refCon;
prinfo = (**(infoPtr->printRecord)). prlnfo;

newHeader . srcRect = prlnfo.rPage;
newHeader . hRes = Fi xRatio(prinfo.iHRes, 1);
newHeader . vRes = Fi xRatio(prinfo.iVRes, 1);
newHeader . versi on = -2;
newHeader . reservedl = O;
newHeader . reserved2 = OL;
err = SMPNewPage(&hewHeader) ;
if (err !'= noErr)

MyErrorAl ert(err, "\pSMPNewPage");
MyDr awAl | Shapes(i nfoPtr, zeroPt);

3-16 Using the Standard Mail Package

CHAPTER 3

Standard Mail Package

Receiving Mail

A mail-aware application can receive mail in either of two ways: the user can
double-click the letter in the mailbox In Tray or in the Finder. In either case, this action
generates an Open Documents core Apple event (' aevt' ' odoc') that the Finder
sends to your application. If the letter is on disk, the Apple event includes a file
specification of type FSSpec; if it is in the In Tray, the Apple event includes instead a
letter specification of type Let t er Spec. The portion of an Apple event handler shown
in Listing 3-10 shows how to process both file and letter specifications. The Standard
Mail Package handles both file and letter specifications through the letter descriptor
structure, which includes both formats.

Listing 3-10 Apple event handler processing both file and letter specifications

AECount | t enms(&doclLi st, & tenslnList);
for (index = 1; index <= itenslnList; index++) {
err = AESi zeOF Nt hlten{ &oclLi st, index, & eturnedType, &size);
if (err !'= noErr)
return err;
if (returnedType == typeletterSpec) {
di skForm = fal se;
err = AEGet Nt hPt r (&docLi st, index, typelLetterSpec, &keywd,
& et urnedType, (Ptr)&mylLetterSpec, sizeof(LetterSpec),
&act ual Si ze) ;
} else if ((returnedType == typeAlias) ||
(returnedType == typeFSS)) {
di skForm = true;
err = AEGet Nt hPt r (&docLi st, index, typeFSS, &keywd,
&r et urnedType, (Ptr)&nyFSS, sizeof (nyFSS),
&act ual Si ze) ;

if (err !'= noErr)
return err;
if ((returnedType == typelLetterSpec) ||
(returnedType == typeAlias) ||
(returnedType == typeFSS)) {
err = MyHandl eOpenDoc(di skForm &nyFSS, &nylLetter Spec);
if (err !'= noErr)
return err;

}

The MyHandl eOpenDoc function shown in Listing 3-11 uses this information to open a
letter in the mailbox or on disk. The SMPOpenLet t er function (page 3-94) registers with

Using the Standard Mail Package 3-17

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

the Standard Mail Package the window passed to it and associates it with the letter
identified in the Let t er Descri pt or structure. The SMPGet Mai nEncl osur eFSSpec
function (page 3-103) then extracts the native format document from the letter, and an
application-defined content-drawing routine (MyDr awLet t er Cont ent, in this example)
draws the document into the window.

Listing 3-11 Opening a letter

OCSErr MyHandl eOpenDoc(Bool ean di skForm FSSpec *nyFSS,
Letter Spec *nylLetter Spec)

{
OSEr r err;
LetterDescriptor |etterDesc;
Poi nt upLeft = (0, 0);
Rect newW ndowRect ;

| etterDesc. di skForm = di skForm

if (diskForm
{
| etterDesc.fil eSpec = *nyFSS;
}
el se
{
| etterDesc.fil eSpec = *nylLetter Spec;
}

newW ndow = MyMakeW ndow(kDr awVai | er W ndow, &newwW ndowRect ,
"\pTitle", false);
i f (newwW ndow == NULL)
{
MyError Al ert (menful | Err, "\ pSMPOpenLetter");
return menful | Err;

err = SMPOpenlLetter (& etterDesc, newW ndow, upLeft, true,
gPref erences. expandOnQpen, nil, OL);
if (err !'= noErr)

{
MyErrorAlert(err, "\pSMPQpenLetter");

return err;

err = SMPGet Mai nEncl osur eFSSpec(newW ndow, &encl Spec);

3-18 Using the Standard Mail Package

CHAPTER 3

Standard Mail Package

if (err !'= noErr)

{
MyErrorAlert(err, "\pSMPOpenLetter");

return err,

return MyDrawlLetter Cont ent (newW ndow, &encl Spec);

Forwarding and Replying to Mail

After opening a letter, the user has the option to reply or to forward it. The user can also
remove the mailer, changing the letter into a regular document.

To forward a letter, you must add a new mailer to the existing letter. A letter has a new
mailer attached each time it is forwarded. The mailers form a set with each mailer
superimposed upon the preceding mailers. The user can view the mailers in the set by
clicking a dog-ear in the corner of the mailer window pane to cycle through the set or by
choosing among the names in a pop-up menu appearing in the Forwarded By field.

The first step in forwarding a letter is to expand the existing mailer, if it is contracted.
Next, you call the SMPMai | er For war d function (page 3-49) to create the new mailer
and add it to the letter. Finally, you should adjust your menu items in the configuration
appropriate for sending mail, which is done in Listing 3-12 by an application-defined
function MyFi xMai | er Menus. The parameter constant kDef aul t 1 dent ity hasa
value of 0, with the effect described in “Authenticating a User” on page 3-36.

Listing 3-12 Forwarding a letter

err = SMPExpandOr Cont ract (W ndow, true);
/* lgnore errors if windowis already expanded. */
err = SMPMai | er Forwar d(wi ndow, kDefaultldentity);
if (err !'= noErr)

MyErrorAl ert(err, "\pSMPMil er Forward");
MyFi xMai | er Menus(wi ndow) ;

The first step in replying to a letter is to create a new window in which the user will
write the reply. When this new window exists, you can call the SMPMi | er Repl y
function (page 3-51), passing in among other parameters the new window and the
existing letter window. The function causes the reply letter to be created, automatically
addressed to the originator of the original letter. The code shown in Listing 3-13
illustrates how to handle replying to a letter.

Using the Standard Mail Package 3-19

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Listing 3-13 Replying to a letter

repl yW ndow = MyMakeW ndow(kDr awMai | er W ndow, &newW ndowRect ,
newlitle, false);
err = SVPMai | er Repl y(w ndow, repl yWndow, replyToAll, toplLeft,
true, true, kDefaultldentity, nil, OL);
if (err !'= noErr)
MyErrorAlert(err, "\pSMPMail er Reply");
ShowW ndow(r epl yW ndow) ;

The application-defined function My MakeW ndow creates a window and adjusts its

content area to accommodate the mailer. The SMPMai | er Repl y function adds the
mailer, and the ShowW ndow function causes the window to become visible.

Closing a Letter

Closing a letter window requires you to adhere to a short procedure: displaying the
close-options dialog box, checking for open enclosures and in-progress copy operations,
removing the mailer from the window, and closing the window.

Before closing a letter window, you can display the close-options dialog box, which gives
the user an opportunity to delete the letter or tag it before closing it. Listing 3-14 assumes
the existence of a data structure gPr ef er ences containing user-preference flags,
including one determining whether or not you should display the close-options dialog
box. The code uses these preferences also to fill in the default values in the close-options
dialog box when it is displayed by the SMPCl oseQpt i onsDi al 0g function (page 3-60).

Listing 3-14 Preparing to close a letter

3-20

if (gPreferences.closeOptionsDi al og) {
Set Cur sor (&qd. arrow) ;
err = SMPCl oseOpti onsDi al og(w ndow
&gPr ef erences. cl oseOpti ons) ;
if (err !'= noErr)
returnVal ue = fal se;

}

The next step in the letter-closing procedure is to ensure that there are no open
enclosures attached to the letter, that there are no Finder copy operations in progress,
and that there are no other conditions that prevent closing the window. Finder copy
operations occur when the user is in the process of copying a document to or from the
enclosures list. If either situation is true, or if for some other reason a nonzero result was
returned from the SMPPr epar eToCl ose function, the application-defined function
My St opAl ert notifies the user and prevents the letter from closing. Listing 3-15
illustrates these checks.

Using the Standard Mail Package

CHAPTER 3

Standard Mail Package

Listing 3-15 Checking status prior to closing a letter

err = SMPPrepareTod ose(w ndow) ;

if (err == kSMPHasOpenAttachnents) {
Set Cur sor (&qd. arrow) ;
My St opAl ert (kMyHasOpenAttachl D, nil);
returnVal ue = fal se;

}

else if (err == kSMPCopyl nProgress) {
Set Cur sor (&qd. arr ow) ;
My St opAl ert (kMyCopyl nProgress, nil);
returnVal ue = fal se;

}

else if (err !'= noErr) {
Set Cur sor (&qd. arrow) ;
My St opAl ert (kMyCannot Cl oseW ndow, nil);
returnVal ue = fal se;

}

The final steps in the closing procedure are to remove the mailer from the window and
close the window, as shown in Listing 3-16. The SMPDi sposeMi | er function

(page 3-61) removes the mailer from the window passed in as a parameter and releases
the memory associated with the letter window. Then the application-defined routine
MyDest r oyW ndow disposes of the rest of the window and document structures in
memory.

Listing 3-16 Closing the letter

err = SWPDi sposeMai | er (Wi ndow, cl oseOpti ons);
if (err !'= noErr)

MyErrorAl ert(err, "\pSMPDi sposeMailer");
return MyDestroyW ndow(wi ndow) ;

Handling Mailer Events

The general strategy for handling events in a window with a mailer is to hand the events
to the Standard Mail Package first. The Standard Mail Package has built-in routines to
handle many events, including mouse-down events, key-down events, update events for
the mailer, activate events, deactivate events, and null events. The Standard Mail
Package then hands the event back to the application with an indication that either it
handled the event or your application must handle the event.

Your application should retrieve events in the normal manner, with the
Wi t Next Event system call. When a mailer window is frontmost, call the
SMPMai | er Event function (page 3-63), passing in the event record. The

Using the Standard Mail Package 3-21

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

SMPMai | er Event function returns a set of flags in its what Happened parameter
indicating what action it took, if any, and whether your application must handle the
event. (These flags, of type SMPMai | er Resul t, are described on page 3-65.) Your
application can then process the event appropriately. The event-handling function
shown in Listing 3-17 receives the event record following a Wi t Next Event call, calls
SMPMai | er Event , and passes the SMPMai | er Resul t value to an application-defined
routine named MyPr ocessWhat Happened. The parameter of type W nf oPt r isa
pointer to an application-defined data structure containing status information about the
mailer window.

Listing 3-17 Processing events in a mailer window

3-22

voi d *MyMai | er Event Handl er (W ndowPtr wi ndow, WnfoPtr infoPtr,
Event Record *ev)

{

SMPMai | er Resul t what Happened;

OSEr r err;

err = SVPMai | er Event (ev, &what Happened, nil, OL);

if (err !'= noErr)

MyErrorAlert(err, "\pSMPMil erEvent");
return (void *)(M/ProcessWhat Happened(wi ndow, infoPtr,
what Happened)) ;

}

Bool ean MyPr ocessWhat Happened(W ndowPtr wi ndow, WnfoPtr infoPtr,
SMPMai | er Resul t what Happened)

{
CSErr err;
SMPMai | er St at e st at e;
| ong *| ast Changed;

/* Check if mailer has changed since |ast nenu adjustnent. */
err = SMPGet Mai | er St at e(wi ndow, &state);
if (err !'= noErr)

MyErrorAlert(err, "\pSMPGet MailerState");
| ast Changed = (long *) & nfoPtr->ot her Dat a[kLast ChangedDat a] ;
if (*lastChanged != state.changeCount) {

*| ast Changed = state. changeCount ;

i nfoPtr->changed = true;

MyFi xMai | er Menus(wi ndow, infoPtr);

}
i f ((what Happened & kSMPContract edMask) != 0)

Using the Standard Mail Package

CHAPTER 3

Standard Mail Package

MyHandl eCont ract (wi ndow, i nfoPtr);

i f ((whatHappened & kSMPExpandedMask) != 0)
MyHandl eExpand(wi ndow, infoPtr);

i f ((what Happened & kSMPMai | er BeconesTar get Mask) !'= 0 ||

(what Happened & kSMPAppBeconesTar get Mask) !'= 0))

MyFi xMai | er Menus(w ndow, infoPtr);

/* Check nmenus for every event the mailer handles. */

i f ((whatHappened & kSMPAppShoul dl gnor eEvent Mask) != 0)
MyFi xMai | er Menus(w ndow, infoPtr);

i f ((what Happened & kSMPAppMist Handl eEvent Mask) ! = 0)
return false; /* app nmust handle this event */

else return true; /* mailer handled this event conpletely */

}

Most of the postprocessing of the event involves adjusting the menus, because the mailer
event may have affected which commands should be active. In addition, if the
kSMPCont r act edBi t flag or KSMPExpandedBi t flag is set as a a result of the event,
the code calls one of the application-defined routines: MyHandl eCont r act or
MyHandl eExpand. These routines call the SMPGet Di nensi ons function to determine
the size of the expanded or contracted mailer, so that the application can adjust the size
of the content region of the window. If the user wants to expand the mailer, you must
then call the SMPExpandOr Cont r act function (page 3-56) to expand the mailer to its
full size. However, if the user wants to contract the mailer to a single line, you need not
call SMPExpandCr Cont r act because the Standard Mail Package performs the
contraction; you need only adjust the size of your content region and invalidate it to
update its content.

In addition, the Standard Mail Package requires you to add some logic to your
application’s mouse-click handler for a window that includes a mailer. You must notify
the Standard Mail Package before you allow the user to change the content of a letter, to
accommodate the needs of its digital signature capability. Before changing the letter, you
must call the SMPPr epar eToChange function (page 3-83); if the letter has been digitally
signed, a dialog box appears warning the user that the impending change will invalidate
the signature. As in Listing 3-18, your routine should check the return value from

SMPPr epar eToChange and exit if the user has clicked the Cancel button in the dialog
box.

The Standard Mail Package maintains its own undo buffer to support undoing mailer
operations. You must clear this buffer before doing operations on data in the content area
of your window so that only one undo operation is pending for the window. After
calling the application’s click-handler function, if the letter’s contents have changed, you
should call the SMPCont ent Changed function (page 3-76).

Using the Standard Mail Package 3-23

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Listing 3-18 Handling a mouse click in a mailer window

3-24

void *MyMai | er MouseC i ckHandl er (W ndowPt r wi ndow,

}

WnfoPtr infoPtr)

voi d *returnval ;
CSErr err;
Bool ean al r eadyChanged;

/* Make sure you can change the letter. */
al readyChanged = i nf oPtr->changed,;
if (!alreadyChanged) {
err = SMPPrepareToChange(w ndow) ;
if (err == userCancel edErr)
return nil;

/* Since content is changing, clear mailer undo buffer.

err = SMPC ear Undo(wi ndow) ;
if (err !'= noErr)
MyErrorAlert(err, "\pSMPO ear Undo");

/* Call app's click handler. */
returnVal = Myd i ckHandl er (Wi ndow, infoPtr);
if (!alreadyChanged && i nfoPtr->changed) ({
err = SMPCont ent Changed(w ndow) ;
if (err !'= noErr)
MyErrorAl ert(err, "\pSMPContent Changed");

return returnval;

*/

The previous section alluded to the undo buffer kept by the Standard Mail Package to
support undo operations in the mailer portion of letters. The Standard Mail Package
supports the Clipboard-based edit commands Cut, Copy, Paste, Clear, Select All, as well
as the Undo command. The function shown in Listing 3-19 is a mailer Cut command
handler; it shows how to support the Clipboard by calling the
SMPMai | er Edi t Command function (page 3-67), then processing the result by calling the
application-defined MyPr ocessWhat Happened function. You can use a similar strategy
for the Copy, Paste, Clear, Select All, and Undo commands.

Using the Standard Mail Package

CHAPTER 3

Standard Mail Package

Listing 3-19 Supporting the Clipboard in a mailer edit command

voi d *MyMai | er Cut Conmand(W ndowPt r wi ndow, WnfoPtr infoPtr)

{

OSEr r err;

SMPMai | er Resul t what Happened,;

err = SWVPMai | er Edi t Command(wi ndow, kSMPCut Comrand,

&nhat Happened) ;
if (err !'= noErr)
MyErrorAlert(err, "\pSMPMai l er Edi t Conmand") ;
return (void *)(MyProcessWat Happened(w ndow, infoPtr,
what Happened)) ;

}

Standard Mail Package Reference

This section describes the data types and routines provided by the Standard Mail
Package.

Data Structures

The Standard Mail Package routines use the data types described in this section.

Recipient Descriptor

The recipient descriptor, used by the SMPSendLet t er and SMPResol veToReci pi ent
functions, describes an addressee for a message or letter.

Note
You must call the Di sposePt r function to deallocate the r eci pi ent
field before you can dispose of the recipient descriptor. O

struct SMPReci pi ent Descri ptor

{
struct SMPReci pi ent Descri ptor *next; /* pointer to next element */
OSErr result; /* result code */
OCEPackedReci pi ent *recipient; /* packed recipient address */
unsi gned | ong si ze; /* size of recipient address */
Mai | Reci pi ent t heAddress; /* unpacked recipi ent address */
Recordl D t heRI D; /* record ID of recipient */

i

Standard Mail Package Reference 3-25

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Field descriptions
next

result

reci pi ent
si ze

t heAddr ess
t heRI D

Enclosure Descriptor

A pointer to the next element in a linked list of recipient descriptors.
This field must be set to ni | in the last descriptor in the list.

The result code returned by the SMPSendLet t er function. If the
SMPSendLet t er function fails because of a bad recipient
descriptor, you can examine this field in each of the recipient
descriptors to determine which caused the problem.

A pointer to the packed address of the recipient of the letter.

The length, in bytes, of the recipient’s address.

The unpacked address of the recipient.

The record ID of the recipient. If the SMPSendLet t er function fails

because of a bad recipient descriptor, you can use this record ID to
determine the name of the addressee that caused the error.

The enclosure descriptor is an element of a linked list that describes an enclosure to be
sent with a letter. See the description of the SMPSendLet t er function on page 3-37 for
more information about the use of this data structure.

struct SMPEncl osureDescri ptor

{

struct SMPEncl osureDescri ptor *next; /* pointer to next element */

OSEr r
FSSpec

OSType
OSType

Field descriptions

next

result

fil eSpec
fileCreator

result; /* result code */
fil eSpec; /* file specifier */

/* of enclosure */
fileCreator; /* creator of enclosure */
fileType; /* file type of enclosure */

A pointer to the next element in the linked list. If this is the only or
last element in the list, set this field to ni | . If you use the
SMPResol veToReci pi ent function to create the linked list, the
function fills in this field for you.

The result code returned by the SMPSendLet t er function. If the
SMPSendLet t er function fails because of a bad enclosure
descriptor, you can examine this field in each of the enclosure
descriptors to determine which caused the problem.

File specifier of the enclosure.

File creator of the enclosure. The SMPSendLet t er function uses
this field only if you send the enclosure directly as a file (that is, you
set the sendAs field of the parameter block for the

SMPSendLet t er function to kSMPSendFi | eOnl yMask).

3-26 Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

fileType File type of the enclosure. The SMPSendLet t er function uses this
field only if you send the enclosure directly as a file (that is, you set
the sendAs field of the parameter block for the SMPSendLet t er
function to kSMPSendFi | eOnl yMask).

Letter Descriptor

The letter descriptor, used by the SMPQpenLet t er (page 3-94) and
SMPCet Next Let t er (page 3-97) functions, identifies a letter in the In Tray or on disk.

struct LetterDescriptor {
Bool ean onDi sk;
uni on {
FSSpec fil eSpec;
Lett er Spec mmi |l boxSpec;

Hu;

};

Field descriptions

onDi sk A Boolean value that indicates whether the letter is on disk or in the
In Tray. If this value is set to t r ue, the file is on disk.

fileSpec The file specification structure of the letter. Use this field of the
structure if the file is on disk.

mai | boxSpec The letter specification structure of the letter. Use this field if the

letter is in the In Tray. When the user double-clicks a letter in the In
Tray and the letter’s creator is your application, you receive an
"aevt' 'odoc' Apple event that includes this specifier. The

Let t er Spec structure is defined on page 3-35.

Letter Information Structure

The letter information structure, which is used by the SMPCGet Let t er | nf o (page 3-93)
function, describes a letter in the In Tray.

struct SMPLetterlInfo {
OSType | etterCreator;
OSType | etterType;
RSt ri ng32 subj ect ;
RSt ri ng32 sender ;

b

Field descriptions
| etterCreator The creator of the letter. The field indicates what application created

the letter and is identical to the creator used by the application for
files.

Standard Mail Package Reference 3-27

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

letterType The letter type, which is identical to the file type that the creating
application would use for the letter. Letters containing only AOCE
standard content are of type ' [ttr'.

subj ect The contents of the Subject field in the mailer.
sender The contents of the From field in the mailer.
Creator Type Structure

The Standard Mail Package uses the creator type structure to specify block types. The
creator type structure is defined by the OCECr eat or Type data type.

struct OCECreat or Type {
OSType msgCr eat or ; /* bl ock creator */
OSType nmsgType; /* block type */

i

Field descriptions

msgCr eat or The creator of the block. You can specify any four-character value in
this field; usually it is the signature of your application that adds
the block of data to the letter. For example, the creator of a block
added by the AppleMail application provided with the AOCE
software is ' apm ' .

msgType The type of the block. You can define your own four-character block
types to serve your own purposes. Apple Computer, Inc., reserves
all block types consisting entirely of lowercase letters. For example,
the type of an image block as defined by the AppleMail application
is'img' .

Image Block Information Structure

3-28

An image block in a letter (a block with a creator type of ' apm ' and a block type of
"i mag') starts with an image block information structure, defined by the TPf PgDi r
data type (defined by the Printing Manager).

struct TPfPgDir{
short i Pages; /* nunber of pages in inmge bl ock */
| ong i PgPos[129]; /* array [O..iPfMaxPgs] of offsets */
b

Field descriptions

i Pages The number of pages in the image. The image block contains one
PICT resource for each page.

i PgPos An array of offsets from the start of the block to the picture elements
that follow the TPf PgDi r structure.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

The i PgPos array contains offsets to the picture elements that follow the TPf PgDi r
structure. The offset from the start of the image block to the image of page n + 1 is

i PgPos[n] (because page numbers start at 1 and the array elements start at 0). The
array contains i PgPos[n + 1] elements for a document of 1 pages. The last element is
the offset of the end of the last page from the beginning of the block. You can determine
the size of a page by subtracting the offset of the current page from the offset of the next
page, that is, the size of page nis i PgPos[n] —i PgPos[n—-1] .

Allocate and lock down a buffer equal to the size of the page. Then call the
SMPReadBl ock function (page 3-106) with the pointer to that buffer in the buf f er
parameter and the offseti PgPos[n —1] in the dat aCf f set parameter.

Letter Parameter Block

The SMPSendLet t er function uses the SMPLet t er PB parameter block. The fields of
the parameter block are described with the SMPSendLet t er function on page 3-38.

struct SMPLetterPB

{
OSErr result; /* function result */
RStringPtr subj ect ; /* subject of letter */
Aut hl dentity senderldentity;/* identity of sender */
SMPReci pi ent Descri ptorPtr tolList; /* list of addressees */
SMPReci pi ent DescriptorPtr ccli st; /* list of cc addressees */
SMPReci pi ent DescriptorPtr bccli st; /* list of bcc addressees */
Scri pt Code script; /* script code for |anguage */
Size text Si ze; /* length of body data */
Ptr t ext Buf f er; /* body of the letter */
SMPPSendAs sendAs; /* file, enclosure, or imge */
Byt e padByt e; /* reserved */
SMPENcl osur eDescriptorPtr encl osures; /* files to be encl osed */
SMPDr aw magePr ocPtr drawl mageProc; /* your inaging routine */
| ong i mageRef Con; /* for your use */
Bool ean supportsColor; /* true for a color grafPort */
b

Close-Options Structure

The SMPCl oseOpt i onsDi al og function (page 3-60) and the SMPDi sposeMai | er
function (page 3-61) use the close-options structure to specify what actions the Standard
Mail Package should take when the user closes a letter in the In Tray. The close-options
structure is defined by the SMPCl oseOpt i ons data type.

Standard Mail Package Reference 3-29

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

struct SMPC oseQptions {
Bool ean
Bool ean
RSt ri ng32

s

Field descriptions
noveToTrash

noveToTr ash;
addTag;
tag;

Move the letter from the In Tray to the Trash. You should not set this

field to t r ue if the addTag field is set to t r ue.

addTag

Tag the letter with the value in the t ag field. You should not set this

field tot r ue if the noveToTr ash field is set to t r ue.

tag

The tag to attach to the letter. This field must contain a valid tag if

the addTag field is set to t r ue. A tag can be any alphanumeric
string up to 32 bytes in length.

Mailer-State Structure

The SMPCet Mai | er St at e function (page 3-69) uses the mailer-state structure to return
information about a mailer in a specified window. The mailer-state structure is defined
by the SMPMai | er St at e data type.

struct SMPMail erState {
short
short
Poi nt
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Byt e
unsi gned | ong
SMPMai | er Conponent
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Byt e
SMPUNndoSt at e
Str63

3-30 Standard Mail Package Reference

mai | er Count ;
current Mai l er;
upper Left;
hasBeenRecei ved,;
i sTarget;

i sExpanded;
canMoveToTr ash;
canTaag;

padByt e2;
changeCount ;

t ar get Conponent ;
canCut ;

canCopy;
canPast e

cand ear;
canSel ect Al | ;
padByt e3;
undoSt at e
undoWhat ;

CHAPTER 3

Standard Mail Package

Field descriptions
mai | er Count

current Mai |l er

upper Lef t

hasBeenRecei ved

i sTar get

i sSExpanded

canMoveToTr ash

canTag

changeCount

t ar get Conponent

The number of mailers in the mailer set associated with the
window. This number is incremented by 1 each time the letter is
forwarded. You should enable the Reply item in the Mail menu if
the mai | er Count field is greater than 1.

The number of the mailer that the user is currently looking at. The
original mailer for the letter is number 1, and each forwarding
mailer is numbered sequentially.

The upper-left corner of the mailer in the window’s local
coordinates.

A Boolean value that indicates whether the most recent mailer has
been received (that is, it was sent to the current user). If set tot r ue
(that is, if the mailer has been received), then the user cannot edit
the fields in the mailer but can forward or reply to the letter. You
should enable the Forward and Reply items in the Mail menu. If it
is set to f al se, the current user is the originator of the letter or has
added a new mailer to forward the letter, and might still be working
on the letter, so you should disable the Forward item.

A Boolean value that indicates whether the mailer is the target; that
is, whether the user is working in the mailer so that key-down
events apply to the mailer rather than to the portion of the window
that you control. Note that the Event Manager sends all events that
take place in your window— including in the mailer—to your
application. If you pass every event to the SMPMi | er Event
function (page 3-63), that function returns a value that tells you
whether you have to handle the event.

A Boolean value that indicates whether the mailer is in the
expanded state or contracted state.

A Boolean value that indicates whether to enable the Close and
Delete item in the File menu. The standard interface is to enable this
item for a letter that is in the In Tray, but not for one that has been
saved to disk.

A Boolean value that indicates whether to enable the Tag item in the
Mail menu. The user can add a tag to a letter that is in the In Tray,
but not to a letter that has been saved to disk. See the

SMPTagDi al og function (page 3-58) to see how to implement the
Tag item in the Mail menu.

A value that indicates whether the mailer has been changed. If this
field is set to a nonzero value, the mailer has been changed since the
last time it was saved. If this number has changed since the last time
you checked it, then the mailer has been changed during that
period.

A constant that indicates which of the fields in the mailer the user is
working in. Possible values for this field are listed immediately
following these field descriptions.

Standard Mail Package Reference 3-31

abexoed |reN plepuels -

3-32

CHAPTER 3

Standard Mail Package

canCut

canCopy

canPast e

cand ear

canSel ect Al |

undoSt at e

undoWhat

A Boolean value that indicates whether you should enable the Cut
item in the Edit menu. This field is significant only if the i sTar get
field is set to t r ue.

A Boolean value that indicates whether you should enable the Copy
item in the Edit menu. This field is significant only if the i sTar get
fieldisset to t r ue.

A Boolean value that indicates whether you should enable the Paste
item in the Edit menu. This field is significant only if the i sTar get
field is setto t r ue.

A Boolean value that indicates whether you should enable the Clear
item in the Edit menu. This field is significant only if the i sTar get
fieldisset to t r ue.

A Boolean value that indicates whether you should enable the
Select All item in the Edit menu. This field is significant only if the
i sTarget fieldissettotrue.

A constant that you can use to determine whether you should
enable the Undo item in the Edit menu. See the description of the
SMPC! ear Undo function on page 3-70 for information on clearing
the undo buffer. The possible values for this field are described
following these field descriptions.

A string that indicates the action that the reader should undo or
redo. You should use this string in place of the word “Undo” or
“Redo” in the Edit menu. For example, if the user just used the Edit
menu to cut a word from the subject field in the mailer, the
undoWhat field is set to the string Undo Cut . This field is
significant only if the undoSt at e field equals kMai | er Undo.

Here are the possible values for the t ar get Conponent field. These values are also used
by the SMPBeconeTar get function (page 3-54), the SMPGet Conponent Si ze function
(page 3-110), the SMPCet Conponent | nf o function (page 3-111), and the

SMPGet Li st | t e nf o function (page 3-113).

enum {
kSMPQX her
kSMPFr om
kSMPTo

kSMPRegar di ng
kSMPSendDat eTi e
kSMPAt t achnent s
kSMPAddr essOvat i ¢

b

= -1,
= 32,
= 20,
22,
29,
26,
16

typedef unsigned | ong SMPMai | er Conponent ;

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

Constant descriptions

kSMPQx her No field, or some field other than those indicated by the other
enumerated values (such as the Signature field).

k SMPFr om The From field in a mailer for a new letter, or the Forwarded By
field in a mailer for a forwarded letter.
kSMPTo The Recipients field.

kSMPRegar di ng The Subject field.

kSMPSendDat eTi e

The Sent field.
kSMPAt t achnent s

The Enclosures field.

kSMPAddr essOvat i ¢
The addressing panel (see Figure 3-4 on page 3-6).

Your application and the mailer maintain independent undo buffers. The mailer keeps
track of which undo buffer should currently be in use and passes this information to you
in the undoSt at e field of the mailer-state structure. You can use this information to
determine which items in the Edit menu to enable and whether to clear your
application’s undo buffer. The possible values for the undoSt at e field are as follows:

enum {
kSMPUndoDi sabl ed,
k SMPAppMay Undo,
kSMPMai | er Undo

b

t ypedef unsi gned short SMPUndoSt at e;

Constant descriptions

kSMPUndoDi sabl ed
The Standard Mail Package has cleared its undo buffer after
executing a command that the user cannot undo. Therefore, there is
currently no action in the mailer or in your application that the user
can undo. You should disable the Undo item in the Edit menu and
clear your application’s undo buffer.

k SMPAppMay Undo
The Standard Mail Package has not executed a command that the
user may undo. Therefore, there is no action in the mailer that the
user can undo, but the Standard Mail Package can’t tell whether
there is an action in your application that the user can undo. You
should enable the Undo item in the Edit menu only if your
application has executed a command that the user may undo. If the
user has taken an action in the content portion of the window that
the user can undo or that should cause the undo buffer to be
cleared, you must also call the SMPCl ear Undo function (page 3-70)
to tell the Standard Mail Package to clear its undo buffer.

Standard Mail Package Reference 3-33

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

kSMPMai | er Undo
The Standard Mail Package has executed a command that the user
may undo. Therefore, the latest action that the user can undo was in
the mailer, and there is no action in your application that the user
can undo. You should enable the Undo item in the Edit menu and
display the string returned in the undoWhat field of the
SMPMai | er St at e structure. You should also clear your
application’s undo buffer. If the user chooses the Undo item in the
Edit menu, call the SMPMai | er Edi t Conmaind function to allow the
Standard Mail Package to handle the undo operation.

Send-Options Structure

The Standard Mail Package maintains a set of options for each letter. There is a default
value for each option, but before you send a letter, you should give the user the
opportunity to change the send options for that letter. You can call the

SMPSendOpt i onsDi al og function (page 3-73) to provide the user with a dialog box
that sets these options. The SMPSendOpt i onsDi al og function returns the send-options
structure, defined by the SMPSendOpt i ons data type.

struct SMPSendOptions {
Bool ean si gnWhenSent ;
| PMPriority priority;

b

Field descriptions

si gnWhenSent A Boolean value that indicates whether a digital signature should
be added to the letter when you send it. If this field is set to t r ue,
the Standard Mail Package prompts the user for a signature when
you send the letter.

priority A constant that indicates the priority of the message. The Standard
Mail Package includes the priority information in the In and Out
Trays.

Send-Format Structure

3-34

The Standard Mail Package uses two standard formats and allows applications to send
or open letters in any number of “native” formats known to the application. The two
standard formats used by the Standard Mail Package are standard interchange format
and image format. Native formats for the SurfWriter word processing program might be
SurfWriter, TIFF, and SGML, for example.

Before you send a letter using the Standard Mail Package, you call the

SMPSendOpt i onsDi al og function (page 3-73). This function displays a dialog box that
lets the user indicate which format or formats to use when sending the letter and returns
the user’s choices to you in a send-format structure.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

The send-format structure includes a whi chFor mat s field that indicates whether you
should send the document in a format designed to be read by your application

(kSMPNat i veBi t), as an image designed to be read by any application that reads AOCE
image files (KSMPI mageBi t), or in standard interchange format

(kSMPSt andar dI nt er changeBi t).

enum {
kSMPNat i veBi t,
kSMVPI nageBi t
kSMPSt andar dI nt er changeBi t
1
/* val ues of SMPSendFor mat Mask */
enum {
kSMPNat i veMask = 1<<kSMPNativeBit,
kSMPI mageMask = 1<<kSMPI mageBi t,
kSMPSt andar dI nt er changeMask = 1<<kSMPSt andar dl nt er changeBi t,
1

t ypedef unsigned | ong SMPSendFor mat Mask;
The send-format structure is defined by the SMPSendFor mat data type.

struct SMPSendFor mat {
SMPSendFor mat Mask whi chFor mat s;
short whi chNat i veFor mat ; /* 0 based */

b

The whi chNat i veFor mat field is an index number (starting with 0) that indicates
which one of your application’s native formats has been selected by the user, or, in the
case of a received letter, which native format is currently in the letter. The index number
refers to the array of string pointers you pass to the SMPSendQOpt i onsDi al og function
in the nat i veFor mat Nanmes parameter. The whi chNat i veFor mat field is significant
only if the whi chFor mat s field has the kSMPNat i veBi t set to 1.

Letter-Specification Structure

The letter-specification structure is a data structure that you receive from an"' aevt'
' odoc' Apple event and pass to the SMPOpenLet t er function (page 3-94). The content
of this data structure is private to the AOCE toolbox.

struct Letter Spec

{

unsi gned | ong spec[3];

s

Standard Mail Package Reference 3-35

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Standard Mail Package Functions

The following sections describe the routines provided by the AOCE Standard Mail
Package. Several Standard Mail Package routines require you to provide an
authentication identity as input. The chapter “Standard Catalog Package” in this book
describes a routine that prompts the user for a name and password, authenticates the
user, and returns the authentication identity number to your application.

The routines in this chapter are divided into two main sections, reflecting the two parts
of the Standard Mail Package:

» Send-letter functions, which provide a very simple way to send a letter or a file.

» Mailer functions, which provide a standard user interface for sending and opening
your application’s documents as letters.

A final section, “Application-Defined Functions,” describes some callback routines that
you can provide to support Standard Mail Package features.

Assembly-Language Interface

To call a Standard Mail Package routine from assembly language, you must do the
following:

1. Push space for the function result and all routine parameters (in Pascal
calling-convention order) on the stack.

2. Put in the DO register a long word consisting of the parameter word count for the
routine followed by the routine selector. The parameter word count indicates how
many words of parameters you are placing on the stack; for example, if the function
has two parameters and each is a pointer, the parameter word count for the function is
$0004.

3. Call the Standard Mail Package trap, $AA5D.

Each routine description in the following sections lists the parameter word count and
routine selector for that routine.

Authenticating a User

3-36

Before the first time you send a message, you must provide identification to prove that
the caller is an authorized user of the system. The SDPPr onpt For | D function described
in the chapter “Standard Catalog Package” in this book provides dialog boxes that allow
the user to identify himself or herself as one of the authorized users of the system and
returns an identification number (the authentication identity) for the user. You can use the
authentication identity in all subsequent calls to Standard Mail Package and other AOCE
routines that require it.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

However, the Standard Mail Package implements a special scheme to ease handling
authentication identities for its routines. That is, you can pass a value of 0 for the
authentication identity parameter to those functions requiring it. The effect of passing
the 0 parameter value varies according to the situation. The first time you pass 0 after
initializing the Standard Mail Package, the system uses the local identity (see the chapter
“Standard Catalog Package” in this book for a description of local and specific identities).

If you forward or reply to a letter, the Standard Mail Package uses the identity for

the mailbox the letter was in: a visitor’s mailbox produces the visitor’s identity; the main
mailbox produces the local identity. In all other cases, if you pass 0 for the authentication
identity parameter, the Standard Mail Package uses the last identity (local or specific)
used by the user.

Send-Letter Functions

You can use the functions in this section to send a document as a letter with enclosures,
as an image, or as a file. The SMPSendLet t er function sends the document. If you want
to send the document as an image, you must provide an image-drawing routine that
calls the SMPNewPage function each time it images a page of the document.

You can obtain catalog system specification (DSSpec) structures for the recipients of the
letter by using the dialog boxes or the Catalog-Browsing panel described in the chapter
“Standard Catalog Package” in this book. You can use the SMPResol veToReci pi ent
function described in this section to transform the DSSpec structures into a linked list of
mail addresses, and you can use this linked list as input to the SMPSendLet t er function.

The SMPSendLet t er function includes as a parameter a pointer to a parameter block.
The routine description includes a list of the parameter block fields for which you must
provide values or that return values to you. Each parameter block field list in the routine
description consists of four columns, as described in the Preface of this book.

SMPSendLetter

The SMPSendLet t er function sends a letter, an image, or a file.
pascal OSErr SMPSendLetter(SMPLetterPBPtr thelLetter);

theLetter Pointer to a parameter block.

Standard Mail Package Reference 3-37

abexoed |reN plepuels -

3-38

CHAPTER 3

Standard Mail Package

Parameter block

- result OSEr r Result code

- subj ect RStringPtr Subject of letter

- senderldentity Aut hl dentity Identity of sender

- toLi st SMPReci pi ent DescriptorPtr List of recipients

- ccli st SMPReci pi ent DescriptorPtr List of cc recipients

- bccli st SMPReci pi ent DescriptorPtr List of bcc
recipients

= script Scri pt Code Script code

- t ext Si ze Si ze Length of text

= text Buffer Ptr Letter text

N sendAs SMPPSendAs Letter, image, or
file

- encl osur es SMPENcl| osur eDescri ptorPtr Enclosed files

- dr aw magePr oc SMPDr awl magePr ocPt r Image-drawing
routine

- i mgeRef Con | ong For your use

- support sCol or Bool ean Settotrue fora

color graphics port

Field descriptions

resul t The function result. This field contains the same result code as the
function return value.
subj ect The subject string for the letter.

senderldentity
Authentication identity of the sender.

toLi st A pointer to a linked list of recipient descriptors for the main
addressees of the letter. You can use the
SMPResol veToReci pi ent function to create this list.

cclLi st A pointer to a linked list of recipient descriptors for the “carbon
copy” (cc) addressees of the letter. You can use the
SMPResol veToReci pi ent function to create this list.

bcclLi st A pointer to a linked list of recipient descriptors for the “blind
carbon copy” (bcc) addressees of the letter. You can use the
SMPResol veToReci pi ent function to create this list.

script Language of letter text. This is a script code from the Script
Manager. You cannot use the values snmSyst enfScri pt or
smCur rent Scri pt for this parameter. The function ignores this
field if you set the sendAs field to kSMPSendFi | eOnl yMask.

text Si ze Number of bytes in the text of the letter. The function ignores this
field if you set the sendAs parameter to kSMPSendFi | eOnl yMask.
t ext Buf f er A pointer to the buffer that contains the text of the letter. The

function ignores this field if you set the sendAs field to
kSMPSendFi | eOnl yMask.

Standard Mail Package Reference

DESCRIPTION

CHAPTER 3

Standard Mail Package

sendAs A constant that indicates whether to send the message as an image
(kSMPSendAs| mageMask), to send the message as a letter with
enclosures (kSMPSendAsEncl osur eMask), to send an enclosed file
so that it appears in the In Tray as the file itself rather than as a
letter (kSMPSendFi | eOnl yMask), or to send some combination of
these formats. You cannot combine the send-file-only and
send-as-enclosure formats.

encl osures A pointer to a linked list of enclosure descriptors. If you specify
kSMPSendFi | eOnl yMask for the sendAs field, you can include
only one enclosure. In this case, the enclosure descriptor must
provide values for the file creator and type that are appropriate for
the file being sent in order for the Finder to display the file correctly.

drawl mageProc A pointer to your image-drawing routine. If you want to send a
letter as an image, you must provide a routine to draw the image.
The procedure declaration for this routine is described on
page 3-123. The function ignores this field if you do not set the
sendAs field to send the file as an image.

i mageRef Con A reference constant for your use. The function passes this value to
your image-drawing routine.

supportsCol or ABoolean value that indicates whether the procedure pointed to by
the dr awl magePr oc parameter is capable of drawing in color. The
Standard Mail Package provides a color graphics port to your
image-drawing routine only if you specify t r ue for the
suppor t sCol or field and the user has color QuickDraw.

The SMPSendLet t er function provides no user interface. Your application must
determine the subject, text, enclosures, and addressees for the letter either by providing
its own user interface or through some other means. You can use the

SDPCGet Di r ect ori es, SDPFi ndRecor d, SDPNewPanel , or SDPGet NewPane
functions to provide a user interface for selecting an addressee.

If the SMPSendLet t er function returns with a result code that indicates a bad recipient
descriptor or a bad enclosure descriptor, you can check the r esul t field of each
descriptor in the linked list to determine which one was bad. Look in the f i | enane
field of the bad enclosure descriptor for the name of the file that caused the problem. The
t heRI Dfield of the recipient descriptor contains the record ID containing the name of
the addressee. For example, an RSt ri ngPt r structure pointing to the name of the
addressee represented by the first recipient descriptor of the Recipients list is located in
thelLetter->tolList->theRID. |ocal.nane.

You cannot specify the values snByst enScri pt or snCurrent Scri pt for the scri pt
parameter. To obtain the system script, call the Get Scri pt Manager Var i abl e function
with a selector of snBysScri pt . To obtain the current script, call the Font Scri pt
function.

The SMPSendLet t er function can send a letter as a note with optional enclosures, as an
image of the note and enclosures, as the document file alone, or as some combination of

Standard Mail Package Reference 3-39

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

these formats. Use one or a combination of the following constants in the sendAs field
to specify the format for the letter:

enum {
kSMPSendAsEncl osureBit, /* appears as letter with encl osures */
kSMPSendFi | eOnl yBi t, /* appears as a file in nmail box. */
kSMPSendAs| nageBi t /* letter includes image of content */

b

/* val ues of SMPPSendAs */

enum {

kSMPSendAsEncl osur eMask
kSMPSendFi | eOnl yMask
kSMPSendAs| mageMask

1<<kSMPSendAsEncl osureBi t,
1<<kSMPSendFi | eOnl yBi t,
1<<kSMPSendAs| mageBi t

}s

t ypedef Byte SMPPSendAs;

Constant descriptions
kSMPSendAsEncl osur eMask
The SMPSendLet t er function sends the letter as a note with the
text pointed to by the t ext Buf f er parameter and the enclosure
specified by the enclosure descriptor.
kSMPSendFi | eOnl yMask
The enclosed file appears directly in the recipient’s In Tray as the
file itself rather than as a letter with an enclosure. If you specify this
value for the sendAs parameter, the letter can contain only one
enclosure.
kSMPSendAs| mageMask
The SMPSendLet t er function converts the note into an image and
calls your image-drawing routine to convert the enclosures into an
image.
To combine formats, perform a bitwise OR operation on the appropriate constants. For
example, to send a document as both a note with enclosures and as an image, set the
sendAs parameter to kSMPSendAsEncl osur eMask PLUS kSMPSendAs| mageMask
in Pascal or KSMPSendAsEncl osur eMask OR kSMPSendAs| mageMask in assembly
language or C. You cannot combine the send-as-file format (kSMPSendFi | eOnl yMask)
with the note-with-enclosures format (k SMPSendAsEncl| osur eMask).

SPECIAL CONSIDERATIONS

3-40

This function may move or purge memory; you should not call this function at interrupt
time.

You cannot combine the document-only format (kSMPSendFi | eOnl yMask) with the
note-with-enclosures format (kSMPSendAsEncl osur eMask). If you attempt to do so,
the function returns the par aner r result code.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector

$0002 $01F4

noErr 0 No error

parantrr -50 Error in a parameter value

The procedure declaration for your image-drawing routine is described on page 3-123.
The enclosure descriptor is defined in “Enclosure Descriptor” on page 3-26.
The recipient descriptor is defined in “Recipient Descriptor” on page 3-25.

The St Get Scri pt Manager Var i abl e function and Font Scri pt function are
described in Inside Macintosh: Text in the chapter “Script Manager.”

You can obtain record IDs for the recipients of the letter by using the dialog boxes or the
Catalog-Browsing panel described in the chapter “Standard Catalog Package” in this
book.

You can create a linked list of record descriptors from the recipient record IDs by calling
the SMPResol veToReci pi ent function described on page 3-44.

SMPNewPage

DESCRIPTION

The SMPNewPage function creates a new page for use by your image-drawing routine.
pascal OSErr SMPNewPage(QpenCPi cPar ans *newHeader) ;

newHeader Pointer to an QpenCPi cPar ans structure (see the chapter “Color
QuickDraw” in Inside Macintosh: Imaging With QuickDraw). The
SMPNewPage function sets the size of your graphics port rectangle equal
to the size of the source rectangle you specify in this structure, and sets
the image’s horizontal and vertical resolutions to those you specify in this
structure. For the normal resolution of the Macintosh screen, use 72 pixels
per inch for both the vertical and horizontal resolutions.

The SMPSendLet t er or SMPI mage function calls your image-drawing routine when
you add an image to a letter you are sending. Your image-drawing routine then calls the
SMPNewPage function before it draws each new page of an image file.

Standard Mail Package Reference 3-41

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Note

You use the hRes and vRes fields in the OpenCPi cPar ans structure to
specify the horizontal and vertical resolutions of the image. Both of these
fields are of type Fi xed, which is a long word that contains an integer
part in the high-order word and a binary fraction in the low-order word.
To set the horizontal resolution to 72 dpi, for example, you specify a
value of 0x00480000 for the hRes field to indicate an integer part with a
value of 72 and no fractional part. If by mistake you simply specified a
value of 72 (that is, 0x00000048) for the hRes field, you would be
indicating an integer part with a value of 0 and a fractional part of
9/8192. Note also that you can use the Fi xRat i 0 routine to create a
value of type Fi xed from two integer values representing a numerator
and denominator. O

SPECIAL CONSIDERATIONS

If you change the graphics port within your image-drawing routine, you must change it
back before calling the SMPNewPage function.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$0002 $0834

noErr 0 No error
kSMPTooManyPages -1927 Image is more than 127 pages

The SMPSendLet t er function is described on page 3-37.
The procedure declaration for your image-drawing routine is described on page 3-123.

The OpenCPi cPar ans structure is described in the chapter “Color QuickDraw” in
Inside Macintosh: Imaging With QuickDraw. The Fi xRat i 0 routine is described in Inside
Macintosh: Operating System Ultilities.

SMPImageErr

3-42

The SMPI mageEr r function returns result codes from image-drawing routines.

pascal OSErr SMPI mageErr (void);

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

DESCRIPTION
The SMPSendLet t er or SMPI mage function calls your image-drawing routine when
you add an image to a letter you are sending. Your image-drawing routine calls the
SMPI mageEr r function instead of calling the QDEr r or function after it calls each
QuickDraw routine. The SMPI mageEr r function returns both QuickDraw errors and
errors returned by the SMPAddBI ock function.

SPECIAL CONSIDERATIONS

If you change the graphics port within your image-drawing routine, you must change it
back before calling the SMPI mageEr r function.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0000 $0835
RESULT CODES

noErr 0 No error

dskFul Err -34 Disk full

pi xmapTooDeepErr -148 Pixel map structure is deeper than 1 bit per pixel

nf St ackErr -149 Insufficient stack

rgnTooBi gErr =500 Bitmap would convert to a region greater than 64 KB
SEE ALSO

The SMPSendLet t er function is described on page 3-37.
The procedure declaration for your image-drawing routine is described on page 3-123.

The QDEr r or function is described in the chapter “Color QuickDraw” in Inside
Macintosh: Imaging With QuickDraw.

The SMPI mageEr r function returns both QuickDraw errors and errors returned by the
SMPAddBI ock function (page 3-91).

Standard Mail Package Reference 3-43

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

SMPResolveToRecipient

DESCRIPTION

The SMPResol veToReci pi ent function takes a pointer to a PackedDSSpec structure
and returns a pointer to a linked list of mail addresses.

pascal OSErr SMPResol veToReci pi ent (PackedDSSpecPtr dsSpec,
SMPReci pi ent DescriptorPtr *recipientlList,
Authldentity identity);

dsSpec A pointer to a PackedDSSpec structure containing the record ID and
location information for a user record or group record.

reci pi ent Li st
A pointer to a linked list of recipients for a letter. You can use this
parameter as input to the SMPSendLet t er function, or you can use the
reci pi ent field of the recipient descriptor as input to the
SMPAddAddr ess function.

identity The authentication identity of the caller. The catalog uses this identity to
determine whether the caller has the access privileges necessary to
resolve specific mail addresses.

When the user selects a record from one of the standard dialog boxes or from the
Catalog-Browsing panel, you can use a pointer to the PackedDSSpec structure for that
record as input to the SMPResol veToReci pi ent function.

If the PackedDSSpec structure holds a single address, the function returns a linked list
with only one item. If the record is for a group address (that is, if the type of the record is
G oup) and the record is in a personal catalog, then the function resolves it into a linked
list of all the members of the group, including all the members of any personal catalog
groups in that group. The function performs this service for group addresses in personal
catalogs because the recipient is unlikely to have the same information in his or her
personal catalog. The function does not expand groups that are not in personal catalogs,
because the recipient is assumed to have access to the catalog server to expand those
groups.

You can use the linked list returned by the SMPResol veToReci pi ent function as input
to the SMPSendLet t er function.

SPECIAL CONSIDERATIONS

3-44

The SMPResol veToReci pi ent function allocates each recipient descriptor in the
current heap. To dispose of a recipient descriptor you must first call the Di sposePt r
function to deallocate the r eci pi ent field in the recipient descriptor, and then call the
Di sposePt r function again to dispose of the recipient descriptor itself.

This function may move or purge memory; you should not call this function at interrupt
time.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Providing Mailers in Your Windows

Parameter count Routine selector
$0006 $044C

noErr 0 No error
menfFul | Err -108 Out of memory

The routines for displaying and obtaining information from standard catalog dialog
boxes and the Catalog-Browsing panel are described in the chapter “Standard Catalog
Package” in this book.

Recipient descriptors are described in “Recipient Descriptor” on page 3-25.

The SMPSendLet t er function is described on page 3-37. The SMPAddAddr ess function
is described on page 3-118.

The routines in this section add a mailer to a window and help you to make the mailer
appear to be an integral part of your application. You must call the SMPI ni t Mai | er
function before calling any of the other mailer functions.

abexoed |reN plepuels -

The SMPNewVhi | er function (page 3-46) adds a new mailer to a window. The

SMPCGet Di nensi ons function (page 3-48) lets you determine the size of a mailer so you
can decide how to fit it in your window. You can add a new mailer to the mailer set of a
received letter with the SMPMai | er For war d function (page 3-49) or create a new mailer
for a reply letter with the SMPMai | er Repl y function (page 3-51).

The SMPExpandOr Cont r act function (page 3-56) lets you expand or contract a mailer
from within your application, and the SMPMoveMai | er function (page 3-61) lets you
move a mailer within your window.

You can use the SMPGet Tabl nf o (page 3-53) and SMPBeconeTar get (page 3-54)
functions to let the user navigate seamlessly among fields in the mailer and your
application window using the Tab key.

You can call the SMPPr epar eToCl ose function (page 3-59) to determine whether you
can close a window that contains a mailer. You use the SMPDi sposeMi | er function
(page 3-61) to remove a mailer from a window and release the memory used by the
mailer.

Standard Mail Package Reference 3-45

CHAPTER 3

Standard Mail Package

SMPInitMailer

The SMPI ni t Mai | er function initializes the mailer routines of the Standard Mail
Package.

pascal OSErr SMPInitMiler(long mailerVersion);

mai | er Ver si on
The version number of the Standard Mail Package.

DESCRIPTION

You must call this function before the first time you call any other Standard Mail Package
function that applies to mailers. If you do not call this function, other mailer functions
return the result code kSMPMi | er Not | ni ti al i zed when you call them.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0002 $1285
RESULT CODES
noErr 0 No error
mentul | Err -108 Out of memory
SMPNewMailer

The SMPNewMai | er function allocates a new mailer for a window you specify.

pascal OSErr SMPNewMai | er (W ndowPtr wi ndow,
Poi nt upper Left,
Bool ean canContract,
Bool ean initiall yExpanded,
Aut hl dentity identity,
const PrepareMi |l er For Drawi ngProcPtr
pr epar eMai | er For Dr awi ngCB,
long clientData);

3-46 Standard Mail Package Reference

DESCRIPTION

CHAPTER 3

Standard Mail Package

W ndow The window in which you want the mailer to appear.

upper Left The upper-left corner of the mailer, in the window’s local coordinates.
This position is normally (0, 0).

canContract
A Boolean value that specifies whether it should be possible to contract
and expand the mailer. Specify t r ue if you want the mailer to have this
ability; this parameter should always be set to t r ue unless the mailer is
in its own, separate window.

initiall yExpanded
A Boolean value that specifies whether the mailer is to be expanded or
contracted when initially displayed. Specify t r ue if you want it to be
expanded initially. The function ignores this parameter if the
canCont r act parameter is set tof al se.

identity The authentication identity of the sender of the letter. Specify 0 to use the
identity of the most recently authenticated user. The SMPNewVki | er
function uses the identity to fill in the From field in the mailer.

pr epar eMai | er For Dr awi ngCB
A pointer to your drawing-preparation function. If you change the clip
region, coordinates, or other aspects of your window’s graphics port, you
must provide this function to restore the graphics port to a standard state
so that the Standard Mail Package can draw a mailer in your window. The
drawing-preparation function is described on page 3-122. Specify ni | for
this parameter if you are not providing a drawing-preparation function.

clientData
Reserved for your use. The SMPNewMai | er function passes this value
unaltered to your drawing callback routine.

You should call the SMPNewiVkii | er function whenever you want to have a mailer
appear in a window; for example, when the user chooses the Add Mailer item from the
Mail menu in your application. When you call this function, the Standard Mail Package
adds a mailer to the window you specify. The next time the user chooses the Save or
Save As commands, you should save the document in the letter file format rather than in
your application’s file format.

If you want the mailer to appear in a modeless, movable dialog box, or for some other
reason do not want to provide the user with the ability to expand and contract the
mailer, set the canCont r act parameter tof al se.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

Standard Mail Package Reference 3-47

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector

$000C $125D

noErr 0 No error

menfFul | Err -108 Out of memory

kSMPMai | erNot I nitialized -1902 The mailer has not been initialized

kSMPMai | er Al r eadyl nW ndow -1911 A mailer was previously allocated

Use the SMPBegi nSave function (page 3-77) to save a document in the letter file format.
Use the SMPDi sposeMi | er function (page 3-61) to dispose of a mailer.

Use the SMPMhi | er For war d function (page 3-49) to add a mailer to a letter that you
want to forward.

Use the SMPMhi | er Repl y function (page 3-51) to add a reply mailer to a window.

SMPGetDimensions

DESCRIPTION

3-48

The SMPGet Di nensi ons function returns the standard dimensions of a mailer.

pascal OSErr SMPGet Di nensi ons(short *w dth,
short *contractedHei ght,
short *expandedHei ght);

wi dt h A pointer to the minimum width, in QuickDraw coordinates, that bounds
all of the fields in a mailer.

cont ract edHei ght
A pointer to the height, in QuickDraw coordinates, of a mailer in the
contracted state.

expandedHei ght
A pointer to the height, in QuickDraw coordinates, of a mailer in the
expanded state.

The SMPCet Di mensi ons function lets you determine the standard dimensions of a
mailer from within your program so that your application will continue to work
correctly if Apple ever changes the size of a mailer. When the user expands or contracts a
mailer, it is up to you to update the content part of your document’s window
appropriately. You can use the heights returned by the SMPGet Di mensi ons function to
determine how large an area of your window is affected. You can use the width returned

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

by this function to help determine the size to make a window when the user clicks the
zoom box. Clicking the zoom box should never make a window with a mailer in it

smaller than the minimum size of the mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Routine selector
$125C

Parameter count
$0006

RESULT CODES

nokErr 0
kSMPMai | erNot I nitialized -1902

No error
The mailer has not been initialized

SEE ALSO
You use the SMPMai | er Event function (page 3-63) to determine when the user has
contracted or expanded the mailer.
SMPMailerForward
The SMPMai | er For war d function creates a new mailer for a letter that is to be
forwarded.
pascal OSErr SMPMai | er For war d(W ndowPt r wi ndow,
Aut hl dentity from;
w ndow A pointer to the window containing the letter you want to forward.
from The authentication identity of the sender of the letter. Specify 0 to use the
identity of the user whose mailbox contains the received letter. The
SMPMai | er For war d function uses the identity to fill in the From field in
the mailer.
DESCRIPTION

When the user has received a letter and chooses the Forward item in the Mail menu, you
call the SMPMai | er For war d function to add a new mailer to the mailer set. The
function superimposes the new mailer on the existing mailers in the specified window
and, if this is only the second mailer in the mailer set, adds a pop-up menu to the From
field in the mailer. If there are already two or more mailers in the mailer set, the function

Standard Mail Package Reference

3-49

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

adds the new mailer to the existing pop-up menu. The user can use this menu to view
any of the mailers in the mailer set. Figure 3-6 shows the top mailer and the pop-up
menu for a letter that has been forwarded once.

You can call the SMPMi | er For war d function to add a new mailer to a mailer set only if
the top mailer in the set is a received mailer. You can use the hasBeenRecei ved field of
the SMPMai | er St at e structure to get this information.

Figure 3-6 Mailer for a forwarded letter
S=——————"— Re> SMF Duestion a0a0————
= Forwarded by Subject
| Alan Spragens |E Fwd® Re: SHMP Question
Recipients
i
] Enclosures
it
= =
E=————"—"— Re> S™MP OQuestion EEEI
= Forwarded by Subject
| Alan Spragens + Alan Spragens = Question
| Charlie Kim
Recipients |
ir
] Enclosures
it
= =
SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0004 $1261

3-50 Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

RESULT CODES
noErr 0 No error
kOCEUnknownl D -1567 Authentication identity passed is not valid
kSMPNoMai | er | nW ndow -1909 No mailer is in the specified window

SEE ALSO
Use the SMPNewVhi | er function (page 3-46) to add a new mailer to a window that has
no mailer.
Use the SMPMai | er Repl y function (described next) to add a new mailer to a letter to
which you want to reply.
Use the SMPCet Mi | er St at e function (page 3-69) to obtain an SMPMai | er St at e
structure. The SMPMai | er St at e structure is described in “Mailer-State Structure” on
page 3-30.

SMPMailerReply

The SMPMai | er Repl y function helps you reply to a letter by adding a new mailer to a
window you specify and addressing the reply mailer by copying information from the
original mailer.

pascal OSErr SMPMai | er Repl y(W ndowPtr ori gi nal Letter,
W ndowPtr newlLetter,
Bool ean repl yToAl |,
Poi nt upper Left,
Bool ean canContract,
Bool ean initiall yExpanded,
Aut hl dentity identity,
const PrepareMai |l er For Drawi ngProcPtr
pr epar eMai | er For Dr awi ngCB,
long clientData);

original Letter
A pointer to the window containing the mailer for the original letter to
which the user wishes to reply.

newLetter A pointer to the window that you are providing for the reply. The
function adds a mailer to this window; the window must not already
contain a mailer.

repl yToAl |
A Boolean value that indicates whether all the original “To” and “cc”
recipients should be included as addressees for the reply.

upper Left The upper-left corner of the mailer in the window’s local coordinates.
This position is normally (0, 0).

Standard Mail Package Reference 3-51

abexoed |reN plepuels -

DESCRIPTION

CHAPTER 3

Standard Mail Package

canCont r act
A Boolean value that specifies whether it should be possible to contract
and expand the mailer. Specify t r ue if you want the mailer to have this
ability; this parameter should always be set to t r ue unless the mailer is
in its own, separate window.

initiall yExpanded
A Boolean value that specifies whether the mailer is to be expanded or
contracted when initially displayed. Specify t r ue if you want it to be
expanded initially. The function ignores this parameter if the
canCont r act parameter is set to f al se.

identity The authentication identity of the sender of the letter. Specify 0 to use the
identity of the user whose mailbox contains the received letter. The
SMPMai | er Repl y function uses the identity to fill in the From field in
the mailer.

pr epar eMai | er For Dr awi ngCB
A pointer to your drawing-preparation function. If you change the clip
region, coordinates, or other aspects of your window’s graphics port, you
must provide this function to restore the graphics port to a standard state
so that the Standard Mail Package can draw a mailer in your window. The
drawing-preparation function is described on page 3-122. Specify ni | for
this field if you are not providing a drawing-preparation function.

clientData
Reserved for your use. The SMPMai | er Repl y function passes this value
unaltered to your callback routine.

When the user chooses the Reply or Reply to All items in the Mail menu, you should
create a new document window and call the SMPMAai | er Repl y function. This function
places a mailer in the window, copies the subject from the original letter, places the string
“Re>" in front of it, and places it in the Subject field of the new mailer. Then it copies the
From address from the original letter and places it in the Recipients field of the reply
mailer. If the user chose the Reply to All item, you should set the parameter

repl yToAl | totrue, and the SMPMai | er Repl y function also copies all the recipients
in the Recipients field— including the “cc” recipients—of the received mailer and places
them in the corresponding fields of the reply mailer.

If the original letter has been forwarded, the SMPMai | er Repl y function takes the
subject and addresses from the original letter’s most recent mailer; that is, from the
mailer that was added the last time the letter was forwarded.

You should call the SMPMai | er Repl y function only if the top mailer in the mailer set is
a received mailer. You can use the hasBeenRecei ved field of the SMPMai | er St at e
structure to get this information.

SPECIAL CONSIDERATIONS

3-52

This function may move or purge memory; you should not call this function at interrupt
time.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$000F $1262

noErr 0 No error

kCCEUnknownl D -1567 Authentication identity is not valid
kSMPNoMai | er | nW ndow -1909 No mailer is in the specified window

kSMPMai | er Al r eadyl nW ndow -1911 Specified window already has a mailer

SEE ALSO
Use the SMPNewMai | er function (page 3-46) to add a new mailer to a window that has
no mailer.
Use the SMPMai | er For war d function (page 3-49) to add a mailer to a letter that you
want to forward.
Use the SMPGet Mai | er St at e function (page 3-69) to obtain an SMPMai | er St at e
structure. The SMPMai | er St at e structure is described in “Mailer-State Structure” on
page 3-30.

SMPGetTablnfo
The SMPCet Tabl nf o function tells you which fields in the mailer are the first and last to
be highlighted when the user presses the Tab key repeatedly to move from one field to
another.
pascal OSErr SMPGet Tabl nf o(SMPMai | er Corponent *fir st Tab,

SMPMai | er Corponent *| ast Tab) ;

firstTab The first field highlighted.
| ast Tab The last field highlighted.

DESCRIPTION

When the user first clicks in a mailer, the Standard Mail Package makes one field the
target for user actions and highlights that field. If the user presses the Tab key, the
Standard Mail Package makes another field the target, and so on, eventually returning to
the first field. You can intercept this sequence and make a field in your window active
when the user presses the Tab key, returning to the mailer after you have given the user
the opportunity to modify one or more fields in your window. The SMPCGet Tabl nf o
function tells you which field is the first one to be made a target by the Standard Mail
Package and which is the last, so you know where to intercept the sequence and where

Standard Mail Package Reference 3-53

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

to return to it. This sequence is not dependent on the state of the mailer; you need call it
only once.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector

$0004 $1274

noErr 0 No error

kSMPMai | erNot I nitialized -1902 Mailer has not been initialized

The possible values for the SMPMai | er Conponent data type are shown on page 3-32.

You use the SMPBeconeTar get function (described next) to return the Tab sequence to
the mailer.

You use the SMPGet Mai | er St at e function (page 3-69) to determine which field is
currently the target.

SMPBecomeTarget

3-54

The SMPBeconeTar get function specifies whether your window or the mailer is the
target of user action and, if the mailer is the target, specifies which field in the mailer is
active.

pascal OSErr SMPBeconeTar get (W ndowPt r wi ndow,
Bool ean beconeTar get,
SMPMai | er Corponent whi chFi el d) ;

W ndow The window containing the mailer.

beconeTar get
A Boolean value that specifies whether the mailer in this window should
become the target of the user’s actions. If this parameter is set to t r ue,
the mailer becomes the target. If it is set to f al se, the Standard Mail
Package does not highlight any field, and the SMPMai | er Event function
assumes that key-down events are intended for your application.

Standard Mail Package Reference

DESCRIPTION

CHAPTER 3

Standard Mail Package

whi chFi el d
If the beconeTar get parameter is set to t r ue, this parameter specifies
which field should be active. If the beconmeTar get parameter is set to
f al se, the function ignores this field. Possible values for this field are
shown on page 3-32.

The user can use the Tab key to cycle through the fields in the mailer. Each time the user
presses the Tab key, you receive a key-down event. In most cases, you would call the
SMPMai | er Event function to handle the event. However, if you want one or more
fields in your application’s window to be included in the set of fields that the user can
select with the Tab key, you must determine the nature of the key-down event yourself.
If the user pressed the Tab key, you can call the SMPGet Mai | er St at e function

(page 3-69) to determine which field in the mailer is currently the target. You can then
check the results of the SMPGet Tabl nf o function to find out which field is the last one
in the sequence. If the current field is the one returned in the | ast Tab parameter of the
SMPCet Tabl nf o function, you can call the SMPBeconeTar get function with the
beconmeTar get parameter set to f al se. You can then activate and highlight whichever
field in your window you wish.

When you have finished cycling through the fields in your window;, call the
SMPBeconeTar get function again, this time with the becomeTar get parameter set to
t r ue and the whi chFi el d parameter set to the value returned in the f i r st Tab
parameter of the SMPGet Tabl nf o function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector

$0005 $1273

noErr 0 No error

kSMPNoMai | er | nW ndow -1909 No mailer is in this window
kSWPI | | egal Conponent -1918 Bad field name parameter
kSMPMai | er Al r eadyNot Tar get -1919 This mailer is not the target
kSMPConponent | sAl r eadyTar get -1920 The selected field is the target

The possible values for the SMPMai | er Conponent data type are shown on page 3-32.

Standard Mail Package Reference 3-55

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

You can call the SMPGet Mai | er St at e function (page 3-69) to determine which field in
the mailer is currently the target.

You can call the SMPGet Tabl nf o function (page 3-53) to find out which fields are the
first and last in the selection sequence.

You can call the SMPMai | er Event function (page 3-63) each time you receive an event.
This function returns a value telling you how the Standard Mail Package handled the
event and whether your application has to process it as well.

SMPExpandOrContract

DESCRIPTION

The SMPExpandOr Cont r act function expands or contracts a mailer.

pascal OSErr SMPExpandOr Contract (W ndowPtr w ndow,
Bool ean expand);

w ndow The window containing the mailer.

expand A Boolean value that specifies whether the mailer in this window should
be expanded (t r ue) or contracted (f al se).

The user indicates a desire to expand or contract a mailer by clicking the triangle in the
upper-left corner of the mailer (see Figure 3-2 and Figure 3-3 on page 3-5). If the user
wants to expand the mailer, the SMPMai | er Event function returns the flag kExpanded.
You must update your window to make room for the expanded mailer and then call the
SMPExpandOr Cont r act function to expand the mailer. (When the user contracts the
mailer, by contrast, you have to update the content portion of your window but do not
have to call the SMPExpandOr Cont r act function.)

The SMPExpandOr Cont r act function also lets you expand or contract the mailer
entirely from within your application, for example, to implement an Expand or Contract
menu command.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

3-56

Parameter count Routine selector
$0003 $1272

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

RESULT CODES
noErr 0 No error
kSMPNoMai | er | nW ndow -1909 No mailer is in
specified window
kSMPMai | er Cannot ExpandOr Cont r act -1916 Mailer created with
canCont r act
parameter set to f al se
kSMPMai | er Al r eadyExpandedOr Cont r act ed -1917 Mailer is already in
requested state
SEE ALSO
You set the initial state of the mailer (expanded or contracted) with the SMPNewVki | er
function (page 3-46), the SMPMai | er Repl y function (page 3-51), or the
SMPQpenLet t er function (page 3-94).
You can call the SMPGet Mai | er St at e function (page 3-69) to determine whether the
mailer is currently expanded or contracted.
You call the SMPCGet Di mensi ons function (page 3-48) to determine the size of an
expanded or contracted mailer.
SMPMoveMailer
The SMPMoveMai | er function moves a mailer within your window.
pascal OSErr SMPMoveMai | er (W ndowPt r wi ndow,
short dh,
short dv);
W ndow The window containing the mailer you want to move.
dh The horizontal distance, in QuickDraw coordinates, by which you want to
move the mailer. Use a positive number to move the mailer to the right
and a negative number to move the mailer to the left.
dv The vertical distance, in QuickDraw coordinates, by which you want to
move the mailer. Use a positive number to move the mailer down and a
negative number to move the mailer up.
DESCRIPTION

You set the initial location of a mailer in your window when you call the

SMPNewMhi | er function or the SMPMai | er Repl y function. You can use the
SMPMoveMai | er function to move a mailer if, for example, you need to make space for
a tool palette at the top or left edge of your window.

Standard Mail Package Reference 3-57

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$0004 $126A
noErr 0 No error

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

You set the initial location of the mailer with the SMPNewMVhi | er function (page 3-46),
the SMPMai | er Repl y function (page 3-51), or the SMPOpenLet t er function (page 3-94).

SMPTagDialog

DESCRIPTION

3-58

The SMPTagDi al og function displays a dialog box that allows a user to add a tag to a
letter that was opened from the mailbox.

pascal OSErr SMPTagDi al og(W ndowPt r wi ndow,
RString32 *theTag);

W ndow The window containing the mailer.

t heTag A pointer to the tag to be associated with the letter. If you specify a tag
when you call the function, it is displayed as the default value in the
dialog box. The function uses this parameter to return the tag specified by
the user.

The PowerTalk mailbox allows the user to sort and display letters according to tags that
the user has specified for each letter. Your application can provide a Tag item in the Mail
menu. If the user chooses this item, you should call the SMPTagDi al og function to let
the user specify the tag. You should call the SMPCet Mai | er St at e function to
determine whether to enable the Tag command.

The AOCE software stores the tag with the letter and displays it for the user in the In and
Out Trays. It is not necessary for you to specify this tag in the close-options structure
when you call the SMPCl oseOpt i onsDi al og or SMPDi sposeMai | er functions. When
you save the letter to disk, the letter becomes an HFS object and no longer has a tag.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0004 $128B

RESULT CODES
nokErr 0
par anterr -50

kSMPNoMai | er | nW ndow -1909

SEE ALSO

No error
Error in a parameter value
No mailer is in specified window

Call the SMPGet Mai | er St at e function (page 3-69) to determine whether to enable the

Tag command.

SMPPrepareToClose

The SMPPr epar eToCd ose function tells you whether a mailer can be closed.

pascal OSErr SMPPrepareToC ose(W ndowPtr wi ndow) ;

w ndow

DESCRIPTION

The window containing the mailer that you would like to close.

In certain circumstances—for instance, when an enclosure is open—you can’t dispose of
a mailer. The SMPPr epar eToC ose function returns an error when you can’t dispose of
a mailer, so you can display a dialog box informing the user of the situation rather than

closing the window containing the mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Routine selector
$1287

Parameter count
$0002

Standard Mail Package Reference

3-59

abexoed |reN plepuels -

RESULT CODES

SEE ALSO

CHAPTER 3

Standard Mail Package

noErr 0 No error

kSMPCopy| nPr ogr ess -1901 Finder is copying an enclosure
kSMPHasOpenAt t achment s -1906 One or more enclosures are open
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

You should call the SMPPr epar eToCl ose function before closing a window containing
a mailer or attempting to call the SMPDi sposeMai | er function (page 3-61).

SMPCloseOptionsDialog

DESCRIPTION

3-60

The SMPA oseOpt i onsDi al og function displays a dialog box that allows a user to
delete letters or add tags to letters that were opened from the mailbox.

pascal OSErr SMPC oseOpti onsDi al og(W ndowPtr w ndow,
SMPCl oseQpti onsPtr cl oseQptions);

w ndow The window containing the mailer.

cl oseOpti ons
A pointer to a close-options structure that specifies the initial settings to
be displayed in the dialog box. After the function call returns, this
structure contains the new settings entered by the user in the
close-options dialog box.

Your application should provide a user preference option that specifies whether
attempting to close a letter should cause the close-options dialog box to appear. If the
user elects to see the dialog box, you should call the SMPCl oseOpt i onsDi al og
function whenever a user closes a window containing a mailer and before you call the
SMPDi sposeMai | er function. If the user opened the letter from the mailbox, the
SMPCl oseOpt i onsDi al og function displays the close-options dialog box; otherwise,
the function does nothing.

You can use the cl oseOpt i ons parameter to provide default settings for the dialog
box. If you provide a Close and Delete item in the File menu and the user chooses this
item, you should specify t r ue for the noveToTr ash field of the structure pointed to by
the cl oseOpt i ons parameter.

You can use the t ag field of the structure pointed to by the cl oseOpt i ons parameter to
specify a default tag for the letter. If the letter already has a tag value, either because the
user added it the last time the letter was closed or because you called the

SMPTagDi al og function, the Standard Mail Package puts that tag in the t ag field of the
dialog box. It is not necessary for you to specify this tag in the close-options structure
when you call the SMPCl oseOpt i onsDi al og function.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

The Standard Mail Package stores the options the user selects and executes them when
you call the SMPDi sposeMai | er function (if the cl oseOpt i ons parameter in the
SMPDi sposeMi | er function is not settoni |).

SPECIAL CONSIDERATIONS

ASSEMBLY-LANGUAGE INFORMATION

If you specify t r ue for both the noveToTr ash field and the addTag field of the
close-options structure, the SMPCl osept i onsDi al og function returns the par aner r
result code.

If you specify t r ue for the addTag field of the close-options structure, you must also
specify a valid tag for the letter. If you specify t r ue for the addTag field and you specify
a zero-length string for the t ag field, the function returns the par anEr r result code.

This function may move or purge memory; you should not call this function at interrupt
time.

abexoed |reN plepuels -

Parameter count Routine selector
$0004 $1288
RESULT CODES
noErr 0 No error
par antrr -50 Error in a parameter value
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
SEE ALSO
The close-options structure is described in “Close-Options Structure” on page 3-29.
You can call the SMPTagDi al og function (page 3-58) to display a dialog box that allows
the user to add a tag to a letter in the In Tray.
Call the SMPDi sposeMni | er function (described next) to execute the close options.
SMPDisposeMailer

The SMPDi sposeMai | er function deallocates the mailer set in the specified window
and erases the mailer set.

pascal OSErr SMPDi sposeMail er (W ndowPtr w ndow,
SMPCl oseOpti onsPtr cl oseQptions);

W ndow The window containing the mailer set you want to deallocate.

Standard Mail Package Reference 3-61

DESCRIPTION

CHAPTER 3

Standard Mail Package

cl oseOpti ons
A pointer to a close-options structure specifying actions the Standard
Mail Package should take in addition to disposing of the mailer set. If you
specify nil for this parameter, the function disposes of the mailer set
without taking any other action.

You should call the SMPDi sposeMai | er function when the user chooses the Remove
Mailer item from a menu or when you close a window that contains a mailer. This
function removes the mailer set from the window you specify and deallocates all the
data structures associated with that mailer set. If the user removes the mailer from the
window, the next time the user chooses the Save or Save As commands, you should save
the document in your application’s file format rather than the letter file format.

You use the cl oseOpt i ons parameter to specify close options. For example, you can
provide a Close and Delete item in the File menu. If the user chooses this item, you
should specify t r ue for the noveToTr ash field of the structure pointed to by the

cl oseOpt i ons parameter.

Your application may provide a user preference option that specifies whether attempting
to close a letter should cause the close-options dialog box to appear. If the user elects to
see the dialog box, you should call the SMPCl oseOpt i onsDi al og function whenever
the user closes a window containing a mailer. Then use the pointer to the close-options
structure that you provided to the SMPCl oseQpt i onsDi al og function as the value of
the cl oseQpt i ons parameter of the SMPDi sposeMai | er function.

Before you close a window that contains a mailer, call the SMPPr epar eToCl ose
function to make sure that you can dispose of the mailer.

SPECIAL CONSIDERATIONS

If you specify t r ue for both the noveToTr ash field and the addTag field of the
close-options structure, the SMPDi sposeMai | er function returns the par anEr r result
code.

If you specify t r ue for the addTag field of the close-options structure, you must also
specify a valid tag for the letter. If you specify t r ue for the addTag field and you specify
a zero-length string for the t ag field, the function returns the par anEr r result code.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

3-62

Parameter count Routine selector
$0004 $125E

Standard Mail Package Reference

RESULT CODES

SEE ALSO

CHAPTER 3

Standard Mail Package

noErr 0 No error

par antrr -50 Error in a parameter value
kSMPHasOpenAt t achnment s -1906 One or more enclosures are open
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

The SMPPr epar eToCd ose function (page 3-59) tells you whether it’s possible to dispose
of a mailer.

The close-options structure is described in “Close-Options Structure” on page 3-29.

The SMPCl oseOpt i onsDi al og function (page 3-60) displays a dialog box that lets the
user select close options for a letter that was opened from the mailbox.

Handling Events in Mailers

Whenever you receive an event for a window that contains a mailer, you can pass that
event directly to the SMPMai | er Event function (described next). The Standard Mail
Package handles the event if it applied to the mailer and returns a value that tells you
what action it took and whether you have to take any further action. You can also use the
SMPMai | er Edi t Command function (page 3-67) to handle events related to standard
items in the Edit menu.

When the user is working in the mailer, you must enable and disable items in the Edit
menu as appropriate. The SMPGet Mai | er St at e function (page 3-69) lets you
determine which items should be enabled or disabled. You must ensure that the Undo
command works consistently whether the user is working in the mailer or in your
application. You use the SMPGet Mai | er St at e function to determine when to clear
your application’s undo buffer, and you use the SMPCl ear Undo function (page 3-70) to
tell the mailer when to clear its Undo buffer.

Finally, you can use the SMPDr awVhi | er function (page 3-72) to redraw the mailer if
you want to handle update events yourself or if you need to redraw the mailer for some
other reason.

SMPMailerEvent

The SMPMai | er Event function processes events that you pass to it, gives you
information about how the Standard Mail Package responded to the event, and informs
you of further action that you must take.

pascal OSErr SMPMai | er Event (const Event Record *event,
SMPMai | er Resul t *what Happened,
const Front WndowProcPtr front W ndowCB,
long clientData);

Standard Mail Package Reference 3-63

abexoed |reN plepuels -

DESCRIPTION

3-64

CHAPTER 3

Standard Mail Package

event A pointer to the event record of an event returned to your application by
the Wai t Next Event function.

what Happened
A pointer to a set of flags informing you what action the
SMPMai | er Event function took.

front W ndowCB
A pointer to your front-window routine. This routine, described on
page 3-124, returns a pointer to the window that your application wants
the Standard Mail Package to consider as the front window. Specify ni |
for this field if you do not want to provide a front-window routine. If you
do not provide a front-window routine, the Standard Mail Package uses
the Window Manager’s Fr ont W ndow routine.

clientData
Reserved for your use. The SMPMai | er Event function passes this value
unaltered to your callback routine.

Each time your application calls the Wi t Next Event function, it can pass the event
record immediately to the SMPMai | er Event function. The SMPMai | er Event function
determines whether the Standard Mail Package should handle the event, your
application should handle the event, or action is required by both the Standard Mail
Package and your application. If the SMPMai | er Event function has to take any further
action, it does so before returning control to your application. In any case, the

what Happened parameter returns a set of flags that tell you what action, if any, the
function took, and whether your application must handle the event.

If the event record does not include a window pointer, the SMPMai | er Event function
uses your front-window callback routine to determine to which window the event
applies. If you do not provide a front-window callback routine, the SMPMai | er Event
function uses the Window Manager’s Fr ont W ndow routine.

If you decide instead to check the event record first and pass to the SMPMai | er Event
function only events that the Standard Mail Package must handle, call the
SMPBeconeTar get function when the mailer is no longer the target (for example, when
the user clicks in the content region of the window). In that case, you must still pass null
events to the SMPMai | er Event function frequently so that the Standard Mail Package
can control the appearance of the cursor, implement Balloon Help, and pass null events
to the Catalog-Browsing panel and Find-Record panel.

IMPORTANT

To use the Standard Mail Package, your application must be aware of
high-level events. You must pass all high-level events (including Apple
events) to the SMPMai | er Event function before calling the

AEPr ocessAppl eEvent or Accept Hi ghLevel Event routines. If you
do not do so, some Standard Mail Package features, such as enclosing
files and folders, may not work correctly. a

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

The flags returned by the what Happened parameter are as follows:

enum {
kSMPAppMust Handl eEvent Bi t,
k SMPAppShoul dl gnor eEvent Bi t,
kSMPCont ract edBi t,
kSMPExpandedBi t ,
kSWVPMai | er BeconesTargetBi t,
kSMPAppBeconesTargetBi t,
kSMPCur sor Over Mai l erBi t,
kSMPCr eat eCopyW ndowBi t ,
kSMPDi sposeCopyW ndowBi t

};
You can use the following masks to test for these bits:

enum {
kSMPAppMust Handl eEvent Mask
kSMPAppShoul dl gnor eEvent Mask

1<<k SMPAppMust Handl eEvent Bi t ,
1<<kSMPAppShoul dl gnor eEvent Bi t,

kSMPCont r act edMask = 1<<kSMPContractedBit,

k SMPExpandedMask = 1<<kSMPExpandedBit,

kSMPMai | er BeconmesTar get Mask = 1<<kSMPMui | er BeconmesTargetBit,
kSMPAppBeconesTar get Mask = 1<<kSMPAppBeconesTargetBit,
kSMPCur sor Over Mai | er Mask = 1<<kSMPCur sor Over Mai l erBi t

k SMPCr eat eCopyW ndowivask = 1<<kSMPCr eat eCopyW ndowBi t ,

kSMPDi sposeCopyW ndowivask
b

1<<k SMPDi sposeCopyW ndowBi t

typedef unsigned | ong SMPMai | er Resul t;

Bit descriptions

kSMPAppMust Handl eEvent Bi t
The application must process the event. The event was either an
event the Standard Mail Package couldn’t process, or it was one that
both the application and the Standard Mail Package must process
(such as activate and update events). The function always sets
either this flag or the kSMPAppShoul dl gnor eEvent Bi t flag.

kSMPAppShoul dl gnor eEvent Bi t
The application should ignore the event. It was handled by the
Standard Mail Package. The function always sets either this flag or
the kSMPAppMust Handl eEvent Bi t flag.

Standard Mail Package Reference 3-65

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

kSMPCont r act edBi t
The user clicked the triangle at the left edge of the mailer (see
Figure 3-3 on page 3-5), switching the mailer to the contracted state.
Because your application does not have to read the event record, the
function also sets the KSMPAppShoul dl gnor eEvent Bi t flag.
However, you must update the content portion of your
application’s frontmost window when you receive this flag.

kSMPExpandedBi t
The user clicked the triangle at the left edge of the mailer (see
Figure 3-2 on page 3-5), indicating a desire to switch the mailer to
the expanded state. Because your application does not have to read
the event record, the function also sets the
kSMPAppShoul dI gnor eEvent Bi t flag. However, you must
update the content portion of your application’s frontmost window
and call the SMPExpandOr Cont r act function (page 3-56) to finish
expanding the mailer when you receive this flag.

kSMPMai | er BeconesTar get Bi t
The user had been working in the application’s part of the window
but has now clicked in the mailer or contracted the mailer. Because
your application does not have to read the event record, the
function also sets the kSMPAppShoul dl gnor eEvent Bi t flag.
However, you might want to take other action, such as removing
highlighting from the content portion of the window or stopping an
insertion-point caret from blinking.

kSMPAppBecomesTar get Bi t
The user had been working in the mailer but has now clicked in the
application’s part of the window. Because you must handle this
event, the function also sets the kSMPAppMiust Handl eEvent Bi t
flag.

kSMPCur sor Over Mai | er Bi t
When this flag is set, the cursor is in the mailer in the frontmost
window, so the Standard Mail Package is controlling Balloon Help
and the appearance of the cursor. When this flag is cleared, the
cursor is not in the mailer, so you must control the appearance of
the cursor. The function also sets the
kSMPAppMust Handl eEvent Bi t flag when it sets or clears the
kSMPCur sor Over Mai | er Bi t flag. Because the Standard Mail
Package can detect the position of the cursor only when you give it
some processing time, the function sets or clears this flag only when
you pass it a null event.

kSMPCr eat eCopyW ndowBi t
The Standard Mail Package is using the Finder to copy files and has
displayed a modal dialog box showing the status of the copy
operation. You should continue to send events to the
SMPMai | er Event function.

kSMPDi sposeCopyW ndowBi t
The Standard Mail Package has removed the copy status dialog box.
Your application should resume normal operation.

3-66 Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

SPECIAL CONSIDERATIONS

The Standard Mail Package reserves all high-level events of class' cwi n' for its own
use. Do not install an event handler for events of this class. (There is no problem if you
have installed an Apple event handler with class and ID of t ypeW | dCar d, because the
Standard Mail Package removes that handler before calling the

AEPr ocessAppl eEvent routine and reinstalls it afterward.)

The SMPMi | er Event function may move or purge memory; you should not call this
function at interrupt time.

The SMPMai | er Event function preserves your application’s A5 world when it calls
your front-window routines. Therefore, you have access to your application’s global
variables from these routines.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$0008 $125F

noErr 0 No error

The front-window callback function is described on page 3-124.

If you check the event record first and pass to the SMPMai | er Event function only
events that the Standard Mail Package must handle, call the SMPBeconeTar get
function (page 3-54) when the mailer is no longer the target.

Call the SMPGet Mai | er St at e function (page 3-69) to determine the current state of the
mailer.

SMPMailerEditCommand

The SMPMai | er Edi t Conmand function handles Edit menu commands when they apply
to fields in the mailer.

pascal OSErr SMPMai | er Edi t Command(W ndowPt r wi ndow,
SMPEdi t Command conmand,
SMPMai | er Resul t *what Happened) ;

W ndow A pointer to the window containing the mailer.

conmmand The Edit menu command that the user chose.

Standard Mail Package Reference 3-67

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

what Happened
A pointer to a set of flags that indicate what action the function took and
whether you must take any action. This function sets either the
kSMPAppMust Handl eEvent Bi t or the
kSMPAppShoul di gnor eEvent Bi t flag.

DESCRIPTION

When the user chooses one of the standard Edit menu commands (Undo, Cut, Copy,
Paste, Clear, or Select All), you can call the SMPMi | er Edi t Command function
immediately. If the user has selected something in the mailer, the
SMPMai | er Edi t Command function handles the requested action, sets the
kSMPAppShoul dl gnor eEvent Bi t flag in the what Happened parameter, and returns.
If the user has not selected anything in the mailer, the function sets the
kSMPAppMust Handl eEvent Bi t flag and returns to you immediately. Use the
SMPGet Mai | er St at e function to determine which of the Edit menu commands to
enable.
The possible values for the command parameter are as follows:
enum {

kSMPUndoConmand,

k SMPCut Conmand,

k SMPCopy Conmrand,

kSMPPast eConmand,

kSMPCl ear Conmand,

kSMPSel ect Al | Command
b
t ypedef unsi gned short SMPEdi t Conmand;

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

3-68

Parameter count Routine selector
$0005 $1260

Standard Mail Package Reference

RESULT CODES

SEE ALSO

CHAPTER 3

Standard Mail Package

nokErr 0 No error
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
kSMPI | | egal Conponent -1918 Bad conmand parameter value

The f | ag field for the what Happened parameter is completely defined on page 3-65.

You can use the SMPGet Mai | er St at e function (page 3-69) to determine whether the
user is working in the mailer and, if so, which of the Edit menu commands to enable.

You can call the SMPMai | er Event function (page 3-63) each time you receive an event.
This function returns a value telling you how the Standard Mail Package handled the
event and whether your application has to process it as well. The SMPMai | er Event
function returns the value kSMPAppMust Handl eEvent Bi t when the event is an Edit
menu command.

SMPGetMailerState

DESCRIPTION

The SMPCGet Mai | er St at e function returns the state of the specified mailer.

pascal OSErr SMPGet Mail er St at e(wi ndowPt r wi ndow,
SMPMai | erState *itsState);

W ndow The window containing the mailer whose state you want to know.
itsState A pointer to a structure containing the state of the mailer. The

SMPMai | er St at e data type is defined and all of its fields are described
in “Mailer-State Structure” on page 3-30.

The SMPCet Mai | er St at e function lets you determine whether the user is working in
the mailer, and if so, which Edit menu and Mail menu commands you should enable. For
example, if both the i sTar get and canCut fields are set to t r ue, then you should
enable the Cut item in the Edit menu. This function also returns a value that helps you
determine whether to clear your application’s undo buffer. You should call this function
when you need to display the Edit menu (that is, before calling the MenuSel ect
function) or the Mail menu or when the user presses a keyboard equivalent for an Edit
menu command or Mail menu command.

This function also returns other information about the mailer, such as its current state
(contracted or expanded), its location in the window, and the number of mailers in the
mailer set.

Standard Mail Package Reference 3-69

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$0004 $1263

noErr 0 No error
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

The SMPMai | er St at e data type is defined and all of its fields are described in
“Mailer-State Structure” on page 3-30.

You can call the SMPMi | er Event function (page 3-63) each time you receive an event.
This function returns a value telling you how the Standard Mail Package handled the
event and whether your application has to process it as well.

SMPClearUndo

DESCRIPTION

3-70

The SMPA ear Undo function tells the Standard Mail Package to clear its undo buffer.
pascal OSErr SMPC ear Undo(W ndowPt r wi ndow) ;

w ndow A pointer to the window containing the mailer.

The Macintosh Human Interface Guidelines call for an Undo item in the Edit menu and
specify that only the latest action can be undone. Furthermore, certain actions that
cannot be undone should cause you to disable the Undo item and some should not; for
example, you should disable the Undo item after the user saves a file but not after the
user scrolls through the window. Even though the Standard Mail Package maintains its
own undo buffer, you are responsible for enabling and disabling the Undo item in the
Edit menu whether the user is working in the content portion of your window or in the
mailer. The SMPCl ear Undo function lets you coordinate the Standard Mail Package’s
undo facility with that of your application so that it appears to the user that there is only
one undo buffer for the entire window.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

You should call the SMPGet Mai | er St at e function when you need to display the Edit
menu (that is, before calling the MenuSel ect routine) or when the user presses a
keyboard equivalent for an Edit menu command. If the SMPGet Mai | er St at e function
indicates that the user is working in the content portion of the window, you must
determine whether the user can undo the action, and you must enable or disable the
Undo item in the Edit menu accordingly. If the action can be undone or if it causes you to
disable the Undo item, you must call the SMPCl ear Undo function to tell the Standard
Mail Package to clear its undo buffer. If you fail to do so, the Standard Mail Package will
not update the mailer state correctly.

Conversely, if the user’s last action was in the mailer, you must call the
SMPGet Mai | er St at e function to find out whether to enable or disable the Undo item
in the Edit menu and whether to clear your application’s undo buffer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$0002 $1275
noErr 0 No error

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

You can call the SMPMai | er Event function (page 3-63) each time you receive an event.
This function returns a value telling you how the Standard Mail Package handled the
event and whether your application has to process it as well.

The SMPCet Mai | er St at e function (page 3-69) returns a mailer-state structure; see
“Mailer-State Structure” on page 3-30. The undoSt at e field of the mailer-state structure,
described on page 3-33, returns a value that tells you whether to clear your application’s
undo buffer and whether to disable the Undo item in the Edit menu.

You can use the SMPMi | er Edi t Command function (page 3-67) to handle edit
commands when they apply to the mailer.

Standard Mail Package Reference 3-71

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

SMPDrawMailer

DESCRIPTION

The SMPDr awVhi | er function redraws the mailer in the window you specify.
pascal OSErr SMPDr awMai | er (W ndowPtr w ndow) ;

w ndow A pointer to the window containing the mailer you want to draw.

You use the SMPDr awVhi | er function to redraw a mailer when you need to do so but
have not received an update event, or if you want to handle an update event yourself
rather than passing it to the SMPMai | er Event function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$0002 $1269

noErr 0 No error
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

You can have the Standard Mail Package draw the mailer by passing update events to
the SMPMai | er Event function (page 3-63).

Sending and Saving Mail

3-72

The SMPBegi nSend function (page 3-81) starts the process of creating a letter that is to
be mailed. Immediately before you call the SMPBegi nSend function, you should call the
SMPSendOpt i onsDi al og function (page 3-73) to let the user set send options.

The SMPSendOpt i onsDi al og function returns the user’s choice: whether to send the
letter as an image, as standard interchange format, in one of your application’s native
formats, or in some combination of these three options. To send the letter as an image,
you must call the SMPI mage function (page 3-88) to put an image block in the letter. Call
the SMPAddCont ent function (page 3-85) to add a standard interchange format block to
the letter and the SMPAddMai nEncl osur e function (page 3-90) to add a document in

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

one of its native formats to the letter. You can also call the SMPAddBI ock function
(page 3-91) to add one or more blocks of your own design to the letter.

You can enclose files or folders in a letter by calling the SMPAddAt t achment function
(page 3-119) or the SMPAt t achDi al og function (page 3-119).

When you are ready to send the letter, call the SMPEndSend function (page 3-84).

The process of saving a letter to disk is similar to the process of sending one. First you
call the SMPBegi nSave function (page 3-77) to create the letter. Then you can use the
SMPAddCont ent , SMPAddMai nEncl osur e, and SMPAddBI ock functions to add

content to the letter. To save the letter, call the SMPEndSave function (page 3-80). You
can use the SMPOpenLet t er function (page 3-94) to open a letter on disk for reading.

SMPSendOptionsDialog

The SMPSendOpt i onsDi al og function displays the send-options dialog box and

returns the user’s selections.

pascal OSErr SMPSendOpti onsDi al og(W ndowPt r wi ndow,

w ndow
docunent Nane

Str 255 docunent Nane,

StringPtr nativeFormat Nanmes[],
unsi gned short nanmeCount,
SMPSendFor mat Mask canSend,
SMPSendFor mat *current For mat
SendOptionsFilterProc filterProc,
[ong clientData,

SMPSendFor mat *shoul dSend,
SMPSendOpt i onsPtr sendOpti ons);

A pointer to the window containing the mailer.

The name of the document. This name is displayed at the top of the

send-options dialog box.

nat i veFor mat Names

An array of string pointers containing the names of the “native” formats
your application can use for the letter. These names should be the same as
the formats listed in the dialog box you display when the user chooses
Save As from the File menu. If your application can write data in only one
format, use the name of the application. The Standard Mail Package
displays the names you list here in a pop-up menu in the send-options

dialog box.

nameCount The number of string pointers in the nat i veFor mat Names parameter.

Standard Mail Package Reference

3-73

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

canSend A set of flags indicating which types of format your application can send
for this letter. You can use any combination of the mask values
kSMPNat i veMask, kSMPI mageMask, and
kSMPSt andar dI nt er changeMask

cur rent For mat
A pointer to a send-format structure. If the user opened this letter from
the mail box or from disk, you should use this structure to indicate which
formats the letter currently contains. If this is a new letter, you should
indicate which formats you prefer to use for this letter. Do not include any
format you did not include in the canSend parameter.

filterProc
A pointer to a routine you can provide to add additional items to the
send-options dialog box. This routine is described on page 3-125.
clientData
A constant reserved for your use. The Standard Mail Package passes this
value to the routine you provide in the f i | t er Pr oc parameter.
shoul dSend
A pointer to a send-format structure, allocated by your application, in
which the SMPSendOpt i onsDi al og function returns the formats the
user has selected for sending the letter.

sendOpt i ons
A pointer to a send-options structure. Pass this pointer to the
SMPBegi nSend function when you are ready to send the letter. The
function only returns information in this structure; it ignores any values
in this structure that are set at the time you call the function.

DESCRIPTION

The send-options dialog box lets the user specify whether letters should be signed and
whether documents should be sent as application documents, images, or both.

Figure 3-7 shows a send-options dialog box.

3-74 Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

Figure 3-7 Send-options dialog box

Send document “Re* SMP Question™
Send as: | RAppleM™ail v| [15ign Letter

Priority: { High
® Normal
) Low

|:| Fultiple Formats

Send document “Re* SMP Question™

Send as: Pl BT [15ign Letter
Snapshot Priority: O High

® Normal
O Low

|:| Fultiple Formats

5end document “Re* SMP Question™
Send as: <] AppleMail []15ign Letter

[Snapshot Priority: { High
® Normal
O Low

abexoed |reN plepuels -

E Fultiple Formats

To make it possible for any user to read letters sent by your application, even if the
recipient doesn’t have your application, you should be able to add either a standard
interchange format version of your document, an image version, or both to the letter. If
the standard interchange format does not completely describe your application’s
documents, you can also send a document in one of its native formats either as a main
enclosure to the letter or as a block or blocks that you add to the letter. You use the
canSend parameter to specify which formats you are prepared to add to a letter.

You should call the SMPSendOpt i onsDi al og function before you use the

SMPBegi nSend function to initiate the process of sending a letter. The SMPBegi nSend
function returns a send-format structure that indicates whether the user wants to send
an image, standard interchange format, one of the document formats supported by your
application, or some combination of the three. If the reader wants to send an image, you
must call the SMPI mage function so that the Standard Mail Package can provide the
image. If the reader wants to send standard interchange format, call the

SMPAddCont ent function. If the user wants to send the letter as a document, the
send-format structure also indicates which of your application’s document formats to
use.

Standard Mail Package Reference 3-75

CHAPTER 3

Standard Mail Package

To add your own items to the send-options dialog box, provide a send-options filter
routine.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

The SMPSendOpt i onsDi al og function only returns the user’s selections. You cannot
use this function to set default values for the fields in the send-options dialog box.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector

$0013 $1388

nokErr 0 No error

par antrr -50 Error in a parameter value

user Cancel edErr -128 User clicked Cancel button
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
kSWPI | | egal SendFor mat s -1923 Format not in canSend parameter

See the descriptions of the SMPBegi nSend (page 3-81) and SMPEndSend (page 3-84)
functions for more information about sending mail.

The send-format structure is defined in “Send-Format Structure” on page 3-34. The
send-options structure is defined in “Send-Options Structure” on page 3-34.

You can specify a routine to add items to the send-options dialog box. See the description
of the MySendOpt i onsFi | t er Pr oc routine on page 3-125 for more information.

Call the SMPAddMai nEncl osur e function (page 3-90) to add a main enclosure to a
letter. Call the SMPAddCont ent function (page 3-85) to add standard interchange format
content to a letter. Call the SMPI mage function (page 3-88) to add an image to the letter.

SMPContentChanged

3-76

The SMPCont ent Changed function informs the Standard Mail Package that the content
of the letter has changed.

pascal OSErr SMPCont ent Changed(W ndowPtr wi ndow) ;

w ndow A pointer to the window containing the mailer.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

DESCRIPTION

You must call the SMPCont ent Changed function to inform the Standard Mail Package
when the user changes the content of a letter. The Standard Mail Package can then
indicate to the user that the signature is not valid. The Standard Mail Package also needs
this information to determine whether it can save or send a forwarded letter without
requiring you to rebuild the content of the letter.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Routine selector
$126F

Parameter count
$0002

RESULT CODES

noErr 0
kSMPNoMai | er | nW ndow -1909

SEE ALSO

No error
No mailer is in specified window

To forward a letter, see the SMPMai | er For war d function (page 3-49).

To save a letter, see the SMPBegi nSave function (page 3-77). To send a letter, see the

SMPBegi nSend function (page 3-81).

Before you allow the user to change the content of a letter, call the
SMPPr epar eToChange function (page 3-83).

SMPBeginSave

You must call the SMPBegi nSave function before you save a letter.

pascal OSErr SMPBegi nSave(W ndowPtr wi ndow,
const FSSpec *diskLetter,
OSType creator,
CSType fil etype,
SMPSaveType saveType,
Bool ean *rust AddCont ent) ;

w ndow

Standard Mail Package Reference

The window containing the letter to be saved.

3-77

abexoed |reN plepuels -

DESCRIPTION

3-78

CHAPTER 3

Standard Mail Package

di skLetter
A pointer to a file system specification structure indicating the name and
location you want to use for the file.

creat or The creator for the file, which also becomes the letter’s creator. Use the
same creator that you use for all of your application’s documents.

filetype The file type, which also becomes the letter type. Letters containing only
AOCE standard content should be of type ' | ttr' .

saveType The type of save: kSMPSave, kSMPSaveAs, or k SMPSaveACopy.

must AddCont ent
A pointer to a Boolean value returned by the function that tells you
whether you have to add any blocks or enclosures to the letter. If this
parameter is set to f al se, call the SMPEndSave function immediately
without adding blocks or enclosures to the letter.

When you save a document to which you have added a mailer, you must save it in letter
file format rather than the document format normally used by your application. A letter
consists of a header, data blocks, and enclosures. Every block has a block creator and
type, and every letter has a letter creator and type. When you save the letter, the
Standard Mail Package assigns the file the same creator and type as the letter. Your
application should provide icon resources and a file reference resource for your
application’s letters so that users can distinguish them from standard documents.

To begin the process of saving a letter, you call the SMPBegi nSave function. This
function prepares the letter file into which you can save your document. You can create a
new file format for your application’s documents that takes advantage of the block
structure of a letter file, or you can save your document in one of your application’s
native formats to a temporary file on disk and then add that file as the main enclosure to
the letter. The letter is not actually saved to disk until you call the SMPEndSave function.

If neither your application nor the user has changed the content of a received letter, the
SMPBegi nSave function returns a value of f al se for the nust AddCont ent parameter.
In that case you can call the SMPEndSave function immediately to save the letter. If you
have changed the content of the letter, however, the must AddCont ent parameter
returns t r ue and you must build the letter (adding the appropriate combination of
blocks, main enclosure, standard interchange format block, and image block) just as if it
were a new letter. The Standard Mail Package handles enclosures added by the user.
Note that, if you make changes to the enclosed original letter, you invalidate any digital
signature.

IMPORTANT

Be sure to call the SMPCont ent Changed function whenever the user
changes the content of a letter. If you do not call the

SMPCont ent Changed function, then the SMPBegi nSave function
doesn’t know that the letter has been changed and won’t returnt r ue as
the value of must AddCont ent . a

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

Note

The SMPBegi nSave and SMPEndSave function pair perform a “safe
save”; that is, they save the document into a temporary file and then, if
the document has been saved before, replace the original file with the
temporary file. O

When you call the SMPBegi nSave function you must specify the type of save, as
follows:

enum { kKSMPSave, kSMPSaveAs, kSMPSaveACopy};

t ypedef unsi gned short SMPSaveType;

Constant descriptions

kSMPSave Save an existing file, overwriting the older version, and keeping the
file open.
kSMPSaveAs Save the file with a new name, close the original file (if any) without

changing it, and open the new file.

kSMPSaveACopy Save a copy of the file with a new name, leaving the original file
open.

SPECIAL CONSIDERATIONS

Any time the user changes the content of a letter, you must call the
SMPCont ent Changed function immediately. The SMPBegi nSave function needs this
information to operate correctly.

The SMPBegi nSave function may move or purge memory; you should not call this
function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector

$000B $1266

noErr 0 No error
dskFul Err -34 Disk is full
fnfErr —43 File not found
f BsyErr —47 Fileis busy

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

Before letting the user change the content of a letter, call the SMPPr epar eToChange
function (page 3-83). If the user changes the content of a letter, you must call the
SMPCont ent Changed function (page 3-76) immediately.

Standard Mail Package Reference 3-79

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

When you have finished building your letter, you call the SMPEndSave function
(described next) to save it. To cancel a save operation any time after you call the
SMPBegi nSave function, call the SMPEndSave function with the okToSave parameter
settof al se.

Letter file format is briefly discussed in “The Mailer Functions” beginning on page 3-4.

Use the SMPAddCont ent function (page 3-85) to add a standard interchange format
block to a letter.

Use the SMPAddMai nEncl osur e function (page 3-90) to add an application document
as a main enclosure to a letter.

Use the SMPI mage function (page 3-88) to add an image block to a letter.
Use the SMPAddBI ock function (page 3-91) to add a block to a letter.

SMPEndSave

DESCRIPTION

The SMPEndSave function saves a letter to disk.

pascal OSErr SMPEndSave(W ndowPtr w ndow,
Bool ean okToSave);

wi ndow The window containing the letter to be saved.

okToSave ABoolean value that you can use to cancel the process of saving a letter.
Specify f al se to cancel the save operation.

After you have used the SMPBegi nSave function to initiate the process of saving a letter
and have added content or a main enclosure to the letter by calling the

SMPAddCont ent , SMPAddBI ock, or SMPAddMai nEncl osur e functions, you call the
SMPEndSave function to save the letter to disk. You use the saveType parameter in the
SMPBegi nSave function to specify which File menu operation this represents: Save,
Save As, or Save A Copy. In any case, some version of the file remains open after the file
has been saved to disk.

To cancel a save operation any time after you call the SMPBegi nSave function, call the
SMPEndSave function with the ok ToSave parameter set to f al se.

SPECIAL CONSIDERATIONS

3-80

This function may move or purge memory; you should not call this function at interrupt
time.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0002 $1270
RESULT CODES
noErr 0 No error
dskFul Err -34 Disk is full
kSMPNoMai | er | nW ndow -1909 No mailer is in window
kSMPNoMat chi ngBegi n -1913 SMPBegi nSave was not called
SEE ALSO
You begin the process of saving a letter by calling the SMPBegi nSave function
(page 3-77).
Call the SMPReadCont ent function (page 3-98) to read the standard interchange
contents of a letter.
Call the SMPGet Mai nEncl osur eFSSpec function (page 3-103) to obtain the file system
specification for the main enclosure of a letter.
SMPBeginSend

You must call the SMPBegi nSend function before you send a letter.

pascal OSErr SMPBegi nSend(W ndowPt r wi ndow,
OSType creator,
OSType fil eType,
SMPSendOpt i onsPtr sendOpti ons,
Bool ean *rmust AddCont ent) ;

W ndow The window containing the letter to be sent.

creat or The creator for the file, which also becomes the letter’s creator for a new
letter. Use the same creator that you use for all of your application’s
documents.

filetype The file type, which also becomes the letter type for a new letter. Letters
containing only AOCE standard content should be of type " I ttr".

sendOpt i ons
The pointer to a send-options structure that was returned by the
SMPSendOpt i onsDi al og function.

nmust AddCont ent
A pointer to a Boolean value returned by the function that tells you
whether you have to add any blocks or enclosures to the letter. If this
parameter is set to f al se, call the SMPEndSave function immediately
without adding blocks or enclosures to the letter.

Standard Mail Package Reference 3-81

abexoed |reN plepuels -

DESCRIPTION

CHAPTER 3

Standard Mail Package

When you send a letter, it is in letter file format rather than the document format
normally used by your application. A letter consists of a header, data blocks, and
enclosures. Every block has a creator and type, and every letter has a creator and type.

Before you send a letter, you should call the SMPSendOpt i onsDi al og function to let
the user set the send options for that letter. To begin the process of sending a letter, you
call the SMPBegi nSend function. This function prepares a letter file into which you can
place your document.

If the user elected to send the letter as a document, you can create a new file format for
the document that takes advantage of the block structure of a letter file, or you can save
the document in one of your application’s native formats to a temporary file on disk and
then add that file as the main enclosure to the letter. You should also add a standard
interchange format block to the letter. If the user elected to send the letter as an image,
you must also add an image block to the letter. The Standard Mail Package does not
actually send the letter until you call the SMPEndSend function.

If neither your application nor the user has changed the content of a received letter, the
SMPBegi nSend function returns a value of f al se for the nust AddCont ent parameter.
In that case you can call the SMPEndSend function immediately to send the letter. If you
have changed the content of the letter, however, the must AddCont ent parameter
returns t r ue and you must build the letter (adding the appropriate combination of
blocks, main enclosure, standard interchange format block, and image block) just as if it
were a new letter. The Standard Mail Package handles enclosures added by the user.
Note that, if you make changes to the enclosed original letter, you invalidate any digital
signature.

IMPORTANT

Be sure to call the SMPCont ent Changed function whenever the user
changes the content of a letter. If you do not call the

SMPCont ent Changed function, then the SMPBegi nSend function does
not know that the letter has been changed and won’t return t r ue as the
value of must AddCont ent . a

SPECIAL CONSIDERATIONS

Any time the user changes the content of a letter, you must call the
SMPCont ent Changed function immediately. The SMPBegi nSend function needs this
information to operate correctly.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

3-82

Parameter count Routine selector
$000A $1267

Standard Mail Package Reference

RESULT CODES

SEE ALSO

CHAPTER 3

Standard Mail Package

noErr 0 No error
kSMPNoMai | er | nW ndow -1909 No mailer is in window
kMSPCannot SendRecei vedLet t er -1914 Letter is received; cannot send

Call the SMPSendOpt i onsDi al og function (page 3-73) before calling the
SMPBegi nSend function to let the user set send options.

If the user changes the content of a letter, you must call the SMPCont ent Changed
function (page 3-76) immediately.

When you have finished building your letter, you call the SMPEndSend function

(page 3-84) to send it. To cancel a send operation any time after you call the

SMPBegi nSend function, call the SMPEndSend function with the okToSend parameter
settof al se.

Letter file format is briefly discussed in “The Mailer Functions” beginning on page 3-4.

Use the SMPAddCont ent function (page 3-85) to add a standard interchange format
block to a letter.

Use the SMPAddMai nEncl osur e function page 3-90) to add an application document as
a main enclosure to a letter.

Use the SMPI mage function (page 3-88) to add an image block to a letter.
Use the SMPAddBI ock function (page 3-91) to add other blocks to a letter.

SMPPrepareToChange

DESCRIPTION

The SMPPr epar eToChange function checks whether the letter has any digital
signatures that might be invalidated if the user changes the content.

pascal OSErr SMPPrepar eToChange(W ndowPt r wi ndow)

W ndow A pointer to the window containing the mailer.

Before making a change in the content of a letter, call the SMPPr epar eToChange
function. If the letter has any digital signatures that might be invalidated by the change,
the function displays a dialog box alerting the user and providing a chance to cancel the
change. If the user does not cancel the change, you should implement the change and
then call the SMPCont ent Changed function. If the user cancels the change, the function
returns the user Cancel edEr r result code.

Standard Mail Package Reference 3-83

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0002 $1289

noErr 0 No error

user Cancel edErr -128 User clicked Cancel in dialog box

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

SEE ALSO
After changing the content of a letter, call the SMPCont ent Changed function
(page 3-76).
SMPEndSend
The SMPEndSend function sends a letter.
pascal OSErr SMPEndSend(W ndowPtr w ndow,
Bool ean okToSend);
w ndow The window containing the letter to be sent.
okToSend ABoolean value that you can use to cancel the process of sending a letter.
Specify f al se to cancel the send operation.
DESCRIPTION
After you have used the SMPBegi nSend function to initiate the process of sending a
letter and have created the letter by calling some or all of the SMPAddCont ent ,
SMPAddBI ock, SMPI mage, and SMPAddMai nEncl osur e functions, you call the
SMPEndSend function to send the letter.
To cancel a send operation any time after you call the SMPBegi nSend function, call the
SMPEndSend function with the okToSend parameter set to f al se.
SPECIAL CONSIDERATIONS
This function may move or purge memory; you should not call this function at interrupt
time.
3-84 Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0002 $1271
RESULT CODES
noErr 0 No error
user Cancel edErr -128 User clicked Cancel button
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
kSMPNoMat chi ngBegi n -1913 SMPBegi nSend was not called
SEE ALSO
You begin the process of sending a letter by calling the SMPBegi nSend function
(page 3-81).
To read the standard interchange contents of a letter you call the SMPOpenLet t er
function (page 3-94) and SMPReadCont ent function (page 3-98).
SMPAddContent

The SMPAddCont ent function adds a segment of a standard interchange format block to
a letter.

pascal OSErr SMPAddCont ent (W ndowPtr w ndow,
Mai | Segnent Type segnent Type,
Bool ean appendFl ag,
voi d *buffer,
unsi gned | ong bufferSize,
St ScrpRec *t ext Scr ap,
Bool ean startNewScri pt,
Scri pt Code script);

W ndow The window containing the letter.

segment Type
A constant that indicates the type of data segment that you want to add to
the letter. Letter segments may be text, picture, sound, styled text, or
QuickTime movies. You can specify only one segment type in this
parameter each time you call the SMPAddCont ent function. It may be
any of the following constants:

kMai | Text Segnent Type
Text segment

kMai | Pi ct Segnent Type
Picture segment

Standard Mail Package Reference 3-85

abexoed |reN plepuels -

DESCRIPTION

3-86

CHAPTER 3

Standard Mail Package

appendFl ag

buf f er
bufferSi ze

text Scrap

kMai | SoundSegnent Type
Sound segment

kMai | St yl edText Segnent Type
Styled text segment

kMai | Movi eSegnent Type
Movie segment

The Standard Mail Package also defines another Mai | Segnent Type
constant, KMai | | nval i dSegnment Type, which you can use to initialize a
variable, for example, in a type-safe manner without indicating that a
valid segment has been passed.

A Boolean value that indicates whether you want the SMPAddCont ent
function to write the data in your buffer to a new segment or append it to
the current segment. Set this parameter to f al se when you first call the
SMPAddCont ent function. On subsequent calls to the function, set this
parameter to f al se if you want to start a new segment. Set this
parameter to t r ue if you want to append the data in your buffer to the
segment currently being written by the SMPAddCont ent function.

A pointer to the data you want to add to the letter.

The number of bytes of data you want to add to the letter.

A pointer to an St Scr pRec structure that contains style information. You
must provide this style information when your buffer contains styled text.
Set this parameter to ni | if you are not passing styled text data to the
function.

st art NewScri pt

script

A Boolean value that indicates whether the text in your buffer uses a new
character set. Set this parameter to t r ue each time you call the
SMPAddCont ent function to start a text segment. After that, set this
parameter to t r ue only if the data in your buffer is in a different
character set than the data you previously provided to the function for
that segment. The function ignores this parameter when you set the
segnent Type parameter to any value other than

kMai | Text Segment Type or kMai | St yl edText Segrent Type.

A value that indicates the character set (Roman, Arabic, Kanji, etc.) of the
data in your buffer. If you set the st art NewScr i pt parameter totr ue,
set this parameter to the code for the text segment’s character set. You
cannot use the values snByst enScri pt or smCurrent Scri pt for this
parameter. The SMPAddCont ent function ignores this parameter when
you set the segnent Type parameter to any value other than

kMai | Text Segrment Type or kMai | St yl edText Segnent Type.

After you have called the SMPBegi nSend or SMPBegi nSave function, you can call the
SMPAddCont ent function to add standard interchange format data to the letter that is in
the window that you specify. The first time you call the function for a given letter, it

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

creates a new block and puts the data into the block. You then call the function
repeatedly until you have finished adding standard interchange format data to the letter.
Each time you call the SMPAddCont ent function, it adds data to that same block.

A standard interchange format block consists of data segments, each of a specific type.
You add one segment or a portion of a segment of data each time you call the
SMPAddCont ent function. The function adds the segments in the order that you
provide them. A single letter may contain more than one segment of a given type.

A text segment contains one or more script runs. A script run is a string of text in the
same character set. The SMPAddCont ent function can accommodate only one script at a
time. Therefore, if you want to create a segment that contains several script runs, you
must call this function once for each script run in the segment. Use the scri pt
parameter to specify the character set of the script run. Set the st art NewScr i pt
parameter to t r ue when you start a new text segment and to begin a new script run in
the current text segment. To append text to the current script run, set the

start NewScri pt parameter to f al se and the appendF| ag parameter to t r ue. If you
add a segment of styled text, you must provide the style information in the t ext Scr ap
parameter.

You cannot specify the values snByst enScri pt or snCurrent Scri pt for the scri pt
parameter. To obtain the system script, call the Get Scri pt Manager Var i abl e function
with a selector of snBysScri pt . To obtain the current script, call the Font Scri pt
function.

Because font numbers are local to a given Macintosh computer, the fonts originally used
in a letter might be different from those with the same font numbers on the receiving
computer. For this reason, the SMPAddCont ent function creates a font table that
associates a font name with each font number in the standard interchange format block
of the letter. When you receive a letter, you can use the SMPGet Font NaneFr orLet t er
function to recover the names of the fonts originally used in a letter.

Once you begin creating a letter’s standard interchange format block, you must not call
other Standard Mail Package functions until you finish writing that block.

The data for picture segments must be in PICT format.
The data for sound segments must be in Audio Interchange File Format (AIFF).

The data for text and styled text segments must consist of 1-byte or 2-byte character
codes, depending on the value in the scri pt parameter. For styled text you must also
provide a pointer to an St Scr pRec structure in the t ext Scr ap parameter.

The data for QuickTime movie segments must be in the QuickTime movie format
(" MooV').

ASSEMBLY LANGUAGE INFORMATION

Parameter count Routine selector
$000D $127A

Standard Mail Package Reference 3-87

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

RESULT CODES
noErr 0 No error
dskFul Err -34 Disk is full
menful | Err -108 Not enough room in heap zone
kSMPShoul dNot AddCont ent -1903 You cannot add content to this letter
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
SEE ALSO
See “Summary of the Script Manager” at the end of the “Script Manager” chapter of
Inside Macintosh: Text, for a list of script code constants.
See Inside Macintosh: Imaging With QuickDraw for more information about PICT images.
See Inside Macintosh: Sound for more information about AIFF.
The St Scr pRec structure is described in Inside Macintosh: Text in the chapter “TextEdit.”
The St Get Scri pt Manager Var i abl e function and Font Scri pt function are
described in Inside Macintosh: Text in the chapter “Script Manager.”
The SMPReadCont ent function is described on page 3-98.
You can use the SMPGet Font NaneFr onlet t er function (page 3-102) to recover the
names of the fonts originally used in a letter.
Call the SMPAddMai nEncl osur e function (page 3-90) to add a main enclosure to a
letter. Call the SMPI mage function (described next) to add an image to the letter. Use the
SMPAddBI ock function (page 3-91) to add other blocks to a letter.
SMPImage
The SMPI mage function adds an image of a document to a letter.
pascal OSErr SMPI mage (W ndowPtr wi ndow,
SMPDr awl magePr ocPt r dr awl nagePr oc,
I ong i mageRef Con,
Bool ean supportsCol or);
W ndow The window containing the letter.
dr aw magePr oc
A pointer to your image-drawing routine. If you want to send a letter as
an image, you must provide a routine to draw the image. The procedure
declaration for this routine is described on page 3-123.
i mgeRef Con
A reference constant for your use. The function passes this constant to
your image-drawing routine.
3-88 Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

support sCol or
A Boolean value that indicates whether the procedure pointed to by the
dr awl magePr oc parameter is capable of drawing in color. The Standard
Mail Package provides a color graphics port to your image-drawing
routine only if you specify t r ue for the support sCol or field and the
user has color QuickDraw.

DESCRIPTION

You can use the Standard Mail Package to send a letter as an image. You use the

SMPI mage function to create an image from your document and add it to a letter. When
you call the SMPI mage function, you provide a pointer to your drawing routine. The
SMPI mage function calls the drawing routine to draw the image of your document.

SPECIAL CONSIDERATIONS
This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0002 $1282
RESULT CODES

noErr 0 No error

dskFul Err -34 Disk is full

menful | Err -108 Not enough room in heap zone

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
SEE ALSO

The procedure declaration for your image-drawing routine is on page 3-123.
Mailers are described in “The Mailer Functions” beginning on page 3-4.
Call the SMPSendOpt i onsDi al og function (page 3-73) to let the user set send options.

Call the SMPBegi nSend function (page 3-81) to start the process of sending a letter that
contains a mailer.

Call the SMPAddMai nEncl osur e function (described next) to add a main enclosure to a
letter. Call the SMPAddCont ent function (page 3-85) to add standard interchange format
content to a letter. Use the SMPAddBI ock function (page 3-91) to add other blocks to a
letter.

When you have finished building your letter, you call the SMPEndSend function
(page 3-84) to send it.

Standard Mail Package Reference 3-89

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

SMPAddMainEnclosure

DESCRIPTION

The SMPAddMai nEncl osur e function adds a main enclosure to a letter.

pascal OSErr SMPAddMai nEncl osur e(W ndowPtr w ndow,
const FSSpec *encl osure);

wi ndow The window containing the letter.

encl osure A pointer to a file system specification structure that identifies the file that
you want to enclose.

When you are creating a letter, you can include a document in one of your application’s
native formats by first saving the document to disk and then calling the

SMPAddMai nEncl osur e function to add the document to the letter as a main enclosure.
If you must create a temporary file for this operation, create it in the Temporary Items
folder at the root level of the startup volume. The main enclosure is not listed as an
enclosure in the mailer.

SPECIAL CONSIDERATIONS

When you save the letter, the file system specification for the main enclosure changes so

that the FSSpec structure you specified in the encl osur e parameter is no longer valid.
Use the SMPGet Mai nEncl osur eFSSpec function to obtain the file system specification
of the main enclosure of a letter.

ASSEMBLY LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

3-90

Parameter count Routine selector

$0004 $127D

noErr 0 No error

fnfErr —-43 File not found

menful | Err -108 Not enough room in heap zone

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

Call the SMPAddCont ent function (page 3-85) to add standard interchange format
content to a letter. Call the SMPI mage function (page 3-88) to add an image to the letter.
Use the SMPAddBI ock function (page 3-91) to add other blocks to a letter.

You can use the SMPGet Mai nEncl osur eFSSpec function (page 3-103) to obtain the
FSSpec structure for the main enclosure of a letter.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

The Temporary Items folder is described in the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.

SMPAddBlock

The SMPAddBI ock function adds data to a block in a letter.

pascal OSErr SMPAddBI ock(W ndowPtr w ndow,
const OCECreat or Type *bl ockType,
Bool ean append,
voi d *buffer,
unsi gned | ong bufferSize,
Mai | Bl ockMbde node,
unsi gned | ong of fset);

w ndow The window containing the letter.

bl ockType A pointer to a data structure that specifies the creator and type of the
block you want to add. You may specify any value in the msgCr eat or
field of the structure; usually your application signature. The nsgType
field identifies the type of block. You can define your own block types to
serve your purposes. Apple Computer, Inc., reserves all block types
consisting entirely of lowercase letters.

append A Boolean value that indicates whether you want the SMPAddBI ock
function to append the data in your buffer to the current block. Set this
parameter to f al se when you call the function to start a new block. If
you set this parameter to t r ue, the function uses the node and of f set
parameters to determine where to start writing.

buffer A pointer to your data buffer.

bufferSi ze
The number of bytes of data to write to the block.

mode The mode in which the offset parameter is to be interpreted. The function
uses this field to determine whether to begin writing data relative to the
end of the last data written, to the beginning of the message, or to the end
of the block. See the discussion following these parameter descriptions for
details. The function ignores this parameter if you set the append
parameter to f al se.

of f set An offset that the function uses when it calculates the starting point of the
write operation. Set this value to 0 when you start a new block. See the
following discussion for details. The function ignores this parameter if
you set the append parameter to f al se.

Standard Mail Package Reference 3-91

abexoed |reN plepuels -

DESCRIPTION

CHAPTER 3

Standard Mail Package

You call the SMPAddBI ock function to write data into a block whose type you specify in
the bl ockType field.

You can write data to a block that is too large to be written all at once by setting the
append parameter to t r ue after the first time you call the function and then calling the
function repeatedly until you have written the entire block.

The Standard Mail Package uses a mark to point to the current location within a block
that you are writing. After the SMPAddBI ock function completes, the mark points to the
end of the last byte written.

You use the nbde and of f set parameters to specify the point in the block at which the
SMPAddBI ock function starts writing. You can set the nbde parameter to any one of the
following values:

enum {
kMai | Frontt art
kMai | Fr omLECB
kMai | Fr omvar k

1 |
w N

s

Constant descriptions

kMai | FronBt ar t
The function interprets the value in the of f set parameter as an
offset from the beginning of the block. When you use this mode,
you cannot set the of f set parameter to a negative value.

kMai | FronLEOB The function interprets the value in the of f set parameter as an
offset from the current end of the block. The offset must always be
negative and cannot extend beyond the beginning of the block.

kMai | FromMVark The function interprets the value in the of f set parameter as an
offset from the current position of the mark. Use a negative offset
value to indicate a starting point prior to the current position of the
mark and a positive offset value to indicate a starting point
following the current position of the mark. You cannot specify a
negative offset that extends beyond the beginning of the block.

To use the SMPAddBI ock function to write data in several pieces sequentially into a
block, call the function as many times as necessary, setting the node parameter to
kI PMFr omVar k and the of f set parameter to 0 each time.

You can overwrite data you have already written to a block but cannot modify a
completed block once you start a new block.

SPECIAL CONSIDERATIONS

3-92

Once you begin writing a block in a letter, you must finish writing the block, calling the
SMPAddBI ock function as many times as necessary to complete the block before starting
another block or calling the SMPAddCont ent or SMPAddMai nEncl osur e functions.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$000C $127F

NoErr 0 No error
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

The OCECr eat or Type structure is described in “Creator Type Structure” on page 3-28.

Call the SMPAddMai nEncl osur e function (page 3-90) to add a main enclosure to a
letter. Call the SMPAddCont ent function (page 3-85) to add standard interchange format
content to a letter. Call the SMPI mage function (page 3-88) to add an image to the letter.

Reading Mail

If you are retrieving mail using the Standard Mail Package, use the SMPCpenLet t er
function (page 3-94) to gain access to an existing letter. If the letter is in the In Tray, you
can use the use the SMPGet Let t er | nf o function before you call SMPOpenLet t er. The
SMPCet Let t er | nf 0 function returns the name and type of the letter. Once you have
opened a letter in the In Tray, you can use the SMPGet Next Let t er function (page 3-97)
to open the next or preceding letter in the tray.

While a letter is open, you can examine the standard interchange contents of the letter by
calling the SMPReadCont ent function (page 3-98) and can examine the letter’s main
enclosure by calling the SMPGet Mai nEncl osur eFSSpec function (page 3-103). You can
use the SMPGet Font NaneFr onlLet t er function (page 3-102) to determine the original
fonts used in the standard interchange content block of a letter. You can use the
SMPEnuner at eBl ocks function (page 3-104) to list all the blocks in a letter and the
SMPReadBl ock function (page 3-106) to read any block in a letter, including an image
block.

SMPGetLetterInfo

The SMPCet Let t er | nf o function returns information about a letter in the In Tray.

pascal OSErr SMPGet Letter|nfo(LetterSpec *mail boxSpec,
SWMPLetterInfo *info);

mai | boxSpec

A pointer to a letter-specification structure. The Let t er Spec structure is
defined on page 3-35.

Standard Mail Package Reference 3-93

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

info A pointer to a letter information structure. The SMPLet t er | nf o
structure is defined on page 3-27.

DESCRIPTION

The SMPCet Let t er | nf o function lets you determine the creator and letter type of a
letter in the In Tray, together with the subject and sender of the letter. You can use this
information to title windows or in a dialog box if you cannot open the letter for some
reason.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0004 $128A
RESULT CODES

noErr 0 No error

kSMPMai | boxNot Found -1904 Cannot find mailbox
SEE ALSO

Use the SMPOpenLet t er function (described next) to open a letter for reading.

SMPOpenLetter

The SMPOpenLet t er function opens a letter so you can read the contents.

pascal OSErr SMPQpenLetter(const LetterDescriptor *letter,
W ndowPt r wi ndow,
Poi nt upper Left,
Bool ean canContract,
Bool ean initiall yExpanded,
const PrepareMil er For Drawi ngProcPtr
pr epar eMai | er For Dr awi ngCB,
long clientData);

3-94 Standard Mail Package Reference

DESCRIPTION

CHAPTER 3

Standard Mail Package

letter A pointer to the letter descriptor of the letter you want to open. The letter
descriptor specifies whether the letter is on disk or in the In Tray and
provides the file system specification structure or letter-specification
structure of the letter.

w ndow The window in which you want to display the opened letter. This
window must not contain a mailer at the time you call the
SMPQpenLet t er function.

upper Left The upper-left corner of the mailer in your window’s local coordinates.
This position is normally (0, 0).

canCont r act
A Boolean value that specifies whether it should be possible to contract
and expand the mailer. Specify t r ue if you want the mailer to have this
ability.

initiall yExpanded
A Boolean value that indicates whether you want the mailer displayed
initially in its expanded or contracted state. Specify t r ue to display the
mailer initially expanded.

pr epar eMai | er For Dr awi ngCB
A pointer to your drawing-preparation function. If you change the clip
region, coordinates, or other aspects of your window’s graphics port, you
must provide this function to restore the graphics port to a standard state
so that the Standard Mail Package can draw a mailer in your window. The
drawing-preparation function is described on page 3-122. Specify ni | for
this parameter if you are not providing a drawing-preparation function.

clientData
Reserved for your use. The SMPOpenLet t er function passes this value
unaltered to your callback routine.

You call the SMPOpenLet t er function when you receive an Apple event to open a letter
or when the user chooses the Open command. This function displays a mailer in the
window you specify and opens the letter so you can read its contents.

The user can double-click an icon in the In Tray to open a letter or double-click the icon
for a letter file on disk. Your Open item in the File menu should also open letter files on
disk. There is no way to open a letter in the In Tray from a menu in your application; the
user must use the Finder to open the letter. The Finder determines the owner of the letter
and sends an"' aevt' ' odoc' Apple event to the appropriate application, which can
then open it. The Apple event contains the letter-specification structure, which you put
in the letter descriptor and pass to the SMPOpenLet t er function. If the user chooses the
Open command to open the letter, you can get the file system specification structure
from the Standard File Package.

Whether a letter is on disk or not, the Standard Mail Package treats the letter’s
enclosures as if they are stored in a folder in an external file system. That folder contains
all of the enclosures added by the user through the mailer or by the

SMPAddAt t achnent function, and might contain the letter’s main enclosure, if any.

Standard Mail Package Reference 3-95

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

(You can use the SMPAddMai nEncl osur e function to add a main enclosure to a letter.
The main enclosure is not displayed in the Enclosures field of a mailer.)

The Standard Mail Package displays the enclosures added by the user in the Enclosures
field of the mailer and handles the user interface for those enclosures. To obtain the file
system specification structure of the main enclosure to a letter, use the

SMPGet Mai nEncl osur eFSSpec function. Use the SMPGet Li st | t em nf o function to
get the file system specification for the enclosures added by the user.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

3-96

Parameter count Routine selector

$000C $1268

nokErr 0 No error

kSVPMai | er Al r eadyl nW ndow -1911 Specified window has a mailer
kMai | I nval i dSeqNum -15041 Invalid letter sequence number

The Let t er Descri pt or data type is described in “Letter Descriptor” on page 3-27.

Use the SMPGet Mai nEncl osur eFSSpec function (page 3-103) to obtain the file system
specification structure of the main enclosure of a letter.

Use the SMPGet Li st | t eml nf o function (page 3-113) to get the file system specification
for the enclosures added by the user.

You can use the SMGet Conponent | nf o function (page 3-111) to obtain the file system
specification structure of the enclosures folder for the letter.

You can use the SMPGet Next Let t er function (described next) to determine which
letter in the In Tray is the oldest unread letter.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

SMPGetNextLetter

The SMPCet Next Let t er function returns the letter descriptor of the In Tray item to be
opened next.

pascal OSErr SMPGet Next Lett er (
OSType *typeslLi st,
short nuntypes,
LetterDescriptor *adjacentlLetter);

typesLi st A pointer to a list of letter types and file types. The function returns letter
descriptors only for items with the letter types and file types specified in
this list. Letters containing only AOCE standard content are of type
"lttr' . Use the wildcard letter type ' | t r*' if you want the function to
return letter descriptors for all the items in the In Tray.

nunmlypes The number of letter types and file types in the types list pointed to by the
t ypesLi st parameter.

adj acent Letter
The letter descriptor returned by the function identifying the next item to
open.

DESCRIPTION
The letter descriptor returned by the SMPGet Next Let t er function is that of the oldest
unread letter in the In Tray. You can use this function to open letters in age sequence.

You can use the t ypesLi st parameter to specify what letter types and file types the
function should include when it returns a letter descriptor.

SPECIAL CONSIDERATIONS
This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0008 $1286
RESULT CODES
noErr 0 No error
kSMPMai | boxNot Found -1904 Cannot find mailbox
kSMPNoNext Let t er -1905 There is no next letter in the In Tray

Standard Mail Package Reference 3-97

abexoed |reN plepuels -

SEE ALSO

CHAPTER 3

Standard Mail Package

Use the SMPOpenLet t er function (page 3-94) to open a letter for reading.

The letter descriptor (Let t er Descri pt or data type) is described in “Letter Descriptor”
on page 3-27.

SMPReadContent

3-98

The SMPReadCont ent function reads a segment from a letter’s standard interchange
format block.

pascal OSErr SMPReadCont ent (W ndowPtr wi ndow,
Mai | Segnent Mask segnent TypeMask,
voi d *buffer,
unsi gned | ong bufferSize,
unsi gned | ong *dat aSi ze,
St ScrpRec *t ext Scr ap,
Scri pt Code *scri pt,
Mai | Segnent Type *segnent Type,
Bool ean *endOf Scri pt,
Bool ean *endOf Segrent
Bool ean *endO Cont ent
| ong *segment Lengt h,
| ong *segnentl| D);

W ndow The window containing the letter.

segnent TypeMask
The type of segment that you want to retrieve. You can request a
combination of segment types by performing a bitwise OR operation on
the following constants:

kMai | Text Segnent Mask
Text segment

kMai | Pi ct Segnment Mask
Picture segment

kMai | SoundSegnent Mask
Sound segment

kMai | Styl edText Segnent Mask
Styled text segment

kMai | Movi eSegnent Mask

Movie segment
You can request any combination of segment types, except that you
cannot combine the kMai | Text Segnment Mask and
kMai | St yl edText Segment Mask constants in the same request. If you
request styled text segments, the function returns both plain text and

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

buf f er
bufferSi ze

dat aSi ze
text Scrap

script

segnent Type

endO Scri pt

styled text segments. If you request plain text segments, it returns any
plain text segments that are in the letter and also converts styled text
segments to plain text segments and returns them to you.

The SMPReadCont ent function reads this parameter only the first time
you call it for a given letter. The next and subsequent times you call this
function for the same letter, it ignores this parameter. The function returns
data of a single segment type each time you call it.

A pointer to the buffer you are providing to hold the data read from the
letter.

The size of the buffer you are providing.
A pointer to the amount of data returned in your buffer.

A pointer to an St Scr pRec structure. You must allocate this pointer. Set
the first field of this structure (scr pNSt yI es) to the number of styles
your buffer can hold. When the function writes styled text to your buffer,
it returns style information in this structure and sets the scr pNSt y| es
field to the actual number of styles returned.

A pointer to the script code, which indicates the character set (Roman,
Arabic, Kanji, etc.) of the text that the function placed in your buffer. If the
function placed nontext data in your buffer, it does not set this parameter
and you should ignore it.

A constant that indicates the type of data segment that the
SMPReadCont ent function returned in your buffer. It may be any of the
following constants:

kMai | Text Segment Type
Text segment

kMai | Pi ct Segnent Type
Picture segment

kMai | SoundSegnent Type
Sound segment

kMai | Styl edText Segrent Type
Styled text segment

kMai | Movi eSegnent Type
Movie segment

The Standard Mail Package also defines another Mai | Segnent Type
constant, kMai | | nval i dSegnent Type, which you can use to initialize a
variable, for example, in a type-safe manner without indicating that a
valid segment has been passed.

A pointer to a Boolean value returned by the function that indicates
whether the text placed in your buffer is the end of a script run. A script
run is a sequence of text in a single character set. If there is more text in
the current script run, the function sets this parameter to f al se.

Standard Mail Package Reference 3-99

abexoed |reN plepuels -

DESCRIPTION

3-100

CHAPTER 3

Standard Mail Package

endCf Segnent
A pointer to a Boolean value returned by the function that indicates
whether you have received all of the data in the segment. The
SMPReadCont ent function sets this parameter to t r ue when it has
returned all of the data in a given segment. It sets this parameter to
f al se when there is more data in that segment to return.

endOf Cont ent
A pointer to a Boolean value returned by the function that indicates if
there is more data in the standard interchange format block of the letter to
be read. If the SMPReadCont ent function has returned the entire
contents of the block, it sets the endCf Cont ent parameter to t r ue;
otherwise, it sets this parameter to f al se.

segment Lengt h
A pointer to the size of the current segment. The SMPReadCont ent
function returns a valid value for this parameter the first time you call the
function to read a particular segment.

segnent | D A pointer to the ID of this segment. If you specify 0 for this parameter, the
SMPReadCont ent function reads the next segment sequentially,
returning the segment ID in this parameter. If you specify a value,
SMPReadCont ent reads the segment with the specified ID. Note that this
number is not an index number; it is an ID that is unique for the
beginning of each segment. The number returned by the function in this
parameter when you continue reading in the middle of a segment is
undefined. You must set this parameter to 0 the first time you call the
function.

You call the SMPReadCont ent function to read some or all of a letter’s standard
interchange format block. You must call the SMPOpenLet t er function before the first
time you call the SMPReadCont ent function for a given letter. You then call the
SMPReadCont ent function repeatedly to read all of the segments of the types you
specified the first time you called the function. Once the SMPReadCont ent function has
returned t r ue for the endCf Cont ent parameter, you must call the SMPOpenLet t er
function again before you can call the SMPReadCont ent function again.

The SMPReadCont ent function examines the value of the segment TypeMask
parameter the first time you call it for a given letter and uses that same value until you
start the sequence over by calling the SMPOpenLet t er function again. The
SMPReadCont ent function returns segments in the order that they are stored in the
letter.

If you request styled text segments, the function returns both plain text and styled text
segments. If you request plain text segments, it returns any plain text segments that are
in the letter and also converts styled text segments to plain text segments and returns
them to you.

A text segment contains one or more script runs. A script run is a string of text in the
same character set. When the SMPReadCont ent function returns text data (that is, when
the function sets the segnment Type parameter to kMai | Text Segrment Type), it

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

indicates the character set by setting the scri pt parameter. The function identifies the
end of a script run by setting the endCf Scri pt parameter to t r ue.

The SMPReadCont ent function returns, in the dat aSi ze parameter, a pointer to the
actual number of bytes written to your buffer. If your buffer is not large enough to hold
all of the data in a segment, the function sets the endCf Segnent parameter to f al se.
You can call the function again to continue reading data from that segment.

If a single segment of styled text contains more styles than your St Scr pRec structure
can hold, the SMPReadCont ent function stops writing data to your buffer and sets the
endCf Segnent parameter to f al se. You can use the dat aSi ze parameter to
determine how many bytes of text were written to your buffer. The next time to call the
function, it continues writing text from the same segment into your buffer and putting
text styles in your St Scr pRec structure. In this case, the offsets in the scr pSt ar t Char
field of the script table of the St Scr pRec structure apply only to the data currently in
your data buffer, not to the offsets in the original segment in the letter.

For example, suppose that the next segment in the letter to be read is a styled text
segment that is 120 bytes long and contains 12 different styles. The 11th style starts at an
offset of 90 (that is, at the 91st byte of the segment). Suppose further that your text buffer
is 200 bytes but your St Scr pRec structure can hold only 10 styles. In this case, the
SMPReadCont ent function stops writing data to your buffer after it has placed 10 styles
in your St Scr pRec structure. Because these 10 styles applied to the first 90 bytes of text,
the dat aSi ze parameter indicates that 90 bytes of data were written to your buffer and
the endOf Segnent parameter is f al se.

The next time you call the SMPReadCont ent function, it writes the last 30 bytes of text
into your buffer and puts the last two styles into your St Scr pRec structure. It returns a
value of 2 in the scr pNSt y| es field of your St Scr pRec structure and sets the

endCf Segnent parameter to t r ue. In this case, the first offset in the scr pSt ar t Char
field of the script table of the St Scr pRec structure is 0, indicating that the first style in
the text scrap starts with the first byte of text currently in your buffer. (The offset is not
90, as it would have been for this portion of text had your St Scr pRec structure been
able to hold all of the styles at once.)

The data for picture segments is in PICT format.
The data for sound segments is in Audio Interchange File Format (AIFF).

The data for text and styled text segment consists of 1-byte or 2-byte character codes,
depending on the value in the scri pt parameter. For styled text the function also
returns a pointer to an St Scr pRec structure in the t ext Scr ap parameter.

The data for QuickTime movie segments must be in the QuickTime movie format
(" MooV).

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0019 $127B

Standard Mail Package Reference 3-101

abexoed |reN plepuels -

RESULT CODES

SEE ALSO

CHAPTER 3

Standard Mail Package

noErr 0 No error
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
kMai | Mal f or medCont ent -15061 A mailed structure is malformed

See Inside Macintosh: Imaging With QuickDraw for more information about PICT images.
See Inside Macintosh: Sound for more information about AIFF.

The St Scr pRec structure is described in the chapter “TextEdit” of Inside Macintosh: Text.

SMPGetFontNameFromLetter

DESCRIPTION

3-102

The SMPCet Font NaneFr orlLet t er function converts the font numbers in the standard
interchange format block of a letter into font names.

pascal OSErr SMPGet Font NameFromnletter (W ndowPtr w ndow,
short font Num
st r255 font Nane,
Bool ean doneW t hFont Tabl e) ;

W ndow The window containing the letter.

f ont Num The font number you read from the text scrap (the Text Edi t structure)
for the text.

f ont Nane The name of the font associated with the font number.

doneW t hFont Tabl e
A Boolean value that you set to indicate that this is the last request for a
font name.

You can use the SMPGet Font NanmeFr onlet t er function to recover the names of the
fonts originally used in a letter. Because font numbers are local to a given Macintosh
computer, the fonts originally used in a received letter might be different from those with
the same font numbers on the local computer. For this reason, when the Standard Mail
Package sends a letter, it creates a font table that associates a font name with each font
number in the standard interchange format block of the letter.

To recover the font names, you must first call the SMPReadCont ent function to read the
standard content block of the letter, and then read the font numbers from the

St Scr pRec structure associated with each styled-text segment in that block. Then you
can call the SMPGet Font NaneFr ormlet t er function once for each font number.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

Set the doneW t hFont Tabl e parameter to t r ue the last time you call the
SMPGet Font NarmeFr onlet t er function. Doing so signals the Standard Mail Package to
release the memory it has reserved for the font table.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$0006 $127C
noErr 0 No error

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

The St Scr pRec structure is described in the chapter “TextEdit” of Inside Macintosh: Text.

SMPGetMainEnclosureFSSpec

DESCRIPTION

The SMPCet Mai nEncl osur eFSSpec function returns the file specification of the main
enclosure file for a letter.

pascal OSErr SMPGet Mai nEncl osur eFSSpec (W ndowPt r wi ndow,
FSSpec *encl osurebDir);

wi ndow The window containing the letter.

encl osureDi r
A pointer to the file system specification structure of the main enclosure.

You can call the SMPGet Mai nEncl osur eFSSpec function to get the file system
specification for the main enclosure file for a letter. The main enclosure contains the
letter’s content, usually in your application’s native document format. You can then use
standard File Manager routines to open and read the main enclosure. The file system
specification returned by this function is valid until the mailer is disposed of or until the
next time the user saves the letter. You must call the SMPQpenLet t er function before
you call the SMPGet Mai nEncl osur eFSSpec function.

If the letter does not contain a main enclosure, the function returns the result code
f nf Er r (file not found).

Standard Mail Package Reference 3-103

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0004 $127E
RESULT CODES
noErr 0 No error
fnfErr —43 File not found

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

SEE ALSO
You use the SMPAddMai nEncl osur e function (page 3-90) to add a main enclosure to a
letter.
File Manager routines are described in Inside Macintosh: Files.
SMPEnumerateBlocks

The SMPEnuner at eBl ocks function returns information about the blocks in a letter.

pascal OSErr SMPEnurmer at eBl ocks (W ndowPtr wi ndow,
unsi gned short startl ndex,
void *buffer,
unsi gned | ong bufferSize,
unsi gned | ong *dat aSi ze,
unsi gned short *next| ndex,
Bool ean *nore);

w ndow The window containing the letter.

startlndex
The sequence number of the next block for which you want the function
to return information. Sequence numbers start with 1. When you call the
SMPEnuner at eBl ocks function and there is insufficient space in the
buffer you provide to hold information about all of the remaining blocks,
the function returns, in the next | ndex parameter, the sequence number
of the next block. Use that number as the value of the st ar t | ndex
parameter the next time you call the function.

buf f er A pointer to a buffer you provide to hold the information returned by the
function. The block information is in the form of a count byte, indicating
the number of blocks in the letter, followed by a block information
structure for each block.

bufferSize
The length, in bytes, of the buffer you are providing.

3-104 Standard Mail Package Reference

DESCRIPTION

CHAPTER 3

Standard Mail Package

dat aSi ze
next | ndex
nor e

The address at which the function places the number of bytes written to
your buffer.

The address at which the function places the sequence number of the first
block whose information did not fit into your buffer. The function sets
this field when your buffer is too small to hold all the information you
requested. If there is no more information to return, the function sets the
sequence number to 0.

A Boolean value returned by the function indicating whether there is
more block information to be returned. If your buffer is too small to hold
all of the information that you requested, the SMPEnurrer at eBl ocks
function sets this parameter to t r ue and returns, in the next | ndex
parameter, the sequence number of the next item to be returned.

You can use the SMPEnuner at eBl ocks function to determine the number of blocks that
are contained in a letter and each block’s type and size. You can use this information to
read specific blocks in the letter. You must call the SMPOpenLet t er function before the
first time you call the SMPEnumer at eBl ocks function for a given letter.

Apple Computer, Inc., reserves all block types that consist of all lowercase letters for its
own use. Use the SMPReadBl ock function to read image blocks and blocks of types that
you define. Use the SMPReadCont ent function to read the standard interchange format

block.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$000D $1281
noErr 0 No error

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

Use the SMPReadBlI ock function (described next) to read the contents of a block.

Use the SMPReadCont ent function (page 3-98) to read the standard interchange format
block in a letter.

Standard Mail Package Reference 3-105

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

SMPReadBlock

The SMPReadBl ock function reads a block from a letter that you specify.

pascal OSErr SMPReadBl ock (W ndowPtr w ndow,
const OCECreat or Type *bl ockType,
unsi gned short bl ockl ndex,
voi d *buffer,
unsi gned | ong bufferSize,
unsi gned | ong dataO f set,
unsi gned | ong *dat aSi ze,
Bool ean *endOf Bl ock,
unsi gned | ong *remai ni ng);

W ndow The window containing the letter.

bl ockType A pointer to a structure that specifies the creator and the type of the block
that you want to read.

bl ockl ndex
The relative position of the block of type bl ockType that you want to
read. To read all blocks of a specific block type, set this field to 1 the first
time you call the SMPReadBl ock function and increment it by 1 each
subsequent time you call the function until you have read all blocks of
that type in the letter.

buf f er A pointer to your data buffer. The SMPReadBl ock function writes the
information that you request into your buffer and sets the dat aSi ze field
to the number of bytes written.

bufferSi ze
The length, in bytes, of the buffer you are providing.

dat aOxf f set
The offset relative to the beginning of the block of the byte at which you
want the SMPReadBl ock function to begin reading. Set this field to 0 to
read from the beginning of the block.

dat aSi ze A pointer to the number of bytes written to your buffer.

endOf Bl ock
A pointer to a Boolean value that indicates if the SMPReadBl ock function
has reached the end of the block. If the buffer that you provide is not large
enough to contain the data remaining in the block, the SMPReadBl ock
function sets this parameter to f al se. You can call the function again
with an updated value in the dat aCf f set parameter to retrieve
additional data.

remai ni ng A pointer to the number of bytes of data remaining in the block. You can
use the value returned by this parameter to adjust the size of your data
buffer before the next time you call the function. When the function sets
the endOf Bl ock parameter to t r ue, it sets the number of bytes
remaining to 0.

3-106 Standard Mail Package Reference

DESCRIPTION

CHAPTER 3

Standard Mail Package

You call the SMPReadBl ock function to read data from a specific block in a letter. You
identify the block that you want to read by the values of the bl ockType and
bl ockl ndex parameters.

You can use this function to read an image block (a block with creator type ' apml ' and
block type ' i mag') or any block of a type you define.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$0012 $1280
noErr 0 No error

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

You can use the SMPEnurer at eBl ocks function (page 3-104) to list the block types and
sizes of blocks in a letter.

The OCECr eat or Type data structure is described in “Creator Type Structure” on
page 3-28.

The section “Image Block Information Structure” on page 3-28 describes how to read an
image block.

Printing Mailers

If you are printing or imaging a letter, you should print or image the mailers as cover
pages. You use the SMPPr epar eCover Pages function (described next) to determine the
total number of cover pages and the SMPDr awiNt hCover Page function (page 3-108) to
draw each cover page.

SMPPrepareCoverPages

The SMPPr epar eCover Pages function prepares cover pages for a letter and returns the
number of cover pages that are needed to print all of the mailers for the letter.

pascal OSErr SMPPrepar eCover Pages(w ndowPtr wi ndow,
short *pageCount);

Standard Mail Package Reference 3-107

abexoed |reN plepuels -

DESCRIPTION

CHAPTER 3

Standard Mail Package

W ndow The window for which you want the number of cover pages.

pageCount A pointer to the number of cover pages necessary to print all the mailers
in the specified window.

When you print or image a letter, you can print or image the mailers as cover pages. You
must call the SMPPr epar eCover Pages function from within your printing or imaging
routine to prepare the cover pages and to determine the number of cover pages before
calling the SMPDr awi\t hCover Page function.

SPECIAL CONSIDERATIONS

The SMPPr epar eCover Pages function makes a number of calculations that are used
by the SMPDr awi\t hCover Page function. You must make sure that the mailer does not
change between the time you call these two functions.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector
$0004 $1264
noErr 0 No error

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

SEE ALSO
You call the SMPDr awi\t hCover Page function, described next, to draw a cover page to
the current graphics port.
SMPDrawNthCoverPage
The SMPDr awi\t hCover Page function draws a cover page for a letter.
pascal OSErr SMPDrawNt hCover Page(W ndowPt r wi ndow,
short pageNunber,
Bool ean doneDr awi ngCover Pages) ;
3-108 Standard Mail Package Reference

DESCRIPTION

CHAPTER 3

Standard Mail Package

W ndow A pointer to the window for which you want to draw a cover page.

pageNumber
The number of the cover page you want to print.

doneDr awi ngCover Pages
A Boolean value that you set to t r ue when you call the function for your
last cover page. Doing so allows the Standard Mail Package to release the
memory that it uses for drawing cover pages.

Before you print or image a letter, you should include the mailers for that letter as cover
pages. The SMPDr aw\t hCover Page function draws or images one cover page. You
must use the SMPPr epar eCover Pages function first to prepare the cover pages and to
determine the total number of cover pages for a given letter. You call these functions
from within your drawing or imaging routine, and they draw to whatever graphics port
you provide. You can use these routines for printing, preparing an image of your letter to
be sent as electronic mail, or for display on the screen.

SPECIAL CONSIDERATIONS

The SMPDr awiNt hCover Page function uses a number of calculations that are made by
the SMPPr epar eCover Pages function. You must make sure that the mailer does not
change between the time you call these two functions.

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector
$0004 $1265
noErr 0 No error

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

The SMPPr epar eCover Pages function is described on page 3-107.

For the sequence of routines you must call to image a letter, see the description of the
image-drawing callback routine on page 3-123.

Standard Mail Package Reference 3-109

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Getting and Setting Information in the Mailer

You can use the functions in this section to determine the contents of the fields of a
mailer and to change the information in those fields without user interaction.

The SMPCet Li st | t enl nf o function (page 3-113) returns information from the
Recipients or Enclosures fields of any mailer. The SMPGet Conponent | nf o function
(page 3-111) returns information from any other field. Before calling either of these
functions, you call the SMPGet Conponent Si ze function (described next) to determine
the size of the buffer to allocate.

You can put information into the fields of a mailer with the functions SMPSet Subj ect
(page 3-116), SMPSet Fr oml dent i ty (page 3-117), SMPAddAddr ess (page 3-118), and
SMPAddAL t achment (page 3-119).

SMPGetComponentSize

DESCRIPTION

3-110

The SMPGet Conponent Si ze function returns the size of the buffer that would be
required to hold all of the information in a specific field of the mailer you specify.

pascal OSErr SMPGet Conponent Si ze(W ndowPtr w ndow,
unsi gned short whi chMail er,
SMPMai | er Corponent whi chFi el d,
unsi gned short *size);

W ndow The window containing the mailer from which you want information.

whi chMai | er
The sequence number of the mailer from which you want information.
The original mailer for the letter is number 1, and each forwarding mailer
is numbered sequentially.

whi chFi el d
The field from which you want to extract the information.

si ze A pointer to the number of bytes of data in the field you specified. For all
fields except the Recipients and Enclosures fields, you should allocate a
buffer of this size and call the SMPGet Conponent | nf o function to obtain
the contents of that field. The Recipients and Enclosures fields might
contain more data than it is practical to retrieve all at once; see the
description of the SMPGet Li st | t enl nf o function (page 3-113) for more
information.

The SMPGet Conmponent Si ze function returns the number of bytes of data in any of the
fields in a mailer. You specify which field by using one of the following constants for the
whi chFi el d parameter: KSMPFr om kSMPTo, kSMPRegar di ng, kKSMPSendDat eTi e,
or KSMPAt t achnent s.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

If you specify any other value for the whi chFi el d parameter, the function returns the
kSMPI | | egal Conponent result code.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0007 $1277
RESULT CODES

noErr 0 No error

par antrr -50 Error in user parameter list

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

kSWPI | | egal Conponent -1918 Illegal value for whi chFi el d parameter
SEE ALSO

You can use the SMPGet Mai | er St at e function (page 3-69) to get the total number of

mailers for a given letter.

Use the SMPGet Conponent | nf o function (described next) to get data from any field

except the Recipients and Enclosures fields. Use the SMPGet Li st | t em nf o function

(page 3-113) to get data from the Recipients and Enclosures fields.

All possible values for the SMPMai | er Conponent data type are shown on page 3-32.
SMPGetComponentInfo

The SMPCGet Conponent | nf o function returns information from the From, Subject, and
Sent fields of a mailer.

pascal OSErr SMPGet Conponent | nf o(W ndowPtr w ndow,
unsi gned short whi chMail er,
SMPMai | er Corponent whi chFi el d,
void *buffer);

w ndow The window containing the mailer from which you want information.

whi chvai | er
The sequence number of the mailer from which you want information.
The original mailer for the letter is number 1, and each forwarding mailer
is numbered sequentially.

Standard Mail Package Reference 3-111

abexoed |reN plepuels -

DESCRIPTION

CHAPTER 3

Standard Mail Package

whi chFi el d
The field from which you want to extract the information.

buf fer A pointer to a buffer you provide into which the function places the
information you requested. Use the SMPGet Conponent Si ze function to
determine what size to make this buffer.

The SMPCet Conponent | nf o function returns information from a mailer. You specify
which field by using one of the following constants for the whi chFi el d parameter:
kSMPFr om(for the From field), kSMPRegar di ng (for the Subject field), or
kSMPSendDat eTi ne (for the Sent field).

If you specify any other value for the whi chFi el d parameter, the function returns the
kSMPI | | egal Conponent result code.

If you request information from the Subject field, then the function returns an RSt r i ng
structure containing the text of the field.

If you request information from the From field of a draft mailer, the function returns an
Aut hl dent i ty structure identifying the sender, followed by an RSt r i ng structure
containing the text in the From field. If you request information from the From field of a
received mailer, the function returns an OCEPackedReci pi ent structure containing the
address of the sender. Only the top mailer in a mailer set can be a draft mailer; use the
hasBeenRecei ved field of the SMPMai | er St at e structure to determine whether the
top mailer has been received.

If you request information from the Date field of the mailer, then the function returns a
Mai | Ti me structure. The time is defined with respect to the local computer that records
it. The of f set field in the Mai | Ti nme structure corrects UTC time (also known as
Greenwich Mean Time) for the local time zone. The of f set field is in seconds; it is
positive if east of Greenwich and negative if west of Greenwich.

typedef struct Mail Time {
UTCTi ne tinme; /* current UTC (GMI) tine */
UTCOf f set of f set ; /* in seconds from GVl */

s

typedef struct Mail Time Mil Ti ne;

typedef unsigned long UTCTi ne; /* seconds since 1/1/1904 */
typedef | ong UTCOf fset; /* correct for local time */

SPECIAL CONSIDERATIONS

3-112

This function may move or purge memory; you should not call this function at interrupt
time.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0007 $1278
RESULT CODES

NoErr 0 No error

par antrr -50 Error in user parameter list

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

kSWPI | | egal Conponent -1918 Illegal value for whi chFi el d parameter
SEE ALSO

You can use the SMPGet Mai | er St at e function (page 3-69) to get the total number of

mailers for a given letter and to determine if the top mailer has been received.

Use the SMPGet Conponent Si ze function (page 3-110) to determine the size of the

buffer to provide. Use the SMPCet Li st | t end nf o function (described next) to get data

from the Recipients and Enclosures fields.

All possible values for the SMPMai | er Conmponent data type are shown on page 3-32.
SMPGetListItemInfo

The SMPCet Li st | t el nf o function returns information from the Recipients or
Enclosures fields of a mailer.

pascal OSErr SMPGet Li stltem nfo(W ndowPtr w ndow,
unsi gned short whi chMil er,
SMPMai | er Corponent whi chFi el d,
voi d *buffer,
unsi gned | ong bufferLength,
unsi gned short startltem
unsi gned short *itenmCount,
unsi gned short *nextltem
Bool ean *nore);

w ndow The window containing the mailer from which you want information.

whi chMai | er
The sequence number of the mailer from which you want information.
The original mailer for the letter is number 1, and each forwarding mailer
is numbered sequentially.

whi chFi el d
The field from which you want information; either KSMPAt t achrent s or
kSMPTo.

Standard Mail Package Reference 3-113

abexoed |reN plepuels -

DESCRIPTION

3-114

CHAPTER 3

Standard Mail Package

buf f er A pointer to a buffer you provide to hold the information returned by the
function.

buf ferLength
The length, in bytes, of the buffer you are providing.

startltem The sequence number of the first address or enclosure that the function
should return. Sequence numbers start with 0. When you call the
SMPGet Li st | t e nf o function and there is insufficient space in the
buffer you provide to hold all of the remaining items, the function
returns, in the next | t emparameter, the sequence number of the next
item. Use that number for the st ar t | t emparameter the next time you
call the function. If there is insufficient space in the buffer to hold even
one item, the number the function returns in the next | t emparameter is
the same as the number you put in the st ar t | t emparameter. In that
case, you must increase the buffer size before calling the function again.

i temCount A pointer to the number of items that the function has placed in the
buffer. If the buffer is too small to hold the item you specify in the
st art | t emparameter, then the i t enCount parameter returns 0, and the
nmor e parameter returns t r ue. If you specify ni | for the buf f er
parameter and 0 for the buf f er Lengt h parameter, the i t enCount
parameter returns a pointer to the total number of items in the mailer
field.

nextltem A pointer to the sequence number of the next item to be returned. If the
mor e parameter returns t r ue, set the st art I t emparameter to the
number returned in the next | t emparameter and call the function again.

mor e A pointer to a Boolean value returned by the function indicating whether
there is more information to be returned. If your buffer was not large
enough to hold all of the requested data, the function sets this parameter
tot r ue and returns, in the next | t emparameter, the sequence number of
the next item to be returned.

Before you call the SMPCet Li st | t em nf o function, call the SMPGet Conponent Si ze
function with a value of KSMPTo or KSMPAt t achrent s for the whi chFi el d parameter.
The SMPCet Conponent Si ze function returns the total number of bytes of storage space
required to hold all of the information you requested. You can then allocate a buffer to
hold the data returned by the SMPGet Li st | t eml nf o function. If you can’t (or don’t
want to) provide a buffer large enough to hold all of the information at once, you can
allocate a smaller buffer.

If you cannot allocate a buffer large enough to hold all of the items at once, the function
returns the sequence number of the next item in the next | t emparameter and it returns
t r ue for the nor e parameter. If the buffer is not large enough to hold even one item, the
sequence number returned in the next | t emparameter is the same as the number you
passed in the st ar t | t emparameter. You can then increase the size of your buffer if
necessary, set the st ar t | t emparameter to the number just returned in the next | t em
parameter, and call the function again.

You can specify either KSMPTo or kSMPAt t achnent s for the whi chFi el d parameter.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

If you request information from the Recipients field, for each address the function
returns a short value indicating the type of address followed by an

OCEPackedReci pi ent structure containing the address. The address type can be any
of the following values:

enum {
kSMPToAddr ess = kMai | ToBi t,
kSMPCCAddr ess = kMai | CcBi t,
kSMPBCCAddr ess = kMai | BccBi t
1

typedef Mail Attributel D SMPAddr essType;

If you request information from the Enclosures field, the function returns a file system
specification structure (FSSpec data type) identifying the letter’s enclosure folder. You
can then use File Manager routines to determine the contents of that folder.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Parameter count Routine selector

$0010 $1279

noErr 0 No error

par ankrr -50 Error in user parameter list

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window

kSWPI | | egal Conponent -1918 Illegal value for whi chFi el d parameter

You can use the SMPGet Mai | er St at e function (page 3-69) to get the total number of
mailers for a given letter.

Use the SMPGet Conponent Si ze function (page 3-110) to determine the size of the
buffer to provide.

Use the SMPGet Conponent | nf o function (page 3-111) to get data from mailer fields
other than the Recipients and Enclosures fields.

Standard Mail Package Reference 3-115

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

SMPSetSubject

The SMPSet Subj ect function specifies the subject string for the top mailer in the

window you specify.

pascal OSErr SMPSet Subj ect (W ndowPt r wi ndow,
const RString *text);

W ndow The window containing the mailer.

t ext A pointer to the subject string you want to place in the mailer.

DESCRIPTION

The Standard Mail Package provides a user interface that lets a user enter a subject string
in a mailer. You can use the SMPSet Subj ect function to set the subject string directly
from your application. You can use this function, for example, to place an initial, default
subject string in the subject field of a new mailer.

The SMPSet Subj ect function sets only the string in the most recent mailer for the
window you specify, and then only if it is a draft mailer (that is, if it is not a received
mailer). You can use the hasBeenRecei ved field of the SMPMai | er St at e structure (a
parameter of the SMPGet Mai | er St at e function) to determine whether the mailer is a

draft mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0004 $126B
RESULT CODES
noErr 0
parantrr =50
kSMPNoMai | er | nW ndow -1909
kSMPMai | er Unedi t abl e -1912
kSMPSubj ect TooBi g -1925
SEE ALSO

No error

Error in user parameter list

No mailer is in specified window
Mailer cannot be edited

Subject string exceeds 127 characters

You can use the SMPGet Mai | er St at e function (page 3-69) to determine if the top

mailer is for a received letter.

3-116 Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

SMPSetFromldentity

The SMPSet Froml dent i t y function sets the authentication identity for the sender of a
letter.

pascal OSErr SMPSet From dentity(W ndowPtr w ndow,
Aut hl dentity fronj;

w ndow The window containing the mailer.

from The authentication identity you want to use for that mailer. Specify 0 to
use the identity of the most recently authenticated user.

DESCRIPTION

The SMPSet Froml dent i t y function lets you change the contents of the From field of a
mailer from within your application. The SMPSet Fr oml dent i t y function modifies
only the most recent mailer in the specified window, and then only if it is not a received
mailer.

SPECIAL CONSIDERATIONS
This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0004 $126C

RESULT CODES
noErr 0 No error
kCCEUnknownl D -1567 Identity passed is not valid
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
kSMPMai | er Unedi t abl e -1912 Mailer cannot be edited

SEE ALSO

Use the SDPPr onpt For | D function in the chapter “Standard Catalog Package” in this
book to obtain an authentication identity.

SEE ALSO

You can use the SMPGet Mai | er St at e function (page 3-69) to determine if the top
mailer is for a received letter.

Standard Mail Package Reference 3-117

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

SMPAddAddress

DESCRIPTION

The SMPAddAddr ess function adds an address to the Recipients field of a mailer.

pascal OSErr SMPAddAddress(W ndowPtr w ndow,
SMPAddr essType addr Type,
OCEPackedReci pi ent *address);

W ndow The window containing the mailer.

addr Type The type of address you want to add. You can specify the value
kSMPToAddr ess to add a primary addressee, or k SMPCCAddr ess to add
a “copy to” addressee.

addr ess The address that you want to add to the mailer.

The Standard Mail Package provides a user interface that lets a user enter an address in
the Recipients field of a mailer. You can use the SMPAddAddr ess function to add an
address directly from your application. You can use this function, for example, to place
an initial, default address in the Recipients field of a reply mailer. If you specify an
address type of kK SMPCCAddr ess, the mailer flags the address as a “copy to” address
(see Figure 3-3 on page 3-5). The values of the SMPAddr essType data type are defined
as follows:

enum {
kSMPToAddr ess kMai | ToBi t,
k SMPCCAddr ess kMai | CcBi t,
kSMPBCCAddr ess = kMai | BccBit

1
typedef Mail Attributel D SMPAddr essType;

The SMPAddAddr ess function adds addresses only to the most recent mailer in the
specified window, and then only if it is not a received mailer. You can use the
hasBeenRecei ved field of the SMPMi | er St at e structure (a parameter of the
SMPGet Mai | er St at e function) to determine whether the top mailer has been received.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

3-118

Parameter count Routine selector
$0005 $126D

Standard Mail Package Reference

RESULT CODES

SEE ALSO

CHAPTER 3

Standard Mail Package

nokErr 0 No error

kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
kSMPMai | er Unedi t abl e -1912 Mailer cannot be edited

kSMPAddr essAl r eadyl nLi st -1922 Specified address is in Recipients field

You can use the SMPGet Mai | er St at e function (page 3-69) to determine if the top
mailer is for a received letter.

You can use the SMPGet Li st | t eml nf o function (page 3-113) to get the addresses that
the user entered in the Recipients field of a mailer.

SMPAddAttachment

DESCRIPTION

The SMPAddAL t achment function adds a disk file as an enclosure to a letter.

pascal OSErr SMPAddAttachnment (W ndowPtr w ndow,
const FSSpec *attachnent);

W ndow The window containing the mailer.
att achment

A pointer to the file system specification structure of the disk file that you
want to add as an enclosure.

The Standard Mail Package provides a user interface that lets a user add a disk file or
folder as an enclosure to a letter. You can use the SMPAddAt t achnent function to add
an enclosure directly from your application in case you want to provide an Add
Enclosures command. The SMPAddAt t achrment function adds enclosures only to the
most recent mailer in the specified window, and then only if it is not a received mailer.
You can use the hasBeenRecei ved field of the SMPMai | er St at e structure (a
parameter of the SMPGet Mai | er St at e function) to determine whether the top mailer
has been received.

Use the SMPAddMai nEncl osur e function to add a main enclosure to the letter. The

mailer does not display the contents of the letter’s main enclosure in the Enclosures field.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

The enclosure is not actually added until well after this function has returned. Therefore,
after calling the SMPAddAt t achrment function, you should call the Wai t Next Event

Standard Mail Package Reference 3-119

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

routine so that you yield time to the Finder to process Apple events while in the
background. You must wait until the Standard Mail Package has finished copying the
enclosure into the letter before you add anything else to the letter or try to send or save
the letter. The SMPMai | er Event function uses the kSMPCr eat eCopyW ndowBi t and
kSMPDi sposeCopyW ndowBi t status bits to inform you of the progress of the copy
operation.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0004 $126E
RESULT CODES
noErr 0 No error
fnfErr —43 File not found
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
kSMPMai | er Unedi t abl e -1912 Mailer cannot be edited
kSMPTooManyEncl osur es -1928 More than 50 total files and folders
SEE ALSO
You can use the SMPAt t achDi al og function (described next) to display a dialog box
that lets the user add an enclosure to a mailer.
You can use the SMPGet Mai | er St at e function (page 3-69) to determine if the top
mailer is for a received letter.
You can use the SMPGet Li st | t eml nf o function (page 3-113) to list the enclosures that
the user entered in the Enclosures field of a mailer.
Call the SMPMai | er Event function (page 3-63) to handle mailer events and to
determine the status of the copy operation that occurs when you call the
SMPAddMai nEncl osur e function.
Use the SMPAddMai nEncl osur e function (page 3-90) to add a main enclosure to a letter.
SMPAttachDialog

The SMPAt t achDi al og function displays a dialog box that lets the user add a disk file
as an enclosure to a letter.

pascal OSErr SMPAttachDi al og (W ndowPtr w ndow);

W ndow The window containing the mailer.

3-120 Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

DESCRIPTION
The Standard Mail Package provides a dialog box that lets a user add a disk file or folder
as an enclosure to a letter (Figure 3-8). You can use the SMPAt t achDi al og function to
display this same dialog box as an easy way to provide an Add Enclosures command.
The SMPAt t achDi al og function adds enclosures only to the most recent mailer in the
specified window, and then only if it is not a received mailer. You can use the
hasBeenRecei ved field of the SMPMai | er St at e structure (a parameter of the
SMPCet Mai | er St at e function) to determine whether the top mailer is editable.
Figure 3-8 Add Enclosure dialog box
i AOCE v — Prajna

O Interfaces

[3 Internet PMSAM

O Notes

[0 SampleCode

0O SDPEventProcessing

] | Open I

Select a file or folder to enclose

with the letter.
Use the SMPAddMai nEncl osur e function to add a main enclosure to the letter. The
mailer does not display the contents of the letter’s main enclosure in the Enclosures field.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt
time.

The enclosure is not actually added until well after this function has returned. Therefore,
after calling the SMPAt t achDi al og function, you should call the Wai t Next Event
routine so that you yield time to the Finder to process Apple events while in the
background. You must wait until the Standard Mail Package has finished copying the
enclosure into the letter before you add anything else to the letter or try to send or save
the letter. The SMPMai | er Event function uses the kSMPCr eat eCopyW ndowBi t and
kSMPDi sposeCopyW ndowBi t status bits to inform you of the progress of the copy
operation.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector
$0002 $1276

Standard Mail Package Reference 3-121

abexoed |reN plepuels -

RESULT CODES

SEE ALSO

CHAPTER 3

Standard Mail Package

noErr 0 No error

user Cancel edErr -128 User clicked Cancel button
kSMPNoMai | er | nW ndow -1909 No mailer is in specified window
kSMPMai | er Unedi t abl e -1912 Mailer cannot be edited
kSMPTooManyEnNcl osur es -1928 More than 50 total files and folders

You can use the SMPAddAt t achnment function (page 3-119) if you want to provide your
own interface that lets the user add an enclosure to a mailer.

You can use the SMPGet Mai | er St at e function (page 3-69) to determine if the top
mailer is for a received letter and is therefore uneditable.

Call the SMPMai | er Event function (page 3-63) to handle mailer events and to
determine the status of the copy operation that occurs when you call the
SMPAddMai nEncl osur e function.

Use the SMPAddMai nEncl osur e function (page 3-90) to add a main enclosure to a letter.

Application-Defined Functions

This section describes the callback routines that you may provide for Standard Mail
Package functions. Your MyPr epar eMai | er For Dr awi ng routine restores your window
port to a standard state so the Standard Mail Package can draw into it. Your

MyDr awl mage routine (page 3-123) images a document for the Standard Mail Package.
The Standard Mail Package calls your MyFr ont W ndowCB routine (page 3-124) to
determine which window is active when processing a key-down event.

MyPrepareMailerForDrawing

3-122

You may need to provide a MyPr epar eMai | er For Dr awi ng routine to the
SMPNewMai | er function to make sure that the Standard Mail Package can draw a mailer
in your window.

pascal void MyPrepareMil er For Drawi ng (W ndowPtr wi ndow,
long clientData);

W ndow A pointer to the window into which the Standard Mail Package wants to
draw.

clientData
Reserved for your use. You specify this value when you call the
SMPNewMai | er function, and that function passes the value unaltered to
your callback routine.

Standard Mail Package Reference

DESCRIPTION

CHAPTER 3

Standard Mail Package

If you ever change the clip region, coordinates, or other aspects of your window’s
graphics port, you must provide a drawing-preparation routine that restores the window
to its original state. The Standard Mail Package calls this routine before it draws into
your window to add a new mailer or alter an existing mailer. You provide a pointer to
your drawing-preparation routine when you call the SMPNewMai | er function, the
SMPMai | er Repl y function, and the SMPOpenLet t er function.

SPECIAL CONSIDERATIONS

SEE ALSO

You must make sure that your code for this routine is in a locked segment.

The SMPNewVhi | er function preserves your application’s A5 world when it calls your
drawing-preparation routine. Therefore, you have access to your application’s global
variables from this routine.

The SMPNewVai | er function is described on page 3-46.
The SMPMai | er Repl y function is described on page 3-51.
The SMPOpenLet t er function is described on page 3-94.

abexoed |reN plepuels -

MyDrawlImage

DESCRIPTION

The MyDr aw nmage function is a callback routine you must provide if you call the
SMPI mage function or if you specify KSMPSendAs| mageMask for the sendAs field of
the parameter block used by the SMPSendLet t er function.

pascal void MyDrawi mage (long refcon, Bool ean inColor);

refcon A reference constant that you can use for your own purposes.

i nCol or A Boolean value that indicates whether the Standard Mail Package is
providing a color graphics port to your image-drawing routine. This
parameter is significant only in image-information structures passed to
image-drawing routines.

You provide a pointer to your image-drawing routine in the dr awl magePr oc parameter
when you call the SMPI nage function and in the dr awl magePr oc field of the
parameter block when you call the SMPSendLet t er function. Your image-drawing
routine must call the SMPNewPage function before it draws each page of the document.
You should call the SMPI mageEr r function rather than the QDEr r or function after each
QuickDraw routine you call. When you are finished imaging the document, just return.

Standard Mail Package Reference 3-123

CHAPTER 3

Standard Mail Package

If the user has color QuickDraw and you specified t r ue for the suppor t sCol or
parameter of the SMPI mage function or the suppor t sCol or field of the parameter
block used by SMPSendLet t er, then the Standard Mail Package provides you with a
color graphics port when it calls your image-drawing routine.

If you are imaging a letter that includes one or more mailers, you should image the
mailers as cover pages before imaging the document. To do so, your image-drawing
routine should first call the SMPPr epar eCover Pages function to prepare the cover
pages and to determine the total number of cover pages. Then for each cover page, you
should call the SMPNewPage function and then the SMPDr awit hCover Page function.

SPECIAL CONSIDERATIONS

SEE ALSO

If you change the graphics port within your image-drawing routine, you must change it
back before calling the SMPNewPage or SMPI mageEr r functions.

The SMPSendLet t er function is described on page 3-37. The SMPI mage function is
described on page 3-88.

You must call the SMPNewPage function (page 3-41) before you draw each page.

You should call the SMPI nageEr r function (page 3-41) after each QuickDraw routine
you call.

To prepare cover pages for a mailer, you must call the SMPPr epar eCover Pages
function (page 3-107). To draw each cover page, you call the SMPDr awiNt hCover Page
function (page 3-108).

You can call the Get Por t routine to determine the current graphics port. The Get Por t
routine is described in Inside Macintosh: Imaging With QuickDraw.

MyFrontWindowCB

3-124

The MyFr ont W ndowCB function is a callback routine you can provide with the
SMPMai | er Event function. If you provide this function, the Standard Mail Package
calls your MyFr ont W ndowCB function to determine which is the active window when
processing a key-down event.

pascal W ndowPtr MyFront WndowCB (Il ong clientData);
clientData
Reserved for your use. You specify this value when you call the

SMPMai | er Event function, and that function passes the value unaltered
to your callback routine.

Standard Mail Package Reference

DESCRIPTION

CHAPTER 3

Standard Mail Package

You can provide a pointer to your front-window routine when you call the

SMPMai | er Event function. Your front-window routine returns a pointer to the window
that you want the SMPMai | er Event function to treat as the frontmost window. You
might use this callback routine, for example, if your application displays a status dialog
box in front of your application’s main window on the screen, but you want any
key-down events to apply to your application’s main window. If, as is the case with most
applications, you do not have any windows in front of your main application window,
specify ni | for the f r ont W ndowCB parameter of the SMPMi | er Event function. In
that case the Standard Mail Package uses the Window Manager’s Fr ont W ndow routine
to determine the frontmost window.

SPECIAL CONSIDERATIONS

SEE ALSO

The SMPMai | er Event function preserves your application’s A5 world when it calls
your front-window routine. Therefore, you have access to your application’s global
variables from this routine.

The SMPMai | er Event function is described on page 3-63.

abexoed |reN plepuels -

MySendOptionsFilterProc

The send-options filter procedure is a routine you can provide when you call the
SMPSendOpt i onsDi al og function. This routine extends the send-options dialog box.

pascal Bool ean MySendOpti onsFilterProc (Dial ogPtr theDi al og,
Event Recor d* t heEvent,
short itenmHi t,
I ong clientData);

t heDi al og A pointer to the dialog structure for the send-options dialog box.
t heEvent The event that was just received by the send-options dialog box.

itenmHit If the dialog box has just received a mouse-down event, this parameter
indicates the number of the dialog item in which the mouse-down event
occurred.

clientData

A constant reserved for your use. You specify this value when you call the
SMPSendOpt i onsDi al og function.

Standard Mail Package Reference 3-125

DESCRIPTION

CHAPTER 3

Standard Mail Package

If you provide a filter routine when you call the SMPSendQOpt i onsDi al og function, the
Standard Mail Package calls your filter routine each time it receives an event for the
send-options dialog box. If your filter routine returns t r ue, the Standard Mail Package
assumes you handled the event. If your filter routine returns f al se, the Standard Mail
Package handles the event normally. You can alter the event before returning f al se.

To allow your filter routine to add new items to the send-options dialog box and to clean
up before it removes the dialog box, the Standard Mail Package sends your function two
pseudoevents:

enum {
kSMPSendOpt i onsSt ar t = -1,
kSMPSendOpt i onsEnd =-2

s

When your filter routine receives the kKSMPSendOpt i onsSt art event, you can call the
Count DI TL routine to determine the number of items already in the dialog box. You can
then call the AppendDI TL function to add new items to the dialog box, as follows:

AppendDl TL(t heDi al og, nyDI TL, appendDl TLBottom

The parameter nmy DI TL describes the new items you wish to add to the dialog box. When
you begin numbering new items, increment by 1 the number returned by the

Count DI TL routine. When your filter routine receives the kSMPSendOpt i onsSt ar t
event, you can also allocate memory, initialize menus, and so forth.

Immediately before closing the send-options dialog box, the Standard Mail Package
sends a KSMPSendOpt i onsENd event to your filter routine. You should then deallocate
any memory that you allocated earlier.

SPECIAL CONSIDERATIONS

SEE ALSO

3-126

Do not make any assumptions about the number or position of the standard items in the
send-options dialog box, as Apple Computer, Inc., reserves the right to change this
dialog box at any time.

The SMPSendOpt i onsDi al og function is described on page 3-73.

Standard Mail Package Reference

CHAPTER 3

Standard Mail Package

Summary of the Standard Mail Package

C Summary

Constants and Data Types

#def i ne gestal t SMPMai | er Ver si on' nal r'
#def i ne gestal t SMPSPSendLet t er Ver si on' spsl'
#defi ne kSMPNat i veFor nat Nanme' nat v

#define typelLetterSpec' lttr'
/* wildcard used for filtering letter types */

enum {
FilterAnyLetter="Itr*",
FilterAppleLetterContent="Itc*",
Filterl mgeContent="1ti*'

b

/* SMPPSendAs val ues. You may add the follow ng values together to
determ ne how the file is sent, but you may not set both
kSMPSendAsEncl osureMask and kSMPSendFi | eOnl yMask. */

enum {
kSMPSendAsEncl osureBit, /* appears as letter with encl osures */
kSMPSendFi | eOnl yBi t, /* appears as a file in mailbo. */
kSMPSendAs| nageBi t /* letter includes inage of content */
1

/* val ues of SMPPSendAs */

enum {
kSMPSendAsEncl osur eMask
kSMPSendFi | eOnl yMask
kSMPSendAs| mageMask

1<<kSMPSendAsEncl osureBit,
1<<kSWPSendFi | eOnl yBi t,
1<<kSMPSendAs| nmageBi t

b

t ypedef Byte SMPPSendAs;

Summary of the Standard Mail Package

3-127

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

enum {
kSMPAppMust Handl eEvent Bi t
kSMPAppShoul dl gnor eEvent Bi t,
kSMPCont ract edBi t,
kSMPExpandedBi t ,
kSVPMai | er BeconmesTargetBi t,
kSMPAppBeconesTargetBi t,
kSMPCur sor Over Mai l erBi t,
kSMPCr eat eCopyW ndowBi t ,
kSMPDi sposeCopyW ndowBi t

s

/* values of SMPMail er Result */

enum {
kSMPAppMust Handl eEvent Mask = 1<<kSMPAppMust Handl eEventBi t,
kSMPAppShoul dI gnor eEvent Mask = 1<<kSMPAppShoul dl gnor eEvent Bi t,
kSMPCont r act edMask = 1<<kSMPContractedBit,
k SMPExpandedMask = 1<<kSMPExpandedBit,
kSMPMai | er BeconmesTar get Mask = 1<<kSMPMui | er BeconesTargetBit,
kSMPAppBecomesTar get Mask = 1<<kSMPAppBeconesTargetBit,
kSMPCur sor Over Mai | er Mask = 1<<kSMPCur sor Over Mai l erBi t,
kSMPCr eat eCopyW ndowivask = 1<<kSMPCr eat eCopyW ndowBi t ,
kSMPDi sposeCopyW ndowivask = 1<<kSMPDi sposeCopyW ndowBi t

1

t ypedef unsigned | ong SMPMai | er Resul t

/* val ues of SMPMai | er Corponent */

enum {
kSMPQx her = -1,
kSMPFr om = 32,
kSMPTo = 20,
kSMPRegar di ng = 22,
kSMPSendDat eTine = 29,
kSMPAt t achmrent s = 26,
kSMPAddr essOvatic = 16

b

typedef unsigned | ong SMPMai | er Conponent ;

3-128 Summary of the Standard Mail Package

CHAPTER 3

Standard Mail Package

enum {
kSMPToAddress = KkMail ToBit,
kSMPCCAddress = kMail CcBit,
kSMPBCCAddress = kMai |l BccBi't
b

typedef Mail Attributel D SMPAddr essType;

enum {
kSMPUndoConmand,
k SMPCut Conmmand,
k SMPCopy Conmrand,
kSMPPast eComrand,
kSMPCl ear Conmrand,
kSMPSel ect Al | Conmand

1
t ypedef unsi gned short SMPEdi t Conmand;

enum {
kSMPUndoDi sabl ed,
k SMPAppMay Undo,
kSMPMai | er Undo

1
t ypedef unsi gned short SMPUndoSt at e;

/* SMPSendFor mat Mask: Bitfield indicating which conbinations of formats are
i ncluded in, should be included in, or can be included in a letter. */

enum {
kSMPNat i veBi t,
kSWPI nageBi t,
kSMPSt andar dI nt er changeBi t

b
/* val ues of SMPSendFor mat Mask */

enum {
kSMPNat i veMask 1<<kSMPNat i veBit,
kSMPI mageMask 1<<kSMPI nageBi t,
kSMPSt andar dI nt er changeMask = 1<<kSMPSt andar dI nt er changeBi t

b

t ypedef unsigned | ong SMPSendFor mat Mask;

Summary of the Standard Mail Package 3-129

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

/* pseudo-events passed to the client's filter

cl eanup */
enum {
kSMPSendOpti onsStart = -1
kSMPSendOpt i onsEnd =-2
1
enum {
kSMPSave,
kSMPSaveAs,
k SMPSaveACopy
1

t ypedef unsi gned short SMPSaveType;

/* val ues of Mail Segrment Type */
enum {
kMai | I nval i dSegnent Type
kMai | Text Segnent Type
kMai | Pi ct Segnent Type
kMai | SoundSegnent Type
kMai | Styl edText Segnent Type
kMai | Movi eSegnent Type

|
g b~ W NP O

1
t ypedef unsi gned short Mail Segnent Type;

/* val ues of Mail Bl ockMode */
enum {
kMai | FronSt art
kMai | Fr omrLEOB
kMai | Fr omvar k

1
typedef short Mail Bl ockMode;

struct SMPReci pi ent Descri ptor

{
struct SMPReci pi ent Descri ptor *next;
OSEr r result;
OCEPackedReci pi ent *reci pi ent;
unsi gned | ong si ze;

3-130 Summary of the Standard Mail Package

1, /* offset cal cul ated
2, /* offset cal cul at ed
3 /* offset cal cul ated

/*
/*
/*
/*

proc for initialization and

fromstart of block */
fromend of block */
fromcurrent mark */

poi nter to next elenent */
result code */

packed recipi ent address */
size of recipient address */

CHAPTER 3

Standard Mail Package

Mai | Reci pi ent t heAddress; /* unpacked recipi ent address */
Recordl D t heRI D; /* record ID of recipient */

b

t ypedef struct SMPReci pi ent Descri ptor SMPReci pi ent Descri ptor
t ypedef SMPReci pi ent Descri ptor *SMPReci pi ent DescriptorPtr

struct SMPEncl osureDescri ptor

{
struct SMPEncl osur eDescri ptor *next; /* pointer to next element */
OSErr result; /* result code */
FSSpec fil eSpec; /* file specifier of
encl osure */
OSType fileCreator; /* creator of enclosure */
OSType fileType; /* file type of enclosure */
1

typedef struct SMPEncl osureDescri ptor SMPEncl osureDescri ptor
t ypedef SMPEncl osureDescri ptor *SMPEncl osureDescriptorPtr

struct LetterDescriptor {
Bool ean onDi sk;
uni on {
FSSpec fil eSpec;
Letter Spec mmil boxSpec;
Hu;
1

typedef struct LetterDescriptor LetterDescriptor;

struct SMPLetterPB

{
OSErr result; /* function result */
RStringPtr subj ect ; /* subject of letter */
Aut hl dentity senderldentity;/* identity of sender */
SMPReci pi ent DescriptorPtr tolist; /* list of addressees */
SMPReci pi ent DescriptorPtr cclList; /* list of cc addressees */
SMPReci pi ent DescriptorPtr bccli st; /* list of bcc addressees */
Scri pt Code script; /* script code for |anguage */
Si ze text Si ze; /* length of body data */
Ptr text Buffer; /* body of the letter */
SMPPSendAs sendAs; /* file, enclosure, or inmage */
Byt e padByt e; /* reserved */
SMPENncl osureDescri ptorPtr encl osures; /* files to be enclosed */
SMPDr awl magePr ocPt r drawl mageProc; /* your inmaging routine */

Summary of the Standard Mail Package 3-131

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

| ong i mageRef Con; /* for your
Bool ean supportsColor; /* true for

b

t ypedef struct SMPLetterPB SMPLett er PB;
typedef SMPLetterPB *SWMPLetter PBPtr;

struct SMPC oseOpti ons {

Bool ean nmoveToTr ash;
Bool ean addTag;
RSt ri ng32 tag;

b

typedef struct SMPC oseQptions SMPCl oseOpti ons;
t ypedef SMPC oseOptions *SMPC oseQpti onsPtr;

struct SMPMailerState {

short mai | er Count ;
short current Mail er;
Poi nt upper Left;

Bool ean hasBeenRecei ved;
Bool ean i sTarget;

Bool ean i sExpanded;

Bool ean canMoveToTr ash;
Bool ean canTag;

Byt e padByt e2;

unsi gned | ong changeCount ;
SMPMai | er Conponent t ar get Conponent ;
Bool ean canCut ;

Bool ean canCopy;

Bool ean canPast e;

Bool ean canCl ear;

Bool ean canSel ect Al | ;
Byt e padByt e3;
SMPUNndoSt at e undoSt at e;

Str63 undoWhat ;

1
typedef struct SMPMail er St ate SMPMai | er St at e;

struct SMPSendOptions {
Bool ean si gnWhenSent ;
| PMPriority priority;

b

3-132 Summary of the Standard Mail Package

use */
a col or

gr af Port

*/

CHAPTER 3

Standard Mail Package

typedef struct SMPSendOpti ons SMPSendOpti ons;
typedef SMPSendOpti ons *SMPSendOpti onsPtr, **SMPSendOpti onsHandl e;

/* SMPSendFormat: Structure describing the format of a letter. If
kSMPNat i veMask bit is set, the whichNativeFormat field indicates which of
the client-defined formats to use. */

struct SMPSendFor mat {
SMPSendFor mat Mask whi chFor mat s;
short whi chNati veFor mat ; /* zero-based */

b
t ypedef struct SMPSendFor mat SMPSendFor mat ;

struct Letter Spec

{
unsi gned | ong spec|[3];
i
struct SMPLetterlInfo {
OSType | etterCreator
OSType | etterType;

RSt ri ng32 subj ect ;
RSt ri ng32 sender

1
typedef struct SMPLetterlInfo SMPLetterlnfo;
typedef struct Ml Tinme {
UTCTi ne time; /* current UTC (GMI) tine */

UTCOf f set of f set; /* in seconds from GVl */
s

typedef struct Mail Time Mil Ti ne;

typedef unsigned long UTCTi ne; /* seconds since 1/1/1904 */
typedef [|ong UTCO fset; [/* correct for local time */

/* pointers to functions for application-defined callback functions */
t ypedef pascal void (*SMPDrawl nageProcPtr) (Il ong refcon, Bool ean inCol or);
t ypedef pascal W ndowPtr (*FrontW ndowProcPtr) (long clientData);

t ypedef pascal void (*PrepareMil er For Drawi ngProcPtr) (W ndowPtr wi ndow,
long clientData);

Summary of the Standard Mail Package 3-133

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

t ypedef pascal Bool ean (*SendOptionsFilterProc) (DialogPtr theD al og,
Event Recor d* t heEvent,
short itenHit,

I ong clientData);

Standard Mail Package Functions

Send-Letter Functions

pascal OSErr SMPSendLetter (SMPLetterPBPtr thelLetter);
pascal OSErr SMPNewPage (OpenCPi cPar ans *newHeader) ;
pascal OSErr SMPI mageErr (void);

pascal OSErr SMPResol veToReci pi ent
(PackedDSSpecPtr dsSpec,
SMPReci pi ent Descri ptorPtr *recipi entlList,
Authldentity identity);

Providing Mailers in Your Windows

pascal OSErr SMPInitMiiler (long mailerVersion);

pascal OSErr SMPNewMai | er (W ndowPt r wi ndow,
Poi nt upperLeft,
Bool ean canContract,
Bool ean initiall yExpanded,
Authldentity identity,
const PrepareMi | er For Dr awi ngPr ocPtr
pr epar eMai | er For Dr awi ngCB,
long clientData);

pascal OSErr SMPGet Di mensi ons
(short *wi dth,
short *contractedHei ght,
short *expandedHei ght);

pascal OSErr SMPMai | er For war d
(W ndowPt r w ndow,
Authldentity from;

3-134 Summary of the Standard Mail Package

CHAPTER 3

Standard Mail Package

pascal OSErr SMPMai |l er Reply
(WndowPtr original Letter,

W ndowPtr newLetter,
Bool ean repl yToAl I,
Poi nt upperLeft,
Bool ean canContract,
Bool ean initiall yExpanded,
Authldentity identity,
const PrepareMail er For Drawi ngProcPtr
pr epar eMai | er For Dr awi ngCB,
I ong clientData);

pascal OSErr SMPCet Tablnfo (SMPMail er Conmponent *first Tab,
SMPMai | er Conponent *| ast Tab) ;

pascal OSErr SMPBeconeTar get
(W ndowPt r wi ndow,
Bool ean beconeTar get,
SMPMai | er Conponent whi chFi el d) ;

pascal OSErr SMPExpandOr Contract
(W ndowPt r wi ndow,
Bool ean expand);

pascal OSErr SMPMoveMailer (W ndowPtr w ndow,
short dh,
short dv);

pascal OSErr SMPTagDi al og (W ndowPt r wi ndow,
RString32 *t heTag);

pascal OSErr SMPPrepareToC ose
(W ndowPtr wi ndow) ;

pascal OSErr SMPC oseOpti onsDi al og
(W ndowPt r wi ndow,
SMPCl oseOpti onsPtr cl oseOptions);

pascal OSErr SMPDi sposeMail er
(W ndowPt r wi ndow,
SMPCl oseOpti onsPtr cl oseOptions);

Handling Events in Mailers

pascal OSErr SMPMi | er Event
(const Event Record *event,
SMPMai | er Resul t *what Happened,
const Front WndowProcPtr front WndowCB,
long clientData);
pascal OSErr SMPMai | er Edi t Comrand
(W ndowPt r wi ndow,
SMPEdi t Cormand comand,
SMPMai | er Resul t *what Happened) ;

Summary of the Standard Mail Package 3-135

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

pascal OSErr SMPGet Mail er State
(wi ndowPt r wi ndow,
SMPMai l erState *itsState);

pascal OSErr SMPC ear Undo (W ndowPtr wi ndow) ;
pascal OSErr SMPDrawivhail er (W ndowPtr wi ndow);

Sending and Saving Mail

pascal OSErr SMPSendOpti onsDi al og
(W ndowPt r wi ndow,

St r 255 docunent Nane,
StringPtr nativeFormat Nanmes[],
unsi gned short naneCount,
SMPSendFor mat Mask canSend,
SMPSendFor mat *curr ent For nat,
SendOptionsFilterProc filterProc,
| ong clientData,
SMPSendFor mat *shoul dSend,
SMPSendOpti onsPtr sendOpti ons);

pascal OSErr SMPCont ent Changed
(W ndowPtr w ndow) ;

pascal OSErr SMPBegi nSave (W ndowPt r w ndow,
const FSSpec *disklLetter,
OSType creator,
OSType fil etype,
SMPSaveType saveType,
Bool ean *rnust AddCont ent) ;

pascal OSErr SMPEndSave (W ndowPt r wi ndow,
Bool ean okToSave);

pascal OSErr SMPBegi nSend (W ndowPt r w ndow,

OSType creator,

OSType fil eType,

SMPSendOpt i onsPtr sendOpti ons,

Bool ean *rnust AddCont ent) ;
pascal OSErr SMPPrepar eToChange

(W ndowPtr w ndow) ;

pascal OSErr SMPEndSend (W ndowPt r wi ndow,

Bool ean okToSend);

3-136 Summary of the Standard Mail Package

pascal

pascal

pascal

pascal

CHAPTER 3

Standard Mail Package

OSErr SMPAddContent (W ndowPtr wi ndow,
Mai | Segrent Type segnent Type,
Bool ean appendFl ag,
void *buffer,
unsi gned | ong bufferSize,
St ScrpRec *t ext Scr ap,
Bool ean startNewScri pt,
Scri pt Code script);

OSErr SMPI mage (W ndowPt r wi ndow,
SMPDr awl magePr ocPt r dr aw nagePr oc,
| ong i mageRef Con,
Bool ean supportsCol or);

OSErr SMPAddMai nEncl osur e
(W ndowPt r wi ndow,
const FSSpec *encl osure);

OSErr SMPAddBI ock (W ndowPt r w ndow,
const OCECreat or Type *bl ockType,
Bool ean append,
void *buffer,
unsi gned | ong bufferSize,
Mai | Bl ockMode node,
unsi gned | ong of fset);

Reading Mail

pascal

pascal

pascal

OSErr SMPCet Letterlnfo
(LetterSpec *muil boxSpec,
SWMPLetterInfo *info);

OSErr SMPOpenLetter (const LetterDescriptor *letter,
W ndowPt r wi ndow,
Poi nt upperLeft,
Bool ean canContract,
Bool ean initiall yExpanded,

const PrepareMi | er For Dr awi ngPr ocPtr

pr epar eMai | er For Dr awi ngCB,
long clientData);
OSErr SMPCet Next Letter
(OSType *typeslLi st,
short nunifypes,
LetterDescri ptor *adjacentLetter);

Summary of the Standard Mail Package

3-137

abexoed |reN plepuels -

pascal

pascal

pascal

pascal

pascal

CHAPTER 3

Standard Mail Package

CSErr

CSEr r

CSErr

CSErr

CSErr

SMPReadCont ent

(W ndowPt r wi ndow,
Mai | Segnment Mask segnent TypeMask,
void *buffer,
unsi gned | ong bufferSize,
unsi gned | ong *dat aSi ze,
St ScrpRec *t ext Scr ap,
Scri pt Code *scri pt,
Mai | Segnent Type *segnent Type,
Bool ean *endOf Scri pt,
Bool ean *endOf Segnent ,
Bool ean *endOf Cont ent ,
| ong *segnent Lengt h,
| ong *segnentl| D);

SMPCGet Font NanmeFr onletter
(W ndowPt r wi ndow,
short font Num
str 255 font Nane,
Bool ean doneW t hFont Tabl e) ;

SMPCGet Mai nEncl osur eFSSpec
(W ndowPt r wi ndow,
FSSpec *encl osureDir);

SMPEnuner at eBl ocks
(W ndowPt r wi ndow,

unsi gned short startl ndex,
voi d *buffer,
unsi gned | ong bufferSize,
unsi gned | ong *dat aSi ze,
unsi gned short *nextl ndex,
Bool ean *nore);

SMPReadBl ock (W ndowPt r w ndow,
const OCECreat or Type *bl ockType,
unsi gned short bl ockl ndex,
void *buffer,
unsi gned | ong bufferSize,
unsi gned | ong dataCf f set,
unsi gned | ong *dat aSi ze,
Bool ean *endOf Bl ock,
unsi gned | ong *renai ni ng) ;

Printing Mailers

pascal

3-138

CSEr r

SMPPr epar eCover Pages
(wi ndowPt r wi ndow,
short *pageCount);

Summary of the Standard Mail Package

CHAPTER 3

Standard Mail Package

pascal OSErr SMPDrawNt hCover Page
(W ndowPt r w ndow,
short pageNunber,
Bool ean doneDr awi ngCover Pages) ;

Getting and Setting Information in the Mailer

pascal OSErr SMPGet Conponent Si ze
(W ndowPt r wi ndow,
unsi gned short whi chMail er,
SMPMai | er Conponent whi chFi el d,
unsi gned short *size);

pascal OSErr SMPGet Conponent | nfo
(W ndowPt r wi ndow,
unsi gned short whi chMail er,
SMPMai | er Conponent whi chFi el d,
void *buffer);

pascal OSErr SMPGet Listltem nfo
(W ndowPt r wi ndow,

unsi gned short whi chMail er,
SMPMai | er Conponent whi chFi el d,
voi d *buffer,
unsi gned | ong bufferLength,
unsi gned short startltem
unsi gned short *itenCount,
unsi gned short *nextltem
Bool ean *nore);

pascal OSErr SMPSet Subject (W ndowPtr w ndow,
const RString *text);

pascal OSErr SMPSet From dentity
(W ndowPt r wi ndow,
Aut hl dentity fron;

pascal OSErr SMPAddAddress (W ndowPtr w ndow,
SMPAddr essType addr Type,
OCEPackedReci pi ent *address);

pascal OSErr SMPAddAtt achment
(W ndowPt r wi ndow,
const FSSpec *attachnent);

pascal OSErr SMPAttachDi al og
(W ndowPtr w ndow) ;

Summary of the Standard Mail Package

3-139

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Application-Defined Functions

pascal void MyPrepareMail er For Drawi ng

(W ndowPt r wi ndow,

long clientData);
pascal void MyDraw nmage (long refcon, Bool ean inColor);
pascal W ndowPtr MyFront W ndowCB

(long clientData);
pascal Bool ean MySendOpti onsFilterProc

(Di al ogPtr thebDi al og,

Event Recor d* t heEvent,

short itenHit,

long clientData);

Pascal Summary

Constants

CONST

gest al t SMPMai | er Ver si on = 'mlr';
gest al t SMPSPSendLet t er Versi on = ' spsl’
kSMPNat i veFor nat Nane = '"natv';
typelLetter Spec ="lttr';

{ wildcard used for filtering letter types }

FilterAnyLetter
Fi | ter Appl eLet t er Cont ent
Fi | terl mageCont ent

"ltr*';
"Ite*';
Tt

{ SMPPSendAs values. You may add the foll ow ng val ues together to determ ne
how the file is sent, but you may not set both kSMPSendAsEncl osureMask and
kSMPSendFi | eOnl yMask. }

kSMPSendAsEncl osur eBi t { appears as letter with enclosures }
kSMPSendFi | eOnl yBi t = 1; { appears as a file in nmuail box }
kSMPSendAs| mageBi t { letter includes inage of content }

I
L

n
N

3-140 Summary of the Standard Mail Package

CHAPTER 3

Standard Mail Package

{ val ues of SMPPSendAs }
kSMPSendAsEncl osur eMask
kSMPSendFi | eOnl yMask
kSMPSendAs| nageMask

kSMPAppMust Handl eEvent Bi

k SMPAppShoul dl gnor eEvent Bi t

kSMPCont r act edBi t
kSMPExpandedBi t

t

kSMPMai | er BeconesTar get Bi t

kSMPAppBeconesTar get Bi t
kSMPCur sor Over Mai | er Bi t
kSMPCr eat eCopyW ndowBi t
kSMPDi sposeCopyW ndowBi t

{ val ues of SMPMail erResult }

kSMPAppMust Handl eEvent Mask
kSMPAppShoul dl gnor eEvent Mask

kSMPCont r act edMask
k SMPExpandedMask

kSMPMai | er BeconesTar get Mask

kSMPAppBecomnesTar get Mask
kSMPCur sor Over Mai | er Mask
kSMPCr eat eCopyW ndowivask
kSMPDi sposeCopyW ndowivas

{ values of SMPMil er Component }

k

$01;
$02;
$04;

NN O

$00000001;
$00000002;
$00000004;
$00000008;
$00000010;

= $00000020;

kSMPQt her = -1,

k SMPFr om = 32
kSMPTo 20;
kSMPRegar di ng = 22
kSMPSendDat eTi e = 29;
kSMPAt t achmrent s = 26;
kSMPAddr essOWat i ¢ = 16;
kSMPToAddress = kMail ToBit;
kSMPCCAddress = KkMail CcBit;
kSMPBCCAddress = kMail BccBit;

kSMPUndoCommand = O;
kSMPCut Conmand = 1;
kSMPCopyConmand = 2;

$00000040;
$00000080;
$00000100;

Summary of the Standard Mail Package

{ 1<<k SMPSendAsEncl osureBi t}
{1<<kSMPSendFi | eOnl yBit}
{ 1<<kSWPSendAs| nageBi t }

{ 1<<k SMPAppMust Handl eEvent Bi t }

{ 1<<kSMPAppShoul dI gnor eEvent Bi t }
{1<<kSMPContract edBit}

{ 1<<kSMPExpandedBi t }

{ 1<<kS\PMai | er BeconmesTar get Bi t }
{ 1<<kSMPAppBecomesTar get Bi t }

{ 1<<kSMPCur sor Over Mai |l erBi t }

{ 1<<k SMPCr eat eCopyW ndowBi t }

{ 1<<kS\MPDi sposeCopyW ndowBi t }

3-141

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

kSMPPast eCommand = 3;
kSMPC ear Command = 4;
kSMPSel ect Al | Command = 5;

kSMPUndoDi sabl ed
k SMPAppMay Undo
kSMPMai | er Undo

I
N Bl

{ SMPSendFor mat Mask: Bitfield indicating which conbinations of formats are
i ncluded in, should be included in, or can be included in a letter. }

kSMPNati veBit = O;
kSMPI nageBit = 1;
kSMPSt andar dl nt erchangeBit = 2;

{ val ues of SMPSendFor nat Mask }
kSMPNat i veMask

k SMPI nageMask

kSMPSt andar dI nt er changeMask

$00000001; {1<<kSMPNati veBit}
$00000002; {1<<kSMPI mageBit}
$00000004; {1<<kSMPSt andar dl nt erchangeBit}

{ pseudo-events passed to the client's filter proc for initialization and
cl eanup }

kSMPSendOpti onsStart= -1

kSMPSendOpt i onsEnd= - 2;

kSMPSave = O;
kSMPSaveAs = 1;
kSMPSaveACopy = 2;

{ val ues of Mil Segnent Type }
kMai | I nval i dSegnent Type= O;
kMai | Text Segrent Type= 1;

kMai | Pi ct Segrent Type= 2;

kMai | SoundSegnent Type= 3;

kMai | Styl edText Segnent Type= 4;
kMai | Movi eSegnent Type= 5;

{ val ues of Mail Bl ockMode }

kMai | FronStart= 1;{ offset calculated fromstart of block }
kMai | FromLEOB= 2; { offset calculated fromend of block }
kMai | Fromvark= 3; { offset calculated fromthe current nmark }

3-142 Summary of the Standard Mail Package

CHAPTER 3

Standard Mail Package

Data Types

TYPE
SMPSendFor mat Mask = LONG NT;

SMPSaveType = | NTECGER,
SMPMai | er Result = LONG NT;
SMPMai | er Corponent = LONG NT;

SMPAddr essType

Mai | Attri butel D,
SMPEdi t Command = | NTEGER;
SMPUndoSt at e = | NTEGER;
SMPPSendAs = Byt e;

Mai | Bl ockMbde = | NTEGER;

Mai | Segnent Type = | NTECGER;

SMPReci pi ent Descri ptor = RECORD

next : NSMPReci pi ent Descri pt or; { pointer to next elenent }
result: OSErr; { result code }

reci pi ent: NQOCEPackedReci pi ent ; { packed recipient address }
si ze: LONG NT; { size of recipient address }
t heAddr ess: Mai | Reci pi ent; { unpacked recipient address }
t heRI D: Recor dl D, { record ID of recipient }
END;

SMPReci pi ent DescriptorPtr = ~SMPReci pi ent Descri ptor;

SMPEncl osur eDescri ptor = RECORD

next : NSMPENc!| osur eDescri pt or; { pointer to next elenent }
result: OSErr; { result code }

fil eSpec: FSSpec; { file specifier of enclosure }
fileCreator: CSType; { creator of enclosure }
fileType: OSType; { file type of enclosure }

END;

SMPEncl osur eDescri ptorPtr = ~"SMPEncl osur eDescri pt or;

Summary of the Standard Mail Package

3-143

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

LetterDescriptor = RECORD
onDi sk: BOOLEAN,
CASE | NTEGER OF
1. (fileSpec: FSSpec);
2: (mail boxSpec: LetterSpec);
END;

SMPLet t er PB = PACKED RECORD
result: CSErr;
subj ect : RStringPtr;
senderldentity: Authldentity;

toLi st: SMPReci pi ent DescriptorPtr;
cclList: SMPReci pi ent DescriptorPtr;
bcclLi st: SMPReci pi ent DescriptorPtr;
script: Scri pt Code;

text Si ze: Si ze;

t ext Buf fer: Ptr;

sendAs: SMPPSendAs;

padByt e: Byt e;

encl osures:
dr aw magePr oc: SMPDr aw magePr ocPtr;

i mageRef Con: LONG NT;
support sCol or: BOOLEAN,
END;

SMPLetter PBPtr = ~"SMPLet t er PB;

SMPCl oseOpt i ons = RECORD
nmoveToTrash: BOOLEAN;
addTag: BOOLEAN,
tag: RString32;

END;

SMPCl oseOpti onsPtr = ~"SMPCl oseOpt i ons;

SMPMai | er St at e = RECORD
mai | er Count : | NTEGER
current Mai | er: | NTEGER;
upper Left: Point;
hasBeenRecei ved: BOOLEAN;
i sTarget: BOOLEAN,
i sExpanded: BOOLEAN,;
canMoveToTrash: BOOLEAN,
canTag: BOOLEAN,

3-144 Summary of the Standard Mail Package

SMPEncl osur eDescriptorPtr;

function result }

subj ect of letter }
identity of sender }

list of addressees }

list of cc addressees }
list of bcc addressees }
script code for |anguage }
| ength of body data }

body of the letter }

| etter, enclosure, or imge }
reserved }

files to be enclosed }

your inmging routine }

for your use }

true for a color grafPort }

CHAPTER 3

Standard Mail Package

{padByt e2: Byte;}
changeCount: LONG NT;

t ar get Conponent : SMPMai | er Conponent ;
canCut: BOOLEAN,
canCopy: BOOLEAN;
canPast e: BOOLEAN,

cand ear: BOOLEAN;

canSel ect Al | : BOOLEAN,;
{padByt e3: Byte;}

undoSt at e: SMPUndoSt at e;
undoWhat: Str63;

END;

SMPSendOpt i ons = RECORD
si gnWhenSent : BOOLEAN;
priority: IPMPriority;
END;

SMPSendOpt i onsPtr = ~"SMPSendOpt i ons;

SMPSendOpt i onsHandl e = "SMPSendOpti onsPtr;

{ SMPSendFormat: Structure describing the fornat
kSVMPNat i veMask bit is set, the whichNativeFormat

the client-defined formats to use. }

SMPSendFor mat = RECORD
whi chFor mat s: SMPSendFor mat Mask;

whi chNati veFormat: | NTEGER; { O based }

END;

Letter Spec = RECORD
spec: ARRAY[1..3] OF LONG NT;
END;

SMPLetterInfo = RECORD
letterCreator: OSType;
| etter Type: OSType;
subj ect: RString32;
sender: RString32;
END;

Summary of the Standard Mail Package

of a letter.
field indicates which of

3-145

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Mai | Ti mre = RECORD
time: UTCTi ne; { current UTC (GMI) tine }
of fset: UTCOfset;{ in seconds from GMI (positive is east) }
END;

UTCTi ne = LONG NT; { seconds since 1/1/1904 }
UTCO fset = LONG NT; { correct for local tine }

{ pointers to functions for application-defined callback functions }

SMPDr am magePr ocPtr = ProcPtr;
{ FUNCTI ON SMPDr awl mageProcPtr (refcon: LONG NT; inCol or: BOOLEAN): void;}

Fr ont W ndowPr ocPtr = ProcPtr;
{ FUNCTI ON Front WndowProcPtr(clientData: LONGA NT): WndowPtr;}

Pr epar eMai | er For Dr awi ngProcPtr = ProcPtr;
{ FUNCTI ON PrepareMi | er For Dr awi ngProcPtr (w ndow. W ndowPtr ;
clientData: LONG NT): void;}

SendOpti onsFilterProc = ProcPtr;
{ FUNCTI ON SendOptionsFilterProc(theD al og: DialogPtr;
VAR t heEvent: Event Record,;
itemHit: | NTEGER;
clientData: LONG NT): BOCOLEAN, }

Standard Mail Package Functions

Send-Letter Functions

FUNCTI ON SMPSendLet t er (theLetter: SMPLetterPBPtr): OSErr;
FUNCTI ON SMPNewPage (VAR newHeader: OpenCPi cParans): OSErr;
FUNCTI ON SMPI mageErr: OSErr;

FUNCTI ON SMPResol veToReci pi ent
(dsSpec: PackedDSSpecPtr;
VAR reci pi ent Li st: SMPReci pi ent DescriptorPtr;
identity: Authldentity): OSErr;

3-146 Summary of the Standard Mail Package

CHAPTER 3

Standard Mail Package

Providing Mailers in Your Windows
FUNCTI ON SMPI ni t Mai | er (mail erVersion: LONG NT): OSErr;

FUNCTI ON SMPNewMVai | er (wi ndow. W ndowPtr; upperlLeft: Point;
canContract: BOOLEAN;
initiall yExpanded: BOOLEAN
identity: Authldentity;
pr epar eMai | er For Dr awi ngCB:
Pr epar eMai | er For Dr awi ngPr ocPtr;
clientData: LONG NT): OSErr;

FUNCTI ON SMPCet Di mensi ons (VAR wi dt h: | NTEGER, VAR contract edHei ght:
| NTEGCER;, VAR expandedHei ght: | NTEGER): OSErr;

FUNCTI ON SMPMai | er For war d (wi ndow. WndowPtr; from Authldentity): OSErr;

FUNCTI ON SWVPMai | er Repl y (originalLetter: WndowPtr; newLetter:
W ndowPtr; replyToAll: BOOLEAN, upperLeft:
Poi nt; canContract: BOOLEAN,
initiall yExpanded: BOOLEAN,
identity: Authldentity;
pr epar eMai | er For Dr awi ngCB:
Pr epar eMai | er For Dr awi ngPr ocPtr;
clientData: LONG NT): OSErr;

FUNCTI ON SMPCet Tabl nf o (VAR firstTab: SMPMai | er Conponent ;
VAR | ast Tab: SMPMai | er Conponent): OSErr;
FUNCTI ON SWPBeconeTar get (wi ndow. W ndowPtr; beconeTarget: BOOLEAN;

whi chFi el d: SMPMai | er Conponent): OSErr;

FUNCTI ON SMPExpandOr Cont r act
(wi ndow, W ndowPtr; expand: BOOLEAN): OSErr;

FUNCTI ON SMPMoveMai | er (wi ndow. W ndowPtr; dh: |INTEGER, dv: | NTECER):
OSErr;

FUNCTI ON SMPTagDbi al og (wi ndow. WndowPtr; theTag: RString32Ptr):
CSErr;

FUNCTI ON SWPPr epar eToCl ose (w ndow. WndowPtr): OSErr;

FUNCTI ON SMPCl oseOpti onsDi al og
(wi ndow. W ndowPtr ;
cl oseOptions: SMPCl oseOptionsPtr): OSErr;

FUNCTI ON SMPDi sposeMai | er (wi ndow. W ndowPtr ;
cl oseOptions: SMPC oseOptionsPtr): OSErr;

Summary of the Standard Mail Package 3-147

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Handling Events in Mailers

FUNCTI ON S\WPMai | er Event (event: Event Record;
VAR what Happened: SMPMai | er Resul t;
front WndowCB: Front WndowProcPtr;
clientData: LONG NT): OSErr;

FUNCTI ON SMPMai | er Edi t Command
(wi ndow. W ndowPtr; comand: SMPEdi t Cormand;
VAR what Happened: SMPMail erResult): OSErr;

FUNCTI ON SMPCet Mai | erState (w ndow. WndowPtr; VAR itsState:
SMPMai | er State): OSErr;

FUNCTI ON SMPCI ear Undo (wi ndow. W ndowPtr): OSErr;
FUNCTI ON SMPDr awiVai | er (wi ndow. W ndowPtr): OSErr;
Sending and Saving Mail

FUNCTI ON SMPSendOpt i onsDi al og
(wi ndow. W ndowPtr; docunent Nane: Str255;

VAR nati veFor mat Nanes: StringPtr;
nameCount : | NTEGER,
canSend: SMPSendFor mat Mask;
VAR current Format: SMPSendFor mat ;
filterProc: SendOptionsFilterProc;
clientData: LONG NT;
VAR shoul dSend: SMPSendFor nat ;
sendOpti ons: SMPSendOptionsPtr): OSErr;

FUNCTI ON SMPCont ent Changed
(wi ndow. W ndowPtr): OSErr;
FUNCTI ON SMPBegi nSave (wi ndow. W ndowPtr; diskLetter: FSSpec;
creator: OSType; fileType: OSType;
saveType: SMPSaveType;
VAR must AddCont ent: BOOLEAN): OSErr;
FUNCTI ON SMPEndSave (wi ndow. W ndowPtr; okToSave: BOCLEAN): OSErr;
FUNCTI ON SMPBegi nSend (wi ndow. WndowPtr; creator: OSType; fileType:
OSType; sendOptions: SMPSendOpti onsPtr;
VAR mnust AddCont ent: BOOLEAN): OSErr;

FUNCTI ON SIVPPr epar eToChange
(wi ndow. W ndowPtr): OSErr;

FUNCTI ON SMPEndSend (wi ndow. W ndowPtr; okToSend: BOCLEAN): OSErr;

3-148 Summary of the Standard Mail Package

CHAPTER 3

Standard Mail Package

FUNCTI ON SMPAddCont ent (wi ndow. W ndowPtr; segnent Type:
Mai | Segrment Type; appendFl ag: BOOLEAN; buffer:
UNIV Ptr; bufferSize: LONG NT; textScrap:
StScrpPtr; startNewScript: BOCOLEAN;, script:
Scri pt Code): OSErr;

FUNCTI ON SMPI nage (wi ndow. W ndowPtr; draw mageProc:
SMPDr awl mageProcPt r; inmageRef Con: LONG NT;
supportsCol or: BOOLEAN): OSErr;

FUNCTI ON SMPAddMai nEncl osur e
(wi ndow. W ndowPtr; enclosure: FSSpec): OSErr;

FUNCTI ON SMPAddBI ock (wi ndow. W ndowPtr; bl ockType: OCECreator Type;
append: BOOLEAN; buffer: UNIV Ptr;
bufferSi ze: LONG NT; node: Mil Bl ockMbde;
of fset: LONG NT): OSErr;

Reading Mail
FUNCTI ON SMPGet Letterlnfo (VAR nmai | boxSpec: LetterSpec;
VAR info: SMPLetterInfo): OSErr;

FUNCTI ON SMPQpenlLetter (letter: LetterDescriptor; w ndow. W ndowPtr;
upper Left: Point; canContract: BOOLEAN;
initiall yExpanded: BOOLEAN,
pr epar eMai | er For Dr awi ngCB:

Pr epar eMai | er For Dr awi ngProcPtr;
clientData: LONG NT): OSErr;

FUNCTI ON SMPCet Next Let t er (VAR typesList: OSType; nunifypes: | NTEGER;
VAR adj acentLetter: LetterDescriptor): OSErr;

abexoed |reN plepuels -

FUNCTI ON SMPReadCont ent (wi ndow. W ndowPtr; segnent TypeMask:
Mai | Segrment Mask; buffer: UNIV Ptr; bufferSize:
LONG NT;

VAR dat aSi ze: LONG NT;

VAR text Scrap: St ScrpRec;

VAR script: ScriptCode;

VAR segment Type: Mail Segnent Type;
VAR endOf Scri pt: BOOLEAN;

VAR endOf Segnent : BOOLEAN,

VAR endOF Cont ent: BOOLEAN,;

VAR segnent Lengt h: LONG NT;

VAR segnent| D: LONG NT): OSErr;

FUNCTI ON SMPCGet Font NaneFronmietter
(wi ndow. W ndowPtr; fontNum | NTEGER; font Nane:
Str255; doneWt hFont Tabl e BOOLEAN): OSErr;

Summary of the Standard Mail Package 3-149

CHAPTER 3

Standard Mail Package

FUNCTI ON SMPGet Mai nEncl osur eFSSpec
(wi ndow. W ndowPtr;
VAR encl osureDir: FSSpec): OSErr;

FUNCTI ON SMPEnuner at eBl ocks (w ndow. WndowPtr; startlndex: |NTEGER,
buffer: UNIV Ptr; bufferSize: LONG NT;
VAR dat aSi ze: LONG NT; VAR next| ndex: | NTEGER;
VAR nore: BOOLEAN): OSErr;

FUNCTI ON SMPReadBl ock (wi ndow. W ndowPtr; bl ockType: OCECreator Type;
bl ockl ndex: | NTEGER;, buffer: UNIV Ptr;
buf ferSize: LONG NT; dataOffset: LONG NT;
VAR dat aSi ze: LONG NT; VAR endO Bl ock:
BOOLEAN;, VAR remai ni ng: LONG NT): OSErr;

Printing Mailers

FUNCTI ON SMPPr epar eCover Pages
(wi ndow. W ndowPtr; VAR pageCount: | NTEGER):
CSErr;

FUNCTI ON SMPDr awiNt hCover Page
(wi ndow. W ndowPtr; pageNunber: | NTEGER,
doneDr awi ngCover Pages: BOCLEAN): OSErr;

Getting and Setting Information in the Mailer

FUNCTI ON SMPCGet Conponent Si ze
(wi ndow. W ndowPtr; whichMiler: |NTEGER
whi chFi el d: SWMPMai | er Conponent ;
VAR size: |NTEGER): OSErr;

FUNCTI ON SMPCGet Conrponent | nf o
(wi ndow. W ndowPtr; whichMiler: | NTEGER
whi chFi el d: SWMPMai | er Conponent ;
buffer: UNIV Ptr): OSErr;

FUNCTI ON SMPCGet Li stltem nfo (w ndow. WndowPtr; whichMiler: |NTEGER,
whi chFi el d: SMPMai | er Conponent ;
buffer: UNIV Ptr; bufferLength: LONG NT;
startltem |NTEGER, VAR itenCount: | NTEGER
VAR nextltem |NTEGER, VAR nore: BOOLEAN):
OSErr;

FUNCTI ON SMPSet Subj ect (wi ndow. WndowPtr; text: RString): OSErr;

FUNCTI ON SWPSet Fronl dentity
(wi ndow, WndowPtr; from Authldentity): OSErr;

FUNCTI ON SMPAddAddr ess (wi ndow. W ndowPtr; addr Type: SMPAddressType;
address: OCEPackedReci pientPtr): OSErr;

FUNCTI ON SMPAddAt t achment (wi ndow. W ndowPtr; attachment: FSSpec): OCSErr;
FUNCTI ON SMPAt t achDi al og (wi ndow. W ndowPtr): OSErr;

3-150 Summary of the Standard Mail Package

CHAPTER 3

Standard Mail Package

Application-Defined Functions

FUNCTI ON MyPr epar eMai | er For Dr awi ng
(wi ndow. WndowPtr; clientData: LONG NT): void;

FUNCTI ON MyDr aw mage (refcon: LONG NT; inCol or: BOCLEAN): void;
FUNCTI ON MyFr ont W ndowCB (clientData: LONG NT): W ndowPtr;

FUNCTI ON MySendOpt i onsFi |l ter Proc
(theDi al og: Dial ogPtr;
VAR t heEvent: EventRecord; itenmHit: | NTEGER
clientData: LONG NT): BOOLEAN

Assembly-Language Summary

Trap Macros

Trap Requiring Routine Selectors

$AA5D

Selector Count Routine

$01F4 $0002 SMPSendLet t er

$044C $0006 SMPResol veToReci pi ent
$0834 $0002 SMPNewPage

$0835 $0000 SMPI mageErr

$125C $0006 SMPGet Di mensi ons
$125D $000C SMPNewiVRi | er

$125E $0004 SMPDi sposeMai | er
$125F $0008 SMPMhi | er Event

$1260 $0005 SMPMai | er Edi t Conrmand
$1261 $0004 SMPMai | er For war d
$1262 $000F SMPMai | er Repl y

$1263 $0004 SMPGet Mai | er St at e
$1264 $0004 SMPPr epar eCover Pages
$1265 $0004 SMPDr awiNt hCover Page
$1266 $000B SMPBegi nSave

$1267 $000A SMPBegi nSend

$1268 $000C SMPOpenLet t er

$1269 $0002 SMPDr awiVhi | er

continued

Summary of the Standard Mail Package 3-151

abexoed |reN plepuels -

CHAPTER 3

Standard Mail Package

Selector Count Routine

$126A $0004 SMPMoveMai | er

$126B $0004 SMPSet Subj ect

$126C $0004 SMPSet Frond dentity
$126D $0005 SMPAddAddr ess

$126E $0004 SMPAddAL t achrent
$126F $0002 SMPCont ent Changed
$1270 $0002 SMPEndSave

$1271 $0002 SMPEndSend

$1272 $0003 SMPExpandOr Cont r act
$1273 $0005 SMPBeconeTar get

$1274 $0004 SMPGet Tabl nf o

$1275 $0002 SMPCl ear Undo

$1276 $0002 SMPAt t achDi al og

$1277 $0007 SMPGet Conponent Si ze
$1278 $0007 SMPGet Component | nf o
$1279 $0010 SMPGet Li stlten nfo
$127A $000D SMPAddCont ent

$127B $0019 SMPReadCont ent

$127C $0006 SMPGet Font NaneFr onletter
$127D $0004 SMPAddMai nEncl osur e
$127E $0004 SMPGet Mai nEncl osur eFSSpec
$127F $000C SMPAddBI ock

$1280 $000C SMPReadBl ock

$1281 $000D SMPEnurrer at eBl ocks
$1282 $0002 SMPI mage

$1285 $0002 SMPI ni t Mai | er

$1286 $0008 SMPGet Next Lett er
$1287 $0002 SMPPr epar eTod ose
$1288 $0004 SMPCl oseOpt i onsDi al og
$1289 $0002 SMPPr epar eToChange
$128A $0004 SMPGet Letterlinfo
$128B $0004 SMPTagDi al og

$1388 $0013 SMPSendOpt i onsDi al og

3-152 Summary of the Standard Mail Package

CHAPTER 3

Standard Mail Package

Result Codes

The allocated range of result codes for the Standard Mail Package is —1900 through
-1949. Routines may also return standard Macintosh result codes such as noEr r 0 (no

error) and f nf Er r —43 (file not found).

kSMPNot EnoughMenor yFor Al | Reci ps
kSMPCopyl nPr ogr ess

kSMPMai | erNot I nitialized
kSMPShoul dNot AddCont ent

kSMPMai | boxNot Found

kSMPNoNext Let t er

kSMPHasOpenAtt achnent s

kSMPFi nder Not Runni ng
kSMPCommandDi sabl ed

kSMPNoMai | er | nW ndow
kSMPNoSuchAddr ess

kSMPMai | er Al readyl nW ndow
kSMPMai | er Unedi t abl e

kSMPNoMat chi ngBegi n

kSMPCannot SendRecei vedLet t er
kSMPI | | egal ForDraftLetter
kSMPMai | er Cannot ExpandOr Cont r act

kSMPMai | er Al r eadyExpandedOr Cont r act ed
kSWPI | | egal Conponent

kSMPMai | er Al r eadyNot Tar get
kSMPConponent | sAl readyTar get
kSMPRecor dDoesNot Cont ai nAddr ess
kSMPAddr essAl r eadyl nLi st

kSMPI | | egal SendFor nat s

kSMPI nval i dAddr essStri ng
kSMPSubj ect TooBi g

kSMPPar antCount Er r
kSMPTooManyPages

kSMPTooManyEncl osur es

Summary of the Standard Mail Package

-1900
-1901
-1902
-1903
-1904
-1905
-1906
-1907
-1908
-1909
-1910
-1911
-1912
-1913
-1914
-1915
-1916

-1917
-1918
-1919
-1920
-1921
-1922
-1923
-1924
-1925
-1926
-1927
-1928

Too many recipients in mailer
Enclosure being copied to mailer
Mailer has not been initialized

You cannot add content to letter
Cannot find mailbox

There is no next letter in In Tray
One or more enclosures are open
The Finder is not running
Requested command unavailable
No mailer is in specified window
Requested address not found

A mailer was previously allocated
Mailer cannot be edited

End function called without begin
Letter is received; cannot be sent
Operation cannot be completed
Mailer created with canCont r act
fal se

Mailer is already in requested state
Bad field name parameter

This mailer is not the target

The selected field is the target
Address is not in this record
Specified address is in Recipients field
Format is not in canSend parameter
Addpress string is invalid

Subject string exceeds 127 characters
Enclosure count should be 1

Image is more than 127 pages

More than 50 total files and folders

3-153

abexoed |reN plepuels -

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	 AOCE Utilities
	 Standard Mail Package TOC
	Standard Mail Package
	About the Standard Mail Package
	The Send-Letter Functions
	The Mailer Functions
	Mailers
	Letter Formats

	The Standard Catalog Package

	Using the Standard Mail Package
	Initializing the Standard Mail Package
	Creating a Mailer
	Sending Mail
	Receiving Mail
	Forwarding and Replying to Mail
	Closing a Letter
	Handling Mailer Events

	Standard Mail Package Reference
	Data Structures
	Recipient Descriptor
	Enclosure Descriptor
	Letter Descriptor
	Letter Information Structure
	Creator Type Structure
	Image Block Information Structure
	Letter Parameter Block
	Close-Options Structure
	Mailer-State Structure
	Send-Options Structure
	Send-Format Structure
	Letter-Specification Structure

	Standard Mail Package Functions
	Assembly-Language Interface
	Authenticating a User
	Send-Letter Functions
	Providing Mailers in Your Windows
	Handling Events in Mailers
	Sending and Saving Mail
	Reading Mail
	Printing Mailers
	Getting and Setting Information in the Mailer

	Application-Defined Functions

	Summary of the Standard Mail Package
	C Summary
	Constants and Data Types
	Standard Mail Package Functions
	Application-Defined Functions

	Pascal Summary
	Constants
	Data Types
	Standard Mail Package Functions
	Application-Defined Functions

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	 Digital Signature Manager
	 Interprogram Messaging Manager TOC
	 Interprogram Messaging Manager
	 Catalog Manager TOC
	 Catalog Manager, Part 1 (Introduction, About, and Using)
	 Catalog Manager, Part 2 (Reference)
	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	 Authentication Manager
	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

