

C H A P T E R 7

7

Interprogram
 M

essaging M
anager

Interprogram Messaging Manager 7

This chapter describes the AOCE Interprogram Messaging (IPM) Manager. The IPM
Manager provides a low-level interface to the AOCE store-and-forward messaging
service.

You can use the IPM Manager to send a message from one AOCE-aware application to
another. There are no restrictions on the contents of AOCE interprogram messages.
However, if you want to send or read messages intended to be read by people, you
should use the Standard Mail Package instead of the IPM Manager. Such messages are
referred to as letters. The Standard Mail Package provides a high-level interface to the
AOCE store-and-forward messaging service specifically to support letters. It is described
in the chapter “Standard Mail Package” in this book.

This chapter assumes that you are familiar with AOCE catalog concepts, including
catalog records, attribute types, and attribute values, as described in the chapter
“Catalog Manager” in this book.

This chapter provides an introduction to AOCE interprogram messages and the IPM
Manager and then discusses how you can use the IPM Manager to

■ create and send a message to one or more recipients

■ manage the queues in which the IPM Manager places messages

■ list and read the messages that you receive

About the IPM Manager 7

The Apple Open Collaboration Environment provides a store-and-forward messaging
service that can deliver a message from one application to another regardless of whether
the applications are simultaneously connected to a network, or, in fact, regardless of
whether they are connected to a network at all. In addition to general application-to-
application messages, the Apple Open Collaboration Environment defines a special
category of messages, called letters, that are intended to be read by people. The sending
and receiving of letters by AOCE-aware applications is referred to as the AOCE mail
service. The IPM Manager provides a low-level interface to AOCE messaging services.
The Standard Mail Package is a client of the IPM Manager that provides a high-level
interface to AOCE mail services.

The IPM Manager application interface is the same no matter what transport medium is
being used to carry the message. Apple Computer, Inc., provides interfaces between the
IPM Manager and an AppleTalk network with and without a mail and messaging server.
Apple also provides the Direct Dialup mail and messaging service access module
(MSAM), which allows the IPM Manager to use a modem to send messages over
telephone lines. Other developers can provide MSAMs that allow the IPM Manager to
use other transport media and messaging services, such as Ethernet networks or fax
modems.

The IPM Manager maintains output and input queues on the local hard disk to store
messages waiting to be forwarded or to be read. The IPM Manager can use the output
queue, for example, to store a message until the telephone-connection MSAM can
About the IPM Manager 7-3

C H A P T E R 7

Interprogram Messaging Manager

establish a modem-to-modem connection. Any number of applications can use the same
queue. You can ask for a list of messages filtered by creator, so you need not sort through
all of the messages intended for other applications. However, if you have a need to do
so, you can also create any number of input queues for the use of your application.

When you send a message, you must specify the addresses of one or more recipients. If a
recipient or group of recipients has an associated record in an AOCE catalog, you can
specify the record ID and the attribute containing the address, and the IPM Manager
looks up the address in the catalog. Alternatively, you can specify the type of connection
and provide specific information about the address of the recipient, such as the
telephone number and modem information or the AppleTalk network address.

You can use the IPM Manager to

■ create a new message

■ add blocks to a message

■ write data to a message block

■ nest a message within a message

■ address a message

■ send a message or save it to a disk file

■ create input queues

■ open input queues

■ obtain a list of received messages

■ filter received-message lists by such attributes as priority, message type, or script code

■ read message-header information

■ read message blocks

■ delete messages from an input queue

■ close input queues

About AOCE Interprogram Messages 7
The AOCE store-and-forward messaging service implemented by the IPM Manager uses
messages that consist of a header plus any number of message blocks. The header
contains addressing information, a table of contents of the message blocks, other
information of interest to the receiving application (such as the message type and
priority), and information used solely by the IPM Manager. Each message block can be
of any length less than 232 bytes and can contain any type of data. Apple Computer has
defined a few message types and message block types, such as the
standard-letter-content block type used by the Standard Mail Package. You can define
any message block types you wish.

Figure 7-1 illustrates the basic structure of a message. Note that the message header is
actually located at the end of the message, after all the message blocks.
7-4 About the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7

Interprogram
 M

essaging M
anager

Figure 7-1 Structure of an AOCE message

When a block contains a message, the message inside the block is called a nested
message. A message can contain any number of nested messages, and any nested
message can contain other nested messages. The structure of a nested message is exactly
the same as the structure of a message. Figure 7-2 illustrates a message containing a
nested message.

Note
If you are using the IPM Manager to send letters to the Standard Mail
Package, you should avoid sending any nested letters that contain
standard content. If the Standard Mail Package receives a letter that
contains a nested letter, it ignores any content (standard interchange
format or image format) within the nested letter. It displays the header
and nesting information of the nested letter as a forwarded mailer. ◆

Figure 7-2 An AOCE message containing a nested message

Block 1

Block 2

Block n

Control

information

Message

body

Message

header

Block 1

Block 2

Block n

Control

information

Block 1

Block 2

Block n

Control

information

Message

body

Message

header

Message

body

Message

header
About the IPM Manager 7-5

C H A P T E R 7

Interprogram Messaging Manager

Figure 7-3 illustrates the contents of a message header. Note that Figure 7-3 does not
show the size or true sequence of fields in the message header. You must use IPM
Manager routines to read and write message-header information.

Figure 7-3 Contents of an AOCE message header

Although all of the public message-header fields are described in detail in the reference
section of this chapter, several fields of general interest are briefly described here.

The sender of a message assigns a priority (low, normal, or high) to it. The IPM Manager
does not read the contents of the priority field; it is up to the receiving application to
determine how to handle messages of different priorities.

When you send a message, you can request delivery and nondelivery reports. The
delivery notification field in the message header tells the IPM Manager what kinds of
reports you want to receive. Reports are AOCE messages and can include the original
message as a nested message if you request that option. Report messages are described
in “Report Messages” on page 7-9.

The message type consists of a creator field and a type field. The sending application
assigns the message type, and the receiving application uses it to help determine how to
interpret the contents of the message. Apple Computer has defined some standard
message types for report messages and letters. You can define other message types for
whatever purpose you wish.

Message length

Recipients

Table of contents

Number of recipients

Recipient 1
Priority

Delivery notification

Message type

Message family

Process hint

Reply queue

Sender

Message ID

Reference constant

Trace information

Authentication

Signature

Recipient 2

Recipient n

Number of blocks

Block 1 information

Block 2 information

Block n information

Creator and type

Offset to block

Length of block

Reference constant
7-6 About the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7

Interprogram
 M

essaging M
anager

The message family is a class of messages. Apple Computer has defined some standard
message family types for mail and reserves all message family types consisting entirely
of lowercase characters. You can define your own message family types, but Apple
Computer does not register or otherwise control developer-defined message family
types.

The process hint is a character string that you can use for any purpose, such as
discriminating among subtypes of messages of the same type or internal routing of
messages.

When you send a message, you must specify location information for each recipient. You
can specify the record ID of a user record if the recipient’s address is stored in an AOCE
catalog, or you can specify the actual delivery address of the recipient.

The reply queue is the address to which the IPM Manager should return delivery and
nondelivery reports and to which reply messages should be sent.

The table of contents specifies the type and location of each block. The block type
includes a creator field and a type field. Apple Computer has defined some standard
block types for such things as nested messages and standard-letter-content blocks. You
can define other block types for your own use.

In the case of an authenticated message, the sender field is filled in by the IPM Manager
and identifies the authenticated originator of the message. In the case of an
unauthenticated message, such as a message sent over a serverless network or over a
dialup connection, the originator of the message fills in the sender field. In this case, the
field should give some indication of who originated the message, but the IPM Manager
can not ensure its accuracy or usefulness.

The reference constant is a numeric reference value that the creator of the message
provides for the message. You might use this field, for example, to indicate that the
message includes blocks of a certain type so that the receiving application can allocate
the memory resources it will need to read the message. The table of contents (TOC
information) for each block also contains a reference constant that you can use for any
purpose you wish.

The IPM Manager sets the authentication information field to indicate whether the
message was sent over a secure, authenticated connection. In the case of a message that
passes through more than one store-and-forward server, the IPM Manager sets this field
to true only if the identities of the original sender and of every server in the routing
chain were authenticated. The authentication field does not reflect the authentication
status of the communication link that the addressee uses to read the message from the
last server’s message queue. The chapter “Authentication Manager” in this book
describes the authentication process in detail.

If the sending application adds a digital signature to a message, the IPM Manager adds a
signature block to the message and sets the signature field of the message header to
true.
About the IPM Manager 7-7

C H A P T E R 7

Interprogram Messaging Manager

Message Queues 7
The IPM Manager delivers a message to a message queue, which is maintained by the
IPM Manager on the recipient’s disk or by a server on the disk of the server computer.
Any application can create message queues. Before you can list the messages in a
message queue or read a message in a queue, you must open the queue.

Each queue can be opened any number of times, by any number of applications. Each
time an application opens a queue the IPM Manager assigns a queue reference number.
Each time you list the messages in the queue, open a message, read information from a
message, close a message, or delete a message, you must specify a queue reference
number.

When you list the messages in a queue, you can specify a filter that limits the messages
included in the list. For example, you can filter a queue list for messages with a specific
creator to limit it to messages sent by your own application. You can also filter queue
lists by message priority or process hint (an application-defined value). When you open
a queue (and so obtain a queue reference number), you can specify a default queue filter
to be associated with that queue reference number. You can change the default queue
filter at any time.

If you open a queue three times to get three queue reference numbers, it appears as
though you have three queues, especially if you specify a different queue filter each time
you open the queue. Note, however, that these three “queues” are all actually views of
the same physical queue and so may list some or all of the same messages. To
distinguish between the queue on disk and the apparent queues you get when you open
the queue, this book refers to the physical queue on disk and to virtual queues
associated with that physical queue. Each queue reference number identifies one virtual
queue. A physical queue can have any number of associated virtual queues. When you
close a virtual queue, the IPM Manager automatically closes all the messages that were
opened through that virtual queue.

You can use a virtual queue to open and close messages regardless of whether the same
messages are already open through another virtual queue. However, when you delete a
message, it is deleted from the physical queue and so from all the virtual queues
associated with that physical queue. (The IPM Manager prevents you from deleting a
message as long as it is open through any virtual queue.)

The primary reason the IPM Manager provides virtual queues is to allow more than one
application to use the same physical queue simultaneously. However, you can also use
virtual queues to help organize your bookkeeping. You can use multiple virtual queues
as a convenient way to group messages, especially if your message groups are based on
message type or creator, script code, priority, or process hint.

For example, an application for stockbrokers might receive two types of IPM messages:
notices about stock prices and orders sent by clients. Such an application might maintain
two virtual queues to make it easier to list, open, and close the two message types
independently.

In much the same way that virtual queues link together messages that you might want
to list, open, or close together, each virtual queue is associated with a queue context. You
7-8 About the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7

Interprogram
 M

essaging M
anager

must open at least one queue context before you can open a queue, and each time you
open a queue you must specify to which context the virtual queue is to belong. When
you close a queue context, the IPM Manager automatically closes all of the queues
associated with that context. If you are using several virtual queues to organize
messages, you might want to use more than one queue context to add another
hierarchical level to the organization.

To extend the previous illustration, for example, suppose the stockbrokers’ application
has separate virtual queues for low-, normal-, and high-priority buy-or-sell orders, and
links these three queues together by assigning them all to the same context. Then the
application could close all the high-priority orders by closing one virtual queue, or it
could close all of the orders of all priorities by closing the queue context to which they
belong.

Addresses 7
When you send an AOCE message, you must specify the address to which the message
is to be delivered. The address can specify an entity (such as a person), an exact location
(such as a queue on a specific AppleTalk node), or a group (which must be resolved into
individual addresses).

An IPM message can contain two types of addresses: direct addresses and indirect
addresses. A direct address specifies the exact location and queue name to which you
want the message sent. An indirect address specifies the person or group to which you
want the message sent and relies on IPM to determine the actual location and queue
name of each addressee. AOCE addressing is described in two sections: “Direct
Addressing,” beginning on page 7-11, and “Indirect Addressing,” beginning on
page 7-14.

Report Messages 7
When you send a message, you can request that the IPM Manager return recipient report
messages. You have several options for report messages. You can request that the IPM
Manager

■ return report messages when the message is delivered

■ return report messages when the message cannot be delivered

■ return both delivery and nondelivery reports

■ include the original message in the report message

■ include the original message only in nondelivery reports

■ send a separate report message for each recipient, sending each one as soon as its
delivery status is known for that recipient

■ wait until the delivery status of the message is known for all recipients and then send
a single summary report
About the IPM Manager 7-9

C H A P T E R 7

Interprogram Messaging Manager

Figure 7-4 illustrates the contents of a report message. Note that Figure 7-4 does not
show the size or true sequence of fields in the report message. You must use IPM
Manager functions to read report message information.

The report message contains a recipient report block, which includes a header and report
data. The header, an IPMReportBlockHeader structure, includes the message ID of
the original message and the time that the IPM Manager generated the report. The report
data, an OCERecipientReport structure, indicates the outcome of the delivery to each
recipient to which the report applies.

Because reports are messages, they are delivered to queues just as all messages are.
Report messages are always delivered to the reply queue specified in the original
message. If no reply queue was specified in the original message, then the IPM Manager
does not issue report messages. When you send a message, you have the option of
specifying whether you want the IPM Manager to issue delivery and nondelivery
reports.

Figure 7-4 An IPM report message

For more information on how to read a report, see the descriptions of the
IPMReportBlockHeader structure on page 7-33 and the OCERecipientReport
structure on page 7-33.

Addressing IPM Messages 7

The IPM Manager uses a single data type, the OCERecipient structure, to specify any
type of address. Figure 7-5 shows the components of an OCERecipient structure. The
OCERecipient structure has three parts: record location information (RLI), a local
record identifier, and an extension. The record location information and local record
identifier make up a record ID. Which of these parts are used in a specific address
depends on the type of address, as described in the following sections. The
OCERecipient structure is defined on page 7-24. For more information on the

Recipient report

Original message

(optional)

Control

information

Recipient n

Message

body

Message

header Result code

Recipient 2 Result code

Recipient 1 Result code

Original message ID

Report generation time

Report block header

Report block data
7-10 Addressing IPM Messages

C H A P T E R 7

Interprogram Messaging Manager

7

Interprogram
 M

essaging M
anager

RecordID, LocalRecordID, and RLI structures, see the chapter “AOCE Utilities” in
this book.

Figure 7-5 Contents of an OCERecipient structure

Direct Addressing 7
In direct addressing, the OCERecipient structure specifies the location of the recipient
and the queue to which you want the message sent. (All AOCE messages are delivered
to a specific queue at a specific location.) This information is contained in the extension
part of the OCERecipient structure.

Apple Computer, Inc., has defined address formats for its built-in transport media,
which are described in the following sections. Personal and Server MSAMs allow the
transport address space to be extended, and each transport medium has a unique set of
addresses. Generally, the record location information (RLI) in the RecordID field is used
for routing, the name and type are used for display, and the extension contains the native
transport address as a displayable RString. The list of accessible RLIs is available via
the DirGetExtendedDirectoriesInfo function, which is defined by the Catalog
Manager.

The AOCE software defines two types of direct addresses: the AppleTalk type and the
telephone type, described in the following two sections.

Catalog name

Pathname

Creation ID

Catalog

discriminator

dNode number

Record type

Extension type

Extension size

(Extension subtype)

Extension value

Record

ID

Local

record ID Record name

RLI
Addressing IPM Messages 7-11

C H A P T E R 7

Interprogram Messaging Manager

AppleTalk Direct Addressing 7

You can use AppleTalk direct addressing to specify the location on an AppleTalk internet
to which a message should be delivered. You can use the Name Binding Protocol (NBP)
AppleTalk routines to obtain the addresses of entities on an AppleTalk network. For
more information on NBP and AppleTalk networking, see Inside Macintosh: Networking.

The IPM Manager recognizes an AppleTalk direct address by the value 'alan' in the
extensionType field of the OCERecipient structure. In this case, the extension
portion of the OCERecipient structure contains the entire address; the IPM Manager
ignores the record ID portion of the structure. The extensionValue field of the
OCERecipient structure is defined as follows:

Str32 objectName

Str32 typeName

Str32 zoneName

Str32 queueName

All four of the fields are required, and all are packed. The first three fields are in the exact
format used by the NBP EntityName structure. As is usual for AppleTalk, you can
specify a zero-length string or the wildcard character * to indicate the local zone.

You must fill in the queueName field with the name of the specific queue to which the
message is to be delivered. The messaging applications on both the sending and
receiving computers have to open input queues and must somehow exchange queue
names. You have to determine the protocol for achieving this yourself. The easiest way to
know the recipient’s queue name is for your application to use the same queue name
always. If you need to send messages to multiple queues or have other reasons to allow
more than one possible queue name, you have to implement your own process for
determining which queues are available and what their names are.

Telephone Direct Addressing 7

You can use telephone direct addressing to specify an address for use by PowerTalk
Direct Dialup. You must specify a telephone number and the recipient queue name. The
IPM Manager delivers the message to the queue with the specified name on the node
that is connected to a modem at the specified telephone number. To receive and route the
message correctly, the receiving computer must have Direct Dialup installed and the
modem set to answer the telephone.

Note
The telephone direct addressing type of OCERecipient structure
described here is created by the Direct Dialup template when the user
adds a Direct Dialup mail address to an information card. You can use
the information in this section to create your own Direct Dialup
addresses to use with messaging applications. The IPM Manager
provides no facilities for using communications software other than
Direct Dialup to send messages over telephone lines. ◆
7-12 Addressing IPM Messages

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
The IPM Manager recognizes a telephone direct address by the value 'aphn' in the
extensionType field of the OCERecipient structure.

You should use the string “Direct Dialup” for the catalog name field of the
OCERecipient structure. This is the name of the personal catalog used by the Direct
Dialup software for setup information. The Direct Dialup catalog contains access
numbers for local calls (such as 9, used to obtain an outside line in some telephone
systems), long distance calls (such as 8 to obtain a long-distance outside line), and
international calls (when calling from the United States, this is generally 011, the
international access code) and can specify a credit card number to be used. The IPM
Manager ignores the other fields in the record ID portion of the OCERecipient
structure.

When you use telephone direct addressing, the extensionType field must contain the
value 'aphn' and the extensionValue field is defined as follows:

RString phoneNumber /* telephone number */

RString modemType /* reserved */

Str32 queueName /* recipient’s queue name */

All three fields are required. The phoneNumber and modemType fields must be padded
to an even number of bytes, and all fields must be packed.

The phoneNumber field is composed of several subfields. Each subfield must be packed
and padded to an even number of bytes.

short subType;

RString countryCode;

RString areaCode;

RString phone;

RString postFix;

RString nonHandyDialString;

Field descriptions

subType A byte that specifies whether the Direct Dialup software should use
the information in the Direct Dialup setup catalog when it forms the
dialing string. If you specify the value kOCEUseHandyDial for this
field, the Direct Dialup software uses the Direct Dialup catalog to
obtain special access numbers and optionally a charge card number.
If you specify kOCEDontUseHandyDial for this field, the Direct
Dialup software uses only the exact dialing string you specify in the
nonHandyDialString field and ignores the other subfields.

countryCode The ASCII value of the country code needed to dial an international
number. For example, the country code for the United Kingdom is
ASCII 44. For long-distance calls from and within North America,
use the long distance prefix, ASCII 1.

areaCode The ASCII value of the US area code or, for international calls, the
city code.
Addressing IPM Messages 7-13

C H A P T E R 7

Interprogram Messaging Manager
phone The telephone number including any other special modem control
characters you may need. For example, you could include the “,”
character as one of the characters in the phone string to cause the
modem to pause briefly before dialing the rest of a number.

postFix Reserved. You must specify an RString structure of zero length
and an empty data string ("").

nonHandyDialString
The dialing string used by the Direct Dialup software when you set
the subType field to kOCEDontUseHandyDial. When this is the
case all of the other fields of the extension value are ignored when
the dialing string is formed. If the subType field has a value of
kOCEUseHandyDial, then Direct Dialup ignores this field.

The modemType field of the extension value is reserved and must be set to an empty
RString; that is, an RString structure with a length of 0 and an empty data string ("").

You must fill in the queueName field of the extension value with the name of the specific
queue to which the message is to be delivered. The messaging applications on both the
sending and receiving computers have to open input queues and must somehow
exchange queue names. You have to determine the protocol for achieving this yourself.
The easiest way to know the recipient’s queue name is for your application to always use
the same queue name. If you need to send messages to multiple queues or have other
reasons to allow more than one possible queue name, you have to implement your own
process for determining which queues are available and what their names are.

Indirect Addressing 7

You can use indirect addressing when you want to specify the entity to which a message
should go, instead of the exact location and queue name to which the message should be
delivered. In indirect addressing you specify a record—and optionally a specific attribute
within the record—that contains the location and queue information that the IPM
Manager needs to deliver the message. In mail applications, for example, the user
typically selects a user record from a catalog or information card as the addressee. The
IPM Manager then looks up the address of the recipient in that user record.

To use indirect addressing, fill in the record ID portion of the OCERecipient structure
with the record ID of the record containing the address and set the extensionType
field to the value 'entn'. Extensions of type 'entn' include a subtype field, which can
have the following values:

enum {

kOCEAddrXtn= 'addr', /* reserved */

kOCEQnamXtn= 'qnam', /* queue-name form */

kOCEAttrXtn= 'attr', /* attribute-type form */

kOCESpAtXtn= 'spat' /* reserved */

};
7-14 Addressing IPM Messages

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
To specify an indirect address, you must use the attribute-type ('attr') subtype. The
queue-name subtype of an OCERecipient structure is used for attribute values (see
“Queue-Name Format for Attribute Values” on page 7-16). The other two subtypes are
reserved for use by the IPM Manager.

Both the attribute-type and queue-name subtypes require the record ID portion of the
OCERecipient structure to contain a valid reference to a record.

The fields that are required in the record ID portion of the OCERecipient structure are
as follows:

■ If the creation ID value is sufficient to identify the record in the catalog then the
recordName and recordType fields are not required and can be nil.

■ If the creation ID is not sufficient to specify the record or is null, then the
recordName and recordType fields are required.

■ If you include both the creation ID and the record name and type, they must specify
the same record.

You can use the Catalog Manager functions to create and modify records and record
attribute values. See the chapter “Catalog Manager” in this book for more information.
For information on record IDs, attributes, attribute values, and the creation ID, see the
chapter “AOCE Utilities” in this book.

Attribute-Type Indirect Addressing 7

You use attribute-type indirect addressing when you want to specify the entity that is to
receive a message rather than the specific location and queue to which a message is to be
delivered. The IPM Manager obtains the location and queue name to which the message
is to be delivered from an attribute in the record you specify. If you are specifying a
standard AOCE user record or group record into which the system administrator placed
messaging addresses, then the IPM Manager creates the attribute containing the address,
and you do not have to be concerned with the format of the attribute value. If, however,
you want to create your own record or attribute type and place addresses in it yourself,
then you need to be familiar with address formats for attributes, discussed in the
following section, “Queue-Name Format for Attribute Values.”

The simplest form of an attribute-type OCERecipient structure has an extension type
of 'entn', an extension size of 0, and no extension value. In this case, the IPM Manager
uses the preferred messaging queue as specified in the default messaging attribute in the
record. The preferred messaging queue is created and designated by the catalog
administrator.

To specify an attribute type, use an extension type of 'entn' and a subtype of 'attr'.
The extension value is defined as follows:

OSType 'attr'

AttributeType attributeName
Addressing IPM Messages 7-15

C H A P T E R 7

Interprogram Messaging Manager
The AttributeType structure is defined as follows:

struct AttributeType {

RStringHeader

Byte body[kAttributeTypeMaxBytes];

};

The attributeName field must be packed and padded to an even number of bytes. The
AttributeType structure is equivalent to an RString structure that has a length of
kAttributeTypeMaxBytes bytes. For more information on the AttributeType and
RString structures, see the chapter “AOCE Utilities” in this book.

Setting the subtype to 'attr' and the body field of the AttributeType structure to
the value kPrefMsgQAttrTypeBody has the same effect as leaving out the extension
value entirely: the IPM Manager uses the preferred messaging queue in the record as the
address to which to deliver the message.

If you specify another attribute type, then the IPM Manager looks for the address in that
attribute type. If there is more than one attribute value in the record with the attribute
type you specify, the IPM Manager chooses one of the values. The method that the IPM
Manager uses to decide which attribute value to use is private. Therefore, you should
use a multivalued attribute type to hold an indirect address only when you do not care
at which address a recipient receives the message.

Queue-Name Format for Attribute Values 7

If you want to define your own record type or attribute type to hold addresses for
indirect addressing, you must format the attribute value as an OCERecipient structure.
You use the queue name form of the OCERecipient structure for the attribute value.
The recipient must have an account on an AOCE messaging server, such as a
PowerShare server. The queue name form specifies the messaging server and queue
name to which to deliver the message.

In the queue name form of the OCERecipient structure, the extensionType field has
a value of 'entn', the extension subtype field has a value of 'qnam', and the extension
data is a queue name string. The extensionValue portion of the OCERecipient
structure is defined as follows:

OSType 'qnam'

Str32 queueName

The record ID portion of the OCERecipient structure specifies the catalog and record
ID of the catalog record that contains information about the messaging server. (When the
system administrator installs a messaging server, the setup software creates a catalog
record containing information about the messaging server.)

 As with other AOCE addressing formats that require the name of a queue, you must
implement your own method for obtaining the queue name because the AOCE toolbox
does not provide you with a mechanism for doing so.
7-16 Addressing IPM Messages

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Here is one possible procedure for indirect addressing using queue name attribute
values:

1. Create your own new record type, or create a new attribute for an existing record type.

2. Log on to the messaging server as an administrator and create a queue with the name
you want to use. You use the IPMCreateQueue function (page 7-69) for this purpose.

3. Put the name and location of the queue you just created into the new attribute in a
queue-name-format OCERecipient structure.

4. Once you have created the queue and you have placed the queue name and location
information into an attribute, then both ends of your connection can obtain the queue
name from the record. Both the recipient and the sender of the message must know
before the message is sent which record and attribute in the catalog contains the
queue name.

Using the IPM Manager 7

This section describes how to create messages, create and manage message queues, and
read messages.

Determining Whether the Collaboration Toolbox is Available 7
Before calling any of the Interprogram Messaging Manager functions, you should verify
that the Collaboration toolbox is available by calling the Gestalt function with the
selector gestaltOCEToolboxAttr. If the Collaboration Toolbox is present but not
running (for example, if the user deactivated it from the PowerTalk Setup control panel),
the Gestalt function sets the bit gestaltOCETBPresent in the response parameter. If
the Collaboration Toolbox is running and available, the function sets the bit
gestaltOCETBAvailable in the response parameter. The Gestalt Manager is
described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.

If you want to be informed when the Interprogram Messaging Manager starts up or
shuts down, you can install an entry in the AppleTalk Transition Queue (ATQ). Then the
AppleTalk LAP Manager calls your ATQ routine with the transition selector
ATTransIPMStart when the IPM Manager has finished starting up and with the
selector ATTransIPMShutdown when the IPM Manager has started to shut down. The
ATQ is described in the “Link-Access Protocol (LAP) Manager” chapter of Inside
Macintosh: Networking.

Determining the Version of the Collaboration Toolbox 7
To determine the version of the Collaboration Toolbox that is available, call the Gestalt
function with the selector gestaltOCEToolboxVersion. The function returns the
version number of the Collaboration toolbox in the low-order word of the response
parameter. For example, a value of 0x0101 indicates version 1.0.1. If you are using the
Collaboration toolbox on a computer that has a PowerShare server, the function returns
Using the IPM Manager 7-17

C H A P T E R 7

Interprogram Messaging Manager
the version number of the server in the high-order word of the response parameter.
If the Collaboration Toolbox or server is not present and available, the Gestalt function
returns 0 for the relevant version number. You can use the constant gestaltOCETB for
AOCE Collaboration Toolbox version 1.0.

Note that the version number of the Collaboration toolbox is not necessarily the same as
that returned by the IPMReadHeader function (page 7-89) for the IPM Manager. The
IPMReadHeader function returns a version number in the version field of the
IPMFixedHdrInfo structure (page 7-38).

Error Handling 7
If the ASDSP connection between the Collaboration toolbox and the server shuts down
for any reason, the next IPM Manager function you call that requires communications
with the server fails with the result code kOCEConnectionClosed. To correct this
condition, call the IPMCloseQueue function (page 7-76) to close the messaging queue
and then call the IPMOpenQueue function (page 7-72) to reopen the queue.

If either end of the IPM connection crashes during message transmission, the IPM
Manager might send a duplicate copy of a message that was already successfully
delivered. Although such an occurrence is very rare, your application should be capable
of handling the receipt of duplicate messages.

Creating a Message 7
A message is created in three steps:

1. Initiate the message-creation process.

2. Add information to the message.

3. End the process.

Initiating the Message-Creation Process 7

Before you start to create a message, you must decide whether you intend to send the
message, save it to disk, or nest it in another message. These processes are independent
of one another. If you want to both send a message and save the same message to disk,
for example, you must create the message twice.

■ To begin the process of creating a new message to be sent to a recipient, call the
IPMNewMsg function (page 7-43).

■ To start a new message to be saved to disk, call the IPMNewHFSMsg function
(page 7-47).

■ To start a new nested message, call the IPMNewNestedMsgBlock function
(page 7-56).

You provide each of these functions with information for the message header and an
authentication identity of the creator of the message. You can specify the reply message
queue and one recipient message queue at this time, or you can add this address
7-18 Using the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
information later, as described in the following section. Each of the new-message
functions returns a message reference number that you must use when you call
other functions to build the message.

Adding Information to the Message 7

Once you have started the message, you can add information to the message. You can
call the IPMAddRecipient (page 7-50) and IPMAddReplyQueue (page 7-52) functions
at any time during the message-creation process to add recipients and a reply queue to
the message header. To add a new message block, you first call either the IPMNewBlock
function (page 7-53) to start a new message block, or the IPMNewNestedMsgBlock
function to start a new nested-message block. You then call the IPMWriteMsg function
(page 7-61) to add data to a message block. You can also use the IPMNestMsg function
(page 7-59) to add an existing message as a message block. You can’t modify such a
nested message. You can add as many message blocks and nested messages as you wish
to a message.

Note
Although the IPM Manager allows you to add any number of
nested-message blocks at the same nesting level in a message, the
messaging service access module (MSAM) interface supports only one
nested-message block at a given nesting level. Therefore, if you want
your message to be compatible with MSAMs, you must not add more
than one nested-message block at a given level of nesting. You can,
however, nest a message within another nested message to as many
nesting levels as disk and memory resources allow. ◆

The IPMWriteMsg function adds data at a specific offset in a message. You can specify
an offset from the start of the currently open message block, from the start of the
message, or from the end of the last byte written. A message block can be any length.
Each time you call the IPMNewBlock function or the IPMNewNestedMsgBlock
function, the IPM Manager closes the current message block and starts a new message
block, putting the offset to the beginning of the new block into the message header.
Therefore, once you start a new message block, you cannot extend the length of any
message blocks you added earlier. You can write over the data in a block you wrote
earlier, but you can’t extend the block.

If you call the IPMNewNestedMsgBlock function to add a nested-message block to a
message, each subsequent call to the IPMNewBlock or IPMNewNestedMsgBlock
functions adds another block to the nested message, not a new block to the enclosing
message. Once you have started a nested message, you must call the IPMEndMsg
function (page 7-65) to complete the nested message before you can add any more
information to the enclosing message. After you call the IPMEndMsg function to end the
nested message, you cannot add any recipients or blocks to the nested message.
Using the IPM Manager 7-19

C H A P T E R 7

Interprogram Messaging Manager
Ending a Message 7

When you are finished adding address information, blocks, and nested messages to your
message, you call the IPMEndMsg function. This function sends the message, saves it to
disk, or ends a nested message, depending on which function you used to start the
message. You can also choose to add a digital signature to the message at this time and
you can request delivery and nondelivery reports.

Creating and Managing Message Queues 7
The IPM Manager provides functions to perform the following tasks:

■ create a new physical queue

■ open a queue context

■ open a physical queue to establish a virtual queue

■ change the default message filter for a virtual queue

■ enumerate the messages in a queue

■ close a queue context

■ close a virtual queue

■ delete a physical queue

Creating and Opening a Queue 7

Before another client of IPM can send messages to your application or process, you must
establish the input messaging queue to which the messages will be sent and from which
you can read them. You can use the default messaging queue created by the PowerShare
system administrator for the user as described in “Attribute-Type Indirect Addressing”
on page 7-15.

The administrator of a PowerShare messaging server can create any number of queues
on the server computer. Each such queue has a creator (the administrator who created
the queue) and an owner, assigned by the administrator. The owner can open a queue
and the administrator can delete a queue. An administrator typically creates a queue for
each user who has an account on the server.

However, if you want to create and maintain your own messaging queues, you must use
the functions described in “Managing Message Queues” on page 7-68.
7-20 Using the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
To establish a messaging queue, follow these steps:

1. Call the IPMCreateQueue function to create a new physical queue. When you call
the IPMCreateQueue function (page 7-69), the IPM Manager sets up a new physical
input queue with the name and address you specify. Other users of IPM can send
messages to that queue (assuming they know its name and address) at any time.

Note
You must be authenticated as the administrator to add a queue to a
PowerShare server. ◆

2. Call the IPMOpenContext function to create a new queue context. A queue context
links together virtual queues so that, by closing the context, you can simultaneously
close all of the queues associated with that context. You use the IPMOpenContext
function (page 7-70) to create a new context and the IPMCloseContext function
(page 7-77) to close one. The IPMOpenContext function returns a context reference
number that you use when you call the IPMOpenQueue function to open a new
virtual queue.

3. Call the IPMOpenQueue function to establish a new virtual queue. Whereas the
IPMCreateQueue function creates a physical message queue, the IPMOpenQueue
function (page 7-72) opens the physical queue to establish a virtual queue (see
“Message Queues” on page 7-8 for a discussion of physical and virtual message
queues). You cannot read messages from a queue until you open it. When you call the
IPMOpenQueue function, you must specify the queue context to which the new
virtual queue will belong. You can call the IPMOpenQueue function any number of
times to establish distinct virtual queues associated with the same physical input
queue. Each time you call this function, the IPM Manager returns a unique queue
reference number.

Specifying a Queue Filter and Enumerating a Queue 7

When you call the IPMOpenQueue function to establish a virtual queue, you can specify
a default message filter for that virtual queue. You can filter messages by priority,
message type, or other attributes, as described in “Filter Structures” on page 7-34.

For example, you can open an input queue three times to create three virtual queues,
each with its own filter: one that passes only high-priority messages, one that passes
only messages specifically intended for your application, and one that passes all
messages in the physical input queue. You can use the IPMChangeQueueFilter
function (page 7-74) to change the default message filter for a specific virtual queue.

When you call the IPMEnumerateQueue function (page 7-80), you specify a queue
reference number and you can specify a queue filter. The IPM Manager uses the message
filter to determine which messages in the physical queue to list. If you do not provide a
message filter with the IPMEnumerateQueue function, the function uses the default
filter for that virtual queue.
Using the IPM Manager 7-21

C H A P T E R 7

Interprogram Messaging Manager
Closing a Queue 7

You can close an individual virtual queue or you can close a queue context to
simultaneously close all of the virtual queues associated with that context. When you
open a message, you specify the reference number for an open virtual queue. This virtual
queue must belong to the physical queue that actually contains the message and its filter
must pass the specific message you wish to open. When you call the IPMCloseQueue
function (page 7-76) to close a virtual queue, the IPM Manager closes all of the messages
opened using that virtual queue’s reference number and removes the virtual queue from
its context. When you call the IPMCloseContext function (page 7-77) to close a
context, the IPM Manager closes all of the messages opened for all the virtual queues
associated with that context before it closes the virtual queues and removes the context.

Call the IPMDeleteQueue function (page 7-78) to delete a physical queue that you own.
Before you delete a physical queue, you must close all of the virtual queues that belong
to that physical queue.

Reading Messages 7
To read a message, follow these steps:

1. Enumerate the queue or determine the location of the message on disk. Use the
IPMEnumerateQueue function (page 7-80) to list the messages in a virtual queue;
that is, the messages that meet the filter criteria for the queue. If you wish, you can
specify a filter that is in effect only for a single execution of the function; otherwise,
the function uses the current filter for the virtual queue. In addition to the sequence
number of each message, the IPMEnumerateQueue function provides information
about the message such as the message length and priority.
A queue can contain any number of messages. The IPM Manager assigns a sequence
number to each message when it adds the message to the physical queue. The IPM
Manager uses a monotonically increasing series of sequence numbers and does not
reuse a sequence number when a message is deleted from the queue. Therefore, when
you request a list of all the messages in the queue, some sequence numbers might be
missing, but the message with the highest sequence number is always the last one
added to the queue.
Use File Manager or Standard File Package routines to locate a message on disk. The
File Manager and Standard File Package are described in Inside Macintosh: Files.

2. Open the message. Use the IPMOpenMsg function (page 7-82) to open a message in an
input queue or the IPMOpenHFSMsg function (page 7-84) to open a message that has
been saved in a file on disk. These functions return a message reference number that
you must provide to the various message-reading functions.
If a message contains a nested-message block, you can use the IPMOpenBlockAsMsg
function (page 7-86) to open that block as a message. You must open the containing
message and determine the offsets of the nested-message block before you can open a
nested message. You use the IPMGetBlkIndex function (page 7-96) to get the index
numbers and block types of the blocks in a message.
7-22 Using the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
3. Read the message header. The IPM Manager reads certain fields of the headers of
messages in an input queue and saves this information in local memory. You can use
the IPMGetMsgInfo function (page 7-87) to read this information. The
IPMGetMsgInfo function returns the same information about a message as that
returned by the IPMEnumerateQueue function. To get more information about a
message or to read header information from a message on disk or a nested message,
use the IPMReadHeader function (page 7-89).
The creator of a message adds one or more recipients to the message header. Some or
all of these recipients might be group addresses or references to catalog records that
the IPM Manager must resolve before delivering the message. The
IPMReadRecipient function (page 7-92) returns only the original list of recipients.

4. Call the IPMGetBlkIndex function (page 7-96) to get the index numbers and block
types of the blocks in the message. If you are interested only in blocks of a certain
type, such as nested-message blocks, you can use this function to list only those blocks.

5. Use the IPMReadMsg function (page 7-98) to read any message block other than a
nested-message block.
Call the IPMOpenBlockAsMsg function to open a nested-message block as a message
and then use the other functions in this section to read it as you would read any other
message. Before you use this function, you must open the containing message (which
can also be a nested message) and you must know the index number of the
nested-message block within the containing message. A nested message has a creator
type of kIPMSignature and a block type of kIPMEnclosedMsgType.
If the message includes a digital-signature block, you can use the
IPMVerifySignature function (page 7-102) to verify the signature.

6. When you have finished reading the message, call the IPMCloseMsg function
(page 7-104) to close the message and release the memory the IPM Manager reserved
for the message when you opened it. Closing a message does not automatically close
any nested messages that you have opened with the IPMOpenBlockAsMsg function;
you must call the IPMCloseMsg function once for every nested message you open.
You can also close messages by closing the message queue or the queue context to
which that message belongs.
Using the IPM Manager 7-23

C H A P T E R 7

Interprogram Messaging Manager
IPM Manager Reference 7

This section describes the data types and routines provided by the IPM Manager.

Data Types 7
The IPM Manager routines use the data types described in this section. Included are
structures for message addressing, message and block types, delivery notification,
filter structures, message information structures, header information structures, sender
structures, and interprogram messaging parameter blocks.

Message Addressing Structures 7

You must use the OCERecipient structure to specify a message address. This section
also shows some structures you can use for extensions to OCERecipient structures. See
“Addressing IPM Messages,” beginning on page 7-10 for more information about
addressing.

OCERecipient 7

The OCERecipient structure is defined as a DSSpec data type.

struct DSSpec {

RecordID *entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

typedef struct DSSpec DSSpec;

typedef DSSpec OCERecipient;

The OCERecipient structure can specify a specific attribute in a specific record in a
catalog from which the IPM Manager reads the recipient address, or it can hold the
actual queue address. The various forms of the OCERecipient structure are described
in “Addressing IPM Messages,” beginning on page 7-10.
7-24 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
All of the components of the DSSpec data type are defined in the chapter “OCE
Utilities” in this book. Figure 7-5 on page 7-11 illustrates the contents of an
OCERecipient structure. Note that this figure does not show the true size or location of
the fields in an OCERecipient structure, and that the actual structure contains packed
fields. You must use the utility routines provided by the IPM Manager to create and read
these structures. The utility routines are described in “Utility Functions,” beginning on
page 7-107.

OCEPackedRecipient 7

The IPM Manager often uses a packed form of the OCERecipient structure, defined by
the OCEPackedRecipient data type.

define OCEPackedRecipientHeader\

unsigned short dataLength;

struct ProtoOCEPackedRecipient{

OCEPackedRecipientHeader;

};

typedef struct ProtoOCEPackedRecipient ProtoOCEPackedRecipient;

define kOCEPackedRecipientMAXBYTES\

(4096 - sizeof(ProtoOCEPackedRecipient))

struct OCEPackedRecipient {

OCEPackedRecipientHeader

Byte data[kOCEPackedRecipientMaxBytes];

};

typedef struct OCEPackedRecipient OCEPackedRecipient;

The dataLength field at the beginning of the structure specifies the length of the data
field that follows. The data field of the OCEPackedRecipient structure contains an
OCERecipient structure in packed format. Use the utility routines provided by the IPM
Manager to pack and unpack OCERecipient structures.
IPM Manager Reference 7-25

C H A P T E R 7

Interprogram Messaging Manager
IPMEntityNameExtension 7

You can use the following data type when creating an extension to an OCERecipient
structure:

struct IPMEntityNameExtension {

OSType subExtensionType;

union {

IPMEntnSpecificAttributeExtension specificAttribute;

IPMEntnAttributeExtension attribute;

IPMEntnQueueExtension queue;

} u;

};

The specific attribute type is reserved for use by the IPM Manager.

IPMEntnAttributeExtension 7

The attribute type is defined by the IPMEntnAttributeExtension structure.

struct IPMEntnAttributeExtension { /* kOCEAttrXtn */

AttributeType attributeName;

};

IPMEntnQueueExtension 7

The queue type is defined by the IPMEntnQueueExtension data structure.

struct IPMEntnQueueExtension {

Str32 queueName;

};

Message and Block Types 7

Each IPM message has an associated message type. Each block in a message has a block
type. A message type can have either of two formats: the creator/type format contains a
creator field and a type field; the string format contains a length field and a string. A
block type always has the creator/type format. As illustrated in Figure 7-6, the first field
in a message type structure is a 2-byte tag that specifies the format of the structure. The
block type structure does not include this tag.
7-26 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Figure 7-6 The two forms of the message type structure

IMPORTANT

Apple Computer, Inc., reserves all message type values and all block
type values that consist entirely of lowercase letters. ▲

OCECreatorType 7

The block type and the creator/type portion of a message type are defined by the
OCECreatorType data type.

struct OCECreatorType {

OSType msgCreator;

OSType msgType;

};

Field descriptions

msgCreator The creator of the message or block. You can specify any
four-character value in this field; usually it is the signature of your
application. For example, a message or block created by the IPM
Manager has a creator type of kIPMSignature.

msgType The type of the message or block. For example, an enclosed message
block has a block type of kIPMEnclosedMsgType. You can define
your own four-character block types to serve your own purposes.
Apple Computer, Inc., reserves all block types consisting entirely of
lowercase letters.

kIPMOSFormatType

Creator

Type

kIPMStringFormatType

Length

String containing

up to

32 characters

Creator/Type format String format
IPM Manager Reference 7-27

C H A P T E R 7

Interprogram Messaging Manager
IPMMsgType 7

The message type structure is defined by the IPMMsgType data type.

/* values of IPMMsgFormat */

enum {

kIPMOSFormatType = 1,

kIPMStringFormatType = 2

};

typedef Str32 IPMStringMsgType;

struct IPMMsgType {

IPMMsgFormat format; /* IPMMsgFormat */

union{

OCECreatorType msgOSType;

IPMStringMsgType msgStrType;

}theType;

};

typedef struct IPMMsgType IPMMsgType;

IPMBlockType 7

The block type structure is defined by the IPMBlockType data type.

typedef OCECreatorType IPMBlockType;

Delivery Notification 7

The IPM Manager uses a delivery notification flag byte in the message header to
determine when to generate recipient report messages and whether to include the
original message in any report messages that are returned by the recipients. Report
messages include a header (the IPMReportBlockHeader structure on page 7-33) and
an array of delivery results (the OCERecipientReport structure on page 7-33). Report
messages are described in “Report Messages” on page 7-9.
7-28 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Nondelivery Codes 7

The nondelivery result codes that can be returned by an MSAM or the IPM Manager in a
recipient report message are shown here. A personal MSAM can define its own result
codes in addition to the ones listed here. (If a server MSAM returns a nonstandard result
code, the IPM Manager is unable to convert it to a string meaningful to the user.)

enum {

kIPMNoSuchRecipient = 0x0001,

kIPMRecipientMalformed = 0x0002,

kIPMRecipientAmbiguous = 0x0003,

kIPMRecipientAccessDenied = 0x0004,

kIPMGroupExpansionProblem = 0x0005,

kIPMMsgUnreadable = 0x0006,

kIPMMsgExpired = 0x0007,

kIPMMsgNoTranslatableContent = 0x0008,

kIPMRecipientReqStdCont = 0x0009,

kIPMRecipientReqSnapShot = 0x000A,

kIPMNoTransferDiskFull = 0x000B,

kIPMNoTransferMsgRejectedbyDest = 0x000C,

kIPMNoTransferMsgTooLarge = 0x000D

}

Constant descriptions

kIPMNoSuchRecipient
The IPM Manager or MSAM has determined that the specified
recipient does not exist. For example, the recipient might have no
record in the catalog (and therefore no account on the mail server)
or have no account on the MSAM’s mail or messaging system.

kIPMRecipientMalformed
The recipient address in the message was not formatted correctly.
The problem can be any of the following: The name and record
creation ID don’t match; both the dNode number and pathname are
specified in the record location information (RLI) structure; a dialup
address is missing a phone number; an NBP address is missing a
zone name; the RLI for a catalog is missing a discriminator; the
extension value of the OCERecipient structure is not properly
formed (as determined by the MSAM interpreting the address).

kIPMRecipientAmbiguous
The IPM Manager or MSAM has been unable to resolve, look up, or
find the specified recipient. The recipient may exist but has been
unavailable (for example, it has an AppleTalk address but has not
been logged on to AppleTalk), or there may be duplicate addresses
and the IPM Manager or MSAM cannot determine which to use.
IPM Manager Reference 7-29

C H A P T E R 7

Interprogram Messaging Manager
kIPMRecipientAccessDenied
In the process of attempting to deliver the message to the specified
recipient, access to some critical information was prevented. The
address may be valid and the recipient might exist, but the agent
responsible for delivering the message doesn’t have access to the
recipient’s record.

kIPMGroupExpansionProblem
The IPM Manager or MSAM was unable to expand a group address
fully. Some of the recipients in the group might have received the
message.

kIPMMsgUnreadable
The MSAM was unable to read (and thus to translate) a message
(the message might be corrupted or the content missing), and
therefore the message was never delivered to the specified recipient.

kIPMMsgExpired
The IPM Manager was unable to confirm delivery of this message
before the specified expiration time (currently set at 5 days for
PowerShare servers, Direct AppleTalk, and server MSAMs). The
server makes several attempts to deliver a message before the
message delivery time expires. This result code does not necessarily
mean that all the attempts at delivery failed— it means that the
server has not been able to determine the success or failure of any of
the previous attempts to deliver the message and will make no
further attempts.

kIPMMsgNoTranslatableContent
The message is missing a piece of information that is considered
critical for its delivery. For example, the message might be missing a
subject or a type of content required by the MSAM.

kIPMRecipientReqStdCont
The MSAM cannot deliver messages that don’t contain a
standard-interchange-format block, and such a block was not
present.

kIPMRecipientReqSnapShot
The MSAM required the message to contain a standard image
format block (or snapshot) in order to deliver it, and such a block
was not present.

kIPMNoTransferDiskFull
The recipient could not receive the message because there was
insufficient room on the disk to hold it. The recipient might be a
user’s computer in the case of Direct AppleTalk or a server in the
case of an MSAM. If a PowerShare disk is full, the IPM Manager
periodically makes new attempts to send the message.

kIPMNoTransferMsgRejectedbyDest
The destination system refused delivery without specifying a
reason.

kIPMNoTransferMsgTooLarge
The destination system has a limit to the size of message it accepts,
and this message exceeded that limit.
7-30 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
IPMNotificationType 7

The IPM delivery notification setting is specified by the IPMNotificationType data
type.

typedef Byte IPMNotificationType;

The bits in the notification byte are defined as follows:

enum {

kIPMDeliveryNotificationBit = 0,

kIPMNonDeliveryNotificationBit = 1,

kIPMEncloseOriginalBit = 2,

kIPMSummaryReportBit = 3,

kIPMOriginalOnlyOnErrorBit = 4

};

You can use a combination of the following values to set the flags in the
IPMNotificationType data type:

enum {

kIPMNoNotificationMask = 0x00,

kIPMDeliveryNotificationMask = 1<<kIPMDeliveryNotificationBit,

kIPMNonDeliveryNotificationMask = 1<<kIPMNonDeliveryNotificationBit,

kIPMDontEncloseOriginalMask = 0x00,

kIPMEncloseOriginalMask = 1<<kIPMEncloseOriginalBit,

kIPMImmediateReportMask = 0x00,

kIPMSummaryReportMask = 1<<kIPMSummaryReportBit,

kIPMOriginalOnlyOnErrorMask = 1<<kIPMOriginalOnlyOnErrorBit,

kIPMEncloseOriginalOnErrorMask =

(kIPMOriginalOnlyOnErrorMask|kIPMEncloseOriginalMask)

};

Constant descriptions

kIPMNoNotificationMask
Do not deliver any report messages. This setting is overridden
when combined with any setting that requests reports.

kIPMDeliveryNotificationMask
Generate a report message when the message arrives at the
recipient queue.

kIPMNonDeliveryNotificationMask
Generate a report message if the IPM Manager cannot deliver the
message to a recipient.
IPM Manager Reference 7-31

C H A P T E R 7

Interprogram Messaging Manager
kIPMDontEncloseOriginalMask
Don’t enclose the original message in the report message. This is the
default setting for this feature; this setting is overridden by the
kIPMEncloseOriginalMask setting.

kIPMEncloseOriginalMask
Enclose the original message in a report message. This value must
be combined with the kIPMSummaryReportMask value.

kIPMImmediateReportMask
Generate a report message for each recipient as soon as there is any
information to report. This is the default setting for this feature; this
setting is overridden by the kIPMSummaryReportMask setting.

kIPMSummaryReportMask
Return a single report message for all recipients.

kIPMOriginalOnlyOnErrorMask
Return the original message only in nondelivery reports. For this
setting to have an effect, it must be combined with the
kIPMEncloseOriginalMask value. The
kIPMEncloseOriginalOnErrorMask value provides this
combination.

kIPMEncloseOriginalOnErrorMask
A combination of the kIPMEncloseOriginalMask and
kIPMOriginalOnlyOnErrorMask values, resulting in the
original message being included only in nondelivery reports.

The bit kIPMSummaryReportBit in the IPMNotificationType byte determines
whether the report messages that the sending application receives contain information
about a single recipient or all of the recipients of the message. If the bit
kIPMSummaryReportBit is not set, the IPM Manager returns a report message about
each recipient as soon as it is generated. If that bit is set, the IPM Manager creates a
single report message that summarizes the requested delivery notification for all of the
recipients.

IPMMsgID 7

The message ID is a unique identifier of the message you sent. The message ID is
returned by the IPMEndMsg function (page 7-65).

struct IPMMsgID {

unsigned long id[4];

};
7-32 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
IPMReportBlockHeader 7

A recipient report message (message creator kIPMSignature, message type
kIPMReportInfo) includes a report block (which also has a creator of
kIPMSignature and a type of kIPMReportInfo). The report block starts with
a header, followed by the report data (see Figure 7-4 on page 7-10). The report block
header is defined by the IPMReportBlockHeader data type.

struct IPMReportBlockHeader {

IPMMsgID msgID; /* message ID of the original */

UTCTime creationTime; /* creation time of the report */

};

Field descriptions

msgID The message ID of the message you sent originally. The recipient
report message carries information about this message. The
message ID is returned by the IPMEndMsg function (page 7-65).

UTCTime The time at which the report was generated. The UTCTime data
type is an unsigned long containing Greenwich Mean Time in
seconds since 00:00 hours, January 1, 1904.

OCERecipientReport 7

A recipient report message (message creator kIPMSignature, message type
kIPMReportInfo) includes a report block (which also has a creator of
kIPMSignature and a type of kIPMReportInfo). The report block starts with a
header, followed by the report data (see Figure 7-4 on page 7-10). The report data
consists of an array of recipients and delivery results defined by the
OCERecipientReport data type.

struct OCERecipientReport {

unsigned short rcptIndex; /* index of recipient in

original message */

OSErr result; /* result of sending letter to

this recipient */

};

Field descriptions

rcptIndex The index number of the recipient in the header of the original
message. In the case of group addresses, the delivery report tells
you only that the group address was expanded; you don’t receive
information on delivery to individual members of a group.

result The result of the attempt to deliver the message to this recipient.
The standard values returned in this field are shown on page 7-29;
in addition, each personal MSAM can define its own result codes.
IPM Manager Reference 7-33

C H A P T E R 7

Interprogram Messaging Manager
To calculate the number of recipients in a report, divide the size of the block (minus the
header size) by the size of an OCERecipientReport structure.

numRecipients = (pmPB.readMsgPB.actualCount

 - sizeof (IPMReportBlockHeader)) / sizeof (OCERecipientReport);

Filter Structures 7

When you open a message queue or enumerate the messages in the queue, you can
apply a filter to the queue so that the IPM Manager lists only the messages that match
your filter criteria.

The IPM Manager defines a queue filter as an array of single filters. It performs an OR
operation on all of the single filters you specify for a queue filter. For example, if you set
one single filter in the filter array to pass high-priority messages of type 'high' and
another single filter to pass low-priority messages of type 'low ', the queue filter
passes messages of both descriptions. The OR operation is performed on the entire single
filters, not on the individual fields in the single filters; thus the filter in this example
would not pass a low-priority message of type 'high'.

This section provides the data structures that define single filters and queue filters.

IPMSingleFilter 7

The IPMSingleFilter data type describes the contents of a single filter. You must pack
and word-align each field of the structure before you pass it to an IPM routine.

struct IPMSingleFilter{

IPMPriority priority;

Byte padByte;

OSType family; /* family to which this msg belongs */

ScriptCode script; /* language identifier */

IPMProcHint hint;

IPMMsgType msgType;

};

Field descriptions

priority The priority of the message. You can set the priority to any of the
following values:
kIPMAnyPriority
kIPMNormalPriority
kIPMLowPriority
kIPMHighPriority

If you set the filter priority to kIPMAnyPriority, the queue does
not filter messages according to their priority settings.
7-34 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
family The message family to which the message belongs. You can use the
wildcard value kIPMFamilyWildCard for all families.

script Reserved.
hint A process hint value. A process hint is a string of up to 32

characters, defined by the creator of the message.
msgType A message type. The message type is assigned by the creator of the

message. You can use the wildcard value kIPMTypeWildCard for
either or both fields of the IPMMsgType structure to pass messages
with any creator or any type. The IPMMsgType data type is defined
on page 7-28.

The IPM Manager defines the following message family types:

#define kIPMFamilyUnspecified 0 /* any message */

#define kIPMFamilyWildCard 0x3F3F3F3FL /* '????' */

In addition, the AOCE MSAM interface defines the following message family types:

#define kMailFamily 'mail' /* "mail" msgs: content, header, etc */

#define kMailFamilyFile 'file' /* "direct display" msgs */

In addition to the types shown here, Apple Computer reserves for its own use any
message family type consisting entirely of lowercase letters.

IPMFilter 7

A full queue filter is a packed array of single filters. The contents of a filter are shown by
the IPMFilter data type.

struct IPMFilter{

unsigned short count;

IPMSingleFilter sFilters[1];

};

Field descriptions

count The number of single filters in this queue filter.
sFilters An array of single filters.
IPM Manager Reference 7-35

C H A P T E R 7

Interprogram Messaging Manager
Message Information Structure 7

When you call the IPMEnumerateQueue function (page 7-80) or the IPMGetMsgInfo
function (page 7-87), the function returns the information about the message in an
message information structure.

IPMMsgInfo 7

The message information structure is defined by the IPMMsgInfo data type.

struct IPMMsgInfo{

IPMSeqNum sequenceNum;

unsigned long userData;

unsigned short respIndex;

Byte padByte;

IPMPriority priority;

unsigned long msgSize;

unsigned short originalRcptCount;

unsigned short reserved;

UTCTime creationTime;

IPMMsgID msgID;

OSType family; /* family of this msg */

IPMProcHint procHint;/* packed and even-length padded */

IPMMsgType msgType; /* packed and even-length padded */

};

The IPMEnumerateQueue function lets you specify whether the returned IPMMsgInfo
structure includes the procHint or msgType fields. Because these fields are of variable
length, the offset to the msgType field depends on the presence and length of the
procHint field.

Field descriptions

sequenceNum A sequence number that uniquely identifies a particular message in
the queue.

userData Reserved.
respIndex Reserved.
priority The priority setting of the message. This field can be set to

kIPMNormalPriority, kIPMLowPriority, or
kIPMHighPriority.

msgSize The length of the entire message.
7-36 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
originalRcptCount
The number of recipients that the sending application originally
specified for the message. This value may differ from the actual
number of recipients if the message was sent to one or more groups.

reserved Reserved.
creationTime The date and time that the message was created. The UTCTime data

type is an unsigned long containing Greenwich Mean Time in
seconds since 00:00 hours, January 1, 1904.

msgID A unique identifier of the message. The message ID is returned by
the IPMEndMsg function (page 7-65).

family The message family to which the message belongs. Possible values
for this field are shown on page 7-35.

procHint An optional field of varied length. If this field is present, it contains
the process hint for the message, which is a Pascal-type string of up
to 32 characters, defined by the creator of the message. The
information in the field is packed. If the field contains an odd
number of bytes (including the length byte), the IPM Manager adds
a pad byte following the field. Therefore, the maximum length of
this field (including the length byte and the pad byte) is 34 bytes.

 msgType An optional parameter that contains the message type of the
message. The IPMMsgType data type is defined on page 7-28. Like
the procHint field, the msgType field is packed and padded if
necessary to contain an even number of bytes.

Header Information Structures 7

The IPMReadHeader function (page 7-89) uses the data structures in this section to
return information from a message header.

IPMTOC 7

When you specify the value kIPMTOC for the fieldSelector field in the parameter
block used by the IPMReadHeader function, the function returns an array of TOC
information structures—one for each block in the message. The TOC information
structure is defined by the IPMTOC data type.

struct IPMTOC

{

IPMBlockType blockType;

long blockOffset;

unsigned long blockSize;

unsigned long blockRefCon;

};
IPM Manager Reference 7-37

C H A P T E R 7

Interprogram Messaging Manager
Field descriptions

blockType The creator and type of the block.
blockOffset The offset from the start of the message to the start of the block.
blockSize The size, in bytes, of the block.
blockRefCon The block’s reference constant. The application that creates the

message specifies this value when it adds the block to the message.
The meaning of this reference constant is defined by the application
that creates the message.

IPMFixedHdrInfo 7

When you specify the value kIPMFixedInfo for the fieldSelector field of the
parameter block used by the IPMReadHeader function, the function returns
information about the message header in a fixed header information structure. The fixed
header information structure is defined by the IPMFixedHdrInfo data type.

struct IPMFixedHdrInfo {

unsigned short version; /* IPM Manager version */

Boolean authenticated; /* was message authenticated? */

Boolean signatureEnclosed;/* digital signature enclosed? */

unsigned long msgSize; /* size of message */

IPMNotificationType notification; /* notification type requested */

IPMPriority priority; /* message priority */

unsigned short blockCount; /* number of blocks */

unsigned short originalRcptCount;/* original number of recipients */

unsigned long refCon; /* application-defined data */

unsigned short reserved; /* reserved */

UTCTime creationTime; /* message creation time */

IPMMsgID msgID; /* message ID */

OSType family; /* family of this msg */

};

Field descriptions

version The version number of the IPM Manager that created the message.
This is not necessarily the same version number as that returned by
the Gestalt function for the Collaboration toolbox (see page 7-17).

authenticated A Boolean value that indicates whether the message was
authenticated. In the case of a message that passes through more
than one store-and-forward server, the IPM Manager sets this field
to true only if the identities of the original sender and of every
server in the routing chain were authenticated.
7-38 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
signatureEnclosed
A Boolean value indicating whether the message includes a digital
signature. If this field is set to true, the message includes a block
with a creator of kIPMSignature and a type of
kIPMDigitalSignature containing a digital signature. You can
use the IPMVerifySignature function (page 7-102) to verify the
digital signature.

msgSize The length, in bytes, of the message.
notification The delivery notification requested by the application that sent the

message. See “Delivery Notification,” beginning on page 7-28, for
more information about this value.

priority The priority setting of the message. Values for this field can be
kIPMNormalPriority, kIPMLowPriority, or
kIPMHighPriority.

blockCount The number of blocks in the message. You can use the
IPMGetBlkIndex function (page 7-96) to list the creator, type, and
position of each block in the message.

originalRcptCount
The number of recipients in the recipient list that the sending
application originally specified for the message. Because the IPM
Manager might have expanded groups in the original recipient list,
the number of recipients in the current recipient list might be
different from this.

refCon A numeric reference value that the sending application provides for
the message when it calls the IPMNewMsg function (page 7-43), the
IPMNewHFSMsg function (page 7-47), or the
IPMNewNestedMsgBlock function (page 7-56).

reserved Reserved.
creationTime The date and time that the message was created. The UTCTime data

type is an unsigned long containing Greenwich Mean Time in
seconds since 00:00 hours, January 1, 1904.

msgID A unique identifier of the message. The message ID is returned by
the IPMEndMsg function (page 7-65).

family The family the message belongs to.

Sender Structure 7

When you create a new message or read a message header, the name of the originator of
the message is held in a sender structure, described in this section. In the case of an
application-to-application message, the sender would be an application name. In the
case of a message or letter sent by a user, the sender might be the user’s name or a record
ID that identifies the user record for the sender.
IPM Manager Reference 7-39

C H A P T E R 7

Interprogram Messaging Manager
IPMSender 7

The sender structure contains either the sender’s name in RString format or a catalog
record ID that identifies the user record for the sender of the message. The sender
structure is defined by the IPMSender data type.

struct IPMSender {

IPMSenderTag sendTag;

union {

RString rString;

PackedRecordID rid;

} theSender;

};

enum {

kIPMSenderRStringTag,

kIPMSenderRecordIDTag

};

typedef unsigned short IPMSenderTag;

Interprogram Messaging Parameter Block Header 7

All IPM Manager function declarations include a pointer to a parameter block. Each
parameter block begins with the following fields:

#define IPMParamHeader \

Ptr qLink; \

long reservedH1; \

long reservedH2; \

ProcPtr ioCompletion; \

OSErr ioResult; \

long saveA5; \

short reqCode;

Field descriptions

qLink Reserved.
reservedH1 Reserved.
reservedH2 Reserved.
ioCompletion A pointer to a completion routine that you provide. If you provide a

pointer to a completion routine in this field, the function calls your
completion routine when it completes execution. Completion
routines are described in“Application-Defined Functions,”
beginning on page 7-114. Specify nil for this parameter if you do
not want to supply a completion routine.
7-40 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
ioResult The function result. If you call the function asynchronously, it sets
this field to 1 to indicate that the request was queued successfully.
The function sets this field to the function result when it completes
execution.

saveA5 Reserved.
reqCode Reserved.

The individual routine descriptions at the end of this reference contain information
about any additional parameters that are specific to the routine.

Asynchronous or Synchronous Operations 7
You can call the IPM Manager routines either synchronously or asynchronously. If you
call the function asynchronously, it returns control to you immediately and completes
execution incrementally as it is given time by the system. If you call it synchronously, it
completes execution before returning control to you.

IMPORTANT

You must specify asynchronous operation when you call any IPM
function at interrupt time. Because a function might not complete
successfully, calling it synchronously might cause the computer to
hang. ▲

Completion Routines and Polling Options 7
When you call an IPM function asynchronously, you can specify a completion routine.
The IPM Manager calls your completion routine when the function completes execution.
If you write you completion routine in Pascal or C, it must take a single argument, which
is a pointer to the parameter block.

For example, to declare a completion routine in Pascal, you could use the following
statement:

PROCEDURE MyCompletionRoutine (paramBlk: Ptr);

To declare a completion routine in C, you could use the following statement:

pascal void MyCompletionRoutine (Ptr paramBlk);

If you write your completion routine in assembly language, you can find a pointer to the
parameter block in the A0 register and the function result in the D0 register.

The IPM Manager saves the value of your A5 register at the time you call an IPM
function and restores the A5 value before calling your completion routine.
IPM Manager Reference 7-41

C H A P T E R 7

Interprogram Messaging Manager
If you do not provide a completion routine, you can poll the ioResult field of the
parameter block. The IPM Manager sets the value of the ioResult field to 1 when you
first call a function asynchronously, indicating that the function was successfully queued.
When the function completes execution, the IPM Manager changes the ioResult value
to the actual function result.

IPM Manager Functions 7
This section describes all of the functions provided by the IPM Manager except for those
specifically for use by MSAMs; see the chapter “Messaging Service Access Modules” in
Inside Macintosh: AOCE Service Access Modules for descriptions of MSAM functions.

In the functions described here, you must completely specify any data structure that you
provide to a function unless the description states otherwise.

All of the functions take a pointer to an IPMParamBlock parameter block as input. Each
function description includes a list of the fields in the parameter block that are used by
the function.

Most functions in the IPM API have the following form:

pascal OSErr function (IPMParamBlockPtr paramBlock,

Boolean async);

Some functions can be called only synchronously or only asynchronously; therefore, they
do not have the asyncFlag parameter. The form of those functions is

pascal OSErr function (IPMParamBlockPtr paramBlock);

The function returns its result code in the ioResult field of the parameter block. When
you call a function synchronously, it returns its result both as the function result and in
the ioResult field of the MailParamBlockHeader structure. Note that the function
also clears the ioCompletion field.

When you call a function asynchronously and the function has successfully queued the
request, it returns noErr and sets the ioResult field to 1. After the call completes, the
function sets the ioResult field to the actual result and calls your completion routine if
you specified one. There is one exception to this behavior: if the IPM Manager is not
currently ready to accept a request, it may return corErr as the function result. In this
case, the ioResult field has an indeterminate value and the completion routine is not
called.

IMPORTANT

If you choose to poll the ioResult field to determine if the request has
completed, it is safest to check that its value has changed from 1 to some
other value. Although the IPM Manager does not return positive error
codes, system utilities may return positive error codes and these may be
passed through. ▲
7-42 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Calling an IPM Function From Assembly Language 7

You can call a function from assembly language. Listing 7-1 illustrates one way to do this
for a function that takes both the parameter block pointer and the async flag as
parameters. (If a function can be called only synchronously or only asynchronously, the
assembly code would not manipulate the async value.)

Listing 7-1 Calling an MSAM function from assembly language

_oceTBDispatch OPWORD $AA5E

SUBQ #2,A7 ; make room for function result

MOVEA paramBlock,-(SP) ; push the param block pointer onto stack

MOVEQ asyncFlag, D0 ; move async flag into D0

MOVE.B D0,-(SP) ; push the flag (byte) onto stack

MOVEQ #opCode, D0 ; move op code into D0

MOVE.W D0,-(SP) ; place the op code on the stack

_oceTBDispatch ; trap call

MOVE.W (SP)+, D0 ; get result code

Note
The functions described in the section “Utility Functions,” beginning on
page 7-107 use a different assembly-language calling convention,
described on page 7-107. ◆

Creating a New Message 7

This section describes the functions that you use to create a new message and either send
it or save it to disk. See “Creating a Message,” beginning on page 7-18 for information
about the sequence in which you use these functions to create a message.

IPMNewMsg 7

The IPMNewMsg function starts the process of creating a new message to be sent to a
recipient.

pascal OSErr IPMNewMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.
IPM Manager Reference 7-43

C H A P T E R 7

Interprogram Messaging Manager
Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

recipient A pointer to an OCERecipient structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.
Set this field to nil if you intend to use the IPMAddRecipient
function to add all the recipient addresses later.

replyQueue A pointer to an OCERecipient structure that specifies the queue in
which you receive your incoming messages. The OCERecipient
structure can specify the reply queue directly, or can specify a
record in a catalog that contains the reply queue information.
If you specify nil for this field and a local identity for the
identity field, the IPM Manager uses the PowerTalk Setup
catalog to fill in the reply queue field in the message header at the
time the message is sent.
You can also set this field to nil if you intend to use the
IPMAddReplyQueue function to specify the reply queue later.

procHint A pointer to a process hint, which is a string of up to 32 characters,
reserved for your use. The IPM Manager puts this string into the
message header. You can use this field, for example, to provide
information that helps your recipients determine how to process the
message.

msgType A pointer to an IPMMsgType structure, which specifies the type of
message that you are creating. The IPM Manager and other AOCE
components do not read the message type; it is for the use of
applications only. Note, however, that the Finder might display the
contents of the message header’s message-type field if the user
displays the Info dialog box for the message while the message is in
the Out Tray.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ recipient OCERecipient* Pointer to the recipient’s queue

address.
→ replyQueue OCERecipient* Pointer to the queue address for

message replies.
→ procHint StringPtr Pointer to character string for your

use.
→ msgType IPMMsgType* Pointer to the message type.
→ refCon unsigned long Reserved for your use.
← newMsgRef IPMMsgRef Message reference number.
→ identity AuthIdentity Authentication identity.
→ sender IPMSender* Pointer to the sender’s name.
7-44 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
refCon An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the message header. You can use this
field, for example, to indicate that the message has content of some
particular type.

newMsgRef A reference number returned by the function. You must use this
number when you call other functions to complete the process of
creating the message.

identity The authentication identity of the creator of the message. If you
provide a nonzero value for this field, the IPM Manager uses this
information to fill in the sender field in the message header.

sender A pointer to an IPMSender structure, which identifies the sender of
the message. If you specify 0 or a local identity for the identity
field, you should provide a meaningful value for the sender. For an
application-to-application message, you might use the application
name as the sender. To specify an individual as a sender, you can
put the user’s name in the IPMSender structure or you can provide
the record ID of the sender’s user record. If you specify a specific
identity for the identity field, the function ignores the sender
field.

DESCRIPTION

You must call the IPMNewMsg function to begin the process of creating a new message
that is to be sent to a recipient. (Use the IPMNewHFSMsg function to start a message to be
saved on disk.) The IPM Manager uses information that you provide in the parameter
block of IPMNewMsg to fill in fields of the message header of the new message.

The IPM Manager uses the information you provide in the recipient field to
determine where to send the message and returns any delivery or nondelivery reports to
the queue that you specify in the replyQueue field. If you do not know the recipient at
the time you call IPMNewMsg function, or if you have more than one recipient, you can
use the IPMAddRecipient function to provide the recipients. If you do not know the
reply queue at the time you call the IPMNewMsg function, you can use the
IPMAddReplyQueue function to add the reply queue later.

If the recipient or replyQueue fields specify a record in a PowerShare catalog, the
IPM Manager looks up the catalog records at the time it sends the message.

Note
Because the PowerShare server acts as a trusted agent when resolving
addresses in catalogs, the sender of the message need not have the
access privileges necessary to read these addresses. ◆

The IPM Manager uses any specific identity you provide in the identity field to fill in
the sender field in the message header. If the IPM Manager and each intervening
store-and-forward server can authenticate the message, the recipient can then rely on the
sender field to indicate the authenticated originator of the message. If you specify 0 or a
local identity for the identity field, then you should provide a meaningful value for
the sender field, such as the name of the originator of the message.
IPM Manager Reference 7-45

C H A P T E R 7

Interprogram Messaging Manager
Note
If you specify either a local identity or 0 for the identity field, the IPM
Manager stores the message on the local computer until transmitting it.
If you provide a specific identity, the IPM Manager creates the message
on the computer containing the PowerShare server to which that
identity provides access. ◆

You can use the SDPPromptForIdentity function to obtain an identity for the
originator of the message. This function allows the user to decide whether to provide a
local identity, a specific identity, or no identity (guest access). The
SDPPromptForIdentity function returns to your application the identity plus a value
that tells you which kind of identity it is. To obtain a local identity without displaying a
dialog box, use the AuthGetLocalIdentity function.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “Message Addressing Structures” on page 7-24 for more detailed information about
the format and contents of an OCERecipient structure.

The IPMSender structure is described on page 7-39.

You can use the IPMAddRecipient function (page 7-50) to add recipient addresses to a
message.

You can use the IPMAddReplyQueue function (page 7-52) to specify the reply queue.

Trap macro Selector

_oceTBDispatch $0402

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidProcHint –15092 Process hint is invalid
kIPMMsgTypeReserved –15095 Message type reserved for system use
kIPMNestedMsgOpened –15097 Nested message opened; cannot do

operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be

message
kIPMCorruptDataStructures –15099 Message is corrupt
kIPMInvalidSender –15103 Sender is invalid
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
7-46 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
See “Message and Block Types” on page 7-26 for more information about the
IPMMsgType structure.

The RString structure and record IDs are described in the chapter “Introduction to the
Apple Open Collaboration Environment” in this book.

You can use the SDPPromptForIdentity function to obtain an identity. That function
is described in the chapter “Standard Catalog Package” in this book. You can use the
AuthGetLocalIdentity function to obtain a local identity. See the chapter
“Authentication Manager” in this book for a description of the
AuthGetLocalIdentity function.

Use the IPMNewHFSMsg function, described next, to start a message to be saved on disk.

IPMNewHFSMsg 7

The IPMNewHFSMsg function starts the process of creating a new message to be saved as
an HFS file on disk.

pascal OSErr IPMNewHFSMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ hfsPath FSSpec* Specifier of the file in which to save

the message.
→ recipient OCERecipient* Pointer to the recipient’s queue

address.
→ replyQueue OCERecipient* Pointer to the queue address for

message replies.
→ procHint StringPtr Pointer to a character string for your

use.
→ msgType IPMMsgType* Pointer to the message type.
→ refCon unsigned long Reserved for your use.
← newMsgRef IPMMsgRef Message reference number.
→ identity AuthIdentity Authentication identity.
→ sender IPMSender* Pointer to the sender’s name.
IPM Manager Reference 7-47

C H A P T E R 7

Interprogram Messaging Manager
Field descriptions

hfsPath A pointer to the file system specification structure that describes the
file in which you wish to save the message.

recipient A pointer to an OCERecipient structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.
Set this field to nil if you intend to use the IPMAddRecipient
function to add all the recipient addresses later.

replyQueue A pointer to an OCERecipient structure that specifies the queue in
which you receive your incoming messages. The OCERecipient
structure can specify the reply queue directly, or can specify a
record in a catalog that contains the reply queue information.
Set this field to nil if you intend to use the IPMAddReplyQueue
function to specify the reply queue later.

procHint A pointer to a process hint, which is a string of up to 32 characters,
reserved for your use. The IPM Manager puts this string into the
message header. You can use this field, for example, to provide
information that helps your recipients determine how to process the
message.

msgType A pointer to an IPMMsgType structure, which specifies the type of
message that you are creating. The IPM Manager and other AOCE
components do not read the message type; it is for the use of
applications only.

refCon An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the message header. You can use this
field, for example, to indicate that the message has content of some
particular type.

newMsgRef A reference number returned by the function. You must use this
number when you call other functions to complete the process of
creating the message.

identity The authentication identity of the creator of the message. If you
provide a nonzero value for this field, the IPM Manager uses this
information to fill in the sender field in the message header.

sender A pointer to an IPMSender structure, which identifies the sender of
the message. If you specify 0 or a local identity for the identity
field, you should provide a meaningful value for the sender. For an
application-to-application message, you might use the application
name as the sender. To specify an individual as a sender, you can
put the user’s name in the IPMSender structure or you can provide
the record ID of the sender’s user record. If you specify a specific
identity value for the identity field, the function ignores the
sender field.
7-48 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
DESCRIPTION

You must call the IPMNewHFSMsg function to begin the process of creating a new
message that is to be saved to a file on disk. (Use the IPMNewMsg function to start a
message to be sent to a recipient.) The IPM Manager fills in fields of the message header
of the new message from information that you provide in the parameter block of the
IPMNewHFSMsg function.

The IPM Manager uses any specific identity you provide in the identity field to fill in
the sender field in the message header. If you specify 0 or a local identity for the
identity field, then you should provide a meaningful value for the sender field, such
as the name of the originator of the message.

Note
The IPM Manager does not provide any way to send a message that has
been saved on disk. If you want to send a message and in addition save
it to disk, you must build the message twice, once using the
IPMNewHFSMsg function and once using the IPMNewMsg function. ◆

You can use the SDPPromptForIdentity function to obtain an identity for the
originator of the message. This function allows the user to decide whether to provide a
local identity, a specific identity, or no identity (guest access). The
SDPPromptForIdentity function returns to your application the identity plus a value
that tells you which kind of identity it is. To obtain a local identity without displaying a
dialog box, use the AuthGetLocalIdentity function.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “Message Addressing Structures” on page 7-24 for more detailed information about
the format and contents of an OCERecipient structure.

The IPMSender structure is described on page 7-39.

You can use the IPMAddRecipient function (page 7-50) to add recipient addresses to a
message.

Trap macro Selector

_oceTBDispatch $041E

noErr 0 No error
kOCEParamErr –50 Invalid parameter
IPM Manager Reference 7-49

C H A P T E R 7

Interprogram Messaging Manager
You can use the IPMAddReplyQueue function (page 7-52) to specify the reply queue.

See “Message and Block Types” on page 7-26 for more information about the
IPMMsgType structure.

The RString structure and record IDs are described in the chapter “Introduction to the
Apple Open Collaboration Environment” in this book.

You can use the SDPPromptForIdentity function to obtain an identity. That function
is described in the chapter “Standard Catalog Package” in this book. You can use the
AuthGetLocalIdentity function to obtain a local identity. See the chapter
“Authentication Manager” in this book for a description of the
AuthGetLocalIdentity function.

Use the IPMNewMsg function (page 7-43) to start a message to be sent.

IPMAddRecipient 7

The IPMAddRecipient function adds a recipient to a new message that you are
creating.

pascal OSErr IPMAddRecipient(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Parameter block

Field descriptions

msgRef The message reference number of the message or nested-message
block to which you want to add a recipient. This number is returned
by the IPMNewMsg function for a message you intend to send, by
the IPMNewHFSMsg function for a message you intend to save to
disk, and by the IPMNewNestedMsgBlock function for a
nested-message block.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ recipient OCERecipient* Pointer to the recipient’s queue

address.
7-50 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
recipient A pointer to an OCERecipient structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.

DESCRIPTION

You can call the IPMAddRecipient function at any time during the message-creation
process to add a recipient to the message. You repeat this call for each recipient that you
add to the message (except for recipients that belong to a group; see “Message
Addressing Structures” on page 7-24). You can add only one recipient to a message when
you call the IPMNewMsg or IPMNewHFSMsg function; if you want to add more than one
recipient to a message, you must call the IPMAddRecipient function.

When you call the IPMAddRecipient function for a new message, the function adds
the specified recipient to the message header. If you are working with a nested message,
the function adds the recipient to the header of the nested message.

If the recipient parameter specifies a record in a catalog, the IPMAddRecipient
function does not look up the address of the recipient in the catalog. The IPM Manager
looks up catalog records when you send the message.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “Message Addressing Structures” on page 7-24 for more detailed information about
the format and contents of an OCERecipient structure.

Trap macro Selector

_oceTBDispatch $0403

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMCorruptDataStructures –15099 Message is corrupt
IPM Manager Reference 7-51

C H A P T E R 7

Interprogram Messaging Manager
IPMAddReplyQueue 7

The IPMAddReplyQueue function adds the reply queue to the header of a new message
that you are creating.

pascal OSErr IPMAddReplyQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message or nested-message
block to which you want to add the reply queue. This number is
returned by the IPMNewMsg function for a message you intend to
send, by the IPMNewHFSMsg function for a message you intend to
save to disk, and by the IPMNewNestedMsgBlock function for a
nested-message block.

replyQueue A pointer to an OCERecipient structure that specifies the queue in
which you receive your incoming messages. The OCERecipient
structure can specify the reply queue directly or specify a record in
a catalog that contains the reply queue information.
If you specify nil for this field and specified a local identity for the
identity field in the IPMNewMsg function, the IPM Manager uses
the PowerTalk Setup catalog to fill in the reply queue field in the
message header at the time the message is sent.

DESCRIPTION

You can call the IPMAddReplyQueue function at any time during the message-creation
process. When you call the IPMAddRecipient function for a new message, the function
adds the specified reply queue to the message header. If you are working with a nested
message, the function adds the reply queue to the header of the nested message.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ replyQueue OCERecipient* Pointer to the queue address for

message replies.
7-52 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Each message or nested message has only one reply queue. If you have already specified
a reply queue for the message that you specify in the msgRef field, the
IPMAddReplyQueue function returns the kOCEParamErr result code.

If the replyQueue parameter specifies a record in a catalog, the IPMAddRecipient
function does not look up the address of the reply queue in the catalog. The IPM
Manager resolves addresses in catalog records at the time a message is sent.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “Message Addressing Structures” on page 7-24 for more detailed information about
the format and contents of an OCERecipient structure.

IPMNewBlock 7

The IPMNewBlock function creates a new block at the end of the message or nested
message that you are currently recording and returns the offset to its starting point.

pascal OSErr IPMNewBlock(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Trap macro Selector

_oceTBDispatch $041D

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMCorruptDataStructures –15099 Message is corrupt
IPM Manager Reference 7-53

C H A P T E R 7

Interprogram Messaging Manager
Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message or nested message to
which you want to add the block. This number is returned by the
IPMNewMsg function for a message you intend to send, by the
IPMNewHFSMsg function for a message you intend to save to disk,
and by the IPMNewNestedMsgBlock function for a nested
message.

blockType A pointer to an IPMBlockType data type that specifies the type of
block that you are adding to the message.

refCon An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the TOC field of the message header.
You can use this field, for example, to identify block subtypes for
your own use.

startingOffset
The offset, in bytes, from the start of the message body to the start
of the new block. This value is returned by the function. You can use
this offset as a starting point when you call the IPMWriteMsg
function to add data to the block.

DESCRIPTION

You can call the IPMNewBlock function at any time during the message-creation process
to create a new message block.

The IPMNewBlock function creates the new block at the end of the message, records the
offset to the new block, and then returns the offset to you. You can use this value to
determine the offset to provide to the IPMWriteMsg function when you add data to the
block or overwrite data in the block.

Note
The IPM Manager does not allow you to modify the starting point of a
block. When you call the IPMNewBlock function to create a new block,
you freeze the size of the previous block. You can use the IPMWriteMsg
function to overwrite data in an existing block, but if you try to write
more data than was originally in the block, you write over the block
boundary into the following block. ◆

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ blockType IPMBlockType Type of block you are adding.
→ refCon unsigned long Reserved for your use.
← startingOffset long Offset to new block.
7-54 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
A nested message is contained entirely within a single block of the enclosing message
and has exactly the same structure as any other message (see Figure 7-2 on page 7-5).
Once you have called the IPMNewNestedMsgBlock function to start a nested message,
you must call the IPMEndMsg function to end the nested message before adding another
block to the outer message. If you specify the message reference of an outer message
before completing a nested message, the IPMNewBlock function returns the
kIPMNestedMsgOpened result code.

SPECIAL CONSIDERATIONS

If you specify kIPMSignature as the creator of the block in the IPMBlockType data
type, the function returns the kIPMMsgTypeReserved result code.

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMBlockType data type is defined on page 7-28.

You start a new message by calling the IPMNewMsg function (page 7-43) or the
IPMNewHFSMsg function (page 7-47). You start a new nested message by calling the
IPMNewNestedMsgBlock function (next).

You can use the IPMWriteMsg function (page 7-61) to add data to the block.

Trap macro Selector

_oceTBDispatch $0404

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMMsgTypeReserved –15095 The blockType parameter specifies

a block type reserved for system use
kIPMNestedMsgOpened –15097 The message reference in the msgRef

parameter specifies an outer
message, but nested message is not
yet closed

kIPMCorruptDataStructures –15099 Message is corrupt
IPM Manager Reference 7-55

C H A P T E R 7

Interprogram Messaging Manager
IPMNewNestedMsgBlock 7

The IPMNewNestedMsgBlock function starts a new nested message from information
that you provide to the function. Use this function to begin recording a new nested
message that you create from scratch.

pascal OSErr IPMNewNestedMsgBlock(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message or nested message
into which you want to insert the new nested message. This number
is returned by the IPMNewMsg function for a message you intend to
send, by the IPMNewHFSMsg function for a message you intend to
save to disk, and by the IPMNewNestedMsgBlock function for a
nested message.

recipient A pointer to an OCERecipient structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.
Set this field to nil if you intend to use the IPMAddRecipient
function to add all the recipient addresses later.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ recipient OCERecipient* Pointer to the recipient’s queue

address.
→ replyQueue OCERecipient* Pointer to the queue address for

message replies.
→ procHint StringPtr Pointer to character string for your

use.
→ msgType IPMMsgType* Pointer to the message type.
→ refCon unsigned long Reserved for your use.
← newMsgRef IPMMsgRef Message reference number.
← startingOffset long Offset to the start of the nested

message.
→ identity AuthIdentity Authentication identity.
→ sender IPMSender* Pointer to sender’s name.
7-56 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
replyQueue A pointer to an OCERecipient structure that specifies the queue in
which you receive your incoming message reports. In most cases,
you have only one message queue.
Set this field to nil if you intend to use the IPMAddReplyQueue
function to specify the reply queue later.

procHint A pointer to a process hint, which is a string of up to 32 characters,
reserved for your use. The IPM Manager puts this string into the
nested-message header. You can use this field, for example, to
provide information that helps your recipients determine how to
process the nested message.

msgType A pointer to an IPMMsgType structure, which specifies the type of
nested message that you are creating. This value is application
dependent and is not read by any AOCE component.

refCon An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the nested-message header.

newMsgRef A reference number returned by the function. You must use this
number when you call the IPMAddRecipient,
IPMAddReplyQueue, IPMNewBlock, IPMWriteMsg,
IPMNestMsg, IPMNewNestedMsgBlock, and IPMEndMsg
functions to complete the process of creating this nested message.

startingOffset
The offset in bytes to the start of the new nested-message block
from the start of the enclosing message body. This value is returned
by the function.

identity The authentication identity of the creator of the message. If you
provide a nonzero value for this field, the IPM Manager uses this
information to fill in the sender field in the message header.

sender A pointer to an IPMSender structure, which identifies the sender of
the message. If you specify 0 or a local identity for the identity
field, you should provide a meaningful value for the sender. For an
application-to-application message, you might use the application
name as the sender. To specify an individual as a sender, you can
put the user’s name in the IPMSender structure or you can provide
the record ID of the sender’s user record. If you specify a specific
identity in the identity field, the function ignores the sender
field.

DESCRIPTION

You can call the IPMNewNestedMsgBlock function at any time during the
message-creation process to start a new nested message.

The IPMNewNestedMsgBlock function first creates a new block at the end of the
message. The msgCreator field of the block type of the new block is equal to the
constant kIPMSignature and the msgType field is equal to kIPMEnclosedMsgType.
The IPMNewNestedMsgBlock function then fills in fields of the message header of the
new nested message from information that you provide in the parameter block of the
IPMNewNestedMsgBlock function.
IPM Manager Reference 7-57

C H A P T E R 7

Interprogram Messaging Manager
Note that, because the header of the nested message is located within a block of the
enclosing message, the IPM Manager does not read the nested-message header and so
does not use the information in its message-delivery process.

The IPM Manager uses any specific identity you provide in the identity field to fill in
the sender field in the message header. If you specify 0 or a local identity for the
identity field, then you should provide a meaningful value for the sender field, such
as the name of the originator of the message.

After you call the IPMNewNestedMsgBlock function to start a nested message, you can
call the IPMNewBlock function to add a new block to the nested message, the
IPMNewNestedMsgBlock function to nest another message within the nested message,
or any of the functions that add information to the message header or to the body of the
message. When you call any of these functions, you must pass the message reference
value returned by the IPMNewNestedMsgBlock function.

You must call the IPMEndMsg function to complete the nested message before you can
add any more information to the enclosing message. After you call the IPMEndMsg
function to end the nested message, you cannot add any recipients or blocks to the
nested message.

SPECIAL CONSIDERATIONS

Although the IPM Manager allows you to add any number of nested-message blocks at
the same nesting level in a message, the MSAM interface does not support this feature.
Therefore, if you want your message to be compatible with MSAMs, you must not add
more than one nested-message block at a given level of nesting. You can, however, nest a
message within another nested message to as many nesting levels as disk and memory
resources allow.

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_oceTBDispatch $0405

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidProcHint –15092 Process hint is invalid
kIPMCorruptDataStructures –15099 Message is corrupt
kIPMInvalidSender –15103 Sender is invalid
7-58 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
SEE ALSO

See “Message Addressing Structures” on page 7-24 for more detailed information about
the format and contents of an OCERecipient structure.

The IPMSender structure is described in “Sender Structure” on page 7-39.

You can use the IPMAddRecipient function (page 7-50) to add recipient addresses to a
message.

You can use the IPMAddReplyQueue function (page 7-52) to specify the reply queue.

See “Message and Block Types” on page 7-26 for more information about the
IPMMsgType structure.

IPMNestMsg 7

The IPMNestMsg function creates a new block at the end of the specified new message
and stores the existing message that you specify into the new block.

pascal OSErr IPMNestMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message to which you want to
add a nested message. This number is returned by the IPMNewMsg
function for a message you intend to send, by the IPMNewHFSMsg
function for a message you intend to save to disk, and by the
IPMNewNestedMsgBlock function for a nested message.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ refCon unsigned long Reserved for your use.
→ msgToNest IPMMsgRef Message reference number of the

message to nest.
← startingOffset long Offset to the start of the nested

message.
IPM Manager Reference 7-59

C H A P T E R 7

Interprogram Messaging Manager
refCon An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the nested-message header.

msgToNest This parameter contains the message reference number of an
existing message that you want to nest within the message that you
specify in the msgRef field. This number is returned by the
IPMOpenMsg function for a message you have read, by the
IPMOpenHFSMsg function for a message you have read from disk,
or by the IPMOpenBlockAsMsg for a nested message.

startingOffset
The offset, in bytes, to the start of the new nested-message block
from the start of the body of the enclosing message. You can use this
value if you want to create your own table of contents for a message
you are creating.

DESCRIPTION

You can call the IPMNestMsg function at any time during the message-creation process.
The IPMNestMsg function adds an existing message as a nested message at the end of
the message that you specify in the msgRef field. Before you call the IPMNestMsg
function, you must use the IPMOpenMsg, IPMOpenHFSMsg, or IPMOpenBlockAsMsg
function to open the message to be nested.

The IPMNestMsg function first creates a new block at the end of the message. The
msgCreator field of the block type of the new block is equal to the constant
kIPMSignature and the msgType field is equal to kIPMEnclMsgType. The function
then writes the specified message into the new block.

The IPMNestMsg function returns, in the startingOffset parameter, the offset to the
start of the new block. The function provides this offset for your information only. You
should not call IPMWriteMsg to make changes to this nested message.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0406
7-60 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
RESULT CODES

SEE ALSO

See “Message and Block Types” on page 7-26 for more information about the
IPMMsgType structure.

You can obtain a message reference number from the IPMOpenMsg function (page 7-82),
the IPMOpenHFSMsg function (page 7-84), or the IPMOpenBlockAsMsg (page 7-86).

IPMWriteMsg 7

The IPMWriteMsg function writes data to the specified location within the body of a
message.

pascal OSErr IPMWriteMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidProcHint –15092 Process hint is invalid
kIPMMsgTypeReserved –15095 Message type reserved for system use
kIPMNestedMsgOpened –15097 Nested message opened; cannot do

operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be

message
kIPMCorruptDataStructures –15099 Message is corrupt
kIPMInvalidSender –15103 Sender is invalid
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
IPM Manager Reference 7-61

C H A P T E R 7

Interprogram Messaging Manager
Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message or nested message to
which you want to write. This number is returned by the
IPMNewMsg function for a message you intend to send, by the
IPMNewHFSMsg function for a message you intend to save to disk,
and by the IPMNewNestedMsgBlock function for a nested
message.

mode The mode in which the offset parameter is to be interpreted. The
function uses this field to determine whether to begin writing data
at the end of the last data written or to use the offset value to
calculate another starting point relative to the beginning of the
message, the end of the message, or the current location. See the
discussion following these field descriptions for details.

offset An offset that the function uses when it calculates the starting point
of the write operation. See the following discussion for details.

count The number of bytes of data that you want the function to write
from the buffer into the message.

buffer A pointer to your data buffer.
actualCount The number of bytes of data the function actually wrote into the

message.
currentBlock A Boolean value that specifies whether you want the entire write

operation to occur within the current block. The current block is
always the last block to be added to the message. If you set this field
to true but the values you specify for the mode and offset fields
require the function to write data into another block, the function
cancels the write operation and returns the kIPMInvalidOffset
result code.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ mode IPMAccessMode The mode in which the function

interprets the offset value.
→ offset long Offset at which to begin writing.
→ count unsigned long Number of bytes of data to write.
→ buffer Ptr Pointer to the data buffer.
← actualCount unsigned long Number of bytes of data written.
→ currentBlock Boolean Set to true to restrict writing to the

current block.
7-62 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
DESCRIPTION

The IPM Manager uses a marker (referred to as the message mark) that points to the
current location within a message that you are creating. After the IPMNewBlock
function completes, the message mark points to the first byte in the new block. After the
IPMWriteMsg function completes, the mark points to the end of the last byte written.

Note
The way you use the message mark, mode, and offset to read and write
messages is similar to the way you use the file mark, positioning mode,
and positioning offset to read and write files. See Inside Macintosh: Files
for more information about how the File Manager treats these
parameters. ◆

You use the mode and offset parameters to specify the point in the message at which
the IPMWriteMsg function starts writing. The mode parameter indicates whether you
want the IPMWriteMsg function to begin writing at the current position of the mark or
to calculate another starting point relative to the beginning of the message, the end of the
message, or the current mark location. (In the case of a nested message, offsets are
relative to the start or end of the nested message, not the enclosing message.) You can set
the mode parameter to any one of the following values:

enum {

kIPMAtMark,

kIPMFromStart,

kIPMFromLEOM,

kIPMFromMark

};

Constant descriptions

kIPMAtMark The IPMWriteMsg function starts writing at the current position of
the mark. In this case, the function ignores the offset value. This
mode is useful, for example, for writing data in sequence into a new
block.

kIPMFromStart If the currentBlock parameter is set to true, the function
interprets the value in the offset parameter as an offset from the
beginning of the current block. If the currentBlock parameter is
set to false, the function interprets the value in the offset
parameter as an offset from the beginning of the message body. If
you want to start writing at the beginning of the second block in the
message, for example, you can set currentBlock to false and
use the offset that the IPMNewBlock function returned when you
created the second block. When you use this mode, you cannot set
the offset parameter to a negative value.

kIPMFromLEOM The function interprets the value in the offset parameter as an
offset from the current end of the message.
IPM Manager Reference 7-63

C H A P T E R 7

Interprogram Messaging Manager
kIPMFromMark The function interprets the value in the offset parameter as an
offset from the current position of the mark. Use a negative offset
value to indicate a starting point prior to the current position of the
mark and a positive offset value to indicate a starting point
following the current position of the mark.

If the mark is at the end of the last block, the function extends the end of the block and
the end of the message as it writes data into the block.

Note
If you use a positive offset to position the mark past the current end of
the message, the function extends the end of the message and writes the
data in the location you requested. In this case, you incorporate into the
message whatever happened to be on disk between the previous end of
the message and the location at which you start writing. ◆

If you set the currentBlock parameter to true, the IPMWriteMsg function returns an
error rather than starting to write in a block other than the last block to be added to the
message.

Note that the IPM Manager places the offset to each block in the message header when
you first create the block. You cannot change this information in the message header
after the block is created. Therefore, when you call the IPMNewBlock function to create
a new block, you freeze the size of the previous block. You can use the IPMWriteMsg
function to write over data in an existing block, but you cannot change the size of the
block. If you write too much data to fit in an existing block, the function writes over
the block boundary into the following block.

When you call the IPMWriteMsg function, it first calculates the starting position of the
write request. The function then checks the value of the currentBlock parameter to
determine if it is in conflict with the starting position. That is, if you set currentBlock
to true and specify a write location that falls in another block of the message, the
IPMWriteMsg function returns the kIPMInvalidOffset error.

If the currentBlock setting is not in conflict with the specified starting position, the
function writes the data from the buffer into the message and returns, in the
actualCount field, the number of bytes written.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0407
7-64 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
RESULT CODES

SEE ALSO

The IPMNewMsg function (page 7-43), the IPMNewHFSMsg function (page 7-47), and the
IPMNewNestedMsgBlock function (page 7-56) all return message reference numbers.

The IPMNewBlock function (page 7-53) and the IPMNewNestedMsgBlock function
(page 7-56) return the offset to the start of a new block.

IPMEndMsg 7

The IPMEndMsg function ends the message-creation process for the message or nested
message that you specify. It can also provide a digital signature for the message.

pascal OSErr IPMEndMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMNotInABlock –15096 The specified starting point does not fall

within the body of the message
kIPMNestedMsgOpened –15097 The message reference in the msgRef

parameter specifies an outer message, but
nested message is not yet closed

kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
← msgID IPMMsgID Message ID.
→ msgTitle RString* Message title.
→ deliveryNotification IPMNotificationType Delivery report specifier.
→ priority IPMPriority Message priority.
→ cancel Boolean Cancel the message?
→ signature SIGSignaturePtr Pointer to a digital signature.
→ signatureSize Size Size of the digital signature.
→ signatureContext SIGContextPtr Pointer to digital signature

context.
IPM Manager Reference 7-65

C H A P T E R 7

Interprogram Messaging Manager
See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message or nested message
that you want to complete. This number is returned by the
IPMNewMsg function for a message you intend to send, by the
IPMNewHFSMsg function for a message you intend to save to disk,
and by the IPMNewNestedMsgBlock function for a nested
message.

msgID The message ID, a unique identifier assigned to the message by the
IPM Manager. You can use this value to identify a message.

msgTitle The message title. Because the Finder displays this title for the user
for any message in the Out Tray, the message title should reflect the
subject, contents, or purpose of the message. The maximum size of
this title is 32 bytes (that is, an RString32 structure).

deliveryNotification
The types of delivery reports you want to receive. See “Delivery
Notification,” beginning on page 7-28, for more information about
this value.

priority The priority of the message. Set this parameter to any one of the
following values: kIPMNormalPriority, kIPMLowPriority, or
kIPMHighPriority.

cancel A Boolean value that specifies whether to cancel the message. Set
this field to true to cancel the message or to false to send the
message. If the IPMEndMsg function applies to a nested message,
the function ignores the value of this field.

signature A pointer to a digital signature. You must allocate a buffer for the
signature and pass a pointer to it in this field. If you specify nil for
the signatureContext field, the function ignores the signature
field. See the following discussion for more information about
digital signatures.

signatureSize The size of the digital signature. This value is returned by the
SIGSignPrepare function.

signatureContext
A pointer to the signature context you obtained from the
SIGNewContext function and provided to the SIGSignPrepare
function. Specify nil for this pointer if you do not want a digital
signature added to the message.

DESCRIPTION

When you call the IPMEndMsg function, it checks the setting of the cancel parameter to
see if you are canceling the message. If so, the function destroys the message. Otherwise,
the function completes the message-creation process for the specified message. If the
message reference number you specify applies to a nested-message block, the IPM
Manager ends the nested-message block and applies any subsequent functions that you
call to the enclosing message. The enclosing message can be another nested message or
7-66 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
the top-level message (that is, the message you started with the IPMNewMsg or
IPMNewHFSMsg function). To completely finish the message-creation process, you must
call the IPMEndMsg function once for each nested message and once for the top-level
message.

IMPORTANT

You cannot close an enclosing message until any messages nested within
it have been closed. ▲

Once you have called the IPMEndMsg function to close the top-level message, you
cannot make any more changes to the message. If you created the message with the
IPMNewHFSMsg function, the IPM Manager saves the message to the disk file you
specified when you called the IPMNewHFSMsg function. If you created the message with
the IPMNewMsg function, the IPM Manager sends the message to each recipient and
generates any requested reports.

The IPM Manager uses the value of the deliveryNotification parameter to
determine when to generate report messages and whether to include the original
message in any reply messages that are returned by the recipients.

If you want to add a digital signature to the message, you must call the
SIGNewContext and SIGSignPrepare functions before you call the IPMEndMsg
function. You can then allocate a buffer for the signature, or specify nil for the
signature parameter, in which case the Digital Signature Manager allocates the buffer
for you on your application heap. The size needed for the buffer is returned by the
SIGSignPrepare function. Pass a pointer to the buffer in the signature parameter to
the IPMEndMsg function, the size of the buffer in the signatureSize parameter, and a
pointer to the signature context (returned by the SIGNewContext function) in the
signatureContext parameter.

Note
If you are adding a digital signature to a large message, the IPMEndMsg
function can take a long time to complete (up to several minutes on
some computers). You should display a dialog box informing the user of
this possibility. ◆

The IPMEndMsg function places the signature in a block with a creator of
kIPMSignature and a type of kIPMDigitalSignature. A message can contain only
one block of this type, and you must use the IPMEndMsg function to create this block.

Note
The signature context used to create a digital signature has no
relationship to the contexts discussed in “Managing Message Queues”
starting on page 7-68 and elsewhere in this chapter. ◆

SPECIAL CONSIDERATIONS

If you want to add a digital signature to the message (that is, you pass a non-nil value
for the signatureContext parameter), you must call the IPMEndMsg function
synchronously. There must also be at least 8.5 KB of stack space available.
IPM Manager Reference 7-67

C H A P T E R 7

Interprogram Messaging Manager
If you pass nil for the signatureContext parameter, there must be enough space in
your application heap to hold the signature.

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You start creating a message with the IPMNewMsg function (page 7-43) or the
IPMNewHFSMsg function (page 7-47), and start a nested-message block with the
IPMNewNestedMsgBlock function (page 7-56).

See “Delivery Notification,” beginning on page 7-28, for more information about the
delivery notification flag byte.

Digital signatures and the SIGNewContext and SIGSignPrepare functions are
discussed in the chapter “Digital Signature Manager” in this book.

Managing Message Queues 7

You can create any number of local input message queues for your own use. This section
describes the functions you can use to create input message queues, open queues,
enumerate their contents, and close them.

Trap macro Selector

_oceTBDispatch $0408

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMNestedMsgOpened –15097 The message reference in the msgRef

parameter specifies an outer
message, but nested message is not
yet closed

kIPMA1HdrCorrupt –15098 Message is corrupt; may not be
message

kIPMCorruptDataStructures –15099 Message is corrupt
kIPMAbortOfNestedMsg –15100 Adding nested message was canceled
kIPMInvalidSender –15103 Sender is invalid
kIPMNoRecipientsYet –15104 Require recipient to send
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
7-68 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
IPMCreateQueue 7

The IPMCreateQueue function creates a physical queue at the specified location.

pascal OSErr IPMCreateQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

queue A pointer to an OCERecipient structure that specifies the name
and location of the new queue. You must use the queue-name form
of the OCERecipient structure for this field.

identity The authentication identity of the creator of the queue. If you are
creating the queue on a server computer, the messaging server uses
this identity to verify that you have the privileges necessary to
create a queue. Only the administrator of that server can create
queues.
The function ignores this field if you specify the local computer as
the location of the new queue.

owner A pointer to the packed record ID of the owner of the queue. If you
are creating a queue on a remote computer, you must specify an
owner of the queue in this field. Only the creator of the queue and
the owner of the queue can open or delete the queue.
The function ignores this field if you specify the local computer as
the location of the new queue.

DESCRIPTION

You can create a new queue at any time. You can create a queue on the local computer or
on a server computer.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queue OCERecipient* Name and location of the new

queue.
→ identity AuthIdentity Authentication identity.
→ owner PackedRecordID* Owner of the queue.
IPM Manager Reference 7-69

C H A P T E R 7

Interprogram Messaging Manager
IMPORTANT

You should use restraint in creating queues because the IPM Manager
provides no interface for listing and managing queues. Also, each queue
uses memory and disk resources. ▲

Once you have used the IPMCreateQueue function to create a physical queue, you
must open one or more virtual queues to list and open the messages in the queue. Use
the IPMOpenQueue function to open a virtual queue.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

“Message Addressing Structures” on page 7-24 defines the OCERecipient structure.
The queue-name form of this structure is described in “Queue-Name Format for
Attribute Values” on page 7-16.

You must use the IPMOpenQueue function (page 7-72) to open a queue before you can
open the messages in the queue. You must have an open queue context before you can
open a queue; use the IPMOpenContext function, described next, to open a context.

IPMOpenContext 7

The IPMOpenContext function creates a new queue context.

pascal OSErr IPMOpenContext(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

Trap macro Selector

_oceTBDispatch $0411

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMBadQName –15112 Invalid queue name
7-70 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

contextRef The context reference number for the new context. You must use
this number when opening a queue or closing the context.

DESCRIPTION

You must specify a context reference number when you open a virtual queue. You must
specify a virtual-queue reference number when you open a message. When you close a
context, the IPM Manager closes all of the virtual queues that belong to that context and
all of the open messages that belong to those queues. You can create as many contexts as
you wish; in any case, you must call the IPMOpenContext function at least once to
obtain a context reference number before you can open any queues.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the IPMOpenQueue function, discussed next, to open a virtual queue and add it to a
context.

Use the IPMCloseContext function (page 7-77) to close all the virtual queues and open
messages associated with a context.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
← contextRef IPMContextRef Context reference number.

Trap macro Selector

_oceTBDispatch $0400

noErr 0 No error
kOCEParamErr –50 Invalid parameter
IPM Manager Reference 7-71

C H A P T E R 7

Interprogram Messaging Manager
IPMOpenQueue 7

The IPMOpenQueue function opens the specified queue and associates it with the
specified context.

pascal OSErr IPMOpenQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

contextRef A context reference number. When you close the context specified
by this reference number, the IPM Manager closes all of the virtual
queues that you opened using this reference number.

queue A pointer to an OCERecipient structure that specifies the name
and location of the queue that you want to open. To open a user’s
default messaging queue, just specify the user record of that user. To
open a queue that you created, use the same OCERecipient
structure that you used to create the queue.

identity The authentication identity of the opener of the queue. If the
physical queue is on a server computer, only the server
administrator and the owner of the physical queue can open a new
virtual queue.

filter A pointer to the message filter for this virtual queue.
Set this field to nil if you do not want the IPM Manager to
associate any filter with this queue.

→ ioCompletion ProcPtr Pointer to a completion
routine.

← ioResult OSErr Result of the function.
→ contextRef IPMContextRef Context reference number.
→ queue OCERecipient* Queue that you want to open.
→ identity AuthIdentity Authentication identity.
→ filter IPMFilter* Pointer to the queue filter.
← newQueueRef IPMQueueRef Virtual-queue reference

number.
→ notificationProc IPMNoteProcPtr Reserved; set to nil.
7-72 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
newQueueRef The reference number for the queue. You must use this reference
number when you change the queue filter or list, open, close, or
delete messages.

notificationProc
Reserved. You must set this field to nil.

DESCRIPTION

The IPMOpenQueue function opens the message queue you specify, creating a virtual
queue with the message filter you provide. The function returns a reference number that
uniquely identifies this virtual queue. When you call this function, you must specify a
message-context reference number. The context links together several queues so that you
can simultaneously close them simply by closing the context. If you have not already
created the message context to which you want this queue to belong, you must call the
IPMOpenContext function before calling the IPMOpenQueue function. You can open
the same physical queue any number of times, creating a new virtual queue each time.

You specify a virtual-queue reference number whenever you list or open messages. Once
you have opened a message, you must provide the same queue reference number when
you call the IPMCloseMsg function or the IPMCloseQueue function. If you call the
IPMCloseQueue function, the IPM Manager simultaneously closes all the messages that
you opened with that queue reference number. If you call the IPMCloseContext
function, the IPM Manager simultaneously closes all the messages associated with all the
queues that belong to that context, and closes all of those queues.

The message filter determines which messages in the physical queue are listed by the
IPMEnumerateQueue function when you provide the reference number for this virtual
queue, which messages you can open through the queue, and which messages you can
close and delete through the queue. For example, you can open a virtual queue for the
default input queue with a filter that passes only high-priority messages. Then, when
you call the IPMOpenMsg function with that queue reference number, the function
allows you to open only the high-priority messages in the default input queue. If you do
not provide a filter for the queue, these functions operate on all the messages in the
physical queue.

SPECIAL CONSIDERATIONS

Although you allocate the pointer to the queue filter, the IPM Manager owns the pointer
until you close the queue or call the IPMChangeQueueFilter function to replace the
filter. Do not reuse or dispose of this pointer until you close the queue or replace the filter.

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.
IPM Manager Reference 7-73

C H A P T E R 7

Interprogram Messaging Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To create a new queue before opening it, use the IPMCreateQueue function (page 7-69).

You can change the queue filter by calling the IPMChangeQueueFilter function,
described next. See “Filter Structures” on page 7-34 for information on queue filters.

Call the IPMCloseQueue function (page 7-76) to close a virtual queue.

IPMChangeQueueFilter 7

The IPMChangeQueueFilter function sets a new filter for a specific virtual queue.

pascal OSErr IPMChangeQueueFilter(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Trap macro Selector

_oceTBDispatch $0409

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidFilter –15105 The specified filter is invalid
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
kIPMBadQName –15112 Invalid queue name
kIPMBadContext –15118 Invalid context reference
kIPMContextIsClosing –15119 The specified context is closing

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queueRef IPMQueueRef Virtual-queue reference number.
↔ filter IPMFilter* Pointer to the queue filter.
7-74 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Field descriptions

queueRef The virtual-queue reference number returned by the
IPMOpenQueue function. This number identifies the virtual queue
to which the request applies.

filter A pointer to an IPMFilter structure that specifies the new filter
that you want the IPM Manager to apply to the queue. Set this field
to nil to remove all filters from this queue.
When the IPMChangeQueueFilter function completes execution,
it returns a pointer to the filter that was in effect when you called
the function. The IPM Manager has no further use for this pointer,
and you can now dispose of it.

DESCRIPTION

The IPMChangeQueueFilter function applies the filter specified in the filter
parameter to the virtual queue indicated by the queueRef parameter. If you set the
filter parameter to nil, the function sets the filter for the virtual queue to the default
filter, which matches all messages in the physical queue.

SPECIAL CONSIDERATIONS

Although you allocate the pointer to the queue filter, the IPM Manager owns the pointer
until you close the queue or call the IPMChangeQueueFilter function to replace the
filter. Do not reuse or dispose of this pointer until you close the queue or replace the filter.

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “Filter Structures” on page 7-34 for information on queue filters.

You set the queue filter initially when you open the queue; see the description of the
IPMOpenQueue function on page 7-72.

Trap macro Selector

_oceTBDispatch $0414

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidFilter –15105 Filter is invalid
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
IPM Manager Reference 7-75

C H A P T E R 7

Interprogram Messaging Manager
IPMCloseQueue 7

The IPMCloseQueue function closes the specified virtual message queue.

pascal OSErr IPMCloseQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

queueRef The virtual-queue reference number returned by the
IPMOpenQueue function. This number identifies the virtual queue
you wish to close.

DESCRIPTION

You can call the IPMCloseQueue function at any time that the specified virtual queue is
open. When you call this function, the function first closes any messages that you
opened using the queue reference number for this queue. The function then closes the
virtual queue and disassociates the queue from its context.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queueRef IPMQueueRef Virtual-queue reference number.

Trap macro Selector

_oceTBDispatch $040A
7-76 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
RESULT CODES

SEE ALSO

You use the IPMOpenQueue function (page 7-72) to open a virtual queue.

You can use the IPMCloseMsg function (page 7-104) to close an individual message.

You can use the IPMCloseContext function, described next, to close simultaneously all
of the queues associated with a specific context.

You can use the IPMDeleteQueue function (page 7-78) to delete a physical queue after
you have closed all of its associated virtual queues.

IPMCloseContext 7

The IPMCloseContext function closes all of the messages and queues that are
associated with the specified context and then eliminates that context.

pascal OSErr IPMCloseContext(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

contextRef The context reference number returned by the IPMOpenContext
function. This number identifies the context you wish to close.

DESCRIPTION

When you open a virtual queue, you provide a context reference number that specifies
the context to which that queue belongs. When you close a context, the
IPMCloseContext function first closes all of the messages that you opened for the
queues that belong to that context. Next, it closes all of the queues that belong to the

noErr 0 No error
kOCEParamErr –50 Invalid parameter

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ contextRef IPMQueueRef Context reference number.
IPM Manager Reference 7-77

C H A P T E R 7

Interprogram Messaging Manager
context, and finally, it eliminates the context itself, so that the context reference number is
no longer valid.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the IPMOpenContext function (page 7-70) to create a context.

You use the IPMOpenQueue function (page 7-72) to open a queue and associate it with a
specific context.

You can use the IPMCloseMsg function (page 7-104) to close a specific message and the
IPMCloseQueue function (page 7-76) to close a specific queue.

IPMDeleteQueue 7

The IPMDeleteQueue function deletes the specified physical message queue.

pascal OSErr IPMDeleteQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Trap macro Selector

_oceTBDispatch $0401

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMBadContext –15118 Invalid context reference
kIPMContextIsClosing –15119 The specified context is already closed
7-78 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

queue A pointer to an OCERecipient structure that specifies the name
and location of the queue that you want to delete.

identity The authentication identity of the owner of the queue or of the
server administrator if this queue is on a server computer.
The IPM Manager ignores this field if the queue is on the local
computer.

owner A pointer to the packed record ID of the owner of the queue. If the
queue is on a remote computer, you must specify the owner of the
queue in this field.
The IPM Manager ignores this field if the queue is on the local
computer.

DESCRIPTION

Before you can delete a physical queue, you must close any open virtual queues
associated with that physical queue. You can delete a queue at any time that the queue is
not open, provided it is on the local computer or, if it is on a server computer, you have
the appropriate access privileges. The AOCE server allows only the server administrator
to delete a queue.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queue OCERecipient* Queue that you want to delete.
→ identity AuthIdentity Authentication identity.
→ owner PackedRecordID* Owner of the queue.

Trap macro Selector

_oceTBDispatch $0412
IPM Manager Reference 7-79

C H A P T E R 7

Interprogram Messaging Manager
RESULT CODES

SEE ALSO

You use the IPMCreateQueue function (page 7-69) to create a physical queue and the
IPMOpenQueue function (page 7-72) to open a virtual queue.

You use the IPMCloseQueue function (page 7-76) to close a virtual queue.

Listing and Reading Messages 7

A queue can contain any number of messages. This section describes the functions you
can use to list the messages in a message queue, open a message or a nested-message
block, read a message header and message blocks, and close a message.

IPMEnumerateQueue 7

The IPMEnumerateQueue function returns a list of messages in the specified queue that
match the filter criteria that you provide in the function.

pascal OSErr IPMEnumerateQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMBadQName –15112 Invalid queue name
kIPMQBusy –15126 Queue busy; cannot delete

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queueRef IPMQueueRef Queue reference number.
→ startSeqNum IPMSeqNum First message to list.
→ getProcHint Boolean List process hints?
→ getMsgType Boolean List message types?
→ filter IPMFilter* Pointer to queue filter.
→ numToGet unsigned short Number of messages to list.
← numGotten unsigned short Number of messages listed.
→ enumCount unsigned long Buffer size.
→ enumBuffer Ptr Pointer to buffer.
← actEnumCount unsigned long Number of bytes returned in buffer.
7-80 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

queueRef A pointer to an OCERecipient structure that specifies the name
and location of the virtual queue that you want to enumerate.

startSeqNum The sequence number of the first message for which you want the
function to return information. Sequence numbers start with 1.

getProcHint A Boolean value that indicates whether you want the function to
include the process hint of each listed message. You can specify a
process hint for a message when you call the IPMNewMsg,
IPMNewHFSMsg, or IPMNewNestedMsgBlock function to start the
message.

getMsgType A Boolean value that indicates whether you want the function to
include the message type of each listed message.

filter A pointer to the filter to use for this enumeration of the queue. If
you provide a valid pointer to a filter, the function uses it only for
this enumeration; the current filter for this virtual queue remains in
effect after the function completes execution. (The current filter is
the one you specified most recently with the IPMOpenQueue or
IPMChangeQueueFilter function.) Set the filter field to nil to
use the current filter. Set this field to –1 to ignore all filters and list
all the messages in the physical queue.

numToGet The number of messages that you want listed.
numGotten The number of messages that the function actually listed in your

buffer.
enumCount The size, in bytes, of the buffer you are providing.
enumBuffer A pointer to the buffer that you are providing.
actEnumCount The number of bytes of data that the function wrote to your buffer.

DESCRIPTION

For each message in the physical input queue that matches your filter criteria, the
IPMEnumerateQueue function places a structure of type IPMMsgInfo in your buffer.
You must allocate a buffer large enough to hold at least one complete IPMMsgInfo
structure. The last two fields in this structure, procHint and msgType, are present only
if you specify true for the getProcHint and getMsgType parameters of the
IPMEnumerateQueue function. Both the procHint and msgType fields, if present, are
packed structures and can be anywhere from 0 to 33 bytes in size.

You can use the numToGet parameter to specify the total number of messages you want
listed. In the numGotten parameter, the function returns the actual number of messages
listed and, in the actEnumCount parameter, the number of bytes it wrote to your buffer.
The function does not return partial IPMMsgInfo structures.

The first time you call the IPMEnumerateQueue function to list the messages in a
queue, specify 1 for the startSeqNum parameter. If the function returns information for
as many messages as you requested in the numToGet parameter or puts as many
IPM Manager Reference 7-81

C H A P T E R 7

Interprogram Messaging Manager
IPMMsgInfo structures in your buffer as the buffer will hold, you can assume that the
queue holds more messages to be listed. In this case, increment the number in the
startSeqNum parameter by the number of messages listed (that is, by the number
returned in the numGotten parameter) and call the function again.

Note
Do not call the IPMEnumerateQueue function any more often than
necessary; every user connected to a server periodically requests a list of
messages, and a server’s overall performance can be noticeably affected
if it has to process too many enumeration requests. ◆

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMEnumerateQueue function places structures of type IPMMsgInfo in your
buffer. The IPMMsgInfo data type is described in “Message Information Structure” on
page 7-36.

IPMOpenMsg 7

The IPMOpenMsg function opens the specified message in the specified queue.

pascal OSErr IPMOpenMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

Trap macro Selector

_oceTBDispatch $0413

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidFilter –15105 Filter is invalid
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
kIPMeoQ –15120 No more messages
7-82 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

queueRef The queue reference number of the virtual queue containing the
message that you want to open.

sequenceNum The sequence number of the message you wish to open, or, if you
set the exactMatch field to false, the sequence number at which
you want the function to start looking for a message to open.
Sequence numbers start with 1.

newMsgRef The message reference number of the opened message. You must
use this number when you call the IPMVerifySignature
function to verify a signature, when you call the IPMCloseMsg
function to close the message, and any time you read information
from the message.

actualSeqNum The actual sequence number of the message opened by the function.
This value always equals the number you specify in the
sequenceNum field unless you set the exactMatch field to false,
in which case the message opened might have a sequence number
higher than the one you requested.

exactMatch A Boolean value that specifies whether the sequence number of the
message opened must be exactly the same as the number you
specify in the sequenceNum field. If you set the exactMatch field
to false, the function opens the next message that has a sequence
number equal to or greater than the one you specify in the
sequenceNum field and that passes the current filter criteria for the
queue.

DESCRIPTION

You must call the IPMOpenMsg function before you can read any of the information in a
message in a message queue.

The IPM Manager assigns a sequence number to each message in a physical queue when
it adds that message to the queue. Because the IPM Manager does not reuse the number

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queueRef IPMQueueRef Queue reference number.
→ sequenceNum IPMSeqNum Message sequence number requested.
← newMsgRef IPMMsgRef Message reference number.
← actualSeqNum IPMSeqNum Sequence number of message actually

opened.
→ exactMatch Boolean Match requested sequence number

exactly?
IPM Manager Reference 7-83

C H A P T E R 7

Interprogram Messaging Manager
of a message that is removed from the queue, some sequence numbers might be missing
from the queue.

The IPMOpenMsg function opens a message only if it meets the current filter criteria for
the virtual queue. If you specify a message sequence number for a message that does not
meet the filter criteria and set the exactMatch field to true, the IPMOpenMsg function
returns the kIPMEltNotFound result code.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the IPMEnumerateQueue function (page 7-80) to list the messages in a
queue.

Use the IPMOpenHFSMsg function, described next, to open a message on disk.

Use the IPMOpenBlockAsMsg function (page 7-86) to open a nested message.

IPMOpenHFSMsg 7

The IPMOpenHFSMsg function opens the specified HFS file as a message.

pascal OSErr IPMOpenHFSMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Trap macro Selector

_oceTBDispatch $040B

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
7-84 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

hfsPath The file system specification structure for the file you wish to open
as a message.

newMsgRef The message reference number of the opened message. You must
use this number when you read information from the message,
when you call the IPMVerifySignature function to verify a
signature, or when you call the IPMCloseMsg function to close the
message.

DESCRIPTION

You must call the IPMOpenHFSMsg function before you can read any of the information
in a message that is in an HFS file on disk.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the IPMOpenMsg function (page 7-82) to open a message in a message queue.

Use the IPMOpenBlockAsMsg function, described next, to open a nested message.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ hfsPath FSSpec* Specifier of the file to open.
← newMsgRef IPMMsgRef Message reference number.

Trap macro Selector

_oceTBDispatch $0417

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
IPM Manager Reference 7-85

C H A P T E R 7

Interprogram Messaging Manager
IPMOpenBlockAsMsg 7

The IPMOpenBlockAsMsg function opens a nested message.

pascal OSErr IPMOpenBlockAsMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header,” beginning on page 7-40, for
descriptions of the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message that contains the
nested message you want to read. This number is returned by the
IPMOpenMsg, IPMOpenHFSMsg, or IPMOpenBlockAsMsg function
when you open the containing message.

newMsgRef The message reference number of the opened nested message. You
must use this number when you read information from the
message, when you call the IPMVerifySignature function to
verify a signature, or when you call the IPMCloseMsg function to
close the message.

blockIndex The sequential position of the block that you want to open as a
message. For example, if you want to open the tenth block, you set
blockIndex to 10. You can use the IPMGetBlkIndex function to
get the index number of a block.

DESCRIPTION

The IPMOpenBlockAsMsg function opens a nested message so that you can use other
IPM Manager functions to read information from it. Before you use this function, you
must open the containing message (which can also be a nested message), and you must
know the index number of the nested-message block within the containing message. A

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number of the

enclosing message.
← newMsgRef IPMMsgRef Message reference number of the

nested message.
→ blockIndex unsigned short Index value of block containing

nested message.
7-86 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
nested message has a creator type of kIPMSignature and a block type of
kIPMEnclosedMsgType.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the IPMGetBlkIndex function (page 7-96) to get the index number of a block.

IPMGetMsgInfo 7

The IPMGetMsgInfo function returns information about a message in a message queue.

pascal OSErr IPMGetMsgInfo(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

Trap macro Selector

_oceTBDispatch $040F

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMBlockIsNotNestedMsg –15101 Block is not message
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
↔ info IPMMsgInfo* Pointer to returned information.
IPM Manager Reference 7-87

C H A P T E R 7

Interprogram Messaging Manager
See “Interprogram Messaging Parameter Block Header,” beginning on page 7-40, for
descriptions of the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message about which you
want information. This number is returned by the IPMOpenMsg
function when you open the message.

info A pointer to an IPMMsgInfo structure in which the function
returns information about the message. You must allocate this
structure. The function always returns the full IPMGetMsgInfo
structure, which is of variable length and packed; the maximum
size of this structure is 130 bytes.

DESCRIPTION

You can call the IPMGetMsgInfo function after you open a message in a queue. You
cannot use the IPMGetMsgInfo function to obtain information about a message stored
in a file on disk or to get information about a nested message.

The IPMGetMsgInfo function returns the same information about a message as the
IPMEnumerateQueue function returns.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMGetMsgInfo function returns the same information about a message as the
IPMEnumerateQueue function (page 7-80) returns.

The IPMGetMsgInfo function returns information in an IPMGetMsgInfo structure,
described in “Message Information Structure” on page 7-36.

Trap macro Selector

_oceTBDispatch $0419

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
7-88 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Use the IPMReadHeader function, described next, to obtain header information from
nested messages and messages stored on disk, or to get information from header fields
not returned by the IPMGetMsgInfo function.

IPMReadHeader 7

The IPMReadHeader function reads the contents of a specified header field of a
message.

pascal OSErr IPMReadHeader(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message whose header you
want to read. This number is returned by the IPMOpenMsg,
IPMOpenHFSMsg, or IPMOpenBlockAsMsg function when you
open the message.

fieldSelector The message-header field or fields that you want to read. You can
set the fieldSelector field to the values shown in the
description section that follows.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ fieldSelector unsigned short Message header field selector.
→ offset long Offset to header field.
→ count unsigned long The size, in bytes, of the output

buffer.
→ buffer Ptr Pointer to your buffer.
← actualCount unsigned long Number of bytes of data read.
← remaining unsigned long Number of bytes of data

remaining to be read.
IPM Manager Reference 7-89

C H A P T E R 7

Interprogram Messaging Manager
offset The offset to the header field at which you want to start reading. Set
this field to 0 to start reading a header field at the beginning. If the
IPMReadHeader function returns a value in the remaining field,
you can increment the value in the offset field by the value
returned in the actualCount field and call the function again to
continue reading from the header field.

count The size, in bytes, of the buffer you provide.
buffer A pointer to your buffer.
actualCount The number of bytes of data actually written to your buffer.
remaining The number of bytes of data in this header field remaining to be

read.

DESCRIPTION

The IPMReadHeader function returns information about one or more fields of a
message header. If the buffer you provide is not large enough to hold all the data you
request, the function returns, in the remaining parameter, the number of bytes
remaining. You can then increment the value in the offset parameter by the value in
the actualCount parameter and call the function again. You must open the message
with the IPMOpenMsg, IPMOpenHFSMsg, or IPMOpenBlockAsMsg function before you
can call the IPMReadHeader function.

Use the fieldSelector parameter to indicate the field of the message header that you
want to read. You can set this parameter to any of the following values:

enum {

kIPMTOC = 0,

kIPMSender = 1,

kIPMProcessHint = 2,

kIPMMessageTitle = 3,

kIPMMessageType = 4,

kIPMFixedInfo = 7

};

typedef Byte IPMHeaderSelector;

Constant descriptions

kIPMTOC The message table of contents (TOC). The TOC contains information
about each block in the message. The IPMReadHeader function
returns an array of IPMTOC structures, each containing information
about one block. The IPMTOC structure is described on page 7-37.
7-90 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
kIPMSender The sender of the message, in an IPMSender structure. If the
message is authenticated, the IPM Manager fills in this field from
the identity of the originator of the message, and this field provides
the authenticated originator of the message. If the message is not
authenticated, the creator of the message specifies the contents of
this field. The IPMSender structure is described on page 7-40. The
IPMFixedHdrInfo structure (page 7-38) includes an
authenticated field.

kIPMProcessHint
The process hint of the message, which is a Pascal string of up to 32
characters. The value of meaning of the process hint is defined by
the creator of the message.

kIPMMessageTitle
The message title. This title is specified by the creator of the
message and normally indicates the subject, purpose, or content of
the message.

kIPMMessageType
The message type, in an IPMMsgType structure (page 7-28).

kIPMFixedInfo A standard subset of the fields in the header, in an
IPMFixedHdrInfo structure (page 7-38). When you set the
fieldSelector parameter to kIPMFixedInfo, the IPM Manager
ignores the offset and count fields.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMSender structure is described in “Sender Structure” on page 7-39.

The IPMTOC structure is described on page 7-37.

Trap macro Selector

_oceTBDispatch $040E

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
IPM Manager Reference 7-91

C H A P T E R 7

Interprogram Messaging Manager
The IPMMsgType structure is described on page 7-28.

The IPMFixedHdrInfo structure is described on page 7-38.

IPMReadRecipient 7

The IPMReadRecipient function reads a recipient from a message header.

pascal OSErr IPMReadRecipient(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message whose recipient data
you want to read. This number is returned by the IPMOpenMsg,
IPMOpenHFSMsg, or IPMOpenBlockAsMsg function when you
open the message.

rcptIndex The index number of the recipient you want to read. Recipient
index numbers are sequential, starting with 1.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ rcptIndex unsigned short Recipient index number.
→ offset long Offset to recipient data.
→ count unsigned long Buffer size.
→ buffer Ptr Pointer to your buffer.
← actualCount unsigned long Number of bytes of data read.
→ reserved short Must be 0.
← remaining unsigned long Number of bytes of data

remaining to be read.
← originalIndex unsigned short Original recipient index.
← OCERecipientOffsetFlags recipientOffsetFlags Recipient-type flags.
7-92 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
offset The offset to the data for the specified recipient at which to start
reading. The first time you call the IPMReadRecipient function
for a given recipient you should set this field to 0. If your buffer is
not large enough to hold all of the recipient data, you can increment
the value in the offset field by the value returned in the
actualCount field and call the function again.

count The size, in bytes, of your buffer.
buffer A pointer to your buffer. The function places the information about

the recipient in your buffer in the form of an
OCEPackedRecipient structure.

actualCount The number of bytes of data the function wrote to your buffer.
reserved Reserved; you must set this field to 0.
remaining The number of bytes of data remaining to be read. If this field

returns a nonzero value, you should increment the value in the
offset field by the value returned in the actualCount field and
call the function again.

originalIndex The index of this recipient in the original recipient list (that is, the
recipient list before the IPM Manager resolves any group addresses).

OCERecipientOffsetFlags
A flag byte that provides information about the recipient.

DESCRIPTION

The IPMReadRecipient function returns recipient information from the header of a
message. If the original message header contained recipient addresses that were groups
or that identified records containing the address of the actual recipient, the
IPMReadRecipient function returns the final recipients of the message.

The OCERecipientOffsetFlags field contains the following bits:

enum {

kIPMFromDistListBit = 0,

kIPMDummyRecBit = 1,

kIPMFeedbackRecBit = 2,

kIPMReporterRecBit = 3,

kIPMBCCRecBit = 4

};

Flag descriptions

kIPMFromDistListBit
Reserved.

kIPMDummyRecBit
If this flag is set to 1, the IPM Manager delivered the message to this
recipient.

kIPMFeedbackRecBit
Reserved.
IPM Manager Reference 7-93

C H A P T E R 7

Interprogram Messaging Manager
kIPMReporterRecBit
Reserved.

kIPMBCCRecBit If this flag is set to 1, this is a “bcc” (blind carbon copy) recipient; in
other words, this recipient is not included in the recipient list
received by the other recipients of the message. You can receive this
flag only if you sent the letter or if you were the bcc recipient.

You can use the following mask values to test these flags:

enum {

kIPMFromDistListMask= 1<<kIPMFromDistListBit,

kIPMDummyRecMask= 1<<kIPMDummyRecBit,

kIPMFeedbackRecMask= 1<<kIPMFeedbackRecBit,

kIPMReporterRecMask= 1<<kIPMReporterRecBit,

kIPMBCCRecMask= 1<<kIPMBCCRecBit

};

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMReadRecipient function places the information about the recipient in your
buffer in the form of an OCEPackedRecipient structure (page 7-25).

Trap macro Selector

_oceTBDispatch $0410

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
7-94 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
IPMReadReplyQueue 7

The IPMReadReplyQueue function reads the reply queue field of the message header.

pascal OSErr IPMReadReplyQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message whose reply queue
data you want to read. This number is returned by the
IPMOpenMsg, IPMOpenHFSMsg, or IPMOpenBlockAsMsg function
when you open the message.

offset The offset to the data at which to start reading. The first time you
call the IPMReadReplyQueue function, you should set this value
to 0. If your buffer is not large enough to hold all of the reply queue
data, you can increment the value in the offset field by the value
returned in the actualCount field and call the function again.

count The size, in bytes, of your buffer.
buffer A pointer to your buffer. The function places the information about

the reply queue in your buffer in the form of an
OCEPackedRecipient structure.

actualCount The number of bytes of data the function wrote to your buffer.
reserved Reserved; you must set this field to 0.
remaining The number of bytes of data remaining to be read. If this field

returns a nonzero value, you should increment the value in the
offset field by the value returned in the actualCount field and
call the function again.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ offset long Offset to reply queue data.
→ count unsigned long Buffer size.
→ buffer Ptr Pointer to your buffer.
← actualCount unsigned long Number of bytes of data read.
→ reserved short Must be 0.
← remaining unsigned long Number of bytes of data remaining

to be read.
IPM Manager Reference 7-95

C H A P T E R 7

Interprogram Messaging Manager
DESCRIPTION

The reply queue is the address to which the IPM Manager returns delivery and
nondelivery reports and to which you should address reply messages.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMReadReplyQueue function places the information about the reply queue in
your buffer in the form of an OCEPackedRecipient structure (page 7-25).

IPMGetBlkIndex 7

The IPMGetBlkIndex function returns the block type and index value for the first
block encountered that matches the specifications you provide.

pascal OSErr IPMGetBlkIndex(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Trap macro Selector

_oceTBDispatch $0421

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMAttrNotInHdr –15106 No reply queue in message header
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
7-96 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message from which you
want information. This number is returned by the IPMOpenMsg,
IPMOpenHFSMsg, or IPMOpenBlockAsMsg function when you
open the message.

blockType The creator and type of the block for which you want an index
value. You can use the kIPMTypeWildCard wildcard value for the
creator field, the type field, or both.

index The number of matches the function should find before it returns
the index and type of a block. For example, if you set the index
field to 5, the function returns the index and type of the fifth block it
finds that matches the value you specify in the blockType field.

startingFrom The index number of the block at which to begin the search. Index
numbers start at 1.

actualBlockType
The creator and type of the block that matches all of your search
criteria.

actualBlockIndex
The index number of the block that matches all of your search
criteria.

DESCRIPTION

Each IPM message can contain message blocks. You can use the IPMGetBlkIndex
function to determine the type and creator of each block, or the sequential position
(referred to as the index number) of blocks that have specific types.

If you want to get information about every block in the message, you can specify the
wildcard value kIPMTypeWildCard for the creator and type and call the function
repeatedly, incrementing the value in the startingFrom field each time. If you want to
get information about every block of a specific type or with a specific creator, put that
type or creator in the blockType field and call the function repeatedly, incrementing the
value in the index field each time.

→ ioCompletion ProcPtr Pointer to a completion
routine.

← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ blockType IPMBlockType Block types to return.
→ index unsigned short Number of matches to find

before returning information.
→ startingFrom unsigned short Starting index.
← actualBlockType IPMBlockType Block type of block returned.
← actualBlockIndex unsigned short Index value of block returned.
IPM Manager Reference 7-97

C H A P T E R 7

Interprogram Messaging Manager
If the function does not find any more matches to your criteria, it returns the
kOCEInvalidIndex result code.

You can use the value returned in the actualBlockIndex field to identify a block you
want to read when you call the IPMReadMsg function.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To read a message block, call the IPMReadMsg function, described next.

IPMReadMsg 7

The IPMReadMsg function reads data from an IPM message.

pascal OSErr IPMReadMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Trap macro Selector

_oceTBDispatch $0418

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMBlkNotFound –15107 Specified block nonexistent
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
7-98 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message you want to read.
This number is returned by the IPMOpenMsg, IPMOpenHFSMsg, or
IPMOpenBlockAsMsg function when you open the message.

mode The mode in which the offset parameter is to be interpreted. The
function uses this field to determine whether to begin reading data
relative to the end of the last data read, to the beginning of the
block, or to the end of the block. See the discussion following these
field descriptions for details.

offset An offset that the function uses when it calculates the starting point
of the read operation. Set this value to 0 when you start reading a
block from the beginning. See the following discussion for details.

count The size, in bytes, of the buffer that you are providing.
buffer A pointer to your buffer.
actualCount The number of bytes of data actually written to your buffer.
blockIndex The sequential position of the block that you want to read. For

example, if you want to read the tenth block, you set blockIndex
to 10. You can use the IPMGetBlkIndex function to get the creator,
block type, and index number of a block.
If you set the blockIndex field to 0, the IPMReadMsg function
treats all the blocks in the message, including the message header,
as a single unit, ignoring all block boundaries.

remaining The number of bytes of data remaining to be read. If this field
returns a nonzero value, you can increment the value in the offset
field by the value in the actualCount field and call the
IPMReadMsg function again to read the next portion of data.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ mode IPMAccessMode Mode in which the offset should be

interpreted.
→ offset long Offset to the starting point of the

read.
→ count unsigned long Buffer size.
→ buffer Ptr Pointer to your buffer.
← actualCount unsigned long Number of bytes of data read.
→ blockIndex unsigned short Index number of the block to read.
← remaining unsigned long Number of bytes of data remaining

to be read.
IPM Manager Reference 7-99

C H A P T E R 7

Interprogram Messaging Manager
DESCRIPTION

The IPMReadMsg function can treat the entire message body as a single unit (if you set
the blockIndex parameter to 0) or can read a specific message block.

The IPM Manager uses a marker (referred to as the message mark) that points to the
current location within a message that you are reading. After the IPMReadMsg function
completes, the message mark points to the byte following the last byte read.

You use the mode and offset parameters to specify the point in the message at which
the IPMReadMsg function starts reading. The mode parameter indicates whether you
want the IPMReadMsg function to begin reading at the current position of the mark or to
calculate another starting point relative to the beginning of the message, the beginning of
the block, the end of the message, or the current mark location. You can set the mode
parameter to any one of the following values:

enum {

kIPMAtMark,

kIPMFromStart,

kIPMFromLEOM,

kIPMFromMark

};

Constant descriptions

kIPMAtMark The IPMReadMsg function starts reading at the current position of
the mark. In this case, the function ignores the offset value. This
mode is useful, for example, for reading in sequence through a
block.

kIPMFromStart The function interprets the value in the offset parameter as an
offset from the beginning of the block you specify by the
blockIndex parameter. If you specify 0 for the blockIndex
parameter, the function interprets the value in the offset
parameter as an offset from the beginning of the message body.
If you want to start reading at the 100th byte of the second block in
the message, for example, set the blockIndex parameter to 2, the
mode parameter to kIPMFromStart, and the offset parameter to
100. When you use this mode, you cannot set the offset
parameter to a negative value or you will be reading data that is not
part of the message.

kIPMFromLEOM The function interprets the value in the offset parameter as an
offset from the end of the block you specify by the blockIndex
parameter. If you specify 0 for the blockIndex parameter, the
function interprets the value in the offset parameter as an offset
from the end of the message. When you use this mode, the offset
parameter must be a negative value or you will be reading data that
is not part of the message.
7-100 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
kIPMFromMark The function interprets the value in the offset parameter as an
offset from the current position of the mark. Use a negative offset
value to indicate a starting point prior to the current position of the
mark and a positive offset value to indicate a starting point
following the current position of the mark.

A message block that has a creator type of kIPMSignature and a block type of
kIPMEnclosedMsgType contains a nested message. To read the contents of such a
block, first use the IPMOpenBlockAsMsg function to open the nested message and then
use the other functions in this section to read its contents.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the IPMGetBlkIndex function (page 7-96) to get the creator, block type, and index
number of a block.

Use the IPMOpenBlockAsMsg function (page 7-86) to read a block containing a nested
message.

Trap macro Selector

_oceTBDispatch $040D

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be

message
kIPMCorruptDataStructures –15099 Message is corrupt
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
IPM Manager Reference 7-101

C H A P T E R 7

Interprogram Messaging Manager
IPMVerifySignature 7

The IPMVerifySignature function verifies a digital signature for a message.

pascal OSErr IPMVerifySignature(IPMParamBlockPtr paramBlock);

paramBlock
A pointer to a parameter block.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for a description of
the ioResult field.

Field descriptions

msgRef The message reference number of the message from which you
want information. This number is returned by the IPMOpenMsg,
IPMOpenHFSMsg, or IPMOpenBlockAsMsg function when you
open the message.

signatureContext
The signature context you obtained from the SIGNewContext
function and provided to the SIGVerifyPrepare function.

DESCRIPTION

If the creator of the message used the IPMEndMsg function to add a digital signature to
the message, you can use the IPMVerifySignature function to verify the signature.
You can use the IPMReadHeader function to determine whether a message has a digital
signature. The IPMEndMsg function places the digital signature in a block with a creator
of kIPMSignature and a type of kIPMDigitalSignature.

To verify a signature, use the IPMGetBlkIndex function to get the index number of the
signature block and the IPMReadMsg function to read the signature into a buffer. Then
call the SIGNewContext and SIGVerifyPrepare functions to begin the process of
verifying the signature. When you pass a pointer to the signature context (returned by
the SIGNewContext function) in the signatureContext parameter to the
IPMVerifySignature function, the function verifies the signature.

Note
The signature context used to create a digital signature has no
relationship to the contexts discussed in “Managing Message Queues”
starting on page 7-68 and elsewhere in this chapter. ◆

← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ signatureContext SIGContextPtr Signature context.
7-102 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Because the IPM Manager modifies some fields in the message header during message
transmission and delivery, not all header fields can be signed. For example, the final
number of recipients, resolution count, and hop count fields are not signed. All message
blocks except the signature block itself are signed.

SPECIAL CONSIDERATIONS

You cannot execute the IPMVerifySignature function asynchronously; therefore, you
can not call this function at interrupt time.

There must also be at least 8.5 KB of stack space available when you call this function.

If you are verifying a digital signature for a large message, the IPMVerifySignature
function can take a long time to complete (up to several minutes on some computers).
You should display a dialog box informing the user of this possibility.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the IPMEndMsg function (page 7-65) to add a digital signature to a message.

You can use the IPMReadHeader function (page 7-89) to determine if a message has
been signed.

Use the IPMGetBlkIndex function (page 7-96) to get the index number of the signature
block and the IPMReadMsg function (page 7-98) to read the signature block.

Digital signatures and the SIGNewContext and SIGVerifyPrepare functions are
discussed in the chapter “Digital Signature Manager” in this book.

Trap macro Selector

_oceTBDispatch $0422

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMBlkNotFound –15107 Specified block nonexistent
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
IPM Manager Reference 7-103

C H A P T E R 7

Interprogram Messaging Manager
IPMCloseMsg 7

The IPMCloseMsg function closes a message, invalidating the message reference
number, and can delete the message.

pascal OSErr IPMCloseMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message you want to close.
This number is returned by the IPMOpenMsg, IPMOpenHFSMsg, or
IPMOpenBlockAsMsg function when you open the message.

deleteMsg A Boolean value specifying whether you want to delete the message
after closing it. If you set this field to true for a message in a
message queue, the IPM Manager removes the message from the
physical queue. If you set this field to true for a message that is an
HFS file, the IPM Manager deletes the file. If the message is a nested
message, the IPMCloseMsg function ignores this field.

DESCRIPTION

When you have finished reading information from a message, you should call the
IPMCloseMsg function so that the IPM Manager can release the memory it allocates
when you open a message. You can set the deleteMsg parameter to true to have the
IPM Manager delete the message after it closes it. (The IPMCloseMsg function will
always close a message that was opened through the queue you specify with the
message reference number, but if the same message is also open through another virtual
queue, the function does not delete it. In that case, the function returns the
kIPMEltBusy result code.) If you do not delete the message, it remains in the message
queue or on disk and you can open it again at any time.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ deleteMsg Boolean Delete the message?
7-104 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
After you close a message, its message reference number is no longer valid.

You can close a message containing an open nested message; however, you can’t delete
such a message.

When you call the IPMCloseQueue function to close a message queue, the function
automatically closes all of the messages that you opened through that queue’s reference
number. When you call the IPMCloseContext function to close a context, it first closes
all of the messages that you opened for the queues that belong to that context.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the IPMOpenMsg (page 7-82), IPMOpenHFSMsg (page 7-84), or
IPMOpenBlockAsMsg (page 7-86) function to open a message.

The IPMCloseQueue function (page 7-76) closes all the messages associated with a
specific virtual queue. The IPMCloseContext function (page 7-77) closes all the
messages associated with a context.

You can use the IPMDeleteMsgRange function (page 7-106) to delete one or more
messages in a specific virtual queue.

Deleting Messages 7

You can use the IPMDeleteMsgRange function, described in this section, to delete one
or more messages in a message queue. The IPMCloseMsg function (page 7-104) can
delete a single message after closing it.

Trap macro Selector

_oceTBDispatch $040C

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMEltBusy –15116 Message is in use
IPM Manager Reference 7-105

C H A P T E R 7

Interprogram Messaging Manager
IPMDeleteMsgRange 7

The IPMDeleteMsgRange function deletes one or more messages from a message
queue.

pascal OSErr IPMDeleteMsgRange(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of
the ioCompletion and ioResult fields.

Field descriptions

queueRef The virtual-queue reference number returned by the
IPMOpenQueue function. This number identifies the virtual queue
to which the request applies.

startSeqNum The sequence number of the first message that you want the
function to delete.

endSeqNum The sequence number of the last message that you want the
function to delete.

lastSeqNum The sequence number of the next message that remains in the queue
following the last deleted message.
If the function is unable to delete all of the requested messages, this
field contains the sequence number of the message that the function
was attempting to delete when the error occurred.

DESCRIPTION

The IPMDeleteMsgRange function deletes one or more messages from the physical
message queue. To be deleted, a message must match the current filter for the virtual
queue you specify with the queueRef parameter and have a sequence number falling
within the range you specify with the startSeqNum and endSeqNum parameters. Note
that the sequence numbers are inclusive; for instance, if you set the startSeqNum

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queueRef IPMQueueRef Queue reference number.
→ startSeqNum IPMSeqNum The starting message sequence number.
→ endSeqNum IPMSeqNum The ending message sequence number.
← lastSeqNum IPMSeqNum The sequence number of the next

message.
7-106 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
parameter to 5 and the endSeqNum parameter to 10, messages with sequence numbers 5
and 10 (if present in the specified virtual queue) are both deleted.

If the function cannot delete a particular message for some reason, the IPM Manager
cancels the function without proceeding any further. In this case, the function returns the
sequence number of the message that it was attempting to delete when the error
occurred and also returns a result code that indicates the error. The
IPMDeleteMsgRange function does not delete a message if it is open through any
virtual queue. If you have closed the message through the virtual queue but still receive
the kIPMEltBusy result code, the message might be open through another virtual
queue. If the message is closed but contains a nested message that is still open, the
function does not delete the message and returns the kIPMEltBusy result code.

Once you have deleted a message, you cannot open it again.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the IPMCloseMsg function (page 7-104) to delete a single message from a
queue.

Utility Functions 7

You can use the routines in this section to work with OCERecipient structures.

The functions described in this section use a different assembly-language calling
sequence from the other IPM Manager routines (see page 7-43). Listing 7-2 illustrates one
way to do this.

Trap macro Selector

_oceTBDispatch $0415

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
kIPMEltBusy –15116 Message is in use
IPM Manager Reference 7-107

C H A P T E R 7

Interprogram Messaging Manager
Listing 7-2 Calling an MSAM utility function from assembly language

_oceMessaging OPWORD $AA5C

SUBQ #2,A7 ; make room for function result

MOVEA param1,-(SP) ; push the first parameter onto stack

... ; push additional parameters onto stack

MOVEQ asyncFlag, D0 ; move async flag into d0

MOVE.B D0,-(SP) ; push the flag (byte) onto stack

MOVEQ #opCode, D0 ; move op code into d0

MOVE.W D0,-(SP) ; push the op code onto stack

_oceMessaging ; trap call

MOVE.W (SP)+, D0 ; get result code

OCESizePackedRecipient 7

The OCESizePackedRecipient function computes the number of bytes of memory
needed to hold a packed OCERecipient structure.

pascal unsigned short OCESizePackedRecipient(

const OCERecipient *rcpt);

rcpt A pointer to an OCERecipient structure whose size, when packed, you
want to determine.

DESCRIPTION

The OCESizePackedRecipient function computes the number of bytes required to
hold the information contained in an OCERecipient structure when it is packed. The
number of bytes returned by the OCESizePackedRecipient function includes the
dataLength field of the OCEPackedRecipient structure.

SPECIAL CONSIDERATIONS

The OCESizePackedRecipient function does not pad the value contained in the
extensionSize field of the OCERecipient structure pointed to by the rcpt
parameter. For this reason, the OCESizePackedRecipient function might return an
odd value rather than an even one. Therefore, you need to pad the necessary fields in the
OCERecipient structure yourself before using it as an address for a message or before
passing it to any of the IPM Manager functions that require an OCERecipient structure
of even size.

This function does not purge or move memory.
7-108 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The OCERecipient structure is defined on page 7-24.

The OCEPackedRecipient structure is defined on page 7-25.

To pack an OCERecipient structure, use the OCEPackRecipient function, described
next.

OCEPackRecipient 7

The OCEPackRecipient function forms an OCEPackedRecipient structure from an
OCERecipient structure.

pascal unsigned short OCEPackRecipient(const OCERecipient *rcpt,

void* buffer);

rcpt A pointer to the OCERecipient structure you want to pack.

buffer A pointer to the buffer in which the packed data is placed by the
OCEPackRecipient function. You must allocate this structure.

DESCRIPTION

The OCEPackRecipient function packs the contents of an OCERecipient structure
into an OCEPackedRecipient structure. The OCEPackedRecipient structure must
be large enough to contain the packed RecordID information and any extension value
of the OCERecipient structure. You obtain the buffer size needed by calling the
OCESizePackedRecipient function (page 7-108).

SPECIAL CONSIDERATIONS

This function does not purge or move memory.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The OCERecipient structure is defined on page 7-24.

Trap Selector

_OCEMessaging $033E

Trap macro Selector

_OCEMessaging $033F
IPM Manager Reference 7-109

C H A P T E R 7

Interprogram Messaging Manager
The OCEPackedRecipient structure is defined on page 7-25.

For information on unpacking an OCEPackedRecipient structure, see the
OCEUnpackRecipient function, described next.

OCEUnpackRecipient 7

The OCEUnpackRecipient function unpacks an OCEPackedRecipient structure.

pascal OSErr OCEUnpackRecipient(const void* buffer,

OCERecipient *rcpt,

RecordID *entitySpecifier);

buffer A pointer to the OCEPackedRecipient structure you want to unpack.

rcpt A pointer to an OCERecipient structure. You must allocate this
structure.

entitySpecifier
A pointer to a RecordID structure. The OCEUnpackRecipient function
extracts the record identifier information from the
OCEPackedRecipient structure and places it in this RecordID
structure. You must allocate this structure.

DESCRIPTION

The OCEUnpackRecipient function extracts the information from an
OCEPackedRecipient structure and places it in an OCERecipient structure and
a RecordID structure. The OCEUnpackRecipient function extracts the record
identifier (if any) and places it in the RecordID structure, places the rest of
the information in the OCERecipient structure, and then sets the entitySpecifier
field of the OCERecipient structure to point to the RecordID structure. The
OCEUnpackRecipient function returns, in the extensionValue field of
the OCERecipient structure, a pointer to the extension (if any), and returns the length
of that extension in the extensionSize field of the OCERecipient structure. If there
is no extension, the OCEUnpackRecipient function sets the extensionValue field of
the OCERecipient structure to nil.

SPECIAL CONSIDERATIONS

This function does not move or purge memory.
7-110 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCERecipient structure is defined on page 7-24.

The OCEPackedRecipient structure is defined on page 7-25.

To pack an OCERecipient structure, see the OCEPackRecipient function
(page 7-109).

OCEStreamRecipient 7

The OCEStreamRecipient function converts an OCERecipient structure from a
pointer-based structure into a stream of bytes.

pascal OSErr OCEStreamRecipient(const OCERecipient* rcpt,

 OCERecipientStreamer stream,

long userData,

unsigned long* actualCount);

rcpt A pointer to the OCERecipient structure you want to process.

stream A pointer to a stream function that you supply.

userData Data supplied by you that is passed to your stream function. The
userData parameter can contain anything your particular stream
method needs.

actualCount
A pointer to the total number of bytes (streamed out) by the
OCEStreamRecipient function.

DESCRIPTION

The OCEStreamRecipient function converts an OCERecipient structure into a
stream of bytes by calling the stream function that you provide. You can use this function
anytime that you want to write the contents of an OCERecipient structure as a series of
bytes to a file, into a buffer in memory, or any other place.

Trap macro Selector

_OCEMessaging $0340

noErr 0 No error
kOCEParamErr –50 Invalid parameter
IPM Manager Reference 7-111

C H A P T E R 7

Interprogram Messaging Manager
The stream function that you provide contains the specific code that writes out the data.
The OCEStreamRecipient function calls your recipient stream function repeatedly
and passes your function the current portion of the data that needs to be streamed, the
length of this data, an eof flag that is set by the OCEStreamRecipient function if this
is the last of the data to be streamed, and a userData parameter containing any
application-specific data that you define. For example, if you were writing a stream
function that wrote out an OCERecipient structure to a file on a hard disk, you might
want to store a pointer in the userData parameter to a block of data that contains such
information as the filename and size of the file.

If your stream function sends the OCEStreamRecipient function an error in the valid
range for AOCE error codes, OCEStreamRecipient halts execution and returns the
error as its result code.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. However, it calls the recipient stream
function that you supply in the stream parameter, and the stream function could move
memory.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCERecipient structure is defined on page 7-24.

OCESetRecipientType 7

Given a creation ID, the OCESetRecipientType function sets the extension type of an
OCERecipient structure.

pascal void OCESetRecipientType(OSType extensionType,

CreationID *cid);

extensionType
The type you wish to specify in an OCERecipient structure’s
extensionType field.

Trap macro Selector

_OCEMessaging $0341

noErr 0 No error
kOCEParamErr –50 Invalid parameter
7-112 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
cid A pointer to a CreationID structure identifying a record. The
OCERecipient structure for that record is the one modified by this
function.

DESCRIPTION

The OCESetRecipientType function sets an OCERecipient structure’s
extensionType field to the value in the extensionType parameter. The
OCERecipient is determined from the specified cid parameter.

If the extensionType field has a value of 'entn', then the cid parameter is assumed
to be a valid extension and is not modified. If the extensionType field’s value is
anything else besides 'entn', then this routine sets the CreationID structure’s
source field to 0.

SPECIAL CONSIDERATIONS

The OCESetRecipientType function does not check whether the cid pointer is set to
nil. Calling this function with the cid parameter set to nil has an indeterminate but
harmful result.

This function does not move or purge memory.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The OCERecipient structure is defined on page 7-24.

To get the extension type of an OCERecipient structure, see the
OCEGetRecipientType function, described next.

OCEGetRecipientType 7

Given a creation ID, the OCEGetRecipientType function returns the extension type of
an OCERecipient structure.

pascal OSType OCEGetRecipientType(const CreationID *cid);

cid A pointer to a CreationID structure identifying a record. The
OCERecipient structure for that record is the one read by this function.

Trap macro Selector

_OCEMessaging $0343
IPM Manager Reference 7-113

C H A P T E R 7

Interprogram Messaging Manager
DESCRIPTION

If you used the OCESetRecipientType function (page 7-112) to set the extension type
of an OCERecipient structure, you can use the OCEGetExtensionType function to
read the extension type.

SPECIAL CONSIDERATIONS

This function does not purge or move memory.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The OCERecipient structure is defined on page 7-24.

The CreationID structure is defined in the chapter “AOCE Utilities” in this book.

To set the extension type of an OCERecipient structure, see the
OCESetRecipientType function (page 7-112).

Application-Defined Functions 7
This section describes routines that you can provide to be called by the IPM Manager in
specific circumstances. The MyCompletionRoutine function is a completion routine
called when an IPM Manager routine that you call asynchronously completes execution.
The MyRecipientStreamer function is a stream-processing function that you supply
to the OCEStreamRecipient function.

MyCompletionRoutine 7

When you call an IPM Manager function asynchronously, you can provide a pointer to a
completion routine.

pascal void MyCompletionRoutine (Ptr paramBlk);

paramBlk A pointer to the parameter block you used when you called the IPM
Manager function.

Trap macro Selector

_OCEMessaging $0342
7-114 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Parameter block

Other fields returned depend on the function that called the completion routine; see the
other function descriptions in this chapter for details.

DESCRIPTION

When the IPM Manager function you called asynchronously completes execution, it calls
your completion routine. Your completion routine can check the function result plus any
parameters returned by the function and take appropriate action.

SPECIAL CONSIDERATIONS

The IPM Manager saves the value of your A5 register at the time you call the function
and then restores the A5 value before calling your completion routine.

ASSEMBLY-LANGUAGE INFORMATION

The A0 register contains a pointer to the parameter block. You can look for the result
code either in the ioResult field of the parameter block or in the D0 register.

MyRecipientStreamer 7

Your recipient stream function provides a method for processing data from the
OCEStreamRecipient function.

pascal OSErr MyRecipientStreamer(void* buffer,

 unsigned long count, Boolean eof,

long userData);

buffer A pointer to the data that your stream method processes. This is supplied
by the OCEStreamRecipient function each time it calls your recipient
stream function.

count The length, in bytes, of the current data in the buffer.

eof A flag that the OCEStreamRecipient function sets when it last calls
your recipient stream function. This flag signals that the
OCEStreamRecipient function has finished processing the
OCERecipient structure.

userData The data that you supply in the userData parameter to the
OCEStreamRecipient function. This data is passed directly to your
recipient stream function.

→ ioResult OSErr Result of the function.
IPM Manager Reference 7-115

C H A P T E R 7

Interprogram Messaging Manager
DESCRIPTION

The OCEStreamRecipient function (page 7-111) calls your recipient stream function to
process the data from an OCERecipient structure in discrete segments. You write this
routine to process the data in the way that you want. The OCEStreamRecipient
function calls your recipient stream function various times and passes your function
progress information as well as the current portion of the OCERecipient to process.
Any errors returned by this function are passed to the OCEStreamRecipient function.

SEE ALSO

The OCERecipient data structure is defined on page 7-24.

The OCEStreamRecipient function is described on page 7-111.
7-116 IPM Manager Reference

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Summary of the IPM Manager 7

C Summary 7

Constants and Data Types 7

/* values of IPMPriority */

enum {

kIPMAnyPriority = 0,

kIPMNormalPriority = 1,

kIPMLowPriority,

kIPMHighPriority

};

typedef Byte IPMPriority;

/* values of IPMAccessMode */

enum {

kIPMAtMark,

kIPMFromStart,

kIPMFromLEOM,

kIPMFromMark

};

typedef unsigned short IPMAccessMode;

enum {

kIPMUpdateMsgBit = 4,

kIPMNewMsgBit = 5,

kIPMDeleteMsgBit = 6

};

/* values of IPMNotificationType */

enum {

kIPMUpdateMsgMask = 1<<kIPMUpdateMsgBit,

kIPMNewMsgMask = 1<<kIPMNewMsgBit,

kIPMDeleteMsgMask = 1<<kIPMDeleteMsgBit
Summary of the IPM Manager 7-117

C H A P T E R 7

Interprogram Messaging Manager
};

typedef Byte IPMNotificationType;

/* values of IPMSenderTag */

enum {

kIPMSenderRStringTag,

kIPMSenderRecordIDTag

};

typedef unsigned short IPMSenderTag;

enum {

kIPMFromDistListBit = 0,

kIPMDummyRecBit = 1,

kIPMFeedbackRecBit = 2,

kIPMReporterRecBit = 3,

kIPMBCCRecBit = 4

};

/* values of OCERecipientOffsetFlags */

enum {

kIPMFromDistListMask = 1<<kIPMFromDistListBit,

kIPMDummyRecMask = 1<<kIPMDummyRecBit,

kIPMFeedbackRecMask = 1<<kIPMFeedbackRecBit,

kIPMReporterRecMask = 1<<kIPMReporterRecBit,

kIPMBCCRecMask = 1<<kIPMBCCRecBit

};

typedef Byte OCERecipientOffsetFlags;

#define kIPMTypeWildCard 'ipmw'

#define kIPMFamilyUnspecified 0

#define kIPMFamilyWildCard 0x3F3F3F3FL /* '????' */

/* well-known signature */

#define kIPMSignature 'ipms' /* base type */

/* well-known message types */

#define kIPMReportNotify 'rptn' /* routing feedback */

/* well-known message block types */
7-118 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
#define kIPMEnclosedMsgType 'emsg' /* enclosed (nested) message */

#define kIPMReportInfo 'rpti' /* recipient information */

#define kIPMDigitalSignature 'dsig' /* digital signature */

/* values of IPMMsgFormat */

enum {

kIPMOSFormatType = 1,

kIPMStringFormatType = 2

};

typedef unsigned short IPMMsgFormat;

/*

Following are the known extension values for IPM addresses handled by Apple

Computer, Inc.

*/

enum {

kOCEalanXtn= 'alan',

kOCEentnXtn= 'entn', /* 'entn' = entity name (aka DSSpec) */

kOCEaphnXtn= 'aphn'

};

/* 'entn' extension forms */

enum {

kOCEAddrXtn= 'addr', /* reserved */

kOCEQnamXtn= 'qnam', /* queue-name form */

kOCEAttrXtn= 'attr', /* an attribute specification */

kOCESpAtXtn= 'spat' /* specific attribute */

};

/* phoneNumber subtype constants */

enum {

kOCEUseHandyDial = 1,

kOCEDontUseHandyDial = 2

};

/* addresses with kIPMNBPXtn should specify this nbp type */

#define kIPMWSReceiverNBPType "\pMsgReceiver"

/* values of IPMHeaderSelector */

enum {

kIPMTOC = 0,

kIPMSender = 1,

kIPMProcessHint = 2,
Summary of the IPM Manager 7-119

C H A P T E R 7

Interprogram Messaging Manager
kIPMMessageTitle = 3,

kIPMMessageType = 4,

kIPMFixedInfo = 7

};

typedef Byte IPMHeaderSelector;

enum {

kIPMDeliveryNotificationBit = 0,

kIPMNonDeliveryNotificationBit = 1,

kIPMEncloseOriginalBit = 2,

kIPMSummaryReportBit = 3,

kIPMOriginalOnlyOnErrorBit = 4

};

typedef Byte IPMNotificationType;

enum {

kIPMNoNotificationMask = 0x00,

kIPMDeliveryNotificationMask = 1<<kIPMDeliveryNotificationBit,

kIPMNonDeliveryNotificationMask = 1<<kIPMNonDeliveryNotificationBit,

kIPMDontEncloseOriginalMask = 0x00,

kIPMEncloseOriginalMask = 1<<kIPMEncloseOriginalBit,

kIPMImmediateReportMask = 0x00,

kIPMSummaryReportMask = 1<<kIPMSummaryReportBit,

kIPMOriginalOnlyOnErrorMask = 1<<kIPMOriginalOnlyOnErrorBit,

kIPMEncloseOriginalOnErrorMask =

(kIPMOriginalOnlyOnErrorMask|kIPMEncloseOriginalMask)

};

/* standard nondelivery codes */

enum {

kIPMNoSuchRecipient = 0x0001,

kIPMRecipientMalformed = 0x0002,

kIPMRecipientAmbiguous = 0x0003,

kIPMRecipientAccessDenied = 0x0004,

kIPMGroupExpansionProblem = 0x0005,

kIPMMsgUnreadable = 0x0006,

kIPMMsgExpired = 0x0007,

kIPMMsgNoTranslatableContent = 0x0008,

kIPMRecipientReqStdCont = 0x0009,

kIPMRecipientReqSnapShot = 0x000A,

kIPMNoTransferDiskFull = 0x000B,
7-120 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
kIPMNoTransferMsgRejectedbyDest = 0x000C,

kIPMNoTransferMsgTooLarge = 0x000D

};

typedef unsigned long IPMContextRef;

typedef unsigned long IPMQueueRef;

typedef unsigned long IPMMsgRef;

typedef unsigned long IPMSeqNum;

typedef Str32 IPMProcHint;

typedef Str32 IPMQueueName;

typedef OCECreatorType IPMBlockType;

Message Addressing Structures

typedef DSSpec OCERecipient;

/* format of a packed form recipient */

#define OCEPackedRecipientHeader\

unsigned short dataLength;

struct ProtoOCEPackedRecipient {

OCEPackedRecipientHeader

};

typedef struct ProtoOCEPackedRecipient ProtoOCEPackedRecipient;

define kOCEPackedRecipientMAXBYTES (4096 - sizeof(ProtoOCEPackedRecipient))

struct OCEPackedRecipient {

OCEPackedRecipientHeader

Byte data[kOCEPackedRecipientMaxBytes];

};

typedef struct OCEPackedRecipient OCEPackedRecipient;

struct IPMEntnQueueExtension {

Str32 queueName;

};

typedef struct IPMEntnQueueExtension IPMEntnQueueExtension;
Summary of the IPM Manager 7-121

C H A P T E R 7

Interprogram Messaging Manager
struct IPMEntnAttributeExtension {/* kOCEAttrXtn */

AttributeType attributeName;

};

typedef struct IPMEntnAttributeExtension IPMEntnAttributeExtension;

struct IPMEntnSpecificAttributeExtension { /* reserved */

AttributeCreationID attributeCreationID;

AttributeType attributeName;

};

typedef struct IPMEntnSpecificAttributeExtension

IPMEntnSpecificAttributeExtension;

struct IPMEntityNameExtension {

OSType subExtensionType;

union {

IPMEntnSpecificAttributeExtension specificAttribute;

IPMEntnAttributeExtension attribute;

IPMEntnQueueExtension queue;

} u;

};

typedef struct IPMEntityNameExtension IPMEntityNameExtension;

Message and Block Types

struct OCECreatorType {

OSType msgCreator;

OSType msgType;

};

typedef struct OCECreatorType OCECreatorType;

typedef Str32 IPMStringMsgType;

struct IPMMsgType {

IPMMsgFormat format;/* IPMMsgFormat*/

union{

OCECreatorType msgOSType;

IPMStringMsgType msgStrType;

}theType;

};

typedef struct IPMMsgType IPMMsgType;
7-122 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Delivery Notification

struct IPMMsgID {

unsigned long id[4];

};

typedef struct IPMMsgID IPMMsgID;

struct IPMReportBlockHeader {

IPMMsgID msgID; /* message ID of the original */

UTCTime creationTime; /* creation time of the report */

};

typedef struct IPMReportBlockHeader IPMReportBlockHeader;

struct OCERecipientReport {

unsigned short rcptIndex; /* index of recipient in original message */

OSErr result; /* result of sending letter to recipient */

};

typedef struct OCERecipientReport OCERecipientReport;

Filter Structures

struct IPMSingleFilter { /* each field should be packed and word aligned */

IPMPriority priority;

Byte padByte;

OSType family; /* family of this msg, '????' for all */

ScriptCode script; /* language identifier */

IPMProcHint hint;

IPMMsgType msgType;

};

typedef struct IPMSingleFilter IPMSingleFilter;

struct IPMFilter {

unsigned short count;

IPMSingleFilter sFilters[1];

};

typedef struct IPMFilter IPMFilter;

Message Information Structure

struct IPMMsgInfo { /* master message info */

IPMSeqNum sequenceNum;

unsigned long userData;

unsigned short respIndex;
Summary of the IPM Manager 7-123

C H A P T E R 7

Interprogram Messaging Manager
Byte padByte;

IPMPriority priority;

unsigned long msgSize;

unsigned short originalRcptCount;

unsigned short reserved;

UTCTime creationTime;

IPMMsgID msgID;

OSType family; /* family of this msg (e.g., mail) */

IPMProcHint procHint; /* packed and even-length padded */

IPMMsgType msgType; /* packed and even-length padded */

};

typedef struct IPMMsgInfo IPMMsgInfo;

Header Information Structures

struct IPMTOC {

IPMBlockType blockType;

long blockOffset;

unsigned long blockSize;

unsigned long blockRefCon;

};

typedef struct IPMTOC IPMTOC;

struct IPMFixedHdrInfo {

unsigned short version; /* IPM Manager version */

Boolean authenticated; /* was message authenticated? */

Boolean signatureEnclosed;/* digital signature enclosed? */

unsigned long msgSize; /* size of message */

IPMNotificationType notification; /* notification type requested */

IPMPriority priority; /* message priority */

unsigned short blockCount; /* number of blocks */

unsigned short originalRcptCount;/* original number of recipients */

unsigned long refCon; /* application-defined data */

unsigned short reserved; /* reserved */

UTCTime creationTime; /* message creation time */

IPMMsgID msgID; /* message ID */

OSType family; /* family of this msg */

};

Sender Structure

struct IPMSender {

IPMSenderTag sendTag;

union{
7-124 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
RString rString;

PackedRecordID rid;

} theSender;

};

typedef struct IPMSender IPMSender;

Parameter Block Header

#define IPMParamHeader \

Ptr qLink; \

long reservedH1; \

long reservedH2; \

ProcPtr ioCompletion; \

OSErr ioResult; \

long saveA5; \

short reqCode;

Parameter Blocks for Creating a New Message

struct IPMNewMsgPB {

IPMParamHeader

unsigned long filler;

OCERecipient* recipient;

OCERecipient* replyQueue;

StringPtr procHint;

unsigned short filler2;

IPMMsgType* msgType;

unsigned long refCon;

IPMMsgRef newMsgRef;

unsigned short filler3;

long filler4;

AuthIdentity identity;

IPMSender* sender;

unsigned long internalUse;

unsigned long internalUse2;

};

typedef struct IPMNewMsgPB IPMNewMsgPB;

struct IPMNewHFSMsgPB {

IPMParamHeader

FSSpec* hfsPath;

OCERecipient* recipient;

OCERecipient* replyQueue;

StringPtr procHint;
Summary of the IPM Manager 7-125

C H A P T E R 7

Interprogram Messaging Manager
unsigned short filler2;

IPMMsgType* msgType;

unsigned long refCon;

IPMMsgRef newMsgRef;

unsigned short filler3;

long filler4;

AuthIdentity identity;

IPMSender* sender;

unsigned long internalUse;

unsigned long internalUse2;

};

typedef struct IPMNewHFSMsgPB IPMNewHFSMsgPB;

typedef struct IPMAddRecipientPB {

IPMParamHeader

IPMMsgRef msgRef;

OCERecipient* recipient;

long reserved;

};

typedef struct IPMAddRecipientPB IPMAddRecipientPB;

struct IPMAddReplyQueuePB {

IPMParamHeader

IPMMsgRef msgRef;

long filler;

OCERecipient* replyQueue;

};

typedef struct IPMAddReplyQueuePB IPMAddReplyQueuePB;

struct IPMNewBlockPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMBlockType blockType;

unsigned short filler[5];

unsigned long refCon;

unsigned short filler2[3];

long startingOffset;

};

typedef struct IPMNewBlockPB IPMNewBlockPB;

struct IPMNewNestedMsgBlockPB {

IPMParamHeader

IPMMsgRef msgRef;

OCERecipient* recipient;
7-126 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
OCERecipient* replyQueue;

StringPtr procHint;

unsigned short filler1;

IPMMsgType* msgType;

unsigned long refCon;

IPMMsgRef newMsgRef;

unsigned short filler2;

long startingOffset;

AuthIdentity identity;

IPMSender* sender;

unsigned long internalUse;

unsigned long internalUse2;

};

typedef struct IPMNewNestedMsgBlockPB IPMNewNestedMsgBlockPB;

struct IPMNestMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

unsigned short filler[9];

unsigned long refCon;

IPMMsgRef msgToNest;

unsigned short filler2;

long startingOffset;

};

typedef struct IPMNestMsgPB IPMNestMsgPB;

struct IPMWriteMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMAccessMode mode;

long offset;

unsigned long count;

Ptr buffer;

unsigned long actualCount;

Boolean currentBlock;

};

typedef struct IPMWriteMsgPB IPMWriteMsgPB;

struct IPMEndMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMMsgID msgID;

RString* msgTitle;

IPMNotificationType deliveryNotification;
Summary of the IPM Manager 7-127

C H A P T E R 7

Interprogram Messaging Manager
IPMPriority priority;

Boolean cancel;

Byte padByte;

long reserved;

SIGSignaturePtr signature;

Size signatureSize;

SIGContextPtr signatureContext;

OSType family; /* family of this msg

 use kIPMFamilyUnspecified by default */

};

typedef struct IPMEndMsgPB IPMEndMsgPB;

Parameter Blocks for Managing Message Queues

struct IPMCreateQueuePB {

IPMParamHeader

long filler1;

OCERecipient* queue;

AuthIdentity identity;/* used only if queue is remote */

PackedRecordID* owner; /* used only if queue is remote */

};

typedef struct IPMCreateQueuePB IPMCreateQueuePB;

struct IPMOpenContextPB {

IPMParamHeader

IPMContextRef contextRef;

};

typedef struct IPMOpenContextPB IPMOpenContextPB;

struct IPMOpenQueuePB {

IPMParamHeader

IPMContextRef contextRef;

OCERecipient* queue;

AuthIdentity identity;

IPMFilter* filter;

IPMQueueRef newQueueRef;

IPMNoteProcPtr notificationProc; /* must be nil */

unsigned long userData; /* reserved */

IPMNotificationType noteType; /* reserved */

Byte padByte; /* reserved */

long reserved;

long reserved2;

};

typedef struct IPMOpenQueuePB IPMOpenQueuePB;
7-128 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
typedef IPMEnumerateQueuePB IPMChangeQueueFilterPB;

typedef IPMOpenContextPB IPMCloseContextPB;

struct IPMCloseQueuePB {

IPMParamHeader

IPMQueueRef queueRef;

};

typedef struct IPMCloseQueuePB IPMCloseQueuePB;

typedef IPMCreateQueuePB IPMDeleteQueuePB;

Parameter Blocks for Listing and Reading Messages

struct IPMEnumerateQueuePB {

IPMParamHeader

IPMQueueRef queueRef;

IPMSeqNum startSeqNum;

Boolean getProcHint;

Boolean getMsgType;

short filler;

IPMFilter* filter;

unsigned short numToGet;

unsigned short numGotten;

unsigned long enumCount;

Ptr enumBuffer; /* will be packed array of IPMMsgInfo */

unsigned long actEnumCount;

};

typedef struct IPMEnumerateQueuePB IPMEnumerateQueuePB;

struct IPMOpenMsgPB {

IPMParamHeader

IPMQueueRef queueRef;

IPMSeqNum sequenceNum;

IPMMsgRef newMsgRef;

IPMSeqNum actualSeqNum;

Boolean exactMatch;

Byte padByte;

long reserved;

};

typedef struct IPMOpenMsgPB IPMOpenMsgPB;

struct IPMOpenHFSMsgPB {

IPMParamHeader

FSSpec* hfsPath;
Summary of the IPM Manager 7-129

C H A P T E R 7

Interprogram Messaging Manager
long filler;

IPMMsgRef newMsgRef;

long filler2;

Byte filler3;

long reserved;

};

typedef struct IPMOpenHFSMsgPB IPMOpenHFSMsgPB;

struct IPMOpenBlockAsMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

unsigned long filler;

IPMMsgRef newMsgRef;

unsigned short filler2[7];

unsigned short blockIndex;

};

typedef struct IPMOpenBlockAsMsgPB IPMOpenBlockAsMsgPB;

struct IPMGetMsgInfoPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMMsgInfo* info;

};

typedef struct IPMGetMsgInfoPB IPMGetMsgInfoPB;

struct IPMReadHeaderPB {

IPMParamHeader

IPMMsgRef msgRef;

unsigned short fieldSelector;

long offset;

unsigned long count;

Ptr buffer;

unsigned long actualCount;

unsigned short filler;

unsigned long remaining;

};

typedef struct IPMReadHeaderPB IPMReadHeaderPB;

struct IPMReadRecipientPB {

IPMParamHeader

IPMMsgRef msgRef;

unsigned short rcptIndex;

long offset;

unsigned long count;
7-130 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
Ptr buffer;

unsigned long actualCount;

short reserved; /* must be 0 */

unsigned long remaining;

unsigned short originalIndex;

OCERecipientOffsetFlags recipientOffsetFlags;

};

typedef struct IPMReadRecipientPB IPMReadRecipientPB;

typedef IPMReadRecipientPB IPMReadReplyQueuePB;

struct IPMGetBlkIndexPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMBlockType blockType;

unsigned short index;

unsigned short startingFrom;

IPMBlockType actualBlockType;

unsigned short actualBlockIndex;

};

typedef struct IPMGetBlkIndexPB IPMGetBlkIndexPB;

struct IPMReadMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMAccessMode mode;

long offset;

unsigned long count;

Ptr buffer;

unsigned long actualCount;

unsigned short blockIndex;

unsigned long remaining;

};

typedef struct IPMReadMsgPB IPMReadMsgPB;

struct IPMVerifySignaturePB {

IPMParamHeader

IPMMsgRef msgRef;

SIGContextPtr signatureContext;

};

typedef struct IPMVerifySignaturePB IPMVerifySignaturePB;
Summary of the IPM Manager 7-131

C H A P T E R 7

Interprogram Messaging Manager
struct IPMCloseMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

Boolean deleteMsg;

};

typedef struct IPMCloseMsgPB IPMCloseMsgPB;

Parameter Block for Deleting Messages

struct IPMDeleteMsgRangePB {

IPMParamHeader

IPMQueueRef queueRef;

IPMSeqNum startSeqNum;

IPMSeqNum endSeqNum;

IPMSeqNum lastSeqNum;

};

typedef struct IPMDeleteMsgRangePB IPMDeleteMsgRangePB;

Parameter Block Union Structure

union IPMParamBlock {

struct {IPMParamHeader} header;

IPMOpenContextPB openContextPB;

IPMCloseContextPB closeContextPB;

IPMCreateQueuePB createQueuePB;

IPMDeleteQueuePB deleteQueuePB;

IPMOpenQueuePB openQueuePB;

IPMCloseQueuePB closeQueuePB;

IPMEnumerateQueuePB enumerateQueuePB;

IPMChangeQueueFilterPB changeQueueFilterPB;

IPMDeleteMsgRangePB deleteMsgRangePB;

IPMOpenMsgPB openMsgPB;

IPMOpenHFSMsgPB openHFSMsgPB;

IPMOpenBlockAsMsgPB openBlockAsMsgPB;

IPMCloseMsgPB closeMsgPB;

IPMGetMsgInfoPB getMsgInfoPB;

IPMReadHeaderPB readHeaderPB;

IPMReadRecipientPB readRecipientPB;

IPMReadReplyQueuePB readReplyQueuePB;

IPMGetBlkIndexPB getBlkIndexPB;

IPMReadMsgPB readMsgPB;

IPMVerifySignaturePB verifySignaturePB;

IPMNewMsgPB newMsgPB;

IPMNewHFSMsgPB newHFSMsgPB;
7-132 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
IPMNestMsgPB nestMsgPB;

IPMNewNestedMsgBlockPB newNestedMsgBlockPB;

IPMEndMsgPB endMsgPB;

IPMAddRecipientPB addRecipientPB;

IPMAddReplyQueuePB addReplyQueuePB;

IPMNewBlockPB newBlockPB;

IPMWriteMsgPB writeMsgPB;

};

typedef union IPMParamBlock IPMParamBlock;

typedef IPMParamBlock *IPMParamBlockPtr;

IPM Manager Functions 7

Creating a New Message

pascal OSErr IPMNewMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMNewHFSMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMAddRecipient
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMAddReplyQueue
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMNewBlock (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMNewNestedMsgBlock
(IPMParamBlockPtr paramBlock,
Boolean async);

pascal OSErr IPMNestMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMWriteMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMEndMsg (IPMParamBlockPtr paramBlock, Boolean async);

Managing Message Queues

pascal OSErr IPMCreateQueue
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMOpenContext
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMOpenQueue (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMChangeQueueFilter
(IPMParamBlockPtr paramBlock,
Boolean async);

pascal OSErr IPMCloseQueue (IPMParamBlockPtr paramBlock, Boolean async);
Summary of the IPM Manager 7-133

C H A P T E R 7

Interprogram Messaging Manager
pascal OSErr IPMCloseContext
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMDeleteQueue
(IPMParamBlockPtr paramBlock, Boolean async);

Listing and Reading Messages

pascal OSErr IPMEnumerateQueue
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMOpenMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMOpenHFSMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMOpenBlockAsMsg
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMGetMsgInfo (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMReadHeader
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMReadRecipient
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMReadReplyQueue
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMGetBlkIndex
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMReadMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMVerifySignature
(IPMParamBlockPtr paramBlock);

pascal OSErr IPMCloseMsg (IPMParamBlockPtr paramBlock, Boolean async);

Deleting Messages

pascal OSErr IPMDeleteMsgRange
(IPMParamBlockPtr paramBlock, Boolean async);

Utility Functions

pascal unsigned short OCESizePackedRecipient
(const OCERecipient *rcpt);

pascal unsigned short OCEPackRecipient
(const OCERecipient *rcpt, void* buffer);

pascal OSErr OCEUnpackRecipient
(const void* buffer, OCERecipient *rcpt,
RecordID *entitySpecifier);
7-134 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
pascal OSErr OCEStreamRecipient
(const OCERecipient* rcpt, OCERecipientStreamer
stream, long userData, unsigned long*
actualCount);

pascal OSType OCEGetRecipientType
(const CreationID *cid);

pascal void OCESetRecipientType
(OSType extensionType, CreationID *cid);

Application-Defined Functions

pascal void MyCompletionRoutine
(Ptr paramBlk);

pascal OSErr MyRecipientStreamer
(void* buffer, unsigned long count,
Boolean eof, long userData);

Pascal Summary 7

Constants 7

CONST

{ values of IPMPriority }

kIPMAnyPriority = 0; { for filter only}

kIPMNormalPriority = 1;

{ values of IPMAccessMode }

kIPMAtMark = 0;

kIPMFromStart = 1;

kIPMFromLEOM = 2;

kIPMFromMark = 3;

kIPMUpdateMsgBit = 4;

kIPMNewMsgBit = 5;

kIPMDeleteMsgBit = 6;

{ values of IPMNotificationType }

kIPMUpdateMsgMask = $10; {1<<kIPMUpdateMsgBit}

kIPMNewMsgMask = $20; {1<<kIPMNewMsgBit}

kIPMDeleteMsgMask = $40; {1<<kIPMDeleteMsgBit}
Summary of the IPM Manager 7-135

C H A P T E R 7

Interprogram Messaging Manager
{ values of IPMSenderTag }

kIPMSenderRStringTag = 0;

kIPMSenderRecordIDTag = 1;

kIPMFromDistListBit = 0;

kIPMDummyRecBit = 1;

kIPMFeedbackRecBit = 2; { redirect to feedback queue }

kIPMReporterRecBit = 3 { redirect to reporter original

 queue }

kIPMBCCRecBit = 4; { this recipient is blind to all

 recipients of message }

{ values of OCERecipientOffsetFlags }

kIPMFromDistListMask = $01; {1<<kIPMFromDistListBit}

kIPMDummyRecMask = $02; {1<<kIPMDummyRecBit}

kIPMFeedbackRecMask = $04; {1<<kIPMFeedbackRecBit}

kIPMReporterRecMask = $08; {1<<kIPMReporterRecBit}

kIPMBCCRecMask = $10; {1<<kIPMBCCRecBit}

kIPMTypeWildCard = 'ipmw';

kIPMFamilyUnspecified = 0;

kIPMFamilyWildCard = '????';

{ well known signature }

kIPMSignature = 'ipms';{ base type }

{ well known message types }

kIPMReportNotify = 'rptn';{ routing feedback }

{ well known message block types }

kIPMEnclosedMsgType = 'emsg';{ enclosed (nested) message }

kIPMReportInfo = 'rpti';{ recipient information }

kIPMDigitalSignature = 'dsig';{ digital signature }

{ values of IPMMsgFormat }

kIPMOSFormatType = 1;

kIPMStringFormatType = 2;
7-136 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
{Following are the known extension values for IPM addresses handled by Apple

Computer, Inc.}

kOCEalanXtn = 'alan';

kOCEentnXtn = 'entn';{ 'entn' = entity name

(DSSpec: aka) }

kOCEaphnXtn = 'aphn';

{ 'entn' extension forms }

kOCEAddrXtn = 'addr';{ reserved }

kOCEQnamXtn = 'qnam';{queue-name form }

kOCEAttrXtn = 'attr';{ an attribute specification }

kOCESpAtXtn = 'spat';{ specific attribute }

{ phoneNumber subtype constants }

kOCEUseHandyDial = 1;

kOCEDontUseHandyDial = 2;

kOCEPackedRecipientMaxBytes =

(4096 - sizeof(ProtoOCEPackedRecipient));

{ addresses with kIPMNBPXtn should specify this nbp type }

kIPMWSReceiverNBPType = 'MsgReceiver';

{ values of IPMHeaderSelector }

kIPMTOC = 0;

kIPMSender = 1;

kIPMProcessHint = 2;

kIPMMessageTitle = 3;

kIPMMessageType = 4;

kIPMFixedInfo = 7;

kIPMDeliveryNotificationBit = 0;

kIPMNonDeliveryNotificationBit = 1;

kIPMEncloseOriginalBit = 2;

kIPMSummaryReportBit = 3;

kIPMOriginalOnlyOnErrorBit = 4;

kIPMNoNotificationMask = $00;

kIPMDeliveryNotificationMask = $01; {1<<kIPMDeliveryNotificationBit}

kIPMNonDeliveryNotificationMask = $02;

{1<<kIPMNonDeliveryNotificationBit}

kIPMDontEncloseOriginalMask = $00;

kIPMEncloseOriginalMask = $04; {1<<kIPMEncloseOriginalBit}

kIPMImmediateReportMask = $00;
Summary of the IPM Manager 7-137

C H A P T E R 7

Interprogram Messaging Manager
kIPMSummaryReportMask = $08; {1<<kIPMSummaryReportBit}

kIPMOriginalOnlyOnErrorMask = $10; {1<<kIPMOriginalOnlyOnErrorBit}

kIPMEncloseOriginalOnErrorMask =

kIPMOriginalOnlyOnErrorMask + kIPMEncloseOriginalMask;

{ standard Nondelivery codes }

kIPMNoSuchRecipient = $0001;

kIPMRecipientMalformed = $0002;

kIPMRecipientAmbiguous = $0003;

kIPMRecipientAccessDenied = $0004;

kIPMGroupExpansionProblem = $0005;

kIPMMsgUnreadable = $0006;

kIPMMsgExpired = $0007;

kIPMMsgNoTranslatableContent = $0008;

kIPMRecipientReqStdCont = $0009;

kIPMRecipientReqSnapShot = $000A;

kIPMNoTransferDiskFull = $000B;

kIPMNoTransferMsgRejectedbyDest = $000C;

kIPMNoTransferMsgTooLarge = $000D;

Data Types 7

TYPE

IPMPriority = Byte;

IPMAccessMode = INTEGER;

IPMNotificationType = Byte;

IPMSenderTag = INTEGER;

OCERecipientOffsetFlags = Byte;

IPMMsgFormat = INTEGER;

IPMHeaderSelector = Byte;

IPMContextRef = LONGINT;

IPMQueueRef = LONGINT;

IPMMsgRef = LONGINT;

IPMSeqNum = LONGINT;
7-138 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
IPMProcHint = Str32;

IPMQueueName = Str32;

IPMBlockType = OCECreatorType;

Message Addressing Structures

OCERecipient = DSSpec;

ProtoOCEPackedRecipient = RECORD

dataLength: INTEGER;

END;

OCEPackedRecipient = RECORD

dataLength: INTEGER;

data: PACKED ARRAY[1..kOCEPackedRecipientMaxBytes] OF Byte;

END;

OCEPackedRecipientPtr = ^OCEPackedRecipient;

IPMEntnQueueExtension = RECORD

queueName: Str32;

END;

IPMEntnAttributeExtension = RECORD{ kOCEAttrXtn }

attributeName: AttributeType;

END;

IPMEntnSpecificAttributeExtension = RECORD{ kOCESpAtXtn }

attributeCreationID: AttributeCreationID;

attributeName: AttributeType;

END;

IPMEntityNameExtension = RECORD

subExtensionType: OSType;

CASE INTEGER OF

1: (specificAttribute: IPMEntnSpecificAttributeExtension);

2: (attribute: IPMEntnAttributeExtension);

3: (queue: IPMEntnQueueExtension);

END;
Summary of the IPM Manager 7-139

C H A P T E R 7

Interprogram Messaging Manager
Message and Block Types

OCECreatorType = RECORD

msgCreator: OSType;

msgType: OSType;

END;

IPMStringMsgType = Str32;

IPMMsgType = RECORD

format: IPMMsgFormat;{ IPMMsgFormat}

CASE INTEGER OF

1: (msgOSType: OCECreatorType);

2: (msgStrType: IPMStringMsgType);

END;

Delivery Notification Structures

IPMMsgID = RECORD

id: ARRAY[1..4] OF LONGINT;

END;

IPMReportBlockHeader = RECORD

msgID: IPMMsgID;{ message ID of the original }

creationTime: UTCTime;{ creation time of the report }

END;

OCERecipientReport = RECORD

rcptIndex: INTEGER;{ index of recipient in original message }

result: OSErr; { result of sending letter to this recipient}

END;

Filter Structures

IPMSingleFilter = PACKED RECORD

priority: IPMPriority;

padByte: Byte;

family: OSType; { family of this msg, '????' for all }

script: ScriptCode; { language identifier }

hint: IPMProcHint;

msgType: IPMMsgType;

END;
7-140 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
IPMFilter = RECORD

count: INTEGER;

sFilters: ARRAY[1..1] OF IPMSingleFilter;

END;

Message Information Structure

IPMMsgInfo = PACKED RECORD

sequenceNum: IPMSeqNum;

userData: LONGINT;

respIndex: INTEGER;

padByte: Byte;

priority: IPMPriority;

msgSize: LONGINT;

originalRcptCount: INTEGER;

reserved: INTEGER;

creationTime: UTCTime;

msgID: IPMMsgID;

family: OSType; { family of this msg

 (e.g. mail) }

procHint: IPMProcHint; { packed and even-length padded }

msgType: IPMMsgType; { packed and even-length padded }

END;

Header Information Structures

IPMTOC = RECORD

blockType: IPMBlockType;

blockOffset: LONGINT;

blockSize: LONGINT;

blockRefCon: LONGINT;

END;

IPMFixedHdrInfo = PACKED RECORD

version: INTEGER; { IPM Manager version }

authenticated: BOOLEAN; { was message authenticated? }

signatureEnclosed: BOOLEAN; { digital signature enclosed? }

msgSize: LONGINT; { size of message }

notification: IPMNotificationType;{ notification type requested }

priority: IPMPriority; { message priority }

blockCount: INTEGER; { number of blocks }

originalRcptCount: INTEGER; { original number of recipients }

refCon: LONGINT; { application-defined data }

reserved: INTEGER; { reserved }
Summary of the IPM Manager 7-141

C H A P T E R 7

Interprogram Messaging Manager
creationTime: UTCTime; { message creation time }

msgID: IPMMsgID; { message ID }

family: OSType; { family of this msg }

END;

Sender Structure

IPMSender = RECORD

sendTag: IPMSenderTag;

CASE INTEGER OF

1: (rString: RString);

2: (rid: PackedRecordID);

END;

Parameter Block Header

IPMParamHeader = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

END;

Parameter Blocks for Creating a New Message

IPMNewMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

filler: LONGINT;

recipient: ^OCERecipient;

replyQueue: ^OCERecipient;

procHint: StringPtr;

filler2: INTEGER;

msgType: ^IPMMsgType;

refCon: LONGINT;

newMsgRef: IPMMsgRef;
7-142 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
filler3: INTEGER;

filler4: LONGINT;

identity: AuthIdentity;

sender: ^IPMSender;

internalUse: LONGINT;

internalUse2: LONGINT;

END;

IPMNewHFSMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

hfsPath: ^FSSpec;

recipient: ^OCERecipient;

replyQueue: ^OCERecipient;

procHint: StringPtr;

filler2: INTEGER;

msgType: ^IPMMsgType;

refCon: LONGINT;

newMsgRef: IPMMsgRef;

filler3: INTEGER;

filler4: LONGINT;

identity: AuthIdentity;

sender: ^IPMSender;

internalUse: LONGINT;

internalUse2: LONGINT;

END;

IPMAddRecipientPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

recipient: ^OCERecipient;

reserved: LONGINT;

END;
Summary of the IPM Manager 7-143

C H A P T E R 7

Interprogram Messaging Manager
IPMAddReplyQueuePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

filler: LONGINT;

replyQueue: ^OCERecipient;

END;

IPMNewBlockPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

blockType: IPMBlockType;

filler: ARRAY[1..5] OF INTEGER;

refCon: LONGINT;

filler2: ARRAY[1..3] OF INTEGER;

startingOffset: LONGINT;

END;

IPMNewNestedMsgBlockPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

recipient: ^OCERecipient;

replyQueue: ^OCERecipient;

procHint: StringPtr;

filler1: INTEGER;

msgType: ^IPMMsgType;

refCon: LONGINT;
7-144 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
newMsgRef: IPMMsgRef;

filler2: INTEGER;

startingOffset: LONGINT;

identity: AuthIdentity;

sender: ^IPMSender;

internalUse: LONGINT;

internalUse2: LONGINT;

END;

IPMNestMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

filler: ARRAY[1..9] OF INTEGER;

refCon: LONGINT;

msgToNest: IPMMsgRef;

filler2: INTEGER;

startingOffset: LONGINT;

END;

IPMWriteMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

mode: IPMAccessMode;

offset: LONGINT;

count: LONGINT;

buffer: Ptr;

actualCount: LONGINT;

currentBlock: BOOLEAN;

END;
Summary of the IPM Manager 7-145

C H A P T E R 7

Interprogram Messaging Manager
IPMEndMsgPB = PACKED RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

msgID: IPMMsgID;

msgTitle: ^RString;

deliveryNotification: IPMNotificationType;

priority: IPMPriority;

cancel: BOOLEAN;

padByte: Byte;

reserved: LONGINT;

signature: SIGSignaturePtr;

signatureSize: Size;

signatureContext: SIGContextPtr;

family: OSType; { family of this msg (e.g.,

 mail) use kIPMFamilyUnspecified

 by default }

END;

Parameter Blocks for Managing Message Queues

IPMCreateQueuePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

filler1: LONGINT;

queue: ^OCERecipient;

identity: AuthIdentity; { used only if queue is remote }

owner: ^PackedRecordID; { used only if queue is remote }

END;

IPMOpenContextPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;
7-146 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

contextRef: IPMContextRef; { context reference to be used in

 further calls}

END;

IPMOpenQueuePB = PACKED RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

contextRef: IPMContextRef;

queue: ^OCERecipient;

identity: AuthIdentity;

filter: ^IPMFilter;

newQueueRef: IPMQueueRef;

notificationProc: IPMNoteProcPtr;

userData: LONGINT;

noteType: IPMNotificationType;

padByte: Byte;

reserved: LONGINT;

reserved2: LONGINT;

END;

IPMChangeQueueFilterPB = IPMEnumerateQueuePB;

IPMCloseContextPB = IPMOpenContextPB;

IPMCloseQueuePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

queueRef: IPMQueueRef;

END;

IPMDeleteQueuePB = IPMCreateQueuePB;
Summary of the IPM Manager 7-147

C H A P T E R 7

Interprogram Messaging Manager
Parameter Blocks for Listing and Reading Messages

IPMEnumerateQueuePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

queueRef: IPMQueueRef;

startSeqNum: IPMSeqNum;

getProcHint: BOOLEAN;

getMsgType: BOOLEAN;

filler: INTEGER;

filter: ^IPMFilter;

numToGet: INTEGER;

numGotten: INTEGER;

enumCount: LONGINT;

enumBuffer: Ptr; { will be packed array of IPMMsgInfo }

actEnumCount: LONGINT;

END;

IPMOpenMsgPB = PACKED RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

queueRef: IPMQueueRef;

sequenceNum: IPMSeqNum;

newMsgRef: IPMMsgRef;

actualSeqNum: IPMSeqNum;

exactMatch: BOOLEAN;

padByte: Byte;

reserved: LONGINT;

END;

IPMOpenHFSMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;
7-148 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

hfsPath: ^FSSpec;

filler: LONGINT;

newMsgRef: IPMMsgRef;

filler2: LONGINT;

filler3: Byte;

reserved: LONGINT;

END;

IPMOpenBlockAsMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

filler: LONGINT;

newMsgRef: IPMMsgRef;

filler2: ARRAY[1..7] OF INTEGER;

blockIndex: INTEGER;

END;

IPMGetMsgInfoPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

info: ^IPMMsgInfo;

END;

IPMReadHeaderPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;
Summary of the IPM Manager 7-149

C H A P T E R 7

Interprogram Messaging Manager
ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

fieldSelector: INTEGER;

offset: LONGINT;

count: LONGINT;

buffer: Ptr;

actualCount: LONGINT;

filler: INTEGER;

remaining: LONGINT;

END;

IPMReadRecipientPB = PACKED RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

rcptIndex: INTEGER;

offset: LONGINT;

count: LONGINT;

buffer: Ptr;

actualCount: LONGINT;

reserved: INTEGER; { must be 0 }

remaining: LONGINT;

originalIndex: INTEGER;

recipientOffsetFlags: OCERecipientOffsetFlags;

END;

IPMReadReplyQueuePB = IPMReadRecipientPB;

IPMGetBlkIndexPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;
7-150 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
blockType: IPMBlockType;

index: INTEGER;

startingFrom: INTEGER;

actualBlockType: IPMBlockType;

actualBlockIndex: INTEGER;

END;

IPMReadMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

mode: IPMAccessMode;

offset: LONGINT;

count: LONGINT;

buffer: Ptr;

actualCount: LONGINT;

blockIndex: INTEGER;

remaining: LONGINT;

END;

IPMVerifySignaturePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

signatureContext: SIGContextPtr;

END;

IPMCloseMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;
Summary of the IPM Manager 7-151

C H A P T E R 7

Interprogram Messaging Manager
reqCode: INTEGER;

msgRef: IPMMsgRef;

deleteMsg: BOOLEAN;

END;

Parameter Blocks for Deleting Messages

IPMDeleteMsgRangePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

queueRef: IPMQueueRef;

startSeqNum: IPMSeqNum;

endSeqNum: IPMSeqNum;

lastSeqNum: IPMSeqNum;

END;

Parameter Block Union Structure

IPMParamBlock = RECORD

CASE INTEGER OF

 1:(header: IPMParamHeader);

 2:(openContextPB: IPMOpenContextPB);

 3:(closeContextPB: IPMCloseContextPB);

 4:(createQueuePB: IPMCreateQueuePB);

 5:(deleteQueuePB: IPMDeleteQueuePB);

 6:(openQueuePB: IPMOpenQueuePB);

 7:(closeQueuePB: IPMCloseQueuePB);

 8:(enumerateQueuePB: IPMEnumerateQueuePB);

 9:(changeQueueFilterPB: IPMChangeQueueFilterPB);

10:(deleteMsgRangePB: IPMDeleteMsgRangePB);

11:(openMsgPB: IPMOpenMsgPB);

12:(openHFSMsgPB: IPMOpenHFSMsgPB);

13:(openBlockAsMsgPB: IPMOpenBlockAsMsgPB);

14:(closeMsgPB: IPMCloseMsgPB);

15:(getMsgInfoPB: IPMGetMsgInfoPB);

16:(readHeaderPB: IPMReadHeaderPB);

17:(readRecipientPB: IPMReadRecipientPB);

18:(readReplyQueuePB: IPMReadReplyQueuePB);

19:(getBlkIndexPB: IPMGetBlkIndexPB);
7-152 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
20:(readMsgPB: IPMReadMsgPB);

21:(verifySignaturePB: IPMVerifySignaturePB);

22:(newMsgPB: IPMNewMsgPB);

23:(newHFSMsgPB: IPMNewHFSMsgPB);

24:(nestMsgPB: IPMNestMsgPB);

25:(newNestedMsgBlockPB: IPMNewNestedMsgBlockPB);

26:(endMsgPB: IPMEndMsgPB);

27:(addRecipientPB: IPMAddRecipientPB);

28:(addReplyQueuePB: IPMAddReplyQueuePB);

29:(newBlockPB: IPMNewBlockPB);

30:(writeMsgPB: IPMWriteMsgPB);

END;

IPMParamBlockPtr = ^IPMParamBlock;

IPM Manager Functions 7

Creating a New Message

FUNCTION IPMNewMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMNewHFSMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMAddRecipient (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMAddReplyQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMNewBlock (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMNewNestedMsgBlock
(paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMNestMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMWriteMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMEndMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;
Summary of the IPM Manager 7-153

C H A P T E R 7

Interprogram Messaging Manager
Managing Message Queues

FUNCTION IPMCreateQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMOpenContext (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMOpenQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMChangeQueueFilter
(paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMCloseQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMCloseContext (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMDeleteQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

Listing and Reading Messages

FUNCTION IPMEnumerateQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMOpenMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMOpenHFSMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMOpenBlockAsMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMGetMsgInfo (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMReadHeader (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMReadRecipient (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMReadReplyQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMGetBlkIndex (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMReadMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;
7-154 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
FUNCTION IPMVerifySignature
(paramBlock: IPMParamBlockPtr): OSErr;{ Always
synchronous }

FUNCTION IPMCloseMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

Deleting Messages

FUNCTION IPMDeleteMsgRange (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

Utility Routines

FUNCTION OCESizePackedRecipient
(rcpt: OCERecipient): INTEGER;

FUNCTION OCEPackRecipient (rcpt: OCERecipient; buffer: UNIV Ptr): INTEGER;

FUNCTION OCEUnpackRecipient
(buffer: UNIV Ptr; VAR rcpt: OCERecipient;
VAR entitySpecifier: RecordID): OSErr;

FUNCTION OCEStreamRecipient (rcpt: OCERecipient; stream:
OCERecipientStreamer;
userData: LONGINT; VAR actualCount: LONGINT):
OSErr;

FUNCTION OCEGetRecipientType
(cid: CreationID): OSType;

PROCEDURE OCESetRecipientType
(extensionType: OSType; VAR cid: CreationID);

Application-Defined Functions

FUNCTION MyCompletionRoutine
(paramBlk: Ptr);

FUNCTION MyRecipientStreamer
(VAR buffer: void; count: LONGINT; eof:
BOOLEAN; userData: LONGINT): OSErr;)
Summary of the IPM Manager 7-155

C H A P T E R 7

Interprogram Messaging Manager
Assembly-Language Summary 7

Trap Macros Requiring Routine Selectors

__OCETBDispatch

Selector Routine

$0400 IPMOpenContext

$0401 IPMCloseContext

$0402 IPMNewMsg

$0403 IPMAddRecipient

$0404 IPMNewBlock

$0405 IPMNewNestedMsgBlock

$0406 IPMNestMsg

$0407 IPMWriteMsg

$0408 IPMEndMsg

$0409 IPMOpenQueue

$040A IPMCloseQueue

$040B IPMOpenMsg

$040C IPMCloseMsg

$040D IPMReadMsg

$040E IPMReadHeader

$040F IPMOpenBlockAsMsg

$0410 IPMReadRecipient

$0411 IPMCreateQueue

$0412 IPMDeleteQueue

$0413 IPMEnumerateQueue

$0414 IPMChangeQueueFilter

$0415 IPMDeleteMsgRange

$0417 IPMOpenHFSMsg

$0418 IPMGetBlkIndex

$0419 IPMGetMsgInfo

$041D IPMAddReplyQueue

$041E IPMNewHFSMsg

$0421 IPMReadReplyQueue

$0422 IPMVerifySignature
7-156 Summary of the IPM Manager

C H A P T E R 7

Interprogram Messaging Manager

7
Interprogram

 M
essaging M

anager
__OCEMessaging

Result Codes 7
The allocated range of result codes for the Interprogram Messaging Manager is –15090
through –15169. Routines may also return result codes from other AOCE managers and
standard Macintosh result codes such as noErr 0 (no error) and fnfErr –43 (file not
found).

Selector Routine

$033E OCESizePackedRecipient

$033F OCEPackRecipient

$0340 OCEUnpackRecipient

$0341 OCEStreamRecipient

$0342 OCEGetRecipientType

$0343 OCESetRecipientType

noErr 0 No error
kOCEParamErr –50 Parameter error
kOCEConnectionClosed –1513 Network connection has closed
kIPMCantCreateIPMCatEntry –15090 Internal error
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidProcHint –15092 Process hint is invalid
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMUpdateCatFailed –15094 Internal error
kIPMMsgTypeReserved –15095 Message type reserved for system use
kIPMNotInABlock –15096 Specified starting point not within the message
kIPMNestedMsgOpened –15097 Nested message opened; cannot do operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMCorruptDataStructures –15099 Message is corrupt
kIPMAbortOfNestedMsg –15100 Canceled nested message
kIPMBlockIsNotNestedMsg –15101 Block is not message (IPMOpenBlockAsMsg)
kIPMCacheFillError –15102 Internal error
kIPMInvalidSender –15103 Sender is invalid
kIPMNoRecipientsYet –15104 Require recipient to send
kIPMInvalidFilter –15105 Filter is invalid
kIPMAttrNotInHdr –15106 Specified attribute not in message header
kIPMBlkNotFound –15107 Specified block nonexistent
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
kIPMBinBusy –15110 Internal error
kIPMCorruptedBin –15111 IPM BIN is damaged
kIPMBadQName –15112 Invalid queue name
kIPMEndOfBin –15113 Internal error
kIPMBinNeedsConversion –15114 IPM BIN needs conversion
kIPMMgrInternalErr –15115 Internal error
kIPMEltBusy –15116 Message or letter opened (on delete operation)
kIPMEltClosedNotDeleted –15117 Element was closed but not deleted
Summary of the IPM Manager 7-157

C H A P T E R 7

Interprogram Messaging Manager
kIPMBadContext –15118 Invalid reference
kIPMContextIsClosing –15119 Reference is closing
kIPMeoQ –15120 No more messages (IPMEnumerateQueue)
kIPMEltNotFound –15122 No such item or message
kIPMQBusy –15126 Specified queue busy; cannot delete
kIPMLookupAttrTooBig –15129 Attribute in lookup is too big
kIPMAccessDenied –15141 Access denied
kIPMNoAttrsFound –15146 No attributes found in lookup
kIPMBadMailSlotAttrVal –15149 Invalid mail slot attribute value
7-158 Summary of the IPM Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	 AOCE Utilities
	 Standard Mail Package TOC
	 Standard Mail Package
	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	 Digital Signature Manager
	 Interprogram Messaging Manager TOC
	Interprogram Messaging Manager
	About the IPM Manager
	About AOCE Interprogram Messages
	Message Queues
	Addresses
	Report Messages

	Addressing IPM Messages
	Direct Addressing
	AppleTalk Direct Addressing
	Telephone Direct Addressing

	Indirect Addressing
	Attribute-Type Indirect Addressing
	Queue-Name Format for Attribute Values

	Using the IPM Manager
	Determining Whether the Collaboration Toolbox is A...
	Determining the Version of the Collaboration Toolb...
	Error Handling
	Creating a Message
	Initiating the Message-Creation Process
	Adding Information to the Message
	Ending a Message

	Creating and Managing Message Queues
	Creating and Opening a Queue
	Specifying a Queue Filter and Enumerating a Queue
	Closing a Queue

	Reading Messages

	IPM Manager Reference
	Data Types
	Message Addressing Structures
	Message and Block Types
	Delivery Notification
	Filter Structures
	Message Information Structure
	Header Information Structures
	Sender Structure
	Interprogram Messaging Parameter Block Header

	Asynchronous or Synchronous Operations
	Completion Routines and Polling Options
	IPM Manager Functions
	Calling an IPM Function From Assembly Language
	Creating a New Message
	Managing Message Queues
	Listing and Reading Messages
	Deleting Messages
	Utility Functions

	Application-Defined Functions

	Summary of the IPM Manager
	C Summary
	Constants and Data Types
	IPM Manager Functions

	Pascal Summary
	Constants
	Data Types
	IPM Manager Functions

	Assembly-Language Summary
	Result Codes

	 Catalog Manager TOC
	 Catalog Manager, Part 1 (Introduction, About, and Using)
	 Catalog Manager, Part 2 (Reference)
	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	 Authentication Manager
	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

