

C H A P T E R 2

2

A
O

C
E

 U
tilities

AOCE Utilities 2

This chapter describes those data structures and utility functions that are used
throughout the Apple Open Collaborative Environment (AOCE) but are not specific to
any one particular manager or package. It describes the data structures you need to be
familiar with to use the AOCE toolbox functions and shows you how to use the AOCE
utility functions to manipulate these data structures in various ways.

You should read this chapter if you will be using the Standard Mail or Standard Catalog
Packages to add AOCE services to your application, are developing a stand-alone mail
or communications package that will use AOCE services, or if you are developing
lower-level AOCE entities such as catalog services access modules.

Before reading this chapter you should have at least a general understanding of the
Apple Open Collaborative Environment. At the minimum, you should have read the
chapter “Introduction to AOCE,” earlier in this book, which explains the organization
and use of the various AOCE managers and services.

About the AOCE Utilities 2

The AOCE toolbox contains over 60 utility functions that are designed to provide you
with easy methods for performing various tasks using the AOCE data structures. Here
are some of the services that the AOCE utility functions provide:

■ converting data structures to their packed forms (packing)

■ converting data structures from their packed forms (unpacking)

■ checking data structures to verify that they are in the proper format and contain valid
data for their particular type

■ comparing data structures for equality

■ copying the contents of one data structure to another

■ converting variables from one data type to another

■ determining the size of data structures

■ determining whether a given data structure is null or empty

Unless otherwise noted, all of the AOCE utility functions described in this chapter can be
called at interrupt level and do not allocate any memory.

AOCE Data Structures of Maximum and Minimum Size 2
Some of the AOCE data structures are defined as maximum- or minimum-sized
structures. A maximum-sized structure is one that, upon creation, contains enough
storage to hold the maximum amount of data possible for that particular type of data
structure. An example of a maximum-sized AOCE structure is the RString structure
shown here and defined on page 2-20.
About the AOCE Utilities 2-3

C H A P T E R 2

AOCE Utilities

struct RString

{

RStringHeader

Byte body[kRStringMaxBytes];

};

When you create a new RString structure, it contains enough memory to hold 256
bytes of data in its body field, plus the number of bytes necessary for the
RStringHeader field. You never need to allocate any additional memory for the
structure.

By contrast, a minimum-sized structure is one that, upon creation, contains only the
minimum necessary storage. The minimum storage varies according to the type of data
structure. An example of a minimum-sized structure is the ProtoRString structure
shown here and defined on page 2-22.

struct ProtoRString

{

RStringHeader

};

As you can see, the ProtoRString structure differs from the RString structure in that
it does not contain a body field. Therefore, when you create a ProtoRString structure
for the first time, it contains only enough memory to hold the information in its
RStringHeader field. If you want to store any additional data in the ProtoRString
structure, you will have to allocate the memory. See the section “Allocating AOCE
Strings of Nonstandard Sizes” on page 2-16 for details on how to allocate additional
memory for a ProtoRString structure.

The advantage of using minimum-sized AOCE data structures is that you can allocate
structures of any size and can save memory by allocating structures that are exactly the
size you need. The disadvantage of using minimum-sized AOCE data structures is that
you will have to remember to allocate additional storage for the structure as you need it,
and you will have to write more code to allocate each structure.

After declaring a variable as a minimum-sized AOCE structure, you may sometimes find
that you need to allocate it as a maximum-sized structure. See the section “Allocating a
RecordID Structure of Maximum Size” on page 2-16 for more information.
2-4 About the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2

A
O

C
E

 U
tilities

Using the AOCE Utilities 2

This section describes how you can use various AOCE utility functions and data
structures in your own code. Many of the AOCE utility functions have similar
characteristics and can be grouped according to the type of operations they perform.
This section explains most of the major groups of AOCE utility functions and provides
you with background knowledge that may help you understand how to use these
functions.

Determining Whether the Collaboration Toolbox Is Available 2
Before calling any of the AOCE Utility functions, you should verify that the
Collaboration toolbox is available by calling the Gestalt function with the selector
gestaltOCEToolboxAttr. If the Collaboration toolbox is present but not running (for
example, if the user deactivated it from the PowerTalk Setup control panel), the
Gestalt function sets the bit gestaltOCETBPresent in the response parameter. If
the Collaboration toolbox is running and available, the function sets the bit
gestaltOCETBAvailable in the response parameter. The Gestalt Manager is
described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.

Packing and Unpacking the AOCE Data Structures 2
Several of the AOCE data structures contain fields that are themselves structures, and
these may in turn contain other nested structures. It is sometimes useful to compact, or
“flatten” a complex data structure into a sequence of bytes in order to perform an
operation more efficiently. This process is known as packing the data structure.
Similarly, the process of reconstructing a data structure from a sequence of bytes is
known as unpacking the data structure.

Many of the AOCE functions pass packed structures. Because the packed forms of these
structures are private, you can’t read or write them unless you use the utility routines to
pack and unpack them.

Another reason for using the packed form of a data structure is to simplify I/O related
tasks, such as writing the information contained in a data structure to a file, or sending
the data to a serial port. In its packed form, the data is usually just a stream of bytes,
which is much easier to work with in I/O operations.

The AOCE toolbox simplifies the processes of packing and unpacking by providing
unpacked and packed forms of many of its data structures, as well as the utility
functions to convert between the two forms. All of the AOCE packing functions begin
with the letters OCEPack followed by the name of the data structure they pack, and all of
the AOCE unpacking functions begin with the letters OCEUnpack followed by the name
of the data structure they unpack. For example, the AOCE packing function that packs
RecordID structures is named OCEPackRecordID.
Using the AOCE Utilities 2-5

C H A P T E R 2

AOCE Utilities

Table 2-1 shows the AOCE data structures that have packed forms, along with the
functions used to convert between the packed and unpacked forms.

Note
The Rstring structure is shown in Table 2-1 as the unpacked form of
the PackedPathName structure. This is actually a special case because
the unpacked form of the PackedPathName structure is an array of
RString structures. See the description of the PackedPathName
structure on page 2-29 for more information. To create a
PackedPathName structure, you need to supply an array of RString
structures to the OCEPackPathName function (page 2-60). ◆

Unpacking Catalog Specifications 2

The catalog services specification data structure, of data type DSSpec, is central to
accessing information within PowerTalk. Unpacking a PackedDSSpec structure is the
process of converting the sequence of bytes in a PackedDSSpec structure into the
structure of a DSSpec. In its packed form, the DSSpec structure contains other data
structures that are also packed, so you must unpack each component as well as the
PackedDSSpec structure itself.

Listing 2-1 shows how to unpack a DSSpec structure completely into its component
parts, including its nested packed structures.

1. First, allocate a DSSpec structure (DSSpecDumpRecord) in which to store the
contents of the PackedDSSpec structure when you unpack it. Also declare Boolean
variables to record whether the various parts of the structure are valid.

Table 2-1 AOCE packed data structures and functions used to pack and unpack them

Unpacked data structure Packed data structure Packing/unpacking functions

RString PackedPathName OCEUnpackPathName

OCEPackPathName

RLI PackedRLI OCEPackRLI

OCEUnpackRLI

OCEPackedRLIPartsSize

OCEPackRLIParts

RecordID PackedRecordID OCEPackRecordID

OCEUnpackRecordID

DSSpec PackedDSSpec OCEPackDSSpec

OCEUnpackDSSpec
2-6 Using the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2

A
O

C
E

 U
tilities

2. Call the Standard Catalog Package function SDPGetPanelSelectionSize to obtain
the size of the PackedDSSpec structure and then allocate memory for it. Call
SDPGetPanelSelection to retrieve the PackedDSSpec structure.

3. Call the UnpackPackedDSSpec function to unpack the PackedDSSpec structure.
Pass the function a pointer to the PackedDSSpec structure to be unpacked and a
pointer to the DSSpec structure to hold its component parts.

4. Call the DoDisplayDSSpecDumpRecord function (which is not shown here) to use
the information that you have retrieved from the PackedDSSpec structure; for
example, to display the contents of a record that a user has selected.

5. It is possible that the PackedDSSpec structure you obtained from the
SDPGetPanelSelection routine contains corrupted data. Therefore, you should
check the integrity of the PackedDSSpec structure and of each of the nested packed
structures that it contains before unpacking them. The DoUnpackPackedDSSpec
function calls a series of AOCE utility functions to verify the integrity of the packed
structures and to unpack them. The validation functions are nested in conditional
statements. If any of the structures is invalid, the code prints an error message
specifying which structure was corrupted. (The error messages are in the else
statements at the end of Listing 2-1.)
n The OCEValidPackedDSSpec and OCEUnpackDSSpec functions verify and

unpack the packed DSSpec structure itself. The OCEGetDSSpecInfo function
returns the type of the DSSpec structure.

n The OCEValidPackedRLI and OCEUnpackRLI functions verify and unpack the
packedRLI structure contained in the unpacked DSSpec structure.

n The unpacked RLI structure contains a PackedPathName structure that you must
unpack. However, before unpacking it, you call OCEDNodeNameCount to obtain
the presumed number of pathnames. Then you allocate a vector to hold the
RString structures that make up the pathname list. Finally, you call
OCEUnpackPathName to unpack the PackedPathName buffer. If the presumed
number of pathnames matches the actual number returned by
OCEUnpackPathName, you are done.

Listing 2-1 Unpacking a DSSpec structure

/* In the example, the following external functions are defined:

 DoNOTE(message) Write the message to the error log.

 DoFailOSErr(status, msg) If status is not noErr, begin error recovery.

 DoFailNIL(ptr) If ptr is nil, begin error recovery. This is

 generally an unexpected, serious, error.

 The argument PackedDSSpec is stored in a private structure,

 DSSpecDumpRecord. Members of this structure contain pointers to the

 packed DSSpec.*/

typedef struct DSSpecDumpRecord {

 DSSpec theDSSpec; /* Unpacked DSSpec */
Using the AOCE Utilities 2-7

C H A P T E R 2

AOCE Utilities
 RecordID recordID; /* Its record ID structure */

 RLI theDSSpecRLI; /* Its unpacked Record Location Info */

 OSType specType; /* The type of this DSSpec */

 unsigned short nodeNameCount; /* Presumed number of pathnames */

 unsigned short trueNodeNameCount; /* Actual number of pathnames */

 RStringPtr *partsVector; /* -> vector of pathname RStrings */

/* These Boolean variables record the status of the DSSpec. They are true if

 the associated part of the structure is present and in good condition. */

 Boolean isValidDSSpec; /* OCEValidPackedDSSpec succeeds */

 Boolean isNonNullRLI; /* RLI is present in this DSSpec */

 Boolean isValidPackedRLI; /* OCEValidPackedRLI succeeds */

 Boolean isValidPackedPathName; /* OCEValidPackedPathName succeeds */

 Boolean isValidUnpackedCount; /* Unpacked count == presumed count */

} DSSpecDumpRecord, *DSSpecDumpPtr;

void

DoUnpackSDPPanelSelection(

 register DocumentPtr dbp,

 SDPPanelHandle thePanel

)

{

 OSErr status;

 PackedDSSpecPtr packedDSSpec;

 unsigned short packedDSSpecSize;

 DSSpecDumpRecord dumpRecord;

/* Allocate memory for the DSSpec and get it from the Standard

 Directory Manager. */

 status = SDPGetPanelSelectionSize(thePanel, &DpackedDSSpecSize);

 DoFailOSErr(status, "\pSDPGetPanelSelectionSize");

 packedDSSpec = (PackedDSSpecPtr) NewPtrClear(packedDSSpecSize);

 DoFailNIL(packedDSSpec);

 status = SDPGetPanelSelection(thePanel, packedDSSpec);

 DoFailOSErr(status, "\pSDPGetPanelSelection");

 DoUnpackPackedDSSpec(packedDSSpec, &dumpRecord);

 DoDisplayDSSpecDumpRecord(&dumpRecord); /* Not shown */

 if (dumpRecord.partsVector != NULL)

 DisposePtr((Ptr) dumpRecord.partsVector);

 if (packedDSSpec != NULL)
2-8 Using the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
 DisposePtr((Ptr) packedDSSpec);

}

void

DoUnpackPackedDSSpec(

 PackedDSSpecPtr packedDSSpec

 register DSSpecDumpPtr theDSSpecDumpPtr

)

{

#define SPEC (*theDSSpecDumpPtr)

 ClearMemory(&SPEC, sizeof SPEC);

 SPEC.isValidDSSpec = OCEValidPackedDSSpec(packedDSSpec);

 if (SPEC.isValidDSSpec) {

 OCEUnpackDSSpec(packedDSSpec, &SPEC.theDSSpec, &SPEC.recordID);

 SPEC.specType = OCEGetDSSpecInfo(&SPEC.theDSSpec);

 SPEC.isNonNullRLI = (SPEC.recordID.rli != NULL);

 if (SPEC.isNonNullRLI) {

 SPEC.isValidPackedRLI = OCEValidPackedRLI(SPEC.recordID.rli);

 if (SPEC.isValidPackedRLI) {

 OCEUnpackRLI(SPEC.recordID.rli, &SPEC.theDSSpecRLI);

 SPEC.isValidPackedPathName =

 OCEValidPackedPathName(SPEC.theDSSpecRLI.path);

 /* SPEC.isValidPackedPathName is false if you click

 on a printer or CPU in the AppleTalk directory. */

 if (SPEC.isValidPackedPathName) {

 SPEC.nodeNameCount =

 OCEDNodeNameCount(SPEC.theDSSpecRLI.path);

 /* Allocate a vector to hold the RStrings that make

 up the pathname list. Then unpack the pathname

 list. */

 SPEC.partsPtr = (RStringPtr *) NewPtrClear(

 sizeof (RStringPtr) * SPEC.nodeNameCount

);

 DoFailNIL(SPEC.partsPtr);

 SPEC.trueNodeNameCount= OCEUnpackPathName(

 SPEC.theDSSpecRLI.path,

 SPEC.partsPtr,

 SPEC.nodeNameCount

);
Using the AOCE Utilities 2-9

C H A P T E R 2

AOCE Utilities
 if (SPEC.nodeNameCount == SPEC.trueNodeNameCount)

 SPEC.isValidUnpackedCount = true;

 else {

 NOTE("\pUnpacked Node Name Count != Node Name

 Count");

 }

 else {

 NOTE("\pInvalid PackedPathName");

 }

 }

 else {

 NOTE("\pInvalid Packed RLI");

 }

 }

 else {

 NOTE("\pValid DSSpec but NULL RLI");

 }

 }

 else {

 NOTE("\pInvalid Packed DSSpec");

 }

}

Validating the AOCE Data Structures 2
The AOCE toolbox provides a set of validation functions that allow you to verify the
integrity of the various AOCE data structures. All of the AOCE validation functions
begin with the letters “OCEValid” and are followed by the name of the data structure
that they validate. For example, the AOCE validation function for PackedDSSpec
structures is called OCEValidPackedDSSpec. Table 2-1 on page 2-6 shows the AOCE
validation functions along with the data structures that each function validates. You
should use the AOCE validation functions whenever you want to make sure that the
AOCE data structures allocated in your program

■ are valid values for that data type

■ contain fields that have valid values

■ are of a valid size

■ contain fields of a valid size

The way the AOCE validation functions verify the integrity of a data structure depends
upon the type of structure being examined. In general, however, AOCE validation
functions perform the following checks:

■ They determine whether the pointer to the data structure is nil or the data structure
has a length of 0 and whether these are permissible values for this data structure.
2-10 Using the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
■ They determine if the data structure or any of its fields contain values that are not
valid for that particular data structure.

■ They determine if the value contained in any length fields of the data structure is
equal to the number of bytes of data actually contained in that field.

■ If the data structure contains fields that are other AOCE data structures, then the
validation function passes these fields to other AOCE validation functions until all of
the data structure’s fields are checked. If the AOCE validation function cannot
validate a field, it does not check that field but does check the rest of the data structure
for validity.

■ For packed data structures, the AOCE validation functions check that the packed data
structure is at least as large or larger than the smallest possible packed structure of
that type. This ensures that the data structure is at least large enough to hold the
minimum amount of data in all of its fields.

Listing 2-2 shows how to use the OCEValidPackedPathName function (page 2-62) to
compare a PackedPathName structure for validity. This sample code calls the
OCEValidPackedPathName function two different times to illustrate cases when the
PackedPathName structure is valid and when it is not valid. The
MyValidatePackedPathName function assumes the existence of a routine named
DoErrorChecking, which handles any memory errors. For information on the
PackedPathName structure see page 2-29.

Listing 2-2 Validating a PackedPathName structure

MyValidatePackedPathName()

{

PackedPathName* myPackedPathName;

PackedPathName* myNilPackedPathName;

Boolean isValid; /* value returned by

OCEValidPackedPathName/*

Table 2-2 AOCE validation functions and associated data structures

Verify function name Data structure verified

OCEValidRString RString

OCEValidPackedPathName PackedPathName

OCEValidRLI RLI

OCEValidPackedRLI PackedRLI

OCEValidPackedRecordID PackedRecordID

OCEValidPackedDSSpec PackedDSSpec
Using the AOCE Utilities 2-11

C H A P T E R 2

AOCE Utilities
/* First call OCEValidPackedPathName with a nil pointer. */

myNilPackedPathName = nil;

/* The AOCE toolbox does not consider nil PackedPathName

pointers to be valid, so this call to OCEValidPackedPathName

returns false in the isValid variable. */

isValid = OCEValidPackedPathName(myNilPackedPathName);

/* Allocate a PackedPathName structure. */

myPackedPathName = (PackedPathName *)

NewPtr(sizeof(PackedPathName);

DoErrorChecking(); /* make sure the PackedPathName allocation

didn’t fail */

myPackedPathName->dataLength = 0;/* set the length of the

PackedPathName to 0 */

/* The AOCE toolbox considers a PackedPathName with a length of

0 to be valid, so this call to OCEValidPackedPathName

returns true in the isValid variable. */

isValid = OCEValidPackedPathName(myPackedPathName);

}

Comparing AOCE Data Structures for Equality 2
The AOCE toolbox provides a set of functions that allow you to compare the AOCE data
structures for equality. All the AOCE equality functions begin with the letters OCEEqual
and are followed by the type of the data structures being compared. For example, the
AOCE equality function that compares two RString structures is called
OCEEqualRString. The AOCE equality functions and the data structures that they
compare are shown in Table 2-1 on page 2-6.

The actual method used to determine the equality of the data structures varies with their
type. Before using any equality function, you should read its description to find out
exactly how that function compares the data structures for equality. For example, the
OCEEqualPackedPathName function (page 2-61) considers two PackedPathName
structures to be equal if these three conditions are met: (a) one of the pointers passed into
the function is nil, (b) the other pointer is not nil, and (c) the pointer that is not nil
does point to a PackedPathName structure that has a length of 0. In general, each
AOCE equality function acts as follows when comparing two structures for equality:

■ If the data structures are packed, then the AOCE equality function unpacks them
before comparing them. This has no effect on the original data structures.

■ If the pointers to the data structures are both nil, then they are equal.
2-12 Using the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
■ If the data structures are not the same length, then they are not equal and no further
comparisons are performed on them.

■ If the data structures have fields that are other AOCE data structures, then the AOCE
equality function compares these nested structures by calling the appropriate AOCE
equality functions for these data structure types. This process is repeated for each
nested data structure. If any of the nested structures are not equal, then the AOCE
equality function returns false, indicating that the original data structures are not
equal.

Copying AOCE Data Structures 2
The AOCE toolbox provides a set of functions for copying the contents of one AOCE
data structure into another. You should use the AOCE copy functions whenever you
want to copy the contents of one AOCE data structure into another.

None of the utility functions allocates any memory. Therefore, before you call an AOCE
copy function, you need to make sure you have allocated both the source and
destination structures. The AOCE copy function returns an error if the structures you
allocate are too small. You should always check the value returned by an AOCE copy
function to make sure that the copy took place successfully.

All of the AOCE copy functions begin with the letters OCECopy and are followed by the
name of the data structure type that they copy. For example, the AOCE function for
copying two CreationID structures is OCECopyCreationID. See Table 2-1 on page 2-6
for a list of the AOCE copy functions and the data structures that they copy.

Table 2-3 AOCE equality functions and associated data structures

Equality Function Name Data Structures Compared

OCEEqualRString RString

OCEEqualCreationID CreationID

OCEEqualPackedPathName PackedPathName

OCEEqualDirDiscriminator DirDiscriminator

OCEEqualRLI RLI

OCEEqualPackedRLI PackedRLI

OCEEqualLocalRecordID LocalRecordID

OCEEqualShortRecordID ShortRecordID

OCEEqualRecordID RecordID

OCEEqualPackedRecordID PackedRecordID

OCEEqualDSSpec DSSpec

OCEEqualPackedDSSpec PackedDSSpec
Using the AOCE Utilities 2-13

C H A P T E R 2

AOCE Utilities
Listing 2-3 illustrates the correct way to call an AOCE copy function. The
MyCopyingCode function uses the OCECopyRString (page 2-45) utility routine to copy
the sourceRString structure. The sourceRString structure is assumed to be a valid
RString structure that has already been allocated and initialized elsewhere. The
MyCopyingCode function also uses the Macintosh toolbox routine MemErr to check for
memory allocation errors. In addition, the myCopyingCode function assumes the
existence of a function named DoErrorHandling that handles an error if one occurs.

Listing 2-3 Calling a copy function

MyCopyingCode(RString* sourceRString)

{

/* This function assumes that the sourceRString parameter is

a pointer to a valid RString containing data to be copied.

*/

OSErr myError; /* this variable holds the value returned

by the OCECopyRString function */

RString* destinationRString; /* pointer to the RString that

you want to copy the contents

of sourceRString into */

destinationRString = nil; /* initialize the pointer to a

“safe” value before

continuing... */

myError = noErr; /* initialize error to none */

/* Here is the correct way to call OCECopyRString. This

 code allocates the destinationRString variable to the

correct size before calling the OCECopyRString function. */

destinationRString = (RString *)NewPtr(sizeof(RString));

/* Check if memory allocation failed by calling MemError

Toolbox function. */

if (MemError() != noErr)

{

/* There was an error. Call your error handler. */

DoErrorHandling(myError);

}

/* Otherwise the RString was allocated properly. */

myError = OCECopyRString(sourceRString, destinationRString);

if (myError != noErr)

{

2-14 Using the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
/* There was an error. Call your error handler. */

DoErrorHandling(myError);

}

}

Copying Versus Duplicating AOCE Data Structures 2
There is a single AOCE duplication function, OCEDuplicateRLI; it is used to duplicate
RLI data structures. The difference between copying and duplicating as performed by
AOCE toolbox functions is subtle but important. In this context, copying is taking the
contents of each field in the source structure and placing them in the corresponding field
of the destination structure. This process includes all nested structures as well.

However, some AOCE data structures, such as RLI structures, contain fields that are
pointers to other nested data structures. For this reason, it is possible to change the
pointers in the destination structure so that they point to the corresponding data
structures in the source structure. This process of copying the pointers to data structures
and not the actual data structures themselves, is called duplicating the data structures.
This distinction between copying and duplicating applies only to the AOCE utility
functions, and not to other APIs.

There are advantages and disadvantages to duplicating a data structure as opposed to
copying it, and you must decide when it is appropriate to use duplication or copying in
your own code. The advantage of duplicating a data structure is that it is much faster
and requires less code than copying because only a pointer must be moved instead of a
whole data structure.

The disadvantage of duplication is that you must keep both the source and destination
structures in memory until you have finished using them. Here is the reason why: When
you duplicate a structure, the pointers in the destination structure change to point to the
source structure. Thus, after you duplicate a data structure, there is really only one copy
of the data, but that data is pointed to by both the source and destination structures.

Table 2-4 AOCE copying and duplicating functions and associated data structures

Copying Function Name Data Structure Copied

OCECopyRString RString

OCECopyCreationID CreationID

OCECopyPackedPathName PackedPathName

OCECopyDirDiscriminator DirDiscriminator

OCECopyRLI RLI

OCEDuplicateRLI RLI

OCECopyPackedRLI PackedRLI

continued
Using the AOCE Utilities 2-15

C H A P T E R 2

AOCE Utilities
Allocating AOCE Strings of Nonstandard Sizes 2
Three standard AOCE string sizes are defined for you by the RString, RString64, and
RString32 structures. There are times, however, when you may wish to create an
AOCE string of arbitrary size to store specialized data. Listing 2-4 shows how to
accomplish this task. This example allocates an AOCE string that has a size of 23 bytes.

Listing 2-4 Allocating a string to store specialized data

ProtoRString *rstr; /* create a pointer to a

ProtoRString struct */

rstr = NewPtr(23+sizeof(RStringHeader)); /* allocate memory for it

including its header

information */

if (rstr == nil)

{

/* Then allocation has failed; not enough memory available.

 Put your error handling here. */

}

rstr->charSet = smRoman; /* set script code to Roman */

rstr->length = 23; /* set the proper length */

Allocating a RecordID Structure of Maximum Size 2
When you allocate a new minimum-sized structure for the first time, memory is not
automatically allocated for any of its fields except the header. There are times, however,
when you may want to create a structure that has all of the memory for its fields
allocated, thus ensuring that you have enough memory to hold a maximum-sized
structure. For more information on minimum and maximum-sized AOCE structures, see
“AOCE Data Structures of Maximum and Minimum Size” on page 2-3.

OCECopyLocalRecordID LocalRecordID

OCECopyShortRecordID ShortRecordID

OCECopyRecordID RecordID

OCECopyPackedRecordID PackedRecordID

OCECopyPackedDSSpec PackedDSSpec

Table 2-4 AOCE copying and duplicating functions and associated data structures (continued)

Copying Function Name Data Structure Copied
2-16 Using the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
Listing 2-5 shows two functions, MyAllocateMaxRID and MyDeallocateMaxRID,
which allocate and dispose of a maximum-sized RecordID structure. The
MyAllocateMaxRID function uses the AOCE utility routine
OCESetCreationIDtoNULL (page 2-54) to initialize the fields of a CreationID
structure to NULL values. In addition, this function uses the Macintosh Toolbox routine
MemErr to check for memory allocation errors.

Listing 2-5 Allocating and disposing of a maximum-sized RecordID structure

/* This function allocates a maximum-sized recordID structure*/

OSErr MyAllocateMaxRID(RecordID *rid)

{

OSErr err; /* The error, if any, returned

by AllocateMaxRID */

PackedRLIPtr rli; /* Pointer to a packed RLI */

RString *name; /* The record name */

RString *type; /* The record type */

rid->local.recordName = nil; /* Initialize the record */

rid->local.recordType = nil; /* name, type, and rli to */

rid->rli = nil; /* nil */

/* Now allocate memory for a maximum-sized RString to hold

the record name. */

name = (RString*) NewPtr(sizeof(RString));

err = MemError();

if (err == noErr)

{

/* Now allocate space for the RString to hold the

record type. */

type = (RString*) NewPtr(sizeof(RString));

err = MemError();

if (err == noErr)

{

/* Finally, allocate the memory for the packed RLI. */

rli = (PackedRLIPtr) NewPtr(sizeof(PackedRLI));

err = MemError();
Using the AOCE Utilities 2-17

C H A P T E R 2

AOCE Utilities
if (err == noErr)

{

/* Now that all storage has been allocated, assign

it to its proper location. */

rid->local.recordName = name;

rid->local.recordType = type;

rid->rli = rli;

/* Set the RLI’s length field to its maximum size */

rli->length = kRLIMaxBytes;

/* Set the name and type RString’s length fields to

their maximum size. */

name->length = kRStringMaxBytes;

type->length = kRStringMaxBytes;

/* Now initialize the creation ID by setting it to

NULL. */

OCESetCreationIDtoNull(&(rid->local.cid));

}

}

}

if (err != noErr) /* if there was an error during memory */

allocation, dispose of the record ID

and return the error to the caller */

{

MyDeallocateMaxRID(rid);/* call function described next */

}

return err;

}

/* This function deallocates a record ID whose fields were

allocated on the heap. */

void MyDeallocateMaxRID(RecordID *rid)

{

DisposPtr((Ptr) rid->local.recordName);
2-18 Using the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
DisposPtr((Ptr) rid->local.recordType);

DisposPtr((Ptr) rid->rli);

}

AOCE Utilities Reference 2

This section describes the data structures that are used throughout the various AOCE
managers and packages and the utility functions that manipulate these data structures.

AOCE Data Structures 2
The data types described in this chapter are used throughout AOCE and are not confined
to a particular manager or package.

AOCE String Structures 2

The AOCE string structures are used by AOCE functions in place of standard Pascal
strings because AOCE strings can handle international character sets that may consist of
2 bytes per character and because AOCE strings include the script code for the character
set of the data they contain. Standard Pascal strings use only 1 byte per character. All of
the AOCE string structures consist of an RStringHeader field and a body field. The
RStringHeader field contains information about the AOCE string, such as its character
set and length, whereas the body field holds the actual string contents.

RStringHeader 2

The header is the portion of each AOCE string that defines the particular qualities that
apply to the string’s contents. Each header contains the field charSet, which is used to
specify the character set, or script code, corresponding to the script you should use to
interpret the AOCE string. A script code represents a writing system for a human
language, such as Roman, Kanji, or Arabic, and the charSet field is the same as the
script code used by the Script Manager to specify a particular script. See Inside Macintosh:
Text for more information about script codes and international character sets, as well as
for a listing of defined script code constants.

The header is defined as follows:

#define RStringHeader \

CharacterSet charSet; \

unsigned short dataLength;

typedef short CharacterSet;
AOCE Utilities Reference 2-19

C H A P T E R 2

AOCE Utilities
Field descriptions

charSet The character set that applies to the text contained in the RString.
datalength The length, in bytes, of the body field of the RString structure, not

including the header. Note that for 2-byte character sets, such as
Kanji, the number of characters in the RString structure is half the
number of bytes in the body field.

RString 2

The RString structure is the basis for most strings in AOCE, as well as for other AOCE
data types such as the DirectoryName, AttributeType, and NetworkSpec
structures. The maximum number of bytes in an RString structure is defined by the
constant kRStringMaxBytes, and the maximum number of characters in an RString
structure is defined by the constant kRStringMaxChars.

Because the RString structure is of maximum size, it is already large enough to hold
any other valid RString structure when you allocate it. For a minimum-sized AOCE
string structure, see the ProtoRString type on page 2-22. The RString structure is
defined as follows:

struct RString

{

RStringHeader

Byte body[kRStringMaxBytes];

};

typedef struct RString RString;

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString structure and
specifies the length, in bytes, of the data in the body field of the
RString structure.

body An array containing the actual RString structure’s characters. The
array has a length of kRStringMaxBytes number of bytes and
contains as many bytes of data as specified by the dataLength
field of the header. The constant kRStringMaxBytes is equal to
256 bytes.

RString64 2

The RString64 structure is identical to an RString structure, except that its maximum
size is smaller. The RString64 length is defined by the constant kRString64Size.
2-20 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
struct RString64

{

RStringHeader

Byte body[kRString64Size];

};

typedef struct RString64 RString64;

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString64 structure and
specifies the length, in bytes, of the data in the body field of the
RString64 structure.

body An array containing the actual RString64 structure’s characters.
The array has a length of kRString64Size number of bytes and
contains as many bytes of data as specified by the dataLength
field of the header. The constant kRString64Size is equal to 64
bytes.

RString32 2

The RString32 structure is identical to an RString structure, except that its maximum
size is smaller. The RString32 structure’s length is defined by the constant
kRString32Size.

struct RString32

{

RStringHeader

Byte body[kRString32Size];

};

typedef struct RString32 RString32;

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString32 structure and
specifies the length, in bytes, of the data in the body field of the
RString32 structure.

body An array containing the actual RString32 structure’s characters.
The array has a length of kRString32Size number of bytes and
contains as many bytes of data as specified by the dataLength
field of the header. The constant kRString32Size is equal to 32
bytes.
AOCE Utilities Reference 2-21

C H A P T E R 2

AOCE Utilities
ProtoRString 2

The ProtoRString is the only AOCE string structure of minimum size; it initially has
no space allocated for the string contents. You should use a ProtoRString structure
whenever you need to create an AOCE string of variable length.

struct ProtoRString

{

RStringHeader

/* Define the body of the ProtoRstring here. */

};

typedef struct ProtoRString ProtoRString;

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString structure and
specifies the length, in bytes, of the data in the body field of the
RString structure.

Note
The ProtoRString structure does not have a defined body field as do
the other AOCE string structures. It is up to you to add a body field for
the ProtoRString structure. See the section “Allocating AOCE Strings
of Nonstandard Sizes” on page 2-16 for an example of how to do this. ◆

DirectoryName 2

A DirectoryName structure consists of a character set code, a length containing the
number of bytes in the body field, and the data in the body field. A DirectoryName
structure is identical to an RString structure, except that its maximum length is defined
by the constant kDirectoryNameMaxBytes and its body field holds the name of a
catalog (it is called a DirectoryName structure for historical reasons). You can typecast
any DirectoryName structure to an RString structure and use the RString utility
functions on it. The RString utility functions are described starting on page 2-45.

struct DirectoryName

{

RStringHeader

Byte body[kDirectoryNameMaxBytes];

};

typedef struct DirectoryName DirectoryName;
2-22 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString structure and
specifies the length, in bytes, of the data in the body field of the
RString structure.

body An array of characters that contains the name of a catalog. This
array can contain up to kDirectoryNameMaxBytes number of
bytes and contains as many bytes of data as specified by the
dataLength field of the header. The constant
kDirectoryNameMaxBytes is equal to 32 bytes.

NetworkSpec 2

A NetworkSpec structure consists of a character set code, a length containing the
number of bytes of data, and the data itself. A NetworkSpec structure is identical to an
RString structure, except that its maximum length is defined by the constant
kNetworkSpecMaxBytes and its body field is used to hold the name of a network. You
can typecast any NetworkSpec structure to an RString structure and use any of the
RString utility functions on it. The RString utility functions are described starting on
page 2-45.

For an example of how some functions use the NetworkSpec structure, see the
DirGetLocalNetworkSpec and DirGetDNodeInfo functions in the chapter “Catalog
Manager” in this book.

struct NetworkSpec

{

RStringHeader

Byte body[kNetworkSpecMaxBytes];

};

typedef struct NetworkSpec NetworkSpec;

The RStringHeader, described on page 2-19, defines the character set information that
applies to the text of the RString structure and specifies the length, in bytes, of the
body field of the RString structure.

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString structure and
specifies the length, in bytes, of the data in the body field of the
RString structure.
AOCE Utilities Reference 2-23

C H A P T E R 2

AOCE Utilities
body An array of characters that contains the name of a network. This
array can contain up to kNetworkSpecMaxBytes number of bytes
and contains as many bytes of data as specified by the dataLength
field of the header. The constant kNetworkSpecMaxBytes is equal
to 32 bytes.

RStringKind 2

Some of the AOCE utility functions require a parameter of type RStringKind in
addition to an AOCE string parameter. Based on the value of the parameter of type
RStringKind, the routine determines how it will handle the RString structure. The
OCERelRString (page 2-48), OCEEqualRString (page 2-50), and OCEValidRString
(page 2-51) functions use the RStringKind data type. When you call one of these
functions, you need to decide what value of the RStringKind type to use.

enum

{

kOCEDirName = 0,

kOCERecordOrDNodeName = 1,

kOCERecordType = 2,

kOCENetworkSpec = 3,

kOCEAttrType = 4,

kOCEGenericSensitive = 5,

kOCEGenericInsensitive =6

};

typedef unsigned short RStringKind;

Field descriptions

kOCEDirName The AOCE string is a DirectoryName structure containing a
catalog name. For more information about the DirectoryName
structure see page 2-22.

kOCERecordOrDNodeName
The AOCE string is a recordName structure containing a record
name or a catalog node name. See the LocalRecordId structure
on page 2-27 for the definition of the recordName structure.

kOCERecordType
The AOCE string is a recordType structure containing a record
type. See the LocalRecordId structure on page 2-27 for more
information on the recordType structure.

kOCENetworkSpec
The AOCE string is a NetworkSpec structure containing a network
specification. See page 2-23 for more information on the
NetworkSpec structure.
2-24 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
kOCEAttrType The AOCE string is an AttributeType structure containing an
attribute type. For more information on the AttributeType
structure see page 2-39.

kOCEGenericSensitive
The AOCE string is a generic AOCE string type that you should use
when you want an AOCE utility routine to be both case-sensitive
and sensitive to diacritical marks in its treatment of an RString
structure (c ≠ C ≠ ç). Use this type for your own AOCE strings that
will not be seen by a user.

kOCEGenericInsensitive
The AOCE string is a generic AOCE string type that you should use
when you want an AOCE utility routine to be neither case-sensitive
nor sensitive to diacritical marks in its treatment of an RString
structure (c = C = ç). Use this type for your own AOCE strings that
will be seen by a user.

Note
You should use the kOCEGenericSensitive and
kOCEGenericInsensitive RStringKind values when you use
AOCE strings to hold data other than a catalog node name or the five
derivative AOCE string structures (DirectoryName, AttributeType,
NetworkSpec, recordName, and recordType). Do not use the
kOCEGenericSensitive and kOCEGenericInsensitive
RStringKind types with DirectoryName, recordName,
recordType, NetworkSpec, or AttributeType structures or with
catalog node names because this may cause the AOCE string to be
treated incorrectly by the function you are calling. ◆

Record Identifier Structures 2

A record identifier structure uniquely identifies a record in an AOCE catalog. It consists
of the name and discriminator value of the catalog, the catalog node number or the path
information for the catalog node in which the record is located, and the record’s name,
type, and creation identifier. A record identifier is defined by the RecordID structure.
Because the RecordID structure is composed of substructures (see Figure 2-1), many of
which contain components of their own, the component structures of the RecordID
structure are described first in this section.
AOCE Utilities Reference 2-25

C H A P T E R 2

AOCE Utilities
Figure 2-1 The Record identifier structure

CreationID 2

The record creation identifier is defined by the CreationID structure and is used to
uniquely identify a record within a PowerShare catalog or in a personal catalog. Some
catalogs may not support the CreationID structure; they may rely on the uniqueness of
a record’s name and type to specify each record instead. The CreationID structure is a
component of the LocalRecordID structure (page 2-27).

The fields of the CreationID structure are private to a catalog; you never need to know
how to put data into a CreationID structure or how the data is represented inside the
CreationID structure. Once you have allocated space for a new CreationID
structure, you simply pass it into a function such as DirAddRecord, which fills the
CreationID structure with the proper data for you. You then pass the CreationID
structure along to other functions that require it, such as the DirDeleteRecord
function. For more information on the DirAddRecord and DirDeleteRecord
functions see the chapter “Catalog Manager” in this book.

packedRLIPtr

recordName

recordType

creationID

RecordID PackedRLI

LocalRecordID

catalogNamePtr

ctlgDiscriminator

cNodeNum

packedPathNamePtr

RLI

CatalogName

RStringHeader

body

 PackedPathName

packedPathNameHeader

RString 1

RString 2

RString n

PathName

packedRLIHeader

data

Unpacked
2-26 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
AOCE defines two types of CreationID structures: the CreationID structure and the
AttributeCreationID structure. These structures are identical but have different
names to help distinguish the way in which they are used by various AOCE managers
and functions. The CreationID structure is sometimes called the record CreationID
structure to reinforce the idea that it is being used for a record, and not an attribute.

struct CreationID

{

unsigned long source; /* private to a catalog.*/

unsigned long seq; /* private to a catalog*/

};

typedef struct CreationID CreationID;

typedef CreationID AttributeCreationID;

LocalRecordID 2

A local record identifier uniquely identifies a record within a catalog. It contains the
record’s creation identifier, described in the previous section, and the record’s name and
type. The name and type can uniquely identify a record in an external catalog that does
not support creation identifiers. The local record identifier is defined by the
LocalRecordID structure.

The creation identifier field of the local record identifier is maintained by the catalog that
contains the LocalRecordID structure. Whenever a record is created in a catalog that
supports creation identifiers, the catalog assigns the record a new creation identifier that
is unique within the catalog. This procedure prevents duplicate creation identifiers
within the same catalog. Within a catalog that does not support creation identifiers, it is
not possible to have two records with the same name and type, because the catalog uses
the record’s name and type to define a particular record uniquely.

The LocalRecordID structure is a component of the RecordID structure described on
page 2-34, and is also a component of the DirEnumSpec structure, described in the
chapter “Standard Catalog Package” in this book. See the DirFindValue function in
the chapter “Catalog Manager” in this book for an example of a function that uses the
LocalRecordID structure.

struct LocalRecordID

{

CreationID cid; /* creation ID of the record */

RStringPtr recordName; /* name of the record */

RStringPtr recordType; /* type of record */

};
AOCE Utilities Reference 2-27

C H A P T E R 2

AOCE Utilities
typedef struct LocalRecordID LocalRecordID;

typedef LocalRecordID *LocalRecordIDPtr;

Field descriptions

cid The creation identifier of the record. If the creation identifier is not
NULL, this number is unique within a catalog.

recordName The name of the record. The name is not necessarily unique within a
catalog.

recordType The type of entity that the record represents. For example, the
record could be of type User, Group, LaserWriter, and so forth.
For a list of standard record types, see the OCERecordTypeIndex
structure described next. The record type is not necessarily unique
within a catalog.

OCERecordTypeIndex 2

The OCERecordTypeIndex is an enumerated list of the standard AOCE record types.
You should use this list whenever you need to obtain a record type that has been defined
by Apple Computer, Inc. All lowercase four-character combinations are reserved by
Apple Computer, Inc., as well as all uppercase and lowercase combinations of the
sequence 'AOCE'. To get a specific record type, call the OCEGetIndRecordType
function and pass it the proper index constant from the OCERecordTypeIndex
enumerated list. The OCEGetIndRecordType function returns a pointer to an RString
structure that contains the proper record type corresponding to the index entry you
supplied. See page 2-85 for the complete description of the OCEGetIndRecordType
function.

enum /* OCERecordTypeIndex */

{

kUserRecTypeNum = 1, /* "User" */

kGroupRecTypeNum = 2, /* "Group" */

kMnMRecTypeNum = 3, /* "AppleMail™ M&M" */

kMnMForwarderRecTypeNum = 4, /* "AppleMail™ Fwdr" */

kNetworkSpecRecTypeNum = 5, /* "NetworkSpec" */

kADAPServerRecTypeNum = 6, /* "PowerShare Server" */

kADAPDNodeRecTypeNum = 7, /* "PowerShare DNode" */

kADAPDNodeRepRecTypeNum = 8, /* "PowerShare DNode Rep" */

kServerSetupRecTypeNum = 9, /* "Server Setup" */

kDirectoryRecTypeNum = 10, /* "Catalog" */

kDNodeRecTypeNum = 11, /* "DNode" */

kSetupRecTypeNum = 12, /* "Setup" */

kMSAMRecTypeNum = 13, /* "MSAM" */

kDSAMRecTypeNum = 14, /* "CSAM" */

kAttributeValueRecTypeNum =15, /* "Attribute Value" */
2-28 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
kBusinessCardRecTypeNum = 16, /* "Business Card" */

kMailServiceRecTypeNum = 17, /* "Mail Service" */

kCombinedRecTypeNum = 18, /* "Combined" */

kOtherServiceRecTypeNum = 19, /* "Other Service" */

kAFPServiceRecTypeNum = 20 /* "Other Service afps" */

};

typedef unsigned short OCERecordTypeIndex;

In addition to the OCERecordTypeIndex values defined above, there are three more
record type definitions:

#define kFirstOCERecTypeNum kUserRecTypeNum

/* first standard AOCE record type */

#define kLastOCERecTypeNum kAFPServiceRecTypeNum

/* last standard AOCE record type */

#define kNumOCERecTypes (kLastOCERecTypeNum -

kFirstOCERecTypeNum + 1)/* total number of

standard AOCE

record types */

You can use these three constants to enumerate all the standard AOCE record types.

PackedPathName 2

The PackedPathName structure contains the names of all of the catalog nodes in the
path from the catalog node in which a record resides, to the root catalog node in the
AOCE catalog tree. A PackedPathName structure is an array of RString structures,
with each component RString structure containing the name of a catalog node on the
path. You create a PackedPathName structure from an array of RString structures by
using the OCEPackPathName function (page 2-60). You can also unpack a
PackedPathName structure into its RString component parts by using the
OCEUnpackPathName function (page 2-58). The maximum size of an entire packed
pathname is defined by the constant kPathNameMaxBytes.

The PackedPathName structure’s format is private, so you must always use the
OCEPackPathName and OCEUnpackPathName functions to pack and unpack these
structures. Do not assume you know the format of PackedPathName structures.

The PackedPathName structure is a component of the record location information
structure (page 2-32). In addition, the AOCE Catalog Manager uses the packed
pathname structure in various functions such as DirMapDNodeToPathName and
DirMapPathNameToDNode. For information on these functions, see the chapter
“Catalog Manager” in this book.
AOCE Utilities Reference 2-29

C H A P T E R 2

AOCE Utilities
struct PackedPathName

{

unsigned short dataLength; /* number of bytes in data

 field */

Byte data[kPathNameMaxBytes - sizeof (unsigned short)];

};

typedef struct PackedPathName PackedPathName;

Field descriptions

dataLength The number of bytes in the data field. This does not include the
bytes in the dataLength field itself.

data A packed array containing the names of all of the catalog nodes in
the path from the catalog node in which the record resides, to the
catalog root node. Each of the names in the array is an RString
structure.

ProtoPackedPathName 2

The ProtoPackedPathName structure is a minimum-sized structure. It is equivalent to
a PackedPathName structure without a data field. You should use this data type
whenever you need to create a PackedPathName structure of variable length.

struct ProtoPackedPathName {

unsigned short dataLength;

/* Followed by data */

};

typedef struct ProtoPackedPathName ProtoPackedPathName;

Field descriptions

dataLength The length of the data field of the PackedPathName structure.

Note
You must create the data portion of the ProtoPackedPathName
structure yourself. Since this is a minimum-sized structure, it initially
has no data field, and hence no memory is allocated for any contents.
See the section “Allocating AOCE Strings of Nonstandard Sizes” on
page 2-16 for an example of how to allocate memory for a
minimum-sized structure. ◆
2-30 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
DirDiscriminator 2

A catalog discriminator is defined by a DirDiscriminator structure and is used to
differentiate between two or more catalogs that have the same name, as the combination
of a catalog name and a DirDiscriminator structure uniquely identify a catalog. The
DirDiscriminator structure contains two fields which are set by the catalog. An
application does not need to set or change these fields. If you are creating a catalog
server access module, you need to read the chapter “Catalog Service Access Modules” in
Inside Macintosh: AOCE Service Access Modules for information on how to modify the
fields of a DirDiscriminator structure.

In addition to being a component of the record location information structure, described
next, the DirDiscriminator structure is used by several of the AOCE Catalog
Manager functions. You also use a DirDiscriminator structure when you provide
callback functions to such functions as DirEnumerateDirectoriesParse and
DirNetSearchADAPDirectoriesParse. See the chapter “Catalog Manager” in this
book for more information on these two functions.

struct DirDiscriminator {

OCEDirectoryKind signature; /* type of a catalog */

unsigned long misc; /* private to catalog */

};

typedef struct DirDiscriminator DirDiscriminator;

Field descriptions

signature Defined by the catalog provider. It may be, but is not required to be,
the same as the application’s signature. Apple Computer, Inc. has
defined the following values for this field. Developers of catalog
service access modules may define additional values.
kDirAllKinds = 0
kDirADAPKind = 'adap'
kDirPersonalDirectoryKind = 'pdir'
kDirDSAMKind = 'dsam'

misc Defined by the catalog provider. A catalog service access module
may use it to distinguish between different catalogs that it supports.
See the chapter “Catalog Service Access Modules” in Inside
Macintosh: AOCE Service Access Modules for more information on
this field.
AOCE Utilities Reference 2-31

C H A P T E R 2

AOCE Utilities
RLI 2

The record location information structure identifies the catalog and catalog node in
which a record resides. The record location information is defined by the RLI data type.
The RLI structure is the unpacked form of the PackedRLI data structure, described next.

typedef unsigned long DNodeNum;

struct RLI {

DirectoryNamePtr directoryName;

DirDiscriminator discriminator;

DNodeNum dNodeNumber;

PackedPathNamePtr path;

};

typedef struct RLI RLI;

typedef RLI *RLIPtr;

Field descriptions

directoryName A pointer to the name of the catalog in which the record resides.
The maximum number of bytes in a catalog name is defined by the
constant kDirectoryNameMaxBytes.

discriminator A value that allows you to distinguish between two or more
catalogs that have the same name.

dNodeNumber A value that uniquely identifies the catalog node in which the
record resides. Set this field to 0 or to kNULLDNodeNumber if you
are using the path field to identify the catalog node.

path A pointer to a buffer that contains the names of all of the catalog
nodes on the path from the catalog node in which the record
resides, to the catalog root node. You should set this field to nil if
you are using the dNodeNumber field to identify the catalog node.

The directoryName and discriminator fields of the RLI structure specify the
catalog. The last two fields of the RLI structure, the dNodeNumber and path fields,
specify a catalog node within the catalog specified by the directoryName and
discriminator fields. For PowerShare catalogs, you must specify the catalog node by
either a catalog node number or by a pathname, but not both.

Some catalogs may allow you to specify a catalog node using a partial pathname. A
partial pathname is a combination of values in the dNodeNumber and path fields. To
assure compatibility with all catalogs, you need to call the DirGetDirectoryInfo
function to find out if the catalog supports the use of partial pathnames before providing
a partial pathname to the catalog. If a catalog supports partial pathnames, you must set
both the dNodeNumber and path fields to meaningful values, because both fields are
used. If this is the case, and your application does not support partial pathnames, you
should set either the dNodeNumber field to 0 or the path field to nil.
2-32 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
PackedRLI 2

The record location information in its packed form is defined by the PackedRLI data
type. Use the OCEPackRLI function (page 2-71) to create a PackedRLI structure from
an RLI structure or its component parts. Use the OCEUnpackRLI function (page 2-72) to
unpack a PackedRLI structure into its component parts. The order of the data within a
PackedRLI structure is private, so you must use the utility functions when creating and
unpacking PackedRLI structures. This is the only way to be sure that the data will be in
the correct format.

In addition to being a component of the RecordID data structure, described on
page 2-34, the PackedRLI structure is used by several of the AOCE Catalog Manager
functions.

#define kRLIMaxBytes (sizeof (RString) + \

sizeof (DirDiscriminator) + \

sizeof (DNodeNum) + kPathNameMaxBytes)

The constant kRLIMaxBytes is the maximum number of bytes that can be stored in the
data field of a PackedRLI structure. This is large enough to hold the sum of RString,
DirDiscriminator, and DNodeNum structures plus a maximum-length pathname.

struct PackedRLI {

unsigned short dataLength; /* length of data field */

Byte data[kRLIMaxBytes]; /* packed record

location info */

};

typedef struct PackedRLI PackedRLI;

typedef PackedRLI *PacedPLIPtr;

Field descriptions

dataLength The number of bytes in the data field of the PackedRLI structure.
It does not include the number of bytes in the dataLength
parameter itself.

data A packed array of characters that contains the catalog name, the
catalog discriminator, and the catalog node number or a pathname.

ProtoPackedRLI 2

The ProtoPackedRLI structure is a minimum-sized structure. It is equivalent to a
PackedRLI structure without a data field. You should use this data type whenever you
need to create a PackedRLI structure of variable length.
AOCE Utilities Reference 2-33

C H A P T E R 2

AOCE Utilities
struct ProtoPackedRLI {

unsigned short dataLength; /* length of data */

/* Followed by data */

};

typedef struct ProtoPackedRLI ProtoPackedRLI;

typedef ProtoPackedRLI *ProtoPackedRLIPtr;

Field descriptions

dataLength The length of the data field of the PackedRLI structure.

Note
You must create the data portion of the ProtoPackedRLI structure
yourself. Because this is a minimum-sized structure, it initially has no
data field, and thus no memory is allocated for any contents. See the
section “Allocating AOCE Strings of Nonstandard Sizes” on page 2-16
for an example of allocating memory for a minimum-sized structure. ◆

RecordID 2

Each record in an AOCE catalog is described by a RecordID structure. A RecordID
structure consists of two parts: a local record identifier and a packed record location
information structure. The local record identifier uniquely defines the record within its
catalog. The packed record location information structure identifies the catalog and
catalog node in which the record resides.

struct RecordID {

PackedRLIPtr rli; /* identifies record’s catalog

and dNode */

LocalRecordID local; /* identifies record within

its dNode */

};

typedef struct RecordID RecordID;

typedef RecordID *RecordIDPtr;

Field descriptions

rli A pointer to a PackedRLI structure that identifies the catalog and
the specific catalog node in which the record resides.

local A LocalRecordID structure that uniquely identifies the record
within its catalog.
2-34 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
PackedRecordID 2

A packed record identifier is the packed form of a RecordID structure and is defined by
the PackedRecordID structure. The packed form of the RecordID structure is useful
when you wish to store data or transmit it because the PackedRecordID structure is a
single block of data, rather than a structure containing pointers into other structures as
the RecordID structure is. You use the OCEPackRecordID function (page 2-90) to
create a PackedRecordID structure from a RecordID structure, and you use the
OCEUnpackRecordID function (page 2-91) to convert a PackedRecordID structure
into an unpacked RecordID structure.

#define kPackedRecordIDMaxBytes (kPathNameMaxBytes + \

sizeof (DNodeNum) + sizeof (DirDiscriminator) + \

sizeof (CreationID) + (3 * sizeof (RString)))

The constant kPackedRecordIDMaxBytes defines the maximum number of bytes that
can be stored in the data field of a PackedRecordID structure.

struct PackedRecordID {

unsigned short dataLength; /* length of data field

 in PackedRecordID */

Byte data[kPackedRecordIDMaxBytes];/* packed record ID */

};

typedef struct PackedRecordID PackedRecordID;

Field descriptions

dataLength The size of the data field of the PackedRecordID structure. It
does not include the length of the dataLength parameter itself.

data An array containing the RecordID data.

ShortRecordID 2

A short record identifier structure is similar to a record identifier, except that it does not
contain the recordName and recordType fields. For more information on record
location information structures see page 2-32.

struct ShortRecordID

{

PackedRLIPtr rli;

CreationID cid;

};

typedef struct ShortRecordID ShortRecordID;
AOCE Utilities Reference 2-35

C H A P T E R 2

AOCE Utilities
Field descriptions

rli A pointer to a packed record location information structure.
cid A pointer to a creation identifier structure.

Catalog Services Specification 2

The catalog services specification structures are used throughout AOCE for performing
various tasks such as getting and setting access controls for records, obtaining the
individual members of a group record that the user has selected, computing the size of a
record currently selected by the user, specifying message addresses, and so forth. The
catalog services specification is defined by the DSSpec structure and its packed form by
the PackedDSspec structure. Other forms of the DSSpec structure include the
OCERecipient and the packed form, OCEPackedRecipient, which are defined in the
chapter “Interprogram Messaging Manager” in this book.

In addition to the above uses, you can also use the catalog services specification to hold
your own types of data that may not have a specified size. In this case, use the
ProtoPackedDSspec structure.

DSSpec 2

The catalog services specification structure is defined by the DSSpec data type. A
DSSpec structure contains a pointer to a RecordID structure, plus additional
information such as an extension type, extension size, and extension value. When you
supply a DSSpec structure to a routine, you must provide a pointer to a record identifier
in its entitySpecifier field. The other fields are optional, depending upon what data
the DSSpec structure is being used to hold. For example, if the DSSpec structure has no
extension, then it can represent either the root of all catalogs, a single catalog, a catalog
node, or a record. If the DSSpec structure has an extension, then the extensionType,
extensionSize, and extensionValue fields must contain valid values for the
particular extension type. For more information on extension types and their allowable
values, see the OCEValidDSSpec function on page 2-102 and the OCEGetDSSpecInfo
function on page 2-103.

One of the uses for the DSSpec structure is to specify access controls for a catalog node,
record, or attribute type that supports access controls. The way that you accomplish this
for PowerShare catalogs, for example, is to obtain a DSSpec structure by calling the
OCEGetAccessControlDSSpec function. This function returns a pointer to a DSSpec
structure based on the information you supply when you call the function. You can then
use the DSSpec structure with access control functions such as
DirGetDNodeAccessControlGet. For information on access control functions, see the
section “Getting Access Controls” in the chapter “Catalog Manager” in this book.
2-36 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
struct DSSpec {

RecordID *entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

typedef struct DSSpec DSSpec;

typedef DSSpec *DSSpecPtr;

Field descriptions

entitySpecifier
A pointer to a RecordID structure that contains the record
information pertaining to the DSSpec. If the extension type is not
'entn', the contents of this field determine whether the DSSpec
structure represents a catalog, a catalog node, a record, or the root of
all catalogs.

extensionType The extension type of the DSSpec structure, if any. If the extension
type is 'entn' then the DSSpec has an extension. To determine
whether a DSSpec structure has an extension type or not, you call
the OCEGetDSSpecInfo function (page 2-103).

extensionSize The size, in bytes, of the extension (if any).
extensionValue

A pointer to the data of the extension.

PackedDSSpec 2

The PackedDSSpec structure is the packed form of the DSSpec structure. The
PackedDSSpec structures are used by AOCE in various functions. For example, the
SDPGetPanelSelection function uses a PackedDSSpec structure to indicate the
record that the user has selected. Another use of the PackedDSSpec structure is as a
component of an Attribute structure. If an attribute value has a tag field set to the
value typePackedDSSpec, then the attribute contains data of type PackedDSSpec.

You can use the functions OCEUnpackDSSpec (page 2-98) and OCEPackDSSpec
(page 2-97) to convert between the packed and unpacked forms of the DSSpec structure.

Note
The PackedDSSpec is not a maximum-sized structure. When you
allocate a PackedDSSpec structure it will hold any valid packed
RecordID structure, but not necessarily any additional extension
data. ◆

#define kPackedDSSpecMaxBytes(sizeof (PackedRecordID) + \

sizeof (OSType) + sizeof (unsigned short))
AOCE Utilities Reference 2-37

C H A P T E R 2

AOCE Utilities
The constant kPackedDSSpecMaxBytes is the maximum size in bytes that can be
stored in the data field of a PackedDSSpec structure.

struct PackedDSSpec {

unsigned short dataLength;/* length of data field */

Byte data[kPackedDSSpecMaxBytes];

};

Field descriptions

dataLength The length of the data field of the PackedDSSpec structure. This
does not include the bytes in the dataLength field itself.

data An array containing the actual contents of the PackedDSSpec. The
size of the data array is equal to kPackedDSSpecMaxBytes bytes.

typedef struct PackedDSSpec PackedDSSpec;

ProtoPackedDSSpec 2

The ProtoPackedDSSpec structure is a minimum-sized structure. It is equivalent to a
PackedDSSpec structure without a data field. You should use this data type whenever
you need to create a variable length packed DSSpec structure.

struct ProtoPackedDSSpec {

unsigned short dataLength;/* length of data field */

/* Followed by data */

};

typedef struct ProtoPackedDSSpec ProtoPackedDSSpec;

typedef ProtoPackedDSSpec *ProtoPackedDSSpecPtr;

Field descriptions

dataLength The length of the data field of the PackedDSSpec structure.

Note
You must create the data portion of the ProtoPackedDSSpec structure
yourself. Since this is a minimum-sized structure, it initially has no data
field and hence no memory is allocated for any contents. ◆

Attribute Structures 2

The attribute structures are used in AOCE to provide access to a record’s contents, as
well as to determine what type of data is stored in a record. The three main attribute
structures are Attribute, AttributeType, and AttributeValue. The Attribute
structure contains AttributeValue and AttributeType structures as components.
2-38 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
The AttributeValue structure is described on page 2-42. The AttributeType
structure is a derivative of the RString structure (page 2-20) and is described on
page 2-39.

Attributes 2

In AOCE, all information in a record is stored as attribute values of the record. An
attribute can hold any type of data, and it is defined by the Attribute structure. Each
Attribute structure contains an AttributeType, AttributeCreationID, and
AttributeValue component. Certain types of attributes have been reserved by Apple
Computer, Inc., but you can create other types as needed. The Attribute structure
provides you with all the information you need to manipulate an attribute value.
Because an attribute value may contain vastly different types of data depending upon its
type, it is vital that you determine the type of attribute before attempting to manipulate
or use its value.

Because the Attribute structure is composed of several substructures such as
AttributeValue, which may contain structures of their own, the Attribute
structure is described last in this section, after its component structures.

AttributeType 2

An attribute type is a component of the Attribute structure and is used to indicate
what kind of information is stored in the value field of an Attribute structure. For a
complete description of the Attribute and AttributeValue structures, see page 2-44
and page 2-42 respectively. You can define your own attribute types or use a standard
attribute type. For a list of standard attribute types and their data formats see the
description of OCEAttributeTypeIndex, next.

An attribute type consists of a character set code, a length containing the number of
bytes in the body field, and the data in the body field. An AttributeType structure is
identical to an RString structure, except that its maximum length is defined by the
constant kAttributeTypeMaxBytes and its body field specifies the type of a given
attribute. Attribute types must be larger than 0 bytes; AOCE does not allow NULL
attribute types. You can typecast any AttributeType structure to an RString
structure and use the RString utility functions on it. The RString utility functions are
described in “AOCE String Functions” beginning on page 2-45.

In addition to being a component of an Attribute structure, the AttributeType
structure is used by several of the AOCE Catalog Manager functions. In particular, the
callback functions you create for the DirLookupParse and
DirEnumerateAttributeTypesGet functions take an attribute type as an input. See
the chapter “Catalog Manager” in this book for more information on these functions.
AOCE Utilities Reference 2-39

C H A P T E R 2

AOCE Utilities
An attribute type is defined as follows:

struct AttributeType

{

RStringHeader

Byte body[kAttributeTypeMaxBytes];

};

typedef struct AttributeType AttributeType;

typedef AttributeType *AttributeTypePtr;

The RStringHeader, described on page 2-19, defines the character set information that
applies to the text of the RString structure and specifies the length, in bytes, of the
body field of the RString structure.

Field descriptions

body An array of characters that contains the name of an attribute type.
The maximum length of an attribute type is defined by the constant
kAttributeTypeMaxBytes, and is equal to 32 bytes.

OCEAttributeTypeIndex 2

You should use the attribute type index whenever you need to obtain a standard
attribute type. To do this, you call the OCEGetIndAttributeType function (page 2-94)
with the proper value from the OCEAttributeTypeIndex list. The
OCEGetIndAttributeType function returns a pointer to an RString structure
containing the standard attribute type based on the index value you supplied.

All lowercase four-character combinations are reserved by Apple Computer, Inc., as are
all uppercase and lowercase combinations of the sequence 'AOCE'.

#define kMemberAttrTypeNum 1001 /* "Member" */

#define kAdminsAttrTypeNum 1002 /* "Administrators" */

#define kMailSlotsAttrTypeNum 1003 /* "mailslots" */

#define kPrefMailAttrTypeNum 1004 /* "pref mailslot" */

#define kAddressAttrTypeNum 1005 /* "Address" */

#define kPictureAttrTypeNum 1006 /* "Picture" */

#define kAuthKeyAttrTypeNum 1007 /* "auth key" */

#define kTelephoneAttrTypeNum 1008 /* "Telephone" */

#define kNBPNameAttrTypeNum 1009 /* "NBP Name" */

#define kQMappingAttrTypeNum 1010 /* "ForwarderQMap" */

#define kDialupSlotAttrTypeNum 1011 /* "DialupSlotInfo" */

#define kHomeNetAttrTypeNum 1012 /* "Home Internet" */

#define kCoResAttrTypeNum 1013 /* "Co-resident M&M" */

#define kFwdrLocalAttrTypeNum 1014 /* "FwdrLocalRecord" */
2-40 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
#define kConnectAttrTypeNum 1015 /* "Connected To" */

#define kForeignAttrTypeNum 1016 /* "Foreign RLIs" */

#define kOwnersAttrTypeNum 1017 /* "Owners" */

#define kReadListAttrTypeNum 1018 /* "ReadList" */

#define kWriteListAttrTypeNum 1019 /* "WriteList" */

#define kDescriptorAttrTypeNum 1020 /* "Descriptor" */

#define kCertificateAttrTypeNu 1021 /* "Certificate" */

#define kMsgQsAttrTypeNum 1022 /* "MessageQs" */

#define kPrefMsgQAttrTypeNum 1023 /* "PrefMessageQ" */

#define kMasterPFAttrTypeNum 1024 /* "MasterPF" */

#define kMasterNetSpecAttrTypeNum 1025 /* "MasterNetSpec" */

#define kServersOfAttrTypeNum 1026 /* "Servers Of" */

#define kParentCIDAttrTypeNum 1027 /* "Parent CID" */

#define kNetworkSpecAttrTypeNum 1028 /* "NetworkSpec" */

#define kLocationAttrTypeNum 1029 /* "Location" */

#define kTimeSvrTypeAttrTypeNum 1030 /* "TimeServer Type" */

#define kUpdateTimerAttrTypeNum 1031 /* "Update Timer" */

#define kShadowsOfAttrTypeNum 1032 /* "Shadows Of" */

#define kShadowServerAttrTypeNum 1033 /* "Shadow Server" */

#define kTBSetupAttrTypeNum 1034 /* "TB Setup" */

#define kMailSetupAttrTypeNum 1035 /* "Mail Setup" */

#define kSlotIDAttrTypeNum 1036 /* "SlotID" */

#define kGatewayFileIDAttrTypeNum 1037 /* "Gateway FileID" */

#define kMailServiceAttrTypeNum 1038 /* "Mail Service" */

#define kStdSlotInfoAttrTypeNum 1039 /* "Std Slot Info" */

#define kAssoDirectoryAttrTypeNum 1040 /* "Asso. Catalog" */

#define kDirectoryAttrTypeNum 1041 /* "Catalog" */

#define kDirectoriesAttrTypeNum 1042 /* "Catalogs" */

#define kSFlagsAttrTypeNum 1043 /* "SFlags" */

#define kLocalNameAttrTypeNum 1044 /* "Local Name" */

#define kLocalKeyAttrTypeNum 1045 /* "Local Key" */

#define kDirUserRIDAttrTypeNum 1046 /* "Dir User RID" */

#define kDirUserKeyAttrTypeNum 1047 /* "Dir User Key" */

#define kDirNativeNameAttrTypeNum 1048 /* "Dir Native Name" */

#define kCommentAttrTypeNum 1049 /* "Comment" */

#define kRealNameAttrTypeNum 1050 /* "Real Name" */

#define kPrivateDataAttrTypeNum 1051 /* "Private Data" */

#define kDirTypeAttrTypeNum 1052 /* "Catalog Type" */

#define kDSAMFileAliasAttrTypeNum 1053 /* "CSAM File Alias" */

#define kCanAddressToAttrTypeNum 1054 /* "Can Address To" */

#define kDiscriminatorAttrTypeNum 1055 /* "Discriminator" */

#define kAliasAttrTypeNum 1056 /* "Alias" */

#define kParentMSAMAttrTypeNum 1057 /* "Parent MSAM" */
AOCE Utilities Reference 2-41

C H A P T E R 2

AOCE Utilities
#define kParentDSAMAttrTypeNum 1058 /* "Parent CSAM" */

#define kSlotAttrTypeNum 1059 /* "Slot" */

#define kAssoMailServiceAttrTypeNum1060 /* "Asso. Mail

Service" */

#define kFakeAttrTypeNum 1061 /* "Fake" */

#define kInheritSysAdminAttrTypeNum1062 /* "Inherit

 SysAdministrators" */

#define kPreferredPDAttrTypeNum 1063 /* "Preferred PD" */

#define kLastLoginAttrTypeNum 1064 /* "Last Login" */

#define kMailerAOMStateAttrTypeNum 1065 /* "Mailer AOM State" */

#define kMailerSendOptionsAttrTypeNum \

1066 /* "Mailer Send

 Options" */

#define kJoinedAttrTypeNum 1067 /* "Joined" */

#define kUnconfiguredAttrTypeNum 1068 /* "Unconfigured" */

#define kVersionAttrTypeNum 1069 /* "Version" */

#define kLocationNamesAttrTypeNum 1070 /* "Location Names" */

#define kActiveAttrTypeNum 1071 /* "Active" */

#define kDeleteRequestedAttrTypeNum

1072 /* "Delete Requested" */

#define kGatewayTypeAttrTypeNum 1073 /* "Gateway Type" */

In addition, Apple Computer, Inc., has defined three other attribute type constants to
simplify the task of enumerating the standard attribute types.

typedef unsigned short OCEAttributeTypeIndex;

#define kFirstOCEAttrTypeNum kMemberAttrTypeNum

/* the first standard attribute type */

#define kLastOCEAttrTypeNum kGatewayTypeAttrTypeNum

/* the last standard attribute type */

#define kNumOCEAttrTypes (kLastOCEAttrTypeNum -

 kFirstOCEAttrTypeNum + 1)

 /* the total number of attributes */

AttributeValue 2

The AttributeValue structure consists of a tag field that indicates the format of the
attribute value, a datalength field specifying the number of bytes contained in the
attribute value, and a pointer to the attribute value data itself. Apple Computer, Inc. has
reserved tags for attribute values that consist of RString and PackedDSSpec
2-42 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
structures, as well as for an unspecified sequence of bytes. You can also define your own
tags to specify the attribute value formats that you have created.

typedef DescType AttributeTag;/* same type used in AppleEvents */

enum {

typeRString = 'rstr',

typePackedDSSpec = 'dspc',

typeBinary = 'bnry'

};

Constant descriptions

typeRString The attribute value is an RString structure.
typePackedDSSpec

The attribute value is a PackedDSSpec structure.
typeBinary The attribute value is a sequence of bytes not defined by a formal

structure.

struct AttributeValue {

AttributeTag tag; /* format of attribute value */

unsigned long dataLength; /* # of bytes in attribute value */

Ptr bytes; /* points to attribute value data */

};

typedef struct AttributeValue AttributeValue;

typedef AttributeValue *AttributeValuePtr;

Field descriptions

tag A value that indicates the format of the attribute value contained in
the bytes field. If the tag field is set to 'rstr', the attribute value
is considered to be an RString type.
If the attribute value is an RString structure, then the maximum
size of the body field of the RString structure is
(kAttrValueMaxBytes - sizeof(ProtoRString) bytes.
If the attribute value is a DSSpec structure, then the maximum
amount of data that can be stored in the DSSpec structure is
(kAttrValueMaxBytes - sizeof(ProtoPackedDSSpec)
bytes.
The tag field can also contain a value defined by you that specifies
the format of the attribute value.
Apple’s PowerShare catalogs and personal catalogs restrict attribute
values to a maximum size of kAttrValueMaxBytes bytes. If the
tag field is set to 'dspc', the attribute value is a PackedDSSpec
type.
AOCE Utilities Reference 2-43

C H A P T E R 2

AOCE Utilities
dataLength The number of bytes in the buffer pointed to by the bytes field. If
the tag field is equal to 'rstr' or 'dspc', then this length also
includes the size of the dataLength field of the DSSpec structure
or the RStringHeader of the RString structure.

bytes A pointer to a buffer that contains the attribute value. You must
provide this buffer. The constant kAttrValueMaxBytes defines
the maximum size of any attribute value.

Attribute 2

The Attribute structure completely defines an attribute value by specifying its
attribute type, attribute creation identifier, attribute tag, and the attribute value.

typedef CreationID AttributeCreationID;

struct Attribute {

AttributeType attributeType; /* type of the attribute */

AttributeCreationID cid; /* the creationID of the

attribute */

AttributeValue value; /* the attribute value */

};

typedef struct Attribute Attribute;

Field descriptions

attributeType The attribute type. Apple Computer, Inc. has reserved all attribute
types that are four-letter lowercase combinations, as well as any
uppercase and lowercase combination of the letters 'AOCE'. A
complete list of reserved attribute types can be found on page 2-40.

cid The attribute creation identifier that uniquely defines the attribute
value within the record. The AttributeCreationID structure has
the same definition as the CreationID structure (see page 2-26).

value The data for the attribute.

AOCE Utility Functions 2
The AOCE utility functions make it easier to manipulate the AOCE data structures.
These functions perform various tasks such as comparison, duplication, creation, and
conversion of structures. To call any of the functions described here from assembly
language, you need to perform the following actions:

1. Leave space on the stack for the function result, if any.

2. Push the parameters on the stack using Pascal calling convention. This means that
parameter1 is pushed first, parameter2 is pushed second, and so forth.
2-44 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
3. Place the routine selector in register D0.

4. Call the __OCEUtils trap macro.

AOCE String Functions 2

The AOCE string functions described in this section facilitate the creation, duplication,
and conversion of AOCE strings.

OCECopyRString 2

The OCECopyRString function copies one AOCE string into another AOCE string.

pascal OSErr OCECopyRString (const RString *str1, RString *str2,

unsigned short str2Length);

str1 A pointer to the source AOCE string that you want to copy from. You
must provide this structure.

str2 A pointer to the destination AOCE string that you want to copy to. You
must provide this structure.

str2Length
The length of the destination AOCE string, not including the header
information.

DESCRIPTION

The OCECopyRString function copies the contents of the source AOCE string into the
destination AOCE string. If the destination string is not large enough to hold the
contents of the source string, then the OCECopyRString function returns a memory-full
error. You obtain the proper size needed for the destination AOCE string from the value
contained in the RStringHeader field of the source AOCE string. Once you obtain this
value, you can then use it to allocate a destination AOCE string of the proper size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

__OCEUtils $0308

noErr 0 No error
memFullErr –108 Not enough memory to copy the source string into the

destination string, or the destination string is not large
enough to hold the source string
AOCE Utilities Reference 2-45

C H A P T E R 2

AOCE Utilities
SEE ALSO

The RString structure is described on page 2-20.

OCECToRString 2

The OCECToRString function converts a C string into an AOCE string.

pascal void OCECToRString (const char *cStr, CharacterSet charSet,

RString *rStr,

unsigned short rStrLength);

cStr A pointer to the C string you want to convert.

charSet The script code that the OCECToRString function uses for the RString
structure’s header.

rStr A pointer to an RString structure. You must allocate this.

rStrLength
The length, in bytes, of the body field of the RString structure, not
including the length of the header information. If the C string is longer
than the AOCE string, then only the number of bytes equal to the value of
the rStrLength parameter are copied from the C string into the AOCE
string.

DESCRIPTION

Given a C string and a RString structure that you supply, the OCECToRString
function converts the C string into the RString structure. The OCECToRString
function uses the charSet and rStrLength parameters to create the RStringHeader
field of the new RString structure.

SPECIAL CONSIDERATIONS

If the C string is longer than the AOCE string, then only the number of bytes equal to the
value of the rStrLength parameter are copied from the C string into the AOCE string.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

For information on converting an RString structure to or from a Pascal string, see the
functions OCEPToRString (next) and OCERToPString (page 2-48).

Trap macro Selector

__OCEUtils $0339
2-46 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
OCEPToRString 2

The OCEPToRString function converts a Pascal string into an AOCE string.

pascal void OCEPToRString(ConstStr255Param pStr,

CharacterSet charSet,

RString *rStr,

unsigned short rStrLength);

pStr A pointer to the Pascal string you want to convert.

charSet The script code that the OCEPToRString function uses for the RString
structure’s header.

rStr A pointer to an RString structure. You must allocate this.

rStrLength
The length, in bytes, of the body field of the RString structure, not
including the length of the header information. If the Pascal string is
longer than the AOCE string, then only the number of bytes equal to the
value of the rStrLength parameter are copied from the Pascal string
into the AOCE string.

DESCRIPTION

The OCEPToRString function converts a Pascal string into an RString structure. The
OCEPToRString function uses the charSet and rStrLength parameters to create the
RStringHeader field of the new RString structure.

SPECIAL CONSIDERATIONS

If the Pascal string is longer than the AOCE string, then only the number of bytes equal
to the value of the rStrLength parameter are copied from the Pascal string into the
AOCE string.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

For information on converting an RString structure to a Pascal string, see the function
OCERToPString, described next.

Trap macro Selector

__OCEUtils $033A
AOCE Utilities Reference 2-47

C H A P T E R 2

AOCE Utilities
OCERToPString 2

The OCERToPString function converts an RString structure into a Pascal string.

pascal StringPtr OCERToPString (const RString *rStr);

rStr A pointer to an RString structure that you want to convert into a Pascal
string.

DESCRIPTION

The OCERToPString function converts an RString structure into a Pascal string. As
with all of the AOCE utility functions, no memory is allocated by this function, so the
string pointer that is returned points directly back into the RString structure that you
supply when you make the call.

You must check the character set, or script code of the AOCE string before calling the
OCEPToRString function to determine how to handle the Pascal string returned by this
function. Because RString structures contain character set information and Pascal
strings do not, you need to decide how to interpret the Pascal string that is returned,
because it may contain multibyte characters.

SPECIAL CONSIDERATIONS

You should check the length of the AOCE string that the rStr parameter points to
before calling this function to see if the string is greater than 255 bytes. Because a Pascal
string can contain at most 255 bytes, the OCERToPString function truncates the length
of the Pascal string to the lower byte of the length of the AOCE string.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

To convert a Pascal string to an RString structure, use the function OCEPToRString
described on page 2-47.

OCERelRString 2

The OCERelRString function compares two RString structures to determine their
relative sorting order.

Trap macro Selector

__OCEUtils $033B
2-48 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
pascal short OCERelRString (const void *str1, const void *str2,

RStringKind kind);

str1 A pointer to the first RString structure you want to compare.

str2 A pointer to the second RString structure you want to compare

kind The value the OCERelRString function uses to determine the proper
method of comparing the two RString structures. See the description of
the RStringKind type on page 2-24 for a complete definition of the
different values for the kind parameter, and for the restrictions on when
to use them.

DESCRIPTION

Given two RString structures pointed to by the parameters str1 and str2, the
OCERelRString function determines if the first AOCE string is greater than, equal to,
or less than the second AOCE string. The OCERelRString uses the value of the kind
parameter to determine how to compare the two RString structures. For certain kinds
of RString structures, this function uses the International Utilities to compare them.
Because the Text Utilities take into account primary and secondary ordering, this call will
not return the value sortsEqual if the strings differ only in case (“Dave” is not equal to
“dave”). For more information see the chapter “Text Utilities” in Inside Macintosh: Text.

The OCERelRString function can return the following values:

The result returned by the OCERelRstring function is undefined when either the str1
parameter or the str2 parameter is set to nil.

SPECIAL CONSIDERATIONS

Although this function uses the Text Utilities for comparing certain kinds of RString
structures, it is still alright to call this routine at interrupt level.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

sortsBefore –1 The first RString structure should sort before the second
RString structure

sortsEqual 0 The two RString structures are equal

sortsAfter 1 The first RString structure should sort after the second
RString structure

Trap macro Selector

__OCEUtils $032D
AOCE Utilities Reference 2-49

C H A P T E R 2

AOCE Utilities
To compare two RString structures for equality only, use the OCEEqualRString
function, described next.

OCEEqualRString 2

The OCEEqualRString function checks the equality of two RString structures.

pascal Boolean OCEEqualRString (const void *str1, const void

 *str2, RStringKind kind);

str1 A pointer to the first RString structure you want to compare.

str2 A pointer to the second RString structure you want to compare.

kind A value that defines what kind of RString structures the
OCEEqualRString function is comparing.

DESCRIPTION

Given pointers to two RString structures, the OCEEqualRString function compares
them for equality, and returns true if they are equal, false if they are not. If the two
AOCE strings have the same length, then they are compared for equality, with the
method of comparison dependent upon the value of the kind parameter. If the two
AOCE strings have different lengths, then they are not equal. For certain kinds of
RString structures, this function uses the Text Utilities to compare the strings. For more
information see the chapter “Text Utilities” in Inside Macintosh: Text. See the description
of the RStringKind type on page 2-24 for a complete definition of the different values
for the kind parameter, and for the restrictions on when to use them.

SPECIAL CONSIDERATIONS

Although this function uses the Text Utilities for comparing certain kinds of RString
structures, it is still alright to call this routine at interrupt level.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

The RStringKind structure is described on page 2-24.

Trap macro Selector

__OCEUtils $0316
2-50 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
OCEValidRString 2

The OCEValidRString function checks the validity of an AOCE string.

pascal Boolean OCEValidRString (const void *str,RStringKind kind);

str A pointer to the AOCE string you want to validate.

kind The kind of AOCE string being validated.

DESCRIPTION

The OCEValidRString function checks the AOCE string you supply for validity based
on the type of AOCE string specified by the kind parameter and returns true if the
AOCE string structure is valid, false if it is not. See the description of the
RStringKind type on page 2-24 for a complete definition of the different values for the
kind parameter, and for the restrictions on when to use them. Currently this function
checks for validity by ensuring that the length of the AOCE string is the proper size for
its particular type. A nil pointer and a length of 0 for the RString structure are
considered valid.

SPECIAL CONSIDERATIONS

The OCEValidRString function may be modified in the future to perform other checks
for validity, so you should not assume that the only thing this function examines is the
length of the AOCE string.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

Creation Identifier Functions 2

The functions described in this section manipulate record and attribute creation
identifiers in various ways. The two creation identifier data types are defined by the
CreationID and AttributeCreationID structures, which are described on
page 2-26.

Trap macro Selector

__OCEUtils $0338
AOCE Utilities Reference 2-51

C H A P T E R 2

AOCE Utilities
OCEEqualCreationID 2

The OCEEqualCreationID function checks the equality of two CreationID structures.

pascal Boolean OCEEqualCreationID(const CreationID *cid1,

const CreationID *cid2);

cid1 A pointer to the first CreationID structure you want to compare.

cid2 A pointer to the second CreationID structure you want to compare.

DESCRIPTION

Given pointers to two CreationID structures, OCEEqualCreationID compares the
CreationID structures for equality, and returns true if their values are identical,
false if they are not. Two CreationID structures are considered equal if each field in
the first CreationID structure contains the same value as the corresponding field in the
second CreationID structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The CreationID structure is described on page 2-26.

OCECopyCreationID 2

The OCECopyCreationID function copies one CreationID structure to another.

pascal void OCECopyCreationID(const CreationID *cid1,

CreationID *const cid2);

cid1 A pointer to the source CreationID structure you want to copy from.
You must provide this structure.

cid2 A pointer to the destination CreationID structure you want to copy to.
You must provide this structure.

DESCRIPTION

Given two CreationID structures pointed to by the parameters, cid1 and cid2, the
OCECopyCreationID function copies the contents of the first structure to the second.

Trap macro Selector

__OCEUtils $030C
2-52 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The CreationID structure is described on page 2-26.

OCENullCID 2

The OCENullCID function returns a pointer to a null CreationID structure.

pascal const CreationID *OCENullCID(void);

DESCRIPTION

The OCENullCID function returns a pointer to a null CreationID structure that is
maintained by the AOCE toolbox. You can use the OCENullCID function to check a
CreationID structure to see if it is set to NULL, or to create a NULL CID. To check for a
null CreationID structure you can use the following code fragment (This fragment
uses the OCEEqualCreationID function described on page 2-52):

if (OCEEqualCreationID (myCID, OCENullCID())

/* then myCID is NULL */

You do not need to deallocate the NULL CreationID structure returned by the
OCENullCID function when you are done with it.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The CreationID structure is described on page 2-26.

To set an existing CreationID structure to NULL, call the OCESetCreationIDtoNull
function (page 2-54).

The OCECopyCreationID function is described on page 2-52.

Trap macro Selector

__OCEUtils $0300

Trap macro Selector

__OCEUtils $0344
AOCE Utilities Reference 2-53

C H A P T E R 2

AOCE Utilities
OCEPathFinderCID 2

The OCEPathFinderCID function returns a pointer to a special CreationID structure
called the path finder creation ID.

pascal const CreationID *OCEPathFinderCID(void);

DESCRIPTION

The OCEPathFinderCID function returns a pointer to the special creation identifier
structure known as the path finder creation ID. The path finder creation ID is maintained
by the AOCE toolbox so you do not need to deallocate it when you are finished using it.
This special creation ID is used by certain functions in the AOCE Authentication
Manager. This function is intended for future use and is currently only used internally
by the AOCE toolbox.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The CreationID structure is described on page 2-26.

OCESetCreationIDtoNull 2

The OCESetCreationIDtoNull function sets a CreationID structure to NULL.

pascal void OCESetCreationIDtoNull(CreationID *const cid);

cid A pointer to the CreationID structure you want to set to NULL.

DESCRIPTION

The OCESetCreationIDtoNull function sets the CreationID structure you provide
to NULL. The OCESetCreationIDtoNull function makes it easier for you to use other
AOCE functions such as AuthResolveCreationID that require the CreationID
structure passed into them to be set to NULL before they are called.

Trap macro Selector

__OCEUtils $033C
2-54 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The CreationID structure is described on page 2-26.

For more information on the AuthResolveCreationID function see the chapter
“Authentication Manager” in this book.

Packed Pathname Functions 2

The functions described in this section manipulate packed pathnames in various ways.
The packed pathname is defined by the PackedPathName structure, which is described
on page 2-29.

OCECopyPackedPathName 2

The OCECopyPackedPathName function copies the contents of one PackedPathName
structure to another.

pascal OSErr OCECopyPackedPathName(const PackedPathName *path1,

PackedPathName *path2,

unsigned short path2Length);

path1 A pointer to the source PackedPathName structure that you want to
copy from.

path2 A pointer to the destination PackedPathName structure that you want to
copy to.

path2Length
The length, in bytes, of the PackedPathName structure pointed to by the
path2 parameter, not including the size information contained in the
dataLength field.

DESCRIPTION

Given two PackedPathName structures pointed to by the parameters, path1 and
path2, the OCECopyPackedPathName function copies the contents of the first structure
into the second. The path2Length parameter is the size, in bytes, of the destination
PackedPathName structure excluding the size information contained in the
dataLength field. The destination PackedPathName structure must be large enough
to hold the entire contents of the source PackedPathName structure; otherwise, a
memory-full error is returned. Therefore, when you allocate a new destination

Trap macro Selector

__OCEUtils $032E
AOCE Utilities Reference 2-55

C H A P T E R 2

AOCE Utilities
PackedPathName structure as the destination, you must set its length field to the
proper size before calling the OCECopyPackedPathName function.

You obtain the proper size for a PackedPathName structure from its dataLength field.
Once you obtain this value, you can then use it to allocate a destination
PackedPathName structure of the correct size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedPathName structure is described on page 2-29.

OCEIsNullPackedPathName 2

The OCEIsNullPackedPathName function determines if the value of a
PackedPathName structure is NULL.

pascal Boolean OCEIsNullPackedPathName(const PackedPathName

*path);

path A pointer to the PackedPathName structure you want to evaluate.

DESCRIPTION

Given a pointer to a PackedPathName structure, the OCEIsNullPackedPathName
function determines if it satisfies the conditions for being considered NULL and returns
true if its value is NULL, false if it is not. The value true is returned for any of the
following conditions:

■ If the path parameter is set to nil.

■ If the PackedPathName structure pointed to by the path parameter has a length of 0.

■ If the PackedPathName structure pointed to by the path parameter is composed of 0
RString components.

Trap macro Selector

__OCEUtils $0304

noErr 0 No error
memFullErr –108 Not enough memory to copy path1 into path2
2-56 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedPathName structure is described on page 2-29.

OCEPackedPathNameSize 2

The OCEPackedPathNameSize function computes the number of bytes required to
create a PackedPathName structure, including the size information.

pascal unsigned short OCEPackedPathNameSize

(const RStringPtr parts[],

 const unsigned short nParts);

parts An array of pointers to RString structures containing the dNode names.

nParts The number of individual dNode names that are contained in the parts
array.

DESCRIPTION

The OCEPackedPathNameSize function computes the number of bytes of memory
needed to hold a PackedPathName structure manufactured from the parts array. This
length includes the size of the dataLength field of the PackedPathName structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedPathName structure is described on page 2-29.

For information on determining the number of partial pathnames within a
PackedPathName structure see the OCEDNodeNameCount function, described next.

For information on packing and unpacking pathnames see the OCEUnpackPathName
(page 2-58) and OCEPackPathName (page 2-60) functions.

Trap macro Selector

__OCEUtils $031D

Trap macro Selector

__OCEUtils $0328
AOCE Utilities Reference 2-57

C H A P T E R 2

AOCE Utilities
OCEDNodeNameCount 2

The OCEDNodeNameCount function returns the number of RString structures, or
catalog node names contained within a PackedPathName structure.

pascal unsigned short OCEDNodeNameCount

(const PackedPathName *path);

path The PackedPathName structure that you want to evaluate.

DESCRIPTION

When you call the OCEUnpackPathName function to unpack a PackedPathName
structure, you must pass it the number of dNodes that the path is composed of and
allocate an array large enough to hold the pointers to each dNode name. The
OCEDNodeNameCount function provides you with the number of dNodes contained in
the path.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedPathName structure is described on page 2-29.

For information on determining the size of a PackedPathName structure needed to hold
all the components of a pathname, see the OCEPackedPathNameSize function on
page 2-57.

For information on packing and unpacking pathnames see the OCEUnpackPathName
(next) and OCEPackPathName (page 2-60) functions.

OCEUnpackPathName 2

The OCEUnpackPathName function unpacks a PackedPathName structure into its
component RString structures.

pascal unsigned short OCEUnpackPathName(const PackedPathName

*path, RString *const parts[],

const unsigned short nParts);

path A pointer to the PackedPathName structure that you want unpacked.

Trap macro Selector

__OCEUtils $032C
2-58 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
parts An array of pointers to RString structures that the
OCEUnpackPathName function fills with pointers into the path
parameter.

nParts The size of the parts array.

DESCRIPTION

Given a pointer into a PackedPathName structure that you provide, the
OCEUnpackPathName function breaks apart the structure specified by path into the
individual RString structures it contains, writing pointers to these RString structures
into the parts array. The parts array must be large enough to hold as many as nParts
dNode names. You can determine the number of dNodes that a path contains by calling
the OCEDNodeNameCount function (page 2-58).

The OCEUnpackPathName function returns the number of dNode names actually found
during the process of unpacking. You should check this value to ensure that it
corresponds to the nParts parameter that you supplied to verify that no discrepancies
exist.

The RString structures are placed in the parts array in order from lowest to highest;
that is, the first element beneath the top level in the PackedPathName structure is
placed last in the parts array.

SPECIAL CONSIDERATIONS

The array in the parts parameter generated by the OCEUnpackPathName function
contains pointers into the PackedPathName structure specified by the path parameter.
You should not delete or reuse the PackedPathName structure pointed to by the path
parameter until you are finished with the parts array as well. Otherwise, the parts
array may no longer contain pointers to valid data.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedPathName structure is described on page 2-29.

For information on packing a pathname structure, see the OCEPackPathName function,
described next.

For information on determining the size of a PackedPathName structure needed to hold
all the components of a pathname, see the OCEPackedPathNameSize function on
page 2-57.

Trap macro Selector

__OCEUtils $0330
AOCE Utilities Reference 2-59

C H A P T E R 2

AOCE Utilities
For information on determining the number of partial pathnames within a
PackedPathName structure, see the OCEDNodeNameCount function described on
page 2-58.

OCEPackPathName 2

The OCEPackPathName function forms a PackedPathName structure from its
component parts.

pascal OSErr OCEPackPathName(const RStringPtr parts[],

const unsigned short nParts,

PackedPathName *path,

unsigned short pathLength);

parts An array of RString structures that the OCEPackPathName function
uses to form the packed pathname.

nParts The number of dNodes contained in the parts array.

path A pointer to a buffer that you have allocated to hold the
PackedPathName structure.

pathLength
The size of the structure pointed to by the path parameter, not including
the size information contained in the dataLength field. For information
on determining the size of a PackedPathName structure needed to hold
all the components of a pathname, see the OCEPackedPathNameSize
function on page 2-57.

DESCRIPTION

The OCEPackPathName function takes a buffer that you supply and stores in it a
PackedPathName structure that the function creates from an array of dNodes. The
buffer must be large enough to hold the full packed pathname. If the buffer is too small
to hold the entire packed pathname, then a memory-full error is returned.

The order in which you store the partial pathnames in the parts array is as follows:
parts[0] should contain the last pathname element, and parts[nParts - 1]
should contain the name of the first pathname element beneath the root.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

__OCEUtils $0323
2-60 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
RESULT CODES

SEE ALSO

The PackedPathName structure is described on page 2-29.

For information on unpacking a pathname structure, see the OCEUnpackPathName
function described on page 2-58.

For information on determining the size of a PackedPathName structure needed to hold
all the components of a pathname, see the OCEPackedPathNameSize function on
page 2-57.

For information on determining the number of partial pathnames within a
PackedPathName structure, see the OCEDNodeNameCount function described on
page 2-58.

OCEEqualPackedPathName 2

The OCEEqualPackedPathName checks the equality of two packed pathnames.

pascal Boolean OCEEqualPackedPathName(const PackedPathName *path1,

const PackedPathName *path2);

path1 A pointer to the first PackedPathName you want to compare.

path2 A pointer to the second PackedPathName you want to compare.

DESCRIPTION

Given pointers to two PackedPathName structures, path1 and path2, the
OCEEqualPackedPathName function compares them for equality and returns true if
the two pathnames are equal and false if they are not. This function takes into account
the proper case and diacritical marks of the various fields of the PackedPathName
structures it compares. This function checks for equality in the following manner:

■ If the value of both PackedPathName structures is NULL, they are equal. A
PackedPathName structure is considered NULL if the pointer to it is set to nil, or if
its length is 0, or if it contains 0 catalog node names.

■ If the value of one PackedPathName structure is NULL, but the value of the other is
not, they are not equal.

■ If neither PackedPathName structures is NULL, but they do not contain the same
number of catalog node names, they are not equal.

■ If neither PackedPathName structures is NULL and they both contain the same
number of catalog node names, then each catalog node name is compared with the

noErr 0 No error
memFullErr –108 The buffer pointed to by the path parameter is not large

enough to hold the entire contents of the parts array.
AOCE Utilities Reference 2-61

C H A P T E R 2

AOCE Utilities
corresponding one with regard to case and diacritical marks. If every one compares
exactly, then the PackedPathName structures are equal. Otherwise, they are not.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedPathName structure is described on page 2-29.

OCEValidPackedPathName 2

The OCEValidPackedPathName function checks a given PackedPathName structure
for internal consistency.

pascal Boolean OCEValidPackedPathName(const PackedPathName *path);

path A pointer to the PackedPathName you want to validate.

DESCRIPTION

The OCEValidPackedPathName function returns true if the PackedPathName
structure is valid; otherwise, it returns false. The OCEValidPackedPathName
function checks the PackedPathName structure for validity by unpacking it and
performing the following tests:

■ If the pointer to the PackedPathName structure is set to nil, the
OCEValidPackedPathName function considers the PackedPathName structure to
be invalid and returns false.

■ If the length of the PackedPathName structure is 0 it is considered valid.

■ It checks that all of the catalog node names in the PackedPathName structure are
valid by passing them to the OCEValidRString function (page 2-51).

■ It adds up the lengths of all the catalog node names in the PackedPathName
structure and verifies that the total length matches the length of the
PackedPathName structure.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

__OCEUtils $0311

Trap macro Selector

__OCEUtils $0334
2-62 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
SEE ALSO

The PackedPathName structure is described on page 2-29.

Catalog Discriminator Functions 2

The utility functions described in this section manipulate catalog discriminators. The
catalog discriminator is defined by the DirDiscriminator structure described on
page 2-30.

OCECopyDirDiscriminator 2

The OCECopyDirDiscriminator function copies the value of one
DirDiscriminator structure to another.

pascal void OCECopyDirDiscriminator

(const DirDiscriminator *disc1,

 DirDiscriminator *const disc2);

disc1 A pointer to the source DirDiscriminator structure that you want to
copy from. You must provide this structure.

disc2 A pointer to the destination DirDiscriminator structure that you want
to copy to. You must provide this structure.

DESCRIPTION

Given two DirDiscriminator structures pointed to by the parameters, disc1 and
disc2, the OCECopyDirDiscriminator function copies the contents of the first
structure to the second.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DirDiscriminator structure is described on page 2-30.

Trap macro Selector

__OCEUtils $0301
AOCE Utilities Reference 2-63

C H A P T E R 2

AOCE Utilities
OCEEqualDirDiscriminator 2

The OCEEqualDirDiscriminator function checks the equality of two
DirDiscriminator structures.

pascal Boolean OCEEqualDirDiscriminator

(const DirDiscriminator *disc1,

 DirDiscriminator *const disc2);

disc1 A pointer to the first DirDiscriminator structure you want to compare.

disc2 A pointer to the second DirDiscriminator structure you want to
compare.

DESCRIPTION

Given pointers to two DirDiscriminator structures, the
OCEEqualDirDiscriminator function determines if they are equal. It returns true if
they are equal, false if they are not. The two DirDiscriminator structures are
considered equal if their signature and misc fields match byte for byte.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DirDiscriminator structure is described on page 2-30.

Record Location Information Functions 2

The functions described in this section manipulate record location information
structures. The record location information structure is defined by the RLI data type,
described on page 2-32.

OCENewRLI 2

The OCENewRLI function constructs an RLI structure from its component parts.

pascal void OCENewRLI(RLI *newRLI, const DirectoryName *dirName,

DirDiscriminator *discriminator,

const DNodeNum dNodeNumber,

const PackedPathName *path);

Trap macro Selector

__OCEUtils $030D
2-64 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
newRLI A pointer to the buffer where the OCENewRLI function stores the RLI
structure it constructs. You must allocate this.

dirName A pointer to the catalog name you want incorporated into the RLI
structure.

discriminator
A pointer to the catalog discriminator you want incorporated into the RLI
structure.

dNodeNumber
The catalog node number you want incorporated into the RLI structure.

path A pointer to the packed pathname you want incorporated into the RLI
structure.

DESCRIPTION

Given catalog name, discriminator, catalog node number, and packed pathname
structures, the OCENewRLI function creates an RLI structure and replaces the contents of
the buffer, newRLI, with the RLI structure that it forms.

SPECIAL CONSIDERATIONS

Because the OCENewRLI function does not allocate any memory, the RLI structure it
forms uses the same DirectoryName structure and the same PackedPathname
structure that you supplied as parameters. Therefore, you should not dispose of or reuse
the DirectoryName and PackedPathname structures until you have finished using
the RLI structure as well. Doing so will cause the pointers in the RLI structure to point
to incorrect locations in memory and might cause your application to crash.

Use OCENewRLI instead of the OCEUnPackRLI function to create an RLI structure that
you are going to make an alias for. An alias to an RLI structure created with the
OCEUnPackRLI function does not work properly.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is described on page 2-32.

The DirDiscriminator structure is described on page 2-30.

Trap macro Selector

__OCEUtils $031F
AOCE Utilities Reference 2-65

C H A P T E R 2

AOCE Utilities
OCEDuplicateRLI 2

The OCEDuplicateRLI function duplicates the contents of one RLI structure to another.

pascal void OCEDuplicateRLI(const RLI *rli1, RLI *rli2);

rli1 A pointer to the source RLI structure. You must allocate this structure.

rli2 A pointer to the destination RLI structure. You must allocate this
structure; however, you do not have to allocate the structures that this
RLI structure points to.

DESCRIPTION

The OCEDuplicateRLI function copies the pointers from the directoryName and
path fields of the source RLI structure to the corresponding fields in the destination RLI
structure. This function does not copy the data these fields point to, only the pointers to
the data. After you call the OCEDuplicateRLI function, each RLI structure contains
pointers to the same PackedPathName and DirectoryName structures. This means
that if you free the memory for one RLI structure’s PackedPathName or
DirectoryName structure, you are freeing the same structure in the corresponding RLI
structure as well. In addition, the OCEDuplicateRLI function copies the values from
the source RLI structure’s dirDiscriminator and dNodeNumber fields into the
corresponding fields of the destination RLI structure.

To actually copy the contents of the structures that the DirectoryNamePtr and
PackedPathNamePtr fields point to from one RLI to another, use the OCECopyRLI
function, described next.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is described on page 2-32.

To copy the contents of one RLI structure to another see the OCECopyRLI function,
described next.

To copy one PackedRLI structure to another see the OCECopyPackedRLI function on
page 2-70.

For a description of the difference between copying and duplicating an RLI structure,
see the section “Copying Versus Duplicating AOCE Data Structures” on page 2-15.

Trap macro Selector

__OCEUtils $030B
2-66 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
OCECopyRLI 2

The OCECopyRLI function copies the contents of one RLI structure into another.

pascal OSErr OCECopyRLI(const RLI *rli1, RLI *rli2);

rli1 A pointer to the source RLI structure. You must allocate this structure.

rli2 A pointer to the destination RLI structure. You must allocate this
structure.

DESCRIPTION

Given pointers to two RLI structures pointed to by the parameters, rli1 and rli2, the
OCECopyRLI function copies the contents of the first into the second. The destination
RLI structure must already contain pointers to structures large enough to hold copies of
the corresponding fields from the source RLI structure; otherwise, a memory-full error is
returned. Therefore, when you allocate a new destination RLI structure, you must set the
fields that define the length of the PackedPathName and DirectoryName structures
pointed to by its path and directoryName fields to the proper size before calling the
OCECopyRLI function.

You obtain the proper size for a PackedPathName from its dataLength field and that
of a DirectoryName structure from its RStringHeader. Once you obtain these values,
you can then use them to allocate structures of the correct size.

If you want a destination RLI structure that points to the same PackedPathName and
DirectoryName structures as the source RLI structure, then use the
OCEDuplicateRLI function (page 2-66). The OCEDuplicateRLI function changes the
destination RLI structure’s path and directoryName fields so that they point to the
same data in the fields of the corresponding source RLI structure.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RLI structure is described on page 2-32.

Trap macro Selector

__OCEUtils $0307

noErr 0 No error
memFullErr –108 The destination RLI structure is not large enough to hold the

entire contents of the source RLI structure.
AOCE Utilities Reference 2-67

C H A P T E R 2

AOCE Utilities
To create a destination RLI structure that points to the same PackedPathName and
DirectoryName structures as the source RLI structure, use the OCEDuplicateRLI
function on page 2-66.

To copy one PackedRLI structure to another see the OCECopyPackedRLI function on
page 2-70.

The PackedPathName and DirectoryName structures are described on page 2-29 and
page 2-22, respectively.

For a description of the difference between copying and duplicating an RLI structure,
see the section “Copying Versus Duplicating AOCE Data Structures” on page 2-15.

OCEEqualRLI 2

The OCEEqualRLI function checks the equality of two record location information
structures.

pascal Boolean OCEEqualRLI(const RLI *rli1, const RLI *rli2);

rli1 A pointer to the first RLI structure you want to compare.

rli2 A pointer to the second RLI structure you want to compare.

DESCRIPTION

Given pointers to two RLI structures, the OCEEqualRLI function compares them for
equality and returns true if they are equal, false if they are not. This function takes
into account differences in the case and diacritical marks of the catalog name and the
pathname that are contained in the RLI structures.

If the RLI structure that the rli1 parameter points to contains a catalog node number
and a nil pathname, and the RLI structure that the rli2 parameter points to contains
the value kNULLDNodeNumber and a pathname that is not nil, then the comparison
will fail. In other words, the two RLI structures must be of the same form before they
can be compared for equality. The one exception to this rule is when the pathname
contained in the two RLI structures is set to nil. In that case, a dNodeNumber field with
a value of kNULLDNodeNumber, and a dNodeNumber field with a value of
kRootDNodeNumber are treated as equal.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

__OCEUtils $0315
2-68 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
SEE ALSO

The RLI structure is described on page 2-32.

To check two PackedRLI structures for equality, use the OCEEqualPackedRLI
function (page 2-76).

OCEValidRLI 2

The OCEValidRLI function checks the validity of a record location information
structure.

pascal Boolean OCEValidRLI(const RLI *theRLI);

theRLI A pointer to the RLI structure you want to check.

DESCRIPTION

The OCEValidRLI function returns true if the RLI structure is valid, false if it is not.
It checks for validity in the following manner:

■ If the pointer to the RLI structure is set to nil, then the OCEValidRLI function
considers the RLI structure to be invalid and returns false.

■ The OCEValidRLI function then checks if the catalog name length is greater than 0
and less than or equal to the constant kDirectoryNameMaxBytes. If it is not, then
the RLI structure is not valid.

■ The OCEValidRLI function then checks that the packed pathname, if specified, is
valid by calling the OCEValidPackedPathName function (page 2-62). If the
OCEValidPackedPathName function returns false, the RLI structure is not valid.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is described on page 2-32.

To perform a validity check on a PackedRLI structure use the OCEValidPackedRLI
function (page 2-77).

Trap macro Selector

__OCEUtils $0337
AOCE Utilities Reference 2-69

C H A P T E R 2

AOCE Utilities
OCECopyPackedRLI 2

The OCECopyPackedRLI function copies the contents of one PackedRLI structure into
another.

pascal OSErr OCECopyPackedRLI(const PackedRLI *prli1,

PackedRLI *prli2,

unsigned short prli2Length);

prli1 A pointer to the source PackedRLI structure.

prli2 A pointer to the destination PackedRLI structure.

prli2Length
The size of the destination PackedRLI structure, not including the size of
the dataLength field.

DESCRIPTION

Given two PackedRLI structures pointed to by the parameters prli1 and prli2, the
OCECopyPackedRLI function copies the contents of the first PackedRLI structure into
the second. The prli2Length parameter is the size of the destination PackedRLI
structure, excluding its dataLength field. The destination PackedRLI structure must
be large enough to hold the entire contents of the source PackedRLI structure;
otherwise, a memory-full error is returned.

You obtain the proper size for a PackedRLI structure from its dataLength field. Once
you obtain this value, you can then use it to allocate a PackedRLI structure of the
correct size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRLI structure is described on page 2-33.

To copy an RLI structure, use the OCECopyRLI function (page 2-67).

Trap macro Selector

__OCEUtils $0305

noErr 0 No error
memFullErr –108 The destination PackedRLI structure is not large enough to

hold the contents of the source PackedRLI structure
2-70 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
OCEPackedRLISize 2

The OCEPackedRLISize function computes the number of bytes of memory needed to
hold a PackedRLI structure.

pascal unsigned short OCEPackedRLISize(const RLI *theRLI);

theRLI A pointer to an RLI structure.

DESCRIPTION

Given a pointer to an RLI structure, the OCEPackedRLISize function computes the
number of bytes needed for a PackedRLI structure large enough to hold the data in the
RLI structure. The number of bytes returned by the OCEPackedRLISize function
includes the bytes in the field that specifies the length of the PackedRLI structure,
which enables you to allocate the correct amount of memory for a PackedRLI structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is defined on page 2-32.

The PackedRLI structure is defined on page 2-33.

To obtain the number of bytes necessary to create a PackedRLI structure from the
component parts of an RLI structure, see the OCEPackedRLIPartsSize function on
page 2-73.

OCEPackRLI 2

The OCEPackRLI function packs a record location information structure.

pascal OSErr OCEPackRLI(const RLI *theRLI, PackedRLI *prli,

unsigned short prliLength);

theRLI A pointer to the record location information structure you want packed.

prli A pointer to a PackedRLI structure. You must allocate this.

prliLength
The length, in bytes, of the PackedRLI structure pointed to by the prli
parameter, excluding the bytes in the dataLength field.

Trap macro Selector

__OCEUtils $032A
AOCE Utilities Reference 2-71

C H A P T E R 2

AOCE Utilities
DESCRIPTION

The OCEPackRLI function packs the contents of an RLI structure into a PackedRLI
structure. During this process, the OCEPackRLI function replaces the contents of the
PackedRLI structure with new data from the RLI structure. The PackedRLI structure
must be large enough to hold the contents of the RLI structure when packed; otherwise,
a memory-full error is returned. To determine the correct size for the PackedRLI
structure, call the OCEPackedRLISize function (page 2-71).

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RLI structure is defined on page 2-32.

The PackedRLI structure is defined on page 2-33.

For information on unpacking a PackedRLI structure see the OCEUnpackRLI function,
next.

To create a PackedRLI structure from the component parts of an RLI structure, use the
OCEPackRLIParts function on page 2-74.

To determine the correct size for the PackedRLI structure, call the OCEPackedRLISize
function on page 2-71.

OCEUnpackRLI 2

The OCEUnpackRLI function unpacks a PackedRLI structure into its component parts.

pascal void OCEUnpackRLI(const PackedRLI *prli, RLI *theRLI);

prli1 A pointer to the PackedRLI structure you want unpacked.

theRLI A pointer to the RLI structure. You must allocate this; however, you do
not have to allocate the structures that this RLI structure points to.

Trap macro Selector

__OCEUtils $0324

noErr 0 No error
memFullErr –108 The PackedRLI structure is not large enough to hold the

contents of the RLI structure when packed
2-72 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
DESCRIPTION

Given a PackedRLI structure pointed to by the prli1 parameter, and an RLI structure
pointed to by the parameter theRLI, the OCEUnpackRLI function unpacks the
PackedRLI structure into its components, writing pointers to these components into the
RLI structure that you supply.

SPECIAL CONSIDERATIONS

The unpacked RLI structure contains pointers into the packed structure. Therefore, you
should not delete or reuse the packed structure pointed to by the prli1 parameter until
you are finished with the unpacked RLI structure as well.

An alias to an RLI structure created with the OCEUnPackRLI function does not work
properly. If you unpack an RLI structure with OCEUnPackRLI, create an alias to it, and
then pack it with OCEPackRLI, when you try to extract the alias with
OCEExtractAlias, a nil value is returned for the new PackedRLI structure. Use the
OCENewRLI function (page 2-64) instead of OCEUnPackRLI whenever you create an
RLI structure with an alias.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is defined on page 2-32.

The PackedRLI structure is defined on page 2-33.

For information on packing an RLI structure see the OCEPackRLI function on page 2-71.

OCEPackedRLIPartsSize 2

The OCEPackedRLIPartsSize function computes the size of a PackedRLI structure
needed to hold the constituent parts of an RLI structure.

pascal unsigned short OCEPackedRLIPartsSize

(const DirectoryName *dirName,

 const RStringPtr parts[],

 const unsigned short nParts);

dirName A pointer to a catalog name structure.

parts An array containing the pathname parts.

nParts The number of parts contained in the parts array.

Trap macro Selector

__OCEUtils $0331
AOCE Utilities Reference 2-73

C H A P T E R 2

AOCE Utilities
DESCRIPTION

Given the component parts of a record location information structure, the
OCEPackedRLIPartsSize function returns the size, in bytes, needed to create a
PackedRLI structure large enough to hold all of the data and the PackedRLI
dataLength field. This function is equivalent to the OCEPackedRLISize function
(page 2-71), except that it takes the parts of an RLI structure as parameters instead of an
RLI structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is defined on page 2-32.

The PackedRLI structure is defined on page 2-33.

To pack the components of an RLI structure into a PackedRLI structure, see the
OCEPackRLIParts function, described next.

OCEPackRLIParts 2

The OCEPackRLIParts function packs the components of a record location information
structure into a PackedRLI structure.

pascal OSErr OCEPackRLIParts(const DirectoryName *dirName,

const DirDiscriminator *discriminator,

const DNodeNum dNodeNumber,

const RStringPtr parts[],

const unsigned short nParts,

PackedRLI *prli,

unsigned short prliLength);

dirName A pointer to a catalog name structure you want packed.

discriminator
A pointer to a DirDiscriminator value you want packed.

dNodeNumber
The catalog node number you want packed.

parts An array of pointers to RString structures, each of which is a dNode
name on the path. The total array is the pathname structure that you want
packed.

nParts The number of dNode names contained in the parts array.

Trap macro Selector

__OCEUtils $0329
2-74 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
prli A pointer to a PackedRLI structure that you have allocated.

prliLength
The length, in bytes, of the PackedRLI structure pointed to by the prli
parameter.

DESCRIPTION

From all of the component pieces of a record location information structure, the
OCEPackRLIParts function forms a PackedRLI structure. You must allocate the
storage for the PackedRLI structure before calling this function. This function is
equivalent to the OCEPackRLI function, except that it takes the parts of an RLI structure
as its parameters instead of an RLI structure. The OCEPackRLIParts function
examines the prliLength parameter to see if the structure pointed to by the prli
parameter is large enough to hold the packed contents of the RLI structure, and returns
a memory-full error if it is not. Use the OCEPackedRLIPartsSize function to obtain
the size needed for a PackedRLI structure large enough to hold the data from all of the
pieces of an RLI structure.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RLI structure is defined on page 2-32.

The PackedRLI structure is defined on page 2-33.

For information on unpacking a PackedRLI structure see the OCEUnpackRLI function
on page 2-72.

To obtain the number of bytes necessary to create a PackedRLI structure from the
component parts of an RLI structure, see the OCEPackedRLIPartsSize function on
page 2-73.

Trap macro Selector

__OCEUtils $0325

noErr 0 No error
memFullErr –108 The PackedRLI structure is not large enough to hold the

packed components of the RLI structure
AOCE Utilities Reference 2-75

C H A P T E R 2

AOCE Utilities
OCEEqualPackedRLI 2

The OCEEqualPackedRLI function checks the equality of two packed record location
information structures.

pascal Boolean OCEEqualPackedRLI(const PackedRLI *prli1,

const PackedRLI *prli2);

prli1 A pointer to the first PackedRLI structure you want to compare.

prli2 A pointer to the second PackedRLI structure you want to compare.

DESCRIPTION

The OCEEqualPackedRLI function determines if two PackedRLI structures are equal
and returns true if they are, false if they are not. This function checks for equality in
the following manner:

■ If the value of both PackedRLI structures is NULL they are equal. The PackedRLI
structures are set to NULL if the pointers to them are nil, or if they have a length of 0.

■ If only one PackedRLI structure is NULL, the PackedRLI structures are not equal.

■ If neither PackedRLI structures is NULL, then they are unpacked and their
discriminator and dNodeNumber field’s values are compared. If these values are
not identical, then the PackedRLI structures are not equal. If the values are identical,
then the DirectoryName and PackedPathName structures are compared for
equality by calling the OCEEqualRString (page 2-50) and
OCEEqualPackedPathName (page 2-61) functions. If the DirectoryName and
PackedPathName structures are equal then the PackedRLI structures are equal;
otherwise, the PackedRLI structures are not equal.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRLI structure is defined on page 2-33.

To check the equality of two RLI structures use the OCEEqualRLI function (page 2-68).

Trap macro Selector

__OCEUtils $0313
2-76 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
OCEValidPackedRLI 2

The OCEValidPackedRLI function checks the validity of a packed record location
information structure.

pascal Boolean OCEValidPackedRLI(const PackedRLI *prli);

prli A pointer to a PackedRLI structure.

DESCRIPTION

The OCEValidPackedRLI function checks a PackedRLI structure for validity and
returns true if it is valid, false if it is not. The OCEValidPackedRLI function
determines validity by unpacking the PackedRLI structure and then performing the
following tests on it:

■ If the pointer to the PackedRLI structure is nil, or the PackedRLI structure has a
length of 0, then the PackedRLI structure is not valid.

■ The OCEValidPackedRLI function determines if the PackedRLI structure is larger
than the smallest possible PackedRLI structure. If it is not, then the PackedRLI
structure is not valid.

■ The OCEValidPackedRLI function then checks that the catalog name of the
PackedRLI structure is valid by calling the OCEValidRString function (page 2-51).
If the OCEValidRString function returns false, then the PackedRLI structure is
not valid.

■ The OCEValidPackedRLI function then checks the validity of the packed pathname
of the PackedRLI structure by calling the OCEValidPackedPathName function
(page 2-62). If the OCEValidPackedPathName function returns false, then the
PackedRLI structure is not valid.

■ The OCEValidPackedRLI function then adds up the sizes of all of the fields in the
PackedRLI structure and compares the total number of bytes to the value contained
in the dataLength field of the PackedRLI structure. If the two values are equal,
then the PackedRLI structure is valid; otherwise, it is not valid.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRLI structure is defined on page 2-33.

To check the validity of an RLI structure, use the OCEValidRLI function (page 2-69).

Trap macro Selector

__OCEUtils $0336
AOCE Utilities Reference 2-77

C H A P T E R 2

AOCE Utilities
OCEExtractAlias 2

The OCEExtractAlias function returns an alias record from a packed record location
information structure.

pascal AliasPtr OCEExtractAlias(const PackedRLI *prli);

prli A pointer to the PackedRLI structure containing the alias you want to
extract.

DESCRIPTION

If the PackedRLI structure describes a personal catalog, the OCEExtractAlias
function extracts an HFS alias to the personal catalog.

To use the alias, connect it to a handle and call the ResolveAlias function as shown in
the following code sample.

aliasPtr = OCEExtractAlias()

status = PtrToHand(

(Ptr) aliasPtr,

(Handle *) &aliasHandle,

aliasPtr->aliasSize

);

if (status == noErr)

status = ResolveAlias(NULL, aliasHandle, &theFSSpec, &wasChanged);

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRLI structure is defined on page 2-33.

See the chapter “Alias Manager” in Inside Macintosh: Files for more information on aliases
and the alias structure.

OCEGetDirectoryRootPackedRLI 2

The OCEGetDirectoryRootPackedRLI function returns a pointer to a special packed
RLI structure that represents the root of all catalogs.

pascal const PackedRLI * OCEGetDirectoryRootPackedRLI (void)

Trap macro Selector

__OCEUtils $0318
2-78 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
DESCRIPTION

You use the OCEGetDirectoryRootPackedRLI function whenever you need to obtain
the record location information for the root of all catalogs. This PackedRLI structure is
maintained by the AOCE toolbox, and therefore you never need to free the PackedRLI
structure returned by the OCEGetDirectoryRootPackedRLI function when you have
finished using it.

Clients of the AOCE standard catalog-browsing panel can use the PackedRLI returned
by this function to tell the Standard Catalog panel to begin displaying catalogs from the
root, thus allowing the user to see all of the catalogs configured on the computer.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRLI structure is defined on page 2-33.

The catalog-browsing panel is described in the chapter “Standard Catalog Package” in
this book.

Local Record Identifier Functions 2

The functions described in this section manipulate local record identifier structures. The
local record identifier is defined by the LocalRecordID structure (page 2-27).

OCENewLocalRecordID 2

The OCENewLocalRecordID function converts the data you supply into a
LocalRecordID structure.

pascal void OCENewLocalRecordID(const RString *recordName,

const RString *recordType,

const CreationID *cid,

LocalRecordID *lRID);

recordName
A pointer to an RString structure containing the record name you want
stored in the LocalRecordID structure.

recordType
A pointer to an RString structure containing the record type you want
stored in the LocalRecordID structure.

Trap macro Selector

__OCEUtils $0346
AOCE Utilities Reference 2-79

C H A P T E R 2

AOCE Utilities
cid A pointer to the CreationID structure you want stored in the
LocalRecordID structure.

lRID A pointer to a LocalRecordID structure you have allocated.

DESCRIPTION

The OCENewLocalRecordID function converts a record name, record type, and creation
identifier into a LocalRecordID structure. You must allocate the storage for the
LocalRecordID structure before calling this function.

SPECIAL CONSIDERATIONS

Because the OCENewLocalRecordID function does not allocate any memory, the
LocalRecordID structure it forms uses the same RString structures and the same
CreationID structure that you supplied as parameters. Therefore, you should not
dispose of or reuse the RSTring and CreationID structures until you have finished
using the LocalRecordID structure as well. Doing so will cause the pointers in the
LocalRecordID structure to point to incorrect locations in memory and might cause
your application to crash.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The LocalRecordID structure is defined on page 2-27.

OCECopyLocalRecordID 2

The OCECopyLocalRecordID function copies one LocalRecordID structure into
another.

pascal OSErr OCECopyLocalRecordID(const LocalRecordID *lRID1,

LocalRecordID *lRID2);

lRID1 A pointer to the source LocalRecordID structure.

lRID2 A pointer to the destination LocalRecordID structure.

DESCRIPTION

Given two LocalRecordID structures, the OCECopyLocalRecordID function copies
the contents of the first one into the second. The destination LocalRecordID structure

Trap macro Selector

__OCEUtils $031E
2-80 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
must contain pointers to RString structures large enough to hold copies of the
corresponding fields from the source LocalRecordID structure; otherwise, a
memory-full error is returned. Therefore, when you allocate a new destination
LocalRecordID structure, you must set the length fields of the RString structures
pointed to by recordName and recordType to their proper values before calling the
OCECopyLocalRecordID function. You obtain the correct size for these Rstring
structures from their headers in the source LocalRecordID structure.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The LocalRecordID structure is defined on page 2-27.

OCEEqualLocalRecordID 2

The OCEEqualLocalRecordID function checks the equality of two LocalRecordID
structures.

pascal Boolean OCEEqualLocalRecordID(const LocalRecordID *lRID1,

const LocalRecordID *lRID2);

lRID1 A pointer to the first LocalRecordID structure you want to compare.

lRID2 A pointer to the second LocalRecordID structure you want to compare.

DESCRIPTION

The OCEEqualLocalRecordID function compares the two LocalRecordID structures
for equality in the following manner:

■ The recordName and recordType fields of the two LocalRecordID structures are
compared for equality by calling the OCEEqualRString (page 2-50) function and
passing it the proper RStringKind value for each field.

■ The cid fields of the two LocalRecordID structures are compared for equality by
calling the OCEEqualCreationID function (page 2-52).

Trap macro Selector

__OCEUtils $0302

noErr 0 No error
memFullErr –108 The destination LocalRecordID structure is not large

enough to hold the contents of the source LocalRecordID
structure
AOCE Utilities Reference 2-81

C H A P T E R 2

AOCE Utilities
If the recordName, recordType, and CreationID fields of the two LocalRecordID
structures are equal, then the OCEEqualLocalRecordID function returns true;
otherwise, it returns false.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The LocalRecordID structure is defined on page 2-27.

The RStringKind structure is defined on page 2-24.

Short Record Identifier Functions 2

The functions described in this section manipulate short record identifiers. The short
record identifier is defined by the ShortRecordID structure (page 2-35).

OCENewShortRecordID 2

The OCENewShortRecordID function converts data you supply into a
ShortRecordID structure.

pascal void OCENewShortRecordID(const PackedRLI *theRLI,

const CreationID *cid,

ShortRecordIDPtr *sRID);

theRLI A pointer to the packed record location information structure containing
data you want stored in the ShortRecordID structure.

cid A pointer to the creation identifier structure containing data you want
stored in the ShortRecordID structure.

sRID A pointer to a ShortRecordID structure you have allocated.

DESCRIPTION

The OCENewShortRecordID function converts a CreationID structure and a
PackedRLI structure into a ShortRecordID structure. You must allocate the
ShortRecordID structure before calling this function.

SPECIAL CONSIDERATIONS

Because the OCENewRecordID function does not allocate any memory, the
ShortRecordID structure it forms uses the same PackedRLI structure and the same

Trap macro Selector

__OCEUtils $030E
2-82 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
CreationID structure that you supplied as parameters. Therefore, you should not
dispose of or reuse the PackedRLI and CreationID structures until you have finished
using the ShortRecordID structure as well. Doing so will cause the pointers in the
ShortRecordID structure to point to incorrect locations in memory and might cause
your application to crash.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The ShortRecordID structure is defined on page 2-35.

OCECopyShortRecordID 2

The OCECopyShortRecordID function copies one ShortRecordID structure into
another.

pascal OSErr OCECopyShortRecordID(const ShortRecordID *sRID1,

ShortRecordID *sRID2);

sRID1 A pointer to the source ShortRecordID structure.

sRID2 A pointer to the destination ShortRecordID structure.

DESCRIPTION

Given two ShortRecordID structures pointed to by the sRID1 and sRID2 parameters,
the OCECopyShortRecordID function copies the data from the first one into the
second. The destination ShortRecordID structure must contain pointers to structures
large enough to hold copies of the corresponding fields from the source
ShortRecordID structure; otherwise, a memory-full error is returned. Therefore, when
you allocate a new destination ShortRecordID structure, you must set the
dataLength field of its PackedRLI component to the proper value before calling the
OCECopyShortRecordID function.

You obtain the correct size for a PackedRLI structure from the value contained in its
dataLength field. Once you obtain this value, you can then use it to allocate a
PackedRLI structure of the correct size.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

__OCEUtils $0321

Trap macro Selector

__OCEUtils $030A
AOCE Utilities Reference 2-83

C H A P T E R 2

AOCE Utilities
RESULT CODES

SEE ALSO

The ShortRecordID structure is defined on page 2-35.

OCEEqualShortRecordID 2

The OCEEqualShortRecordID function checks the equality of two short record
identifier structures.

pascal Boolean OCEEqualShortRecordID(const ShortRecordID *sRID1,

const ShortRecordID *sRID2);

sRID1 A pointer to the first ShortRecordID structure you want to compare.

sRID2 A pointer to the second ShortRecordID structure you want to compare.

DESCRIPTION

If both ShortRecordID structures are equal, then the OCEEqualShortRecordID
function returns true; otherwise, it returns false.

The OCEEqualShortRecordID function compares two ShortRecordID structures for
equality in the following manner:

■ If both pointers to the ShortRecordID structures are set to nil, then they are equal.

■ If one of the pointers to a ShortRecordID structure is set to nil and the other is not,
then the OCEEqualShortRecordID function returns false.

■ If neither pointer to the ShortRecordID structures is set to nil, then the cid fields
of the two ShortRecordID structures are compared for equality by calling the
OCEEqualCreationID function (page 2-52). If the OCEEqualCreationID function
returns false, then the ShortRecordID structures are not equal.

■ If the CreationID fields of the two ShortRecordID structures are equal, then the
PackedRLI structures pointed to by the PackedRLIPtr fields of the two
ShortRecordID structures are compared for equality by calling the
OCEEqualPackedRLI function (page 2-76). If the OCEEqualPackedRLI function
returns true, then the two ShortRecordID structures are equal; otherwise, they are
not.

noErr 0 No error
memFullErr –108 The destination ShortRecordID structure is not large

enough to hold the contents of the source ShortRecordID
structure
2-84 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The ShortRecordID structure is defined on page 2-35.

Record Identifier Functions 2

The functions in this section manipulate record identifier structures. The record identifier
is defined by the RecordID data structure (page 2-34).

OCEGetIndRecordType 2

The OCEGetIndRecordType function returns a standard record type based on the
index value you pass to it.

pascal RString *OCEGetIndRecordType

(const OCERecordTypeIndex stringIndex);

stringIndex
One of the index values from the OCERecordTypeIndex enumerated list.

DESCRIPTION

To obtain a standard record type, you call the OCEGetIndRecordType function and
pass it an index value based on the type of record you want. The record type index
(page 2-28) is an enumerated list containing all of the standard AOCE record types.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The recordType field is part of the LocalRecordID structure defined on page 2-27.

For an enumerated list containing all of the standard AOCE record types, see the record
type index on page 2-28.

Trap macro Selector

__OCEUtils $0317

Trap macro Selector

__OCEUtils $031B
AOCE Utilities Reference 2-85

C H A P T E R 2

AOCE Utilities
OCENewRecordID 2

The OCENewRecordID function converts data you supply into a RecordID structure.

pascal void OCENewRecordID(const PackedRLI *theRLI,

const LocalRecordID *lRID, RecordID *rid);

theRLI A pointer to the PackedRLI structure you want stored in the RecordID
structure.

lRID A pointer to the LocalRecordID structure you want stored in the
RecordID structure.

rid A pointer to the destination RecordID structure. You must allocate this
structure.

DESCRIPTION

The OCENewRecordID function converts a PackedRLI structure and LocalRecordID
structure into a RecordID structure.

SPECIAL CONSIDERATIONS

Because the OCENewRecordID function does not allocate any memory, the RecordID
structure it forms uses the same PackedRLI structure and the same LocalRecordID
structure that you supplied as parameters. Therefore, you should not dispose of or reuse
the PackedRLI and LocalRecordID structures until you have finished using the
RecordID structure as well. Doing so will cause the pointers in the RecordID structure
to point to incorrect locations in memory and might cause your application to crash.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RecordID structure is defined on page 2-34.

OCECopyRecordID 2

The OCECopyRecordID function copies one RecordID structure to another.

pascal OSErr OCECopyRecordID(const RecordID *rid1,

const RecordID *rid2);

Trap macro Selector

__OCEUtils $0320
2-86 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
rid1 The source RecordID structure.

rid2 The destination RecordID structure.

DESCRIPTION

Given two RecordID structures pointed to by the rid1 and rid2 parameters, the
OCECopyRecordID function copies the contents of the first one into the second. The
destination RecordID structure must contain pointers to structures large enough to hold
copies of the corresponding fields from the source RecordID structure; otherwise, a
memory-full error is returned. Therefore, when you allocate a new destination
RecordID structure, you must set the length fields of its
LocalRecordID.recordName, LocalRecordId.recordType, and
LocalRecordID.PackedRLI fields to their proper values before calling the
OCECopyRecordID function.

You obtain the correct size for the LocalRecordID.recordName and
LocalRecordID.recordType fields of a RecordID structure from the values
contained in their RStringHeader fields. Once you obtain these values, you can then
use them to allocate recordName and recordType structures of the correct size.

You obtain the correct size for a LocalRecordId.PackedRLI structure from the value
contained in its dataLength field. Once you obtain this value you can then use it to
allocate a PackedRLI structure of the correct size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID structure is defined on page 2-34.

OCEEqualRecordID 2

The OCEEqualRecordID function checks the equality of two record identifier structures.

pascal Boolean OCEEqualRecordID(const RecordID *rid1,

const RecordID *rid2);

Trap macro Selector

__OCEUtils $0309

noErr 0 No error
memFullErr –108 The destination RecordID structure is not large enough to

hold the contents of the source RecordID structure
AOCE Utilities Reference 2-87

C H A P T E R 2

AOCE Utilities
rid1 A pointer to the first RecordID you want to compare.

rid2 A pointer to the second RecordID you want to compare.

DESCRIPTION

The OCEEqualRecordID function compares two RecordID structures for equality and
returns true if they are equal, false if they are not. This function checks the two
RecordID structures for equality in the following manner:

■ If both pointers to the RecordID structures are set to nil, then they are equal.

■ If one of the pointers to a RecordID structure is set to nil and the other is not, then
the OCEEqualRecordID function returns false.

■ If neither pointer to the RecordID structures is set to nil, then the CreationID
structures pointed to by the LocalRecordID.cid fields of the two RecordID
structures are compared for equality by calling the OCEEqualCreationID function
(page 2-52). If the OCEEqualCreationID function returns false, then the two
RecordID structures are not equal.

■ If the CreationID structures identified by the LocalRecordID.cid fields of the
two RecordID structures are equal, then the PackedRLI structures pointed to by the
PackedRLIPtr fields of the two RecordID structures are compared for equality by
calling the OCEEqualPackedRLI function (page 2-76). If the OCEEqualPackedRLI
function returns false, then the two RecordID structures are not equal.

■ If the PackedRLI structures pointed to by the PackedRLIPtr fields of the two
RecordID structures are equal, then the LocalRecordID.recordName and
LocalRecordID.recordType fields of the two RecordID structures are compared
for equality by calling the OCEEqualRString (page 2-50) function and passing it the
proper RStringKind value for each field. If the OCEEqualRString function returns
false, the two RecordID structures are not equal.

If the conditions for equality listed above are satisfied, then the two RecordID
structures are equal; otherwise, they are not equal.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RecordID structure is defined on page 2-34.

The RStringKind structure is defined on page 2-24.

Packed Record Identifier Functions 2

The functions described in this section manipulate packed record identifiers. Packed
record identifiers are defined by the PackedRecordID structure (page 2-35).

Trap macro Selector

__OCEUtils $0314
2-88 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
OCECopyPackedRecordID 2

The OCECopyPackedRecordID function copies one PackedRecordID structure to
another.

pascal OSErr OCECopyPackedRecordID(const PackedRecordID *pRID1,

const PackedRecordID *pRID2,

unsigned short pRID2Length);

pRID1 A pointer to the source PackedRecordID structure.

pRID2 A pointer to the destination PackedRecordID structure.

pRID2Length
The length, in bytes, of the destination PackedRecordID structure, not
including the bytes in the dataLength field.

DESCRIPTION

Given two PackedRecordID structures pointed to by the pRID1 and pRID2
parameters, the OCECopyPackedRecordID function copies the contents of the first into
the second. The pRID2Length parameter is the size of the destination
PackedRecordID structure, excluding its dataLength field. The destination
PackedRecordID structure must be large enough to hold the entire contents of the
source PackedRecordID structure; otherwise, a memory-full error is returned.

You obtain the proper size for a PackedRecordID structure from the value contained in
its dataLength field. Once you obtain this value, you can then use it to allocate a
destination PackedRecordID structure of the correct size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRecordID structure is defined on page 2-35.

Trap macro Selector

__OCEUtils $0306

noErr 0 No error
memFullErr –108 The pRID2 parameter is not large enough to hold the entire

contents of pRID1
AOCE Utilities Reference 2-89

C H A P T E R 2

AOCE Utilities
OCEPackedRecordIDSize 2

The OCEPackedRecordIDSize function computes the number of bytes of memory
needed to hold a PackedRecordID structure.

pascal unsigned short OCEPackedRecordIDSize(const RecordID *rid);

rid A pointer to a RecordID structure.

DESCRIPTION

The OCEPackedRecordIDSize function returns the number of bytes that a
PackedRecordID needs to hold the packed data from a specified RecordID structure.
The number of bytes returned by the OCEPackedRecordIDSize function includes the
size of the datalength field of the PackedRecordID structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RecordID structure is defined on page 2-34.

The PackedRecordID structure is defined on page 2-35.

To unpack a PackedRecordID structure into a RecordID structure, use the
OCEUnpackRecordID function (page 2-91).

OCEPackRecordID 2

The OCEPackRecordID function packs a RecordID structure into a PackedRecordID
structure.

pascal OSErr OCEPackRecordID(const RecordID *rid,

PackedRecordID *pRID,

unsigned short packedRecordIDLength);

rid A pointer to the RecordID structure you want packed.

pRID A pointer to a PackedRecordID structure. You must allocate this
structure.

packedRecordIDLength
The maximum length, in bytes, of the PackedRecordID structure,
excluding the bytes in the dataLength field.

Trap macro Selector

__OCEUtils $032B
2-90 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
DESCRIPTION

The OCEPackRecordID function packs a RecordID structure into a PackedRecordID
structure. The PackedRecordID structure must be large enough to contain the entire
contents of the RecordID in packed format; otherwise, a memory-full error is returned.
You obtain the size of a PackedRecordID structure large enough to hold the data in a
RecordID structure by calling the OCEPackedRecordIDSize function described on
page 2-90.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID structure is defined on page 2-34.

The PackedRecordID structure is defined on page 2-35.

To unpack a PackedRecordID structure into a RecordID structure, see the
OCEUnpackRecordID function, described next.

OCEUnpackRecordID 2

The OCEUnpackRecordID function unpacks a PackedRecordID structure into a
RecordID structure.

pascal void OCEUnpackRecordID(const PackedRecordID *pRID,

RecordID *rid);

pRID A pointer to the PackedRecordID structure you want to unpack.

rid A pointer to a RecordID structure. You must allocate this structure.

DESCRIPTION

Given a PackedRecordID structure pointed to by the pRID parameter and a RecordID
structure pointed to by the rid parameter, the OCEUnpackRecordID function unpacks
the PackedRecordID structure into the RecordID structure.

Trap macro Selector

__OCEUtils $0326

noErr 0 No error
memFullErr –108 The PackedRecordID structure is not large enough to hold

the packed data from the RecordID structure
AOCE Utilities Reference 2-91

C H A P T E R 2

AOCE Utilities
SPECIAL CONSIDERATIONS

Because the OCEUnpackRecordID function does not allocate any memory, the
unpacked RecordID structure contains pointers into the PackedRecordID structure.
Therefore, do not delete or reuse the PackedRecordID structure until you have finished
using the unpacked RecordID structure as well. Doing so will cause the pointers in the
RecordID structure to point to incorrect locations in memory, and your application may
crash when you try to access the RecordID structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RecordID structure is defined on page 2-34.

The PackedRecordID structure is defined on page 2-35.

To pack a RecordID structure into a PackedRecordID structure, see the
OCEPackRecordID function described on page 2-90.

OCEEqualPackedRecordID 2

The OCEEqualPackedRecordID function checks the equality of two
PackedRecordID structures.

pascal Boolean OCEEqualPackedRecordID

(const PackedRecordID *pRID1,

 const PackedRecordID *pRID2);

pRID1 A pointer to the first PackedRecordID structure you want to compare.

pRID2 A pointer to the second PackedRecordID structure you want to
compare.

DESCRIPTION

The OCEEqualPackedRecordID function compares two PackedRecordID structures
for equality and returns true if they are equal and false if they are not.

This function checks the two PackedRecordID structures for equality in the following
manner:

■ If both pointers to the PackedRecordID structures are nil, then they are equal.

■ If one of the pointers to a PackedRecordID structure is nil and the other is not,
then the PackedRecordID structures are not equal.

Trap macro Selector

__OCEUtils $0332
2-92 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
■ If neither pointer to the PackedRecordID structures is nil, then they are unpacked
and the CreationID structures identified by the LocalRecordId.cid fields of the
two unpacked PackedRecordID structures are compared for equality by calling the
OCEEqualCreationID function (page 2-52). If the OCEEqualCreationID function
returns false, then the two PackedRecordID structures are not equal.

■ If the CreationID structures identified by the LocalRecordId.cid fields of the
two unpacked PackedRecordID structures are equal, then the PackedRLI
structures pointed to by the PackedRLIPtr fields of the two PackedRecordID
structures are compared for equality by calling the OCEEqualPackedRLI function
(page 2-76). If the OCEEqualPackedRLI function returns false, then the two
PackedRecordID structures are not equal.

■ If the PackedRLI structures pointed to by the PackedRLIPtr fields of the two
(unpacked) PackedRecordID structures are equal, then the
LocalRecordID.recordName and LocalRecordID.recordType fields of the
two (unpacked) PackedRecordID structures are compared for equality by calling
the OCEEqualRString (page 2-50) function and passing it the proper RStringKind
value for each field. If the OCEEqualRString function returns false, the two
PackedRecordID structures are not equal.

If the conditions for equality listed above are satisfied, then the two PackedRecordID
structures are equal; otherwise, they are not equal.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRecordID structure is defined on page 2-35.

The RStringKind structure is defined on page 2-24.

OCEValidPackedRecordID 2

The OCEValidPackedRecordID function checks the validity of a packed record
identifier.

pascal Boolean OCEValidPackedRecordID(const PackedRecordID *pRID);

pRID A pointer to the PackedRecordID you want to validate.

Trap macro Selector

__OCEUtils $0312
AOCE Utilities Reference 2-93

C H A P T E R 2

AOCE Utilities
DESCRIPTION

Given a pointer to a PackedRecordID structure, the OCEValidPackedRecordID
function checks it for validity based on its internal structure and returns true if it is
valid and false if it is not. The OCEValidPackedRecordID function checks a
PackedRecordID structure for validity in the following manner:

■ If the pointer to the PackedRecordID structure is set to nil, or the length of the
PackedRecordID structure is 0, then the PackedRecordID structure is invalid.

■ If the pointer to the PackedRecordID structure is not nil and the length of the
structure is greater than 0, then it is unpacked and the RLI component of the
PackedRecordID structure is validated by calling the OCEValidRLI function
(page 2-69). If the OCEValidRLI function returns false, then the PackedRecordID
structure is not valid.

■ If the RLI component of the PackedRecordID structure is valid, then the
recordName and recordType fields of the PackedRecordID structure are
validated by calling the OCEValidRString function. If the OCEValidRString
function returns false, then the PackedRecordID structure is not valid.

■ If all of the conditions tested for validity are true, then the entire PackedRecordID
structure is valid.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRecordID structure is defined on page 2-35.

Attribute Type Functions 2

The function described in this section returns a standard attribute type. The attribute
type is defined by the AttributeType data structure and is described on page 2-39.

OCEGetIndAttributeType 2

The OCEGetIndAttributeType function returns an attribute type based on the index
value you pass to it.

pascal AttributeType *OCEGetIndAttributeType(const

OCEAttributeTypeIndex stringIndex);

Trap macro Selector

__OCEUtils $0335
2-94 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
stringIndex
One of the index values from the OCEAttributeTypeIndex
enumerated list.

DESCRIPTION

To obtain a standard attribute type, you call the OCEGetIndAttributeType function
and pass it an index value based on the kind of attribute type you want. The attribute
type index (page 2-40) is an enumerated list containing all of the standard AOCE
attribute types.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The AttributeType structure is defined on page 2-39.

For an enumerated list of all the standard AOCE attribute types, see the attribute type
index on page 2-40.

Catalog Services Specification Functions 2

The functions described in this section manipulate the various catalog services
specification data structures. The catalog services specification is defined by the DSSpec
data structure (page 2-36) and its packed form by the PackedDSspec structure
(page 2-37). These functions perform such tasks as copying, comparing, unpacking, and
retrieving information from DSSpec structures.

Other forms of the DSSpec structure include the OCERecipient and the packed form,
OCEPackedRecipient, which are defined in the chapter “Interprogram Messaging
Manager” in this book. The functions, such as OCEPackRecipient, that manipulate
these data structures are also described in the chapter “Interprogram Messaging
Manager.”

OCECopyPackedDSSpec 2

The OCECopyPackedDSSpec function copies data from one PackedDSSpec into
another.

pascal OSErr OCECopyPackedDSSpec(const PackedDSSpec *pdss1,

const PackedDSSpec *pdss2, unsigned short pdss2Length);

pdss1 A pointer to the source PackedDSSpec structure.

Trap macro Selector

__OCEUtils $031A
AOCE Utilities Reference 2-95

C H A P T E R 2

AOCE Utilities
pdss2 A pointer to the destination PackedDSSpec structure.

pdss2Length
The length, in bytes, of the destination PackedDSSpec structure, not
including the header information.

DESCRIPTION

Given two PackedDSSpec structures pointed to by the pdss1 and pdss2 parameters,
the OCECopyPackedDSSpec function copies the first into the second. The
pdss2Length parameter is the size, in bytes, of the destination PackedDSSpec
structure, excluding its header. The destination PackedDSSpec structure must be large
enough to hold the entire contents of the source PackedDSSpec structure; otherwise, a
memory-full error is returned.

You obtain the proper size for a PackedDSSpec structure from the value contained in its
dataLength field. Once you obtain this value, you can then use it to allocate a
destination PackedDSSpec structure of the correct size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedDSSpec data structure is defined on page 2-37.

OCEPackedDSSpecSize 2

The OCEPackedDSSpecSize function computes the number of bytes of memory
needed to hold a packed DSSpec structure.

pascal unsigned short OCEPackedDSSpecSize(const DSSpec *dss);

dss A pointer to the DSSpec structure whose size, when packed, you want to
determine.

Trap macro Selector

__OCEUtils $0303

noErr 0 No error
memFullErr –108 The destination PackedDSSpec structure is not large

enough to hold the contents of the source PackedDSSpec
structure
2-96 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
DESCRIPTION

The OCEPackedDSSpecSize function computes the number of bytes required to hold
the information contained in a DSSpec structure when it is packed. The number of bytes
returned by the OCEPackedDSSpecSize function includes the dataLength field of the
PackedDSSpec structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DSSpec structure is defined on page 2-36.

The PackedDSSpec structure is defined on page 2-37.

To pack a DSSpec structure, use the OCEPackDSSpec function, described next.

OCEPackDSSpec 2

The OCEPackDSSpec function forms a PackedDSSpec structure from a DSSpec
structure.

pascal OSErr OCEPackDSSpec(const DSSpec *dss, PackedDSSpec *pdss,

unsigned short pdssLength);

dss A pointer to the DSSpec structure that you want to pack.

pdss A pointer to a PackedDSSpec structure. You must allocate this structure.

pdssLength The maximum number of bytes that can be stored in the PackedDSSpec
structure, not including the header information.

DESCRIPTION

The OCEPackDSSpec function packs the contents of a DSSpec structure into a
PackedDSSpec structure. The PackedDSSpec structure must be large enough to
contain the packed RecordID information and any extension value as well; otherwise, a
memory-full error is returned. Use the OCEPackDSSpecSize function to obtain the size
of a PackedDSSpec structure.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

__OCEUtils $0327

Trap macro Selector

__OCEUtils $0322
AOCE Utilities Reference 2-97

C H A P T E R 2

AOCE Utilities
RESULT CODES

SEE ALSO

The DSSpec structure is defined on page 2-36.

The PackedDSSpec structure is defined on page 2-37.

To obtain the size of a PackedDSSpec structure, use the OCEPackDSSpecSize function
on page 2-96.

For information on unpacking a PackedDSSpec structure, see the OCEUnpackDSSpec
function, described next.

OCEUnpackDSSpec 2

The OCEUnpackDSSpec function unpacks a PackedDSSpec structure.

pascal void OCEUnpackDSSpec(const PackedDSSpec *pdss, DSSpec *dss,

RecordID *rid);

pdss A pointer to the PackedDSSpec structure you want to unpack.

dss A pointer to a DSSpec structure. You must allocate this structure.

rid A pointer to a RecordID structure. The OCEUnpackDSSpec function
extracts the RecordID information from the PackedDSSpec structure
and places it in this RecordID structure. You must allocate this structure.

DESCRIPTION

The OCEUnpackDSSpec function extracts the information from a PackedDSSpec
structure and places it in a DSSpec structure and a RecordID structure. The
OCEUnpackDSSpec function extracts the record identifier (if any) into the RecordID
structure, places the rest of the information into the DSSpec structure, and then sets the
entitySpecifier field of the DSSpec structure to point to the RecordID structure.
The OCEUnpackDSSpec function returns a pointer to the extension (if any) in the
extensionValue field of the DSSpec structure, and returns the length of that
extension in the extensionSize field of the DSSpec structure. If there is no extension,
the OCEUnpackDSSpec function sets the extensionValue field of the DSSpec
structure to nil.

noErr 0 No error
memFullErr –108 The PackedDSSpec structure is not large enough to hold all

of the packed information
2-98 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
SPECIAL CONSIDERATIONS

The unpacked DSSpec and RecordID structures contain pointers into the
PackedDSSpec structure. You should not delete or reuse the PackedDSSpec structure
until you have finished using the DSSpec and RecordID structures as well.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DSSpec structure is defined on page 2-36.

The PackedDSSpec structure is defined on page 2-37.

The RecordID structure is defined on page 2-34.

To pack a DSSpec structure, use the OCEPackDSSpec function (page 2-97).

OCEEqualDSSpec 2

The OCEEqualDSSpec function checks the equality of two DSSpec structures.

pascal Boolean OCEEqualDSSpec(const DSSpec *pdss1,

const DSSpec *pdss2);

pdss1 A pointer to the first DSSpec structure you want to compare.

pdss2 A pointer to the second DSSpec structure you want to compare.

DESCRIPTION

Given two DSSpec structures pointed to by the pdss1 and pdss2 parameters, the
OCEEqualDSSpec function compares them for equality and returns true if they are
equal and false if they are not.

This function checks the two DSSpec structures for equality in the following manner:

■ If both pointers to the DSSpec structures are nil, then they are equal.

■ If one of the pointers to a DSSpec structure is nil and the other is not, then the two
DSSpec structures are not equal.

■ If neither pointer to the DSSpec structures is nil, then the CreationID structures,
identified by the RecordID->LocalRecordID.cid fields of the two DSSpec
structures, are compared for equality by calling the OCEEqualCreationID function
(page 2-52). If the OCEEqualCreationID function returns false, then the two
DSSpec structures are not equal.

Trap macro Selector

__OCEUtils $032F
AOCE Utilities Reference 2-99

C H A P T E R 2

AOCE Utilities
■ If the CreationID structures are equal, then the PackedRLI structures pointed to by
the RecordID->PackedRLIPtr fields of the two DSSpec structures are compared
for equality by calling the OCEEqualPackedRLI function (page 2-76). If the
OCEEqualPackedRLI function returns false, then the two DSSpec structures are
not equal.

■ If the PackedRLI structures are equal, then the LocalRecordID.recordName and
LocalRecordID.recordType fields belonging to the RecordID structure of the
two DSSpec structures are compared for equality by calling the OCEEqualRString
(page 2-50) function and passing it the proper RStringKind value for each field. If
the OCEEqualRString function returns false, the two DSSpec structures are not
equal.

■ If the LocalRecordID.recordName and LocalRecordID.recordType fields are
equal then the values of the extensionType fields of the DSSpec structures are
examined. If they are not identical then the DSSpec structures are not equal.

■ If the extensionType fields of the two DSSpec structures are identical, then the
extensionSize fields of the DSSpec structures are compared. If they are not
identical, then the two DSSpec structures are not equal.

■ If the extensionSize fields of the two DSSpec structures are identical, then the
extensionValue fields of the DSSpec structures are compared. They are compared
byte by byte for equality, and if they are not identical then the two DSSpec structures
are not equal.

If the conditions for equality listed above are satisfied, then the two DSSpec structures
are equal; otherwise, they are not equal.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DSSpec data structure is defined on page 2-36.

To compare two PackedDSSpec structures for equality use the
OCEEqualPackedDSSpec function, described next.

OCEEqualPackedDSSpec 2

The OCEEqualPackedDSSpec function checks the equality of two PackedDSSpec
structures.

pascal Boolean OCEEqualPackedDSSpec(const PackedDSSpec *pdss1,

const PackedDSSpec *pdss2);

Trap macro Selector

__OCEUtils $030E
2-100 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
pdss1 A pointer to the first PackedDSSpec structure you want to compare.

pdss2 A pointer to the second PackedDSSpec structure you want to compare.

DESCRIPTION

Given two PackedDSSpec structures pointed to by the pdss1 and pdss2 parameters,
the OCEEqualPackedDSSpec function compares them for equality and returns true if
they are equal, and false if they are not.

This function checks the two PackedDSSpec structures for equality in the following
manner:

■ If both pointers to the PackedDSSpec structures are nil, then they are equal.

■ If one of the pointers to a PackedDSSpec structure to nil and the other is not, then
the two PackedDSSpec structures are not equal.

■ If neither pointer to the PackedDSSpec structures is nil, then the two structures are
unpacked and the CreationID structures, identified by the
RecordID->LocalRecordID.cid fields of the two DSSpec structures, are
compared for equality by calling the OCEEqualCreationID function (page 2-52). If
the OCEEqualCreationID function returns false, then the two PackedDSSpec
structures are not equal.

■ If the CreationID structures are equal, then the PackedRLI structures pointed to by
the RecordID->PackedRLIPtr fields of the two unpacked PackedDSSpec
structures are compared for equality by calling the OCEEqualPackedRLI function
(page 2-76). If the OCEEqualPackedRLI function returns false, then the two
PackedDSSpec structures are not equal.

■ If the PackedRLI structures are equal, then the LocalRecordID.recordName and
LocalRecordID.recordType fields belonging to the RecordID structure of the
two unpacked PackedDSSpec structures are compared for equality by calling the
OCEEqualRString (page 2-50) function and passing it the proper RStringKind
value for each field. If the OCEEqualRString function returns false, the two
PackedDSSpec structures are not equal.

■ If the LocalRecordID.recordName and LocalRecordID.recordType fields
belonging to the RecordID structure of the two unpacked PackedDSSpec structures
are equal then the values of the extensionType fields of the PackedDSSpec
structures are examined. If they are not identical then the PackedDSSpec structures
are not equal.

■ If the extensionType fields of the two unpacked PackedDSSpec structures are
identical, then the extensionSize fields of the unpacked PackedDSSpec structures
are compared. If they are not identical, then the two PackedDSSpec structures are
not equal.

■ If the extensionSize fields of the two unpacked PackedDSSpec structures are
identical, then the extensionValue fields of the unpacked PackedDSSpec
structures are compared. They are compared byte by byte for equality, and if they are
not identical then the two PackedDSSpec structures are not equal.

If the conditions for equality listed above are satisfied, then the two PackedDSSpec
structures are equal; otherwise, they are not equal.
AOCE Utilities Reference 2-101

C H A P T E R 2

AOCE Utilities
ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedDSSpec data structure is defined on page 2-37.

The RStringKind data structure is defined on page 2-24.

To compare two DSSpec structures for equality use the OCEEqualDSSpec function,
described on page 2-99.

OCEValidPackedDSSpec 2

The OCEValidPackedDSSpec function checks the validity of a PackedDSSpec
structure.

pascal Boolean OCEValidPackedDSSpec(const PackedDSSpec *pdss);

pdss A pointer to the PackedDSSpec that you want to verify.

DESCRIPTION

The OCEValidPackedDSSpec function examines a PackedDSSpec structure to ensure
validity for its particular type and returns true if it is valid, false if it is not.

The OCEValidPackedDSSpec function determines validity for a PackedDSSpec
structure in the following manner:

■ If the pointer to the PackedDSSpec structure is nil, then the PackedDSSpec
structure is invalid.

■ If the length of the PackedDSSpec structure is 0, then the PackedDSSpec structure
is valid.

■ If the pointer to the PackedDSSpec structure is not nil, and the length of the
PackedDSSpec structure is greater than 0, then the PackedDSSpec structure is
unpacked and its extensionType field is examined for validity. If the
extensionType field of the PackedDSSpec has a value of 'entn', then the
OCEValidPackedDSSpec function checks to make sure that the PackedDSSpec
structure contains a valid entitySpecifier field by calling the
OCEValidPackedRecordID function (page 2-93). If the
OCEValidPackedRecordID function returns false, the PackedDSSpec structure
is not valid.

■ If the extensionType field does not have a value of 'entn' and it is not nil, then
the RecordID field of the PackedDSSpec is examined to see if it contains an RLI
component. If it does, then the RLI structure is checked for validity by calling the
OCEValidRLI function. If the OCEValidRLI function returns false, then the

Trap macro Selector

__OCEUtils $0310
2-102 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
PackedDSSpec structure is invalid. The CreationID structure, identified by the
RecordID->LocalRecordID.cid field of the unpacked PackedDSSpec structure,
is not tested for validity.

■ If the RLI component of the PackedDSSpec is valid, then the
LocalRecordID.recordName and LocalRecordID.recordType fields of the
RecordID component of the PackedDSSpec structure are examined for validity by
calling the OCEValidRString function (page 2-51). If the OCEValidRString
function returns false, then the PackedDSSpec is invalid.

If all of the conditions for validity are satisfied, then the PackedDSSpec structure is
valid; otherwise, it is not.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedDSSpec data structure is defined on page 2-37.

OCEGetDSSpecInfo 2

The OCEGetDSSpecInfo function returns information about a DSSpec structure.

pascal OSType OCEGetDSSpecInfo(const DSSpec *spec);

spec A pointer to the DSSpec structure you want to get information about.

DESCRIPTION

The OCEGetDSSpecInfo function returns certain information about the specific
DSSpec structure you pass to it. If the DSSpec structure does not have an entity
specifier, it is invalid, that is, it returns kOCEInvalidDSSpec. If it does have an entity
specifier, then it must have an extension type value of 'entn'; otherwise, it is invalid.

If the DSSpec structure has no extension, the OCEGetDSSpecInfo function determines
whether it represents the root of all catalogs, a single catalog, a catalog node, or a record.
If it has no extension and is not any of these types, it is considered invalid. If the DSSpec
structure does have an extension, this function simply returns the extension type. The
OCEGetDSSpecInfo function only performs the rudimentary checks just described. It
does not do a complete check of the DSSpec structure for validity. Call the
OCEValidPackedDSSpec function (page 2-102) to check a PackedDSSpec structure
for validity.

Trap macro Selector

__OCEUtils $0333
AOCE Utilities Reference 2-103

C H A P T E R 2

AOCE Utilities
The values that are returned by the OCEGetDSSpecInfo function are described in this
enumerated list:

enum /* OCEGetDSSpecInfo types */

{

kOCEInvalidDSSpec= '0x3F3F3F3FL',/* could not be determined */

kOCEDirsRootDSSpec= 'root', /* root of all catalogs

("Catalog" icon) */

kOCEDirectoryDSSpec= 'dire', /* catalog */

kOCEDNodeDSSpec= 'dnod', /* dNode */

kOCERecordDSSpec= 'reco', /* record */

kOCEentnDSSpec= 'entn', /* extensionType is 'entn' */

kOCENOTentnDSSpec= 'not ' /* extensionType is

not 'entn' */

};

Field descriptions

kOCEInvalidDSSpec
The type does not conform to any known type.

kOCEDirsRootDSSpec
The DSSpec structure represents the root of all catalogs.

kOCEDirectoryDSSpec
The DSSpec structure represents a catalog.

kOCEDNodeDSSpec
The DSSpec structure represents a catalog node.

kOCERecordDSSpec
The DSSpec structure represents a record.

kOCEentnDSSpec
The extension type of the DSSpec structure is 'entn'.

kOCENOTentnDSSpec
The entitySpecifier field of the DSSpec structure is not nil
and the extension type of the DSSpec structure is not 'entn'.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DSSpec data structure is defined on page 2-36.

To obtain the extension type of a DSSpec structure, use the OCEGetExtensionType
function, described next.

Trap macro Selector

__OCEUtils $0319
2-104 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
OCEGetExtensionType 2

The OCEGetExtensionType function returns the extension type embedded in a
PackedDSSpec structure.

pascal OSType OCEGetExtensionType(const PackedDSSpec *pdss);

pdss A pointer to a PackedDSSpec structure from which you want to retrieve
the extension type.

DESCRIPTION

Given a pointer to a PackedDSSpec structure, the OCEGetExtensionType function
extracts the extension type of the PackedDSSpec structure and returns it to you.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DSSpec data structure is defined on page 2-36.

To obtain information about a DSSpec structure, see the OCEGetDSSpecInfo function
on page 2-103.

OCEStreamPackedDSSpec 2

The OCEStreamPackedDSSpec function takes a DSSpec structure and converts it from
a pointer-based structure into a stream of bytes.

pascal OSErr OCEStreamPackedDSSpec(const DSSpec *dss,

MyDSSpecStreamer stream,

long userData,

unsigned long *actualCount);

dss A pointer to the DSSpec structure you want to process.

stream A pointer to a function that you supply.

userData Data supplied by you that is passed on to your stream function. The
userData parameter can contain anything your particular stream
method needs.

actualCount
A pointer to the total number of bytes (streamed out) by the
OCEStreamPackedDSSpec function.

Trap macro Selector

__OCEUtils $031C
AOCE Utilities Reference 2-105

C H A P T E R 2

AOCE Utilities
DESCRIPTION

The OCEStreamPackedDSSpec function converts a DSSpec structure into a stream of
bytes by calling the stream function that you provide. You can use this function
whenever you want to write the contents of a DSSpec structure as a series of bytes to a
file, into a buffer in memory, or any other place.

The stream function that you provide contains the specific code that writes out the
data. The OCEStreamPackedDSSpec function calls your stream function repeatedly
and passes your function the current portion of the data that needs to be streamed, the
length of this data, an eof flag that is set by the OCEStreamPackedDSSpec function if
this is the last of the data to be streamed, and a parameter containing any
application-specific data that you define. For example, if you were writing a stream
function that wrote out a DSSpec structure to a file on a hard disk, you might want to
store a pointer in the userData parameter to a block of data that contains such
information as the filename and size of the file.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DSSpec data structure is defined on page 2-36.

The callback function MyDSSpecStreamer is described next.

Application-Defined Functions 2
This section describes a callback function that you supply to
OCEStreamPackedDSSpec. See the section “Application-Defined Functions” in the
chapter “Catalog Manager” in this book for more information on how AOCE callback
functions operate.

MyDSSpecStreamer 2

The MyDSSpecStreamer function provides a method for processing data from the
OCEStreamPackedDSSpec function.

Trap macro Selector

__OCEUtils $033D

noErr 0 No error
2-106 AOCE Utilities Reference

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
typedef pascal OSErr (*MyDSSpecStreamer)(void *buffer,

unsigned long count, Boolean eof ,

long userData);

buffer A pointer to the data that your streamer method processes. This is
supplied by the OCEStreamPackedDSSpec function each time it calls
your MyDSSpecStreamer function.

count The length, in bytes, of the current data in the buffer.

eof A flag that is set by the OCEStreamPackedDSSpec function the last time
that it calls your MyDSSpecStreamer function. This flag informs you
that when the OCEStreamPackedDSSpec function finishes processing
the data currently in the buffer, it will have completed processing the
DSSpec structure.

userData The data that you supply in the userData parameter to the
OCEStreamPackedDSSpec function. This is passed directly to your
MyDSSpecStreamer function.

DESCRIPTION

The MyDSSpecStreamer function is called by the OCEStreamPackedDSSpec function
(page 2-105) to process the data from a DSSpec structure in discreet segments. You write
this routine to process the data in the way that you want. The
OCEStreamPackedDSSpec function calls your MyDSSpecStreamer function various
times and passes your function progress information as well as the current portion of the
DSSpec to process. Any errors returned by this function are passed on to the
OCEStreamPackedDSSpec function.

SEE ALSO

The DSSpec data structure is defined on page 2-36.

The OCEStreamPackedDSSpec function is defined on page 2-105.
AOCE Utilities Reference 2-107

C H A P T E R 2

AOCE Utilities
Summary of the AOCE Utilities 2

C Summary 2

Constants and Data Types 2

/* OCE String Constants */

#define RStringHeader \

CharacterSet charSet;\

unsigned short dataLength;

enum {

kRString32Size = 32, /* max size of RString32 */

kRString64Size = 64, /* max size of RString64 */

kNetworkSpecMaxBytes = 32, /* max size of NetworkSpec */

kPathNameMaxBytes = 1024, /* max size of PackedPathName */

kDirectoryNameMaxBytes = 32, /* max size of DirectoryName */

kAttributeTypeMaxBytes = 32, /* max size of AttributeType */

kAttrValueMaxBytes = 65536, /* max size of any attribute value */

kRStringMaxBytes = 256, /* max size of recordName or

recordType */

kRStringMaxChars = 128 /* max # of chars in recordName

RString, or recordType */

};

#define kMinPackedRStringLength (sizeof (ProtoRString))

/* RStringKind Values */

enum {

kOCEDirName = 0, /* RString is a Catalog Name */

kOCERecordOrDNodeName = 1, /* RString is a recordName or

catalog node name */

kOCERecordType = 2, /* RString is a recordType */

kOCENetworkSpec = 3, /* RString is a NetworkSpec */

kOCEAttrType = 4, /* RString is an AttributeType */

kOCEGenericSensitive = 5, /* RString is a case and diacritical

mark sensitive generic string */
2-108 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
kOCEGenericInsensitive = 6 /* RString is a case and diacritical

mark insensitive generic string */

};

/* OCEDirectoryKind Values */

enum {

kDirAllKinds = 0, /* All catalog types */

kDirADAPKind = 'adap', /* an PowerShare catalog */

kDirPersonalDirectoryKind

= 'pdir', /* a personal catalog */

kDirDSAMKind = 'dsam' /* catalog service access module */

}

/* Catalog Node Constants */

enum {

kNULLDNodeNumber = 0, /* none specified */

kRootDNodeNumber = 2 /* the root of the tree */

};

/* Values returned by OCEGetDSSpecInfo() */

enum {

kOCEInvalidDSSpec = 0x3F3F3F3FL,/* '????' could not be

 determined */

kOCEDirsRootDSSpec = 'root', /* root of all catalogs

("Catalog" icon) */

kOCEDirectoryDSSpec = 'dire', /* catalog */

kOCEDNodeDSSpec = 'dnod', /* Dnode */

kOCERecordDSSpec = 'reco', /* record */

kOCEentnDSSpec = 'entn', /* extensionType is 'entn' */

kOCENOTentnDSSpec = 'not ' /* extensionType is not 'entn' */

};

/* AttributeTag values */

enum {

typeRString = 'rstr', /* attribute value is an RString */

typePackedDSSpec = 'dspc', /* attribute value is a DSSpec */

typeBinary = 'bnry' /* attribute value is a sequence

of bytes */

};
Summary of the AOCE Utilities 2-109

C H A P T E R 2

AOCE Utilities
/* Cluster info */

enum {

kcanContainRecordsBit, /* a cluster */

kForeignNodeBit /* a foreign catalog */

};

/* DirNodeKind */

enum {

kcanContainRecords= 1L<<kcanContainRecordsBit,

kForeignNode= 1L<<kForeignNodeBit

};

/* RLI Constants */

#define kMinPackedRLISize (sizeof (ProtoPackedRLI) + \

sizeof (DirDiscriminator) + sizeof (DNodeNum) +\

kMinPackedRStringLength + sizeof (ProtoPackedPathName))

#define kRLIMaxBytes (sizeof (RString) + sizeof (DirDiscriminator) + \

sizeof (DNodeNum) + kPathNameMaxBytes)

#define PackedRLIHeader unsigned short dataLength /* number of bytes

in data field */

/* RecordID Constants */

#define kPackedRecordIDMaxBytes (kPathNameMaxBytes + sizeof (DNodeNum) + \

sizeof (DirDiscriminator) + sizeof (CreationID) + \

(3 * sizeof (RString)))

#define PackedRecordIDHeader unsigned short dataLength /* length of data field

in the PackedRecordID structure */

/* DSSpec Constants */

#define kPackedDSSpecMaxBytes(sizeof (PackedRecordID) + sizeof (OSType) + \

sizeof (unsigned short))

#define PackedDSSpecHeader unsigned short dataLength;

/* Indices for the standard definitions for standard record types */

#define kUserRecTypeNum 1 /* "User" */

#define kGroupRecTypeNum 2 /* "Group" */

#define kMnMRecTypeNum 3 /* "AppleMail™ M&M" */

#define kMnMForwarderRecTypeNum 4 /* "AppleMail™ Fwdr" */
2-110 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
#define kNetworkSpecRecTypeNum 5 /* "NetworkSpec" */

#define kADAPServerRecTypeNum 6 /* "PowerShare Server" */

#define kADAPDNodeRecTypeNum 7 /* "PowerShare DNode" */

#define kADAPDNodeRepRecTypeNum 8 /* "PowerShare DNode Rep" */

#define kServerSetupRecTypeNum 9 /* "Server Setup" */

#define kDirectoryRecTypeNum 10 /* "Catalog" */

#define kDNodeRecTypeNum 11 /* "DNode" */

#define kSetupRecTypeNum 12 /* "Setup" */

#define kMSAMRecTypeNum 13 /* "MSAM" */

#define kDSAMRecTypeNum 14 /* "CSAM" */

#define kAttributeValueRecTypeNum 15 /* "Attribute Value" */

#define kBusinessCardRecTypeNum 16 /* "Business Card" */

#define kMailServiceRecTypeNum 17 /* "Mail Service" */

#define kCombinedRecTypeNum 18 /* "Combined" */

#define kOtherServiceRecTypeNum 19 /* "Other Service" */

#define kAFPServiceRecTypeNum 20 /* "Other Service afps" */

#define kFirstOCERecTypeNum kUserRecTypeNum /* first standard OCE

record type */

#define kLastOCERecTypeNum kAFPServiceRecTypeNum/* last standard OCE

record type */

#define kNumOCERecTypes (kLastOCERecTypeNum - kFirstOCERecTypeNum + 1)

/* Indices for the standard definitions for standard attribute types

(OCEAttributeTypeIndex): */

#define kMemberAttrTypeNum 1001 /* "Member" */

#define kAdminsAttrTypeNum 1002 /* "Administrators" */

#define kMailSlotsAttrTypeNum 1003 /* "mailslots" */

#define kPrefMailAttrTypeNum 1004 /* "pref mailslot" */

#define kAddressAttrTypeNum 1005 /* "Address" */

#define kPictureAttrTypeNum 1006 /* "Picture" */

#define kAuthKeyAttrTypeNum 1007 /* "auth key" */

#define kTelephoneAttrTypeNum 1008 /* "Telephone" */

#define kNBPNameAttrTypeNum 1009 /* "NBP Name" */

#define kQMappingAttrTypeNum 1010 /* "ForwarderQMap" */

#define kDialupSlotAttrTypeNum 1011 /* "DialupSlotInfo" */

#define kHomeNetAttrTypeNum 1012 /* "Home Internet" */

#define kCoResAttrTypeNum 1013 /* "Co-resident M&M" */

#define kFwdrLocalAttrTypeNum 1014 /* "FwdrLocalRecord" */

#define kConnectAttrTypeNum 1015 /* "Connected To" */

#define kForeignAttrTypeNum 1016 /* "Foreign RLIs" */
Summary of the AOCE Utilities 2-111

C H A P T E R 2

AOCE Utilities
#define kOwnersAttrTypeNum 1017 /* "Owners" */

#define kReadListAttrTypeNum 1018 /* "ReadList" */

#define kWriteListAttrTypeNum 1019 /* "WriteList" */

#define kDescriptorAttrTypeNum 1020 /* "Descriptor" */

#define kCertificateAttrTypeNum 1021 /* "Certificate" */

#define kMsgQsAttrTypeNum 1022 /* "MessageQs" */

#define kPrefMsgQAttrTypeNum 1023 /* "PrefMessageQ" */

#define kMasterPFAttrTypeNum 1024 /* "MasterPF" */

#define kMasterNetSpecAttrTypeNum 1025 /* "MasterNetSpec" */

#define kServersOfAttrTypeNum 1026 /* "Servers Of" */

#define kParentCIDAttrTypeNum 1027 /* "Parent CID" */

#define kNetworkSpecAttrTypeNum 1028 /* "NetworkSpec" */

#define kLocationAttrTypeNum 1029 /* "Location" */

#define kTimeSvrTypeAttrTypeNum 1030 /* "TimeServer Type" */

#define kUpdateTimerAttrTypeNum 1031 /* "Update Timer" */

#define kShadowsOfAttrTypeNum 1032 /* "Shadows Of" */

#define kShadowServerAttrTypeNum 1033 /* "Shadow Server" */

#define kTBSetupAttrTypeNum 1034 /* "TB Setup" */

#define kMailSetupAttrTypeNum 1035 /* "Mail Setup" */

#define kSlotIDAttrTypeNum 1036 /* "SlotID" */

#define kGatewayFileIDAttrTypeNum 1037 /* "Gateway FileID" */

#define kMailServiceAttrTypeNum 1038 /* "Mail Service" */

#define kStdSlotInfoAttrTypeNum 1039 /* "Std Slot Info" */

#define kAssoDirectoryAttrTypeNum 1040 /* "Asso. Catalog" */

#define kDirectoryAttrTypeNum 1041 /* "Catalog" */

#define kDirectoriesAttrTypeNum 1042 /* "Catalogs" */

#define kSFlagsAttrTypeNum 1043 /* "SFlags" */

#define kLocalNameAttrTypeNum 1044 /* "Local Name" */

#define kLocalKeyAttrTypeNum 1045 /* "Local Key" */

#define kDirUserRIDAttrTypeNum 1046 /* "Dir User RID" */

#define kDirUserKeyAttrTypeNum 1047 /* "Dir User Key" */

#define kDirNativeNameAttrTypeNum 1048 /* "Dir Native Name" */

#define kCommentAttrTypeNum 1049 /* "Comment" */

#define kRealNameAttrTypeNum 1050 /* "Real Name" */

#define kPrivateDataAttrTypeNum 1051 /* "Private Data" */

#define kDirTypeAttrTypeNum 1052 /* "Catalog Type" */

#define kDSAMFileAliasAttrTypeNum 1053 /* "CSAM File Alias" */

#define kCanAddressToAttrTypeNum 1054 /* "Can Address To" */

#define kDiscriminatorAttrTypeNum 1055 /* "Discriminator" */

#define kAliasAttrTypeNum 1056 /* "Alias" */

#define kParentMSAMAttrTypeNum 1057 /* "Parent MSAM" */

#define kParentDSAMAttrTypeNum 1058 /* "Parent CSAM" */

#define kSlotAttrTypeNum 1059 /* "Slot" */
2-112 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
#define kAssoMailServiceAttrTypeNum 1060 /* "Asso. Mail Service" */

#define kFakeAttrTypeNum 1061 /* "Fake" */

#define kInheritSysAdminAttrTypeNum 1062 /* "Inherit SysAdministrators"*/

#define kPreferredPDAttrTypeNum 1063 /* "Preferred PD" */

#define kLastLoginAttrTypeNum 1064 /* "Last Login" */

#define kMailerAOMStateAttrTypeNum 1065 /* "Mailer AOM State" */

#define kMailerSendOptionsAttrTypeNum 1066 /* "Mailer Send Options" */

#define kJoinedAttrTypeNum 1067 /* "Joined" */

#define kUnconfiguredAttrTypeNum 1068 /* "Unconfigured" */

#define kVersionAttrTypeNum 1069 /* "Version" */

#define kLocationNamesAttrTypeNum 1070 /* "Location Names" */

#define kActiveAttrTypeNum 1071 /* "Active" */

#define kDeleteRequestedAttrTypeNum 1072 /* "Delete Requested" */

#define kGatewayTypeAttrTypeNum 1073 /* "Gateway Type" */

#define kFirstOCEAttrTypeNum kMemberAttrTypeNum/* first standard OCE

attribute type */

#define kLastOCEAttrTypeNum kGatewayTypeAttrTypeNum/* last standard OCE

attribute type */

#define kNumOCEAttrTypes (kLastOCEAttrTypeNum - kFirstOCEAttrTypeNum + 1)

/* the total number of

 attributes */

/* OCE String Types */

typedef short CharacterSet; /* script code info */

struct RString /* RString */

{

RStringHeader

Byte body[kRStringMaxBytes];

};

typedef struct RString RString;

typedef RString *RStringPtr, **RStringHandle;

struct RString64 /* RString64 */

{

RStringHeader

Byte body[kRString64Size];

};

typedef struct RString64 RString64;
Summary of the AOCE Utilities 2-113

C H A P T E R 2

AOCE Utilities
struct RString32 /* RString32 */

{

RStringHeader

Byte body[kRString32Size];

};

typedef struct RString32 RString32;

struct ProtoRString /* ProtoRString */

{

RStringHeader

/* The body for the ProtoRstring should be defined here */

};

typedef struct ProtoRString ProtoRString;

typedef ProtoRString *ProtoRString;

struct DirectoryName /* DirectoryName */

{

RStringHeader

Byte body[kDirectoryNameMaxBytes];

};

typedef struct DirectoryName DirectoryName;

typedef DirectoryName *DirectoryNamePtr;

struct NetworkSpec /* NetworkSpec */

{

RStringHeader

Byte body[kNetworkSpecMaxBytes];

};

typedef struct NetworkSpec NetworkSpec;

typedef NetworkSpec *NetworkSpecPtr;

typedef unsigned short RStringKind;

/* RecordID Types */

struct CreationID

{

unsigned long source; /* private to a catalog.*/

unsigned long seq; /* private to a catalog*/

};

typedef struct CreationID CreationID;
2-114 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
typedef CreationID AttributeCreationID;

struct LocalRecordID

{

CreationID cid; /* creation ID of the record */

RStringPtr recordName; /* name of the record */

RStringPtr recordType; /* type of record */

};

typedef struct LocalRecordID LocalRecordID;

typedef LocalRecordID *LocalRecordIDPtr;

struct PackedPathName

{

unsigned short dataLength; /* number of bytes in data field */

Byte data[kPathNameMaxBytes - sizeof (unsigned short)];

};

typedef struct PackedPathName PackedPathName;

typedef PackedPathName *PackedPathNamePtr;

struct ProtoPackedPathName {

unsigned short dataLength;

/* Followed by data */

};

typedef struct ProtoPackedPathName ProtoPackedPathName;

typedef ProtoPackedPathName *ProtoPackedPathNamePtr;

struct DirDiscriminator {

OCEDirectoryKind signature; /* private to catalog */

unsigned long misc; /* private to catalog */

};

typedef struct DirDiscriminator DirDiscriminator;

typedef unsigned long DNodeNum;

struct RLI {

DirectoryNamePtr directoryName;

DirDiscriminator discriminator;
Summary of the AOCE Utilities 2-115

C H A P T E R 2

AOCE Utilities
DNodeNum dNodeNumber;

PackedPathNamePtr path;

};

typedef struct RLI RLI;

typedef RLI *RLIPtr;

struct PackedRLI {

dataLength;

Byte data[kRLIMaxBytes]; /* packed record

location info */

};

typedef struct PackedRLI PackedRLI;

typedef PackedRLI *PackedPLIPtr;

struct ProtoPackedRLI {

dataLength

/* Followed by data */

};

typedef struct ProtoPackedRLI ProtoPackedRLI;

typedef ProtoPackedRLI *ProtoPackedRLIPtr;

struct RecordID {

PackedRLIPtr rli; /* identifies record’s catalog

and dNode */

LocalRecordID local; /* identifies record within

its dNode */

};

typedef struct RecordID RecordID;

typedef RecordID *RecordIDPtr;

struct PackedRecordID {

dataLength; /* length of data field */

Byte data[kPackedRecordIDMaxBytes];/* packed record ID */

};

typedef struct PackedRecordID PackedRecordID;

typedef PackedRecordID *PackedRecordIDPtr;
2-116 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
struct ShortRecordID

{

PackedRLIPtr rli;

CreationID cid;

};

typedef struct ShortRecordID ShortRecordID;

typedef ShortRecordID *ShortRecordIDPtr;

/* DSSpec Structures */

struct DSSpec {

RecordID *entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

typedef struct DSSpec DSSpec;

typedef DSSpec *DSSpecPtr;

struct PackedDSSpec {

dataLength

Byte data[kPackedDSSpecMaxBytes];

};

typedef struct PackedDSSpec PackedDSSpec;

typedef PackedDSSpec *PackedDSSpecPtr;

struct ProtoPackedDSSpec {

dataLength

/* Followed by data */

};

typedef struct ProtoPackedDSSpec ProtoPackedDSSpec;

typedef ProtoPackedDSSpec *ProtoPackedDSSpecPtr;

/* Attribute Structures */

struct AttributeType

{

RStringHeader

Byte body[kAttributeTypeMaxBytes];

};

typedef struct AttributeType AttributeType;

typedef AttributeType *AttributeTypePtr;
Summary of the AOCE Utilities 2-117

C H A P T E R 2

AOCE Utilities
struct AttributeValue {

AttributeTag tag; /* format of attribute value */

unsigned long dataLength; /* # of bytes in attribute value */

Ptr bytes; /* points to attribute value data */

};

typedef struct AttributeValue AttributeValue;

typedef AttributeValue *AttributeValuePtr;

typedef CreationID AttributeCreationID;

struct Attribute {

AttributeType attributeType; /* type of the attribute */

AttributeCreationID cid; /* the creationID of the

attribute */

AttributeValue value; /* the attribute value */

};

typedef struct Attribute Attribute;

typedef Attribute *AttributePtr;

typedef DescType AttributeTag;/* same type used in AppleEvents */

/* recordType index */

typedef unsigned short OCERecordTypeIndex;

/* AttributeType index */

typedef unsigned short OCEAttributeTypeIndex;

/* OCE Catalog Types */

typedef unsigned long OCEDirectoryKind;

/* OCE Catalog Node Types */

typedef unsigned long DirNodeKind;

AOCE Utility Functions 2

AOCE String Functions

pascal OSErr OCECopyRString
(const RString *str1, RString *str2, unsigned
short str2Length);
2-118 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
pascal void OCECToRString (const char *cStr, CharacterSet charSet,RString
*rStr,unsigned short rStrLength);

pascal void OCEPToRString (ConstStr255Param pStr,CharacterSet charSet,
RString *rStr,unsigned short rStrLength);

pascal StringPtr OCERToPString
(const RString *rStr);

pascal short OCERelRString (const void *str1, const void *str2,RStringKind
kind);

pascal Boolean OCEEqualRString
(const void *str1,const void *str2,RStringKind
kind);

pascal Boolean OCEValidRString
(const void *str,RStringKind kind);

Creation Identifier Functions

pascal Boolean OCEEqsrualCreationID
(const CreationID *cid1,
const CreationID *cid2);

pascal void OCECopyCreationID
(const CreationID *cid1,CreationID *const cid2);

pascal const CreationID *OCENullCID(void);

pascal const CreationID *OCEPathFinderCID(void);

pascal void OCESetCreationIDtoNull
(CreationID *const cid);

Packed Pathname Functions

pascal OSErr OCECopyPackedPathName
(const PackedPathName *path1,PackedPathName
*path2,unsigned short path2Length);

pascal Boolean OCEIsNullPackedPathName
(const PackedPathName *path);

pascal unsigned short OCEPackedPathNameSize
(const RStringPtr parts[], const unsigned short
nParts);

pascal unsigned short OCEDNodeNameCount
(const PackedPathName *path);

pascal unsigned short OCEUnpackPathName
(const PackedPathName *path, RString *const
parts[], const unsigned short nParts);
Summary of the AOCE Utilities 2-119

C H A P T E R 2

AOCE Utilities
pascal OSErr OCEPackPathName
(const RStringPtr parts[],const unsigned short
nParts,PackedPathName *path,unsigned short
pathLength);

pascal Boolean OCEEqualPackedPathName
(const PackedPathName *path1, const
PackedPathName *path2);

pascal Boolean OCEValidPackedPathName
(const PackedPathName *path);

Catalog Discriminator Functions

pascal void OCECopyDirDiscriminator
(const DirDiscriminator *disc1,
DirDiscriminator *const disc2);

pascal Boolean OCEEqualDirDiscriminator
(const DirDiscriminator *disc1, const
DirDiscriminator *disc2);

Record Location Information Functions

pascal void OCENewRLI (RLI *newRLI, const DirectoryName *dirName,
DirDiscriminator *discriminator,const DNodeNum
dNodeNumber,const PackedPathName *path);

pascal void OCEDuplicateRLI (const RLI *rli1, RLI *rli2);

pascal OSErr OCECopyRLI (const RLI *rli1, RLI *rli2);

pascal Boolean OCEEqualRLI (const RLI *rli1, const RLI *rli2);

pascal Boolean OCEValidRLI (const RLI *theRLI);

pascal OSErr OCECopyPackedRLI
(const PackedRLI *prli1, PackedRLI
*prli2,unsigned short prli2Length);

pascal unsigned short OCEPackedRLISize
(const RLI *theRLI);

pascal OSErr OCEPackRLI (const RLI *theRLI, PackedRLI *prli, unsigned
short prliLength);

pascal void OCEUnpackRLI (const PackedRLI *prli, RLI *theRLI);

pascal unsigned short OCEPackedRLIPartsSize
(const DirectoryName *dirName, const RStringPtr
parts[], const unsigned short nParts);
2-120 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
pascal OSErr OCEPackRLIParts
(const DirectoryName *dirName, const
DirDiscriminator *discriminator, const
DNodeNum dNodeNumber, const RStringPtr
parts[], const unsigned short nParts,
PackedRLI *prli, unsigned short prliLength);

pascal Boolean OCEEqualPackedRLI
(const PackedRLI *prli1, const PackedRLI
*prli2);

pascal Boolean OCEValidPackedRLI
(const PackedRLI *prli);

pascal AliasPtr OCEExtractAlias
(const PackedRLI *prli);

pascal const PackedRLI * OCEGetDirectoryRootPackedRLI (void)

Local Record Identifier Functions

pascal void OCENewLocalRecordID
(const RString *recordName, const RString
*recordType, const CreationID *cid,
LocalRecordID *lRID);

pascal OSErr OCECopyLocalRecordID
(const LocalRecordID *lRID1, LocalRecordID
*lRID2);

pascal Boolean OCEEqualLocalRecordID
(const LocalRecordID *lRID1, const
LocalRecordID *lRID2);

Short Record Identifier Functions

pascal void OCENewShortRecordID
(const PackedRLI *theRLI, const CreationID
*cid, ShortRecordIDPtr *sRID);

pascal OSErr OCECopyShortRecordID
(const ShortRecordID *sRID1,ShortRecordID
*sRID2);

pascal Boolean OCEEqualShortRecordID
(const ShortRecordID *sRID1,const ShortRecordID
*sRID2);

Record Identifier Functions

pascal RString *OCEGetIndRecordType
(const OCERecordTypeIndex stringIndex);
Summary of the AOCE Utilities 2-121

C H A P T E R 2

AOCE Utilities
pascal void OCENewRecordID (const PackedRLI *theRLI, const LocalRecordID
*lRID, RecordID *rid);

pascal OSErr OCECopyRecordID
(const RecordID *rid1,const RecordID *rid2);

pascal Boolean OCEEqualRecordID
(const RecordID *rid1,const RecordID *rid2);

Packed Record Identifier Functions

pascal OSErr OCECopyPackedRecordID
(const PackedRecordID *pRID1, const
PackedRecordID *pRID2, unsigned short
pRID2length);

pascal unsigned short OCEPackedRecordIDSize
(const RecordID *rid);

pascal OSErr OCEPackRecordID
(const RecordID *rid, PackedRecordID *pRID,
unsigned short packedRecordIDlength);

pascal void OCEUnpackRecordID
(const PackedRecordID *pRID, RecordID *rid);

pascal Boolean OCEEqualPackedRecordID
(const PackedRecordID *pRID1, const
PackedRecordID *pRID2);

pascal Boolean OCEValidPackedRecordID
(const PackedRecordID *pRID);

Attribute Type Functions

pascal AttributeType *OCEGetIndAttributeType(const
OCEAttributeTypeIndex stringIndex);

Catalog Services Specification Functions

pascal OSErr OCECopyPackedDSSpec
(const PackedDSSpec *pdss1, const PackedDSSpec
*pdss2, unsigned short pdss2Length);

pascal unsigned short OCEPackedDSSpecSize
(const DSSpec *dss);

pascal OSErr OCEPackDSSpec (const DSSpec *dss, PackedDSSpec *pdss,
unsigned short pdssLength);

pascal void OCEUnpackDSSpec (const PackedDSSpec *pdss, DSSpec *dss,
RecordID *rid);

pascal Boolean OCEEqualDSSpec
(const DSSpec *pdss1, const DSSpec *pdss2);
2-122 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
pascal Boolean OCEEqualPackedDSSpec
(const PackedDSSpec *pdss1, const PackedDSSpec
*pdss2);

pascal Boolean OCEValidPackedDSSpec
(const PackedDSSpec *pdss);

pascal OSType OCEGetDSSpecInfo
(const DSSpec *spec);

pascal OSType OCEGetExtensionType
(const PackedDSSpec *pdss);

pascal OSErr OCEStreamPackedDSSpec
(const DSSpec *dss,MyDSSpecStreamer stream,
long userData, unsigned long *actualCount);

Application-Defined Functions

typedef pascal OSErr (*MyDSSpecStreamer)(void *buffer, unsigned long
count, Boolean eof, long userData);

Pascal Summary 2

Constants 2

CONST

{ OCE String Constants }

kRString32Size = 32; { max size of RString32 }

kRString64Size = 64; { max size of RString64 }

kNetworkSpecMaxBytes = 32; { max size of NetworkSpec }

kPathNameMaxBytes = 1024; { max size of PackedPathName }

kDirectoryNameMaxBytes = 32; { max size of DirectoryName }

kAttributeTypeMaxBytes = 32; { max size of AttributeType }

kAttrValueMaxBytes = 65536; { max size of any attribute value }

kRStringMaxBytes = 256; { max bytes in recordName,recordType }

kRStringMaxChars = 128; { max chars in recordName,recordType }

kMinPackedRStringLength = sizeof(ProtoRString);

{ values of RStringKind }

kOCEDirName = 0;

kOCERecordOrDNodeName = 1;

kOCERecordType = 2;

kOCENetworkSpec = 3;
Summary of the AOCE Utilities 2-123

C H A P T E R 2

AOCE Utilities
kOCEAttrType = 4;

kOCEGenericSensitive = 5;

kOCEGenericInsensitive = 6;

{ values of OCEDirectoryKind }

kDirAllKinds = 0;

kDirADAPKind = 'adap';

kDirPersonalDirectoryKind

= 'pdir';

kDirDSAMKind = 'dsam';

{ Catalog Node Constants }

kNULLDNodeNumber = 0; { none specified }

kRootDNodeNumber = 2; { the root of the tree }

{ Values returned by OCEGetDSSpecInfo() }

kOCEInvalidDSSpec = '????', { could not be determined }

kOCEDirsRootDSSpec = 'root', { root of all catalogs }

kOCEDirectoryDSSpec = 'dire', { catalog }

kOCEDNodeDSSpec = 'dnod', { Dnode }

kOCERecordDSSpec = 'reco', { record }

kOCEentnDSSpec = 'entn', { extensionType is 'entn' }

kOCENOTentnDSSpec = 'not ' { extensionType is not 'entn' }

{ AttributeTag Values }

typeRString = 'rstr', { attribute value is an RString }

typePackedDSSpec = 'dspc', { attribute value is a DSSpec }

typeBinary = 'bnry' { attribute value is a sequence

of bytes }

{ Cluster info }

kcanContainRecordsBit, = 0{ a cluster }

kForeignNodeBit = 1{ a foreign catalog }

{ values of DirNodeKind }

kcanContainRecords = $00000001;{<<kcanContainRecordsBit}

kForeignNode = $00000002;{<<kForeignNodeBit}

{ RLI Constants }

kRLIMaxBytes = (sizeof (RString) + sizeof (DirDiscriminator) +

sizeof (DNodeNum) + kPathNameMaxBytes);
2-124 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
kMinPackedRLISize = (sizeof (ProtoPackedRLI) +

sizeof (DirDiscriminator) + sizeof (DNodeNum) +

kMinPackedRStringLength +

sizeof (ProtoPackedPathName));

{ RecordID Constants }

kPackedRecordIDMaxBytes = kPathNameMaxBytes + sizeof(DNodeNum) +

sizeof(DirDiscriminator) + sizeof(CreationID) + (3*sizeof(RString));

{ DSSpec Constants }

kPackedDSSpecMaxBytes = (sizeof (PackedRecordID) + sizeof (OSType) +

sizeof (INTEGER));

{ Indices for the standard definitions for standard record types }

kUserRecTypeNum = 1; { "User" }

kGroupRecTypeNum = 2; { "Group" }

kMnMRecTypeNum = 3; { "AppleMail™ M&M" }

kMnMForwarderRecTypeNum = 4; { "AppleMail™ Fwdr" }

kNetworkSpecRecTypeNum = 5; { "NetworkSpec" }

kADAPServerRecTypeNum = 6; { "PowerShare Server" }

kADAPDNodeRecTypeNum = 7; { "PowerShare DNode" }

kADAPDNodeRepRecTypeNum = 8; { "PowerShare DNode Rep" }

kServerSetupRecTypeNum = 9; { "Server Setup" }

kDirectoryRecTypeNum = 10; { "Catalog" }

kDNodeRecTypeNum = 11; { "DNode" }

kSetupRecTypeNum = 12; { "Setup" }

kMSAMRecTypeNum = 13; { "MSAM" }

kDSAMRecTypeNum = 14; { "CSAM" }

kAttributeValueRecTypeNum = 15; { "Attribute Value" }

kBusinessCardRecTypeNum = 16; { "Business Card" }

kMailServiceRecTypeNum = 17; { "Mail Service" }

kCombinedRecTypeNum = 18; { "Combined" }

kOtherServiceRecTypeNum = 19; { "Other Service" }

kAFPServiceRecTypeNum = 20; { "Other Service afps" }

kFirstOCERecTypeNum = kUserRecTypeNum; { first standard OCE record

type }

kLastOCERecTypeNum = kAFPServiceRecTypeNum; { last standard OCE record

type }

kNumOCERecTypes = (kLastOCERecTypeNum - kFirstOCERecTypeNum + 1);
Summary of the AOCE Utilities 2-125

C H A P T E R 2

AOCE Utilities
{ Indices for the standard definitions for standard attribute types

(OCEAttributeTypeIndex): }

kMemberAttrTypeNum = 1001;{ "Member" }

kAdminsAttrTypeNum = 1002;{ "Administrators" }

kMailSlotsAttrTypeNum = 1003;{ "mailslots" }

kPrefMailAttrTypeNum = 1004;{ "pref mailslot" }

kAddressAttrTypeNum = 1005;{ "Address" }

kPictureAttrTypeNum = 1006;{ "Picture" }

kAuthKeyAttrTypeNum = 1007;{ "auth key" }

kTelephoneAttrTypeNum = 1008;{ "Telephone" }

kNBPNameAttrTypeNum = 1009;{ "NBP Name" }

kQMappingAttrTypeNum = 1010;{ "ForwarderQMap" }

kDialupSlotAttrTypeNum = 1011;{ "DialupSlotInfo" }

kHomeNetAttrTypeNum = 1012;{ "Home Internet" }

kCoResAttrTypeNum = 1013;{ "Co-resident M&M" }

kFwdrLocalAttrTypeNum = 1014;{ "FwdrLocalRecord" }

kConnectAttrTypeNum = 1015;{ "Connected To" }

kForeignAttrTypeNum = 1016;{ "Foreign RLIs" }

kOwnersAttrTypeNum = 1017;{ "Owners" }

kReadListAttrTypeNum = 1018;{ "ReadList" }

kWriteListAttrTypeNum = 1019;{ "WriteList" }

kDescriptorAttrTypeNum = 1020;{ "Descriptor" }

kCertificateAttrTypeNum = 1021;{ "Certificate" }

kMsgQsAttrTypeNum = 1022;{ "MessageQs" }

kPrefMsgQAttrTypeNum = 1023;{ "PrefMessageQ" }

kMasterPFAttrTypeNum = 1024;{ "MasterPF" }

kMasterNetSpecAttrTypeNum = 1025;{ "MasterNetSpec" }

kServersOfAttrTypeNum = 1026;{ "Servers Of" }

kParentCIDAttrTypeNum = 1027;{ "Parent CID" }

kNetworkSpecAttrTypeNum = 1028;{ "NetworkSpec" }

kLocationAttrTypeNum = 1029;{ "Location" }

kTimeSvrTypeAttrTypeNum = 1030;{ "TimeServer Type" }

kUpdateTimerAttrTypeNum = 1031;{ "Update Timer" }

kShadowsOfAttrTypeNum = 1032;{ "Shadows Of" }

kShadowServerAttrTypeNum = 1033;{ "Shadow Server" }

kTBSetupAttrTypeNum = 1034;{ "TB Setup" }

kMailSetupAttrTypeNum = 1035;{ "Mail Setup" }

kSlotIDAttrTypeNum = 1036;{ "SlotID" }

kGatewayFileIDAttrTypeNum = 1037;{ "Gateway FileID" }

kMailServiceAttrTypeNum = 1038;{ "Mail Service" }

kStdSlotInfoAttrTypeNum = 1039;{ "Std Slot Info" }

kAssoDirectoryAttrTypeNum = 1040;{ "Asso. Catalog" }
2-126 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
kDirectoryAttrTypeNum = 1041;{ "Catalog" }

kDirectoriesAttrTypeNum = 1042;{ "Catalogs" }

kSFlagsAttrTypeNum = 1043;{ "SFlags" }

kLocalNameAttrTypeNum = 1044;{ "Local Name" }

kLocalKeyAttrTypeNum = 1045;{ "Local Key" }

kDirUserRIDAttrTypeNum = 1046;{ "Dir User RID" }

kDirUserKeyAttrTypeNum = 1047;{ "Dir User Key" }

kDirNativeNameAttrTypeNum = 1048;{ "Dir Native Name" }

kCommentAttrTypeNum = 1049;{ "Comment" }

kRealNameAttrTypeNum = 1050;{ "Real Name" }

kPrivateDataAttrTypeNum = 1051;{ "Private Data" }

kDirTypeAttrTypeNum = 1052;{ "Catalog Type" }

kDSAMFileAliasAttrTypeNum = 1053;{ "CSAM File Alias" }

kCanAddressToAttrTypeNum = 1054;{ "Can Address To" }

kDiscriminatorAttrTypeNum = 1055;{ "Discriminator" }

kAliasAttrTypeNum = 1056;{ "Alias" }

kParentMSAMAttrTypeNum = 1057;{ "Parent MSAM" }

kParentDSAMAttrTypeNum = 1058;{ "Parent CSAM" }

kSlotAttrTypeNum = 1059;{ "Slot" }

kAssoMailServiceAttrTypeNum = 1060;{ "Asso. Mail Service" }

kFakeAttrTypeNum = 1061;{ "Fake" }

kInheritSysAdminAttrTypeNum = 1062;{ "Inherit System

Administrators" }

kPreferredPDAttrTypeNum = 1063;{ "Preferred PD" }

kLastLoginAttrTypeNum = 1064;{ "Last Login" }

kMailerAOMStateAttrTypeNum = 1065;{ "Mailer AOM State" }

kMailerSendOptionsAttrTypeNum = 1066;{ "Mailer Send Options" }

kJoinedAttrTypeNum = 1067;{ "Joined" }

kUnconfiguredAttrTypeNum = 1068;{ "Unconfigured" }

kVersionAttrTypeNum = 1069;{ "Version" }

kLocationNamesAttrTypeNum = 1070;{ "Location Names" }

kActiveAttrTypeNum = 1071;{ "Active" }

kDeleteRequestedAttrTypeNum = 1072;{ "Delete Requested" }

kGatewayTypeAttrTypeNum = 1073;{ "Gateway Type" }

kFirstOCEAttrTypeNum = kMemberAttrTypeNum;{ first standard OCE attr type }

kLastOCEAttrTypeNum = kGatewayTypeAttrTypeNum;{ last standard OCE

attr type }

kNumOCEAttrTypes = (kLastOCEAttrTypeNum - kFirstOCEAttrTypeNum + 1);
Summary of the AOCE Utilities 2-127

C H A P T E R 2

AOCE Utilities
Data Types 2

TYPE

{ OCE String Types }

{RStringHeader}

RStringHeader = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

END;

{ RString }

RString = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

body: PACKED ARRAY[1..kRStringMaxBytes] OF Byte;

END;

{ ProtoRString }

ProtoRString = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

{ Followed by body }

END;

RStringPtr = ^RString;

RStringHandle = ^RStringPtr;

ProtoRStringPtr = ^ProtoRString;

{RString64}

RString64 = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

body: PACKED ARRAY[1..kRString64Size] OF Byte;

END;

{RString32}

RString32 = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

body: PACKED ARRAY[1..kRString32Size] OF Byte;

END;
2-128 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
Rstring32Ptr = ^Rstring32;

struct DirectoryName /* DirectoryName */

{

RStringHeader

Byte body[kDirectoryNameMaxBytes];

};

{NetworkSpec}

NetworkSpec = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

body: PACKED ARRAY[1..kNetworkSpecMaxBytes] OF Byte;

END;

NetworkSpecPtr = ^NetworkSpec;

RStringKind = INTEGER;

{ RecordID Types }

{CreationID}

CreationID = RECORD

source: LONGINT;

seq: LONGINT;

END;

AttributeCreationID = CreationID;

CreationIDPtr = ^CreationID;

{PackedPathName}

PackedPathName = RECORD

dataLength: INTEGER;

data: PACKED ARRAY[1..kPathNameMaxBytes - sizeof(INTEGER)] OF Byte;

END;

{ProtoPackedPathName}

ProtoPackedPathName = RECORD

dataLength: INTEGER;

{ Followed by data }

END;

PackedPathNamePtr = ^PackedPathName;

ProtoPackedPathNamePtr = ^ProtoPackedPathName;
Summary of the AOCE Utilities 2-129

C H A P T E R 2

AOCE Utilities
{DirDiscriminator}

DirDiscriminator = RECORD

signature: OCEDirectoryKind;

misc: LONGINT;

END;

{ Catalog node number }

DNodeNum = LONGINT;

{ RLI }

RLI = RECORD

directoryName: DirectoryNamePtr;

discriminator: DirDiscriminator;

dNodeNumber: DNodeNum;

path: PackedPathNamePtr;

END;

RLIPtr = ^RLI;

{ PackedRLIHeader }

PackedRLIHeader = RECORD

dataLength: INTEGER;

END;

{ PackedRLI }

PackedRLI = RECORD

dataLength: INTEGER;

data: PACKED ARRAY[1..kRLIMaxBytes] OF Byte;

END;

{ ProtoPackedRLI }

ProtoPackedRLI = RECORD

dataLength: INTEGER;

{ Followed by data }

END;

PackedRLIPtr = ^PackedRLI;

ProtoPackedRLIPtr = ^ProtoPackedRLI;

{ LocalRecordID }

LocalRecordID = RECORD

cid: CreationID;
2-130 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
recordName: RStringPtr;

recordType: RStringPtr;

END;

LocalRecordIDPtr = ^LocalRecordID;

{ ShortRecordID }

ShortRecordID = RECORD

rli: PackedRLIPtr;

cid: CreationID;

END;

ShortRecordIDPtr = ^ShortRecordID;

{ RecordID }

RecordID = RECORD

rli: PackedRLIPtr;

local: LocalRecordID;

END;

RecordIDPtr = ^RecordID;

{ PackedRecordIDHeader }

PackedRecordIDHeader = RECORD

dataLength: INTEGER;

END;

{ PackedRecordID }

PackedRecordID = RECORD

dataLength: INTEGER;

data: PACKED ARRAY[1..kPackedRecordIDMaxBytes] OF Byte;

END;

{ ProtoPackedRecordID }

ProtoPackedRecordID = RECORD

dataLength: INTEGER;

{ Followed by data }

END;

PackedRecordIDPtr = ^PackedRecordID;

ProtoPackedRecordIDPtr = ^ProtoPackedRecordID;

{ DSSpec Structures }
Summary of the AOCE Utilities 2-131

C H A P T E R 2

AOCE Utilities
{ DSSpec }

DSSpec = RECORD

entitySpecifier: ^RecordID;

extensionType: OSType;

extensionSize: INTEGER;

extensionValue: Ptr;

END;

DSSpecPtr = ^DSSpec;

{ PackedDSSpecHeader }

PackedDSSpecHeader = RECORD

dataLength: INTEGER;

END;

{ PackedDSSpec }

PackedDSSpec = RECORD

dataLength: INTEGER;

data: PACKED ARRAY[1..kPackedDSSpecMaxBytes] OF Byte;

END;

ProtoPackedDSSpec = RECORD

dataLength: INTEGER;

{ Followed by data }

END;

PackedDSSpecPtr = ^PackedDSSpec;

PackedDSSpecHandle = ^PackedDSSpecPtr;

ProtoPackedDSSpecPtr = ^ProtoPackedDSSpec;

{ Attribute Structures }

AttributeType = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

body: PACKED ARRAY[1..kAttributeTypeMaxBytes] OF Byte;

END;

AttributeTypePtr = ^AttributeType;

{ AttributeValue }

AttributeValue = RECORD

tag: AttributeTag;
2-132 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
dataLength: LONGINT;

bytes: Ptr;

END;

AttributeValuePtr = ^AttributeValue;

AttributeTag = DescType;

{ Attribute }

Attribute = RECORD

attributeType: AttributeType;

cid: AttributeCreationID;

value: AttributeValue;

END;

AttributePtr = ^Attribute;

{ recordType index }

OCERecordTypeIndex = INTEGER;

{ AttributeType index }

OCEAttributeTypeIndex = INTEGER;

{ OCE Catalog Types }

OCEDirectoryKind = LONGINT;

{ OCE Catalog Node Types }

DirNodeKind = LONGINT;

{ MyDSSpecStreamer callback routine }

MyDSSpecStreamer = ProcPtr;

AOCE Utility Functions 2

AOCE String Functions

FUNCTION OCECopyRString (str1: RStringPtr; str2: RStringPtr;
str2Length: INTEGER): OSErr;

PROCEDURE OCECToRString (cStr: Ptr; charSet: CharacterSet; rStr:
RStringPtr; rStrLength: INTEGER);

PROCEDURE OCEPToRString (pStr: Str255; charSet: CharacterSet; rStr:
RStringPtr; rStrLength: INTEGER);

FUNCTION OCERToPString (rStr: RStringPtr): StringPtr; INLINE $303C,
kOCERToPString, $AA5C;
Summary of the AOCE Utilities 2-133

C H A P T E R 2

AOCE Utilities
FUNCTION OCERelRString (str1: UNIV Ptr; str2: UNIV Ptr; kind:
RStringKind): INTEGER;

FUNCTION OCEEqualRString (str1: UNIV Ptr; str2: UNIV Ptr; kind:
RStringKind): BOOLEAN;

FUNCTION OCEValidRString (str: UNIV Ptr; kind: RStringKind): BOOLEAN;

Creation Identifier Functions

FUNCTION OCEEqualCreationID (cid1: CreationID; cid2: CreationID): BOOLEAN;

PROCEDURE OCECopyCreationID (cid1: CreationID; VAR cid2: CreationID);

FUNCTION OCENullCID: CreationIDPtr;

FUNCTION OCEPathFinderCID: CreationIDPtr;

PROCEDURE OCESetCreationIDtoNull
(VAR cid: CreationID);

Packed pathname Functions

FUNCTION OCECopyPackedPathName
(path1: PackedPathNamePtr; path2:
PackedPathNamePtr; path2Length: INTEGER):
OSErr;

FUNCTION OCEIsNullPackedPathName
(path: PackedPathNamePtr): BOOLEAN;

FUNCTION OCEPackedPathNameSize
(VAR parts: RStringPtr; nParts: INTEGER):
INTEGER;

FUNCTION OCEDNodeNameCount (path: PackedPathNamePtr): INTEGER;

FUNCTION OCEUnpackPathName (path: PackedPathNamePtr; VAR parts:
RStringPtr; nParts: INTEGER): INTEGER;

FUNCTION OCEPackPathName (VAR parts: RStringPtr; nParts: INTEGER; path:
PackedPathNamePtr; pathLength: INTEGER): OSErr;

FUNCTION OCEEqualPackedPathName
(path1: PackedPathNamePtr; path2:
PackedPathNamePtr): BOOLEAN;

FUNCTION OCEValidPackedPathName
(path: PackedPathNamePtr): BOOLEAN;

Catalog Discriminator Functions

PROCEDURE OCECopyDirDiscriminator
(disc1: DirDiscriminator; VAR disc2:
DirDiscriminator);
2-134 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
FUNCTION OCEEqualDirDiscriminator
(disc1: DirDiscriminator; disc2:
DirDiscriminator): BOOLEAN;

Record Location Information Functions

PROCEDURE OCENewRLI (VAR newRLI: RLI; dirName: DirectoryName; VAR
discriminator: DirDiscriminator dNodeNumber:
DNodeNum; path: PackedPathName);

PROCEDURE OCEDuplicateRLI (rli1: RLI; VAR rli2: RLI);

FUNCTION OCECopyRLI (rli1: RLI; VAR rli2: RLI): OSErr;

FUNCTION OCEEqualRLI (rli1: RLI; rli2: RLI): BOOLEAN;

FUNCTION OCEValidRLI (theRLI: RLI): BOOLEAN;

FUNCTION OCECopyPackedRLI (prli1: PackedRLIPtr; prli2: PackedRLIPtr;
prli2Length: INTEGER): OSErr;

FUNCTION OCEPackedRLISize (theRLI: RLI): INTEGER;

FUNCTION OCEPackRLI (theRLI: RLI; prli: PackedRLIPtr; prliLength:
INTEGER): OSErr;

PROCEDURE OCEUnpackRLI (prli: PackedRLIPtr; VAR theRLI: RLI);

FUNCTION OCEPackedRLIPartsSize
(dirName: DirectoryNamePtr; VAR parts:
RStringPtr; nParts: INTEGER): INTEGER;

FUNCTION OCEPackRLIParts (dirName: DirectoryNamePtr; discriminator:
DirDiscriminator; dNodeNumber: DNodeNum; VAR
parts: RStringPtr; nParts: INTEGER; prli:
PackedRLIPtr; prliLength: INTEGER): OSErr;

FUNCTION OCEEqualPackedRLI (prli1: PackedRLIPtr; prli2: PackedRLIPtr):
BOOLEAN;

FUNCTION OCEValidPackedRLI (prli: PackedRLIPtr): BOOLEAN;

FUNCTION OCEExtractAlias (prli: PackedRLIPtr): AliasPtr;

FUNCTION OCEGetDirectoryRootPackedRLI
():PackedRLIPtr;

Local Record Identifier Functions

PROCEDURE OCENewLocalRecordID
(recordName: RStringPtr; recordType:RStringPtr;
cid: CreationID; VAR lRID: LocalRecordID);

FUNCTION OCECopyLocalRecordID
(lRID1: LocalRecordID; VAR lRID2:
LocalRecordID): OSErr;

FUNCTION OCEEqualLocalRecordID
(lRID1: LocalRecordID; lRID2: LocalRecordID):
BOOLEAN;
Summary of the AOCE Utilities 2-135

C H A P T E R 2

AOCE Utilities
Short Record Identifier Functions

PROCEDURE OCENewShortRecordID
(theRLI: PackedRLIPtr; cid: CreationID; sRID:
ShortRecordIDPtr);

FUNCTION OCECopyShortRecordID
(sRID1: ShortRecordID; VAR sRID2:
ShortRecordID): OSErr;

FUNCTION OCEEqualShortRecordID
(sRID1: ShortRecordID; sRID2: ShortRecordID):
BOOLEAN;

Record Identifier Functions

FUNCTION OCEGetIndRecordType
(STRINGIndex: OCERecordTypeIndex): RStringPtr;

PROCEDURE OCENewRecordID (theRLI: PackedRLIPtr; lRID: LocalRecordID; VAR
rid: RecordID);

FUNCTION OCECopyRecordID (rid1: RecordID; rid2: RecordID): OSErr;

FUNCTION OCEEqualRecordID (rid1: RecordID; rid2: RecordID): BOOLEAN;

Packed Record Identifier Functions

FUNCTION OCECopyPackedRecordID
(pRID1: PackedRecordIDPtr; pRID2:
PackedRecordIDPtr; pRID2Length: INTEGER):
OSErr;

FUNCTION OCEPackedRecordIDSize
(rid: RecordID): INTEGER;

FUNCTION OCEPackRecordID (rid: RecordID; VAR pRID: PackedRecordIDPtr;
packedRecordIDLength: INTEGER): OSErr;

PROCEDURE OCEUnpackRecordID (pRID: PackedRecordIDPtr; VAR rid: RecordID);

FUNCTION OCEEqualPackedRecordID
(pRID1: PackedRecordIDPtr; pRID2:
PackedRecordIDPtr): BOOLEAN;

FUNCTION OCEValidPackedRecordID
(pRID: PackedRecordIDPtr): BOOLEAN;
2-136 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
Attribute Type Functions

FUNCTION OCEGetIndAttributeType
(STRINGIndex: OCEAttributeTypeIndex):
AttributeTypePtr;

Catalog Services Specification Functions

FUNCTION OCECopyPackedDSSpec
(pdss1: PackedDSSpecPtr; pdss2:
PackedDSSpecPtr; pdss2Length: INTEGER): OSErr;

FUNCTION OCEPackedDSSpecSize
(dss: DSSpec): INTEGER;

FUNCTION OCEPackDSSpec (dss: DSSpec; VAR pdss: PackedDSSpecPtr;
pdssLength: INTEGER): OSErr;

PROCEDURE OCEUnpackDSSpec (pdss: PackedDSSpecPtr; VAR dss: DSSpec; VAR
rid: RecordID);

FUNCTION OCEEqualDSSpec (pdss1: DSSpec; pdss2: DSSpec): BOOLEAN;

FUNCTION OCEEqualPackedDSSpec
(pdss1: PackedDSSpecPtr; pdss2:
PackedDSSpecPtr): BOOLEAN;

FUNCTION OCEValidPackedDSSpec
(pdss: PackedDSSpecPtr): BOOLEAN;

FUNCTION OCEGetDSSpecInfo (spec: DSSpec): OSType;

FUNCTION OCEGetExtensionType
(pdss: PackedDSSpecPtr): OSType;

FUNCTION OCEStreamPackedDSSpec
(dss: DSSpec; stream: MyDSSpecStreamer;
userData: LONGINT; VAR actualCount: LONGINT):
OSErr;

Application-Defined Functions

FUNCTION MyDSSpecStreamer (VAR buffer: void; count: LONGINT; eof:
BOOLEAN; userData: LONGINT): OSErr;}
Summary of the AOCE Utilities 2-137

C H A P T E R 2

AOCE Utilities
Assembly Language Summary 2

Trap Macros Requiring Routine Selectors

__OCEUtils

Selector Routine

$0300 kOCECopyCreationID

$0301 kOCECopyDirDiscriminator

$0302 kOCECopyLocalRecordID

$0303 kOCECopyPackedDSSpec

$0304 kOCECopyPackedPathName

$0305 kOCECopyPackedRLI

$0306 kOCECopyPackedRecordID

$0307 kOCECopyRLI

$0308 kOCECopyRString

$0309 kOCECopyRecordID

$030A kOCECopyShortRecordID

$030B kOCEDuplicateRLI

$030C kOCEEqualCreationID

$030D kOCEEqualDirDiscriminator

$030E kOCEEqualDSSpec

$030F kOCEEqualLocalRecordID

$0310 kOCEEqualPackedDSSpec

$0311 kOCEEqualPackedPathName

$0312 kOCEEqualPackedRecordID

$0313 kOCEEqualPackedRLI

$0314 kOCEEqualRecordID

$0315 kOCEEqualRLI

$0316 kOCEEqualRString

$0317 kOCEEqualShortRecordID

$0318 kOCEExtractAlias

$0319 kOCEGetDSSpecInfo

$031A kOCEGetIndAttributeType

$031B kOCEGetIndRecordType

$031C kOCEGetXtnType

$031D kOCEIsNullPackedPathName

$031E kOCENewLocalRecordID

$031F kOCENewRLI
2-138 Summary of the AOCE Utilities

C H A P T E R 2

AOCE Utilities

2
A

O
C

E
 U

tilities
$0320 kOCENewRecordID

$0321 kOCENewShortRecordID

$0322 kOCEPackDSSpec

$0323 kOCEPackPathName

$0324 kOCEPackRLI

$0325 kOCEPackRLIParts

$0326 kOCEPackRecordID

$0327 kOCEPackedDSSpecSize

$0328 kOCEPackedPathNameSize

$0329 kOCEPackedRLIPartsSize

$032A kOCEPackedRLISize

$032B kOCEPackedRecordIDSize

$032C kOCEDNodeNameCount

$032D kOCERelRString

$032E kOCESetCreationIDtoNull

$032F kOCEUnpackDSSpec

$0330 kOCEUnpackPathName

$0331 kOCEUnpackRLI

$0332 kOCEUnpackRecordID

$0333 kOCEValidPackedDSSpec

$0334 kOCEValidPackedPathName

$0335 kOCEValidPackedRecordID

$0336 kOCEValidPackedRLI

$0337 kOCEValidRLI

$0338 kOCEValidRString

$0339 kOCECToRString

$033A kOCEPToRString

$033B kOCERToPString

$033C kOCEPathFinderCID

$033D kOCEStreamPackedDSSpec

$0344 kOCENullCID

$0345 kOCEGetAccessControlDSSpec

$0346 kOCEGetRootPackedRLI

Selector Routine
Summary of the AOCE Utilities 2-139

C H A P T E R 2

AOCE Utilities
Result Codes 2
There is no allocated range of result codes for the Utility Manager. Functions may,
however, return standard Macintosh result codes such as noErr 0 (No error) and
memFullErr –108 (Buffer not large enough).
2-140 Summary of the AOCE Utilities

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	AOCE Utilities
	About the AOCE Utilities
	AOCE Data Structures of Maximum and Minimum Size

	Using the AOCE Utilities
	Determining Whether the Collaboration Toolbox Is A...
	Packing and Unpacking the AOCE Data Structures
	Unpacking Catalog Specifications

	Validating the AOCE Data Structures
	Comparing AOCE Data Structures for Equality
	Copying AOCE Data Structures
	Copying Versus Duplicating AOCE Data Structures
	Allocating AOCE Strings of Nonstandard Sizes
	Allocating a RecordID Structure of Maximum Size

	AOCE Utilities Reference
	AOCE Data Structures
	AOCE String Structures
	Record Identifier Structures
	Catalog Services Specification
	Attribute Structures

	AOCE Utility Functions
	AOCE String Functions
	Creation Identifier Functions
	Packed Pathname Functions
	Catalog Discriminator Functions
	Record Location Information Functions
	Local Record Identifier Functions
	Short Record Identifier Functions
	Record Identifier Functions
	Packed Record Identifier Functions
	Attribute Type Functions
	Catalog Services Specification Functions

	Application-Defined Functions

	Summary of the AOCE Utilities
	C Summary
	Constants and Data Types
	AOCE Utility Functions

	Pascal Summary
	Constants
	Data Types
	AOCE Utility Functions

	Assembly Language Summary
	Result Codes

	 Standard Mail Package TOC
	 Standard Mail Package
	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	 Digital Signature Manager
	 Interprogram Messaging Manager TOC
	 Interprogram Messaging Manager
	 Catalog Manager TOC
	 Catalog Manager, Part 1 (Introduction, About, and Using)
	 Catalog Manager, Part 2 (Reference)
	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	 Authentication Manager
	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

