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Target Audience
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Introduction

MMX is a new technology that is an extension to the Intel x86 architecture used 
in the Pentium, 486 and previous processors.  From a programming point of 
view, there are 57 new instructions, the MMX instructions.  However, the internal 
operation of the pipeline, cache and a number of other features have also been 
changed.  Future CPUs from Intel will also include these new MMX instructions.  
Intel has trademarked the term MMX Technology and it has been licensed by 
AMD for future CPUs.  Other companies may also decide to license the MMX 
Technology.

Processors with the MMX instructions define a new set of eight 64-bit registers 
that are aliased onto the existing FPU registers.  Prior to MMX, the FPU operated 
on the eight FPU registers as a LIFO (last-in, first-out) data stack with each 
register holding an 80-bit value. When these same registers are used as MMX 
integer registers they are treated as eight distinct 64-bit registers, randomly 
addressable as MM0 through MM7.

The 57 new instructions are simple, primitive instructions, although you may have 
heard that they were designed for multimedia and communication applications.  
Yes, they are very useful when processing video, audio and graphical data; but 
they are still simple single-cycle instructions (except the multiply instructions).



The real power of the new instructions is that they are SIMD (Single Instruction 
Multiple Data) instructions.  What this means is that you can load, store or 
operate on multiple data items of the same type at the same time with a single 
instruction. That is the primary reason that these instructions are oriented to the 
highly parallel, repetitive sequences often found in multimedia operations.

The Pentium Processor with MMX Technology (Intel code name:  P55C) is just 
the first Intel processor that will include MMX. The Pentium II (Intel code name:  
Klamath) is a chip with the PentiumPro (P6) micro-architecture and it includes the 
same MMX instructions.  All future members of the Intel x86 family will also 
include MMX with the possible exception of low-cost versions for embedded 
systems, etc.

This paper discusses the MMX instructions in general and is an introduction to 
optimizing for performance on the P55C, the first shipping processor with the 
MMX instructions.  Information on the Pentium II is also provided, having been 
just made public as this paper was written.

General Description

The MMX Pentium (my slang for the unwieldy official name:  Pentium Processor 
with MMX Technology) is a superscalar (dual-pipeline) 32-bit CPU with 32 
Kbytes of on-chip cache (16 Kbytes code, 16 Kbytes data).  There are two six-
stage integer pipelines named the U and the V pipelines.  There are two nine-
stage MMX pipelines and a single nine-stage floating-point pipeline.  The first five 
stages of all of these are shared so that there are only two pipelines in total.

The main differences from the standard Pentium is the additional MMX sub-
pipelines and the addition of a pipeline stage after the pre-fetch stage to decode 
instruction prefixes.  This stage also contains a four-deep FIFO (first-in, first-out) 
buffer, decoupling the instruction fetch operation from the rest of the pipeline.  
This FIFO is new on the MMX Pentium.

Although the integer, MMX and floating-point execution units are capable of 
independent operation, a maximum of two integer instructions, two MMX 
instructions, one integer and one MMX instruction or a single floating-point 
instruction may be issued during a single clock cycle (there is one exception to 
this rule for floating point:  FXCH).  There are restrictions on the various 
combinations of integer and MMX instructions that may be issued together.  For 
a complete description of the standard Pentium pairing, optimization guidelines 
and FPU operation see my book, Pentium Processor Optimization Tools, AP 
Professional, 1995.

Using MMX for DSP Applications



MMX adds a number of DSP-oriented features to the Intel architecture.  For 
example, there is an instruction that performs four 16-bit integer multiplies and 
then adds adjacent 32-bit results.  This can be used for a complex multiply or a 
vector product.  Since the eight 64-bit MMX registers are aliased to the existing 
eight 80-bit floating point registers, this makes it somewhat inefficient to switch 
back and forth between the two modes.  All other CISC-like attributes of the 
Pentium are still clearly visible, such as the addressing modes, small register set 
and irregular instruction set.  For a more complete analysis of the DSP-like 
features of the Pentium with MMX Technology, contact Berkeley Design 
Technology at http://www.bdti.com or info@bdti.com.

Branch Prediction

Branch prediction on the MMX Pentium is implemented in the same manner as 
on the more advanced architecture of the Pentium Pro (P6) not like on the 
standard Pentium.  The branch target buffer (BTB) stores the program counter 
(PC) address and target address of previously seen branches.  When a branch 
instruction is fetched the BTB supplies the predicted target address.  The 
prediction algorithm includes four history bits per target address that provides 
predictions based on the pattern of the previous four executions of the 
instruction.  When no BTB entry has been made yet, such as the first execution 
of a conditional branch at the bottom of a loop, a static prediction model is used.  
The static model predicts forward branches as not
taken and backwards branches as taken.

Branch prediction improves the overall speed of programs compared to an 
equivalent CPU designed without it.  However, branch prediction makes it 
somewhat difficult to accurately predict the number of clock cycles for any given 
execution and increases the range of possible execution times.

The MMX Pentium also contains a new feature called a return stack buffer 
(RSB).  This allows accurate prediction of the return address from a function call, 
even though the call may be from varying addresses.  This allows a loop with a 
function call to be unrolled without incurring a mispredicted branch on each 
return statement.

The MMX Memory System

The MMX Pentium has a single 32-bit address space (ignoring the System 
Management Mode) with two 16 Kbyte on-chip level one (L1) caches.  Both 
caches are 4-way set associative with 32-byte line sizes.  The data cache can be 
configured as write-through or write-back on a line-by-line basis.  The MMX 
Pentium has four 64-bit write buffers, each available for either pipeline.  The 
delay for a cache miss is eight CPU clock cycles.  All other memory features are 
identical to the standard Pentium.  The write buffers on the standard Pentium are 
dedicated to a particular pipeline.



Because of the write buffers between the CPU and the L1 cache and the write-
back buffers between the L1 cache and L2 cache or main memory, there is a 
difference between sustained memory throughput and the throughput that can be 
attained for small data sizes.  Applications must be tested with complete data 
sizes to insure the measured throughput is attainable.

The Pentium II memory system is quite different. The Pentium II L1 caches are 
the same size but are write-allocate. This means that when a memory write 
misses the cache a line fill operation is performed to fill the cache. In addition, the 
out-of-order execution capabilities of the Pentium II (P6-family) allow cache 
misses to not block execution within the CPU. The L2 cache is on a processor 
card and operates at 1/2 the CPU speed. At current clock speeds, this is a 
substantial improvement over the maximum 66mhz of the Pentium caches; but is 
slower than the full-speed L2 cache of the Pentium Pro (P6). The L2 cache can 
have 4 outstanding cache misses and the memory bus can have 8 outstanding 
requests. There is also a 12 deep load buffer once there are 4 outstanding cache 
requests.

Pipeline Operation

The Pentium uses a five-stage integer pipeline and an eight-stage floating-point 
pipeline.  The MMX Pentium uses a six-stage integer pipeline and a nine-stage 
MMX/floating point pipeline.  The integer stages are as follows:

PF pre-fetch
F fetch, decode prefix, queue in FIFO
D1 instruction decode
D2 address generation
EX execute and cache access
WB write back

The FPU pipeline has nine stages as follows:

PF pre-fetch
F fetch, decode prefix, queue in FIFO
D1 instruction decode
D2 address generation
EX cache access; register read; FP data conversion for store
X1 FP Execute stage one; Conversion of FP load data
X2 FP Execute stage two
WF Rounding and write FP results to register file
ER Error reporting, status word update

The MMX pipeline has nine stages as follows:



PF   pre-fetch
F   fetch, decode prefix, queue in FIFO
D1   instruction decode
D2   address generation, read source
EX   committed for execution
Mex   Execute MMX ALU or shift/pack/unpack or 1st clock of multiply
Wm/M2   Write-back of single cycle ops, 2nd clock of multiply
M3   3rd clock of multiply
Wmul   Write-back of multiply result

Instructions are issued to the two pipelines in program order.  As instructions are 
fetched, the CPU determines whether two instructions can be issued 
simultaneously or only a single instruction can be issued based upon the type of 
instructions and possible data conflicts.  There are a number of rules which 
govern instruction pairing (i.e. issuing of two instructions in the same CPU cycle).

The MMX Pentium follows nearly the same pipeline pairing rules as the standard 
Pentium for integer and FPU instructions.  MMX instructions have similar, but 
different rules.  The rules for pairing on the Pentium are as follows:



Instruction pairing rules for Pentium

1. Both instructions must be simple. (See below)

2. Shifts or rotates can only pair in the U pipe.

3. ADC and SBB can only pair in the U pipe.

4. JMP, CALL and Jcc can only pair in the V pipe.

5. Neither instruction can contain BOTH a displacement and an immediate 
operand. For example:

mov     [ebx+2], 3 ; 2 is a displacement, 3 is immediate
mov     mem1, 4 ; mem1 is a displacement, 4 is immediate

6. Prefixed instructions can only pair in the U pipe. This includes extended 
instructions that start with 0Fh except for the special case of the 16-bit 
conditional jumps of the 386 and above. Examples of prefixed instructions:

mov ES:[bx], 1
mov eax, [si]       ; 32-bit operand in 16-bit code segment
mov ax, [esi]       ; 16-bit operand in 32-bit code segment

7. The U pipe instruction must be only 1 byte in length or it will not pair until the 
second time it executes from the cache.

8. There can be no read-after-write or write-after-write register dependencies 
between the instructions except for special cases for the flags register and 
the stack pointer (rules 9 and 10).

mov ebx, 2 ; writes to EBX
add ecx, ebx ; reads EBX and ECX, writes to ECX

; EBX is read after being written, no pairing

mov ebx, 1 ; writes to EBX
mov ebx, 2 ; writes to EBX

; write after write, no pairing

9. The flags register exception allows an ALU instruction to be paired with a Jcc 
even though the ALU instruction writes the flags and Jcc reads the flags. 
For example:

cmp al, 0 ; CMP modifies the flags



je addr ; JE reads the flags, but pairs

dec cx ; DEC modifies the flags
jnz loop1 ; JNZ reads the flags, but pairs

10.The stack pointer exception allows two PUSHes or two POPs to be paired 
even though they both read and write to the SP (or ESP) register.

        push    eax             ; ESP is read and modified
        push    ebx             ; ESP is read and modified, but still pairs

Simple Instructions (for Pentium pairing)

Instruction format      16-bit example          32-bit example

MOV reg, reg mov ax, bx mov eax, edx
MOV reg, mem mov ax, [bx] mov eax, [edx]
MOV reg, imm mov ax, 1 mov eax, 1
MOV mem, reg mov [bx], ax mov [edx], eax
MOV mem, imm mov [bx], 1 mov [edx], 1

alu reg, reg add ax, bx cmp eax, edx
alu reg, mem add ax, [bx] cmp eax, [edx]
alu reg, imm add ax, 1 cmp eax, 1
alu mem, reg add [bx], ax cmp [edx], eax
alu mem, imm add [bx], 1 cmp [edx], 1

where alu = add, adc, and, or, xor, sub, sbb, cmp, test

INC  reg inc  ax inc  eax
INC  mem inc  var1 inc  [eax]
DEC  reg dec  bx dec  ebx
DEC  mem dec  [bx] dec  var2
PUSH reg push ax push eax
POP  reg pop  ax pop  eax
LEA  reg, mem lea  ax, [si+2] lea  eax, [eax+4*esi+8]
JMP  near jmp  label jmp  lable2
CALL near call proc call proc2
Jcc  near jz   lbl jnz  lbl2
NOP nop nop
shift reg, 1 shl  ax, 1 rcl  eax, 1
shift mem, 1 shr  [bx], 1 rcr  [ebx], 1
shift reg, imm sal  ax, 2 rol  esi, 2



shift mem, imm sar  ax, 15 ror  [esi], 31

Notes:
· rcl and rcr are not pairable with immediate counts other than 1
· all memory-immediate (mem, imm) instructions are not pairable with a 

displacement in the memory operand
· instructions with segment registers are not pairable

MMX pairing

All MMX instructions are considered "simple" instructions per the standard 
Pentium instruction pairing rules.  MMX instructions can be paired with integer 
instructions or other MMX instructions. However, MMX and integer instructions 
have some pairing limitations, as described below:

· MMX instructions that access memory or integer registers must execute in the 
U pipeline.

· If there are two MMX instructions, they must use different MMX execution 
units.  There are two MMX ALUs, but only one multiplier, one barrel shifter 
(used for shifts, packs and unpacks) and one memory access/integer 
access unit.  The multiplier unit is fully pipelined so that a new multiply can 
be started on each CPU clock cycle, even though multiplies have a three 
cycle latency.

· Because MMX instructions use a prefix byte (0fh) the decoder has been 
modified to allow pairing if the U pipe instruction is up to eleven bytes in 
length. (This changes rule 5 above).

There are a number of pipeline stalls that must be taken into account when 
writing optimum code for the Pentium or the MMX Pentium:

· Data-cache memory bank conflict.  A one-cycle stall occurs if instructions in 
both pipelines attempt to access data in the L1 cache that are in the same 
memory bank (address line bits 2-4 are equal).  (The V pipeline instruction 
stalls on the memory access while the U pipeline instruction continues.  
The U pipeline stalls in the previous stage, since no out of order execution 
is allowed.) This can only happen on integer instructions since the MMX 
instructions that access memory must only be in the U pipe.

· Address generation interlock (AGI).  A one cycle delay occurs if an instruction 
in the previous cycle modified a register used in the address generation of 
an instruction in the current cycle.



· Prefix byte delay.  Prefixed instructions on the Pentium cause a one cycle 
delay for each prefix.  The MMX Pentium (sometimes) removes this delay 
by the addition of the F (fetch) stage in the pipeline and the FIFO buffer 
between the second and third pipeline stages.  If the FIFO buffer is empty 
and the next instruction contains a prefix then there can be a one to three 
cycle stall while the next instruction(s) prefixes are decoded.

MMX Instruction set summary

Class Instructions Description

arithmetic PADDx packed add of bytes, words or dwords

PADDSx packed add with signed saturation of bytes or words

PADDUSx packed add with unsigned saturation of bytes or words
PSUBx packed sub of bytes, words or dwords

PSUBSx packed sub with signed saturation of bytes or words
PSUBUSx packed sub with unsigned saturation of bytes or words

x = B (bytes), W (words), D (dwords)

multiplication PMULHW multiply 4 pairs of words, keep high 16 bits of result
PMULLW multiply 4 pairs of words, keep low 16 bits of result

PMADDWD multiply 4 pairs of words, sum the first 2 and last 2 resulting in 2 
32-bit results

comparison PCMPEQx compare for equality, set bits to 1 if equal, else 0

PCMPGTx signed compare for greater than, set bits to 1 if greater than,
 else 0

                       x = B (bytes), W (words), D (dwords)

logical PAND 64-bit bitwise AND

PANDN 64-bit bitwise AND then NOT

POR 64-bit bitwise OR

PXOR 64-bit bitwise XOR

pack/unpack PACKUSWB   pack words to bytes with unsigned saturation

PACKSSxx   pack with signed saturation words to bytes or dwords to words

                        xx = WB (words to bytes), DW (dwords to words)

PUNPCKHyy interleave high data from two operands



PUNPCKLyy interleave low data from two operands

yy = BW (bytes to words), WD (words to dwords), DQ (dwords to 
qword)

shift PSLLz shift left logical

PSRLz shift right logical

PSRAz shift right arithmetic (preserve sign)

z = W (words), D (dwords), Q (qword)

load/store MOVQ load/store 64-bits to/from memory or reg-reg

MOVD load/store 32-bits to/from memory or integer register

other EMMS empty MMX state (restore for FPU usage)

Notes:

All instructions in the arithmetic, multiplication, comparison, logical and 
pack/unpack groups (in the table above) use two operands.  The first operand is 
an MMX register that is one source operand and the destination MMX register.  
The second operand is the second source operand and may be an MMX register 
or a memory reference.  The shift instructions work the same except the second 
operand (the amount to shift by) may be an MMX register, memory reference or 
an immediate 8-bit constant.

The MOVQ and MOVD instructions work just like the traditional MOV. The 
EMMS instruction has no operands.

Detecting the Presence of MMX

Detecting the existence of MMX technology is done by executing the CPUID 
instruction and checking a set bit.  This gives developers the flexibility to 
determine the specific code in their software to execute. During install or run time 
the software can query the processor to determine if MMX technology is 
supported and install or execute the code that includes, or does not include, 
MMX instructions as required. The following code tests for MMX:

;-------------------------------------------
; Check to see if the processor supports MMX
;
; returns: edx  0        no MMX
;               800000h  MMX available
;-------------------------------------------



pushfd
pop eax ; get eflags
mov edx, eax ; copy of eflags
push eax
popfd
xor eax, 00200000h ; switch bit 21 (check for CPUID)
pushfd
pop eax
cmp eax, edx ; see if it can be changed
jz not_avail
mov eax, 1
cpuid
and edx, 800000h ; check MMX bit
jz not_avail
ret

not_avail:
xor edx, edx ; CPUID not supported or no MMX
ret

Cache Operation

The SIMD nature of the MMX instructions improve the CPU performance by 2x to 
8x on cached data operations. But that is the catch...the data must be cached to 
sustain this performance advantage. Algorithms and data structures must be 
carefully selected to keep the memory throughput high.

Caches are designed based on the principles of spatial and temporal locality. 
That is, they expect two things: once a data item is read, items in the same area 
will also be read; once a data item is read it is likely to be read again within a 
short amount of time.

All caches on the Pentium and above use a 32-byte cache line size. Each cache 
line consists of four quadwords (qword). When a cache miss occurs an entire 
cache line is brought into the cache from external memory (or the next level of 
cache).  This is called a line fill.  On the Pentium and above this data arrives in a 
burst composed of four quadwords. The burst operation timing is described as a 
sequence of four numbers, such as 3-1-1-1. This means that the first qword 
takes 3 cycles to read and that each of the next 3 qwords takes one additional 
cycle. The 4 qwords always start with the qword that contains the data the CPU 
is requesting. You might think that the next qword would be at the next higher 
sequential qword address -- but it isn’t. It is important to know line fill sequence 
order, especially when processing data in a non-sequential order. The line fill 
order is as follows:

0, 1, 2, 3 (normal operation when progressing in forward order)
1, 0, 3, 2 (this one is counter-intuitive)



2, 3, 1, 2
3, 2, 1, 0 (backwards order)

So, if the first qword needed is located at qword 2 within a cache line, then (from 
the table above) we can see that the fill order is 2, 3, 1, 2.

The P6-family processors have a "write allocate by read-for-ownership" cache, 
whereas the Pentium and MMX Pentium have a "no-write-allocate; write through 
on write miss" cache.

So on a P6 when a write occurs and the write misses the cache, the entire 32-
byte cache line is read.  On the Pentium and MMX Pentium when the same write 
miss occurs, the write is simply sent out to memory. Write allocate is generally 
advantageous, since sequential stores are merged into burst writes, and the data 
remains in the cache for use by later loads.  However, write allocate can be a 
disadvantage in code where:

· Only one element in a cache line is written
· Strides are larger than the 32-byte cache line

· Only portions of a cache line are read after writing

The bottom line is that you must know your data and your algorithm and be sure 
to match it with the cache policy.

Instruction Examples

More examples and descriptions of each MMX instruction can be obtained on the 
Intel web sites (www.mmx.com and www.intel.com).

16-bit vector dot product

The following code section is the unoptimized inner loop for a dot product routine. 
The code takes 6 cycles to execute for every 4 input pairs (cached) or 1.5 cycles 
per element.



xor esi, esi                ; init index
mov ecx, count/4
pxor mm7, mm7               ; init sum to 0

loop1:                            ; cycle
movq mm0, buffer1[esi] ; 1

pmaddwd mm0, buffer2[esi] ; 2, 3, 4

paddd mm7, mm0 ; 5
add esi, 8 ; 5

dec ecx ; 6
jnz loop1 ; 6 cycles per 4 elements

movq mm6, mm7
psrlq mm7, 32
paddd mm6, mm7 ; sum high and low results
movq mmword result, mm6

Unrolling the loop allows some overlap for the multiply instructions, as follows:

xor esi, esi                ; init index
mov ecx, count/8
pxor mm7, mm7               ; init sum to 0

loop1:                            ; cycle
movq mm0, buffer1[esi] ; 1

pmaddwd mm0, buffer2[esi] ; 2, 3, 4

movq mm2, buffer1[esi+8] ; 3

pmaddwd mm2, buffer2[esi+8] ; 4, 5, 6

paddd mm7, mm0 ; 5

paddd mm7, mm2 ; 7
add esi, 16 ; 7

dec ecx ; 8
jnz loop1 ; 8 cycles per 8 elements

movq mm6, mm7
psrlq mm7, 32
paddd mm6, mm7 ; sum high and low results
movq mmword result, mm6

This allows the code to execute at 8 cycles per 8 data pairs: 1 cycle per pair 
(when cached). This might seem near optimum. However, you should always 
look at the code and determine the fastest possible speed, commonly referred to 
as the speed of light. In this case there are 3 operations for every 4 data pairs: a 



load, a load/multiply/add and an add. All other operations are loop overhead. 
(Note that we are taking advantage of the fact that PMADD can do a load and 
multiply with a single-cycle throughput.) With perfect instruction pairing this would 
be 0.375 (3/8) cycles per data pair.

The following code unrolls the loop again. But this time we do the loads for one 
iteration at the end of the loop.

xor esi, esi                ; init index
mov ecx, count/16

pxor mm7, mm7                ; init sum to 0

movq mm0, buffer1[esi]       ; pre-load from buffer1
pxor mm2, mm2                ; init to 0

movq mm1, buffer1[esi+8]     ; pre-load second items
pxor mm3, mm3                ; init to 0

loop2:                                  ; cycles
pmaddwd mm0, buffer2[esi]       ; 1
paddd mm7, mm2                ; 1

pmaddwd mm1, buffer2[esi+8]     ; 2
paddd mm7, mm3                ; 2

movq mm2, buffer1[esi+16]    ; 3

movq mm3, buffer1[esi+24]    ; 4
paddd mm7, mm0                ; 4

pmaddwd mm2, buffer2[esi+16]    ; 5
paddd mm7, mm1                ; 5

pmaddwd mm3, buffer2[esi+24]    ; 6

movq mm0, buffer1[esi+32]    ; 7

movq mm1, buffer1[esi+40]    ; 8

add esi, 32                 ; 9
dec ecx                     ; 9

jnz loop2                   ; 10 cycles per 16 elements

movq mm6, mm7                ; copy of results
psrlq mm7, 32
paddd mm6, mm7                ; sum high and low results
movq mmword result, mm6

This version gets much closer to the maximum speed attainable: 5/8 cycles per 
data pair. Merging the data pointer and loop counter into one variable would 



reduce the loop overhead by one cycle. No further optimizations seem possible 
because we would have an MMX load instruction in every cycle except for the 
one loop processing cycle. So we’ve hit a memory bandwidth wall.

My Optimization Strategy (P55C)

· Organize data structures and algorithms for SIMD
· Use simple instructions
· Unroll loops

· Schedule instructions for optimal pairing

Pentium II Optimization *

Optimizing code for the Pentium II (P6, or Pentium Pro with MMX Technology) is 
quite similar to optimizing for the P55C. However, since the Pentium II includes 
out-of-order execution and multiple execution units that are not tied to a particular 
pipeline (like the P55C U and V pipelines) it is not as important to “schedule” 
each instruction and worry about the “pairing” rules. The Pentium II does have 
just two MMX execution units, so most performance increases will be due to the 
uncoupling of the load and store operations from the MMX and integer 
operations. In general, optimizing for the P55C will provide good performance on 
both processors, but optimizing for just the Pentium II will not provide for 
optimum P55C performance.

Celeron Optimization *

The Celeron Processor has the same CPU core as the Pentium II. The initial 266 
and 300 Mhz parts were the Pentium II CPU with no L2 cache. Later, the “300A” 
and the 333 Mhz and above contain an integrated L2 cache. The L2 cache is 
128K (1/4 the Pentium II’s 512K external L2 cache) and operates at full CPU 
speed, whereas the 512K Pentium II L2 cache operates at ½ the CPU speed. In 
general, this is about an even tradeoff. Some algorithms will benefit while others 
will suffer.

Pentium III Optimization *

The Pentium III has the same basic P6 internal architecture, but adds a number 
of new instructions. The most important is the addition is what Intel calls the 
“Streaming SIMD Extensions” or SSE. There are several parts to this. The most 
important is the addition of 8 new 128-bit wide registers. Each register can 
contain four 32-bit floating point values that can be operated on in SIMD fashion 
(although the internal processing actually submits two groups of two floating point 
operations on subsequent cycles). Next there are some additions to the basic 
MMX integer operations. Finally, there are the “streaming” instructions. These 
allow speculative loads and non-blocking stores to be performed, recognizing 



that cache effects and the memory sub-system are the most important things to 
control in some algorithms. Full information about SSE can be obtained at the 
Intel web site.

Some available tools that support MMX

· Microsoft Visual C++ 4.x and above
· Numega Technologies Soft ICE version 3.0 and above

· Intel Vtune 2.0 and above
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