
kD Trees
by Ivan Pocina

Introduction

kD trees is another class of divide-and-conquer algorithms that tries to 
solve the VSD (Visible Surface Determination) problem.  Invented in the 1970's, 
this algorithm is used to represent 2D or 3D geometry.  That's what the "k" in kD 
tree represents--the dimension #.  For example, k = 2 means that we are creating 
a 2D tree, k = 3 means that we are creating a 3D tree, and so on.  I don't know of 
anyone who is creating a kD tree where k = 4.  Something to think about when 
going into 4D hyperspace!

kD Tree Storage Setup

A kD tree is like a BSP tree in that it also uses a binary tree data structure 
to represent the actual algorithm.  For those of you who need a refresher, BSP 
(Binary Space Partitioning) trees generally store only polygonal data in each of its 
nodes.  3D points are not stored.  The internal nodes of a BSP tree store exactly 
one polygon and its leaf nodes may store several polygons at a time.  Unlike 
BSP trees, kD trees have a different storage setup.  Each node of a kD tree--this 
includes both internal and leaf nodes--contains exactly one 3D point and all of the 
convex polygons common to this 3D point.  Anyway, I'll expand more on this 
later.  But, for now, the only thing to remember is that kD trees store both 3D 
points and polygons.  BSP trees only store the latter.  See figure 1 for a storage 
comparison between both trees.

Figure 1.  The main difference between a BSP tree and a kD tree.

Building a kD Tree

Building a kD tree is similar to building a BSP tree.  Since these algorithms 
are both represented by a binary tree data structure, the functions to build these 



trees tend to work best if they are written recursively.  When I first wrote my first 
function to build a kD tree with an iterative implemention, I ended up with over 
2000 lines of code!  Eventually, I learned from my mistake and switched to a 
recursive implementation and got the function down to a mere 473 lines of code! 
Thank goodness for recursion.  In addition, like BSP trees, kD trees should only 
be built once because kD trees experience the same problem that BSP trees 
experience:  a dynamically changing 3D world.  This means that a 3D world built 
around a kD tree algorithm cannot have any of its polygons moving.  This 
includes both rotations and translations of any kind.  Polygons cannot even 
translate within their own infinite plane--well, almost.  If we are building a kD tree, 
where k = 2, then doors can be implemented exactly like in DOOM.  That is, 
doors can translate within their own plane.  But, in true 3D--with a kD tree, where 
k = 3--this is a problem.  The solution?  Make the doors into 3D objects that are 
separate from the rest of the 3D world mesh.  Now, you can make any 3D door 
objects into any shape and size, and they can do any movements--rotations 
and/or translations, etc.--as long as the 3D door objects--or any 3D objects in 
general--are NOT part of the continuous 3D world mesh!!!  What this last 
statement means is that when building a 3D engine that uses the kD tree 
approach, always make sure that the 3D world and its 3D objects are treated as 
separate and distinct entities.  Like in the Quake games, for example, a 3D world 
is treated much differently (rendering-wise) from the actual 3D objects that 
inhabit it--monsters and the like:  The 3D world is converted into spans and all 3D 
objects are simply z-buffered.

Here, I am going to illustrate how you can build a kD tree, where k = 2.  
Extending this to 3D merely means adding similar code for the third dimension.  
In this discussion, I am going to use only x and z coordinates.  Y coordinates are 
not relevant here, just as they are not relevant in a 2D BSP tree.  Anyway, here it 
goes!  Given a collection of 3D points, from a 3D game level, for example, find a 
3D point with the smallest x coordinate--call it xMin.  Then find a 3D point with 
the largest x coordinate--call it xMax.  From this info, we can easily find the true 
or absolute middle x coordinate:  xMiddle= (xMax + xMin) / 2.0.  From this piece 
of info, we can easily find--from the orginal vertex pool--which 3D point's x 
coordinate is the closest x coordinate to xMiddle.  See figure 2 for details.  The 
3D point found is flagged to indicate that this 3D point has been

Figure 2.  How to find the very first vertex divider.



processed for selection.  This 3D point selected from the main vertex pool is 
called a vertex divider.  We call it a vertex divider because it is the vertices that 
do the actual  subdividing of a 3D world.  Since we have just processed an x 
coordinate value, the 3D point just processed is called an x vertex divider.  We 
can also obtain a y or a z vertex divider in the same way.

Once we obtain this x vertex divider, we insert it into the kD tree.  We still 
have to check if there are other 3D points within the main vertex pool that have 
the same x coordinate value as this x vertex divider that was just found.  We, 
then, eventually hunt for these 3D duplicates, if any, and, if found, insert them 
into the same kD tree node as the current x vertex divider.  In addition, we flag 
these 3D duplicates, indicating that they, too, have been processed.  Still working 
with the same kD tree node in which the x vertex divider has been inserted, we 
search through an entire global polygon list--representing the current 3D world in 
question--and find any polygons whose vertices match--or are in common--with 
this current x vertex divider.  If we find any of these polygons, we create a linked 
list hanging from this kD tree node and insert--in any order--these polygons into 
this created list.  We do exactly the same for any duplicate 3D points in the same 
node as the x vertex divider is in.  Ohh yeah, almost forgot!  Remember those 
duplicate 3D points?  How are they stored relative to the vertex divider?  Well, 
within the same kD tree node that we're working with, the duplicate points are 



actually organized into another mini kD tree that is stored within the same kD tree 
node as the current vertex divider.  If confused, look at figure 3 to get the whole 
picture.  Anyway, kD tree nodes basically come in two varieties:  those nodes 
that contain exactly one vertex divider and those nodes that contain a vertex 
divider and its

Figure 3.  Overall representation of a kD tree node.

duplicate 3D points.  Both types of nodes, of course, contain those linked list of 
polygons!

Once we've selected an x vertex divider, its duplicate 3D points--and an 
accompanying mini kD tree--if any, and a collection of linked lists of polygons, the 
current kD tree node has, then, officially been fully processed.  This must be a 
sigh of relief for you!  Quite the contrary, however!  What I show you next is the 
heart of the kD tree building process.  Everything we do from now on is just a 
recursive reflection of the last two previous paragraphs.  The only thing different 
now is that instead of finding x vertex dividers, we switch our attention to finding z 
vertex dividers.  So basically, we have this consistent and alternating mechanism 
of finding vertex dividers.  First we find x vertex dividers and then we find z vertex 
dividers, and back to x, and so on, constantly alternating our build algorithm's 
axis state until we have no more 3D points to process in the original vertex pool.  
Thus, a pattern emerges like that in figure 4--for 2D trees, at least--where we 
have axis states alternating all the way down the entire kD tree.

Figure 4.  Alternating axis state pattern in a kD tree.



I wasn't thinking of providing a software demo on how the kD tree creation 
process actually goes.  Do to timing constraints, I have provided an illustration 
that shows (step-by-step) on how a 3D world is converted--and stored--into a kD 
tree.  See figure 5 in all its glory.  This illustration should definitely help!  If you 
understand this illustration thoroughly, then you fully understand the

Figure 5.  Step-by-step example of the kD tree building process.





kD tree creation process.  Before I almost forget, here is some general code that 
builds a kD tree, where k = 2:

void buildTree(node *root)
{

if (root == NULL)
return;

if (axisState == X_AXIS)
{

//find x vertex divider
//rest of block to split vertex pool
//into 2 lists

}

else //must be Z_AXIS
{

//find z vertex divider
//rest of block to split vertex pool
//into 2 lists

}

axisState^= 1; //flip "axisState"
buildTree(root->left);
buildTree(root->right);

}

Getting to a Leaf:  The kD Tree Traversal

Traversal from a kD tree root node to any of the leaves is easy.  As a 
matter of fact, it is even easier than the BSP traversal!  In the BSP traversal, we 
must calculate the dot product at every node that we visit.  This dot product is a 
test to see on which side of the current polygon the viewpoint is on.  As we all 



know in the computer graphics world, dot products are rather expensive if many 
of them are done.  In the kD tree traversal, however, we eliminate all these dot 
product tests and just perform exactly one simple comparison (with each kD node 
we visit) with one of the viewpoint coordinate values--x, y, or z--and the current 
vertex divider value.  For instance, if we got to a node that contains a y vertex 
divider, we compare this y value with the y value of our viewpoint and proceed to 
the appropriate child node.  See figure 6 for a simple demonstration of our kD 
tree traversal.

Figure 6.  A simple example of a kD tree traversal.



Anyway, here is some general code to traverse a kD tree:

void traverseTree(node *root, point viewPoint)
{

if (root == NULL)
return;

else
{

if (axisState == X_AXIS)
{

if (viewPoint.x < root.vertexDivider)
traverseTree(root->left)

else
traverseTree(root->right);

}

else //must be Z_AXIS
{

if (viewPoint.z < root.vertexDivider)
traverseTree(root->left);

else
traverseTree(root->right);

}
}

axisState^= 1;
}

Rendering from a Leaf



Once we traverse all the way down a kD tree, we eventually reach a leaf 
in which our viewpoint is in.  We now have access to all of the polygons within 
this leaf.  Now, we perform the usual HSR test on only the polygons that are in 
this leaf and render--in any order--the ones that we actually see.  For each 
polygon that gets rendered, we send the scan-converted version of the polygon 
to our image-precision zero-overdraw algorithm.  Here, it is guaranteed that 
exactly one pixel will ever get drawn by a 3D polygon that is part of a 3D 
polygonal world.  So, in the best case scenario, one polygon can cover the entire 
view plane and no more rendering is needed for this frame due to the zero-
overdraw algorithm.  But, if we still have at least one pixel to draw, we continue to 
test and render, if any, polygons that are seen from the current position and 
orientation of our viewpoint.

Eventually, we test all of the polygons that are only within the same leaf as 
our viewpoint and must make a big decision in our object-precision algorithm:  If 
we have rendered the entire screen of pixels from only the set of polygons that 
belong in the same leaf as the viewpoint--as can be seen from figure 7--
rendering for the current frame has just come to a close and the next frame of 
animation awaits our attention.  Otherwise, our main object-precision algorithm 
has more

Figure 7.  A viewpoint's FOV seeing only the polygons within the same leaf 
as the viewpoint.

work to do.  Dare to read on!
Basically what we do now is perform some kind of ray tracing, but not 

using too many rays.  No, no!  That will be far too expensive!  What we do 
instead is cast only two rays from the viewpoint.  Well, we do this at least in 2D.  
In 3D, we must cast at least four rays because our view volume is not a simple 
2D triangle but a 3D viewing pyramid.  Anyway, figure 8 shows all the details in a 
2D and in a 3D implementation.  As you can see from the figure, these rays are



Figure 8.  The rays that are going to be used in our renderer.

actually line segments that are identical in length.  Calculating these FOV points 
requires some simple trig. on your part.  Also, given any 3D world, this FOV must 
be calculated such that it is big enough for this 3D world.  See figure 9 for details. 
As you can see, no matter what

Figure 9.  The FOV must be large enough so that no polygons are 
accidentally missed for HSR testing.



the viewpoint's position or orientation, the FOV will always go slightly past the 
edge (or edges) of the world itself, thus ensuring that no polygons ever get 
missed for HSR testing.

So, how do we figure out which polygons, if any, get rendered with these 
rays and how do we know which ones get rendered first?  You're probably 
thinking that we need some kind of polygon sorting mechanism.  WRONG!!!  
Actually, what we need is another geometric database that holds information 
about the edges bounding each kD node leaf.  Remember, the edges that I'm 
talking about are NOT real polygon edges but imaginary leaf edges.  See figure 
10.  As you can see, all the kD leaves are bounded by its leaf edges and are 
denoted by dark black lines.

Figure 10.  All kD leaves are bounded by its leaf edges.



Still, we need one more piece of data:  the smaller line segments that lie on each 
edge.  These line segments are carved by the intersection--or intersections--of 
other perpendicular vertex dividers.  See figure 11.  Anyway, it is these line 
segments that are going to help us pick out the right kD leaves for testing at the 
right time, so that we can test the proper polygons for HSR

Figure 11.  Leaf edges are made up of smaller line segments.



testing at the right time, and, therefore, ensure that proper polygon rendering 
order is established.

So, how does all this fit together?  Well, it goes like this.  The very first kD 
leaf that gets found--via our kD tree traversal--will always have our viewpoint in it. 
As before, we have access to all of the polygons in this current kD leaf and we 
can render, if any, polygons in any order.  Now, if more rendering might need to 
be done, we must perform extra rendering tests outside of this leaf.  So, this is 
the test that we perform:  for each ray that we shoot out, we must perform a 
parametric line-clipping test with each of the leaf edges associated with the 
current kD leaf that we are still currently in--in this case, our viewpoint leaf.  
When we do find a leaf edge that intersects with our current ray, we then stop 
testing for the other remaining leaf edges in the current kD leaf and start testing 
along this intersected leaf edge that we just found and try to determine in which 
of its line segments the same ray intersects.  We then use this intersected line 
segment to gain access to info regarding the adjacency of other immediate kD 
leaves that are touching our viewpoint leaf--or, for that matter, any leaf in 
general.  In other words, for every line segment that we find intersected by our 
current ray, we, in turn, find the actual leaves that touch each other along this 
same line segment.  Since only two leaves can ever touch each other--well, at 
least in 2D--we know that we are currently in one of these leaves.  From the 
results of the parametric line-clipping tests--and the line segment found--we know 
in which new leaf our current ray has entered, and the entire rendering process 
repeats for this new found kD leaf.  Once again, being the nice guy I am, I'm 
going to show you a step-by-step demo of how the kD tree renderer renders a 
sample sceen.

Figure 12.  Step-by-step example of the kD tree rendering process.



In addition, here is some pseudo-code for the overall kD tree renderer:

void kDtreeRenderer(node *viewPointLeaf)
{

node *currLeaf= *viewPointLeaf;

while(at least one pixel needs to be drawn)
{

for (each ray) //2 rays in 2D; 4 rays in 3D
{

while(1)
{

if (ray intersects 
currLeaf.currLeafEdge)

break;
}

}

//Sort the rays based on their distances from
//the viewpoint to their respective 
//intersection points, sorting from smallest 
//distance to largest distance.

for (each ray)
{

//Based on this ray's intersection 
//point, figure out between which 
line //segment on same intersected leaf 
edge //the current nearest ray falls on.



//From this line segment, we know 
//exactly in which new leaf the current 
//ray has entered.
node *newLeafEntered= 

currLeaf.currLeafEdge.currLineSeg;

currLeaf= newLeafEntered;

//Perform HSR test for polygons in
//"currLeaf."

//Image-precision zero-overdraw code
//goes here.

}
}

}

Conclusion

You have seen some strengths and weaknesses of the kD tree algorithm. 
You have experienced first-hand that building a kD tree is a little more complex 
than building a BSP tree.  However, once this kD tree is built, traversing one is as 
easy as pie.  In addition, you have also seen how the powerful kD tree renderer 
immediately begins to render what it sees within the 2D triangle or 3D view 
volume.  The beauty of this algorithm is that there is never any need to test what 
lies outside of the view volume!


