
Reflections RiscIgo Design by Bruce Wilcox
brucewilcox@bigfoot.com copyright 1995

Notes published in the computer Go newsgroup

THE PROBLEM:

In late 1993, I was asked by a Japanese company to build a Go program with
the following specifics:

1. It had to play stronger by three stones than the current
 strongest copy of Goliath in Japan (which was on SuperNintendo).
2. It had to play quickly (Goliath on the SNES was slow).
3. It had to fit in 16K RAM and 162K ROM, with 32K of that ROM
 not available as code space and accessed only in bytes.
4. It had to run on the ARM RISC Processor as a stand-alone go engine.
 They would provide the human interface on SNES, and connect via
 serial channel to the ARM chip.
5. It had to be done in 6 months.

When I got the initial request, my first impulse was to laugh myself
silly. What I had to start with was NEMESIS the Go Master, which was
arguably 5 or more stones weaker than Goliath, and whose Go engine
had previously been trying to stay within 256K ROM and 32K RAM to fit
in our own Igo Dojo handheld Go machine. And only six months? Just
another project scheduled by marketing. No wonder software is usually
delivered late. But the offer was too good to turn down. If there
was any chance at all, I had to try.

The first thing I did was see if I could justify it as possible. I
mapped how I would spend the RAM budget (described later). I would need a
radically different memory design, taking advantage of the 32 bit
architecture of the ARM-60 chip. Then I tried to estimate ROM using
NEMESIS as a basis. NEMESIS Go code used 162K of code + 15K for
patterns + 11K for joseki. But the code was compiled under the
Borland C compiler. When compiled for the ARM chip, it was about 15%
bigger, or 187K. Since the goal was to fit code in 128K, this was 30% too
big. While it was possible to imagine a program fitting
in the ROM requirement, it would have to be a complete rewrite both
for size, and because it needed to redo all data structures to fit in
the RAM limit.

NEMESIS Go engine Code Allocation

Territory tactics 22 group moves 10
Tactics controller 15 link moves 10
Board assessment 13 response controller 9
String + move update8 game phases moves 8
Group data 8 string moves 4
Go board/utility 6 moyo moves 4
Pattern matching 6 edge moves 3

mailto:brucewilcox@bigfoot.com

String tactics 5 territory moves 3
Access data 5 access moves 3
Sector/perimeter data 5 contact fights 1
Link data 4
Joseki processing 4
Link tactics 2
Territory data 2
Edge data 2

Total size = 162K (growing to 187K under ARM60 compiler)

Next I considered the debugging environment. The ARM chip development
package had a simulator under DOS that ran very slowly. Testing
under it was next to impossible. Debugger boards with a built in ARM
chip would be available in Japan, but only if I traveled there, and
so were generally not available. And the source level debugger wasn't
great. So I wouldn't be able to resort much to assembly code to save
on size, since I'd never be able to debug it. Instead I would have to
write in C as a DOS version, and switch to compiling my C program for
the ARM chip at the last minute.

Finally, having argued plausibly that all of the above would work somehow,
I had to decide how I was going to get 5 or more stones stronger at the
same time and fit that also into the ROM budget. And keep the speed up with
limited caching ability. And do it all in 6 months. Right!

I wrote a summary paper to the customer, explaining each of the above
points on December 3, 1993. The first thing I wrote was: My analysis
of this project says that it can probably be done, but that due to
time constraints and the 128K code limit, there is a risk that the
final product may only be slightly better than Goliath NES. These
words turned out to be completely right, and the project would run to
12 months instead of 6 (they also weren't ready until 12 months had
passed, as it turns out).

THE PLAN:

What was the ace up my sleeve? Without one, this project was sheer
lunacy. NEMESIS in Version 4 had lots in common with David Fotland's
program Many Faces of Go. Lots of special code for doing tactical
analysis. In Version 5, I had experimented with replacing string
tactics code with pattern matching. In a way, this experiment was a
disaster. NEMESIS V5 was slower and weaker than Version 4 (although it
had many useful other improvements). My pattern matcher was not
incremental, and was way too slow. But, conceptually the pattern matching
tactician was a lot stronger than the previous one. Or so I thought.

If there was to be an ace up my sleeve, it was a pattern matcher
based on Fotland's, but even faster and better. I pinned my hopes on
that. What would it buy me?

1. If it was fast enough, I could substitute patterns for code. Since
an average pattern would be just over 16 bytes, one pattern equaled
4 ARM instructions. I expected I could save on code space using
patterns, and they could fill up the 32K of non-code ROM.

2. Using patterns would increase reliability, since they couldn't cause

the program to crash or do anything malign other than match or fail
to match.

3. With an embedded pattern editor, I could see a mistake, fix it
and continue in the same game. It would speed the fix-it loop by
making the program interpretive instead of compiled. Writing patterns
is much faster than writing code.

4. I could afford any number of special case situations, described by
patterns.

RESULTS:

When 6 months were up, I had a go-playing program that could fit on the ARM
chip, play fast, and wasn't as strong as Goliath yet, though it was
stronger than NEMESIS. In 6 more months, it was somewhat stronger than
Goliath. It had played 250 games against a rated 10-kyu and gone from taking
9 handicap stones down to taking Black. Since strength deteriorates against
a human as the human gains experience in the foibles of the program, this
seemed like a pretty good sign. It took 12,000 lines of go engine source
(excluding .h and tools), had 3000 patterns and 30 joseki.

While the program was not as strong as hoped, and not done as quickly as
hoped, it was stronger than Goliath, fast, and proved that the pattern
based system was a viable starting point for further development.

SIDE PROBLEMS ALONG THE WAY:

During first integration, their serial communications code didn't
work right. Non-trivial debugging since they didn't speak much
English, nor I much Japanese. Eventually it was solved by slowing
down communications. Originally I was to send the entire go board
image each turn. But that flooded the communications channel. So
instead I had to spend 361 bytes of RAM tracking what had already
been sent to them. 361 bytes may seem small, but remember I'm trying
to stay within 16K RAM.

Once integration was accomplished, I tried to have the program play a game
against itself on the ARM, to see if it played exactly the same as it
did under DOS. It did, almost. After a hundred moves all the same, it varied
for a few moves before returning to the same moves. After much debugging,
I discovered that the ARM version, playing through their interface, used a
5 pt komi, whereas the DOS version defaulted to no komi. And at the point
the game departed, one side was close to the boundary of "winning big".
With komi, it went over that threshold and started playing more
conservatively than its DOS counterpart.

Another problem was the mysterious freezing of the program on the ARM
chip, whereas it ran perfectly under DOS. Eventually I discovered the
compiler did not consider (((char*) ptr) + 1 + 2) to be the same as
(((char*) ptr) + 3). It generated bad addressing code in the former case,
so I revised my macros to work around the problem.

Despite these difficulties, the port from DOS to ARM went relatively smoothly.

The most onerous difficulty was created by supplying an extra feature.

Like Goliath and NEMESIS, RiscIgo could show you a shaded map of what it
considered to be under each player's control throughout the game. This display
is useful for weaker players, but allowed the customer to see into the
program. And like the other programs, and like any kyu player, it made
mistakes in its assessment. This lead to the customer wanting to change
how the program thinks. This has it good and bad parts, and while sometimes
it helps to make the program stronger, sometimes it generates friction between
customer and programmer. A few examples are in order. First, consider an
empty 19x19 board and Black plays the first move. To RiscIgo, territory is
defined as those points surrounded by one player's stones and linkages and
the edge, and not touching any enemy living stones. So after the first move,
Black "owns" the whole board as territory. Of course this territory is easy
to invade and never lasts. So I patched it to suppress such behavior on the
19x19 board. But when Black plays the center point on 9x9, he still owns
the whole board. What surprised the customer was when White invades at a
3-3 point, Black's center stone was considered dead. Well, to RiscIgo,
the Black stone was not in contact with any edge, had little running room,
and could see no living friendly group. So it was presumed dead (not that
it wouldn't play to try to save it). This didn't sit well with the customer's
project manager. I argued that the program was not necessarily wrong, and
offered to prove it. I asked him to make his stone live, while I played to
kill it. He died. The point here being that many situations are up for grabs,
and the program's heuristics for assessment were based on a 19x19 board. But
the customer could see them, and thus want them changed. It was a serious
problem in customer relations. In all fairness, however, the main problem was
that the program wasn't 3 stones or more stronger than Goliath. This
was just a symptom they could pick on.

RiscIgo Code Allocation in Kbytes

String tactics 9 group moves 10
Go board/Utility 7 response controller 8
Board assessment 7 link moves 5
Pattern matching 5 semeai moves 4
Tactics controller 4 contact fights 4
String+move data 4 edge moves 3
Territory data 4 territory moves 2
Sector/ Perimeter data3 moyo moves 2
Link data 3 game phase moves 1
Edge data 2 ko moves 1
Access data 2 string moves 1
Joseki processing 2 access moves .5
Link tactics 1 --------------------------
Group/chain data 1 41.5
Eye tactics .2
--------------------------- SNES interface 7

54.2 Various constants 1.5
Patterns 56
Joseki .5

Total ~162K

NEMESIS / RiscIgo DIFFERENCES:

Much of what NEMESIS did with code, RiscIgo does with patterns.

There was no room for RiscIgo to keep lists of anything around. So
whereas NEMESIS kept strings with lists of stones, liberties, etc., RiscIgo
only kept a bit map indicating which points were members of strings, groups,
territories, etc., and created a particular data structure as needed by
rescanning contiguous points.

The biggest code area in NEMESIS was territory tactics. RiscIgo had no such
lookahead ability since I had neither time nor space to write it. However,
RiscIgo used lots of pattern knowledge to substitute for some tactics.

The biggest move generator areas in NEMESIS were groups and linkages.
The same is true of RiscIgo, reflecting the importance of these concepts
in Go play. RiscIgo added additional code to handle semeais and ko.

I simplified and speeded up underlying primitives in strings, links, groups
and territory.

NEMESIS had no global evaluation function to assess a board. I created one
for RiscIgo that was fast enough to afford. As an additional feature, by
tinkering mildly with the evaluation function, I could create a program with
multiple personalities. The program had different styles of play the user
could select (and which made for great graphics in the user interface).

 RiscIgo RAM Allocation

Bytes

4,096 control stack and local scratch data

1,441 Go board maps (361 intersections of 4 bytes each)
Basic data (occ, str, link status, chain status)

7 string id bits
4 link bits (black & white x horizontal & vertical)
2 chain bits (black & white)
2 occ bits (black ,white , none = empty, both = off edge)
1 "been here" bit for scans
- above update automatically incrementally on regular moving

- below assessed data non-incrementally updated by assessment
- refreshes when returning to assessed turn level
4 weak link bits (horizontal & vertical x black & white)
2 group bits (black & white)
2 territory bits (black or white)
5 chain id bits
2 territory header bits
 (a unique territory starts here by color)
1 weak link updated bit

1,444 Access map (361 points x 2 bytes x 2 colors)
each color intersection is 2 bytes

9 bits stone nearest of color to here
7 bits distance (only 6 needed)

- updated incrementally

 800 Move list history (400 move limit)
- each move is 16 bits

9 bits location
4 bits kill directions (needed to retract moves correctly)
1 bit ko flag (shows suicide or ko depending upon kill bits)
2 bits color of player moving (only 1 bit really needed)

 - std game = 250-300 real moves + 100 lookahead moves
 - replayability of retracted moves is responsibility of interface

 724 copy of current turn top level assessment bits for fast refresh

 722 Display marks board (for indicating numbers and letters on location)

 362 Tactic board indicates tactical result cache
- if on occupied pt, is on string name describing string
- if on link pt is on sole unique link pt describing link
- updated at top level of real turn only
8 bit tactical value

described why tactics stopped computation (too deep, ko, etc.)
described result of tactic for starting player (win/lose)

 361 tile board indicates tactic cache updating requirements
 - updated by assessment
 8 bit impact rectangle index specifying board part involved

 254 String: contiguous stones of same color
 - Theoretic max. 228. Practical max 127. Avg. max is 75.
 - Updated incrementally
 - unit size 2 bytes.

9 bits name (high pt on board 1...361)
2 bits unused
4 bits dame count (15 dame maximum)
1 bit "big" (stones 1) flag

 62 group enclosure data (2 bytes per group)
 9 bit name of best runnable/enclosable stone of a group
 4 bits define open running direction from stone
 1 bit means is enclosed
 1 bit means can be enclosed in 1 move
 1 bit means within foe sector line

 62 copy of group enclosure data

 62 chains (collection of connected strings using pseudo-linkages)
 - Practical max 31. In theory could be in the 30s, maybe 40s.
 - Updated by assessment
 - unit size 2 bytes

 9 bits name (high point of chain)
 3 bits safety assessment value
 1 Might breakout bit
 1 In semeai bit
 1 Big group (6 or more stones)
 1 Has many liberties

 62 copy of chains data

 42 21 edge boundary zones (two groups or 1 group + corner or 2 corners)
 - Practical limit 20

 - Unit size 2 bytes
 - updated by assessment

9 bit 1st line base
2 bit direction code for along and onto board
5 bit distance of gap

 42 copy of edge boundary zone data from current turn top level

 31 group association
 - 1 per chain
 - updated by assessment
 - names chain index of master chain for each chain
 (all chains in a group index to master, his is the id of the group)
 (groups are chains associated by capture of foe)
 - 5 bits chain id
 - 3 unused bits

 31 copy of group association

The "copy of" data is used to reassert the top level global
evaluation of a turn after running a lookahead sequence. Evaluation
data is not incremental, and done only at some interesting terminal
node.

 (Note: sometimes I bring other Go programs I have written into the
discussion of RiscIgo. POGO was my first program, written in LISP in
the 1970's. NEMESIS was written by me in the 1980s, and I stopped
working on it in 1992 and have nothing further to do with that
program. Ego is my next generation program after RiscIgo, not yet
released.

Some of this write-up needs diagrams, but I'm not willing to spend to
time making ASCII diagrams. A real paper will contain proper diagrams.

BASIC INCREMENTAL DATA STRUCTURES:

Basic data is updated incrementally (that is, the bits are always
correct after each real or hypothetical move). Some of it can be
suppressed during specific kinds of tactical lookahead. For strings,
territory, groups and chains, the set of points involved in the unit
is computed by scanning points and testing for the presence of the
appropriate bit (the ones corresponding to occupation, chain status,
or territory status) in the mask for that point.

Strings:

For strings, NEMESIS kept lists of stones, liberties and touching enemy
stones, along with the counts of each. RiscIgo keeps just the liberty count,
where to find the canonical start (the point of the string most north and east
on the board) of the string, and whether the string
is "big" (at least 2 stones) or not. Updating is incremental, and simple.

Links:

For every point changing occupancy RiscIgo checks related nearby
points to see if the link bit needs changing. Special code is

devoted to this purpose. Setting the link bit is thus incremental,
but no data about the link is computed until assessment. In Ego,
pattern matching has been sped up enough to duplicate the speed of
the special code, so linkage detection is done strictly using
patterns.

Chains:

A point is a black chain member (and similarly for white) if:
1. black occupies it
2. black has more touching adjacent stones than white
3. if both have 2 touching stones, a black stone is north of the pt
4. if both have 0-1 touching stones, black has more diagonal stones
 than white.

Setting the bit is done incrementally, but no data is acquired about the
chain until an assessment is needed. Discussion of assessment deferred until
later.

Access:

POGO, NEMESIS, and RiscIgo do not use influence. Influence, as it is
traditionally implemented, computes the degree of control over a
point. If a point has +10 influence, it means black controls it with
some measure of 10. But whether this was achieved by distant far
black stones and even more distant white stones, or by close black
stones and somewhat close white stones is not discriminated by this
measure. Access maintains the discrimination of how far away each
player's stones are from a point. I incrementally keep track of
access. An access map specifies for a point, what point of a color is
nearest to this point, and how far away it is (how many moves would
it take to join a solid string line between the two points assuming
you are not allowed to cross enemy linkages). Whenever a move is
played, it generates a list of points that change occupancy, and
points that change link status. For friendly access, a wave from this
stone propagates to adjacent points as long as the access distance
from this stone is less than that already existing on the new point.
This is referred to as "spinning". For foe access, access is
"ripped" out and then respun. For example, if Black plays a point,
then the access for White through that point is retrieved (the white
base stone and distance). For all propagated adjacent points with
higher access coming from the same white base stone, access is
cleared. Each point which is not cleared, is added to a list to
respin. Then each is respun once, generating a layer of newly spun
points into the cleared zone. Each layer is respun until no new
layers are generated.

Access is used to find, among other things,
1. enclosure status (can a group access distant points or friends of
 another group?).
2. sector lines bounding a group
3. Territory (points which have no access from a living enemy stone).
4. How to handle a moyo (e.g., to defend, find a deep point in the
 moyo, then retrieve the enemy access stone to that point and play a
 move to block that stone from moving toward the moyo).
5. Define game phase based on worst access of either player

9+: early opening 8: mid opening 7: late opening

6 : early midgame 5: mid midgame 4: late midgame
3 : early endgame 2: mid endgame 1: late endgame

6. the closest stone to a point, if you want to crawl toward that
 point (moyo attack).

PATTERN MATCHING:

Pattern matching is used for almost everything in RiscIgo. It is used in
lookeahead, global move generation, and most of group safety evaluation is done
using patterns.

In NEMESIS pattern matches were done on request (no caching or incremental
updating). Patterns were divided into types, e.g., good shape, linkage defense
of a specific type of linkage, real eyes. To request a match you specified
the type, and the points used to orient the match. The matcher returned a
board point and a value as its answer. Usually the answer was a move
suggestion and an associated value, but the value could also be descriptor
bits (e.g., this move cannot be cut), or an index into a sequence database
(i.e., play out this sequence).

Patterns were described as text, and converted into an internal
binary decision tree. A simple pattern is the following:
 LENS 2 d3 c4 ENDLENS
This says that lens type 2 (diagonal connection defense) given the
two endpoints of the diagonal connection, has two recognizable FIELDS
(in <>). A field is a collection of points, which if occupied in specific
ways, comprises a pattern. Fields were used in POGO, NEMESIS, RISCIGO and
EGO.

If D4 is empty and C3 is empty, then return c3/5. If d4 is
White and C3 is empty, return c3/33. Any number of points anywhere on
the board could be contained in a field. The program to the set of
all fields and built a decision tree out of it. In this example,
C3-Empty would be at the root of the tree, with two leaves d4-empty
and d4-white. The program walked the tree and performed the tests
indicated (empty or white) during a pattern match.

The tests that could be specified included:
WHITE, BLACK, EDGE, EMPTY, NOTWHITE, NOTBLACK, NOTEDGE,
which were simple occupation
tests. Optimizations to avoid naming lots of points included
BLACK8, EMPTY8, WHITE8 (center as designated and the 8 points around it
 empty)
ANY1, ANY2, ANY3 (the 9x9 field named must be empty or off the
 board, except for the number of points named can and must

 be of the count named. E.g. Any2 means the 9x9 field must
 contain exactly 2 stones of any color. All remaining points
 must be empty or off the edge).

ADJ0, ADJ1, ADJ2, (the center and immediately touching neighbors must be
 empty or off the board, except for the number of points named

 can and must be of the stone count named. E.g, ADJ2 means
 that 2 of the 5 points designate (the center and 4 touching
 points), must be occupied by stones).

EMPTY25 (a 5x5 field named must all be empty or off board)
MARK, NOTMARK (the designated center must or must not have a marker bit set on

 it.) One might mark territory points for an eye pattern match,

 for example.)
DAMEG1, DAMEG2, DAMEG3, DAMEL2, DAMEL3, DAMEL4, (liberties must match)
LIVEWHITE, LIVEBLACK (stone must be of a living group)
HYPOCONNECT (the original endpoints would survive an attempt to

 disconnect them if this move were played)
HYPOKILL (the original endpoint would be killed if this move were played)
FRIENDEDG (along the edge, a friendly stone is next)
TEST (Perform a test against a global variable. Test can require ==, ,

< 2, dame < 3, dame < 4, dame 1, dame 2, dame 3,
 edgeline = 1, edgeline != 1, not on plate of specific group,
 friend 3, not on territory point, foe can't safely play,
 friend territory, foe territory, foe 5 away, eye cannot be collapsed,
 friend 6 away, no foe neighbor in atari

Each pattern has a DONT-MATCH bit. If this bit is on, then when this
pattern is matched, it means don't allow this point to be matched (by
keeping it on a local list), and continue matching. This allows me
to note situations where moves shouldn't match.

Additionally, I can structure collections of patterns into "Globs".
A glob is a collection of patterns. If the first pattern in the glob
matches, then it skips over remaining patterns in the glob and
continues matching. Globs can also be joined together. The effect is
if the first pattern matches, then skip the 2nd header and continue
matching inside the rest of the glob. If the first header fails, the
second is usually a pattern that matches all situations, and all remaining
patterns in the glob are skipped. This allows me to set up a precondition
board condition for matching patterns in a glob. If the precondition fails
to match, then the patterns are ignored. This substitutes rapidly for a
hash code. For example, there are 143 patterns for string attack in 7 globs.
If the preconditions all failed, then it would take 14 patterns scanned to
fail them all (each glob 1st header precondition fails, the 2nd header always
matches and skips all the rest of the glob).

All patterns are entered using a GUI pattern editor. Given a type number,
54 patterns from it fit on a page. Click on one, and it magnifies and displays
the full detail, ready for editing and testing, after which you can resume

a game. An encoded pattern takes either 12 or 24 bytes (depending on field
size and whether embedded tests are used).

There are about 100 pattern types as follows (some generate multiple classes
based on linkage type or territory count): openDirection, press,
run, enclose, semeai, friend eExtend, foe extend, LadderAttack, Contact
attack, contact defend, diagonal contact, External eye, unstable
territory boundary, revise planned move, fill a liberty, invade,
self-atari reject, split territory into pieces, form links from,
attack foe moyo, defend friend moyo, react without thought, big
midgame edge moves, obvious follow-up sequence data for lookahead,
attack a territory boundary, stop the wriggling of a dead group,
desperate group trying to live, do I care about saving this stone,
connect through enemy link (watari), is there a link here, Great Wall
joseki, eye value for territories from 1-7 points, general eye value
for unrecognized small territories, eye value for dead stones, is
this link obviously secure, endgame attack, endgame defend, is this a
weak contact fight situation, linkage attack move, move here requires
updating these linkage points, link defense move, string just reduced
to 2 liberties, tactical lookahead reflex moves, seki shapes,

The classes with the most patterns are:
 contact attack (162), string tactics attack (143),
 string tactics defense (139), react to foe move without thought (135),
 single skip link defense (135), obvious link defense sequences (114).

Average pattern size is 18 bytes for the 3,000 patterns in the
database. In a sample game playing against itself on a 486 DX 2/50,
Ego, using a somewhat faster pattern matcher, can play at a rate of 10 moves
a minute. This involves 1410 calls to match a point in some orientation
for some class per turn, checking 140 patterns per match. Some 44 million
patterns were matched against the board during that game.

GLOBAL EVALUATION:

Global evaluation proceeds using the incremental basic data, without any
tactical lookahead. Speed is essential, so tactics are not used. Pattern
matching substitutes in most cases for tactics. Sometimes it's wrong.

Step 0: Clear all global assessment bits. These include chain id bits,
group bits, territory header bits and weak link bits. The top 16
bits of a point's occupation data area assessment bits.

Step 1: Find the chains. This consists of a sweep over the board looking
for contiguous collections of points with the same chain bit on.

Step 2: Find all interesting edge areas. Pairs of consecutive (but not
necessary contiguous) edge links involving two distinct chains are
interesting.

Step 3: Sweep the board and set the approriate territory bit for each point
not reachable by the opponent (using reach map).

Step 4: Adjust territory. To avoid black claiming the whole board with the
first move, if a territory point is "too far" from a friendly stone,
the territory is ripped back to the nearest linkage boundaries.

Step 5: Find all territories. Find the contiguous points all having the
same territory bit on. Choose one point from the territory and
turn on the territory header for it. The friendly reach map for

this point should have a base visible to the chain owning this
territory. Some points which are territory are not reachable by
the friend. An example is a dead enemy group with eyespace, where
points of the eyespace are not visible via reach data to the killer.

Step 6: Assess the life status of chains. Pass one does an initial
determination for all chains. Each chain is its own group. After this
pass, for all chains that are not alive, a conflict assessor tries
to decide who dies (including if semeai or seki is involved). This
assessor iterates over the groups until no group changes status.
As chains get declared dead, the enclosing chains are merged into
groups running through the dead stones. Territories are recomputed for
the groups that die, so that each pass has the correct territory data.

Step 7: Assess the game value, computing territory, potential territory,
and bonuses for each side. Keep track of the distribution of
reach values, to decide game phase. Potential territory are points
where one side has reach

 9) is treated as territory. Potential
not close to foe (reach 4) is worth 4 times potential where foe
is close. Bonuses come from weak groups which are not yet dead.
Bonus is based on life status of group and size of group. Thus
making a move which changes the life status of a group up or down
a notch is worth a bonus. Bonus is also based on style of computer
opponent selected. Influence and territory are combined eventually.
If the game phase is early on, 8 potential = 1 territory. Later in
the game, 16 potential = 1 territory. Player style choice affects
these conversions.

INITIAL CHAIN SAFETY EVALUATION:

For each chain, its reach to the rest of the board is analyzed, in
combination with pattern matching, resulting in a determination of
ENCLOSED, ENCLOSABLE IN ONE MOVE, WITHIN SECTOR LINE, or OPEN. Each
territory it controls is evaluated for the number of eyes it is worth
using a variety of pattern matches. Some are on the territory points,
and some are on the boundaries to determine their stability.

A chain is ALIVE:
1. two eyes.

A chain is PRESENTLY_ALIVE:
1. enough moyo (points with far reach from foe) and the separate
 potential for 2 eyes
2. OPEN with enough possible eyes or edge expansions
3. has enough big edge expansions (2 pt skips)
4. has many possible eyes

A chain is LIVABLE:
1. has potential eyes and edge expansions = 2
2. has some eye and some moyo

A chain is PRESENTLY STABLE:
1. if it is outside of any sector line.

A chain is SICKLY:
1. has an eye and edge expansion room
2. is not ENCLOSED and has some edge room
3. just has moyo

A chain is BAD:
1. is just not ENCLOSED

A chain is DEAD WITH AJI:

1. just has some edge expansions
2. has more than one possible eye

A chain is DEAD otherwise.

But, if a chain seems dead, additional edge pattern analysis is then
run, and if successful patterns are found, status is changed to SICKLY.

TACTICS

There is a general tactics controller, to provide the lookahead
framework. Within that framework, depending upon the search type, it
can call modules for string, link, eye, or "obvious" global
sequences. Upon arrival at a new board position, all moves RiscIgo might
play from here are generated in priority order. Before move
generators for the specific search types are called, a generator
"obvious reflex" generator is called. Whenever RiscIgo returns to a
position, RiscIgo decides whether to reorder or ignore the suggestions, but
RiscIgo never generates new moves. Except for the "obvious" global
sequences, searches are simple succeed/fail and use no alpha-beta.
Obvious sequence searches keep minimax values.

The results of success or failure of tactics are kept in a cache, but
the actual move returned is discarded immediately (limited RAM,
remember). So if RiscIgo decides that it wants to play a move based
on a tactical lookahead, in general it must redo that lookahead a
second time to get the answer. The cache keeps a number from 1-32,
designating what board area fragment, if played in, would require the
search to be redone. A search always fits within some fragment, even
if that fragment is the entire board.

STRING TACTICS:

String tactics generates moves against a "virtual string". It takes
the designated target string, and determines which other strings are
pattern connected to it (provided there is time to keep them joined
before getting captured). All liberties of the target complex are
then pattern matched to:

1. locate eyes (16 patterns)
2. locate trick plays (16 sacrifice tesuji against the connections)
3. locate ordinary plays (roughly 150 attack and 150 defend patterns)

The search is aware of snapbacks (so even if the string can be
captured, if it can snap back to life again, it isn't captured yet).
It will terminate on going too deep for the attacker, if it gets two
eyes, if the attacker tries to continue a failing ladder, or the
liberty count for the defender gets high enough. Additionally, if a
target is being attacked as a counterattack from some original
target, if the target complex gets more liberties than the original
target, the counter attack is stopped. The patterns range from the
very general (fill any liberty), to the more specific (fill liberties
in this order), to the very specific (play a geta move or some clever
tesuji or make a 2nd eye).

LINKAGE TACTICS:
Pattern matching determines the initial moves required to attempt to
cut or connect the linkage. When those patterns cease, additional patterns
mark the cutting strings to counter attack, and string tactics is called

to try to kill or save them.

OBVIOUS SEQUENCE TACTICS:
Pattern matching is done on the most recent move, and the move before that,
to determine the obvious responses to the recent move, and the follow-ups
to the previous move that should be tried. When no more moves are generated
or the depth limit is reached, a global evaluation is performed and
the score returned. 16 lines of C.

EYE TACTICS:
Pattern matching the eye point determines all moves and
results. It uses the same 65 patterns that global evaluation uses
when judging the eye value of a single point territory. 10 lines of C.

LIFE AND DEATH TACTICS:
0 lines of C. (i.e., not done).

JOSEKI:

RiscIgo has several joseki databases, varying from half board to
small corner. It matches without cacheing, by looking at the move
sequence as played in a designated rectangle, and following the
joseki tree for that rectangle (decoded and rotated into the correct
place on the board). If a match is found in a bigger rectangle, then
joseki processing for that area stops with the answer(s). Otherwise
it switches to the next smaller rectangle and tries again. Due to
space considerations, only 30 joseki are recognized. In addition,
RiscIgo uses the pattern matcher to generate moves whenever it wants
to play the Great Wall Opening. 7 patterns generate the wall itself,
and 28 patterns handle follow-up attacks on corners to make use of the
wall.

THE END

	Reflections RiscIgo Design by Bruce Wilcox brucewilcox@bigfoot.com copyright 1995
	Notes published in the computer Go newsgroup

