
DirectSound
[This is preliminary documentation and subject to change.]

This section provides information about the DirectSound® component of the
Microsoft DirectX® application programming interface (API). Information is found
under the following main headings:

· About DirectSound

· Why Use DirectSound?

· DirectSound Architecture

· DirectSound Essentials

· DirectSound Tutorials

· DirectSound Reference

· DirectSound Samples

About DirectSound
[This is preliminary documentation and subject to change.]

The Microsoft® DirectSound® application programming interface (API) is the wave-
audio component of the DirectX® API. DirectSound provides low-latency mixing,
hardware acceleration, and direct access to the sound device. It provides this
functionality while maintaining compatibility with existing device drivers.

DirectSound enables wave sound capture and playback. It also supports property sets,
which enable application developers to take advantage of extended services offered
by sound cards and their associated drivers.

Why Use DirectSound?
[This is preliminary documentation and subject to change.]

The overriding design goal in DirectX is speed. Like other components of DirectX,
DirectSound allows you to use the hardware in the most efficient way possible while
insulating you from the specific details of that hardware with a device-independent
interface. Your applications will work well with the simplest audio hardware but will
also take advantage of the special features of cards and drivers that have been
enhanced for use with DirectSound.

Here are some other things that DirectSound makes easy:

· Querying hardware capabilities at run time to determine the best solution for any
given personal computer configuration

in.doc – page 2

· Using property sets so that new hardware capabilities can be exploited even when
they are not directly supported by DirectSound

· Low-latency mixing of audio streams for rapid response

· Implementing three dimensional (3-D) sound

· Capturing sound

Despite the advantages of DirectSound, the standard waveform-audio functions in
Windows® continue to be a practical solution for certain tasks. For example, an
application can easily play a single sound or audio stream, such as introductory
music, by using the PlaySound or waveOut functions.

DirectSound Architecture
[This is preliminary documentation and subject to change.]

This section introduces the components of DirectSound and explains how
DirectSound works with the hardware and with other applications. The following
topics are discussed:

· Architectural Overview

· Sound Data

· Playback Overview

· Capture Overview

· Property Sets Overview

· Hardware Abstraction and Emulation

· System Integration

Architectural Overview
[This is preliminary documentation and subject to change.]

DirectSound implements a new model for playing and capturing digital sound
samples and mixing sample sources. Like other elements of the DirectX API,
DirectSound uses the hardware to its greatest advantage whenever possible, and it
emulates hardware features in software when the feature is not present in the
hardware.

DirectSound playback is built on the IDirectSound Component Object Model
(COM) interface and on other interfaces for manipulating sound buffers and 3-D
effects. These interfaces are IDirectSoundBuffer, IDirectSound3DBuffer, and
IDirectSound3DListener

DirectSound capture is based on the IDirectSoundCapture and
IDirectSoundCaptureBuffer COM interfaces.

in.doc – page 3

Another COM interface, IKsPropertySet, provides methods that allow applications
to take advantage of extended capabilities of sound cards, even those introduced in
the future.

Finally, the IDirectSoundNotify interface is used to signal events when playback or
capture has reached a certain point in a buffer.

For more information about COM concepts that you should understand to create
applications with the DirectX APIs, see The Component Object Model.

Sound Data
[This is preliminary documentation and subject to change.]

DirectSound and DirectSoundCapture work with waveform audio data, which
consists of digital samples of the sound at a fixed frequency. The particular format of
a sound can be described by a WAVEFORMATEX structure. This structure is
documented in the Multimedia Structures section of the Platform SDK
documentation, but is briefly described here for convenience:

typedef struct {

 WORD wFormatTag;

 WORD nChannels;

 DWORD nSamplesPerSec;

 DWORD nAvgBytesPerSec;

 WORD nBlockAlign;

 WORD wBitsPerSample;

 WORD cbSize;

} WAVEFORMATEX;

The wFormatTag member contains a unique identifier assigned by Microsoft
Corporation. A complete list can be found in the Mmreg.h header file. The only tag
valid with DirectSound is WAVE_FORMAT_PCM. This tag indicates Pulse Code
Modulation (PCM), an uncompressed format in which each samples represents the
amplitude of the signal at the time of sampling. DirectSoundCapture can capture data
in other formats by using the Audio Compression Manager.

For information on using non-PCM data with DirectSound, see Compressed Wave
Formats.

The nChannels member describes the number of channels, usually either one (mono)
or two (stereo). For stereo data, the samples are interleaved. The nSamplesPerSec
member describes the sampling rate, or frequency, in hertz. Typical values are
11,025, 22,050, and 44,100.

The wBitsPerSample member gives the size of each sample, generally 8 or 16 bits.
The value in nBlockAlign is the number of bytes required for each complete sample,
and for PCM formats is equal to (wBitsPerSample * nChannels / 8). The value in
nAvgBytesPerSec is the product of nBlockAlign and nSamplesPerSec.

in.doc – page 4

Finally, cbSize gives the size of any extra fields required to describe a specialized
wave format. This member is always zero for PCM formats.

Playback Overview
[This is preliminary documentation and subject to change.]

The DirectSound buffer object represents a buffer containing sound data. Buffer
objects are used to start, stop, and pause sound playback, as well as to set attributes
such as frequency and format.

The primary sound buffer holds the audio that the listener will hear. Secondary sound
buffers each contain a single sound or stream of audio. DirectSound automatically
creates a primary buffer, but it is the application's responsibility to create secondary
buffers. When sounds in secondary buffers are played, DirectSound mixes them in the
primary buffer and sends them to the output device. Only the available processing
time limits the number of buffers that DirectSound can mix.

It is your responsibility to stream data in the correct format into the secondary sound
buffers. DirectSound does not include methods for parsing a sound file or a wave
resource. However, there is code in the accompanying sample applications that will
help you with this task. For more information, see Using Wave Files and Reading
Wave Data from a Resource.

Depending on the card type, DirectSound buffers can exist in hardware as on-board
RAM, wave-table memory, a direct memory access (DMA) channel, or a virtual
buffer (for an I/O port based audio card). Where there is no hardware implementation
of a DirectSound buffer, it is emulated in system memory.

Multiple applications can create DirectSound objects for the same sound device.
When the input focus changes between applications, the audio output automatically
switches from one application's streams to another's. As a result, applications do not
have to repeatedly play and stop their buffers when the input focus changes.

In order to know when a streaming buffer is ready to receive new data, or when any
buffer has stopped, an application can use the IDirectSoundNotify interface to set up
notification positions. When the play cursor reaches one of these positions, an event is
signaled. Alternatively, an application can regularly poll the position of the play
cursor.

Capture Overview
[This is preliminary documentation and subject to change.]

The DirectSoundCapture object is used to query the capabilities of sound capture
devices and to create buffers for capturing audio from an input source.
DirectSoundCapture allows capturing of data in PCM or compressed formats.

The DirectSoundCaptureBuffer object represents a buffer used for receiving data
from the input device. Like playback buffers, this buffer is conceptually circular:

in.doc – page 5

when input reaches the end of the buffer, it automatically starts again at the
beginning.

The methods of the DirectSoundCaptureBuffer object allow you to retrieve the
properties of the buffer, start and stop audio capture, and lock portions of the memory
so that you can safely retrieve data for saving to a file or for some other purpose.

As with playback, DirectSound allows you to request notification when captured data
reaches a specified position within the buffer, or when capture has stopped. This
service is provided through the IDirectSoundNotify interface.

Property Sets Overview
[This is preliminary documentation and subject to change.]

Through property sets, DirectSound is able to support extended services offered by
manufacturers of sound cards and their associated drivers.

Hardware vendors define new capabilities as properties and publish the specification
for these properties. You, the application developer, can then use the methods of the
IKsPropertySet interface to determine whether a particular set of properties is
available on the target hardware and to manipulate those properties, for instance by
turning special effects on and off.

Property sets allow for the unlimited extension of the capabilities of DirectSound.
You use a single method, IKsPropertySet::Set, to alter the state of the device in any
way specified by the manufacturer.

Hardware Abstraction and Emulation
[This is preliminary documentation and subject to change.]

DirectSound accesses the sound hardware through the DirectSound hardware
abstraction layer (HAL), an interface that is implemented by the audio-device driver.

The DirectSound HAL provides the following functionality:

· Acquires and releases control of the audio hardware

· Describes the capabilities of the audio hardware

· Performs the specified operation when hardware is available

· Causes the operation request to report failure when hardware is unavailable

The device driver does not perform any software emulation; it simply reports the
capabilities of the hardware to DirectSound and passes requests from DirectSound to
the hardware. If the hardware cannot perform a requested operation, the device driver
reports failure of the request and DirectSound emulates the operation.

Your application can use DirectSound as long as the DirectX run-time files are
present on the user's system. If the sound hardware does not have an installed

in.doc – page 6

DirectSound driver, DirectSound uses its hardware emulation layer (HEL), which
employs the Windows multimedia waveform-audio (waveIn and waveOut)
functions. Most DirectSound features are still available through the HEL, but of
course hardware acceleration is not possible.

DirectSound automatically takes advantage of accelerated sound hardware, including
hardware mixing and hardware sound-buffer memory. Your application need not
query the hardware or program specifically to use hardware acceleration. However,
for you to make the best possible use of the available hardware resources, you can
query DirectSound at run time to receive a full description of the capabilities of the
sound device, and then use different routines optimized for the presence or absence of
a given feature. You can also specify which sound buffers should receive hardware
acceleration.

System Integration
[This is preliminary documentation and subject to change.]

The following illustration shows the relationships between DirectSound and other
system audio components.

Win32 application

DirectSound HAL

Sound hardware

DirectSound

HAL
emulation

Windows audio DDI

MIDI, etc. Wave

DirectSound and the standard Windows waveform-audio functions provide
alternative paths to the waveform-audio portion of the sound hardware. A single
device provides access from one path at a time. If a waveform-audio driver has
allocated a device, an attempt to allocate that same device by using DirectSound will
fail. Similarly, if a DirectSound driver has allocated a device, an attempt to allocate
the device by using the waveform-audio driver will fail.

If two sound devices are installed in the system, your application can access each
device independently through either DirectSound or the waveform-audio functions.

in.doc – page 7

Note
Microsoft Video for Windows currently uses the waveform-audio functions to
play the audio track of an audio visual interleaved (.avi) file. Therefore, if your
application is using DirectSound and you play an .avi file, the audio track will
not be audible. Similarly, if you play an .avi file and attempt to create a
DirectSound object, the creation function will return an error.
For now, applications can release the DirectSound object by calling
IDirectSound::Release before playing an .avi file. Applications can then re-
create and reinitialize the DirectSound object and its DirectSoundBuffer objects
when the video finishes playing.

DirectSound Essentials
[This is preliminary documentation and subject to change.]

This section gives a practical overview of how the various DirectSound interfaces are
used in order to play and capture sound. The following topics are discussed:

· DirectSound Devices

· DirectSound Buffers

· DirectSound in 3-D

· DirectSound 3-D Buffers

· DirectSound 3-D Listeners

· DirectSoundCapture

· DirectSound Property Sets

· Optimizing DirectSound Performance

· Using Wave Files

· Reading Wave Data from a Resource

Note
Most of the examples of method calls throughout this section are given in the C
language form, which accesses methods by means of a pointer to a table of
pointers to functions, and requires a this pointer as the first parameter in any call.
For example, a C call to the IDirectSound::GetCaps method takes this form:

lpDirectSound->lpVtbl->GetCaps(lpDirectSound, &dscaps);

The same method call in the C++ form, which treats COM interface methods just
like class methods, looks like this:

lpDirectSound->GetCaps(&dscaps);

Dsound.h contains macros that expand to either the C or C++ form of the method
call, depending on the environment. These macros simplify the C calls and also

in.doc – page 8

make it possible to develop routines that can be used in either language. For
example:

IDirectSound_GetCaps(lpDirectSound, &dscaps);

DirectSound Devices
[This is preliminary documentation and subject to change.]

The first step in implementing DirectSound in an application is to create a
DirectSound object, which represents a sound device and gives access to the
IDirectSound interface.

This section describes how your application can enumerate available sound devices,
create the DirectSound object for a device, and use the methods of the object to set
the cooperative level, retrieve the capabilities of the device, create sound buffers, set
the configuration of the system's speakers, and compact hardware memory.

· Enumeration of Sound Devices

· Creating the DirectSound Object

· Cooperative Levels

· Device Capabilities

· Speaker Configuration

· Compacting Hardware Memory

Enumeration of Sound Devices
[This is preliminary documentation and subject to change.]

For an application that is simply going to play sounds through the user's preferred
playback device, you don't need to enumerate the available devices. When you create
the DirectSound object with NULL as the device identifier, the interface will
automatically be associated with the default device if one is present. (If no device
driver is present, the call to the DirectSoundCreate function fails.)

However, if you are looking for a particular kind of device, wish to offer the user a
choice of devices, or need to work with two or more devices, you must get
DirectSound to enumerate the devices available on the system.

Enumeration serves three purposes:

· Reports what hardware is available

· Supplies a globally unique identifier (GUID) for each device

· Allows you to initialize DirectSound for each device as it is enumerated, so that
you can check the capabilities of the device

in.doc – page 9

To enumerate devices you must first set up a callback function that will be called each
time DirectSound finds a device. You can do anything you want within this function,
and you can give it any name, but you must declare it in the same form as
DSEnumCallback, a prototype in this documentation. The callback function must
return TRUE if enumeration is to continue, or FALSE otherwise (for instance, after
finding a device with the capabilities you need).

The following callback function, extracted from Dsenum.c in the Dsshow sample,
adds information about each enumerated device to a combo box. Note that the first
three parameters are supplied by the device driver. The fourth parameter is passed on
from the DirectSoundEnumerate function.

BOOL CALLBACK DSEnumProc(LPGUID lpGUID,

 LPCTSTR lpszDesc,

 LPCTSTR lpszDrvName,

 LPVOID lpContext)

{

 HWND hCombo = *(HWND *)lpContext;

 LPGUID lpTemp = NULL;

 if (lpGUID != NULL)

 {

 if ((lpTemp = LocalAlloc(LPTR, sizeof(GUID))) == NULL)

 return(TRUE);

 memcpy(lpTemp, lpGUID, sizeof(GUID));

 }

 ComboBox_AddString(hCombo, lpszDesc);

 ComboBox_SetItemData(hCombo,

 ComboBox_FindString(hCombo, 0, lpszDesc),

 lpTemp);

 return(TRUE);

}

The enumeration is set in motion when the dialog containing the combo box is
initialized:

if FAILED(DirectSoundEnumerate((LPDSENUMCALLBACK)DSEnumProc,

 &hCombo))

{

 EndDialog(hDlg, TRUE);

 return(TRUE);

}

In this case the address of the combo box handle is passed into
DirectSoundEnumerate, which in turn passes it to the callback function. This
parameter can be any 32-bit value that you want to have access to within the callback.

in.doc – page 10

Creating the DirectSound Object
[This is preliminary documentation and subject to change.]

The simplest way to create the DirectSound object is with the DirectSoundCreate
function. The first parameter of this function specifies the GUID of the device to be
associated with the object. You can obtain this GUID by Enumeration of Sound
Devices, or you can simply pass NULL to create the object for the default device.

LPDIRECTSOUND lpds;

HRESULT hr = DirectSoundCreate(NULL, &lpds, NULL));

The function returns an error if there is no sound device or if the sound device is
under the control of an application using the waveform-audio (non-DirectSound)
functions. You should prepare your applications for this call to fail so that they can
either continue without sound or prompt the user to close the application that is
already using the sound device.

You can also create the DirectSound object by using the CoCreateInstance function,
as follows:

1. Initialize COM at the start of your application by calling CoInitialize and
specifying NULL.

if FAILED(CoInitialize(NULL))

 return FALSE;

2. Create your DirectSound object by using CoCreateInstance and the
IDirectSound::Initialize method, rather than the DirectSoundCreate function.

LPDIRECTSOUND lpds;

dsrval = CoCreateInstance(&CLSID_DirectSound,

 NULL,

 CLSCTX_INPROC_SERVER,

 &IID_IDirectSound,

 &lpds);

if SUCCEEDED(dsrval)

 dsrval = IDirectSound_Initialize(lpds, NULL);

CLSID_DirectSound is the class identifier of the DirectSound driver object class and
IID_IDirectSound is the DirectSound interface that you should use. The lpds
parameter is the uninitialized object CoCreateInstance returns.

Before you use a DirectSound object created with the CoCreateInstance function,
you must call the IDirectSound::Initialize method. This method takes the same
driver GUID parameter that DirectSoundCreate uses (NULL in this case). After the
DirectSound object is initialized, you can use and release the DirectSound object as if
it had been created by using the DirectSoundCreate function.

in.doc – page 11

Before you close the application, close the COM library by calling the CoUninitialize
function, as follows:

CoUninitialize();

Cooperative Levels
[This is preliminary documentation and subject to change.]

Because Windows is a multitasking environment, more than one application may be
working with a device driver at any one time. Through the use of cooperative levels,
DirectX makes sure that each application does not gain access to the device in the
wrong way or at the wrong time. Each DirectSound application has a cooperative
level that determines the extent to which it is allowed to access the device.

After creating a DirectSound object, you must set the cooperative level for the device
with the IDirectSound::SetCooperativeLevel method before you can play sounds.

The following example sets the cooperative level for the DirectSound device
initialized at Creating the DirectSound Object. The hwnd parameter is the handle to
the application window.

HRESULT hr = lpDirectSound->lpVtbl->SetCooperativeLevel(

 lpDirectSound, hwnd, DSSCL_NORMAL);

DirectSound defines four cooperative levels for sound devices: normal, priority,
exclusive, and write-primary. Most applications will use the sound device at the
primary cooperative level, which allows for orderly switching between applications
that use the sound card but also makes it possible to set the primary buffer to 16-bit
output.

Normal Cooperative Level

At the normal cooperative level, the application cannot set the format of the primary
sound buffer, write to the primary buffer, or compact the on-board memory of the
device. All applications at this cooperative level use a primary buffer format of 22
kHz, stereo sound, and 8-bit samples, so that the device can switch between
applications as smoothly as possible.

Priority Cooperative Level

When using a DirectSound device with the priority cooperative level, the application
has first rights to hardware resources, such as hardware mixing, and can set the
format of the primary sound buffer and compact the on-board memory of the device.

in.doc – page 12

Exclusive Cooperative Level

At the exclusive cooperative level, the application has all the privileges of the priority
level. In addition, when the application is in the foreground, its buffers are the only
ones that are audible.

Write-primary Cooperative Level

The highest cooperative level is write-primary. When using a DirectSound device
with this cooperative level, your application has direct access to the primary sound
buffer. In this mode, the application must write directly to the primary buffer.
Secondary buffers cannot be played while this is happening.

An application must be set to the write-primary level in order to obtain direct write
access to the audio samples in the primary buffer. If the application is not set to this
level, then all calls to the IDirectSoundBuffer::Lock method for the primary buffer
will fail.

When your application is set to the write-primary cooperative level and gains the
foreground, all secondary buffers for other applications are stopped and marked as
lost. When your application in turn moves to the background, its primary buffer is
marked as lost and must be restored when the application again moves to the
foreground. For more information, see Buffer Management.

You cannot set the write-primary cooperative level if a DirectSound driver is not
present on the user's system. To determine whether this is the case, call the
IDirectSound::GetCaps method and check for the DSCAPS_EMULDRIVER flag in
the DSCAPS structure.

For more information, see Access to the Primary Buffer.

Device Capabilities
[This is preliminary documentation and subject to change.]

DirectSound allows your application to retrieve the hardware capabilities of the sound
device. Most applications will not need to do this, because DirectSound automatically
takes advantage of any available hardware acceleration. However, high-performance
applications can use the information to scale their sound requirements to the available
hardware. For example, an application might play more sounds if hardware mixing is
available than if it is not.

After calling the DirectSoundCreate function to create a DirectSound object, your
application can retrieve the capabilities of the sound device by calling the
IDirectSound::GetCaps method.

The following example retrieves the capabilities of the device that was initialized in
Creating the DirectSound Object.

DSCAPS dscaps;

in.doc – page 13

dscaps.dwSize = sizeof(DSCAPS);

HRESULT hr = lpDirectSound->lpVtbl->GetCaps(lpDirectSound,

 &dscaps);

The DSCAPS structure receives information about the performance and resources of
the sound device, including the maximum resources of each type and the resources
that are currently available. Note that the dwSize member of this structure must be
initialized before the method is called.

If your application scales to hardware capabilities, you should call the
IDirectSound::GetCaps method between every buffer allocation to determine if
there are enough resources to create the next buffer.

Speaker Configuration
[This is preliminary documentation and subject to change.]

The IDirectSound interface contains two methods that allow your application to
investigate and set the configuration of the system's speakers; that is, their location
relative to the listener. These methods are IDirectSound::GetSpeakerConfig and
IDirectSound::SetSpeakerConfig.

DirectSound uses the speaker configuration to optimize 3-D effects for the user's
sound system.

Compacting Hardware Memory
[This is preliminary documentation and subject to change.]

As long as it has at least the priority cooperative level, your application can use the
IDirectSound::Compact method to move any on-board sound memory into a
contiguous block to make the largest portion of free memory available.

DirectSound Buffers
[This is preliminary documentation and subject to change.]

This section covers the creation and management of DirectSoundBuffer objects,
which are the fundamental mechanism for playing sounds. The following topics are
discussed:

· Buffer Basics

· Static and Streaming Sound Buffers

· Creating Secondary Buffers

· Buffer Control Options

· Access to the Primary Buffer

· Playing Sounds

in.doc – page 14

· Playback Controls

· Current Play and Write Positions

· Play Buffer Notification

· Mixing Sounds

· Custom Mixers

· Buffer Management

· Compressed Wave Formats

Most of the information in this section applies to 3-D sound buffers as well. For
information specific to the IDirectSound3DBuffer interface, see DirectSound 3-D
Buffers.

For information about capture buffers, see DirectSoundCapture.

Buffer Basics
[This is preliminary documentation and subject to change.]

When you initialize DirectSound in your application, it automatically creates and
manages a primary sound buffer for mixing sounds and sending them to the output
device.

Your application must create at least one secondary sound buffer for storing and
playing individual sounds. For more information on how to do this, see Creating
Secondary Buffers.

A secondary buffer can exist throughout the life of an application or it may be
destroyed when no longer needed. It may contain a single sound that is to be played
repeatedly, such as a sound effect in a game, or it may be filled with new data from
time to time. The application can play a sound stored in a secondary buffer as a single
event or as a looping sound that plays continuously. Secondary buffers can also be
used to stream data, in cases where a sound file contains more data than can
conveniently be stored in memory.

For more information on the different kinds of secondary buffers, see Static and
Streaming Sound Buffers.

You can create two or more secondary buffers in the same physical memory by using
the IDirectSound::DuplicateSoundBuffer method. Note that if the original buffer is
in hardware memory and hardware resources are not available for the duplicate
buffer, this call may fail.

You mix sounds from different secondary buffers simply by playing them at the same
time. Any number of secondary buffers can be played at one time, up to the limits of
available processing power.

The DirectSound mixer can provide as little as 20 milliseconds of latency, so there is
no perceptible delay before play begins. Under these conditions, if your application
plays a buffer and immediately begins a screen animation, the audio and video appear

in.doc – page 15

to start at the same time. However, if DirectSound must emulate hardware features in
software, the mixer cannot achieve low latency and a longer delay (typically 100-150
milliseconds) occurs before the sound is reproduced.

Normally you do not have to concern yourself at all with the primary buffer;
DirectSound manages it behind the scenes. However, if your application is to perform
its own mixing, DirectSound will let you write directly to the primary buffer. If you
do this, you cannot also use secondary buffers. For more information, see Access to
the Primary Buffer.

Static and Streaming Sound Buffers
[This is preliminary documentation and subject to change.]

When you create a secondary sound buffer, you specify whether it is a static sound
buffer or a streaming sound buffer. A static buffer contains a complete sound in
memory. A streaming buffer holds only a portion of a sound, such as 3 seconds of
data from a 15-second bit of voice dialog. When using a streaming sound buffer, your
application must periodically write new data to the buffer.

If a sound device has on-board sound memory, DirectSound attempts to place static
buffers in the hardware memory. These buffers can then take advantage of hardware
mixing, and the processing system incurs little or no overhead to mix these sounds.
This is particularly useful for sounds your application plays repeatedly, because the
sound data must be downloaded only once to the hardware memory.

Streaming buffers are generally located in main system memory to allow efficient
writing to the buffer, although you can use hardware mixing on peripheral component
interconnect (PCI) machines or other fast buses.

DirectSound distinguishes between static and streaming buffers in order to optimize
performance, but it does not restrict how you can use the buffer. If a streaming buffer
is big enough, there is nothing to prevent you from writing an entire sound to it in one
chunk. In fact, if you do not intend to use the sound more than once, it can be more
efficient to use a streaming buffer because by doing so you eliminate the step of
downloading the data to hardware memory.

Your application may attempt to explicitly locate buffers in hardware or software. If
you attempt to create a hardware buffer and there is insufficient memory or mixing
capacity, the buffer creation request fails. Many existing sound cards do not have any
on-board memory or mixing capacity, so no hardware buffers can be created on these
devices.

For more information, see Creating Secondary Buffers.

Creating Secondary Buffers
[This is preliminary documentation and subject to change.]

To create a sound buffer, your application fills a DSBUFFERDESC structure and
then passes its address to the IDirectSound::CreateSoundBuffer method. This

in.doc – page 16

method creates a DirectSoundBuffer object and returns a pointer to an
IDirectSoundBuffer interface. Your application uses this interface to manipulate and
play the buffer.

The following example illustrates how to create a basic secondary sound buffer:

BOOL AppCreateBasicBuffer(

 LPDIRECTSOUND lpDirectSound,

 LPDIRECTSOUNDBUFFER *lplpDsb)

{

 PCMWAVEFORMAT pcmwf;

 DSBUFFERDESC dsbdesc;

 HRESULT hr;

 // Set up wave format structure.

 memset(&pcmwf, 0, sizeof(PCMWAVEFORMAT));

 pcmwf.wf.wFormatTag = WAVE_FORMAT_PCM;

 pcmwf.wf.nChannels = 2;

 pcmwf.wf.nSamplesPerSec = 22050;

 pcmwf.wf.nBlockAlign = 4;

 pcmwf.wf.nAvgBytesPerSec =

 pcmwf.wf.nSamplesPerSec * pcmwf.wf.nBlockAlign;

 pcmwf.wBitsPerSample = 16;

 // Set up DSBUFFERDESC structure.

 memset(&dsbdesc, 0, sizeof(DSBUFFERDESC)); // Zero it out.

 dsbdesc.dwSize = sizeof(DSBUFFERDESC);

 // Need default controls (pan, volume, frequency).

 dsbdesc.dwFlags = DSBCAPS_CTRLDEFAULT;

 // 3-second buffer.

 dsbdesc.dwBufferBytes = 3 * pcmwf.wf.nAvgBytesPerSec;

 dsbdesc.lpwfxFormat = (LPWAVEFORMATEX)&pcmwf;

 // Create buffer.

 hr = lpDirectSound->lpVtbl->CreateSoundBuffer(lpDirectSound,

 &dsbdesc, lplpDsb, NULL);

 if SUCCEEDED(hr)

 {

 // Valid interface is in *lplpDsb.

 return TRUE;

 }

 else

 {

 // Failed.

 *lplpDsb = NULL;

 return FALSE;

 }

}

in.doc – page 17

Your application should create buffers for the most important sounds first, and then
create buffers for other sounds in descending order of importance. DirectSound
allocates hardware resources to the first buffer that can take advantage of them.

If your application must explicitly locate buffers in hardware or software, you can
specify either the DSBCAPS_LOCHARDWARE or DSBCAPS_LOCSOFTWARE
flag in the DSBUFFERDESC structure. If the DSBCAPS_LOCHARDWARE flag is
specified and there is insufficient hardware memory or mixing capacity, the buffer
creation request fails.

You can ascertain the location of an existing buffer by using the
IDirectSoundBuffer::GetCaps method and checking the dwFlags member of the
DSBCAPS structure for either the DSBCAPS_LOCHARDWARE or
DSBCAPS_LOCSOFTWARE flags. One or the other is always specified.

When you create a sound buffer, you can indicate that a buffer is static by specifying
the DSBCAPS_STATIC flag. If you do not specify this flag, the buffer is a streaming
buffer. For more information, see Static and Streaming Sound Buffers.

DirectSoundBuffer objects are owned by the DirectSound object that created them.
When the DirectSound object is released, all buffers created by that object also will
be released and should not be referenced.

Buffer Control Options
[This is preliminary documentation and subject to change.]

When creating a sound buffer, your application must specify the control options
needed for that buffer. This is done with the dwFlags member of the
DSBUFFERDESC structure, which can contain one or more DSBCAPS_CTRL*
flags. The following controls are available:

· 3-D properties

· Frequency

· Pan

· Volume

· Position notification

To obtain the best performance on all sound cards, your application should specify
only control options it will use.

DirectSound uses the control options in determining whether hardware resources can
be allocated to sound buffers. For example, a device might support hardware buffers
but provide no pan control on those buffers. In this case, DirectSound would use
hardware acceleration only if the DSBCAPS_CTRLPAN flag was not specified.

If your application attempts to use a control that a buffer lacks, the method call fails.
For example, if you attempt to change the volume by using the
IDirectSoundBuffer::SetVolume method, the method can succeed only if the
DSBCAPS_CTRLVOLUME flag was specified when the buffer was created.

in.doc – page 18

Otherwise the method fails and returns the DSERR_CONTROLUNAVAIL error
code.

Access to the Primary Buffer
[This is preliminary documentation and subject to change.]

For applications that require specialized mixing or other effects not supported by
secondary buffers, DirectSound allows direct access to the primary buffer.

When you obtain write access to a primary sound buffer, other DirectSound features
become unavailable. Secondary buffers are not mixed and, consequently, hardware-
accelerated mixing is unavailable.

Most applications should use secondary buffers instead of directly accessing the
primary buffer. Applications can write to a secondary buffer easily because the larger
buffer size provides more time to write the next block of data, thereby minimizing the
risk of gaps in the audio. Even if an application has simple audio requirements, such
as using one stream of audio data that does not require mixing, it will achieve better
performance by using a secondary buffer to play its audio data.

You cannot specify the size of the primary buffer, and you must accept the returned
size after the buffer is created. A primary buffer is typically very small, so if your
application writes directly to this kind of buffer, it must write blocks of data at short
intervals to prevent the previously written data from being replayed.

You create an accessible primary buffer by specifying the
DSBCAPS_PRIMARYBUFFER flag in the DSBUFFERDESC structure passed to
the IDirectSound::CreateSoundBuffer method. If you want to write to the buffer,
the cooperative level must be DSSCL_WRITEPRIMARY.

You cannot obtain write access to a primary buffer unless it exists in hardware. To
determine whether this is the case, call the IDirectSoundBuffer::GetCaps method
and check for the DSBCAPS_LOCHARDWARE flag in the dwFlags member of the
DSBCAPS structure that is returned. If you attempt to lock a primary buffer that is
emulated in software, the call will fail.

Primary sound buffers must be played with looping. Ensure that the
DSBPLAY_LOOPING flag is set.

The following example shows how to obtain write access to the primary buffer:

BOOL AppCreateWritePrimaryBuffer(

 LPDIRECTSOUND lpDirectSound,

 LPDIRECTSOUNDBUFFER *lplpDsb,

 LPDWORD lpdwBufferSize,

 HWND hwnd)

{

 DSBUFFERDESC dsbdesc;

 DSBCAPS dsbcaps;

 HRESULT hr;

in.doc – page 19

 WAVEFORMATEX wf;

 // Set up wave format structure.

 memset(&wf, 0, sizeof(WAVEFORMATEX));

 wf.wFormatTag = WAVE_FORMAT_PCM;

 wf.nChannels = 2;

 wf.nSamplesPerSec = 22050;

 wf.nBlockAlign = 4;

 wf.nAvgBytesPerSec =

 wf.nSamplesPerSec * wf.nBlockAlign;

 wf.wBitsPerSample = 16;

 // Set up DSBUFFERDESC structure.

 memset(&dsbdesc, 0, sizeof(DSBUFFERDESC));

 dsbdesc.dwSize = sizeof(DSBUFFERDESC);

 dsbdesc.dwFlags = DSBCAPS_PRIMARYBUFFER;

 // Buffer size is determined by sound hardware.

 dsbdesc.dwBufferBytes = 0;

 dsbdesc.lpwfxFormat = NULL; // Must be NULL for primary buffers.

 // Obtain write-primary cooperative level.

 hr = lpDirectSound->lpVtbl->SetCooperativeLevel(lpDirectSound,

 hwnd, DSSCL_WRITEPRIMARY);

 if SUCCEEDED(hr)

 {

 // Try to create buffer.

 hr = lpDirectSound->lpVtbl->CreateSoundBuffer(lpDirectSound,

 &dsbdesc, lplpDsb, NULL);

 if SUCCEEDED(hr)

 {

 // Set primary buffer to desired format.

 hr = (*lplpDsb)->lpVtbl->SetFormat(*lplpDsb, &wf);

 if SUCCEEDED(hr)

 {

 // If you want to know the buffer size, call GetCaps.

 dsbcaps.dwSize = sizeof(DSBCAPS);

 (*lplpDsb)->lpVtbl->GetCaps(*lplpDsb, &dsbcaps);

 *lpdwBufferSize = dsbcaps.dwBufferBytes;

 return TRUE;

 }

 }

 }

 // Failure.

 *lplpDsb = NULL;

 *lpdwBufferSize = 0;

 return FALSE;

in.doc – page 20

}

You may also create a primary buffer object without write access, by specifying a
cooperative level other than DSSCL_WRITEPRIMARY. One reason for doing this
would be to call the IDirectSoundBuffer::Play method for the primary buffer, in
order to eliminate problems associated with frequent short periods of silence. For
more information, see Playing the Primary Buffer Continuously.

See also Custom Mixers.

Playing Sounds
[This is preliminary documentation and subject to change.]

Playing a sound consists of the following steps:

1. Lock a portion of the secondary buffer using IDirectSoundBuffer::Lock. This
method returns a pointer to the address where writing will begin, based on the
offset from the beginning of the buffer that you pass in to the method.

2. Write the audio data to the buffer.

3. Unlock the buffer using IDirectSoundBuffer::Unlock.

4. Send the sound to the primary buffer and from there to the output device using
IDirectSoundBuffer::Play. If the buffer is a streaming buffer, it will continue
playing in a loop as steps 1 to 3 are repeated.

Because streaming sound buffers usually play continually and are conceptually
circular, DirectSound returns two write pointers when locking a sound buffer. For
example, if you tried to lock 3,000 bytes beginning at the midpoint of a 4,000-byte
buffer, the Lock method would return one pointer to the last 2,000 bytes of the buffer,
and a second pointer to the first 1,000 bytes. The second pointer is NULL if the
locked portion of the buffer does not wrap around.

Normally the buffer stops playing automatically when the end is reached. However, if
the DSBPLAY_LOOPING flag was set in the dwFlags parameter to the Play method,
the buffer plays repeatedly until the application calls the IDirectSoundBuffer::Stop
method.

For streaming sound buffers, your application is responsible for ensuring that each
block of data is written to the buffer ahead of the current play position. (For more on
the play position, see Current Play and Write Positions.) Applications should write at
least 1 second ahead of the current play position to minimize the possibility of gaps in
the audio output during playback.

The following C example writes data to a sound buffer, starting at the offset into the
buffer passed in dwOffset:

BOOL AppWriteDataToBuffer(

 LPDIRECTSOUNDBUFFER lpDsb, // the DirectSound buffer

 DWORD dwOffset, // our own write cursor

in.doc – page 21

 LPBYTE lpbSoundData, // start of our data

 DWORD dwSoundBytes) // size of block to copy

{

 LPVOID lpvPtr1;

 DWORD dwBytes1;

 LPVOID lpvPtr2;

 DWORD dwBytes2;

 HRESULT hr;

 // Obtain memory address of write block. This will be in two parts

 // if the block wraps around.

 hr = lpDsb->lpVtbl->Lock(lpDsb, dwOffset, dwSoundBytes, &lpvPtr1,

 &dwBytes1, &lpvPtr2, &dwBytes2, 0);

 // If DSERR_BUFFERLOST is returned, restore and retry lock.

 if (DSERR_BUFFERLOST == hr)

 {

 lpDsb->lpVtbl->Restore(lpDsb);

 hr = lpDsb->lpVtbl->Lock(lpDsb, dwOffset, dwSoundBytes,

 &lpvPtr1, &dwAudio1, &lpvPtr2, &dwAudio2, 0);

 }

 if SUCCEEDED(hr)

 {

 // Write to pointers.

 CopyMemory(lpvPtr1, lpbSoundData, dwBytes1);

 if (NULL != lpvPtr2)

 {

 CopyMemory(lpvPtr2, lpbSoundData+dwBytes1, dwBytes2);

 }

 // Release the data back to DirectSound.

 hr = lpDsb->lpVtbl->Unlock(lpDsb, lpvPtr1, dwBytes1, lpvPtr2,

 dwBytes2);

 if SUCCEEDED(hr)

 {

 // Success.

 return TRUE;

 }

 }

 // Lock, Unlock, or Restore failed.

 return FALSE;

}

Playback Controls
[This is preliminary documentation and subject to change.]

in.doc – page 22

To retrieve and set the volume at which a buffer is played, your application can use
the IDirectSoundBuffer::GetVolume and IDirectSoundBuffer::SetVolume
methods. Setting the volume on the primary sound buffer changes the waveform-
audio volume of the sound card.

Similarly, by calling the IDirectSoundBuffer::GetFrequency and
IDirectSoundBuffer::SetFrequency methods, you can retrieve and set the frequency
at which audio samples play. You cannot change the frequency of the primary buffer.

To retrieve and set the pan, you can call the IDirectSoundBuffer::GetPan and
IDirectSoundBuffer::SetPan methods. You cannot change the pan of the primary
buffer.

In order to use any of these controls, you must have set the appropriate flags when
creating the buffer. See Buffer Control Options.

Current Play and Write Positions
[This is preliminary documentation and subject to change.]

DirectSound maintains two pointers into the buffer: the current play position
(sometimes called the play cursor) and the current write position (or write cursor).
These positions are byte offsets into the buffer, not absolute memory addresses.

The IDirectSoundBuffer::Play method always starts playing at the buffer's current
play position. When a buffer is created, the play position is set to zero. As a sound is
played, the play position moves and always points to the next byte of data to be
output. When the buffer is stopped, the play position remains at the next byte of data.

The current write position is the point after which it is safe to write data into the
buffer. The block between the current play position and the current write position is
already committed to be played, and cannot be changed safely.

Visualize the buffer as a clock face, with data written to it in a clockwise direction.
The play position and the write position are like two hands sweeping around the face
at the same speed, the write position always keeping a little ahead of the play
position. If the play position points to the 1 and the write position points to the 2, it is
only safe to write data after the 2. Data between the 1 and the 2 may already have
been queued for playback by DirectSound and should not be touched.

Note
The write position moves with the play position, not with data written to the
buffer. If you're streaming data, you are responsible for maintaining your own
pointer into the buffer to indicate where the next block of data should be written.
Also note that the dwWriteCursor parameter to the IDirectSoundBuffer::Lock
method is not the current write position; it is the offset within the buffer where
you actually intend to begin writing data. (If you do want to begin writing at the
current write position, you specify DSBLOCK_FROMWRITECURSOR in the
dwFlags parameter. In this case the dwWriteCursor parameter is ignored.)

in.doc – page 23

An application can retrieve the current play and write positions by calling the
IDirectSoundBuffer::GetCurrentPosition method. The
IDirectSoundBuffer::SetCurrentPosition method lets you set the current play
position, but the current write position cannot be changed.

To ensure that the current play position is reported as accurately as possible, you
should always specify the DSBCAPS_GETCURRENTPOSITION2 flag when
creating a secondary buffer. For more information, see DSBUFFERDESC.

Play Buffer Notification
[This is preliminary documentation and subject to change.]

When streaming audio, you may want your application to be notified when the
current play position reaches a certain point in the buffer, or when playback is
stopped. With the IDirectSoundNotify::SetNotificationPositions method you can
set any number of points within the buffer where events are to be signaled. You
cannot do this while the buffer is playing.

First you have to obtain a pointer to the IDirectSoundNotify interface. You can do
this by using the buffer object's QueryInterface method, as in the following C++
example:

// LPDIRECTSOUNDBUFFER lpDsbSecondary;

// The buffer has been initialized already.

LPDIRECTSOUNDNOTIFY lpDsNotify; // pointer to the interface

HRESULT hr = lpDsbSecondary->QueryInterface(IID_IDirectSoundNotify,

 (LPVOID *)&lpDsNotify);

if SUCCEEDED(hr)

{

 // Go ahead and use lpDsNotify->SetNotificationPositions.

}

Note
The IDirectSoundNotify interface is associated with the object that obtained the
pointer, in this case the secondary buffer. The methods of the new interface will
automatically apply to that buffer.

Now create an event object with the Win32® CreateEvent function. You put the
handle to this event in the hEventNotify member of a DSBPOSITIONNOTIFY
structure, and in the dwOffset member of that structure you specify the offset within
the buffer where you want the event to be signaled. Then you pass the address of the
structure—or of an array of structures, if you want to set more than one notification
position—to the IDirectSoundNotify::SetNotificationPositions method.

The following example sets a single notification position. The event will be signaled
when playback stops, either because it was not looping and the end of the buffer has

in.doc – page 24

been reached, or because the application called the IDirectSoundBuffer::Stop
method.

DSBPOSITIONNOTIFY PositionNotify;

PositionNotify.Offset = DSBPN_OFFSETSTOP;

PositionNotify.hEventNotify = hMyEvent;

// hMyEvent is the handle returned by CreateEvent()

lpDsNotify->SetNotificationPositions(1, &PositionNotify);

Mixing Sounds
[This is preliminary documentation and subject to change.]

It is easy to mix multiple streams with DirectSound. You simply create secondary
sound buffers, obtaining an IDirectSoundBuffer interface for each sound. You then
play the buffers simultaneously. DirectSound takes care of the mixing in the primary
sound buffer and plays the result.

The DirectSound mixer can obtain the best results from hardware acceleration if your
application correctly specifies the DSBCAPS_STATIC flag for static buffers. This
flag should be specified for any static buffers that will be reused. DirectSound
downloads these buffers to the sound hardware memory, where available, and
consequently does not incur any processing overhead in mixing these buffers. The
most important static sound buffers should be created first to give them first priority
for hardware acceleration.

The DirectSound mixer produces the best sound quality if all your application's
sounds use the same wave format and the hardware output format is matched to the
format of the sounds. If this is done, the mixer need not perform any format
conversion.

Your application can change the hardware output format by creating a primary sound
buffer and calling the IDirectSoundBuffer::SetFormat method. Note that this
primary buffer is for control purposes only; creating it is not the same as obtaining
write access to the primary buffer as described under Access to the Primary Buffer,
and you do not need the DSSCL_WRITEPRIMARY cooperative level. However, you
do need a cooperative level of DSSCL_PRIORITY or higher in order to call the
SetFormat method. DirectSound will restore the hardware format to the format
specified in the last call every time the application gains the input focus.

Custom Mixers
[This is preliminary documentation and subject to change.]

Most applications will use the DirectSound mixer; it should be sufficient for almost
all mixing needs and it automatically takes advantage of any available hardware
acceleration. However, if an application requires some other functionality that

in.doc – page 25

DirectSound does not provide, it can obtain write access to the primary sound buffer
and mix streams directly into it.

To implement a custom mixer, the application must first set the
DSSCL_WRITEPRIMARY cooperative level and then create a primary sound buffer.
(See Access to the Primary Buffer.) It can then lock the buffer, write data to it, unlock
it, and play it just like any other buffer. (See Playing Sounds.) Note however that the
DSBPLAY_LOOPING flag must be specified or the IDirectSoundBuffer::Play call
will fail.

The following example illustrates how an application might implement a custom
mixer. The AppMixIntoPrimaryBuffer sample function would have to be called at
regular intervals, frequently enough to prevent the sound device from repeating
blocks of data. The CustomMixer function is an application-defined function that
mixes several streams together, as specified in the application-defined AppStreamInfo
structure, and writes the result to the specified pointer.

BOOL AppMixIntoPrimaryBuffer(

 LPAPPSTREAMINFO lpAppStreamInfo,

 LPDIRECTSOUNDBUFFER lpDsbPrimary,

 DWORD dwDataBytes,

 DWORD dwOldPos,

 LPDWORD lpdwNewPos)

{

 LPVOID lpvPtr1;

 DWORD dwBytes1;

 LPVOID lpvPtr2;

 DWORD dwBytes2;

 HRESULT hr;

 // Obtain write pointer.

 hr = lpDsbPrimary->lpVtbl->Lock(lpDsbPrimary,

 dwOldPos, dwDataBytes,

 &lpvPtr1, &dwBytes1,

 &lpvPtr2, &dwBytes2, 0);

 // If DSERR_BUFFERLOST is returned, restore and retry lock.

 if (DSERR_BUFFERLOST == hr)

 {

 lpDsbPrimary->lpVtbl->Restore(lpDsbPrimary);

 hr = lpDsbPrimary->lpVtbl->Lock(lpDsbPrimary,

 dwOldPos, dwDataBytes,

 &lpvPtr1, &dwBytes1,

 &lpvPtr2, &dwBytes2, 0);

 }

 if SUCCEEDED(hr)

 {

 // Mix data into the returned pointers.

 CustomMixer(lpAppStreamInfo, lpvPtr1, dwBytes1);

 *lpdwNewPos = dwOldPos + dwBytes1;

in.doc – page 26

 if (NULL != lpvPtr2)

 {

 CustomMixer(lpAppStreamInfo, lpvPtr2, dwBytes2);

 *lpdwNewPos = dwBytes2; // Because it wrapped around.

 }

 // Release the data back to DirectSound.

 hr = lpDsbPrimary->lpVtbl->Unlock(lpDsbPrimary,

 lpvPtr1, dwBytes1,

 lpvPtr2, dwBytes2);

 if SUCCEEDED(hr)

 {

 return TRUE;

 }

 }

 // Lock or Unlock failed.

 return FALSE;

}

Buffer Management
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::GetCaps method retrieves the capabilities of the
DirectSoundBuffer object.

Your application can use the IDirectSoundBuffer::GetStatus method to determine if
the current sound buffer is playing or if it has stopped.

You can use the IDirectSoundBuffer::GetFormat method to retrieve information
about the format of the sound data in the buffer. You also can use the
IDirectSoundBuffer::GetFormat and IDirectSoundBuffer::SetFormat methods to
retrieve and set the format of the sound data in the primary sound buffer.

Note
After a secondary sound buffer is created, its format is fixed. If you need a
secondary buffer that uses another format, you must create a new sound buffer
with this format.

Memory for a sound buffer can be lost in certain situations: for example, when
buffers are located in sound card memory and another application gains control of the
hardware resources. Loss can also occur when an application with the write-primary
cooperative level moves to the foreground; in this case, DirectSound makes all other
sound buffers lost so that the foreground application can write directly to the primary
buffer.

The DSERR_BUFFERLOST error code is returned when the
IDirectSoundBuffer::Lock or IDirectSoundBuffer::Play method is called for a lost
buffer. When the application that caused the loss either lowers its cooperative level

in.doc – page 27

from write-primary or moves to the background, other applications can attempt to
reallocate the buffer memory by calling the IDirectSoundBuffer::Restore method. If
successful, this method restores the buffer memory and all other settings for the
buffer, such as volume and pan settings. However, a restored buffer may not contain
valid sound data, so the owning application should rewrite the data to the buffer.

Compressed Wave Formats
[This is preliminary documentation and subject to change.]

DirectSound does not currently support compressed wave formats. Applications
should use the audio compression manager (ACM) functions, provided with the
Win32 APIs in the Platform SDK, to convert compressed audio to pulse-code
modulation (PCM) format before writing the data to a sound buffer. In fact, by
locking a pointer to the sound-buffer memory and passing this pointer to the ACM,
the data can be decoded directly to the sound buffer for maximum efficiency.

DirectSound in 3-D
[This is preliminary documentation and subject to change.]

DirectSound enables an application to change the apparent position and orientation of
a sound source or listener, and also to suggest the relative velocity of the source and
listener by using Doppler shift.

The following topics cover some general aspects of 3-D sound:

· Integration with Direct3D

· Mono and Stereo Sources

· Perception of Sound Positions

Information on how to use 3-D sound in an application is found in the following
sections:

· DirectSound 3-D Buffers

· DirectSound 3-D Listeners

Integration with Direct3D
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer and IDirectSound3DListener interfaces are designed to
work together with Direct3D®. The positioning information used by Direct3D to
arrange objects in a virtual environment can also be used to arrange sound sources.
The D3DVECTOR and D3DVALUE types that are familiar to Direct3D
programmers are also used in the IDirectSound3DBuffer and
IDirectSound3DListener interfaces. The same left-handed coordinate system used

in.doc – page 28

by Direct3D is employed by DirectSound. (For information about coordinate systems,
see 3-D Coordinate Systems, in the Direct3D overview material.)

You can use the system callback mechanism of Direct3D to simplify the
implementation of 3-D sound in your application. For example, you could use the
D3DRMFRAMEMOVECALLBACK application-defined function to monitor the
movement of a frame in an application and change the sonic environment only when
a certain condition has been reached.

In DirectSound, distances are normally measured in meters. If your application does
not use the meter as its unit of measure for 3-D graphics, you can set a distance factor,
which is a floating-point value representing meters per application-specified distance
unit. For example, if your application uses feet, it could specify a DirectSound
distance factor of .3048, which is the number of meters in a foot.

Mono and Stereo Sources
[This is preliminary documentation and subject to change.]

Stereo sound sources are not particularly useful in the 3-D sound environments of
DirectSound, because DirectSound creates its own stereo output from a monaural
input. If an application uses stereo sound buffers, the left and right values for each
sample are averaged before the 3-D processing is applied.

Applications should supply monaural sound sources when using the 3-D capabilities
of DirectSound. Although the system can convert a stereo source into mono, there is
no reason to supply stereo, and the conversion step wastes time.

Perception of Sound Positions
[This is preliminary documentation and subject to change.]

In the real world, the perception of a sound's position in space is influenced by a
number of factors, including the following:

· Volume. The farther an object is from the listener, the quieter it sounds. This
phenomenon is known as rolloff.

· Interaural intensity difference. A sound coming from the listener's right will
sound louder in the right ear than in the left. This effect is familiar to anyone who
has listened to a stereo sound system.

· Interaural time difference. A sound emitted by a source to the listener's right will
arrive at the right ear slightly before it arrives at the left ear. (The duration of this
offset is approximately a millisecond.)

· Muffling. The orientation of the ears ensures that sounds coming from behind the
listener are slightly muffled compared with sounds coming from in front. In
addition, if a sound is coming from the right, the sound reaching the left ear will
be muffled by the mass of the listener's head as well as by the orientation of the
left ear.

in.doc – page 29

Although these are not the only cues people use to discern the position of sound, they
are the main ones, and they are the factors that have been implemented in the
positioning system of DirectSound. Hardware optimized for 3-D sound can support
other cues as well, such as the effect of the earlobes on the pitch and timing of sounds
arriving from different directions. The mathematics behind this effect are known as
the head-related transfer function.

One of the most important sound-positioning cues, however, is still the apparent
visual position of the sound source. If a projectile appears as a dot in the distance and
grows to the size of an intercontinental missile before it roars past the viewer's head,
the listener does not need subtle acoustical cues in order to sense the position and
velocity of the sound source.

DirectSound 3-D Buffers
[This is preliminary documentation and subject to change.]

A 3-D sound buffer is created and managed like any other sound buffer, and all the
methods of the IDirectSoundBuffer interface are available. However, in order to set
3-D parameters you need to obtain the IDirectSound3DBuffer interface for the
buffer. This interface is supported only by sound buffers created with the
DSBCAPS_CTRL3D flag.

This section describes how your applications can manage buffers with the
IDirectSound3DBuffer interface methods. The following topics are discussed:

· Obtaining the IDirectSound3DBuffer Interface

· Batch Parameters for IDirectSound3DBuffer

· Minimum and Maximum Distances

· Processing Mode

· Buffer Position and Velocity

· Sound Cones

Obtaining the IDirectSound3DBuffer Interface
[This is preliminary documentation and subject to change.]

To obtain a pointer to an IDirectSound3DBuffer interface, you must first create a
secondary 3-D sound buffer. Do this by using the
IDirectSound::CreateSoundBuffer method, specifying the DSBCAPS_CTRL3D
flag in the dwFlags member of the DSBUFFERDESC structure parameter. Then, use
the IDirectSoundBuffer::QueryInterface method on the resulting buffer to obtain a
pointer to an IDirectSound3DBuffer interface for that buffer.

The following example calls the QueryInterface method with the C++ syntax:

// LPDIRECTSOUNDBUFFER lpDsbSecondary;

in.doc – page 30

// The buffer has been created with DSBCAPS_CTRL3D.

LPDIRECTSOUND3DBUFFER lpDs3dBuffer;

HRESULT hr = lpDsbSecondary->QueryInterface(IID_IDirectSound3DBuffer,

 (LPVOID *)&lpDs3dBuffer);

if SUCCEEDED(hr)

{

 // Set 3-D parameters of this sound.

 .

 .

 .

}

Note
Pan control conflicts with 3-D processing. If both DSBCAPS_CTRL3D and
DSBCAPS_CTRLPAN are specified when the buffer is created, DirectSound
returns an error.

Batch Parameters for IDirectSound3DBuffer
[This is preliminary documentation and subject to change.]

Applications can retrieve or set a 3-D sound buffer's parameters individually or in
batches. To set individual values, your application can use the applicable
IDirectSound3DBuffer interface method. However, applications often must set or
retrieve all the values at once. You can do this with the
IDirectSound3DBuffer::GetAllParameters and
IDirectSound3DBuffer::SetAllParameters methods.

Minimum and Maximum Distances
[This is preliminary documentation and subject to change.]

As a listener approaches a sound source, the sound gets louder: the volume doubles
when the distance is halved. Past a certain point, however, it is not reasonable for the
volume to continue to increase. This is the minimum distance for the sound source.

The minimum distance is especially useful when an application must compensate for
the difference in absolute volume levels of different sounds. Although a jet engine is
much louder than a bee, for example, for practical reasons these sounds must be
recorded at similar absolute volumes. An application might use a minimum distance
of 100 meters for the jet engine and 2 centimeters for the bee. With these settings, the
jet engine would be at half volume when the listener was 200 meters away, but the
bee would be at half volume when the listener was 4 centimeters away.

The default minimum distance for a sound buffer,
DS3D_DEFAULTMINDISTANCE, is currently defined as 1 unit. Unless you change

in.doc – page 31

this value, the sound will be only half as loud when it is 2 meters away from the user,
a quarter as loud at 4 meters, and so on. For most sounds you will probably want to
set a larger minimum distance.

The maximum distance for a sound source is the distance beyond which the sound
does not get any quieter. The default maximum distance for a DirectSound 3-D buffer
(DS3D_DEFAULTMAXDISTANCE) is a huge number, meaning that in most cases
the attenuation will continue to be calculated even when the sound ceases to be
audible. In order to avoid unnecessary processing, applications should set a
reasonable maximum distance and include the
DSBCAPS_MUTE3DATMAXDISTANCE flag when creating the buffer.

The maximum distance can also be used to prevent a sound from becoming inaudible.
For example, if you have set the minimum distance for a sound at 100 meters, that
sound might become effectively inaudible at 1,000 meters or less. By setting the
maximum distance at 800 meters you would ensure that the sound always had at least
one-eighth of its maximum volume regardless of the distance. In this case, of course,
you would not set the DSBCAPS_MUTE3DATMAXDISTANCE flag.

The following illustration shows the concepts of minimum and maximum distance.

Meters 200 400 600 800 1000

Bee's
minimum
distance
2CM

Airplane's
minimum
distance
100M

Bee's
maximum
distance
10M

Airplane's
maximum
distance
1000M

Vo
lu

m
e

An application sets and retrieves the minimum distance value by using the
IDirectSound3DBuffer::SetMinDistance and
IDirectSound3DBuffer::GetMinDistance methods. Similarly, it can set and retrieve
the maximum distance value by using the IDirectSound3DBuffer::SetMaxDistance
and IDirectSound3DBuffer::GetMaxDistance methods.

By default, distance values are expressed in meters. See Distance Factor.

To adjust the effect of distance on volume for all sound buffers, you can change the
Rolloff Factor.

in.doc – page 32

Processing Mode
[This is preliminary documentation and subject to change.]

Sound buffers have three processing modes: normal, head-relative, and disabled.

In normal mode, the sound source is positioned and oriented absolutely in world
space. This is the default mode.

In head-relative mode, the buffer is automatically repositioned in world space as the
listener moves and turns. Values set and retrieved through methods such as
IDirectSound3DBuffer::SetPosition, IDirectSound3DBuffer::SetVelocity, and
IDirectSound3DBuffer::GetConeOrientation are all relative to the current position,
velocity, and orientation of the listener.

In disabled mode, 3-D sound processing is disabled and the sound seems to originate
from the center of the listener's head.

An application sets the mode for a 3-D sound buffer by using the
IDirectSound3DBuffer::SetMode method.

Buffer Position and Velocity
[This is preliminary documentation and subject to change.]

An application can set and retrieve a sound source's position in 3-D space by using
the IDirectSound3DBuffer::SetPosition and IDirectSound3DBuffer::GetPosition
methods. A position is expressed as a vector, relative to either world space or the
listener, depending on the processing mode.

To set or retrieve the velocity value that DirectSound uses to calculate Doppler-shift
effects for a listener, you use the IDirectSound3DBuffer::SetVelocity and
IDirectSound3DBuffer::GetVelocity methods. Velocity is measured in distance
units per second—by default, meters per second.

Note that velocity is completely independent of the actual position or movement of a
buffer. It is entirely up to the application to set the appropriate velocity for a buffer.

Sound Cones
[This is preliminary documentation and subject to change.]

A sound with no orientation is a point source; the amplitude of the sound at a given
distance is the same in all directions. A sound with an orientation is a sound cone.

In DirectSound, sound cones are made up of an inside cone and an outside cone.
Within the inside cone, the volume of the sound is just what it would be if there were
no cone; in other words, there is no attenuation from the normal volume. (Of course,
normal volume is not necessarily maximum volume. It has already been modified by
the basic volume of the buffer — as set by the IDirectSoundBuffer::SetVolume
method — as well as by the distance from the listener, the listener's orientation, the

in.doc – page 33

rolloff factor, and the buffer's minimum distance value.) Outside the outside cone, the
normal volume is attenuated by a specified number of decibels, as set by the
application. The angle between the inside and outside cones is a zone of transition
from the inside volume to the outside volume.

The following illustration shows the concept of sound cones.

Distance

Sound
source

Inside cone
Outside cone

Inside volume

Volume = inside volume +
specified outside volume

Transitional volume

Technically, any 3-D sound buffer in DirectSound is a sound cone, but by default a
buffer behaves like an omnidirectional sound source, because the outside volume is 0
(that is, there is no attenuation), and the inside and outside cone angles are 360
degrees. Until the application changes these values, the sound will not have any
apparent orientation.

Designing sound cones properly can add dramatic effects to your application. For
example, you could position a sound source in the center of a room, setting its
orientation toward an open door in a hallway. Then set the angle of the inside cone so
that it extends to the width of the doorway, make the outside cone a bit wider, and set
the outside cone volume to inaudible. A listener moving along the hallway will begin
to hear the sound when near the doorway, and the sound will be loudest as the listener
passes in front of the open door.

An application sets or retrieves the angles that define sound cones by using the
IDirectSound3DBuffer::SetConeAngles and
IDirectSound3DBuffer::GetConeAngles methods. The outside cone angle must
always be equal to or greater than the inside cone angle.

To set or retrieve the orientation of sound cones, an application can use the
IDirectSound3DBuffer::SetConeOrientation and
IDirectSound3DBuffer::GetConeOrientation methods.

in.doc – page 34

An application sets and retrieves the outside cone volume by using the
IDirectSound3DBuffer::SetConeOutsideVolume and
IDirectSound3DBuffer::GetConeOutsideVolume methods. The outside cone
volume is expressed in hundredths of decibels and is a negative value, because it
represents attenuation from the default volume of 0.

DirectSound 3-D Listeners
[This is preliminary documentation and subject to change.]

A sound is only a sound when it is heard. The 3-D sound effects in a DirectSound
application are affected not only by the position, orientation, and velocity of the
sound buffer, but also by the position, orientation, and velocity of the listener.

The IDirectSound3DListener interface controls the listener's position, orientation,
and apparent velocity in 3-D space. It also controls the general parameters of the
acoustic environment, such as the amount of Doppler shift and the rate of volume
attenuation over distance.

This section describes how your application can obtain a pointer to an
IDirectSound3DListener interface and manage listener parameters by using
interface methods. The following topics are discussed:

· Obtaining the IDirectSound3DListener Interface

· Batch Parameters for IDirectSound3DListener

· Deferred Settings

· Distance Factor

· Listener Orientation

· Listener Position and Velocity

· Doppler Factor

· Rolloff Factor

Obtaining the IDirectSound3DListener
Interface

[This is preliminary documentation and subject to change.]

To obtain a pointer to an IDirectSound3DListener interface, you must first create a
primary 3-D sound buffer. Do this by using the IDirectSound::CreateSoundBuffer
method, specifying the DSBCAPS_CTRL3D and DSBCAPS_PRIMARYBUFFER
flags in the dwFlags member of the accompanying DSBUFFERDESC structure.
Then, use the IDirectSoundBuffer::QueryInterface method on the resulting buffer
to obtain a pointer to an IDirectSound3DListener interface for that buffer, as shown
in the following example with C++ syntax:

/* In this example, it is assumed that lpds is a valid

in.doc – page 35

 pointer to a DirectSound object */

DSBUFFERDESC dsbd;

LPDIRECTSOUNDBUFFER lpdsbPrimary;

ZeroMemory(&dsbd, sizeof(DSBUFFERDESC));

dsbd.dwSize = sizeof(DSBUFFERDESC);

dsbd.dwFlags = DSBCAPS_CTRL3D | DSBCAPS_PRIMARYBUFFER;

if SUCCEEDED(lpds->CreateSoundBuffer(&dsbd, &lpdsbPrimary, NULL))

{

 // Get listener interface

 if FAILED(lpdsbPrimary->QueryInterface(IID_IDirectSound3DListener,

 (LPVOID *)&lp3DListener))

 {

 lpdsbPrimary->Release();

 }

}

Batch Parameters for IDirectSound3DListener
[This is preliminary documentation and subject to change.]

Applications can retrieve or set a 3-D listener object's parameters individually or in
batches. To set individual values, your application can use the applicable
IDirectSound3DListener interface method. However, applications often must set or
retrieve all the values that describe the listener at once. An application can perform
these batch parameter manipulations in a single call by using the
IDirectSound3DListener::GetAllParameters and
IDirectSound3DListener::SetAllParameters methods.

Deferred Settings
[This is preliminary documentation and subject to change.]

Every change to 3-D sound buffer and listener settings causes DirectSound to remix,
at the expense of CPU cycles. To minimize the performance impact of changing 3-D
settings, use the DS3D_DEFERRED flag in the dwApply parameter of any of the
IDirectSound3DListener or IDirectSound3DBuffer methods that change 3-D
settings. Then call the IDirectSound3DListener::CommitDeferredSettings method
to execute all of the deferred commands at once.

Note
Any deferred settings are overwritten if your application calls the same setting
method with the DS3D_IMMEDIATE flag before it calls
CommitDeferredSettings. For example, if you set the listener velocity to (1.0,
0.0, 0.0) with the DS3D_DEFERRED flag and then set it to (2.0, 0.0, 0.0) with

in.doc – page 36

the DS3D_IMMEDIATE flag, the velocity will be (2.0, 0.0, 0.0). Then, if your
application calls the CommitDeferredSettings method, the velocity will not
change.

Distance Factor
[This is preliminary documentation and subject to change.]

DirectSound uses meters as the default unit of distance measurements. If your
application does not use meters, it can set a distance factor, which is the number of
meters in a vector unit.

After you have set the distance factor for a listener, use your application's own
distance units in calls to any methods that apply to that listener. Suppose, for
example, that the basic unit of measurement in your application is the foot. You call
the IDirectSound3DListener::SetDistanceFactor method, specifying 0.3048 as the
flDistanceFactor parameter. (This value is the number of meters in a foot.) From then
on, you continue using feet in parameters to method calls, and they are automatically
converted to meters.

You can retrieve the current distance factor set for a listener by using the
IDirectSound3DListener::GetDistanceFactor method.

The distance factor mainly affects Doppler shift (by changing the actual velocity
represented by n units per second). It does not directly affect rolloff, because the rate
of attenuation over distance is based on the minimum distance in units. If you set the
minimum distance for a given sound at 2 units, the volume will be halved at a
distance of 4 units, whether those units are in feet, meters, or any other measure. For
more information, see Minimum and Maximum Distances.

Listener Orientation
[This is preliminary documentation and subject to change.]

Listener orientation is defined by the relationship between two vectors that share an
origin at the center of the listener's head: the top and front vectors. The top vector
points straight up through the top of the head, and the front vector points forward
through the listener's face at right angles to the top vector, as in the following
illustration.

in.doc – page 37

An application can set and retrieve the listener's orientation by using the
IDirectSound3DListener::SetOrientation and
IDirectSound3DListener::GetOrientation methods. By default, the front vector is
(0, 0, 1.0), and the top vector is (0, 1.0, 0).

The two vectors must always be at right angles to one another. If necessary,
DirectSound will adjust the front vector so that it is at right angles to the top vector.

Listener Position and Velocity
[This is preliminary documentation and subject to change.]

An application can set and retrieve a listener's position in 3-D space by using the
IDirectSound3DListener::SetPosition and IDirectSound3DListener::GetPosition
methods.

To set or retrieve the velocity value that DirectSound uses to calculate Doppler-shift
effects for a listener, use the IDirectSound3DListener::SetVelocity and
IDirectSound3DListener::GetVelocity methods. Velocity is measured in distance
units per second—by default, meters per second.

As with buffers, a listener's position and its velocity are completely independent. It is
entirely up to the application to set an appropriate velocity for the listener.

Doppler Factor
[This is preliminary documentation and subject to change.]

DirectSound automatically creates Doppler shift effects for any buffer or listener that
has a velocity. Effects are cumulative: if the listener and the sound buffer are both
moving, the system automatically calculates the relative velocity and adjusts the
Doppler effect accordingly.

In order to have realistic Doppler shift effects in your application, you must calculate
the speed of any object that is moving and set the appropriate velocity for that sound

in.doc – page 38

source or listener. You are free to exaggerate or lessen this value in a particular case
in order to create special effects. You can also globally increase or decrease Doppler
shift by changing the Doppler factor.

The Doppler factor can range from DS3D_MINDOPPLERFACTOR to
DS3D_MAXDOPPLERFACTOR, currently defined in Dsound.h as 0.0 and 10.0
respectively. A value of 0 means no Doppler shift is applied to a sound. Every other
value represents a multiple of the real-world Doppler shift. In other words, a value of
1 (or DS3D_DEFAULTDOPPLERFACTOR) means the Doppler shift that would be
experienced in the real world is applied to the sound; a value of 2 means twice the
real-world Doppler shift; and so on.

The Doppler factor can be set and retrieved by using the
IDirectSound3DListener::SetDopplerFactor and
IDirectSound3DListener::GetDopplerFactor methods.

Rolloff Factor
[This is preliminary documentation and subject to change.]

Rolloff is the amount of attenuation that is applied to sounds, based on the listener's
distance from the sound source. DirectSound can ignore rolloff, exaggerate it, or give
it the same effect as in the real world, depending on a variable called the rolloff
factor.

The rolloff factor can range from DS3D_MINROLLOFFFACTOR to
DS3D_MAXROLLOFFFACTOR, currently defined in Dsound.h as 0.0 and 10.0
respectively. A value of DS3D_MINROLLOFFFACTOR means no rolloff is applied
to a sound. Every other value represents a multiple of the real-world rolloff. In other
words, a value of 1 (DS3D_DEFAULTROLLOFFFACTOR) means the rolloff that
would be experienced in the real world is applied to the sound; a value of 2 means
twice the real-world rolloff, and so on.

You set and retrieve the rolloff factor by using the
IDirectSound3DListener::SetRolloffFactor and
IDirectSound3DListener::GetRolloffFactor methods.

To change the rolloff for an individual sound buffer, you can set the minimum
distance for the buffer. For more information, see Minimum and Maximum
Distances.

DirectSoundCapture
[This is preliminary documentation and subject to change.]

DirectSoundCapture provides an interface for capturing digital audio data from an
input source. To use it you must create an instance of the IDirectSoundCapture
interface, then use its methods to create a single capture buffer. The actual capturing
is done with the methods of the buffer object.

in.doc – page 39

This section covers the following topics:

· Enumeration of Capture Devices

· Creating the DirectSoundCapture Object

· Capture Device Capabilities

· Creating a Capture Buffer

· Capture Buffer Information

· Capture Buffer Notification

· Capturing Sounds

Enumeration of Capture Devices
[This is preliminary documentation and subject to change.]

For an application that is simply going to capture sounds through the user's preferred
capture device, you don't need to enumerate the available devices. When you create
the DirectSoundCapture object with NULL as the device identifier, the interface will
automatically be associated with the default device if one is present. (If no device
driver is present, the call to the DirectSoundCaptureCreate function fails.)

However, if you are looking for a particular kind of device or wish to offer the user a
choice of devices, you must enumerate the devices available on the system.

Enumeration serves three purposes:

· Reports what hardware is available

· Supplies a GUID for each device

· Allows you to initialize DirectSoundCapture for each device as it is enumerated,
so that you can check the capabilities of the device

To enumerate devices you must first set up a callback function that will be called each
time DirectSound finds a device. You can do anything you want within this function,
and you can give it any name, but you must declare it in the same form as
DSEnumCallback, a prototype in this documentation. The callback function must
return TRUE if enumeration is to continue, or FALSE otherwise (for instance, after
finding a device with the capabilities you need).

For a sample callback function, see Enumeration of Sound Devices. Note that a GUID
for each device is obtained as one of the parameters to this function.

The enumeration is set in motion by using the DirectSoundCaptureEnumerate
function:

DWORD pv; // Any 32-bit value.

HRESULT hr = DirectSoundCaptureEnumerate(

 (LPDSENUMCALLBACK)DSEnumProc,

 &pv)

in.doc – page 40

Creating the DirectSoundCapture Object
[This is preliminary documentation and subject to change.]

You create the DirectSoundCapture object by calling the
DirectSoundCaptureCreate function, which returns a pointer to an
IDirectSoundCapture COM interface.

The lpGUID parameter to DirectSoundCaptureCreate can be a GUID obtained by
enumeration, or it can be NULL for the preferred capture device. In most cases you
will pass NULL.

You can also use the CoCreateInstance function to create the object. The procedure
is similar to that for the DirectSound object; see Creating the DirectSound Object. If
you use CoCreateInstance, then the object is created for the default capture device
selected by the user on the multimedia control panel.

If you want DirectSound and DirectSoundCapture objects to coexist, then you should
create and initialize the DirectSound object before creating and initializing the
DirectSoundCapture object.

Some audio devices aren't configured for full duplex audio by default. If you have
problems with creating and initializing both a DirectSound object and a
DirectSoundCapture object, you should check your audio device to ensure that two
DMA channels are enabled.

Capture Device Capabilities
[This is preliminary documentation and subject to change.]

To retrieve the capabilities of a capture device, call the
IDirectSoundCapture::GetCaps method. The parameter to this method is a pointer
to the DSCCAPS structure. As with other such structures, you have to initialize the
dwSize member before passing it.

On return, the structure contains the number of channels the device supports as well
as a combination of values for supported formats, equivalent to the values in the
WAVEINCAPS structure used in the Win32 waveform audio functions.

Creating a Capture Buffer
[This is preliminary documentation and subject to change.]

You create a capture buffer by calling the
IDirectSoundCapture::CreateCaptureBuffer method of the DirectSoundCapture
object.

One of the parameters to the method is a DSCBUFFERDESC structure that
describes the characteristics of the desired buffer. The last member of this structure is

in.doc – page 41

a WAVEFORMATEX structure, which must be initialized with the details of the
desired wave format. For more information on this structure, see Sound Data.

Note that if your application is using DirectSound as well as DirectSoundCapture,
capture buffer creation can fail when the format of the capture buffer is not the same
as that of the primary buffer. The reason is that some cards have only a single clock
and cannot support capture and playback at two different frequencies.

The following example sets up a capture buffer that will hold 1 second of data:

/* In this example it is assumed that pDSC is a valid pointer to

 a DirectSoundCapture object. */

DSCBUFFERDESC dscbd;

LPDIRECTSOUNDCAPTUREBUFFER pDSCB;

WAVEFORMATEX wfx =

 {WAVE_FORMAT_PCM, 2, 44100, 176400, 4, 16, 0};

 // wFormatTag, nChannels, nSamplesPerSec, mAvgBytesPerSec,

 // nBlockAlign, wBitsPerSample, cbSize

dscbd.dwSize = sizeof(DSCBUFFERDESC);

dscbd.dwFlags = 0;

dscbd.dwBufferBytes = wfx.nAvgBytesPerSec;

dscbd.dwReserved = 0;

dscbd.lpwfxFormat = &wfx;

pDSCB = NULL;

HRESULT hr = pDSC->CreateCaptureBuffer(&dscbd,

 &pDSCB, NULL);

Capture Buffer Information
[This is preliminary documentation and subject to change.]

Use the IDirectSoundCaptureBuffer::GetCaps method to retrieve the size of a
capture buffer. Be sure to initialize the dwSize member of the DSCBCAPS structure
before passing it as a parameter.You can also retrieve information about the format of
the data in the buffer, as set when the buffer was created. Call the
IDirectSoundCaptureBuffer::GetFormat method, which returns the format
information in a WAVEFORMATEX structure. For more information on this
structure, see Sound Data.

Note that your application can allow for extra format information in the
WAVEFORMATEX structure by first calling the GetFormat method with NULL as
the lpwfxFormat parameter. In this case the DWORD pointed to by the
lpdwSizeWritten parameter will receive the size of the structure needed to receive
complete format information.

in.doc – page 42

To find out what a capture buffer is currently doing, call the
IDirectSoundCaptureBuffer::GetStatus method. This method fills a DWORD
variable with a combination of flags that indicate whether the buffer is busy
capturing, and if so, whether it is looping; that is, whether the
DSCBSTART_LOOPING flag was set in the last call to
IDirectSoundCaptureBuffer::Start.

Finally, the IDirectSoundCaptureBuffer::GetCurrentPosition method returns the
current read and capture positions within the buffer. The read position is the end of
the data that has been captured into the buffer at this point. The capture position is the
end of the block of data that is currently being copied from the hardware. You can
safely copy data from the buffer only up to the read position.

Capture Buffer Notification
[This is preliminary documentation and subject to change.]

You may want your application to be notified when the current read position reaches
a certain point in the buffer, or when it reaches the end. The current read position is
the point up to which it is safe to read data from the buffer. With the
IDirectSoundNotify::SetNotificationPositions method you can set any number of
points within the buffer where events are to be signaled.

First you have to obtain a pointer to the IDirectSoundNotify interface. You can do
this with the capture buffer's QueryInterface method, as shown in the example under
Play Buffer Notification.

Next create an event object with the Win32 CreateEvent function. You put the
handle to this event in the hEventNotify member of a DSBPOSITIONNOTIFY
structure, and in the dwOffset member of that structure you specify the offset within
the buffer where you want the event to be signaled. Then you pass the address of the
structure — or array of structures, if you want to set more than one notification
position — to the IDirectSoundNotify::SetNotificationPositions method.

The following example sets up three notification positions in a one-second buffer.
One event will be signaled when the read position nears the halfway point in the
buffer, another will be signaled when it nears the end of the buffer, and the third will
be signaled when capture stops.

#define cEvents 3

/* In this example it is assumed that the following variables have

 been properly initialized, and that wfx was included in the buffer

 description when the buffer was created.

 LPDIRECTSOUNDNOTIFY lpDsNotify;

 WAVEFORMATEX wfx;

*/

HANDLE rghEvent[cEvents] = {0};

in.doc – page 43

DSBPOSITIONNOTIFY rgdsbpn[cEvents];

HRESULT hr;

int i;

// Create the events

for (i = 0; i < cEvents; ++i)

{

 rghEvent[i] = CreateEvent(NULL, TRUE, FALSE, NULL);

 if (NULL == rghEvent[i])

 {

 hr = GetLastError();

 goto Error;

 }

}

// Describe notifications.

rgdsbpn[0].dwOffset = (wfx.nAvgBytesPerSec/2) -1;

rgdsbpn[0].hEventNotify = rghEvent[0];

rgdsbpn[1].dwOffset = wfx.nAvgBytesPerSec - 1;

rgdsbpn[1].hEventNotify = rghEvent[1];

rgdsbpn[2].dwOffset = DSBPN_OFFSETSTOP;

rgdsbpn[2].hEventNotify = rghEvent[2];

// Create notifications.

hr = lpDsNotify->SetNotificationPositions(cEvents, rgdsbpn);

Capturing Sounds
[This is preliminary documentation and subject to change.]

Capturing a sound consists of the following steps:

1. Start the buffer by calling the IDirectSoundCaptureBuffer::Start method.
Audio data from the input device begins filling the buffer from the beginning.

2. Wait until the desired amount of data is available. For one method of determining
when the capture position reaches a certain point, see Capture Buffer
Notification.

3. When sufficient data is available, lock a portion of the capture buffer by calling
the IDirectSoundCaptureBuffer::Lock method.

To make sure you are not attempting to lock a portion of memory that is about to
be used for capture, you can first obtain the current read position by calling

in.doc – page 44

IDirectSoundCaptureBuffer::GetCurrentPosition. For an explanation of the
read position, see Capture Buffer Information.

As parameters to the Lock method, you pass the size and offset of the block of
memory you want to read. The method returns a pointer to the address where the
memory block begins, and the size of the block. If the block wraps around from
the end of the buffer to the beginning, two pointers are returned, one for each
section of the block. The second pointer is NULL if the locked portion of the
buffer does not wrap around.

4. Copy the data from the buffer, using the addresses and block sizes returned by
the Lock method.

5. Unlock the buffer with the IDirectSoundCaptureBuffer::Unlock method.

6. Repeat steps 2 to 5 until you are ready to stop capturing data. Then call the
IDirectSoundCaptureBuffer::Stop method.

Normally the buffer stops capturing automatically when the capture position reaches
the end of the buffer. However, if the DSCBSTART_LOOPING flag was set in the
dwFlags parameter to the IDirectSoundCaptureBuffer::Start method, the capture
will continue until the application calls the IDirectSoundCaptureBuffer::Stop
method.

DirectSound Property Sets
[This is preliminary documentation and subject to change.]

Through the IKsPropertySet interface, DirectSound is able to support extended
services offered by sound cards and their associated drivers.

Properties are arranged in sets. A GUID identifies a set, and a ULONG identifies a
particular property within the set. For example, a hardware vendor might design a
card capable of reverberation effects and define a property set
DSPROPSETID_ReverbProps containing properties such as
DSPROPERTY_REVERBPROPS_HALL and
DSPROPERTY_REVERBPROPS_STADIUM.

Typically, the property identifiers are defined using a C language enumeration
starting at ordinal zero.

Individual properties may also have associated parameters. The IKsPropertySet
interface specification intentionally leaves these parameters undefined, allowing the
designer of the property set to use them in a way most beneficial to the properties
within the set being designed. The precise meaning of the parameters is defined with
the definition of the properties.

To make use of extended properties on sound cards, you must first determine whether
the driver supports the IKsPropertySet interface, and obtain a pointer to the interface
if it is supported. You can do this by calling the QueryInterface method of an
existing interface on a DirectSound3DBuffer object.

HRESULT hr = lpDirectSound3DBuffer->QueryInterface(

in.doc – page 45

 IID_IKsPropertySet,

 (void**)&lpKsPropertySet));

In the example, lpDirectSound3DBuffer is a pointer to the buffer's interface and
lpKsPropertySet receives the address of the IKsPropertySet interface if one is found.
IID_IKsPropertySet is a GUID defined in Dsound.h.

The call will succeed only if the buffer is hardware-accelerated and the underlying
driver supports property sets. If it does succeed, you can now look for a particular
property using the IKsPropertySet::QuerySupported method. The value of the
PropertySetId parameter is a GUID defined by the hardware vendor.

Once you've determined that support for a particular property exists, you can change
the state of the property by using the IKsPropertySet::Set method and determine its
present state by using the IKsPropertySet::Get method. The state of the property is
set or returned in the pPropertyData parameter.

Additional property parameters may also be passed to the object in a structure pointed
to by the pPropertyParams parameter to the IKsPropertySet::Set method. The exact
way in which this parameter is to be used is defined in the hardware vendor's
specifications for the property set, but typically it would be used to define the instance
of the property set. In practice, the pPropertyParams parameter is rarely used.

Let's take a somewhat whimsical example. Suppose a sound card has the ability to
play a set of songs in the voices of several famous tenors. The driver developer
creates a property set, DSPROPSETID_Song, containing properties like
DSPROPERTY_SONG_IRISH_EYES and DSPROPERTY_SONG_O_SOLE_MIO.
The property set applies to all of the tenors, and the driver developer has specified
that pPropertyParams defines the tenor instance. Now you, the application developer,
want to make Caruso sing one of the songs:

/* It is assumed that the hardware vendor has also defined

 CARUSO and START in a header file. */

DWORD dwTenor = CARUSO;

BOOL StartOrStop = START;

HRESULT hr = lpKsPropertySet->Set(

 DSPROPSETID_Song,

 DSPROPERTY_SONG_IRISH_EYES,

 &dwTenor,

 sizeof(dwTenor),

 &StartOrStop,

 sizeof(StartOrStop));

Optimizing DirectSound Performance
[This is preliminary documentation and subject to change.]

in.doc – page 46

This section offers some miscellaneous tips for improving the performance of
DirectSound. The following topics are covered:

· Matching Buffer Formats

· Playing the Primary Buffer Continuously

· Using Hardware Mixing

· Minimizing Control Changes

· CPU Considerations for 3-D Buffers

Matching Buffer Formats
[This is preliminary documentation and subject to change.]

The DirectSound mixer converts the data from each secondary buffer into the format
of the primary buffer. This conversion is done on the fly as data is mixed into the
primary buffer, and costs CPU cycles. You can eliminate this overhead by ensuring
that your secondary buffers and primary buffer have the same format. Normally this
means setting the primary buffer format to the format of the wave files used for data.

Because of the way DirectSound does format conversion, you only need to match the
sample rate and number of channels. It doesn't matter if there is a difference in sample
size (8-bit or 16-bit).

Playing the Primary Buffer Continuously
[This is preliminary documentation and subject to change.]

When there are no sounds playing, DirectSound stops the mixer engine and halts
DMA (direct memory access) activity. If your application has frequent short intervals
of silence, the overhead of starting and stopping the mixer each time a sound is
played may be worse than the DMA overhead if you kept the mixer active. Also,
some sound hardware or drivers may produce unwanted audible artifacts from
frequent starting and stopping of playback. If your application is playing audio almost
continuously with only short breaks of silence, you can force the mixer engine to
remain active by calling the IDirectSoundBuffer::Play method for the primary
buffer. The mixer will continue to run silently.

To resume the default behavior of stopping the mixer engine when there are no
sounds playing, call the IDirectSoundBuffer::Stop method for the primary buffer.

For more information, see Access to the Primary Buffer

Using Hardware Mixing
[This is preliminary documentation and subject to change.]

in.doc – page 47

Most sound cards support some level of hardware mixing if there is a DirectSound
driver for the card. The following tips will allow you to make the most of hardware
mixing:

· Use static buffers for sounds that you want to be mixed in hardware. DirectSound
will attempt to use hardware mixing on static buffers.

· Create sound buffers first for the sounds you use the most. There is a limit to the
number of buffers that can be mixed by hardware.

· At run time, use the IDirectSound::GetCaps method to determine what formats
are supported by the sound-accelerator hardware and use only those formats if
possible.

· To create a static buffer, specify the DSBCAPS_STATIC flag in the dwFlags
member of the DSBUFFERDESC structure when you create a secondary buffer.
You can also specify the DSBCAPS_LOCHARDWARE flag to force hardware
mixing for a buffer, however, if you do this and resources for hardware mixing
are not available, the IDirectSound::CreateSoundBuffer method will fail.

Minimizing Control Changes
[This is preliminary documentation and subject to change.]

Performance is affected when you change the pan, volume, or frequency on a
secondary buffer. To prevent interruptions in sound output, the DirectSound mixer
must mix ahead from 20 to 100 or more milliseconds. Whenever you make a control
change, the mixer has to flush its mix-ahead buffer and remix with the changed
sound.

It's a good idea to minimize the number of control changes you send. Try reducing the
frequency of calls to routines that use the IDirectSoundBuffer::SetVolume,
IDirectSoundBuffer::SetPan, and IDirectSoundBuffer::SetFrequency methods.
For example, if you have a routine that moves a sound from the left to the right
speaker in synchronization with animation frames, try calling the SetPan method
only every second or third frame.

Note
3-D control changes (orientation, position, velocity, Doppler factor, and so on)
also cause DirectSound to remix its mix-ahead buffer. However, you can group a
number of 3-D control changes together and cause only a single remix. See
Deferred Settings.

CPU Considerations for 3-D Buffers
[This is preliminary documentation and subject to change.]

Software-emulated 3-D buffers are computationally expensive. For example, each
buffer can consume about 6 percent of the processing time of a Pentium 90. You

in.doc – page 48

should take this into consideration when deciding when and how to use 3-D buffers in
your applications.

Use as few 3-D sounds as you can, and don't use 3-D on sounds that won't really
benefit from the effect. Design your application so that it's easy to enable and disable
3-D effects on each sound. You can call the IDirectSound3DBuffer::SetMode
method with the DS3DMODE_DISABLE flag to disable 3-D processing on any 3-D
sound buffer.

DirectSound provides a means for hardware manufacturers to provide acceleration of
3-D audio buffers. On these audio cards the host CPU consumption will not be a
consideration.

Using Wave Files
[This is preliminary documentation and subject to change.]

The DirectSound and DirectSoundCapture APIs do not include methods for handling
wave files. However, the source code for several of the sample applications includes a
handy file, Wave.c, which contains functions for opening and creating a wave file,
reading and writer the file headers, and streaming data to or from the file.

Wave files are in the Resource Interchange File Format (RIFF), which consists of a
variable number of "chunks" containing either header information (for example, the
wave format of sound samples) or data (the samples themselves). The Win32 API
supplies functions for opening and closing RIFF files, seeking chunks, and so on.
These functions, whose names all start with "mmio," are used by the wrapper
functions in the Wave.c file.

More information about using the wrapper functions is given in the following two
topics:

· Reading from a Wave File

· Writing to a Wave File

Reading from a Wave File
[This is preliminary documentation and subject to change.]

In order to use the wrapper functions in Wave.c, you must declare the following four
variables:

WAVEFORMATEX *pwfx; // Wave format info

HMMIO hmmio; // File handle

MMCKINFO mmckinfoData; // Chunk info

MMCKINFO mmckinfoParent; // Parent chunk info

The first step in reading a wave file is to call the WaveOpenFile function. This gets a
handle to the file, verifies that it is in RIFF format, and gets information about the

in.doc – page 49

wave format. The parameters are the filename and the addresses of three of the
variables you have declared:

if (WaveOpenFile(lpzFileName, &hmmio, &pwfx, &mmckinfoParent) != 0)

{

 // Failure

}

Note that the wrapper functions all return zero if successful.

The next step is to call the WaveStartDataRead function, causing the file pointer to
descend to the data chunk. This function also fills in the MMCKINFO structure for
the data chunk, so that you know how much data is available:

if (WaveStartDataRead(&hmmio, &mmckinfoData, &mmckinfoParent) != 0)

 {

 // Failure

 }

The application can now begin copying data from the file to a secondary sound
buffer. Normally you don't create the sound buffer until you have obtained the size of
the data chunk and the format of the wave. The following code creates a static buffer
just large enough to hold all the data in the file.

/* It is assumed that lpds in a valid pointer

 to the DirectSound object. */

LPDIRECTSOUNDBUFFER lpdsbStatic;

DSBUFFERDESC dsbdesc;

memset(&dsbdesc, 0, sizeof(DSBUFFERDESC));

dsbdesc.dwSize = sizeof(DSBUFFERDESC);

dsbdesc.dwFlags = DSBCAPS_STATIC;

dsbdesc.dwBufferBytes = mmckinfoData.cksize;

dsbdesc.lpwfxFormat = pwfx;

if FAILED(lpds->CreateSoundBuffer(&dsbdesc, &lpdsbStatic, NULL))

{

 WaveCloseReadFile(&hmmio, &pwfx);

 return FALSE;

}

Because in this case the application is not streaming the data but simply filling a static
buffer, the entire buffer is locked from the beginning. There is no wraparound, so
only a single pointer and byte count are required.

LPVOID lpvAudio1;

DWORD dwBytes1;

in.doc – page 50

if FAILED(lpdsbStatic->Lock(

 0, // Offset of lock start

 0, // Size of lock; ignored in this case

 &lpvAudio1, // Address of lock start

 &dwBytes1, // Number of bytes locked

 NULL, // Wraparound start; not used

 NULL, // Wraparound size; not used

 DSBLOCK_ENTIREBUFFER)) // Flag

{

 // Error handling

 WaveCloseReadFile(&hmmio, &pwfx);

 .

 .

 .

}

The WaveReadFile function in Wave.c copies the data from the file to the buffer
pointer and returns zero if successful.

UINT cbBytesRead;

if (WaveReadFile(

 hmmio, // file handle

 dwBytes1, // no. of bytes to read

 (BYTE *) lpvAudio1, // destination

 &mmckinfoData, // file chunk info

 &cbBytesRead)) // actual no. of bytes read

{

 // Handle failure on non-zero return

 WaveCloseReadFile(&hmmio, &pwfx);

 .

 .

 .

}

Finally, the application unlocks the buffer and closes the wave file:

lpdsbStatic->Unlock(lpvAudio1, dwBytes1, NULL, 0);

WaveCloseReadFile(&hmmio, &pwfx);

For a streaming buffer, you would typically call WaveReadFile at regular intervals
determined by the current play position. (See Play Buffer Notification.) If the locked
portion of the buffer wrapped around, of course, you would call WaveReadFile once
for each segment of the lock.

in.doc – page 51

Writing to a Wave File
[This is preliminary documentation and subject to change.]

To prepare for writing to a wave file, the application must first declare four variables
to be passed to the functions in Wave.c:

WAVEFORMATEX wfx; // Wave format info

HMMIO hmmio; // File handle

MMCKINFO mmckinfoData; // Chunk info

MMCKINFO mmckinfoParent; // Parent chunk (file) info

You must also initialize the WAVEFORMATEX structure with the format of the
capture buffer.

Now you call the WaveCreateFile function, passing in the desired filename and the
addresses of the global variables. The function creates the file and writes some header
information. Like other functions in Wave.c, WaveCreateFile returns zero if
successful.

if (WaveCreateFile(pszFileName, &hmmio, &wfx,

 &mmckinfoData, &mmckinfoParent))

{

 // Failure

}

Next, call the WaveStartDataWrite function, which initializes the data chunk.

if (WaveStartDataWrite(&hmmio, &mmckinfoData, &mmioinfo))

{

 // Failure

}

The file is now ready to receive data. The following fragment illustrates how data
might be copied from a capture buffer to a file.

/* It is assumed that the following variables contain

 valid assignments:

LPDIRECTSOUNDCAPTUREBUFFER lpdscb; // Capture buffer

DSCBUFFERDESC dscbDesc; // Capture buffer description

DWORD dwReadCursor; // Internal cursor in buffer

DWORD dwNumBytes; // Bytes available

DWORD dwTotalBytesWritten; // Running total in file

*/

LPBYTE pbInput1, pbInput2; // Pointers to data in buffer

DWORD cbInput1, cbInput2; // Count of bytes in locked portion

UINT BytesWritten; // Count of bytes written to file

in.doc – page 52

if FAILED(hr = lpdscb->Lock(dwReadCursor, dwNumBytes,

 (LPVOID *)&pbInput1, &cbInput1,

 (LPVOID *)&pbInput2, &cbInput2, 0))

{

 // Failure

}

else

{

 if (WaveWriteFile(hmmio, cbInput1, pbInput1, &mmckinfoData,

 &dwBytesWritten, &mmioinfo))

 {

 // Failure

 }

 else dwTotalBytesWritten += BytesWritten;

 if (pbInput2 != NULL)

 {

 if (WaveWriteFile(hmmio, cbInput2, pbInput2, &mmckinfoData,

 &BytesWritten, &mmioinfo))

 {

 // Failure

 }

 else dwTotalBytesWritten += BytesWritten;

 }

 lpdscb->Unlock(pbInput1, cbInput1, pbInput2, cbInput2);

 // Increment internal cursor, compensating for wrap around

 dwReadCursor += dwNumBytes;

 while (dwReadCursor >= dscbDesc.dwBufferBytes)

 dwMyReadCursor -= dscbDesc.dwBufferBytes;

}

When you are finished capturing data, you close the file:

WaveCloseWriteFile(&hmmio, &mmckinfoData,

 &mmckinfoParent, &mmioinfo,

 dwTotalBytesWritten / (wfx.wBitsPerSample / 8));

The WaveCloseWriteFile function calculates the total number of samples in the file
and writes this number to the data chunk header.

Reading Wave Data from a Resource
[This is preliminary documentation and subject to change.]

in.doc – page 53

The DirectSound API does not include methods for reading a wave from a resource.
However, there are helper functions in Dsutil.c, which you will find in the
Sdk\Samples\Misc folder.

To store wave sounds in an executable or DLL, import your wave files as resources
and give them string names. Note that Dsutil.c expects these resources to be of type
"WAV." If you are using Microsoft® Visual C++®, imported wave files are turned
into resources of type "WAVE." You must either change this nomenclature to
"WAV" by editing the resource file, or else modify the assignment of c_szWAV in
Dsutil.c so that the FindResource function is looking for "WAVE" resources.

You may also want to modify Dsutil.c so that the DSLoadSoundBuffer function sets
only the appropriate control flags.

To create a static buffer and load the sound into it, simply pass the IDirectSound
interface pointer and the name of the resource to the DSLoadSoundBuffer function.
If successful, the function returns a pointer to the buffer. Here’s a sample call, where
lpds is the pointer to the IDirectSound interface:

#include "dsutil.h"

LPDIRECTSOUNDBUFFER lpdsbFootstep;

lpdsbFootstep = DSLoadSoundBuffer(lpds, "FOOTSTEP");

if (lpdsbFootstep == NULL)

{

 // Failure

}

DirectSound Tutorials
[This is preliminary documentation and subject to change.]

This section contains tutorials that provide step-by-step instructions for implementing
basic DirectSound functionality.

· Tutorial 1: Sound Playback

The first tutorial shows how to set up the DirectSound system, create a secondary
buffer, and play data from a wave file.

· Tutorial 2: Sound Capture

The second tutorial shows how to create a DirectSoundCapture object and a
capture buffer, and how to write data to a wave file.

Tutorial 1: Sound Playback
[This is preliminary documentation and subject to change.]

in.doc – page 54

This tutorial shows how to create a simple DirectSound application that will play a
wave file of any size.

The functions for opening, reading, and closing wave files are in Wave.c, a module
that is found with the DSShow3D sample application in the DirectX SDK. In order to
implement the techniques shown in the tutorial, you must add Wave.c and Wave.h to
your project and link to Winmm.lib. You must also add Debug.c and Debug.h from
the same sample directory, or else edit the calls to the ASSERT macro in Wave.c to
call the standard assert function.

The method calls in this tutorial are made through the macros defined in Dsound.h,
which are valid for both C and C++.

The tutorial is broken down into the following steps:

· Step 1: Setting Up DirectSound

· Step 2: Opening the Wave File

· Step 3: Creating the Secondary Buffer

· Step 4: Setting Up Play Notification

· Step 5: Handling the Play Notifications

· Step 6: Streaming Data from the Wave File

· Step 7: Shutting Down DirectSound

Step 1: Setting Up DirectSound
[This is preliminary documentation and subject to change.]

The tutorial requires the following definitions and global variables:

#define NUMEVENTS 2

LPDIRECTSOUND lpds;

DSBUFFERDESC dsbdesc;

LPDIRECTSOUNDBUFFER lpdsb;

LPDIRECTSOUNDBUFFER lpdsbPrimary;

LPDIRECTSOUNDNOTIFY lpdsNotify;

WAVEFORMATEX *pwfx;

HMMIO hmmio;

MMCKINFO mmckinfoData, mmckinfoParent;

DSBPOSITIONNOTIFY rgdsbpn[NUMEVENTS];

HANDLE rghEvent[NUMEVENTS];

The first step is to create the DirectSound object, establish a cooperative level, and set
the primary buffer format. All this is done in the InitDSound function shown in the
following code.

The function takes two parameters: the main window handle and a pointer to the
GUID of the sound device. In most cases you will pass NULL as the second

in.doc – page 55

parameter, indicating the default device, but you may obtain a GUID by device
enumeration.

BOOL InitDSound(HWND hwnd, GUID *pguid)

{

 // Create DirectSound

 if FAILED(DirectSoundCreate(pguid, &lpds, NULL))

 return FALSE;

 // Set co-op level

 if FAILED(IDirectSound_SetCooperativeLevel(

 lpds, hwnd, DSSCL_PRIORITY))

 return FALSE;

You have set the priority cooperative level in order to be able to set the format of the
primary buffer. If you don't change the default format, output will be in the 8-bit, 22
kHz format regardless of the format of the input. Setting the primary buffer to a
higher format can do no harm, because even if the secondary buffers are in a lower
format, the samples will be converted automatically by DirectSound. Note also that
there's no danger of the call to IDirectSoundBuffer::SetFormat failing because the
hardware doesn't support the higher format. DirectSound will simply set the closest
available format.

To set the format of the primary buffer, you first describe it in the global
DSBUFFERDESC structure, then pass this description to the
IDirectSound::CreateSoundBuffer method.

 // Obtain primary buffer

 ZeroMemory(&dsbdesc, sizeof(DSBUFFERDESC));

 dsbdesc.dwSize = sizeof(DSBUFFERDESC);

 dsbdesc.dwFlags = DSBCAPS_PRIMARYBUFFER;

 if FAILED(lpds->CreateSoundBuffer(&dsbdesc, &lpdsbPrimary, NULL))

 return FALSE;

Once you have a primary buffer object, you describe the desired wave format and
pass the description to the IDirectSoundBuffer::SetFormat method:

 // Set primary buffer format

 WAVEFORMATEX wfx;

 memset(&wfx, 0, sizeof(WAVEFORMATEX));

 wfx.wFormatTag = WAVE_FORMAT_PCM;

 wfx.nChannels = 2;

 wfx.nSamplesPerSec = 44100;

 wfx.wBitsPerSample = 16;

in.doc – page 56

 wfx.nBlockAlign = wfx.wBitsPerSample / 8 * wfx.nChannels;

 wfx.nAvgBytesPerSec = wfx.nSamplesPerSec * wfx.nBlockAlign;

 hr = lpdsbPrimary->SetFormat(&wfx);

 return TRUE;

} // InitDSound()

Step 2: Opening the Wave File
[This is preliminary documentation and subject to change.]

The sample program is a general-purpose wave-file reader that does not expect sound
data in a particular format. That being the case, it's necessary to put off creating the
secondary sound buffer until the format of the data is known.

The steps in opening the file and creating the secondary buffer are grouped in the
SetupStreamBuffer function. This function first performs any necessary cleanup from
the last time a sound was played:

BOOL SetupStreamBuffer(LPSTR lpzFileName)

{

 // Close any open file and release interfaces

 WaveCloseReadFile(&hmmio, &pwfx); // Function in Wave.c

 if (lpdsNotify != NULL)

 {

 lpdsNotify->Release();

 lpdsNotify = NULL;

 }

 if (lpdsb != NULL)

 {

 lpdsb->Release();

 lpdsb = NULL;

 }

The function now opens a wave file, gets the format, and advances the file pointer to
the beginning of the sound data. It does this by using two functions in Wave.c.

 if (WaveOpenFile(lpzFileName, &hmmio, &pwfx,

 &mmckinfoParent) != 0)

 return FALSE;

 if (WaveStartDataRead(&hmmio, &mmckinfoData,

 &mmckinfoParent) != 0)

 return FALSE;

in.doc – page 57

The WaveOpenFile function initializes three of the global variables declared at the
beginning of the tutorial: a file handle, a pointer to a WAVEFORMATEX structure,
and the MMCKINFO structure for the parent chunk (that is, information about the
file as a whole).

The file handle and chunk information are then passed to the WaveStartDataRead
function, which returns information about the data chunk in mmckinfoData. You
would be interested in this structure if you were creating a static buffer just big
enough to accommodate all the data bytes. In this tutorial, though, you're creating a
streaming buffer, so you don't need to know the size of the data chunk.

Step 3: Creating the Secondary Buffer
[This is preliminary documentation and subject to change.]

Still inside the SetupStreamBuffer function, you now create a secondary sound buffer
in the same format as the wave file. The process is similar for that you used in Step 1
to create a primary buffer. First you describe the buffer in the global
DSBUFFERDESC structure, then you pass this description to the
IDirectSound::CreateSoundBuffer method.

 memset(&dsbdesc, 0, sizeof(DSBUFFERDESC));

 dsbdesc.dwSize = sizeof(DSBUFFERDESC);

 dsbdesc.dwFlags =

 DSBCAPS_GETCURRENTPOSITION2 // Always a good idea

 | DSBCAPS_GLOBALFOCUS // Allows background playing

 | DSBCAPS_CTRLPOSITIONNOTIFY; // Needed for notification

 // The size of the buffer is arbitrary, but should be at least

 // two seconds, to keep data writes well ahead of the play

 // position.

 dsbdesc.dwBufferBytes = pwfx->nAvgBytesPerSec * 2;

 dsbdesc.lpwfxFormat = pwfx;

 if FAILED(IDirectSound_CreateSoundBuffer(

 lpds, &dsbdesc, &lpdsb, NULL))

 {

 WaveCloseReadFile(&hmmio, &pwfx);

 return FALSE;

 }

Step 4: Setting Up Play Notification
[This is preliminary documentation and subject to change.]

in.doc – page 58

Now that you've successfully created a streaming buffer, you ask to be notified
whenever the current play position reaches certain points in the buffer, so you'll know
when it's time to stream more data. In the example, those positions will be set at the
beginning and halfway mark of the buffer.

First you create the required number of events and store their handles in the rghEvent
array:

 for (int i = 0; i < NUMEVENTS; i++)

 {

 rghEvent[i] = CreateEvent(NULL, FALSE, FALSE, NULL);

 if (NULL == rghEvent[i]) return FALSE;

 }

Next, you initialize the array of DSBPOSITIONNOTIFY structures, each of which
associates a position in the buffer with an event handle:

 rgdsbpn[0].dwOffset = 0;

 rgdsbpn[0].hEventNotify = rghEvent[0];

 rgdsbpn[1].dwOffset = (dsbdesc.dwBufferBytes/2);

 rgdsbpn[1].hEventNotify = rghEvent[1];

Then you get the IDirectSoundNotify interface from the secondary buffer and pass
the DSBPOSITIONNOTIFY array to the SetNotificationPositions method:

 if FAILED(IDirectSoundBuffer_QueryInterface(lpdsb,

 IID_IDirectSoundNotify, (VOID **)&lpdsNotify))

 return FALSE;

 if FAILED(IDirectSoundNotify_SetNotificationPositions(

 lpdsNotify, NUMEVENTS, rgdsbpn))

 {

 IDirectSoundNotify_Release(lpdsNotify);

 return FALSE;

 }

That completes the setup of the streaming buffer. Because you've already opened the
wave file and are ready to start streaming data, you can set the buffer in motion here.
You want it to continue running till the complete sound has been played, so you set
the DSBPLAY_LOOPING flag.

 IDirectSoundBuffer_Play(lpdsb, 0, 0, DSBPLAY_LOOPING);

 return TRUE;

} // end of SetupStreamBuffer()

in.doc – page 59

Step 5: Handling the Play Notifications
[This is preliminary documentation and subject to change.]

Notifications are received in the form of signaled events in the message loop within
the WinMain function. The following fragment illustrates how the loop might be
written in order to intercept signaled events as well as standard messages:

BOOL Done = FALSE;

while (!Done)

{

 DWORD dwEvt = MsgWaitForMultipleObjects(

 NUMEVENTS, // How many possible events

 rghEvent, // Location of handles

 FALSE, // Wait for all?

 INFINITE, // How long to wait

 QS_ALLINPUT); // Any message is an event

 // WAIT_OBJECT_0 == 0 but is properly treated as an arbitrary

 // index value assigned to the first event, therefore we subtract

 // it from dwEvt to get the zero-based index of the event.

 dwEvt -= WAIT_OBJECT_0;

 // If the event was set by the buffer, there's input

 // to process.

 if (dwEvt < NUMEVENTS)

 {

 StreamToBuffer(dwEvt); // copy data to output stream

 }

 // If it's the last event, it's a message

 else if (dwEvt == NUMEVENTS)

 {

 while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

 {

 if (msg.message == WM_QUIT)

 {

 Done = TRUE;

 }

 else

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

in.doc – page 60

 }

 } // end message processing

} // while (!Done)

Step 6: Streaming Data from the Wave File
[This is preliminary documentation and subject to change.]

The purpose of the notifications you set up and handled in the previous two steps is to
alert you whenever half the data in the buffer has been played. As soon as the current
play position passes the beginning or halfway point of the buffer, you write data into
the segment of the buffer that has just been played. (When the buffer starts, you
immediately receive a notification and write to the second half of the buffer.) Because
the buffer holds 2 seconds' worth of data, your data write begins almost 1 second
ahead of the current play position, which should allow ample time for the process to
be completed before the play position reaches the new data.

In the WinMain function, whenever an event was signaled you passed the index of
that event to the StreamToBuffer function. This index corresponds to the index of the
notification position in the DSBPOSITIONNOTIFY array.

Here is the first part of the StreamToBuffer function:

BOOL StreamToBuffer(DWORD dwPos)

{

 LONG lNumToWrite;

 DWORD dwStartOfs;

 VOID *lpvPtr1, *lpvPtr2;

 DWORD dwBytes1, dwBytes2;

 UINT cbBytesRead;

 static DWORD dwStopNextTime = 0xFFFF;

 if (dwStopNextTime == dwPos) // All data has been played

 {

 lpdsb->Stop();

 dwStopNextTime = 0xFFFF;

 return TRUE;

 }

 if (dwStopNextTime != 0xFFFF) // No more to stream, but keep

 // playing to end of data

 return TRUE;

The dwStopNextTime variable is a flag to indicate that the end of the file has been
reached; this is set later in the function. If it is nonzero, there is no more data to be
streamed. If the value of dwStopNextTime equals the index of the notification being
handled, then you know that the current play position has returned to where it was
when the end of the file was reached; that is, the last segment of data you copied to

in.doc – page 61

the buffer has been played. In this case, it's time to stop the buffer so it doesn't keep
playing old data.

The next part of the StreamToBuffer function determines the offset within the buffer
where you will start copying the new data. Although the buffer in this tutorial has
only two notification positions, the code is designed to work with any number.
Remember, dwPos is the index of the notification position that has just been passed
by the current play position. You are going to write to the segment of the buffer that
starts at the previous notification position.

 if (dwPos == 0)

 dwStartOfs = rgdsbpn[NUMEVENTS - 1].dwOffset;

 else

 dwStartOfs = rgdsbpn[dwPos-1].dwOffset;

Now you determine the size of this segment of the buffer:

 lNumToWrite = (LONG) rgdsbpn[dwPos].dwOffset - dwStartOfs;

 if (lNumToWrite < 0) lNumToWrite += dsbdesc.dwBufferBytes;

You now have all the information you need to lock the buffer in preparation for the
data write.

 IDirectSoundBuffer_Lock(lpdsb,

 dwStartOfs, // Offset of lock start

 lNumToWrite, // Number of bytes to lock

 &lpvPtr1, // Address of lock start

 &dwBytes1, // Count of bytes locked

 &lpvPtr2, // Address of wrap around

 &dwBytes2, // Count of wrap around bytes

 0); // Flags

In this example the lock will never wrap around, so you need to do only a single data
copy from the file. You get the data by calling the WaveReadFile function in Wave.c:

 WaveReadFile(hmmio, // File handle

 dwBytes1, // Number of bytes to get

 (BYTE *) lpvPtr1, // Destination

 &mmckinfoData, // File chunk info

 &cbBytesRead); // Actual bytes read

Now determine if the end of the file has been reached. If it has, close it, write silence
to the rest of this segment (because it will play all the way through before the buffer is
stopped), and set the dwStopNextTime flag.

 if (cbBytesRead < dwBytes1) // Reached end of file

 {

 WaveCloseReadFile(&hmmio, &pwfx);

 FillMemory((PBYTE)lpvPtr1 + cbBytesRead,

in.doc – page 62

 dwBytes1 - cbBytesRead,

 (dsbdesc.lpwfxFormat->wBitsPerSample==8) ? 128 : 0);

 dwStopNextTime = dwPos;

 }

Finally, unlock the buffer and return to the message loop:

 IDirectSoundBuffer_Unlock(lpdsb,

 lpvPtr1, dwBytes1, lpvPtr2, dwBytes2);

 return TRUE;

} // end StreamToBuffer()

Step 7: Shutting Down DirectSound
[This is preliminary documentation and subject to change.]

Before closing, your application needs to close any open wave file and release the
DirectSoundNotify and DirectSound objects. Note that because you queried for the
IDirectSoundNotify interface from a DirectSoundBuffer object, you must release the
DirectSoundNotify object before releasing DirectSound. Releasing DirectSound
automatically releases any existing buffers.

The following function does all the necessary cleanup:

void DSExit(void)

{

 WaveCloseReadFile(&hmmio, &pwfx);

 if (lpdsNotify)

 lpdsNotify->Release();

 if (lpds)

 lpds->Release();

}

Tutorial 2: Sound Capture
[This is preliminary documentation and subject to change.]

This tutorial shows how to implement DirectSoundCapture to capture a sound
(typically from the microphone input) and write it to a wave file.

The functions for creating, writing, and closing wave files are in Wave.c, a module
found with the DSShow3D sample application in the DirectX SDK. In order to
implement the techniques shown in the tutorial, you must add Wave.c and Wave.h to
your project and link to Winmm.lib. You must also add Debug.c and Debug.h from
the same sample directory, or else edit the calls to the ASSERT macro in Wave.c to
call the standard assert function.

in.doc – page 63

The method calls in this tutorial are made through the macros defined in Dsound.h,
which are valid for both C and C++.

The tutorial is broken down into the following steps:

· Step 1: Setting Up DirectSoundCapture

· Step 2: Setting the Capture Format

· Step 3: Creating the Capture Buffer

· Step 4: Setting Up Capture Notification

· Step 5: Creating the Wave File

· Step 6: Handling the Capture Notifications

· Step 7: Streaming Data to the Wave File

· Step 8: Stopping Capture

· Step 9: Shutting Down DirectSoundCapture

Step 1: Setting Up DirectSoundCapture
[This is preliminary documentation and subject to change.]

The tutorial requires the following definitions and global declarations:

#define NUMCAPTUREEVENTS 2

LPDIRECTSOUNDCAPTURE lpdsc;

LPDIRECTSOUNDCAPTUREBUFFER lpdscb;

LPDIRECTSOUNDNOTIFY lpdsNotify;

DSCBUFFERDESC dscbDesc;

HANDLE rghEvent[NUMCAPTUREEVENTS];

DSBPOSITIONNOTIFY rgdscbpn[NUMCAPTUREEVENTS];

WAVEFORMATEX wfx =

 {WAVE_FORMAT_PCM, 1, 22050, 44100, 2, 16, 0};

HMMIO hmmio;

MMCKINFO mmckinfoData, mmckinfoParent;

MMIOINFO mmioinfo;

DWORD dwTotalBytesWritten;

It is not necessary to create a DirectSound object in order to use DirectSoundCapture.
However, if your application will be playing back sound as well as recording it, you
should create DirectSound first.

In this tutorial, all the initialization of the capture system takes place in a function
called InitDSoundCapture, which takes no parameters. The first step is to create the
DirectSoundCapture object. You associate the object with the default capture device
by passing NULL as the first parameter to the DirectSoundCaptureCreate function.

BOOL InitDSoundCapture(void)

{

in.doc – page 64

 if FAILED(DirectSoundCaptureCreate(NULL, &lpdsc, NULL))

 return FALSE;

Step 2: Setting the Capture Format
[This is preliminary documentation and subject to change.]

After creating DirectSoundCapture, you should choose a wave format that is
supported by the user's device. One way to do this is to start with the highest format
and attempt to create a capture buffer in each format until the creation method
succeeds. (For an example of how to step through the various formats, see
Fdaudio.cpp in the Fdfilter sample program.) In this tutorial you simply check the
capabilities of the device to see whether the default 16-bit format (defined in the
declaration of the WAVEFORMATEX structure) is supported; if it is not, you select
an 8-bit format that is supported by all devices.

The following code is within the InitDSoundCapture function:

 DSCCAPS dsccaps;

 dsccaps.dwSize = sizeof(DSCCAPS);

 if FAILED(IDirectSoundCapture_GetCaps(lpdsc, &dsccaps))

 return FALSE;

 if ((dsccaps.dwFormats & WAVE_FORMAT_2M16) == 0)

 {

 wfx.nSamplesPerSec = 11025;

 wfx.nAvgBytesPerSec = 11025;

 wfx.nBlockAlign = 1;

 wfx.wBitsPerSample = 8;

 }

Remember that if you are also using DirectSound playback in your application, you
must select a capture format that is compatible with the format of the primary buffer.
For more information, see Creating a Capture Buffer.

Step 3: Creating the Capture Buffer
[This is preliminary documentation and subject to change.]

Once you have ensured that the WAVEFORMATEX structure is valid for the user's
device, you can go ahead and create a capture buffer in that format.

 dscbDesc.dwSize = sizeof(DSCBUFFERDESC);

 dscbDesc.dwFlags = 0;

 // Buffer will hold one second’s worth of audio

 dscbDesc.dwBufferBytes = wfx.nAvgBytesPerSec;

in.doc – page 65

 dscbDesc.dwReserved = 0;

 dscbDesc.lpwfxFormat = &wfx;

 if FAILED(IDirectSoundCapture_CreateCaptureBuffer(lpdsc,

 &dscbDesc, &lpdscb, NULL))

 return FALSE;

You now have a pointer to the buffer object in lpdscb.

Step 4: Setting Up Capture Notification
[This is preliminary documentation and subject to change.]

As the final initialization step in the InitDSoundCapture function, you will set up
notification positions in the capture buffer so that the application knows when it's
time to stream more data to the file. In the example, these positions are set at the
beginning and halfway mark of the buffer.

First you create the required number of events and store their handles in the rghEvent
array:

 for (int i = 0; i < NUMCAPTUREEVENTS; i++)

 {

 rghEvent[i] = CreateEvent(NULL, FALSE, FALSE, NULL);

 if (NULL == rghEvent[i]) return FALSE;

 }

Next, you initialize the array of DSBPOSITIONNOTIFY structures, each of which
associates a position in the buffer with an event handle:

 rgdscbpn[0].dwOffset = 0;

 rgdscbpn[0].hEventNotify = rghEvent[0];

 rgdscbpn[1].dwOffset = dscbDesc.dwBufferBytes/2;

 rgdscbpn[1].hEventNotify = rghEvent[1];

Finally, you get the IDirectSoundNotify interface from the capture buffer and pass
the DSBPOSITIONNOTIFY array to the SetNotificationPositions method:

 if FAILED(IDirectSoundCaptureBuffer_QueryInterface(lpdscb,

 IID_IDirectSoundNotify, (VOID **)&lpdsNotify))

 return FALSE;

 if FAILED(IDirectSoundNotify_SetNotificationPositions(lpdsNotify,

 NUMCAPTUREEVENTS, rgdscbpn))

 {

 IDirectSoundNotify_Release(lpdsNotify);

 return FALSE;

 }

in.doc – page 66

 return TRUE;

} // end InitDSoundCapture()

Note that if you need to set up notifications for both a capture buffer and a secondary
(output) buffer, the event handles have to be stored in the same rghEvent array. When
you receive the notifications in the message loop, you can distinguish between the
two types of events by the index number.

Step 5: Creating the Wave File
[This is preliminary documentation and subject to change.]

At this point it is presumed that you have obtained a valid filename and are ready to
start saving sound data in a wave file. The process is initiated in the following
function:

BOOL StartWrite(TCHAR *pszFileName)

{

 if (WaveCreateFile(pszFileName, &hmmio, &wfx,

 &mmckinfoData, &mmckinfoParent))

 return FALSE;

 if (WaveStartDataWrite(&hmmio, &mmckinfoData, &mmioinfo))

 {

 WaveCloseWriteFile(&hmmio, &mmckinfoData,

 &mmckinfoParent, &mmioinfo,

 dwTotalBytesWritten / (wfx.wBitsPerSample / 8));

 DeleteFile(pszFileName);

 return FALSE;

 }

 if FAILED(IDirectSoundCaptureBuffer_Start(lpdscb,

 DSCBSTART_LOOPING))

 {

 WaveCloseWriteFile(&hmmio, &mmckinfoData,

 &mmckinfoParent, &mmioinfo, 0);

 DeleteFile(pszFileName);

 return FALSE;

 }

 dwTotalBytesWritten = 0;

 return TRUE;

}

This function first calls the WaveCreateFile function in Wave.c, in order to create a
RIFF file and write the header for the wave format. It then calls the

in.doc – page 67

WaveStartDataWrite function, which advances the file pointer to the data chunk.
Finally, it starts the capture buffer. In half a second your application will be notified
that data is available, and you must be ready to copy it to the file.

Note also the initialization of dwTotalBytesWritten. This value is going to be needed
for the data chunk header after capture is complete.

Step 6: Handling the Capture Notifications
[This is preliminary documentation and subject to change.]

You receive capture notifications as events in the message loop, just as with playback
notifications. Here is a sample loop:

BOOL Done = FALSE;

while (!Done)

{

 DWORD dwEvt = MsgWaitForMultipleObjects(

 NUMCAPTUREEVENTS, // How many possible events

 rghEvent, // Location of handles

 FALSE, // Wait for all?

 INFINITE, // How long to wait

 QS_ALLINPUT); // Any message is an event

 dwEvt -= WAIT_OBJECT_0;

 // If the event was set by the buffer, there's input

 // to process.

 if (dwEvt < NUMCAPTUREEVENTS)

 {

 StreamToFile();

 }

 // If it's the last event, it's a message

 else if (dwEvt == NUMCAPTUREEVENTS)

 {

 while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

 {

 if (msg.message == WM_QUIT)

 {

 Done = TRUE;

 }

 else

 {

 TranslateMessage(&msg);

in.doc – page 68

 DispatchMessage(&msg);

 }

 }

 } // end message processing

} // while (!Done)

As already noted, if you are receiving notifications from both a capture buffer and a
secondary (output) buffer, you need to distinguish between the two types of events by
the index value in dwEvt. For example, events 0 and 1 might be playback
notifications, and events 2 and 3 might be capture notifications.

Step 7: Streaming Data to the Wave File
[This is preliminary documentation and subject to change.]

In the first tutorial you saw how to identify the segment of the buffer that was safe to
write to by checking the offset of the notification position. This technique would
work equally well with the capture buffer in the present tutorial, but this time you'll
do things a bit differently.

In the previous step you saw how the StreamToFile function was called in response to
a notification event. Unlike the StreamToBuffer function in the previous tutorial, this
function does not take the event index as a parameter.

BOOL StreamToFile(void)

{

 DWORD dwReadPos;

 DWORD dwNumBytes;

 LPBYTE pbInput1, pbInput2;

 DWORD cbInput1, cbInput2;

 static DWORD dwMyReadCursor = 0;

 UINT dwBytesWritten;

Note the static declaration of dwMyReadCursor. This is the offset of the next byte of
data you want to read; in other words, the byte just beyond the last one read on the
previous pass through this function.

The first thing the function does is find the current read position. Remember, this
position marks the leading edge of the data that is safe to read. It is not necessarily the
same as the notification position, because it has likely advanced since the event was
signaled.

 IDirectSoundCaptureBuffer_GetCurrentPosition(lpdscb,

 NULL, &dwReadPos);

The function then subtracts your internal read cursor from the current read position
(after allowing for wraparound) in order to determine how many bytes of new data
are available:

in.doc – page 69

 if (dwReadPos < dwMyReadCursor)

 dwReadPos += dscbDesc.dwBufferBytes;

 dwNumBytes = dwReadPos - dwMyReadCursor;

You then lock the buffer and do the copy. Because the segment of data you've
identified as available is not exactly demarcated by the notification positions at the
beginning and midpoint of the buffer, the locked portion of the buffer might wrap
around, in which case two separate copy operations are required:

 if FAILED(IDirectSoundCaptureBuffer_Lock(lpdscb,

 dwMyReadCursor, dwNumBytes,

 (LPVOID *)&pbInput1, &cbInput1,

 (LPVOID *)&pbInput2, &cbInput2, 0))

 OutputDebugString("Capture lock failure");

 else

 {

 if (WaveWriteFile(hmmio, cbInput1, pbInput1, &mmckinfoData,

 &dwBytesWritten, &mmioinfo))

 OutputDebugString("Failure writing data to file\n");

 dwTotalBytesWritten += dwBytesWritten;

 // Wraparound

 if (pbInput2 != NULL)

 {

 if (WaveWriteFile(hmmio, cbInput2, pbInput2,

 &mmckinfoData, &dwBytesWritten, &mmioinfo))

 OutputDebugString("Failure writing data to file\n");

 dwTotalBytesWritten += dwBytesWritten;

 }

 IDirectSoundCaptureBuffer_Unlock(lpdscb,

 pbInput1, cbInput1,

 pbInput2, cbInput2);

 }

The WaveWriteFile function returns 0 if successful and also fills dwBytesWritten with
the number of bytes actually copied to the file. This value is added to the cumulative
total, which will be needed when the file is closed.

Finally, update the internal read cursor, compensating for wraparound, and return to
the message loop:

 dwMyReadCursor += dwNumBytes;

 if (dwMyReadCursor >= dscbDesc.dwBufferBytes)

 dwMyReadCursor -= dscbDesc.dwBufferBytes;

 return TRUE;

in.doc – page 70

} // end StreamToFile()

Step 8: Stopping Capture
[This is preliminary documentation and subject to change.]

When it's time to stop recording, call the following function:

BOOL StopWrite()

{

 IDirectSoundCaptureBuffer_Stop(lpdscb);

 StreamToFile();

 WaveCloseWriteFile(&hmmio, &mmckinfoData,

 &mmckinfoParent, &mmioinfo,

 dwTotalBytesWritten / (wfx.wBitsPerSample / 8));

 return TRUE;

}

This function stops the capture buffer, calls the StreamToFile function one more time
in order to save all the data up to the current read position, and closes the file. The
WaveCloseWriteFile function in Wave.c also updates the header of the data chunk by
writing the total number of samples.

Step 9: Shutting Down DirectSoundCapture
[This is preliminary documentation and subject to change.]

Before closing the application you must shut down the capture system. This is a
simple matter of releasing all the objects. You must release the IDirectSoundNotify
interface before releasing the capture buffer.

void CleanupDSoundCapture(void)

{

 if (lpdsNotify)

 IDirectSoundNotify_Release(lpdsNotify);

 if (lpdscb)

 IDirectSoundCaptureBuffer_Release(lpdscb);

 if (lpdsc)

 IDirectSoundCapture_Release(lpdsc);

}

DirectSound Reference
[This is preliminary documentation and subject to change.]

in.doc – page 71

This section contains reference information for the API elements that DirectSound
provides. Reference material is divided into the following categories.

· Interfaces

· Functions

· Callback Function

· Structures

· Return Values

Interfaces
[This is preliminary documentation and subject to change.]

This section contains references for methods of the following DirectSound interfaces:

· IDirectSound

· IDirectSound3DBuffer

· IDirectSound3DListener

· IDirectSoundBuffer

· IDirectSoundCapture

· IDirectSoundCaptureBuffer

· IDirectSoundNotify

IDirectSound
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectSound interface to create DirectSound
objects and set up the environment. This section is a reference to the methods of this
interface.

The interface is obtained by using the DirectSoundCreate function.

The methods of the IDirectSound interface can be organized into the following
groups:

Initialization Initialize

SetCooperativeLevel

Buffer creation CreateSoundBuffer

DuplicateSoundBuffer

Device capabilities GetCaps

in.doc – page 72

Memory management Compact

Speaker configuration GetSpeakerConfig

SetSpeakerConfig

The IDirectSound interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

AddRef

QueryInterface

Release

The LPDIRECTSOUND type is defined as a pointer to the IDirectSound interface:

typedef struct IDirectSound *LPDIRECTSOUND;

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound::Compact
[This is preliminary documentation and subject to change.]

The IDirectSound::Compact method moves the unused portions of on-board sound
memory, if any, to a contiguous block so that the largest portion of free memory will
be available.

HRESULT Compact();

Parameters

None.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

in.doc – page 73

DSERR_UNINITIALIZED

Remarks

The application's DirectSound object must have at least the DSSCL_PRIORITY
cooperative level. See IDirectSound::SetCooperativeLevel.

This method will fail if any operations are in progress.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound::CreateSoundBuffer
[This is preliminary documentation and subject to change.]

The IDirectSound::CreateSoundBuffer method creates a DirectSoundBuffer object
to hold a sequence of audio samples.

HRESULT CreateSoundBuffer(
 LPCDSBUFFERDESC lpcDSBufferDesc,
 LPLPDIRECTSOUNDBUFFER lplpDirectSoundBuffer,
 IUnknown FAR * pUnkOuter
);

Parameters

lpcDSBufferDesc
Address of a DSBUFFERDESC structure that contains the description of the
sound buffer to be created.

lplpDirectSoundBuffer
Address of a pointer to the new DirectSoundBuffer object, or NULL if the buffer
cannot be created.

pUnkOuter
Controlling unknown of the aggregate. Its value must be NULL.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

in.doc – page 74

DSERR_ALLOCATED

DSERR_BADFORMAT

DSERR_INVALIDPARAM

DSERR_NOAGGREGATION

DSERR_OUTOFMEMORY

DSERR_UNINITIALIZED

DSERR_UNSUPPORTED

Remarks

Before it can play any sound buffers, the application must specify a cooperative level
for a DirectSound object by using the IDirectSound::SetCooperativeLevel method.

The lpDSBufferDesc parameter points to a structure that describes the type of buffer
desired, including format, size, and capabilities. The application must specify the
needed capabilities, or they will not be available. For example, if the application
creates a DirectSoundBuffer object without specifying the
DSBCAPS_CTRLFREQUENCY flag, any call to
IDirectSoundBuffer::SetFrequency will fail.

The DSBCAPS_STATIC flag can also be specified, in which case DirectSound stores
the buffer in on-board memory, if available, to take advantage of hardware mixing.
To force the buffer to use either hardware or software mixing, use the
DSBCAPS_LOCHARDWARE or DSBCAPS_LOCSOFTWARE flag.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

DSBUFFERDESC, IDirectSound::DuplicateSoundBuffer,
IDirectSound::SetCooperativeLevel, IDirectSoundBuffer,
IDirectSoundBuffer::GetFormat, IDirectSoundBuffer::GetVolume,
IDirectSoundBuffer::Lock, IDirectSoundBuffer::Play,
IDirectSoundBuffer::SetFormat, IDirectSoundBuffer::SetFrequency

IDirectSound::DuplicateSoundBuffer
[This is preliminary documentation and subject to change.]

in.doc – page 75

The IDirectSound::DuplicateSoundBuffer method creates a new
DirectSoundBuffer object that uses the same buffer memory as the original object.

HRESULT DuplicateSoundBuffer(
 LPDIRECTSOUNDBUFFER lpDsbOriginal,
 LPLPDIRECTSOUNDBUFFER lplpDsbDuplicate
);

Parameters

lpDsbOriginal
Address of the DirectSoundBuffer object to be duplicated.

lplpDsbDuplicate
Address of a pointer to the new DirectSoundBuffer object.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_ALLOCATED

DSERR_INVALIDCALL

DSERR_INVALIDPARAM

DSERR_OUTOFMEMORY

DSERR_UNINITIALIZED

Remarks

The new object can be used just like the original.

Initially, the duplicate buffer will have the same parameters as the original buffer.
However, the application can change the parameters of each buffer independently,
and each can be played or stopped without affecting the other.

If data in the buffer is changed through one object, the change will be reflected in the
other object because the buffer memory is shared.

The buffer memory will be released when the last object referencing it is released.

Applications cannot assume that an attempt to duplicate a sound buffer will always
succeed. In particular, DirectSound will not create a software duplicate of a hardware
buffer.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 76

Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound::CreateSoundBuffer

IDirectSound::GetCaps
[This is preliminary documentation and subject to change.]

The IDirectSound::GetCaps method retrieves the capabilities of the hardware
device that is represented by the DirectSound object.

HRESULT GetCaps(
 LPDSCAPS lpDSCaps
);

Parameters

lpDSCaps
Address of the DSCAPS structure to contain the capabilities of this sound device.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_GENERIC

DSERR_INVALIDPARAM

DSERR_UNINITIALIZED

Remarks

Information retrieved in the DSCAPS structure describes the maximum capabilities
of the sound device and those currently available, such as the number of hardware
mixing channels and the amount of on-board sound memory. You can use this
information to fine-tune performance and optimize resource allocation.

Because of resource-sharing requirements, the maximum capabilities in one area
might be available only at the cost of another area. For example, the maximum
number of hardware-mixed streaming sound buffers might be available only if there
are no hardware static sound buffers.

in.doc – page 77

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

DirectSoundCreate, DSCAPS

IDirectSound::GetSpeakerConfig
[This is preliminary documentation and subject to change.]

The IDirectSound::GetSpeakerConfig method retrieves the speaker configuration
specified for this DirectSound object.

HRESULT GetSpeakerConfig(
 LPDWORD lpdwSpeakerConfig
);

Parameters

lpdwSpeakerConfig
Address of the speaker configuration for this DirectSound object. The speaker
configuration is specified with one of the following values:

DSSPEAKER_HEADPHONE
The audio is played through headphones.

DSSPEAKER_MONO
The audio is played through a single speaker.

DSSPEAKER_QUAD
The audio is played through quadraphonic speakers.

DSSPEAKER_STEREO
The audio is played through stereo speakers (default value).

DSSPEAKER_SURROUND
The audio is played through surround speakers.

DSSPEAKER_STEREO may be combined with one of the following values:
DSSPEAKER_GEOMETRY_WIDE

The speakers are directed over an arc of 20 degrees.

DSSPEAKER_GEOMETRY_NARROW
The speakers are directed over an arc of 10 degrees.

DSSPEAKER_GEOMETRY_MIN
The speakers are directed over an arc of 5 degrees.

in.doc – page 78

DSSPEAKER_GEOMETRY_MAX
The speakers are directed over an arc of 180 degrees.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_UNINITIALIZED

Remarks

The value returned at lpdwSpeakerConfig may be a packed DWORD containing both
configuration and geometry information. Use the DSSPEAKER_CONFIG and
DSSPEAKER_GEOMETRY macros to unpack the DWORD, as in the following
example:

if (DSSPEAKER_CONFIG(dwSpeakerConfig) == DSSPEAKER_STEREO)

 {

 if (DSSPEAKER_GEOMETRY(dwSpeakerConfig) ==

 DSSPEAKER_GEOMETRY_WIDE)

 {...}

 }

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound::SetSpeakerConfig

IDirectSound::Initialize
[This is preliminary documentation and subject to change.]

The IDirectSound::Initialize method initializes the DirectSound object that was
created by using the CoCreateInstance function.

HRESULT Initialize(
 LPGUID lpGuid

in.doc – page 79

);

Parameters

lpGuid
Address of the globally unique identifier (GUID) specifying the sound driver to
which this DirectSound object binds. Pass NULL to select the primary sound
driver.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_ALREADYINITIALIZED

DSERR_GENERIC

DSERR_INVALIDPARAM

DSERR_NODRIVER

Remarks

This method is provided for compliance with the Component Object Model (COM)
protocol. If the DirectSoundCreate function was used to create the DirectSound
object, this method returns DSERR_ALREADYINITIALIZED. If
IDirectSound::Initialize is not called when using CoCreateInstance to create the
DirectSound object, any method called afterward returns DSERR_UNINITIALIZED.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

DirectSoundCreate

IDirectSound::SetCooperativeLevel
[This is preliminary documentation and subject to change.]

The IDirectSound::SetCooperativeLevel method sets the cooperative level of the
application for this sound device.

in.doc – page 80

HRESULT SetCooperativeLevel(
 HWND hwnd,
 DWORD dwLevel
);

Parameters

hwnd
Window handle to the application.

dwLevel
Requested priority level. Specify one of the following values:

DSSCL_EXCLUSIVE
Sets the application to the exclusive level. When it has the input focus, the
application will be the only one audible (sounds from applications with the
DSBCAPS_GLOBALFOCUS flag set will be muted). With this level, it also
has all the privileges of the DSSCL_PRIORITY level. DirectSound will
restore the hardware format, as specified by the most recent call to the
IDirectSoundBuffer::SetFormat method, once the application gains the
input focus. (Note that DirectSound will always restore the wave format no
matter what priority level is set.)

DSSCL_NORMAL
Sets the application to a fully cooperative status. This level has the smoothest
multitasking and resource-sharing behavior, but because it does not allow the
primary buffer format to change, output is restricted to the default 8-bit
format.

DSSCL_PRIORITY
Sets the application to the priority level. Applications with this cooperative
level can call the IDirectSoundBuffer::SetFormat and
IDirectSound::Compact methods.

DSSCL_WRITEPRIMARY
This is the highest priority level. The application has write access to the
primary sound buffers. No secondary sound buffers can be played. This level
cannot be set if the DirectSound driver is being emulated for the device; that
is, if the IDirectSound::GetCaps method returns the
DSCAPS_EMULDRIVER flag in the DSCAPS structure.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_ALLOCATED

DSERR_INVALIDPARAM

DSERR_UNINITIALIZED

in.doc – page 81

DSERR_UNSUPPORTED

Remarks

The application must set the cooperative level by calling this method before its
buffers can be played. The recommended cooperative level is DSSCL_PRIORITY;
use other priority levels when necessary. For additional information, see Cooperative
Levels.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound::Compact, IDirectSoundBuffer::GetFormat,
IDirectSoundBuffer::GetVolume, IDirectSoundBuffer::Lock,
IDirectSoundBuffer::Play, IDirectSoundBuffer::Restore,
IDirectSoundBuffer::SetFormat

IDirectSound::SetSpeakerConfig
[This is preliminary documentation and subject to change.]

The IDirectSound::SetSpeakerConfig method specifies the speaker configuration of
the DirectSound object.

HRESULT SetSpeakerConfig(
 DWORD dwSpeakerConfig
);

Parameters

dwSpeakerConfig
Speaker configuration of the specified DirectSound object. This parameter can be
one of the following values:

DSSPEAKER_HEADPHONE
The speakers are headphones.

DSSPEAKER_MONO
The speakers are monaural.

DSSPEAKER_QUAD
The speakers are quadraphonic.

in.doc – page 82

DSSPEAKER_STEREO
The speakers are stereo (default value).

DSSPEAKER_SURROUND
The speakers are surround sound.

DSSPEAKER_STEREO may be combined with one of the following values:
DSSPEAKER_GEOMETRY_WIDE

The speakers are directed over an arc of 20 degrees.

DSSPEAKER_GEOMETRY_NARROW
The speakers are directed over an arc of 10 degrees.

DSSPEAKER_GEOMETRY_MIN
The speakers are directed over an arc of 5 degrees.

DSSPEAKER_GEOMETRY_MAX
The speakers are directed over an arc of 180 degrees.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_UNINITIALIZED

Remarks

If a geometry value is to be used, it must be packed in a DWORD along with the
DSSPEAKER_STEREO flag. This can be done by using the
DSSPEAKER_COMBINED macro, as in the following C++ example:

lpds->SetSpeakerConfig(DSSPEAKER_COMBINED(

 DSSPEAKER_STEREO, DSSPEAKER_GEOMETRY_WIDE));

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound::GetSpeakerConfig

in.doc – page 83

IDirectSound3DBuffer
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectSound3DBuffer interface to retrieve and
set parameters that describe the position, orientation, and environment of a sound
buffer in 3-D space. This section is a reference to the methods of this interface. For a
conceptual overview, see DirectSound 3-D Buffers.

The IDirectSound3DBuffer is obtaining by using the
IDirectSoundBuffer::QueryInterface method. For more information, see Obtaining
the IDirectSound3DBuffer Interface.

The methods of the IDirectSound3DBuffer interface can be organized into the
following groups:

Batch parameter manipulation GetAllParameters

SetAllParameters

Distance GetMaxDistance

GetMinDistance

SetMaxDistance

SetMinDistance

Operation mode GetMode

SetMode

Position GetPosition

SetPosition

Sound projection cones GetConeAngles

GetConeOrientation

GetConeOutsideVolume

SetConeAngles

SetConeOrientation

SetConeOutsideVolume

Velocity GetVelocity

SetVelocity

The IDirectSound3DBuffer interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

in.doc – page 84

AddRef

QueryInterface

Release

The LPDIRECTSOUND3DBUFFER type is defined as a pointer to the
IDirectSound3DBuffer interface:

typedef struct IDirectSound3DBuffer *LPDIRECTSOUND3DBUFFER;

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound3DBuffer::GetAllParameters
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::GetAllParameters method retrieves information that
describes the 3-D characteristics of a sound buffer at a given point in time.

HRESULT GetAllParameters(
 LPDS3DBUFFER lpDs3dBuffer
);

Parameters

lpDs3dBuffer
Address of a DS3DBUFFER structure that will contain the information
describing the 3-D characteristics of the sound buffer.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.

in.doc – page 85

 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound3DBuffer::GetConeAngles
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::GetConeAngles method retrieves the inside and
outside angles of the sound projection cone for this sound buffer.

HRESULT GetConeAngles(
 LPDWORD lpdwInsideConeAngle,
 LPDWORD lpdwOutsideConeAngle
);

Parameters

lpdwInsideConeAngle and lpdwOutsideConeAngle
Addresses of variables that will contain the inside and outside angles of the
sound projection cone, in degrees.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The minimum, maximum, and default cone angles are defined in Dsound.h as
DS3D_MINCONEANGLE, DS3D_MAXCONEANGLE, and
DS3D_DEFAULTCONEANGLE.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound3DBuffer::GetConeOrientati
on

[This is preliminary documentation and subject to change.]

in.doc – page 86

The IDirectSound3DBuffer::GetConeOrientation method retrieves the orientation
of the sound projection cone for this sound buffer.

HRESULT GetConeOrientation(
 LPD3DVECTOR lpvOrientation
);

Parameters

lpvOrientation
Address of a D3DVECTOR structure that will contain the current orientation of
the sound projection cone. The vector information represents the center of the
sound cone.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The values returned are not necessarily the same as those set by using the
IDirectSound3DBuffer::SetConeOrientation method. DirectSound adjusts
orientation vectors so that they are have a magnitude of less than or equal to 1.0.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DBuffer::SetConeOrientation,
IDirectSound3DBuffer::SetConeAngles,
IDirectSound3DBuffer::SetConeOutsideVolume

IDirectSound3DBuffer::GetConeOutsideV
olume

[This is preliminary documentation and subject to change.]

in.doc – page 87

The IDirectSound3DBuffer::GetConeOutsideVolume method retrieves the current
cone outside volume for this sound buffer.

HRESULT GetConeOutsideVolume(
 LPLONG lplConeOutsideVolume
);

Parameters

lplConeOutsideVolume
Address of a variable that will contain the current cone outside volume for this
buffer.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

Volume levels are represented by attenuation. Allowable values are between
DSBVOLUME_MAX (no attenuation) and DSBVOLUME_MIN (silence). The
default value is DS3D_DEFAULTCONEOUTSIDEVOLUME (no attenuation).
These values are defined in Dsound.h. Currently DirectSound does not support
amplification.

For additional information about the concept of outside volume, see Sound Cones.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer::SetVolume

IDirectSound3DBuffer::GetMaxDistance
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::GetMaxDistance method retrieves the current
maximum distance for this sound buffer.

in.doc – page 88

HRESULT GetMaxDistance(
 LPD3DVALUE lpflMaxDistance
);

Parameters

lpflMaxDistance
Address of a variable that will contain the current maximum distance setting.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The default maximum distance, defined as DS3D_DEFAULTMAXDISTANCE, is
effectively infinite.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DBuffer::GetMinDistance,
IDirectSound3DBuffer::SetMaxDistance

IDirectSound3DBuffer::GetMinDistance
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::GetMinDistance method retrieves the current
minimum distance for this sound buffer.

HRESULT GetMinDistance(
 LPD3DVALUE lpflMinDistance
);

in.doc – page 89

Parameters

lpflMinDistance
Address of a variable that will contain the current minimum distance setting.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

By default, the minimum distance value is DS3D_DEFAULTMINDISTANCE,
currently defined as 1.0 (corresponding to 1.0 meter at the default distance factor of
1.0 meters per unit).

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DBuffer::SetMinDistance,
IDirectSound3DBuffer::GetMaxDistance

IDirectSound3DBuffer::GetMode
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::GetMode method retrieves the current operation mode
for 3-D sound processing.

HRESULT GetMode(
 LPDWORD lpdwMode
);

Parameters

lpdwMode
Address of a variable that will contain the current mode setting. This value will
be one of the following:

DS3DMODE_DISABLE

in.doc – page 90

Processing of 3-D sound is disabled. The sound seems to originate from the
center of the listener's head.

DS3DMODE_HEADRELATIVE
Sound parameters (position, velocity, and orientation) are relative to the
listener's parameters. In this mode, the absolute parameters of the sound are
updated automatically as the listener's parameters change, so that the relative
parameters remain constant.

DS3DMODE_NORMAL
Normal processing. This is the default mode.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound3DBuffer::GetPosition
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::GetPosition method retrieves the sound buffer's
current position, in distance units. By default, distance units are meters, but the units
can be changed by using the IDirectSound3DListener::SetDistanceFactor method.

HRESULT GetPosition(
 LPD3DVECTOR lpvPosition
);

Parameters

lpvPosition
Address of a D3DVECTOR structure that will contain the current position of the
sound buffer.

Return Values

If the method succeeds, the return value is DS_OK.

in.doc – page 91

If the method fails, the return value may be DSERR_INVALIDPARAM.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound3DBuffer::GetVelocity
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::GetVelocity method retrieves the current velocity for
this sound buffer. Velocity is measured in units per second. The default unit is one
meter, but this can be changed by using the
IDirectSound3DListener::SetDistanceFactor method.

HRESULT GetVelocity(
 LPD3DVECTOR lpvVelocity
);

Parameters

lpvVelocity
Address of a D3DVECTOR structure that will contain the sound buffer's current
velocity.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

Velocity is used for Doppler effects only. It does not actually move the buffer. For
additional information, see Doppler Factor.

The default unit of measurement is meters per second, but this can be changed by
using the IDirectSound3DListener::SetDistanceFactor method.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 92

Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DBuffer::SetPosition, IDirectSound3DBuffer::SetVelocity

IDirectSound3DBuffer::SetAllParameters
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::SetAllParameters method sets all 3-D sound buffer
parameters from a given DS3DBUFFER structure that describes all aspects of the
sound buffer at a moment in time.

HRESULT SetAllParameters(
 LPCDS3DBUFFER lpcDs3dBuffer,
 DWORD dwApply
);

Parameters

lpcDs3dBuffer
Address of a DS3DBUFFER structure containing the information that describes
the 3-D characteristics of the sound buffer.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED Settings are not applied until the application calls
the
IDirectSound3DListener::CommitDeferredSettin
gs method. This allows the application to change
several settings and generate a single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3-D coordinates for all 3-D
sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

in.doc – page 93

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound3DBuffer::SetConeAngles
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::SetConeAngles method sets the inside and outside
angles of the sound projection cone for this sound buffer.

HRESULT SetConeAngles(
 DWORD dwInsideConeAngle,
 DWORD dwOutsideConeAngle,
 DWORD dwApply
);

Parameters

dwInsideConeAngle and dwOutsideConeAngle
Inside and outside angles of the sound projection cone, in degrees.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED Settings are not applied until the application calls
the
IDirectSound3DListener::CommitDeferredSettin
gs method. This allows the application to change
several settings and generate a single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3-D coordinates for all 3-D
sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

in.doc – page 94

Remarks

The minimum, maximum, and default cone angles are defined in Dsound.h as
DS3D_MINCONEANGLE, DS3D_MAXCONEANGLE, and
DS3D_DEFAULTCONEANGLE. Each angle must be in the range of 0 degrees (no
cone) to 360 degrees (the full sphere). The default value is 360.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IIDirectSound3DBuffer::GetConeOutsideVolume,
IDirectSound3DBuffer::SetConeOutsideVolume

IDirectSound3DBuffer::SetConeOrientati
on

[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::SetConeOrientation method sets the orientation of the
sound projection cone for this sound buffer. This method has no effect unless the cone
angle and cone volume factor have also been set.

HRESULT SetConeOrientation(
 D3DVALUE x,
 D3DVALUE y,
 D3DVALUE z,
 DWORD dwApply
);

Parameters

x, y, and z
Values whose types are D3DVALUE and that represent the coordinates of the
new sound cone orientation vector.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED Settings are not applied until the application calls
the

in.doc – page 95

IDirectSound3DListener::CommitDeferredSettin
gs method. This allows the application to change
several settings and generate a single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3-D coordinates for all 3-D
sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DBuffer::SetConeAngles,
IDirectSound3DBuffer::SetConeOutsideVolume

IDirectSound3DBuffer::SetConeOutsideV
olume

[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::SetConeOutsideVolume method sets the current cone
outside volume for this sound buffer.

HRESULT SetConeOutsideVolume(
 LONG lConeOutsideVolume,
 DWORD dwApply
);

Parameters

lConeOutsideVolume
Cone outside volume for this sound buffer, in hundredths of decibels. Allowable
values are between DSBVOLUME_MAX (no attenuation) and
DSBVOLUME_MIN (silence). These values are defined in Dsound.h.

dwApply

in.doc – page 96

Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED Settings are not applied until the application calls
the
IDirectSound3DListener::CommitDeferredSettin
gs method. This allows the application to change
several settings and generate a single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3-D coordinates for all 3-D
sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

Volume levels are represented by attenuation. Allowable values are between
DSBVOLUME_MAX (no attenuation) and DSBVOLUME_MIN (silence). The
default value is DS3D_DEFAULTCONEOUTSIDEVOLUME (no attenuation).
These values are defined in Dsound.h. Currently DirectSound does not support
amplification.

For information about the concept of cone outside volume, see Sound Cones.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer::SetVolume

IDirectSound3DBuffer::SetMaxDistance
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::SetMaxDistance method sets the current maximum
distance value.

HRESULT SetMaxDistance(

in.doc – page 97

 D3DVALUE flMaxDistance,
 DWORD dwApply
);

Parameters

flMaxDistance
New maximum distance value.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED Settings are not applied until the application calls
the
IDirectSound3DListener::CommitDeferredSettin
gs method. This allows the application to change
several settings and generate a single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3-D coordinates for all 3-D
sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The default maximum distance, defined as DS3D_DEFAULTMAXDISTANCE, is
effectively infinite.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DBuffer::GetMaxDistance,
IDirectSound3DBuffer::SetMinDistance

in.doc – page 98

IDirectSound3DBuffer::SetMinDistance
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::SetMinDistance method sets the current minimum
distance value.

HRESULT SetMinDistance(
 D3DVALUE flMinDistance,
 DWORD dwApply
);

Parameters

flMinDistance
New minimum distance value.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

By default, the minimum distance value is DS3D_DEFAULTMINDISTANCE,
currently defined as 1.0 (corresponding to 1.0 meter at the default distance factor of
1.0 meters per unit).

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

in.doc – page 99

See Also

IDirectSound3DBuffer::SetMaxDistance

IDirectSound3DBuffer::SetMode
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::SetMode method sets the operation mode for 3-D
sound processing.

HRESULT SetMode(
 DWORD dwMode,
 DWORD dwApply
);

Parameters

dwMode
Flag specifying the 3-D sound processing mode to be set:

DS3DMODE_DISABLE
Processing of 3-D sound is disabled. The sound seems to originate from the
center of the listener's head.

DS3DMODE_HEADRELATIVE
Sound parameters (position, velocity, and orientation) are relative to the
listener's parameters. In this mode, the absolute parameters of the sound are
updated automatically as the listener's parameters change, so that the relative
parameters remain constant.

DS3DMODE_NORMAL
Normal processing. This is the default mode.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

in.doc – page 100

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound3DBuffer::SetPosition
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::SetPosition method sets the sound buffer's current
position, in distance units. By default, distance units are meters, but the units can be
changed by using the IDirectSound3DListener::SetDistanceFactor method.

HRESULT SetPosition(
 D3DVALUE x,
 D3DVALUE y,
 D3DVALUE z,
 DWORD dwApply
);

Parameters

x, y, and z
Values whose types are D3DVALUE and that represent the coordinates of the
new position vector. Note that DirectSound may adjust these values to prevent
floating-point overflow.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

in.doc – page 101

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound3DBuffer::SetVelocity
[This is preliminary documentation and subject to change.]

The IDirectSound3DBuffer::SetVelocity method sets the sound buffer's current
velocity.

HRESULT SetVelocity(
 D3DVALUE x,
 D3DVALUE y,
 D3DVALUE z,
 DWORD dwApply
);

Parameters

x, y, and z
Values whose types are D3DVALUE and that represent the coordinates of the
new velocity vector. Note that DirectSound may adjust these values to prevent
floating-point overflow.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

in.doc – page 102

Remarks

Velocity is used for Doppler effects only. It does not actually move the buffer. For
additional information, see Doppler Factor.

The default unit of measurement is meters per second, but this can be changed by
using the IDirectSound3DListener::SetDistanceFactor method.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DBuffer::SetPosition, IDirectSound3DBuffer::GetVelocity

IDirectSound3DListener
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectSound3DListener interface to retrieve
and set parameters that describe a listener's position, orientation, and listening
environment in 3-D space. This section is a reference to the methods of this interface.
For a conceptual overview, see DirectSound 3-D Listeners.

The interface is obtained by using the IDirectSoundBuffer::QueryInterface
method. For more information, see Obtaining the IDirectSound3DListener Interface.

The methods of the IDirectSound3DListener interface can be organized into the
following groups:

Batch parameters GetAllParameters

SetAllParameters

Deferred settings CommitDeferredSettings

Distance factor GetDistanceFactor

SetDistanceFactor

Doppler factor GetDopplerFactor

SetDopplerFactor

in.doc – page 103

Orientation GetOrientation

SetOrientation

Position GetPosition

SetPosition

Rolloff factor GetRolloffFactor

SetRolloffFactor

Velocity GetVelocity

SetVelocity

The IDirectSound3DListener interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

AddRef

QueryInterface

Release

The LPDIRECTSOUND3DLISTENER type is defined as a pointer to the
IDirectSound3DListener interface:

typedef struct IDirectSound3DListener *LPDIRECTSOUND3DLISTENER;

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound3DListener::CommitDeferre
dSettings

[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::CommitDeferredSettings method commits any
deferred settings made since the last call to this method.

HRESULT CommitDeferredSettings();

in.doc – page 104

Parameters

None.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

For additional information about using deferred settings to maximize efficiency, see
Deferred Settings.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSound3DListener::GetAllParamete
rs

[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::GetAllParameters method retrieves information that
describes the current state of the 3-D world and listener.

HRESULT GetAllParameters(
 LPDS3DLISTENER lpListener
);

Parameters

lpListener
Address of a DS3DLISTENER structure that will contain the current state of the
3-D world and listener.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

in.doc – page 105

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::SetAllParameters

IDirectSound3DListener::GetDistanceFac
tor

[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::GetDistanceFactor method retrieves the current
distance factor.

HRESULT GetDistanceFactor(
 LPD3DVALUE lpflDistanceFactor
);

Parameters

lpflDistanceFactor
Address of a variable whose type is D3DVALUE and that will contain the
current distance factor value.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

For additional information about distance factors, see Distance Factor.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.

in.doc – page 106

 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::SetDistanceFactor

IDirectSound3DListener::GetDopplerFact
or

[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::GetDopplerFactor method retrieves the current
Doppler effect factor.

HRESULT GetDopplerFactor(
 LPD3DVALUE lpflDopplerFactor
);

Parameters

lpflDopplerFactor
Address of a variable whose type is D3DVALUE and that will contain the
current Doppler factor value.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The Doppler factor has a range of DS3D_MINDOPPLERFACTOR (no Doppler
effects) to DS3D_MAXDOPPLERFACTOR (as currently defined, 10 times the
Doppler effects found in the real world). The default value is
DS3D_DEFAULTDOPPLERFACTOR (1.0). For additional information, see
Doppler Factor.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

in.doc – page 107

See Also

IDirectSound3DListener::SetDopplerFactor

IDirectSound3DListener::GetOrientation
[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::GetOrientation method retrieves the listener's
current orientation in vectors: a front vector and a top vector.

HRESULT GetOrientation(
 LPD3DVECTOR lpvOrientFront,
 LPD3DVECTOR lpvOrientTop
);

Parameters

lpvOrientFront
Address of a D3DVECTOR structure that will contain the listener's front
orientation vector.

lpvOrientTop
Address of a D3DVECTOR structure that will contain the listener's top
orientation vector.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The front vector points in the direction of the listener's nose, and the top vector points
out the top of the listener's head. By default, the front vector is (0,0,1.0) and the top
vector is (0,1.0,0).

The values returned are not necessarily the same as those set by using the
IDirectSound3DListener::SetOrientation method. DirectSound adjusts orientation
vectors so that they are at right angles and have a magnitude of less than or equal to
1.0.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.

in.doc – page 108

 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::SetOrientation

IDirectSound3DListener::GetPosition
[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::GetPosition method retrieves the listener's current
position in distance units. By default, these units are meters, but this can be changed
by calling the IDirectSound3DListener::SetDistanceFactor method.

HRESULT GetPosition(
 LPD3DVECTOR lpvPosition
);

Parameters

lpvPosition
Address of a D3DVECTOR structure that will contain the listener's position
vector.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::SetPosition

in.doc – page 109

IDirectSound3DListener::GetRolloffFacto
r

[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::GetRolloffFactor method retrieves the current
rolloff factor.

HRESULT GetRolloffFactor(
 LPD3DVALUE lpflRolloffFactor
);

Parameters

lpflRolloffFactor
Address of a variable whose type is D3DVALUE and that will contain the
current rolloff factor value.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The rolloff factor has a range of DS3D_MINROLLOFFFACTOR (no rolloff) to
DS3D_MAXROLLOFFFACTOR (as currently defined, 10 times the rolloff found in
the real world). The default value is DS3D_DEFAULTROLLOFFFACTOR (1.0).
For additional information, see Rolloff Factor.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::SetRolloffFactor

IDirectSound3DListener::GetVelocity
[This is preliminary documentation and subject to change.]

in.doc – page 110

The IDirectSound3DListener::GetVelocity method retrieves the listener's current
velocity.

HRESULT GetVelocity(
 LPD3DVECTOR lpvVelocity
);

Parameters

lpvVelocity
Address of a D3DVECTOR structure that will contain the listener's current
velocity.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

Velocity is used only for Doppler effects. It does not actually move the listener. To
change the listener's position, use the IDirectSound3DListener::SetPosition
method. The default velocity is (0,0,0).

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::SetVelocity

IDirectSound3DListener::SetAllParamete
rs

[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::SetAllParameters method sets all 3-D listener
parameters from a given DS3DLISTENER structure that describes all aspects of the
3-D listener at a moment in time.

HRESULT SetAllParameters(

in.doc – page 111

 LPCDS3DLISTENER lpcListener,
 DWORD dwApply
);

Parameters

lpcListener
Address of a DS3DLISTENER structure that contains information describing all
current 3-D listener parameters.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::GetAllParameters

IDirectSound3DListener::SetDistanceFac
tor

[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::SetDistanceFactor method sets the current distance
factor.

in.doc – page 112

HRESULT SetDistanceFactor(
 D3DVALUE flDistanceFactor,
 DWORD dwApply
);

Parameters

flDistanceFactor
New distance factor.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

For additional information about distance factors, see Distance Factor.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::GetDistanceFactor

in.doc – page 113

IDirectSound3DListener::SetDopplerFact
or

[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::SetDopplerFactor method sets the current Doppler
effect factor.

HRESULT SetDopplerFactor(
 D3DVALUE flDopplerFactor,
 DWORD dwApply
);

Parameters

flDopplerFactor
New Doppler factor value.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The Doppler factor has a range of DS3D_MINDOPPLERFACTOR (no Doppler
effects) to DS3D_MAXDOPPLERFACTOR (as currently defined, 10 times the
Doppler effects found in the real world). The default value is
DS3D_DEFAULTDOPPLERFACTOR (1.0). For additional information, see
Doppler Factor.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 114

Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::GetDopplerFactor

IDirectSound3DListener::SetOrientation
[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::SetOrientation method sets the listener's current
orientation in terms of two vectors: a front vector and a top vector.

HRESULT SetOrientation(
 D3DVALUE xFront,
 D3DVALUE yFront,
 D3DVALUE zFront,
 D3DVALUE xTop,
 D3DVALUE yTop,
 D3DVALUE zTop,
 DWORD dwApply
);

Parameters

xFront, yFront, and zFront
Values whose types are D3DVALUE and that represent the coordinates of the
front orientation vector.

xTop, yTop, and zTop
Values whose types are D3DVALUE and that represent the coordinates of the
top orientation vector.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

in.doc – page 115

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The front vector points in the direction of the listener's nose, and the top vector points
out the top of the listener's head. By default, the front vector is (0,0,1.0) and the top
vector is (0,1.0,0).

The top vector must be at right angles to the front vector. If necessary, DirectSound
adjusts the front vector after setting the top vector.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::GetOrientation

IDirectSound3DListener::SetPosition
[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::SetPosition method sets the listener's current
position, in distance units. By default, these units are meters, but this can be changed
by calling the IDirectSound3DListener::SetDistanceFactor method.

HRESULT SetPosition(
 D3DVALUE x,
 D3DVALUE y,
 D3DVALUE z,
 DWORD dwApply
);

Parameters

x, y, and z
Values whose types are D3DVALUE and that represent the coordinates of the
listener's new position vector. Note that DirectSound may adjust these values to
prevent floating-point overflow.

in.doc – page 116

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::GetPosition

IDirectSound3DListener::SetRolloffFacto
r

[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::SetRolloffFactor method sets the rolloff factor.

HRESULT SetRolloffFactor(
 D3DVALUE flRolloffFactor,
 DWORD dwApply
);

Parameters

flRolloffFactor
New rolloff factor.

in.doc – page 117

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The rolloff factor has a range of DS3D_MINROLLOFFFACTOR (no rolloff) to
DS3D_MAXROLLOFFFACTOR (as currently defined, 10 times the rolloff found in
the real world). The default value is DS3D_DEFAULTROLLOFFFACTOR (1.0).
For additional information, see Rolloff Factor.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::GetRolloffFactor

IDirectSound3DListener::SetVelocity
[This is preliminary documentation and subject to change.]

The IDirectSound3DListener::SetVelocity method sets the listener's velocity.

HRESULT SetVelocity(
 D3DVALUE x,
 D3DVALUE y,
 D3DVALUE z,
 DWORD dwApply

in.doc – page 118

);

Parameters

x, y, and z
Values whose types are D3DVALUE and that represent the coordinates of the
listener's new velocity vector. Note that DirectSound may adjust these values to
prevent floating-point overflow.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:

DS3D_DEFERRED
Settings are not applied until the application calls the
IDirectSound3DListener::CommitDeferredSettings method. This allows
the application to change several settings and generate a single recalculation.

DS3D_IMMEDIATE
Settings are applied immediately, causing the system to recalculate the 3-D
coordinates for all 3-D sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

Velocity is used only for Doppler effects. It does not actually move the listener. To
change the listener's position, use the IDirectSound3DListener::SetPosition
method. The default velocity is (0,0,0).

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound3DListener::GetVelocity

in.doc – page 119

IDirectSoundBuffer
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectSoundBuffer interface to create
DirectSoundBuffer objects and set up the environment.

The interface is obtained by using the IDirectSound::CreateSoundBuffer method.

The IDirectSoundBuffer methods can be organized into the following groups:

Information GetCaps

GetFormat

GetStatus

SetFormat

Memory management Initialize

Restore

Play management GetCurrentPosition

Lock

Play

SetCurrentPosition

Stop

Unlock

Sound management GetFrequency

GetPan

GetVolume

SetFrequency

SetPan

SetVolume

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

AddRef

QueryInterface

Release

The LPDIRECTSOUNDBUFFER type is defined as a pointer to the
IDirectSoundBuffer interface:

typedef struct IDirectSoundBuffer *LPDIRECTSOUNDBUFFER;

in.doc – page 120

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundBuffer::GetCaps
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::GetCaps method retrieves the capabilities of the
DirectSoundBuffer object.

HRESULT GetCaps(
 LPDSBCAPS lpDSBufferCaps
);

Parameters

lpDSBufferCaps
Address of a DSBCAPS structure to contain the capabilities of this sound buffer.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The DSBCAPS structure contains similar information to the DSBUFFERDESC
structure passed to the IDirectSound::CreateSoundBuffer method, with some
additional information. This additional information can include the buffer's location,
either in hardware or software, and some cost measures. Examples of cost measures
include the time it takes to download to a hardware buffer and the processing
overhead required to mix and play the buffer when it is in the system memory.

The flags specified in the dwFlags member of the DSBCAPS structure are the same
flags used by the DSBUFFERDESC structure. The only difference is that in the
DSBCAPS structure, either DSBCAPS_LOCHARDWARE or
DSBCAPS_LOCSOFTWARE will be specified according to the location of the
buffer memory. In the DSBUFFERDESC structure, these flags are optional and,
depending on which flag is specified, force the buffer to be located in either hardware
or software.

in.doc – page 121

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

DSBCAPS, DSBUFFERDESC, IDirectSoundBuffer,
IDirectSound::CreateSoundBuffer

IDirectSoundBuffer::GetCurrentPosition
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::GetCurrentPosition method retrieves the current position
of the play and write cursors in the sound buffer.

HRESULT GetCurrentPosition(
 LPDWORD lpdwCurrentPlayCursor,
 LPDWORD lpdwCurrentWriteCursor
);

Parameters

lpdwCurrentPlayCursor
Address of a variable to contain the current play position in the
DirectSoundBuffer object. This position is an offset within the sound buffer and
is specified in bytes. This parameter can be NULL if the current play position is
not wanted.

lpdwCurrentWriteCursor
Address of a variable to contain the current write position in the
DirectSoundBuffer object. This position is an offset within the sound buffer and
is specified in bytes. This parameter can be NULL if the current write position is
not wanted.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

in.doc – page 122

Remarks

The write cursor indicates the position at which it is safe to write new data to the
buffer. The write cursor always leads the play cursor, typically by about 15
milliseconds' worth of audio data. For more information, see Current Play and Write
Positions.

It is always safe to change data that is behind the position indicated by the
lpdwCurrentPlayCursor parameter.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::SetCurrentPosition

IDirectSoundBuffer::GetFormat
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::GetFormat method retrieves a description of the format
of the sound data in the buffer, or the buffer size needed to retrieve the format
description.

HRESULT GetFormat(
 LPWAVEFORMATEX lpwfxFormat,
 DWORD dwSizeAllocated,
 LPDWORD lpdwSizeWritten
);

Parameters

lpwfxFormat
Address of the WAVEFORMATEX structure to contain a description of the
sound data in the buffer. To retrieve the buffer size needed to contain the format
description, specify NULL. In this case the DWORD pointed to by the
lpdwSizeWritten parameter will receive the size of the structure needed to receive
complete format information.

dwSizeAllocated

in.doc – page 123

Size, in bytes, of the WAVEFORMATEX structure. DirectSound writes, at
most, dwSizeAllocated bytes to that pointer; if the WAVEFORMATEX
structure requires more memory, it is truncated.

lpdwSizeWritten
Address of a variable to contain the number of bytes written to the
WAVEFORMATEX structure. This parameter can be NULL.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

Remarks

The WAVEFORMATEX structure can have a variable length that depends on the
details of the format. Before retrieving the format description, the application should
query the DirectSoundBuffer object for the size of the format by calling this method
and specifying NULL for the lpwfxFormat parameter. The size of the structure will be
returned in the lpdwSizeWritten parameter. The application can then allocate
sufficient memory and call IDirectSoundBuffer::GetFormat again to retrieve the
format description.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::SetFormat

IDirectSoundBuffer::GetFrequency
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::GetFrequency method retrieves the frequency, in samples
per second, at which the buffer is playing.

HRESULT GetFrequency(
 LPDWORD lpdwFrequency
);

in.doc – page 124

Parameters

lpdwFrequency
Address of the variable that represents the frequency at which the audio buffer is
being played.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_CONTROLUNAVAIL

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

The frequency value will be in the range of DSBFREQUENCY_MIN to
DSBFREQUENCY_MAX. These values are currently defined in Dsound.h as 100
and 100,000 respectively.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::SetFrequency

IDirectSoundBuffer::GetPan
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::GetPan method retrieves a variable that represents the
relative volume between the left and right audio channels.

HRESULT GetPan(
 LPLONG lplPan
);

in.doc – page 125

Parameters

lplPan
Address of a variable to contain the relative mix between the left and right
speakers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_CONTROLUNAVAIL

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

The returned value is measured in hundredths of a decibel (dB), in the range of
DSBPAN_LEFT to DSBPAN_RIGHT. These values are currently defined in
Dsound.h as -10,000 and 10,000 respectively. The value DSBPAN_LEFT means the
right channel is attenuated by 100 dB. The value DSBPAN_RIGHT means the left
channel is attenuated by 100 dB. The neutral value is DSBPAN_CENTER, defined as
zero. This value of 0 in the lplPan parameter means that both channels are at full
volume (they are attenuated by 0 decibels). At any setting other than
DSBPAN_CENTER, one of the channels is at full volume and the other is attenuated.

A pan of -2173 means that the left channel is at full volume and the right channel is
attenuated by 21.73 dB. Similarly, a pan of 870 means that the left channel is
attenuated by 8.7 dB and the right channel is at full volume. A pan of
DSBPAN_LEFT means that the right channel is silent and the sound is all the way to
the left, while a pan of DSBPAN_RIGHT means that the left channel is silent and the
sound is all the way to the right.

The pan control acts cumulatively with the volume control.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

in.doc – page 126

See Also

IDirectSoundBuffer, IDirectSoundBuffer::GetVolume,
IDirectSoundBuffer::SetPan, IDirectSoundBuffer::SetVolume

IDirectSoundBuffer::GetStatus
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::GetStatus method retrieves the current status of the sound
buffer.

HRESULT GetStatus(
 LPDWORD lpdwStatus
);

Parameters

lpdwStatus
Address of a variable to contain the status of the sound buffer. The status can be
a combination of the following flags:

DSBSTATUS_BUFFERLOST
The buffer is lost and must be restored before it can be played or locked.

DSBSTATUS_LOOPING
The buffer is being looped. If this value is not set, the buffer will stop when it
reaches the end of the sound data. Note that if this value is set, the buffer must
also be playing.

DSBSTATUS_PLAYING
The buffer is playing. If this value is not set, the buffer is stopped.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

in.doc – page 127

See Also

IDirectSoundBuffer

IDirectSoundBuffer::GetVolume
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::GetVolume method retrieves the current volume for this
sound buffer.

HRESULT GetVolume(
 LPLONG lplVolume
);

Parameters

lplVolume
Address of the variable to contain the volume associated with the specified
DirectSound buffer.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_CONTROLUNAVAIL

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

The volume is specified in hundredths of decibels (dB). Allowable values are between
DSBVOLUME_MAX (no attenuation) and DSBVOLUME_MIN (silence). These
values are currently defined in Dsound.h as 0 and -10,000 respectively. The value
DSBVOLUME_MAX represents the original, unadjusted volume of the stream. The
value DSBVOLUME_MIN indicates an audio volume attenuated by 100 dB, which,
for all practical purposes, is silence. Currently DirectSound does not support
amplification.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.

in.doc – page 128

 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::SetVolume

IDirectSoundBuffer::Initialize
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::Initialize method initializes a DirectSoundBuffer object if
it has not yet been initialized.

HRESULT Initialize(
 LPDIRECTSOUND lpDirectSound,
 LPCDSBUFFERDESC lpcDSBufferDesc
);

Parameters

lpDirectSound
Address of the DirectSound object associated with this DirectSoundBuffer
object.

lpcDSBufferDesc
Address of a DSBUFFERDESC structure that contains the values used to
initialize this sound buffer.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values.

DSERR_INVALIDPARAM

DSERR_ALREADYINITIALIZED

Remarks

Because the IDirectSound::CreateSoundBuffer method calls
IDirectSoundBuffer::Initialize internally, it is not needed for the current release of
DirectSound. This method is provided for future extensibility.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 129

Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

DSBUFFERDESC, IDirectSound::CreateSoundBuffer, IDirectSoundBuffer

IDirectSoundBuffer::Lock
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::Lock method obtains a valid write pointer to the sound
buffer's audio data.

HRESULT Lock(
 DWORD dwWriteCursor,
 DWORD dwWriteBytes,
 LPVOID lplpvAudioPtr1,
 LPDWORD lpdwAudioBytes1,
 LPVOID lplpvAudioPtr2,
 LPDWORD lpdwAudioBytes2,
 DWORD dwFlags
);

Parameters

dwWriteCursor
Offset, in bytes, from the start of the buffer to where the lock begins. This
parameter is ignored if DSBLOCK_FROMWRITECURSOR is specified in the
dwFlags parameter.

dwWriteBytes
Size, in bytes, of the portion of the buffer to lock. Note that the sound buffer is
conceptually circular.

lplpvAudioPtr1
Address of a pointer to contain the first block of the sound buffer to be locked.

lpdwAudioBytes1
Address of a variable to contain the number of bytes pointed to by the
lplpvAudioPtr1 parameter. If this value is less than the dwWriteBytes parameter,
lplpvAudioPtr2 will point to a second block of sound data.

lplpvAudioPtr2
Address of a pointer to contain the second block of the sound buffer to be locked.
If the value of this parameter is NULL, the lplpvAudioPtr1 parameter points to
the entire locked portion of the sound buffer.

lpdwAudioBytes2

in.doc – page 130

Address of a variable to contain the number of bytes pointed to by the
lplpvAudioPtr2 parameter. If lplpvAudioPtr2 is NULL, this value will be 0.

dwFlags
Flags modifying the lock event. The following flags are defined:

DSBLOCK_FROMWRITECURSOR
Locks from the current write position, making a call to
IDirectSoundBuffer::GetCurrentPosition unnecessary. If this flag is
specified, the dwWriteCursor parameter is ignored.

DSBLOCK_ENTIREBUFFER
Locks the entire buffer. The dwWriteBytes parameter is ignored.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_BUFFERLOST

DSERR_INVALIDCALL

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

This method accepts an offset and a byte count, and returns two write pointers and
their associated sizes. Two pointers are required because sound buffers are circular. If
the locked bytes do not wrap around the end of the buffer, the second pointer,
lplpvAudioBytes2, will be NULL. However, if the bytes do wrap around, then the
second pointer will point to the beginning of the buffer.

If the application passes NULL for the lplpvAudioPtr2 and lpdwAudioBytes2
parameters, DirectSound will not lock the wraparound portion of the buffer.

The application should write data to the pointers returned by the
IDirectSoundBuffer::Lock method, and then call the IDirectSoundBuffer::Unlock
method to release the buffer back to DirectSound. The sound buffer should not be
locked for long periods of time; if it is, the play cursor will reach the locked bytes and
configuration-dependent audio problems, possibly random noise, will result.

Warning
This method returns a write pointer only. The application should not try to read
sound data from this pointer; the data might not be valid even though the
DirectSoundBuffer object contains valid sound data. For example, if the buffer is
located in on-board memory, the pointer might be an address to a temporary
buffer in main system memory. When IDirectSoundBuffer::Unlock is called,
this temporary buffer will be transferred to the on-board memory.

in.doc – page 131

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::GetCurrentPosition,
IDirectSoundBuffer::Unlock

IDirectSoundBuffer::Play
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::Play method causes the sound buffer to play from the
current position.

HRESULT Play(
 DWORD dwReserved1,
 DWORD dwReserved2,
 DWORD dwFlags
);

Parameters

dwReserved1
This parameter is reserved. Its value must be 0.

dwReserved2
This parameter is reserved. Its value must be 0.

dwFlags
Flags specifying how to play the buffer. The following flag is defined:

DSBPLAY_LOOPING
Once the end of the audio buffer is reached, play restarts at the beginning of
the buffer. Play continues until explicitly stopped. This flag must be set when
playing primary sound buffers.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_BUFFERLOST

in.doc – page 132

DSERR_INVALIDCALL

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

This method will cause a secondary sound buffer to be mixed into the primary buffer
and sent to the sound device. If this is the first buffer to play, it will implicitly create a
primary buffer and start playing that buffer; the application need not explicitly direct
the primary buffer to play.

If the buffer specified in the method is already playing, the call to the method will
succeed and the buffer will continue to play. However, the flags defined in the most
recent call supersede flags defined in previous calls.

Primary buffers must be played with the DSBPLAY_LOOPING flag set.

This method will cause primary sound buffers to start playing to the sound device. If
the application is set to the DSSCL_WRITEPRIMARY cooperative level, this will
cause the audio data in the primary buffer to be sent to the sound device. However, if
the application is set to any other cooperative level, this method will ensure that the
primary buffer is playing even when no secondary buffers are playing; in that case,
silence will be played. This can reduce processing overhead when sounds are started
and stopped in sequence, because the primary buffer will be playing continuously
rather than stopping and starting between secondary buffers.

Note
Before this method can be called on any sound buffer, the application should call
the IDirectSound::SetCooperativeLevel method and specify a cooperative
level, typically DSSCL_NORMAL. If IDirectSound::SetCooperativeLevel has
not been called, the IDirectSoundBuffer::Play method returns with DS_OK, but
no sound will be produced until IDirectSound::SetCooperativeLevel is called.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSound::SetCooperativeLevel

in.doc – page 133

IDirectSoundBuffer::Restore
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::Restore method restores the memory allocation for a lost
sound buffer for the specified DirectSoundBuffer object.

HRESULT Restore();

Parameters

None.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_BUFFERLOST

DSERR_INVALIDCALL

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

If the application does not have the input focus, IDirectSoundBuffer::Restore might
not succeed. For example, if the application with the input focus has the
DSSCL_WRITEPRIMARY cooperative level, no other application will be able to
restore its buffers. Similarly, an application with the DSSCL_WRITEPRIMARY
cooperative level must have the input focus to restore its primary sound buffer.

Once DirectSound restores the buffer memory, the application must rewrite the buffer
with valid sound data. DirectSound cannot restore the contents of the memory, only
the memory itself.

The application can receive notification that a buffer is lost when it specifies that
buffer in a call to the IDirectSoundBuffer::Lock or IDirectSoundBuffer::Play
method. These methods return DSERR_BUFFERLOST to indicate a lost buffer. The
IDirectSoundBuffer::GetStatus method can also be used to retrieve the status of the
sound buffer and test for the DSBSTATUS_BUFFERLOST flag.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.

in.doc – page 134

 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::Lock, IDirectSoundBuffer::Play,
IDirectSoundBuffer::GetStatus

IDirectSoundBuffer::SetCurrentPosition
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::SetCurrentPosition method moves the current play
position for secondary sound buffers.

HRESULT SetCurrentPosition(
 DWORD dwNewPosition
);

Parameters

dwNewPosition
New position, in bytes, from the beginning of the buffer that will be used when
the sound buffer is played.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDCALL

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

This method cannot be called on primary sound buffers.

If the buffer is playing, it will immediately move to the new position and continue. If
it is not playing, it will begin from the new position the next time the
IDirectSoundBuffer::Play method is called.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 135

 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::GetCurrentPosition,
IDirectSoundBuffer::Play

IDirectSoundBuffer::SetFormat
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::SetFormat method sets the format of the primary sound
buffer for the application. Whenever this application has the input focus, DirectSound
will set the primary buffer to the specified format.

HRESULT SetFormat(
 LPCWAVEFORMATEX lpcfxFormat
);

Parameters

lpcfxFormat
Address of a WAVEFORMATEX structure that describes the new format for
the primary sound buffer.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_BADFORMAT

DSERR_INVALIDCALL

DSERR_INVALIDPARAM

DSERR_OUTOFMEMORY

DSERR_PRIOLEVELNEEDED

DSERR_UNSUPPORTED

Remarks

If this method is called on a primary buffer that is being accessed in write-primary
cooperative level, the buffer must be stopped before
IDirectSoundBuffer::SetFormat is called. If this method is being called on a
primary buffer for a non-write-primary level, DirectSound will implicitly stop the

in.doc – page 136

primary buffer, change the format, and restart the primary; the application need not do
this explicitly.

This method will succeed even if the hardware does not support the requested format.
DirectSound will set the buffer to the closest supported format, then mix the sound in
the requested format and convert it before sending it to the primary buffer. To
determine whether this is happening, an application can call the
IDirectSoundBuffer::GetFormat method for the primary buffer and compare the
result with the format that was requested with the SetFormat method.

A call to this method also fails if the calling application has the DSSCL_NORMAL
cooperative level.

This method is not valid for secondary sound buffers. If a secondary sound buffer
requires a format change, the application should create a new DirectSoundBuffer
object using the new format.

DirectSound supports PCM formats; it does not currently support compressed
formats.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::GetFormat

IDirectSoundBuffer::SetFrequency
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::SetFrequency method sets the frequency at which the
audio samples are played.

HRESULT SetFrequency(
 DWORD dwFrequency
);

Parameters

dwFrequency
New frequency, in hertz (Hz), at which to play the audio samples. The value
must be in the range DSBFREQUENCY_MIN to DSBFREQUENCY_MAX.
These values are currently defined in Dsound.h as 100 and 100,000 respectively.

in.doc – page 137

If the value is DSBFREQUENCY_ORIGINAL, the frequency is reset to the
default value in the current buffer format. This format is specified in the
IDirectSound::CreateSoundBuffer method.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_CONTROLUNAVAIL

DSERR_GENERIC

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

Increasing or decreasing the frequency changes the perceived pitch of the audio data.
This method does not affect the format of the buffer.

This method is not valid for primary sound buffers.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSound::CreateSoundBuffer,
IDirectSoundBuffer::GetFrequency, IDirectSoundBuffer::Play,
IDirectSoundBuffer::SetFormat

IDirectSoundBuffer::SetPan
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::SetPan method specifies the relative volume between the
left and right channels.

HRESULT SetPan(
 LONG lPan
);

in.doc – page 138

Parameters

lPan
Relative volume between the left and right channels.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_CONTROLUNAVAIL

DSERR_GENERIC

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

The value in lPan is measured in hundredths of a decibel (dB), in the range of
DSBPAN_LEFT to DSBPAN_RIGHT. These values are currently defined in
Dsound.h as -10,000 and 10,000 respectively. The value DSBPAN_LEFT means the
right channel is attenuated by 100 dB. The value DSBPAN_RIGHT means the left
channel is attenuated by 100 dB. The neutral value is DSBPAN_CENTER, defined as
zero. This value of 0 in the lplPan parameter means that both channels are at full
volume (they are attenuated by 0 decibels). At any setting other than
DSBPAN_CENTER, one of the channels is at full volume and the other is attenuated.

A pan of -2173 means that the left channel is at full volume and the right channel is
attenuated by 21.73 dB. Similarly, a pan of 870 means that the left channel is
attenuated by 8.7 dB and the right channel is at full volume. A pan of
DSBPAN_LEFT means that the right channel is silent and the sound is all the way to
the left, while a pan of DSBPAN_RIGHT means that the left channel is silent and the
sound is all the way to the right.

The pan control acts cumulatively with the volume control.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

in.doc – page 139

See Also

IDirectSoundBuffer, IDirectSoundBuffer::GetPan,
IDirectSoundBuffer::GetVolume, IDirectSoundBuffer::SetVolume

IDirectSoundBuffer::SetVolume
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::SetVolume method changes the volume of a sound buffer.

HRESULT SetVolume(
 LONG lVolume
);

Parameters

lVolume
New volume requested for this sound buffer.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_CONTROLUNAVAIL

DSERR_GENERIC

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

The volume is specified in hundredths of decibels (dB). Allowable values are between
DSBVOLUME_MAX (no attenuation) and DSBVOLUME_MIN (silence). These
values are currently defined in Dsound.h as 0 and -10,000 respectively. The value
DSBVOLUME_MAX represents the original, unadjusted volume of the stream. The
value DSBVOLUME_MIN indicates an audio volume attenuated by 100 dB, which,
for all practical purposes, is silence. Currently DirectSound does not support
amplification.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.

in.doc – page 140

 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::GetPan,
IDirectSoundBuffer::GetVolume, IDirectSoundBuffer::SetPan

IDirectSoundBuffer::Stop
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::Stop method causes the sound buffer to stop playing.

HRESULT Stop();

Parameters

None.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

For secondary sound buffers, IDirectSoundBuffer::Stop will set the current position
of the buffer to the sample that follows the last sample played. This means that if the
IDirectSoundBuffer::Play method is called on the buffer, it will continue playing
where it left off.

For primary sound buffers, if an application has the DSSCL_WRITEPRIMARY
level, this method will stop the buffer and reset the current position to 0 (the
beginning of the buffer). This is necessary because the primary buffers on most sound
cards can play only from the beginning of the buffer.

However, if IDirectSoundBuffer::Stop is called on a primary buffer and the
application has a cooperative level other than DSSCL_WRITEPRIMARY, this
method simply reverses the effects of IDirectSoundBuffer::Play. It configures the
primary buffer to stop if no secondary buffers are playing. If other buffers are playing
in this or other applications, the primary buffer will not actually stop until they are
stopped. This method is useful because playing the primary buffer consumes
processing overhead even if the buffer is playing sound data with the amplitude of 0
decibels.

in.doc – page 141

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::Play

IDirectSoundBuffer::Unlock
[This is preliminary documentation and subject to change.]

The IDirectSoundBuffer::Unlock method releases a locked sound buffer.

HRESULT Unlock(
 LPVOID lpvAudioPtr1,
 DWORD dwAudioBytes1,
 LPVOID lpvAudioPtr2,
 DWORD dwAudioBytes2
);

Parameters

lpvAudioPtr1
Address of the value retrieved in the lplpvAudioPtr1 parameter of the
IDirectSoundBuffer::Lock method.

dwAudioBytes1
Number of bytes actually written to the lpvAudioPtr1 parameter. It should not
exceed the number of bytes returned by the IDirectSoundBuffer::Lock method.

lpvAudioPtr2
Address of the value retrieved in the lplpvAudioPtr2 parameter of the
IDirectSoundBuffer::Lock method.

dwAudioBytes2
Number of bytes actually written to the lpvAudioPtr2 parameter. It should not
exceed the number of bytes returned by the IDirectSoundBuffer::Lock method.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDCALL

in.doc – page 142

DSERR_INVALIDPARAM

DSERR_PRIOLEVELNEEDED

Remarks

An application must pass both pointers, lpvAudioPtr1 and lpvAudioPtr2, returned by
the IDirectSoundBuffer::Lock method to ensure the correct pairing of
IDirectSoundBuffer::Lock and IDirectSoundBuffer::Unlock. The second pointer
is needed even if 0 bytes were written to the second pointer.

Applications must pass the number of bytes actually written to the two pointers in the
parameters dwAudioBytes1 and dwAudioBytes2.

Make sure the sound buffer does not remain locked for long periods of time.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSoundBuffer, IDirectSoundBuffer::GetCurrentPosition,
IDirectSoundBuffer::Lock

IDirectSoundCapture
[This is preliminary documentation and subject to change.]

The methods of the IDirectSoundCapture interface are used to create sound capture
buffers.

The interface is obtained by using the DirectSoundCaptureCreate function.

This reference section gives information on the following methods of the
IDirectSoundCapture interface:

Creation CreateCaptureBuffer

Initialize

Capabilities GetCaps

Like all COM interfaces, the IDirectSoundCapture interface also inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

in.doc – page 143

AddRef

QueryInterface

Release

The LPDIRECTSOUNDCAPTURE type is defined as a pointer to the
IDirectSoundCapture interface:

typedef struct IDirectSoundCapture *LPDIRECTSOUNDCAPTURE;

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundCapture::CreateCaptureBuff
er

[This is preliminary documentation and subject to change.]

The IDirectSoundCapture::CreateCaptureBuffer method creates a capture buffer.

Unlike DirectSound, which can mix several sounds into one sound for output,
DirectSoundCapture cannot do the exact opposite and extract various sounds from
one input sound. For the first version, DirectSoundCapture allows only one capture
buffer to exist at any given time per capture device.

HRESULT CreateCaptureBuffer(
 LPDSCBUFFERDESC lpDSCBufferDesc,
 LPLPDIRECTSOUNDCAPTUREBUFFER lplpDirectSoundCaptureBuffer,
 LPUNKNOWN pUnkOuter
);

Parameters

lpDSCBufferDesc
Pointer to a DSCBUFFERDESC structure containing values for the capture
buffer being created.

lplpDirectSoundCaptureBuffer
Address of the IDirectSoundCaptureBuffer interface pointer if successful.

pUnkOuter
Controlling IUnknown of the aggregate. Its value must be NULL.

in.doc – page 144

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_BADFORMAT

DSERR_GENERIC

DSERR_NODRIVER

DSERR_OUTOFMEMORY

DSERR_UNINITIALIZED

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundCapture::GetCaps
[This is preliminary documentation and subject to change.]

The IDirectSoundCapture::GetCaps method obtains the capabilities of the capture
device.

HRESULT GetCaps(
 LPDSCCAPS lpDSCCaps
);

Parameters

lpDSCCaps
Pointer to a DSCCAPS structure to be filled by the capture device. When the
method is called, the dwSize member must specify the size of the structure in
bytes.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

in.doc – page 145

DSERR_UNSUPPORTED

DSERR_NODRIVER

DSERR_OUTOFMEMORY

DSERR_UNINITIALIZED

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundCapture::Initialize
[This is preliminary documentation and subject to change.]

When CoCreateInstance is used to create a DirectSoundCapture object, the object
must be initialized with the IDirectSoundCapture::Initialize method. Calling this
method is not required when the DirectSoundCaptureCreate function is used to
create the object.

HRESULT Initialize(
 LPGUID lpGuid
);

Parameters

lpGuid
Address of the GUID specifying the sound driver to which the
DirectSoundCapture object binds. Use NULL to select the primary sound driver.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_NODRIVER

DSERR_OUTOFMEMORY

DSERR_ALREADYINITIALIZED

in.doc – page 146

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundCaptureBuffer
[This is preliminary documentation and subject to change.]

The methods of the IDirectSoundCaptureBuffer interface are used to manipulate
sound capture buffers.

The interface is obtained by calling the
IDirectSoundCapture::CreateCaptureBuffer method.

The methods of the IDirectSoundCaptureBuffer interface may be grouped as
follows:

Initialization Initialize

Information GetCaps

GetCurrentPosition

GetFormat

GetStatus

Capture management Lock

Start

Stop

Unlock

Like all COM interfaces, the IDirectSoundCaptureBuffer interface also inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

AddRef

QueryInterface

Release

The LPDIRECTSOUNDCAPTUREBUFFER type is defined as a pointer to the
IDirectSoundCaptureBuffer interface:

typedef struct IDirectSoundCaptureBuffer *LPDIRECTSOUNDCAPTUREBUFFER;

in.doc – page 147

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundCaptureBuffer::GetCaps
[This is preliminary documentation and subject to change.]

The IDirectSoundCaptureBuffer::GetCaps method returns the capabilities of the
buffer.

HRESULT GetCaps(
 LPDSCBCAPS lpDSCBCaps
);

Parameters

lpDSCBCaps
Pointer to a DSCBCAPS structure to be filled by the capture buffer. On input,
the dwSize member must specify the size of the structure in bytes.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_UNSUPPORTED

DSERR_OUTOFMEMORY

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

in.doc – page 148

IDirectSoundCaptureBuffer::GetCurrentP
osition

[This is preliminary documentation and subject to change.]

The IDirectSoundCaptureBuffer::GetCurrentPosition method gets the current
capture and read positions in the buffer.

The capture position is ahead of the read position. These positions are not always
identical due to possible buffering of captured data either on the physical device or in
the host. The data after the read position up to and including the capture position is
not necessarily valid data.

HRESULT GetCurrentPosition(
 LPDWORD lpdwCapturePosition,
 LPDWORD lpdwReadPosition
);

Parameters

lpdwCapturePosition
Address of a variable to receive the current capture position in the
DirectSoundCaptureBuffer object. This position is an offset within the capture
buffer and is specified in bytes. The value can be NULL if the caller is not
interested in this position information.

lpdwReadPosition
Address of a variable to receive the current position in the
DirectSoundCaptureBuffer object at which it is safe to read data. This position is
an offset within the capture buffer and is specified in bytes. The value can be
NULL if the caller is not interested in this position information.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_NODRIVER

DSERR_OUTOFMEMORY

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.

in.doc – page 149

 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundCaptureBuffer::GetFormat
[This is preliminary documentation and subject to change.]

The IDirectSoundCaptureBuffer::GetFormat method retrieves the current format
of the capture buffer.

HRESULT GetFormat(
 LPWAVEFORMATEX lpwfxFormat,
 DWORD dwSizeAllocated,
 LPDWORD lpdwSizeWritten
);

Parameters

lpwfxFormat
Address of the WAVEFORMATEX variable to contain a description of the
sound data in the capture buffer. To retrieve the buffer size needed to contain the
format description, specify NULL. In this case the DWORD pointed to by the
lpdwSizeWritten parameter will receive the size of the structure needed to receive
complete format information.

dwSizeAllocated
Size, in bytes, of the WAVEFORMATEX structure. DirectSoundCapture
writes, at most, dwSizeAllocated bytes to the structure; if the structure requires
more memory, it is truncated.

lpdwSizeWritten
Address of a variable to receive the number of bytes written to the
WAVEFORMATEX structure. This parameter can be NULL.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

in.doc – page 150

IDirectSoundCaptureBuffer::GetStatus
[This is preliminary documentation and subject to change.]

The IDirectSoundCaptureBuffer::GetStatus method retrieves the current status of
the capture buffer.

HRESULT GetStatus(
 DWORD *lpdwStatus
);

Parameters

lpdwStatus
Address of a variable to contain the status of the capture buffer. The status can be
set to one or more of the following:

DSCBSTATUS_CAPTURING
DSCBSTATUS_LOOPING

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be DSERR_INVALIDPARAM.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundCaptureBuffer::Initialize
[This is preliminary documentation and subject to change.]

The IDirectSoundCaptureBuffer::Initialize method initializes a
DirectSoundCaptureBuffer object if it has not yet been initialized.

HRESULT Initialize(
 LPDIRECTSOUNDCAPTURE lpDirectSoundCapture,
 LPCDSBUFFERDESC lpcDSBufferDesc
);

in.doc – page 151

Parameters

lpDirectSoundCapture
Address of the DirectSoundCapture object associated with this
DirectSoundCaptureBuffer object.

lpcDSBufferDesc
Address of a DSBUFFERDESC structure that contains the values used to
initialize this sound buffer.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_ALREADYINITIALIZED

Remarks

Because the IDirectSoundCapture::CreateCaptureBuffer method calls the
IDirectSoundCaptureBuffer::Initialize method internally, it is not needed for the
current release of DirectSound. This method is provided for future extensibility.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

DSBUFFERDESC, IDirectSoundCapture::CreateCaptureBuffer

IDirectSoundCaptureBuffer::Lock
[This is preliminary documentation and subject to change.]

The IDirectSoundCaptureBuffer::Lock method locks the buffer. Locking the buffer
returns pointers into the buffer, allowing the application to read or write audio data
into that memory.

HRESULT Lock(
 DWORD dwReadCursor,
 DWORD dwReadBytes,

in.doc – page 152

 LPVOID *lplpvAudioPtr1,
 LPDWORD lpdwAudioBytes1,
 LPVOID *lplpvAudioPtr2,
 LPDWORD lpdwAudioBytes2,
 DWORD dwFlags
);

Parameters

dwReadCursor
Offset, in bytes, from the start of the buffer to where the lock begins.

dwReadBytes
Size, in bytes, of the portion of the buffer to lock. Note that the capture buffer is
conceptually circular.

lplpvAudioPtr1
Address of a pointer to contain the first block of the capture buffer to be locked.

lpdwAudioBytes1
Address of a variable to contain the number of bytes pointed to by the
lplpvAudioPtr1 parameter. If this value is less than the dwReadBytes parameter,
lplpvAudioPtr2 will point to a second block of data.

lplpvAudioPtr2
Address of a pointer to contain the second block of the capture buffer to be
locked. If the value of this parameter is NULL, the lplpvAudioPtr1 parameter
points to the entire locked portion of the capture buffer.

lpdwAudioBytes2
Address of a variable to contain the number of bytes pointed to by the
lplpvAudioPtr2 parameter. If lplpvAudioPtr2 is NULL, this value will be 0.

dwFlags
Flags modifying the lock event. This value can be zero or the following flag:

DSCBLOCK_ENTIREBUFFER
The dwReadBytes parameter is to be ignored and the entire capture buffer is to
be locked.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following values:

DSERR_INVALIDPARAM
DSERR_INVALIDCALL

Remarks

This method accepts an offset and a byte count, and returns two read pointers and
their associated sizes. Two pointers are required because capture buffers are circular.

in.doc – page 153

If the locked bytes do not wrap around the end of the buffer, the second pointer,
lplpvAudioBytes2, will be NULL. However, if the bytes do wrap around, then the
second pointer will point to the beginning of the buffer.

If the application passes NULL for the lplpvAudioPtr2 and lpdwAudioBytes2
parameters, DirectSoundCapture will not lock the wraparound portion of the buffer.

The application should read data from the pointers returned by the
IDirectSoundCaptureBuffer::Lock method and then call the
IDirectSoundCaptureBuffer::Unlock method to release the buffer back to
DirectSoundCapture. The sound buffer should not be locked for long periods of time;
if it is, the capture cursor will reach the locked bytes and configuration-dependent
audio problems may result.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundCaptureBuffer::Start
[This is preliminary documentation and subject to change.]

The IDirectSoundCaptureBuffer::Start method puts the capture buffer into the
capture state and begins capturing data into the buffer. If the capture buffer is already
in the capture state then the method has no effect.

HRESULT Start(
 DWORD dwFlags
);

Parameters

dwFlags
Flags that specify the behavior for the capture buffer when capturing sound data.
Flags specifying how to play the buffer. The following flag is defined:

DSCBSTART_LOOPING
Once the end of the buffer is reached, capture restarts at the beginning and
continues until explicitly stopped.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

in.doc – page 154

DSERR_INVALIDPARAM

DSERR_NODRIVER

DSERR_OUTOFMEMORY

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundCaptureBuffer::Stop
[This is preliminary documentation and subject to change.]

The IDirectSoundCaptureBuffer::Stop method puts the capture buffer into the
"stop" state and stops capturing data. If the capture buffer is already in the stop state
then the method has no effect.

HRESULT Stop(
 void
);

Parameters

None.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_NODRIVER

DSERR_OUTOFMEMORY

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

in.doc – page 155

IDirectSoundCaptureBuffer::Unlock
[This is preliminary documentation and subject to change.]

The IDirectSoundCaptureBuffer::Unlock method unlocks the buffer.

HRESULT Unlock(
 LPVOID lpvAudioPtr1,
 DWORD dwAudioBytes1,
 LPVOID lpvAudioPtr2,
 DWORD dwAudioBytes2
);

Parameters

lpvAudioPtr1
Address of the value retrieved in the lplpvAudioPtr1 parameter of the
IDirectSoundCaptureBuffer::Lock method.

dwAudioBytes1
Number of bytes actually read from the lpvAudioPtr1 parameter. It should not
exceed the number of bytes returned by the IDirectSoundCaptureBuffer::Lock
method.

lpvAudioPtr2
Address of the value retrieved in the lplpvAudioPtr2 parameter of the
IDirectSoundCaptureBuffer::Lock method.

dwAudioBytes2
Number of bytes actually read from the lpvAudioPtr2 parameter. It should not
exceed the number of bytes returned by the IDirectSoundCaptureBuffer::Lock
method.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following values:

DSERR_INVALIDPARAM
DSERR_INVALIDCALL

Remarks

An application must pass both pointers, lpvAudioPtr1 and lpvAudioPtr2, returned by
the IDirectSoundCaptureBuffer::Lock method to ensure the correct pairing of
IDirectSoundCaptureBuffer::Lock and IDirectSoundCaptureBuffer::Unlock.
The second pointer is needed even if zero bytes were written to the second pointer.

Applications must pass the number of bytes actually written to the two pointers in the
parameters dwAudioBytes1 and dwAudioBytes2.

in.doc – page 156

Make sure that the capture buffer does not remain locked for long periods of time.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

IDirectSoundNotify
[This is preliminary documentation and subject to change.]

The IDirectSoundNotify interface provides a mechanism for setting up notification
events for a playback or capture buffer.

The interface is obtained by calling the QueryInterface method of an existing
interface on a DirectSoundBuffer object. For an example, see Play Buffer
Notification.

The interface has the following method:

SetNotificationPositions

Like all COM interfaces, the IDirectSoundNotify interface also inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

AddRef

QueryInterface

Release

The LPDIRECTSOUNDNOTIFY type is defined as a pointer to the
IDirectSoundNotify interface:

typedef struct IDirectSoundNotify *LPDIRECTSOUNDNOTIFY;

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

in.doc – page 157

IDirectSoundNotify::SetNotificationPositi
ons

[This is preliminary documentation and subject to change.]

The IDirectSoundCaptureBuffer::SetNotificationPositions method sets the
notification positions. During capture or playback, whenever the position reaches an
offset specified in one of the DSBPOSITIONNOTIFY structures in the caller-
supplied array, the associated event will be signaled. The position tracked in playback
is the current play position; in capture it is the current read position.

HRESULT SetNotificationPositions(
 DWORD cPositionNotifies,
 LPCDSBPOSITIONNOTIFY lpcPositionNotifies
);

Parameters

cPositionNotifies
Number of DSBPOSITIONNOTIFY structures.

lpcPositionNotifies
Pointer to an array of DSBPOSITIONNOTIFY structures.

Return Values

If the method succeeds, the return value is DS_OK.

If the method fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_OUTOFMEMORY

Remarks

The value DSBPN_OFFSETSTOP can be specified in the dwOffset member to tell
DirectSound to signal the associated event when the IDirectSoundBuffer::Stop or
IDirectSoundCaptureBuffer::Stop method is called or when the end of the buffer
has been reached and the playback is not looping. If it is used, this should be the last
item in the position-notify array.

If a position-notify array has already been set, calling this function again will replace
the previous position-notify array.

The buffer must be stopped when this method is called.

in.doc – page 158

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

Functions
[This is preliminary documentation and subject to change.]

This section contains reference information for the following DirectSound and
DirectSoundCapture global functions:

· DirectSoundCaptureCreate

· DirectSoundCaptureEnumerate

· DirectSoundCreate

· DirectSoundEnumerate

DirectSoundCaptureCreate
[This is preliminary documentation and subject to change.]

The DirectSoundCaptureCreate function creates and initializes an object that
supports the IDirectSoundCapture interface.

HRESULT WINAPI DirectSoundCaptureCreate(
 LPGUID lpGUID,
 LPDIRECTSOUNDCAPTURE *lplpDSC,
 LPUNKNOWN pUnkOuter
);

Parameters

lpGUID
Address of the GUID that identifies the sound capture device. The value of this
parameter must be one of the GUIDs returned by
DirectSoundCaptureEnumerate, or NULL for the default device.

lplpDSC
Address of a pointer to a DirectSoundCapture object created in response to this
function.

pUnkOuter
Controlling unknown of the aggregate. Its value must be NULL.

in.doc – page 159

Return Values

If the function succeeds, the return value is DS_OK.

If the function fails, the return value may be one of the following error values:

DSERR_INVALIDPARAM

DSERR_NOAGGREGATION

DSERR_OUTOFMEMORY

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

DirectSoundCaptureEnumerate
[This is preliminary documentation and subject to change.]

The DirectSoundCaptureEnumerate function enumerates the DirectSoundCapture
objects installed in the system.

HRESULT WINAPI DirectSoundCaptureEnumerate(
 LPDSENUMCALLBACK lpDSEnumCallback,
 LPVOID lpContext
);

Parameters

lpDSEnumCallback
Address of the DSEnumCallback function that will be called for each
DirectSoundCapture object installed in the system.

lpContext
Address of the user-defined context passed to the enumeration callback function
every time that function is called.

Return Values

If the function succeeds, the return value is DS_OK.

If the function fails, the return value may be DSERR_INVALIDPARAM.

in.doc – page 160

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

DirectSoundCreate
[This is preliminary documentation and subject to change.]

The DirectSoundCreate function creates and initializes an IDirectSound interface.

HRESULT WINAPI DirectSoundCreate(
 LPGUID lpGuid,
 LPDIRECTSOUND * ppDS,
 LPUNKNOWN * pUnkOuter
);

Parameters

lpGuid
Address of the GUID that identifies the sound device. The value of this
parameter must be one of the GUIDs returned by DirectSoundEnumerate, or
NULL for the default device.

ppDS
Address of a pointer to a DirectSound object created in response to this function.

pUnkOuter
Controlling unknown of the aggregate. Its value must be NULL.

Return Values

If the function succeeds, the return value is DS_OK.

If the function fails, the return value may be one of the following error values:

DSERR_ALLOCATED

DSERR_INVALIDPARAM

DSERR_NOAGGREGATION

DSERR_NODRIVER

DSERR_OUTOFMEMORY

in.doc – page 161

Remarks

The application must call the IDirectSound::SetCooperativeLevel method
immediately after creating a DirectSound object.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

IDirectSound::GetCaps, IDirectSound::SetCooperativeLevel

DirectSoundEnumerate
[This is preliminary documentation and subject to change.]

The DirectSoundEnumerate function enumerates the DirectSound drivers installed
in the system.

HRESULT WINAPI DirectSoundEnumerate(
 LPDSENUMCALLBACK lpDSEnumCallback,
 LPVOID lpContext
);

Parameters

lpDSEnumCallback
Address of the DSEnumCallback function that will be called for each
DirectSound object installed in the system.

lpContext
Address of the user-defined context passed to the enumeration callback function
every time that function is called.

Return Values

If the function succeeds, the return value is DS_OK.

If the function fails, the return value may be DSERR_INVALIDPARAM.

in.doc – page 162

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: Use dsound.lib.

See Also

DSEnumCallback

Callback Function
[This is preliminary documentation and subject to change.]

This section contains reference information for the following DirectSound callback
function.

· DSEnumCallback

DSEnumCallback
[This is preliminary documentation and subject to change.]

DSEnumCallback is an application-defined callback function that enumerates the
DirectSound drivers. The system calls this function in response to the application's
previous call to the DirectSoundEnumerate or DirectSoundCaptureEnumerate
function.

BOOL CALLBACK DSEnumCallback(
 LPGUID lpGuid,
 LPCSTR lpcstrDescription,
 LPCSTR lpcstrModule,
 LPVOID lpContext
);

Parameters

lpGuid
Address of the GUID that identifies the DirectSound driver being enumerated.
This value can be passed to the DirectSoundCreate function to create a
DirectSound object for that driver.

lpcstrDescription
Address of a null-terminated string that provides a textual description of the
DirectSound device.

in.doc – page 163

lpcstrModule
Address of a null-terminated string that specifies the module name of the
DirectSound driver corresponding to this device.

lpContext
Address of application-defined data that is passed to each callback function.

Return Values

Returns TRUE to continue enumerating drivers, or FALSE to stop.

Remarks

The application can save the strings passed in the lpcstrDescription and lpcstrModule
parameters by copying them to memory allocated from the heap. The memory used to
pass the strings to this callback function is valid only while this callback function is
running.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.
 Import Library: User-defined.

See Also

DirectSoundEnumerate

Structures
[This is preliminary documentation and subject to change.]

This section contains reference information for the following structures used with
DirectSound:

· DS3DBUFFER

· DS3DLISTENER

· DSBCAPS

· DSBPOSITIONNOTIFY

· DSBUFFERDESC

· DSCAPS

· DSCBCAPS

· DSCBUFFERDESC

in.doc – page 164

· DSCCAPS

DS3DBUFFER
[This is preliminary documentation and subject to change.]

The DS3DBUFFER structure contains all information necessary to uniquely describe
the location, orientation, and motion of a 3-D sound buffer. This structure is used with
the IDirectSound3DBuffer::GetAllParameters and
IDirectSound3DBuffer::SetAllParameters methods.

typedef struct {

 DWORD dwSize;

 D3DVECTOR vPosition;

 D3DVECTOR vVelocity;

 DWORD dwInsideConeAngle;

 DWORD dwOutsideConeAngle;

 D3DVECTOR vConeOrientation;

 LONG lConeOutsideVolume;

 D3DVALUE flMinDistance;

 D3DVALUE flMaxDistance;

 DWORD dwMode;

} DS3DBUFFER, *LPDS3DBUFFER;

typedef const DS3DBUFFER *LPCDS3DBUFFER;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the structure is
used.

vPosition
A D3DVECTOR structure that describes the current position of the 3-D sound
buffer.

vVelocity
A D3DVECTOR structure that describes the current velocity of the 3-D sound
buffer.

dwInsideConeAngle
The angle of the inside sound projection cone.

dwOutsideConeAngle
The angle of the outside sound projection cone.

vConeOrientation
A D3DVECTOR structure that describes the current orientation of this 3-D
buffer's sound projection cone.

lConeOutsideVolume

in.doc – page 165

The cone outside volume.

flMinDistance
The minimum distance.

flMaxDistance
The maximum distance.

dwMode
The 3-D sound processing mode to be set.

DS3DMODE_DISABLE
3-D sound processing is disabled. The sound will appear to originate from the
center of the listener's head.

DS3DMODE_HEADRELATIVE
Sound parameters (position, velocity, and orientation) are relative to the
listener's parameters. In this mode, the absolute parameters of the sound are
updated automatically as the listener's parameters change, so that the relative
parameters remain constant.

DS3DMODE_NORMAL
Normal processing. This is the default mode.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.

DS3DLISTENER
[This is preliminary documentation and subject to change.]

The DS3DLISTENER structure contains all information necessary to uniquely
describe the 3-D world parameters and position of the listener. This structure is used
with the IDirectSound3DListener::GetAllParameters and
IDirectSound3DListener::SetAllParameters methods.

typedef struct {

 DWORD dwSize;

 D3DVECTOR vPosition;

 D3DVECTOR vVelocity;

 D3DVECTOR vOrientFront;

 D3DVECTOR vOrientTop;

 D3DVALUE flDistanceFactor;

 D3DVALUE flRolloffFactor;

 D3DVALUE flDopplerFactor;

} DS3DLISTENER, *LPDS3DLISTENER;

in.doc – page 166

typedef const DS3DLISTENER *LPCDS3DLISTENER;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the structure is
used.

vPosition, vVelocity, vOrientFront, and vOrientTop
D3DVECTOR structures that describe the listener's position, velocity, front
orientation, and top orientation, respectively.

flDistanceFactor, flRolloffFactor, and flDopplerFactor
The current distance, rolloff, and Doppler factors, respectively.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.

DSBCAPS
[This is preliminary documentation and subject to change.]

The DSBCAPS structure specifies the capabilities of a DirectSound buffer object, for
use by the IDirectSoundBuffer::GetCaps method.

typedef struct {

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwBufferBytes;

 DWORD dwUnlockTransferRate;

 DWORD dwPlayCpuOverhead;

} DSBCAPS, *LPDSBCAPS;

typedef const DSBCAPS *LPCDSBCAPS;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the structure is
used.

dwFlags
Flags that specify buffer-object capabilities.

in.doc – page 167

DSBCAPS_CTRL3D
The buffer is either a primary buffer or a secondary buffer that uses 3-D
control. To create a primary buffer, the dwFlags member of the
DSBUFFERDESC structure should include the
DSBCAPS_PRIMARYBUFFER flag.

DSBCAPS_CTRLFREQUENCY
The buffer must have frequency control capability.

DSBCAPS_CTRLPAN
The buffer must have pan control capability.

DSBCAPS_CTRLVOLUME
The buffer must have volume control capability.

DSBCAPS_GETCURRENTPOSITION2
Indicates that IDirectSoundBuffer::GetCurrentPosition should use the new
behavior of the play cursor. In DirectSound in DirectX 1, the play cursor was
significantly ahead of the actual playing sound on emulated sound cards; it
was directly behind the write cursor. Now, if the
DSBCAPS_GETCURRENTPOSITION2 flag is specified, the application can
get a more accurate play position. If this flag is not specified, the old behavior
is preserved for compatibility. Note that this flag affects only emulated sound
cards; if a DirectSound driver is present, the play cursor is accurate for
DirectSound in all versions of DirectX.

DSBCAPS_GLOBALFOCUS
The buffer is a global sound buffer. With this flag set, an application using
DirectSound can continue to play its buffers if the user switches focus to
another application, even if the new application uses DirectSound. The one
exception is if you switch focus to a DirectSound application that uses the
DSSCL_EXCLUSIVE or DSSCL_WRITEPRIMARY flag for its cooperative
level. In this case, the global sounds from other applications will not be
audible.

DSBCAPS_LOCHARDWARE
The buffer is in hardware memory and uses hardware mixing.

DSBCAPS_LOCSOFTWARE
The buffer is in software memory and uses software mixing.

DSBCAPS_MUTE3DATMAXDISTANCE
The sound is reduced to silence at the maximum distance. The buffer will stop
playing when the maximum distance is exceeded, so that processor time is not
wasted.

DSBCAPS_PRIMARYBUFFER
Indicates that the buffer is a primary sound buffer. If this value is not
specified, a secondary sound buffer will be created.

DSBCAPS_STATIC
Indicates that the buffer will be used for static sound data. Typically, these
buffers are loaded once and played many times. These buffers are candidates
for hardware memory.

DSBCAPS_STICKYFOCUS

in.doc – page 168

Changes the focus behavior of the sound buffer. This flag can be specified in
an IDirectSound::CreateSoundBuffer call. With this flag set, an application
using DirectSound can continue to play its sticky focus buffers if the user
switches to another application not using DirectSound. In this situation, the
application's normal buffers are muted, but the sticky focus buffers are still
audible. This is useful for nongame applications, such as movie playback
(DirectShow™), when the user wants to hear the soundtrack while typing in
Microsoft Word or Microsoft® Excel, for example. However, if the user
switches to another DirectSound application, all sound buffers, both normal
and sticky focus, in the previous application are muted.

dwBufferBytes
Size of this buffer, in bytes.

dwUnlockTransferRate
Specifies the rate, in kilobytes per second, at which data is transferred to the
buffer memory when IDirectSoundBuffer::Unlock is called. High-performance
applications can use this value to determine the time required for
IDirectSoundBuffer::Unlock to execute. For software buffers located in system
memory, the rate will be very high because no processing is required. For
hardware buffers, the rate might be slower because the buffer might have to be
downloaded to the sound card, which might have a limited transfer rate.

dwPlayCpuOverhead
Specifies the processing overhead as a percentage of main processing cycles
needed to mix this sound buffer. For hardware buffers, this member will be 0
because the mixing is performed by the sound device. For software buffers, this
member depends on the buffer format and the speed of the system processor.

Remarks

The DSBCAPS structure contains information similar to that found in the
DSBUFFERDESC structure passed to the IDirectSound::CreateSoundBuffer
method, with some additional information. Additional information includes the
location of the buffer (hardware or software) and some cost measures (such as the
time to download the buffer if located in hardware, and the processing overhead to
play the buffer if it is mixed in software).

Note
The dwFlags member of the DSBCAPS structure contains the same flags used
by the DSBUFFERDESC structure. The only difference is that in the DSBCAPS
structure, either the DSBCAPS_LOCHARDWARE or
DSBCAPS_LOCSOFTWARE flag will be specified, according to the location of
the buffer memory. In the DSBUFFERDESC structure, these flags are optional
and are used to force the buffer to be located in either hardware or software.

in.doc – page 169

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.

See Also

IDirectSound::CreateSoundBuffer, IDirectSoundBuffer::GetCaps

DSBPOSITIONNOTIFY
[This is preliminary documentation and subject to change.]

The DSBPOSITIONNOTIFY structure is used by the
IDirectSoundNotify::SetNotificationPositions method.

typedef struct {

 DWORD dwOffset;

 HANDLE hEventNotify;

} DSBPOSITIONNOTIFY, *LPDSBPOSITIONNOTIFY;

typedef const DSBPOSITIONNOTIFY *LPCDSBPOSITIONNOTIFY;

Members

dwOffset
Offset from the beginning of the buffer where the notify event is to be triggered,
or DSBPN_OFFSETSTOP.

hEventNotify
Handle to the event to be signaled when the offset has been reached.

Remarks

The DSBPN_OFFSETSTOP value in the dwOffset member causes the event to be
signaled when playback or capture stops, either because the end of the buffer has been
reached (and playback or capture is not looping) or because the application called the
IDirectSoundBuffer::Stop or IDirectSoundCaptureBuffer::Stop method.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 170

 Windows CE: Unsupported.
 Header: Declared in dsound.h.

DSBUFFERDESC
[This is preliminary documentation and subject to change.]

The DSBUFFERDESC structure describes the necessary characteristics of a new
DirectSoundBuffer object. This structure is used by the
IDirectSound::CreateSoundBuffer method.

typedef struct {

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwBufferBytes;

 DWORD dwReserved;

 LPWAVEFORMATEX lpwfxFormat;

} DSBUFFERDESC, *LPDSBUFFERDESC;

typedef const DSBUFFERDESC *LPCDSBUFFERDESC;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the structure is
used.

dwFlags
Identifies the capabilities to include when creating a new DirectSoundBuffer
object. Specify one or more of the following:

DSBCAPS_CTRL3D
The buffer is either a primary buffer or a secondary buffer that uses 3-D
control.

DSBCAPS_CTRLALL
The buffer must have all control capabilities.

DSBCAPS_CTRLDEFAULT
The buffer should have default control options. This is the same as specifying
the DSBCAPS_CTRLPAN, DSBCAPS_CTRLVOLUME, and
DSBCAPS_CTRLFREQUENCY flags.

DSBCAPS_CTRLFREQUENCY
The buffer must have frequency control capability.

DSBCAPS_CTRLPAN
The buffer must have pan control capability.

DSBCAPS_CTRLPOSITIONNOTIFY
The buffer must have position notification capability.

DSBCAPS_CTRLVOLUME

in.doc – page 171

The buffer must have volume control capability.

DSBCAPS_GETCURRENTPOSITION2
Indicates that IDirectSoundBuffer::GetCurrentPosition should use the new
behavior of the play cursor. In DirectSound in DirectX 1, the play cursor was
significantly ahead of the actual playing sound on emulated sound cards; it
was directly behind the write cursor. Now, if the
DSBCAPS_GETCURRENTPOSITION2 flag is specified, the application can
get a more accurate play position. If this flag is not specified, the old behavior
is preserved for compatibility. Note that this flag affects only emulated sound
cards; if a DirectSound driver is present, the play cursor is accurate for
DirectSound in all versions of DirectX.

DSBCAPS_GLOBALFOCUS
The buffer is a global sound buffer. With this flag set, an application using
DirectSound can continue to play its buffers if the user switches focus to
another application, even if the new application uses DirectSound. The one
exception is if you switch focus to a DirectSound application that uses the
DSSCL_EXCLUSIVE or DSSCL_WRITEPRIMARY flag for its cooperative
level. In this case, the global sounds from other applications will not be
audible.

DSBCAPS_LOCHARDWARE
Forces the buffer to use hardware mixing, even if DSBCAPS_STATIC is not
specified. If the device does not support hardware mixing or if the required
hardware memory is not available, the call to the
IDirectSound::CreateSoundBuffer method will fail. The application must
ensure that a mixing channel will be available for this buffer; this condition is
not guaranteed.

DSBCAPS_LOCSOFTWARE
Forces the buffer to be stored in software memory and use software mixing,
even if DSBCAPS_STATIC is specified and hardware resources are available.

DSBCAPS_MUTE3DATMAXDISTANCE
The sound is to be reduced to silence at the maximum distance. The buffer
will stop playing when the maximum distance is exceeded, so that processor
time is not wasted.

DSBCAPS_PRIMARYBUFFER
Indicates that the buffer is a primary sound buffer. If this value is not
specified, a secondary sound buffer will be created.

DSBCAPS_STATIC
Indicates that the buffer will be used for static sound data. Typically, these
buffers are loaded once and played many times. These buffers are candidates
for hardware memory.

DSBCAPS_STICKYFOCUS
Changes the focus behavior of the sound buffer. This flag can be specified in
an IDirectSound::CreateSoundBuffer call. With this flag set, an application
using DirectSound can continue to play its sticky focus buffers if the user
switches to another application not using DirectSound. In this situation, the

in.doc – page 172

application's normal buffers are muted, but the sticky focus buffers are still
audible. This is useful for nongame applications, such as movie playback
(DirectShow), when the user wants to hear the soundtrack while typing in
Microsoft Word or Microsoft Excel, for example. However, if the user
switches to another DirectSound application, all sound buffers, both normal
and sticky focus, in the previous application are muted.

dwBufferBytes
Size of the new buffer, in bytes. This value must be 0 when creating primary
buffers. For secondary buffers, the minimum and maximum sizes allowed are
specified by DSBSIZE_MIN and DSBSIZE_MAX, defined in Dsound.h.

dwReserved
This value is reserved. Do not use.

lpwfxFormat
Address of a structure specifying the waveform format for the buffer. This value
must be NULL for primary buffers. The application can use
IDirectSoundBuffer::SetFormat to set the format of the primary buffer.

Remarks

The DSBCAPS_LOCHARDWARE and DSBCAPS_LOCSOFTWARE flags used in
the dwFlags member are optional and mutually exclusive.
DSBCAPS_LOCHARDWARE forces the buffer to reside in memory located in the
sound card. DSBCAPS_LOCSOFTWARE forces the buffer to reside in main system
memory, if possible.

These flags are also defined for the dwFlags member of the DSBCAPS structure, and
when used there, the specified flag indicates the actual location of the
DirectSoundBuffer object.

When creating a primary buffer, applications must set the dwBufferBytes member to
0; DirectSound will determine the optimal buffer size for the particular sound device
in use. To determine the size of a created primary buffer, call
IDirectSoundBuffer::GetCaps.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.

See Also

IDirectSound::CreateSoundBuffer

in.doc – page 173

DSCAPS
[This is preliminary documentation and subject to change.]

The DSCAPS structure specifies the capabilities of a DirectSound device for use by
the IDirectSound::GetCaps method.

typedef {

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwMinSecondarySampleRate;

 DWORD dwMaxSecondarySampleRate;

 DWORD dwPrimaryBuffers;

 DWORD dwMaxHwMixingAllBuffers;

 DWORD dwMaxHwMixingStaticBuffers;

 DWORD dwMaxHwMixingStreamingBuffers;

 DWORD dwFreeHwMixingAllBuffers;

 DWORD dwFreeHwMixingStaticBuffers;

 DWORD dwFreeHwMixingStreamingBuffers;

 DWORD dwMaxHw3DAllBuffers;

 DWORD dwMaxHw3DStaticBuffers;

 DWORD dwMaxHw3DStreamingBuffers;

 DWORD dwFreeHw3DAllBuffers;

 DWORD dwFreeHw3DStaticBuffers;

 DWORD dwFreeHw3DStreamingBuffers;

 DWORD dwTotalHwMemBytes;

 DWORD dwFreeHwMemBytes;

 DWORD dwMaxContigFreeHwMemBytes;

 DWORD dwUnlockTransferRateHwBuffers;

 DWORD dwPlayCpuOverheadSwBuffers;

 DWORD dwReserved1;

 DWORD dwReserved2;

} DSCAPS, *LPDSCAPS;

typedef const DSCAPS *LPCDSCAPS;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the structure is
used.

dwFlags
Specifies device capabilities. Can be one or more of the following:

DSCAPS_CERTIFIED
This driver has been tested and certified by Microsoft.

in.doc – page 174

DSCAPS_CONTINUOUSRATE
The device supports all sample rates between the
dwMinSecondarySampleRate and dwMaxSecondarySampleRate member
values. Typically, this means that the actual output rate will be within +/- 10
hertz (Hz) of the requested frequency.

DSCAPS_EMULDRIVER
The device does not have a DirectSound driver installed, so it is being
emulated through the waveform-audio functions. Performance degradation
should be expected.

DSCAPS_PRIMARY16BIT
The device supports primary sound buffers with 16-bit samples.

DSCAPS_PRIMARY8BIT
The device supports primary buffers with 8-bit samples.

DSCAPS_PRIMARYMONO
The device supports monophonic primary buffers.

DSCAPS_PRIMARYSTEREO
The device supports stereo primary buffers.

DSCAPS_SECONDARY16BIT
The device supports hardware-mixed secondary sound buffers with 16-bit
samples.

DSCAPS_SECONDARY8BIT
The device supports hardware-mixed secondary buffers with 8-bit samples.

DSCAPS_SECONDARYMONO
The device supports hardware-mixed monophonic secondary buffers.

DSCAPS_SECONDARYSTEREO
The device supports hardware-mixed stereo secondary buffers.

dwMinSecondarySampleRate and dwMaxSecondarySampleRate
Minimum and maximum sample rate specifications that are supported by this
device's hardware secondary sound buffers.

dwPrimaryBuffers
Number of primary buffers supported. This value will always be 1.

dwMaxHwMixingAllBuffers
Specifies the total number of buffers that can be mixed in hardware. This
member can be less than the sum of dwMaxHwMixingStaticBuffers and
dwMaxHwMixingStreamingBuffers. Resource tradeoffs frequently occur.

dwMaxHwMixingStaticBuffers
Specifies the maximum number of static sound buffers.

dwMaxHwMixingStreamingBuffers
Specifies the maximum number of streaming sound buffers.

dwFreeHwMixingAllBuffers, dwFreeHwMixingStaticBuffers, and
dwFreeHwMixingStreamingBuffers

Description of the free, or unallocated, hardware mixing capabilities of the
device. An application can use these values to determine whether hardware
resources are available for allocation to a secondary sound buffer. Also, by

in.doc – page 175

comparing these values to the members that specify maximum mixing
capabilities, the resources that are already allocated can be determined.

dwMaxHw3DAllBuffers, dwMaxHw3DStaticBuffers, and
dwMaxHw3DStreamingBuffers

Description of the hardware 3-D positional capabilities of the device.

dwFreeHw3DAllBuffers, dwFreeHw3DStaticBuffers, and
dwFreeHw3DStreamingBuffers

Description of the free, or unallocated, hardware 3-D positional capabilities of
the device.

dwTotalHwMemBytes
Size, in bytes, of the amount of memory on the sound card that stores static
sound buffers.

dwFreeHwMemBytes
Size, in bytes, of the free memory on the sound card.

dwMaxContigFreeHwMemBytes
Size, in bytes, of the largest contiguous block of free memory on the sound card.

dwUnlockTransferRateHwBuffers
Description of the rate, in kilobytes per second, at which data can be transferred
to hardware static sound buffers. This and the number of bytes transferred
determines the duration of a call to the IDirectSoundBuffer::Unlock method.

dwPlayCpuOverheadSwBuffers
Description of the processing overhead, as a percentage of the central processing
unit, needed to mix software buffers (those located in main system memory).
This varies according to the bus type, the processor type, and the clock speed.

The unlock transfer rate for software buffers is 0 because the data need not be
transferred anywhere. Similarly, the play processing overhead for hardware
buffers is 0 because the mixing is done by the sound device.

dwReserved1 and dwReserved2
Reserved for future use.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.

See Also

IDirectSound::GetCaps

in.doc – page 176

DSCBCAPS
[This is preliminary documentation and subject to change.]

The DSCBCAPS structure is used by the IDirectSoundCaptureBuffer::GetCaps
method.

typedef struct

{

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwBufferBytes;

 DWORD dwReserved;

} DSCBCAPS, *LPDSCBCAPS;

typedef const DSCBCAPS *LPCDSCBCAPS;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the structure is
used.

dwFlags
Specifies device capabilities. Can be zero or the following flag:

DSCBCAPS_WAVEMAPPED
The Win32 wave mapper will be used for formats not supported by the device.

dwBufferBytes
The size, in bytes, of the capture buffer.

dwReserved
Reserved for future use.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.

DSCBUFFERDESC
[This is preliminary documentation and subject to change.]

The DSCBUFFERDESC structure is used by the
IDirectSoundCapture::CreateCaptureBuffer method.

in.doc – page 177

typedef struct

{

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwBufferBytes;

 DWORD dwReserved;

 LPWAVEFORMATEX lpwfxFormat;

} DSCBUFFERDESC, *LPDSCBUFFERDESC;

typedef const DSCBUFFERDESC *LPCDSCBUFFERDESC;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the structure is
used.

dwFlags
Specifies device capabilities. Can be zero or the following flag:

DSCBCAPS_WAVEMAPPED
The Win32 wave mapper will be used for formats not supported by the device.

dwBufferBytes
Size of capture buffer to create, in bytes.

dwReserved
Reserved for future use.

lpwfxFormat
Pointer to a WAVEFORMATEX structure containing the format in which to
capture the data.

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.

DSCCAPS
[This is preliminary documentation and subject to change.]

The DSCCAPS structure is used by the IDirectSoundCapture::GetCaps method.

typedef struct

{

 DWORD dwSize;

in.doc – page 178

 DWORD dwFlags;

 DWORD dwFormats;

 DWORD dwChannels;

} DSCCAPS, *LPDSCCAPS;

typedef const DSCCAPS *LPCDSCCAPS;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the structure is
used.

dwFlags
Specifies device capabilities. Can be zero or one of the following flags:

DSCCAPS_EMULDRIVER
There is no DirectSoundCapture driver for the device, so the standard wave
audio functions are being used.

DSCCAPS_CERTIFIED
The WDM driver is certified.

dwFormats
Standard formats that are supported. These are equivalent to the values in the
WAVEINCAPS structure used in the Win32 waveform audio functions, and are
reproduced here for convenience.

Value Meaning

WAVE_FORMAT_1M08 11.025 kHz, mono, 8-bit

WAVE_FORMAT_1M16 11.025 kHz, mono, 16-bit

WAVE_FORMAT_1S08 11.025 kHz, stereo, 8-bit

WAVE_FORMAT_1S16 11.025 kHz, stereo, 16-bit

WAVE_FORMAT_2M08 22.05 kHz, mono, 8-bit

WAVE_FORMAT_2M16 22.05 kHz, mono, 16-bit

WAVE_FORMAT_2S08 22.05 kHz, stereo, 8-bit

WAVE_FORMAT_2S16 22.05 kHz, stereo, 16-bit

WAVE_FORMAT_4M08 44.1 kHz, mono, 8-bit

WAVE_FORMAT_4M16 44.1 kHz, mono, 16-bit

WAVE_FORMAT_4S08 44.1 kHz, stereo, 8-bit

WAVE_FORMAT_4S16 44.1 kHz, stereo, 16-bit

dwChannels
Number specifying the number of channels supported by the device, where 1 is
mono, 2 is stereo, and so on.

in.doc – page 179

QuickInfo

 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Windows CE: Unsupported.
 Header: Declared in dsound.h.

Return Values
[This is preliminary documentation and subject to change.]

Errors are represented by negative values and cannot be combined. This table lists the
values that can be returned by all IDirectSound and IDirectSoundBuffer methods.
For a list of the error codes each method can return, see the individual method
descriptions.

DS_OK
The request completed successfully.

DSERR_ALLOCATED
The request failed because resources, such as a priority level, were already in
use by another caller.

DSERR_ALREADYINITIALIZED
The object is already initialized.

DSERR_BADFORMAT
The specified wave format is not supported.

DSERR_BUFFERLOST
The buffer memory has been lost and must be restored.

DSERR_CONTROLUNAVAIL
The control (volume, pan, and so forth) requested by the caller is not
available.

DSERR_GENERIC
An undetermined error occurred inside the DirectSound subsystem.

DSERR_INVALIDCALL
This function is not valid for the current state of this object.

DSERR_INVALIDPARAM
An invalid parameter was passed to the returning function.

DSERR_NOAGGREGATION
The object does not support aggregation.

DSERR_NODRIVER
No sound driver is available for use.

DSERR_NOINTERFACE
The requested COM interface is not available.

DSERR_OTHERAPPHASPRIO

in.doc – page 180

Another application has a higher priority level, preventing this call from
succeeding

DSERR_OUTOFMEMORY
The DirectSound subsystem could not allocate sufficient memory to complete
the caller's request.

DSERR_PRIOLEVELNEEDED
The caller does not have the priority level required for the function to succeed.

DSERR_UNINITIALIZED
The IDirectSound::Initialize method has not been called or has not been
called successfully before other methods were called.

DSERR_UNSUPPORTED
The function called is not supported at this time.

DirectSound Samples
[This is preliminary documentation and subject to change.]

This section provides summaries of the applications in the DirectX SDK that are
primarily intended to demonstrate the DirectSound component. The following sample
programs demonstrate the use and capabilities of DirectSound:

· DS3DView

· DSShow

· DSShow3D

· DSStream

· FDFilter

DS3DView
[This is preliminary documentation and subject to change.]

Description

The DS3DView program is an extension of the Direct3D Viewer application. In
addition to displaying an object in 3-D, DS3DView enables you to attach a sounds to
the object. The object can then be moved. As it moves, its sound changes in the way
that the sounds of real moving objects change. That is, DirectSound simulates
attenuation and the Doppler effect.

Required Components

DirectX 2 or later.

in.doc – page 181

Path

Source: \Mssdk\Samples\Multimedia\DSound\src\DS3DView

Executable: \Mssdk\Samples\Multimedia\DSound\bin

User's Guide

Run the program and choose File from the main menu. Select Add 3D Visual from
the File menu. You can find X files containing the definitions of 3-D objects in the
directory dxsdk\sdk\media. When you select one of the sample objects, DS3DViewer
will display it on the screen.

Attach a sound to the object by selecting Sound from the main menu. When the
Sound menu is displayed, choose Attach Sound. The DirectX SDK ships with a
variety of sample sound Wav files. You'll find them in the directory dxdsk\dsk\media.

After you select a sound, you can hear it once by choosing Play Sound Once from
the Sound menu. To hear it continuously, select Play Sound Looping from the
Sound menu. To hear some of DirectSound's effects, try selecting Orbit Selected
Object from the Motion menu. This option will orbit the object around the listener
and add the appropriate orbital sound effects. You can also select Bullet Selected
Object, which will shoot the object past the listener's head with the accompanying
sound effects.

Programming Notes

In addition to 3-D retained mode techniques, this program illustrates how to load Wav
files, attach them to objects in a 3-D environment, and move them with realistic
sound effects.

DSShow
[This is preliminary documentation and subject to change.]

Description

This example application demonstrates many of the capabilities of DirectSound.

Required Components

DirectX 5.0 or later.

Path

Source: \Mssdk\Samples\Multimedia\DSound\src\DSShow

Executable: \Mssdk\Samples\Multimedia\DSound\bin

in.doc – page 182

User's Guide

With the DSShow application, you can open one or more sound files and examine
many DirectSound features. For each Wav file that you open, DSShow displays file
information and a group of controls in the client area of its window. Use the controls
to alter the way that DirectSound plays the sound. You can pan the sound to the right
or left, adjust the volume, and adjust the frequency. The sound can be played once by
selecting the Play button. If you want the sound to play continuously, check the
Looped checkbox. To close the sound file, select the Close button.

You can alter the output frequency, and select whether the sound is played in stereo
or mono by choosing Output Type from the Options menu.

The Check Latency item in the Options menu enables you to test how rapidly a
sound starts and stops after it is triggered.

In addition, you can tell the DSShow application to enumerate all available sound
drivers whenever it starts up by selecting Enumerate Drivers from the Options
menu.

Programming Notes

The DSShow title bar displays information about the hardware mixing capabilities of
your sound card. It shows the number of free mixing channels and the available
memory. If both of those numbers are 0, your card does not have hardware mixing.

DSShow3D
[This is preliminary documentation and subject to change.]

Description

This example application demonstrates many of the 3-D sound capabilities of
DirectSound. It is an extension of the DSShow sample application.

Required Components

DirectX 5.0 or later.

Path

Source: \Mssdk\Samples\Multimedia\DSound\src\DSShow3D

Executable: \Mssdk\Samples\Multimedia\DSound\bin

User's Guide

As with the DSShow application, you can open one or more sound files and play
them at the same time. For each Wav file that you open, DSShow3D displays a group

in.doc – page 183

of controls in a client window. Use the controls to alter the way that DirectSound
plays the sound. You can pan the sound to the right or left, adjust the volume, and
adjust the frequency. The sound can be played once by selecting the Play button. If
you want the sound to play continuously, select the Looped button. To close the
sound file, choose Close from the client window's File menu.

You can alter the output frequency, and select whether the sound is played in stereo
or mono by choosing Output Format from the Options menu.

To demonstrate the 3-D sound capabilities of DirectSound, select Settings from the
Options menu. Select the checkbox labeled Open 3D as Default. Any sound files
that are subsequently opened will be opened as 3-D sound files. The DSShow3D
program will display slider controls for altering the 3-D characteristics of the sound.

Programming Notes

This program features a compact interface, support for 3-D sounds and new buffer
options, the ability to open as many sounds as your hardware allows, and a new user
interface that takes advantage of the entire desktop for placing (or minimizing)
windows.

DSStream
[This is preliminary documentation and subject to change.]

Description

The DSStream sample illustrates the use of streaming sound buffers. It works best
with sounds that are more than 2 seconds in length.

Required Components

DirectX 5.0 or later.

Path

Source: \Mssdk\Samples\Multimedia\DSound\src\DSStream

Executable: \Mssdk\Samples\Multimedia\DSound\bin

User's Guide

Load a Wav file by selecting Open from the File menu. Play the sound once by
choosing Play! from the main menu or by selecting the Play button. Halt the
playback by choosing Stop! from the main menu or by selecting the Stop button.

To make the program play the sound continuously, select the checkbox labeled Loope
(yes, that is the way it's spelled in the program).

in.doc – page 184

The DSStream program displays controls for panning the sound, decreasing the
volume, and changing the frequency.

As with DSShow, you can make DSStream enumerate the sound drivers when it starts
up. To do this, select Enumerate Drivers from the Options menu. You must then
exit the program and restart it.

Programming Notes

The DSStream program is a variation on the DSShow example, butdoes not contain
as many features. This program can only open and stream sound from one file at a
time. However, that is a limitation of this program, not of DirectSound.

FDFilter
[This is preliminary documentation and subject to change.]

Description

The FDFilter program demonstrates how to use DirectSound to implement a full
duplex audio and a filter. In this case, the input is filtered to add a gargling sound to
it.

Required Components

DirectX 5.0 or later.

Speakers. Sound card. Microphone.

Path

Source: \Mssdk\Samples\Multimedia\DSound\src\FDfilter

Executable: \Mssdk\Samples\Multimedia\DSound\bin

User's Guide

When you start this program, it will present you with a dialog box that contains pull-
down lists of the sound input and output devices attached to your computer. Select the
appropriate devices. Usually the defaults are the most appropriate. It will next display
lists of sampling rates for the input and output sounds. Select the values that are
appropriate for your sound card. The program will then show a dialog box that
enables you to select the filter. The available options are None (pass-through), which
just plays back the input sound as is, or Gargle, which distorts the input sound into a
gargling noise.

	About DirectSound
	Why Use DirectSound?
	DirectSound Architecture
	Architectural Overview
	Sound Data
	Playback Overview
	Capture Overview
	Property Sets Overview
	Hardware Abstraction and Emulation
	System Integration

	DirectSound Essentials
	DirectSound Devices
	Enumeration of Sound Devices
	Creating the DirectSound Object
	Cooperative Levels
	Normal Cooperative Level
	Priority Cooperative Level
	Exclusive Cooperative Level
	Write-primary Cooperative Level

	Device Capabilities
	Speaker Configuration
	Compacting Hardware Memory

	DirectSound Buffers
	Buffer Basics
	Static and Streaming Sound Buffers
	Creating Secondary Buffers
	Buffer Control Options
	Access to the Primary Buffer
	Playing Sounds
	Playback Controls
	Current Play and Write Positions
	Play Buffer Notification
	Mixing Sounds
	Custom Mixers
	Buffer Management
	Compressed Wave Formats

	DirectSound in 3-D
	Integration with Direct3D
	Mono and Stereo Sources
	Perception of Sound Positions

	DirectSound 3-D Buffers
	Obtaining the IDirectSound3DBuffer Interface
	Batch Parameters for IDirectSound3DBuffer
	Minimum and Maximum Distances
	Processing Mode
	Buffer Position and Velocity
	Sound Cones

	DirectSound 3-D Listeners
	Obtaining the IDirectSound3DListener Interface
	Batch Parameters for IDirectSound3DListener
	Deferred Settings
	Distance Factor
	Listener Orientation
	Listener Position and Velocity
	Doppler Factor
	Rolloff Factor

	DirectSoundCapture
	Enumeration of Capture Devices
	Creating the DirectSoundCapture Object
	Capture Device Capabilities
	Creating a Capture Buffer
	Capture Buffer Information
	Capture Buffer Notification
	Capturing Sounds

	DirectSound Property Sets
	Optimizing DirectSound Performance
	Matching Buffer Formats
	Playing the Primary Buffer Continuously
	Using Hardware Mixing
	Minimizing Control Changes
	CPU Considerations for 3-D Buffers

	Using Wave Files
	Reading from a Wave File
	Writing to a Wave File

	Reading Wave Data from a Resource

	DirectSound Tutorials
	Tutorial 1: Sound Playback
	Step 1: Setting Up DirectSound
	Step 2: Opening the Wave File
	Step 3: Creating the Secondary Buffer
	Step 4: Setting Up Play Notification
	Step 5: Handling the Play Notifications
	Step 6: Streaming Data from the Wave File
	Step 7: Shutting Down DirectSound

	Tutorial 2: Sound Capture
	Step 1: Setting Up DirectSoundCapture
	Step 2: Setting the Capture Format
	Step 3: Creating the Capture Buffer
	Step 4: Setting Up Capture Notification
	Step 5: Creating the Wave File
	Step 6: Handling the Capture Notifications
	Step 7: Streaming Data to the Wave File
	Step 8: Stopping Capture
	Step 9: Shutting Down DirectSoundCapture

	DirectSound Reference
	Interfaces
	Functions
	Callback Function
	Structures
	Return Values

	DirectSound Samples
	DS3DView
	DSShow
	DSShow3D
	DSStream
	FDFilter

