
Introducing DirectX 7.0
[This is preliminary documentation and subject to change.]

The Microsoft® DirectX® 7.0 application programming interface (API) provides
strategies, technologies and tools that can help you build the next generation of
computer games and multimedia applications. This overview covers general
introductory information about the DirectX 7.0 Programmer's Reference in the
Platform Software Development Kit (SDK) documentation. Information is divided
into the following sections:

· About DirectX Help

· DirectX Goals

· The DirectX Programmer's Reference

· DirectX and the Component Object Model

· What's New in DirectX?

· Conventions

· Further Reading

· Debugging DirectX Applications

· Compiling DirectX Samples and Other DirectX Applications

· About DirectX for Visual Basic

About DirectX Help
[This is preliminary documentation and subject to change.]

This documentation includes information about developing Microsoft® DirectX®
applications in C, C++, and Microsoft Visual Basic®.

DirectX fully supports both C and C++. Although this document most often uses the
C++ syntax, some of the examples and tutorials (as well as some of the sample
applications) are in C.

In addition, the following topics provide general information on using C with
DirectX:

· Using Macro Definitions

· Accessing COM Objects by Using C

For the sake of simplicity, this documentation generally uses "C++" to mean "C or C+
+" when presenting information for those languages as opposed to Visual Basic. You
should assume that discussions of C++ concepts are also valid for C, with the
necessary changes in syntax.

in.doc – page 2

In order to present you only with the information that is relevant to your
programming environment, this document implements language filtering. On the title
bar of many topics you will find a pop-up language menu. This menu gives you the
choice of seeing documentation tailored either to C++ (and C) or to Visual Basic. If
you choose Show All, you will see the language-specific information for both
languages. Regardless of your language selection, you will always see information
(such as general concepts) that is relevant to all languages.

DirectX Goals
[This is preliminary documentation and subject to change.]

Microsoft® DirectX® provides a finely tuned set of application programming
interfaces (APIs) that provide you with the resources you need to design high-
performance, real-time applications. DirectX technology will help build the next
generation of computer games and multimedia applications.

Microsoft developed DirectX so that the performance of applications running in the
Microsoft Windows® operating system can rival or exceed the performance of
applications running in the MS-DOS® operating system or on game consoles. This
Programmer's Reference was developed to promote game development for Windows
by providing you with a robust, standardized, and well-documented operating
environment for which to write games.

DirectX provides you with two important benefits:

· Benefits of Developing DirectX Windows Applications

· Providing Guidelines for Hardware Development

Benefits of Developing DirectX Windows
Applications

[This is preliminary documentation and subject to change.]

When Microsoft created DirectX, one of its primary goals was to promote games
development for the Windows environment. Prior to DirectX, the majority of games
developed for the personal computer were MS-DOS-based. Developers of these
games had to conform to a number of hardware implementations for a variety of
cards. With DirectX, games developers get the benefits of device independence
without losing the benefits of direct access to the hardware. The primary goals of
DirectX are to provide portable access to the features used with MS-DOS today, to
meet or improve on the performance of MS-DOS console-based applications, and to
remove the obstacles to hardware innovation on the personal computer.

Additionally, Microsoft developed DirectX to provide Windows-based applications
with high-performance, real-time access to available hardware on current and future
computer systems. DirectX provides a consistent interface between hardware and

in.doc – page 3

applications, reducing the complexity of installation and configuration and using the
hardware to its best advantage. By using the interfaces provided by DirectX, software
developers can take advantage of hardware features without being concerned about
the implementation details of that hardware.

A high-performance Windows-based game will take advantage of the following
technologies:

· Accelerator cards designed specifically for improving performance

· Plug and Play and other Windows hardware and software

· Communications services built into Windows, including DirectPlay

Providing Guidelines for Hardware
Development

[This is preliminary documentation and subject to change.]

DirectX provides hardware development guidelines based on feedback from
developers of high-performance applications and independent hardware vendors
(IHVs). As a result, the DirectX Programmer's Reference components might provide
specifications for hardware-accelerator features that do not yet exist. In many cases,
the software emulates these features. In other cases, the software polls the hardware
regarding its capabilities and bypasses the feature if it is not supported.

The DirectX Programmer's
Reference

[This is preliminary documentation and subject to change.]

This section describes the DirectX Programmer's Reference, also referred to as the
DirectX Software Development Kit (SDK), components and some DirectX
implementation details. The following topics are discussed:

· DirectX Programmer's Reference Components

· Using Macro Definitions

· Using Callback Functions

DirectX Programmer's Reference
Components

[This is preliminary documentation and subject to change.]

The DirectX Programmer's Reference, also known as the DirectX SDK, includes
several components that address the performance issues of programming Windows-

in.doc – page 4

based games and high-performance applications. This section lists these components
and provides a link for more information on each component.

· DirectDraw® accelerates hardware and software animation techniques by
providing direct access to bitmaps in off-screen display memory, as well as
extremely fast access to the blitting and buffer-flipping capabilities of the
hardware. For more information, see About DirectDraw in the DirectDraw
documentation.

· DirectSound® enables hardware and software sound mixing and playback. For
more information, see About DirectSound in the DirectSound documentation.

· DirectMusic® is the musical component of DirectX. Unlike DirectSound, which
is for the capture and playback of digital sound samples, DirectMusic works with
message-based musical data. For more information about this newest component
of DirectX, see About DirectMusic.

· DirectPlay® makes connecting games over a modem link or network easy. For
more information, see About DirectPlay in the DirectPlay documentation.

· Direct3D® provides a high-level Retained Mode interface that allows
applications to easily implement a complete 3-D graphical system, and a low-
level Immediate Mode interface that lets applications take complete control over
the rendering pipeline. For more information about Immediate Mode, see About
Direct3D Immediate Mode. For more information about Retained Mode, see
About Retained Mode.

· DirectInput® provides input capabilities to your game that are scalable to future
Windows-based hardware-input APIs and drivers. Currently the joystick, mouse,
keyboard, and force feedback devices are supported. For more information, see
About DirectInput in the DirectInput documentation.

· DirectSetup provides a one-call installation procedure for DirectX. For more
information, see About DirectSetup in the DirectSetup documentation.

· AutoPlay is a Windows feature that starts an installation program or game
automatically from a compact disc when you insert the disc in the CD-ROM
drive. For more information, see About AutoPlay in the AutoPlay
documentation.

The AutoPlay feature is part of the Microsoft Win32® API in the Platform SDK and
is not unique to DirectX.

Among the most important parts of the documentation for the DirectX SDK is the
sample code. Studying code from working samples is one of the best ways to
understand DirectX. Sample applications are located in the
\Mssdk\Samples\Multimedia folder of the DirectX SDK or in the DirectX code
samples under the Platform SDK References section.

Using Macro Definitions
[This is preliminary documentation and subject to change.]

in.doc – page 5

Many of the header files for the DirectX interfaces include macro definitions for each
method. These macros are included to simplify the use of the methods in your
programming, and also have the advantage of expanding to appropriate calls in either
C or C++ syntax, depending on whether or not __cplusplus is defined.

The following example uses the IDirectDraw4_CreateSurface macro to call the
IDirectDraw4::CreateSurface method. The first parameter is a reference to the
DirectDraw object that has been created and invokes the method:

ret = IDirectDraw4_CreateSurface (lpDD, &ddsd, &lpDDS,

 NULL);

To obtain a current list of the methods supported by macro definitions, see the
appropriate header file for the DirectX component you want to use.

Using Callback Functions
[This is preliminary documentation and subject to change.]

DirectX contains many enumeration methods that are used to iterate through
hardware resources or other items available to the application. These methods all
work in fundamentally the same way.

Prototype callback functions are documented for each DirectX component. The
application declares its own functions with the same return values and parameters as
these prototypes. Callback functions are declared as type CALLBACK, WINAPI, or
FAR PASCAL, which are all equivalent.

When the application calls an enumeration method, it supplies a pointer to the
appropriate callback function that it has implemented. The method calls the function
once for each item that qualifies for enumeration, and passes in information about the
item. Within the function the application can use this information to perform any sort
of task, such as building a list or looking for particular device capabilities. The
enumeration method returns when all items have been enumerated or when the
callback function returns a value indicating that enumeration can stop (either FALSE
or a particular HRESULT, depending on the return type of the callback).

For an example, see DirectInput Device Enumeration.

DirectX and the Component Object
Model

[This is preliminary documentation and subject to change.]

This section describes the Component Object Model (COM) and how it implements
the DirectX objects and interfaces. The following topics are discussed:

· The Component Object Model

in.doc – page 6

· IUnknown Interface

· C++ and the COM Interface

· Retrieving Newer Interfaces

· Accessing COM Objects by Using C

· Interface Method Names and Syntax

The Component Object Model
[This is preliminary documentation and subject to change.]

Most of the DirectX application programming interface is composed of objects and
interfaces based on COM. COM is a foundation for an object-based system that
focuses on reuse of interfaces. It is also an interface specification from which any
number of interfaces can be built.

A DirectX application is built from instances of COM objects. You can consider an
object to be a black box that represents hardware or data which you can access
through interfaces. Commands are sent to the object through methods of the COM
interface. For example, the IDirectDraw4::GetDisplayMode method of the
IDirectDraw4 interface is called to get the current display mode of the display
adapter from the DirectDraw object.

Objects can bind to other objects at run time, and they can use the implementation of
interfaces provided by the other object. If you know an object is a COM object, and if
you know which interfaces that object supports, your application (or another object)
can determine which services the first object can perform. One of the methods all
COM objects inherit, the QueryInterface method, lets you determine which
interfaces an object supports and creates pointers to these interfaces. For more
information about this method, see the IUnknown Interface.

IUnknown Interface
[This is preliminary documentation and subject to change.]

All COM interfaces are derived from an interface called IUnknown. This interface
provides DirectX with control of the object's lifetime and the ability to navigate
multiple interfaces. IUnknown has three methods:

· AddRef, which increments the object's reference count by 1 when an interface or
another application binds itself to the object.

· QueryInterface, which queries the object about the features it supports by
requesting pointers to a specific interface.

· Release, which decrements the object's reference count by 1. When the count
reaches 0, the object is deallocated.

in.doc – page 7

The AddRef and Release methods maintain an object's reference count. For example,
if you create a DirectDrawSurface object, the object's reference count is set to 1.
Every time a function returns a pointer to an interface for that object, the function
then must call AddRef through that pointer to increment the reference count. You
must match each AddRef call with a call to Release. Before the pointer can be
destroyed, you must call Release through that pointer. After an object's reference
count reaches 0, the object is destroyed and all interfaces to it become invalid.

The QueryInterface method determines whether an object supports a specific
interface. If an object supports an interface, QueryInterface returns a pointer to that
interface. You then can use the methods contained in that interface to communicate
with the object. If QueryInterface successfully returns a pointer to an interface, it
implicitly calls AddRef to increment the reference count, so your application must
call Release to decrement the reference count before destroying the pointer to the
interface.

IUnknown::AddRef
[This is preliminary documentation and subject to change.]

The IUnknown::AddRef method increases the reference count of the object by 1.

ULONG AddRef();

There are no parameters.

Return Values

Returns the new reference count. This value is meant to be used for diagnostic and
testing purposes only.

Remarks

When the object is created, its reference count is set to 1. Every time an application
obtains an interface to the object or calls the AddRef method, the object's reference
count is increased by 1. Use the Release method to decrease the object's reference
count by 1.

This method is part of the IUnknown interface inherited by the object.

QuickInfo

 Windows NT/2000: Requires Windows NT 3.1 or later.
 Windows 95/98: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in unknwn.h.

in.doc – page 8

IUnknown::QueryInterface
[This is preliminary documentation and subject to change.]

The IUnknown::QueryInterface method determines if the object supports a
particular COM interface. If it does, the system increases the object's reference count,
and the application can use that interface immediately.

HRESULT QueryInterface(
 REFIID riid,
 LPVOID* obp
);

riid
Reference identifier of the interface being requested.

obp
Address of a pointer that will be filled with the interface pointer if the query
succeeds.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value may be E_NOINTERFACE, E_POINTER, or
one of the following interface-specific error values. Interface-specific error values are
listed by component.

DirectDraw
DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_OUTOFMEMORY (DirectDrawSurface objects only)

DirectSound
DSERR_GENERIC (IDirectSound and IDirectSoundBuffer only)

DSERR_INVALIDPARAM

DSERR_NOINTERFACE

DirectPlay
DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

For Direct3D Retained Mode and Immediate Mode interfaces, the QueryInterface
method returns one of the values in Direct3D Retained Mode Return Values and
Direct3D Immediate Mode Return Values.

If the application does not need to use the interface retrieved by a call to this method,
it must call the Release method for that interface to free it. The QueryInterface
method allows Microsoft and third parties to extend objects without interfering with
each other's existing or future functionality.

in.doc – page 9

This method is part of the IUnknown interface inherited by the object.

QuickInfo

 Windows NT/2000: Requires Windows NT 3.1 or later.
 Windows 95/98: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in unknwn.h.

IUnknown::Release
[This is preliminary documentation and subject to change.]

The IUnknown::Release method decreases the reference count of the object by 1.

ULONG Release();

There are no parameters.

Return Values

Returns the new reference count. This value is meant to be used for diagnostic and
testing purposes only.

Remarks

The object deallocates itself when its reference count reaches 0. Use the AddRef
method to increase the object's reference count by 1.

This method is part of the IUnknown interface inherited by the object.

Applications must only call this method to release interfaces it explicitly created in a
previous call to IUnknown::AddRef, IUnknown::QueryInterface, or a creation
function such as DirectDrawCreate.

QuickInfo

 Windows NT/2000: Requires Windows NT 3.1 or later.
 Windows 95/98: Requires Windows 95 or later.
 Windows CE: Unsupported.
 Header: Declared in unknwn.h.

C++ and the COM Interface
[This is preliminary documentation and subject to change.]

in.doc – page 10

To C++ programmers, a COM interface is like an abstract base class. That is, it
defines a set of signatures and semantics but not the implementation, and no state data
is associated with the interface. In a C++ abstract base class, all methods are defined
as pure virtual, which means they have no code associated with them.

Pure virtual C++ functions and COM interfaces both use a device called a vtable. A
vtable contains the addresses of all functions that implement the given interface. If
you want a program or object to use these functions, you can use the QueryInterface
method to verify that the interface exists on an object and to obtain a pointer to that
interface. After sending QueryInterface, your application or object actually receives
from the object a pointer to the vtable, through which this method can call the
interface methods implemented by the object. This mechanism isolates from one
another any private data the object uses and the calling client process.

Another similarity between COM objects and C++ objects is that a method's first
argument is the name of the interface or class, called the this argument in C++.
Because COM objects and C++ objects are completely binary compatible, the
compiler treats COM interfaces like C++ abstract classes and assumes the same
syntax. This results in less complex code. For example, the this argument in C++ is
treated as an understood parameter and not coded, and the indirection through the
vtable is handled implicitly in C++.

Retrieving Newer Interfaces
[This is preliminary documentation and subject to change.]

The component object model dictates that objects update their functionality not by
changing the methods within existing interfaces, but by extending new interfaces that
encompass new features. In keeping existing interfaces static, an object built on COM
can freely extend its services while maintaining compatibility with older applications.

DirectX components follow this philosophy. For example, the DirectDraw component
supports three interfaces to access a DirectDrawSurface object: IDirectDrawSurface,
IDirectDrawSurface2, IDirectDrawSurface3 and IDirectDrawSurface4. Each
version of the interface supports the methods provided by its ancestor, adding new
methods to support new features. If your application doesn't need to use these new
features, it doesn't need to retrieve newer interfaces. However, to take advantage of
features provided by a new interface, you must call the object's
IUnknown::QueryInterface method, specifying the globally unique identifier
(GUID) of the interface you want to retrieve. Interface GUIDs are declared in the
corresponding header file.

The following example shows how to query for a new interface:

 LPDIRECTDRAW lpDD1;

 LPDIRECTDRAW2 lpDD2;

 ddrval = DirectDrawCreate(NULL, &lpDD1, NULL);

 if(FAILED(ddrval))

in.doc – page 11

 goto ERROROUT;

 // Query for the IDirectDraw2 interface

 ddrval = lpDD1->QueryInterface(IID_IDirectDraw2, (void **)&lpDD2);

 if(FAILED(ddrval))

 goto ERROROUT;

 // Now that we have an IDirectDraw2, release the original interface.

 lpDD1->Release();

In some rare cases, a new interface will not support some methods provided in a
previous interface version. The IDirect3DDevice2 interface is an example of this type
of interface. If your application requires features provided by an earlier version of an
interface, you can query for the earlier version in the same way as shown in the
preceding example, using the GUID of the older interface to retrieve it.

Accessing COM Objects by Using C
[This is preliminary documentation and subject to change.]

Any COM interface method can be called from a C program. There are two things to
remember when calling an interface method from C:

· The first parameter of the method always refers to the object that has been
created and that invokes the method (the this argument).

· Each method in the interface is referenced through a pointer to the object's vtable.

The following example creates a surface associated with a DirectDraw object by
calling the IDirectDraw4::CreateSurface method with the C programming
language:

ret = lpDD->lpVtbl->CreateSurface (lpDD, &ddsd, &lpDDS,

 NULL);

The lpDD parameter references the DirectDraw object associated with the new
surface. Incidentally, this method fills a surface-description structure (&ddsd) and
returns a pointer to the new surface (&lpDDS).

To call the IDirectDraw4::CreateSurface method, first dereference the DirectDraw
object's vtable, and then dereference the method from the vtable. The first parameter
supplied in the method is a reference to the DirectDraw object that has been created
and which invokes the method.

To illustrate the difference between calling a COM object method in C and C++, the
same method in C++ is shown below (C++ implicitly dereferences the lpVtbl
parameter and passes the this pointer):

ret = lpDD->CreateSurface(&ddsd, &lpDDS, NULL)

in.doc – page 12

Interface Method Names and Syntax
[This is preliminary documentation and subject to change.]

All COM interface methods described in this document are shown using C++ class
names. This naming convention is used for consistency and to differentiate between
methods used for different DirectX objects that use the same name, such as
QueryInterface, AddRef, and Release. This does not imply that you can use these
methods only with C++.

In addition, the syntax provided for the methods uses C++ conventions for
consistency. It does not include the this pointer to the interface. When programming
in C, the pointer to the interface must be included in each method. The following
example shows the C++ syntax for the IDirectDraw4::GetCaps method:

HRESULT GetCaps(
 LPDDCAPS lpDDDriverCaps,
 LPDDCAPS lpDDHELCaps
);

The same example using C syntax looks like this:

HRESULT GetCaps(
 LPDIRECTDRAW4 lpDD,
 LPDDCAPS lpDDDriverCaps,
 LPDDCAPS lpDDHELCaps
);

The lpDD parameter is a pointer to the DirectDraw interface that represents the
DirectDraw object.

What's New in DirectX?
[This is preliminary documentation and subject to change.]

Information for this topic is unavailable for this preliminary release of DirectX, but
will be completed for the final release.

Conventions
[This is preliminary documentation and subject to change.]

The following conventions define syntax:

Convention Meaning

Italic text Denotes a placeholder or variable. You must provide the

in.doc – page 13

actual value. For example, the statement SetCursorPos(X,
Y) requires you to substitute values for the X and Y
parameters.

Bold text Denotes a function, structure, macro, interface, method,
data type, or other keyword in the programming interface,
C, or C++.

[] Encloses optional parameters.

| Separates an either/or choice.

... Specifies that the preceding item may be repeated.

.

.

.

Represents an omitted portion of a sample application.

In addition, the following typographic conventions are used to help you understand
this material:

Convention Meaning

FULL CAPITALS Indicates most type and structure names, which also are
bold, and constants.

monospace Sets off code examples and shows syntax spacing.

Further Reading
[This is preliminary documentation and subject to change.]

Further explanation of the graphics and multimedia concepts and terms discussed
throughout DirectX, as well as information on Windows programming in general, can
be found in the following sources:

· Bargen, Bradley and Peter Donnelly, Inside DirectX, Microsoft Press, 1998.

· Begault, Durand R., 3-D Sound for Virtual Reality and Multimedia, Academic
Press, 1994.

· Blinn, James, Jim Blinn's Corner: A Trip Down the Graphics Pipeline, Morgan
Kaufmann, 1996.

· Foley, James D., Computer Graphics: Principles and Practice, Addison-Wesley,
1991 (2nd edition).

· Hearn, Donald and M. Pauline Baker, Computer Graphics, Prentice-Hall, 1986.

· Kientzle, Tim, A Programmer's Guide to Sound, Addison-Wesley Developers
Press, 1998.

· Petzold, Charles, Programming Windows 98, Microsoft Press, 1998 (5th edition).

· Thompson, Nigel, 3D Graphics Programming for Windows 95, Microsoft Press,
1996.

in.doc – page 14

· Watt, Alan H., and Mark Watt, Advanced Animation and Rendering Techniques,
Addison-Wesley, 1992.

Additional sources for the concepts and terms associated with COM can be found in
the following sources:

· Brockschmidt, Kraig, Inside OLE 2, Microsoft Press, 1995 (2nd edition).

· Rogerson, Dale E., Inside COM, Microsoft Press, 1997.

Debugging DirectX Applications
[This is preliminary documentation and subject to change.]

When using debug builds, in order to ensure that the debugger can find all the
relevant symbolic information, the symbol files need to be located as follows:

OS Debugger Location for .pdb file Location for .dbg file

Windows 95
Windows 98

Visual C++® same directory as binary same directory as binary

Windows NT
Windows 2000

Visual C++ same directory as binary %SystemRoot%\symbols\<binary ext>\

Windows NT
Windows 2000

NTSD/KD %SystemRoot%\symbols\<binary ext>\ %SystemRoot%\symbols\<binary ext>\

Note
When debugging with Microsoft® Visual C++® development system on
Windows NT/Windows 2000, do not use the WIN32API splitsym development
tool. WIN32API splitsym copies private symbolic information from the
<binary>.dbg file into the symbol directory under the binary extension (for
example, %SystemRoot%\symbols\dll\), then deletes the original file from the
binary directory. Visual C++ uses relies on finding private symbolic information
(<binary>.dbg) file in the same directory as the binary itself, so for debug builds,
it is necessary to only copy the private symbolic information and not to delete it.
This is only an issue when using Visual C++ with Windows NT/Windows 2000.
Consult Visual C++ documentation and Windows 2000 Driver Development Kit
(DDK) documentation for further debugging information.

Compiling DirectX Samples and
Other DirectX Applications

[This is preliminary documentation and subject to change.]

in.doc – page 15

This section provides information about considerations specific to compiling DirectX
applications. The following topics are discussed:

· Preparing for Compilation

· Component Version Constants

Preparing for Compilation
[This is preliminary documentation and subject to change.]

The samples included in this SDK use Microsoft® Visual C++® project files (MDP
files) that describe the appropriate source files, project resources, and linker settings
for each sample. However, you may need to make additional preparations to ensure
that the samples compile and link properly, or you might need to prepare settings for
a new project of your own. (For the samples, developers that use other compilers can
reference the generic makefiles included for information about the required libraries,
then configure their environment appropriately.) The information provided here
applies to the DirectX samples and the DirectX applications you will create.

After opening a project file in Visual C++, you should verify some settings before
trying to compile the application. The following descriptions are given in terms of the
Microsoft Visual C++ 5.0 and 4.2 options. Previous versions of Microsoft Visual C++
and other compilers have equivalent settings. If you do not use these versions of
Microsoft Visual C++, refer to the documentation provided with your development
environment for information on changing these settings.

Note
The following discussion uses the default installation paths (C:\mssdk\include
and C:\mssdk\lib) to describe file locations. Your installation paths might differ.

Include search paths

Make sure the search path for header files is correct, and that the directory for
DirectX header files is the first path that the compiler searches. To check the include
path, choose Options from the Tools menu, then select the Directories tab. The
following dialog box will appear.

The topmost path should indicate the folder that contains the latest DirectX header
files. The default path is C:\mssdk\include. If the path is not present, add it to the list
and move it to the top of the search list by using the toolbar controls within the
Directories tab.

Linker search paths

Check the search paths and search order that the linker uses to search for link
libraries. The link search paths are also listed on the Directories tab; choose Options
from the Tools menu, then select the Directories tab. When the dialog appears,

in.doc – page 16

choose the "Library files" option in the "Show directories for:" drop-down list box.
The topmost path should be the folder that contains the latest DirectX link libraries.
The default path is C:\mssdk\lib. (Borland link libraries are provided in the Borland
folder within the default folder.)

Project link libraries

If you are using the provided sample project files, you shouldn't need to verify these
settings, as they are specified with the provided project files. For new applications,
choose Settings from the Project menu to make the following dialog box appear. (In
Visual C++ 4.2, this is the Settings item on the Build menu.)

All DirectX applications should link to the Dxguid.lib include library, which defines
the globally unique identifiers (GUIDs) for all DirectX foundation COM interfaces.
(Alternatively, you can define INITGUID prior to all other include and define
statements in a single source module.) In addition, verify that the application is linked
to the appropriate standard DirectX link libraries. The following table shows the
various DirectX foundation components that might be used, and the corresponding
link libraries for those components.

Component Link Library (*.LIB)

DirectDraw Ddraw.lib

Direct3D Immediate Mode Ddraw.lib

DirectSound Dsound.lib

DirectInput Dinput.lib

DirectSetup Dsetup.lib

(All components) Dxguid.lib

Component Version Constants
[This is preliminary documentation and subject to change.]

For backward compatibility with previous versions of DirectX, some DirectX
components include variable API element definitions in their header files. Affected
elements are typically capability structures or flag sets that are version specific. Parts
of some header files are surrounded by preprocessor conditionals that cause the
preprocessor to effectively "filter-out" unneeded definitions. The value of the defined
constant identifies a specific version of the component; if no value is defined, the
headers set a value that identifies the DirectX version for which the header file was
written. An example from the DirectDraw header file, ddraw.h, is shown here:

#ifndef DIRECTDRAW_VERSION

#define DIRECTDRAW_VERSION 0x0600

#endif /* DIRECTDRAW_VERSION */

in.doc – page 17

The following table includes the components that use these version constants, their
labels, and their default value for this release of DirectX.

Component Label Value

DirectDraw DIRECTDRAW_VERSION 0x0600

Direct3D Immediate Mode DIRECT3D_VERSION 0x0600

DirectInput DIRECTINPUT_VERSION 0x0600

You can define other values for these constants to use newer versions of the header
files with previous versions of the components. For example, to use the latest headers
to compile against the DirectX 3.0 version of DirectDraw, you would define
DIRECTDRAW_VERSION to be 0x0300. You can set the value for the constant in
your development environment, or you can change the value in the header file itself.

	About DirectX Help
	DirectX Goals
	Benefits of Developing DirectX Windows Applications
	Providing Guidelines for Hardware Development

	The DirectX Programmer's Reference
	DirectX Programmer's Reference Components
	Using Macro Definitions
	Using Callback Functions

	DirectX and the Component Object Model
	The Component Object Model
	IUnknown Interface
	C++ and the COM Interface
	Retrieving Newer Interfaces
	Accessing COM Objects by Using C
	Interface Method Names and Syntax

	What's New in DirectX?
	Conventions
	Further Reading
	Debugging DirectX Applications
	Compiling DirectX Samples and Other DirectX Applications
	Preparing for Compilation
	Component Version Constants

