DirectPlay

The Microsoft® DirectPlay® application programming interface (API) is the
component of Microsoft DirectX® that enables you to write network applications such
as multiplayer games.

Like other components of DirectX, DirectPlay can be used with C, C++, and
Microsoft Visual Basice.

For an overview of the organization of the DirectPlay Help, see Roadmap.

Roadmap

Information on Microsoft® DirectPlay® is presented in the following sections.

What's New in DirectPlay. New features and functionality of this component in
Microsoft DirectX® 8. If you've used DirectPlay before, read this section first because
this technology has been completely redesigned since DirectX 7.

Introduction to DirectPlay. An overview of what DirectPlay is and what it can do for
your application, together with a first look at some key objects and the steps involved
in creating a network application.

Understanding DirectPlay. A deeper look at the underlying mechanisms. This section
won't teach you how to implement a DirectPlay session, but it will help you
understand the application programming interface (API) when you get into the
details.

Using DirectPlay. A guide to using the API. You'll probably want to familiarize
yourself with the table of contents for this section and then refer to parts of it as you
need specific information. Use it in conjunction with the reference section.

[C++]
DirectPlay C++ Samples. A guide to the C/C++ sample applications in the SDK.

[Visual Basic]
DirectPlay Visual Basic Samples. A guide to the Visual Basic sample applications in
the SDK.

[C++]
DirectPlay C/C++ Reference. Detailed information for the DirectPlay C++ APIL




in.doc — page 2

[Visual Basic]
DirectPlay Visual Basic Reference. Detailed information the DirectPlay Visual Basic
APIL.

What's New in DirectPlay

The networking component of Microsoft® DirectX® has undergone a major revision.
Microsoft DirectPlay® introduces a new set of interfaces that enable games to have
more direct access to the hardware, providing better performance.

The following list describes some of the new DirectPlay features.

[C++]

Interfaces have been completely rewritten.
The complexity of creating a networked application has been dramatically
simplified by separating the interfaces for creating peer-to-peer and client/server
sessions. The interfaces for creating DirectPlay transport sessions, which are
defined in the Dplay8.h header file, are now:

IDirectPlay8Peer
Provides methods for creating peer-to-peer sessions.

IDirectPlay8Client
Provides methods for creating the client-side portion of a client/server
application.

IDirectPlay8Server
Provides methods for creating the server-side portion of a client/server
application.

Lobbying is now independent from the rest of DirectPlay.
DirectPlay has removed the requirement that a lobby client work only with a
DirectPlay application. This will allow for either the lobby service provider or
the application to implement DirectPlay without concern for the other. Lobby
implementation is now separated into two simplified interfaces that are defined in
the Dplobby8.h header file.
IDirectPlay8LobbyClient
This interface is used to manage a lobby client and for enumerating and
launching lobby-aware applications.
IDirectPlay8LobbiedApplication
This interface is used to register a lobby launchable application with the
system so it can be lobby launched. It also is used to get the connection
information from the lobby to enable game launching without querying the
user.

Voice transmission has been added.



in.doc — page 3

DirectPlay Voice provides a set of interfaces to add real-time voice
communication to an application. The following interfaces are defined in the
Dvoice.h header file.

IDirectPlayVoiceClient
Provides methods to create and manage clients in a DirectPlay Voice session.

IDirectPlayVoiceServer
Provides methods to host and manage a DirectPlay Voice session.

IDirectPlayVoiceTest
Used to test DirectPlay Voice audio configurations.

Addressing information has moved from GUID-based data to URL-based data
format.
Previous versions of DirectPlay used binary chunks of data with GUID addresses
that were difficult to implement and that humans could not read. In DirectX 8.0,
DirectPlay introduces the representation of addresses in URL format. A set of
interfaces, defined in Dpaddr.h, is used to create and manipulate the new
addressing format.

IDirectPlay8Address
Provides generic addressing methods used to create and manipulate DirectPlay
addresses.

IDirectPlay8AddressIP
Provides IP provider-specific addressing services.

Higher scalability and better memory management have been added.
Increases in consumer bandwidth have dramatically affected network game
design and implementation. Improved DirectPlay thread-pool management
makes it easier to for the developer to design scalable, more robust applications
that can support massive multiplayer online applications.

[Visual Basic]

Objects have been completely rewritten.
The complexity of creating a networked application has been dramatically
simplified by separating the objects used for creating peer-to-peer and
client/server sessions. The objects for creating DirectPlay transport sessions are
now

DirectPlay8Peer
Provides methods for creating peer-to-peer sessions.
DirectPlay8Client
Provides methods for creating the client-side portion of a client/server
application.
DirectPlay8Server
Provides methods for creating the server-side portion of a client/server
application.

Lobbying is now independent from the rest of DirectPlay.



in.doc — page 4

DirectPlay has removed the requirement that a lobby client work only with a
DirectPlay application. This will allow for either the lobby service provider or
the application to implement DirectPlay without concern for the other. Lobby
implementation is now separated into two simplified objects.

DirectPlay8LobbyClient

This object is used to manage a lobby client and for enumerating and launching

lobby-aware applications.

DirectPlay8Lobbied Application
This object is used to register a lobby launchable application with the system
so it can be lobby launched. It also is used to get the connection information
from the lobby to enable game launching without querying the user.

Voice transmission has been added.
DirectPlay Voice provides a set of objects to add real-time voice communication
to an application. The following objects are defined in the Dvoice.h header file.

DirectPlayVoiceClient
Provides methods to create and manage clients in a DirectPlay Voice session.

DirectPlayVoiceServer
Provides methods to host and manage a DirectPlay Voice session.

DirectPlayVoiceTest
Used to test DirectPlay Voice audio configurations.

Addressing information has moved from GUID-based data to URL-based data
format.
Previous versions of DirectPlay used binary chunks of data with GUID addresses
that were difficult to implement and that humans could not read. In DirectX 8.0,
DirectPlay introduces the representation of addresses in URL format. DirectPlay
provides an object that is used to create and manipulate the new addressing
format.

DirectPlay8Address
Provides generic addressing methods used to create and manipulate DirectPlay
addresses.

Higher scalability and better memory management have been added.
Increases in consumer bandwidth have dramatically affected network game
design and implementation. Improved DirectPlay thread-pool management
makes it easier to for the developer to design scalable, more robust applications
that can support massive multiplayer online applications.

Better support for Firewalls and Network Address Translators has been added.
Writing network games that traverse Network Address Translators (NATSs),
Firewalls, and other Internet Connection Sharing (ICS) methods can be difficult,
particularly for non-guaranteed (UDP) traffic. Because DirectPlay 8.0 has been
developed with these issues in mind, it will support NAT solutions where
possible. The DirectPlay 8 TCP/IP service provider uses a single, developer-
selectable UDP port for game data, making it possible to configure firewalls and
NATS appropriately. Additionally, DirectPlay makes use of UDP so that, for



in.doc — page 5

client/server games, clients behind some NATs will be able to connect to games
without additional configuration.

Introduction To DirectPlay

The Microsoft® DirectPlay® API provides developers with the tools to develop
multiplayer applications such as games or chat clients. For simplicity, this
documentation will refer to all such applications as "games". A multiplayer
application has two basic characteristics:

® Two or more individual users, each with a game client on their computer.

® Network links that enable the users' computers to communicate with each other,
perhaps through a centralized server.

DirectPlay provides a layer that largely isolates your application from the underlying
network. For most purposes, your application can simply use the DirectPlay API, and
enable DirectPlay to handle the details of network communication. DirectPlay
provides many features that simplify the process of implementing many aspects of a
multiplayer application, including:

® Creating and managing both peer-to-peer and client/server sessions

® Managing users and groups within a session

® Managing messaging between the members of a session over different network
links and varying network conditions

® Enabling applications to interact with lobbies

® Enabling users to communicate with each other by voice
This documentation provides a high-level overview of the capabilities of DirectPlay.
Subsequent sections will take you into the details of how to use DirectPlay in your
multiplayer game.

® Creating and Managing Sessions

¢ DirectPlay Network Communication

¢ Communicating with DirectPlay Objects

¢ DirectPlay Lobby Support

® DirectPlay Voice Communication

Creating and Managing Sessions

A game session is an instance of a particular multiplayer game. A session has two or
more users playing simultaneously, each with the same game client on his or her
computer. A player is an entity in the game itself, and is defined by the particular
game. Each user may have more than one player in a game. However, the game
application must manage these players itself, using separate Microsoft® DirectPlay®
interfaces or objects for each player.



in.doc — page 6

The first step in creating a session is to collect a group of users. There are two basic
approaches:

® Many game sessions are arranged by a lobby application running on a remote
computer. This approach is used by most Internet-based games.

® It is also possible to arrange games by having the individual users' computers
communicate with each other. This approach is typically limited such situations
as a group of potential users that are all on the same LAN.

Once the session has been arranged, the game is launched and gameplay begins. As
the session proceeds, players may be eliminated from the session, or new players
added. The details are up to the individual game.

With a multiplayer game, each user's UI can be synchronized with that of all the other
users in the session. Managing a multiplayer session thus requires a continual stream
of messages to and from each user. For example, every time a player moves, a
message must be sent to update that player's position on all the other game clients in
the session. The core of DirectPlay is that part of the API that supports efficient and
flexible messaging between all the computers in a session.

There are two basic ways to structure the messaging topology of a session: peer-to-
peer and client/server. Both topologies have their advantages and limitations, so you
will need to evaluate which is most appropriate for your game.

This section discusses

® Peer-to-Peer Topology
® Client/Server Topology

Peer-to-Peer Topology

A peer-to-peer game consists of the individual players' computers, connected by
network links. Schematically, the topology of a four-player peer-to-peer game looks
like:

Player's Player's
Computer Computer

@@&@

Player's Player’'s
Computer Computer
Gameplay is handled by having each user's game client communicate directly with
the other users' clients. For instance, when one user moves, the game client must send
three update messages, one to each of the other users' computers.



in.doc — page 7

A peer-to-peer game is normally arranged and launched through a lobby client
application that resides on the user's computer. There are two basic ways the lobby
client can arrange a session:

® The lobby client communicates directly with other potential users' lobby clients.
This approach can be used, for instance, to arrange a game among users on the
same LAN subnet.

® The lobby client acts as a link to lobby server application running on a remote
computer. This is the way Internet-based games are normally arranged.

Once a session has been arranged and launched, most or all of the messaging will be
user to user. If a lobby server is involved, it will only be handling such tasks as
updating its list of session members when a player leaves the game, or enabling a new
user to request entry to the session. Otherwise, the server stays in the background, and
is typically not even aware of most of the messages that are being sent.

Because the server is either non-existent or at least not directly involved with the
game play, one user is designated as the game host. They are responsible for handling
logistical details such as bringing new players into an ongoing session.

Peer-to-peer games have the advantage of simplicity. All that is needed is a collection
of players with game clients, and a way to organize a session. The primary drawback
of the peer-to-peer topology is scalability. As the number of users increase, the
number of messages needed to facilitate game play increases geometrically. The
maximum number of users that can be accommodated depends on the game and the
network bandwidth, but is typically no more than 20-30.

Client/Server Topology

A client/server game consists of the individual players' computers, connected to a
central server computer. Schematically, the topology of a four-player peer-to-peer
game looks like:

Player's Player's

Player's
Computer

Player's
Computer

S
Gameplay is handled by having each user's game client communicate with the server.
The server is responsible for passing information on to the other users. For instance,
when one user moves, they send a message to the server. The server then sends

messages to the other players to inform them of a change in game state. The server
can have a number of responsibilities:




in.doc — page 8

® Act as the session's messaging hub. Each computer only needs to send messages
to the server. The server handles the logistics of synchronizing all the other users.
This arrangement can substantially reduce message traffic, especially for large
games.

® Host the game. The server normally takes care of the tasks that must be handled
by the session host in a peer-to-peer game.

® Support many aspects of the game. The server often does much more than
support game logistics. With many games, especially large ones, much of the
processing that maintains the "game universe" takes place on the server. The
game clients are primarily responsible for handling the user's Ul

A client/server game is normally arranged and launched through a lobby client
application that resides on the user's computer. The lobby client acts as a link to a
lobby server application that is normally running on a the same remote computer that
is hosting the game. Once the game has been launched, the game server application
becomes the host, and handles tasks such as admitting new users to the game.

There are a number of advantages to client/server games:

® They are more efficient, especially for large-scale games. In particular, the scale
much better than peer-to-peer games, because additional players only cause a
linear increase in the messaging traffic. The client/server topology is necessary
for massively-multiplayer games.

® You not limited by the processing power of your users' computers. You can
locate much of the processing required to maintain a large complex "game
universe" on a single powerful computer, and let the users' computers handle the
UL

® You can control key aspects of your game at a central site. For instance, you can
often update the game or fix bugs by simply modifying the server application,
avoiding the need to update large numbers of game clients.

However, once you have developed and shipped a peer-to-peer game, you are
essentially finished. The game clients are largely self-sufficient. With a client/server
game, you have an ongoing commitment to your users that goes beyond providing
normal support services. You must also provide and maintain a game server computer
and the associated software, along with the network links to handle all the messaging,
for the lifetime of the application. In the case of massively multiplayer games, you
may need to operate your servers for extended periods with few or no breaks in
service, or risk angering users by disrupting their gameplay.

DirectPlay Network Communication

The primary function of Microsoft® DirectPlay® is to provide you with efficient and
flexible messaging support that largely isolates your application from the underlying
network hardware and software. If you need to send a status update, you can simply

call the relevant DirectPlay API, regardless of what kind of network link is involved.



in.doc — page 9

DirectPlay network service providers support communication over TCP/IP, IPX,
modem, and serial links.

This section discusses.

® DirectPlay Transport Protocol
® DirectPlay Addresses

Notes

DirectPlay does not support secure communications.

To use modems on Microsoft Windows® 95 systems, you must install version 2.0 of
the Telephony API (TAPI). You can download TAPI 2.0 from
http://www.microsoft.com.

DirectPlay Transport Protocol

The core of the Microsofte DirectPlay® networking capabilities is the DirectPlay
protocol. This transport-layer protocol has been completely overhauled for DirectPlay
8, and is now used for all messaging. The DirectPlay protocol is focused on making it
simple for you to send data from the sending application to the target application,
without needing to worry about what happens in between. The protocol offers a
number of features that are tailored to the needs of multiplayer games, including:

® Reliable and unreliable delivery of messages. Reliable messages will be resent
until the target application receives them. You can assign the delivery type on a
message-by-message basis.

® Sequential and non-sequential delivery of messages. Sequential messages will be
passed to the target application in the order they were sent.

® Message fragmentation and reassembly. If message size exceeds the capacity of a
particular network, DirectPlay automatically fragments and reassembles the
message.

® Congestion control. DirectPlay automatically throttles your outgoing messages to
a level that can be handled by the target. This feature prevents you from flooding
the target with more messages than it can process.

® Send prioritization. To ensure that the most important messages get sent first,
DirectPlay enables you to designate messages as low, medium, or high priority.
The high priority messages are sent to the front of the output queue, followed by
medium and low priority messages.

® Message timeouts. To prevent the outgoing message queue from being clogged
with messages that have been superseded by more recent messages, DirectPlay
enables you to assign a timeout value to all messages. When a message times out,
it is removed from the outgoing message queue, regardless of whether it has been
sent or not.



in.doc — page 10

DirectPlay Addresses

In order to deliver messages, each participant in a multiplayer game must have a
unique address. Addresses can refer either to the computer that your application is
running on (device address), or a computer that your application needs to
communicate with (host address).

Microsofte DirectPlay® addresses are in the form of URL strings. These strings
consist of a scheme, scheme separator, and data string in the following general
format.

x-directplay:/[data string]

The data string contains several elements that specify everything that is needed to
enable communication to take place between sender and target, over a variety of
different types of network link.

In use, the URL strings are embedded in a DirectPlay address object which is passed
to or from DirectPlay API methods. You have the option of either manipulating the
URL string directly, or using the methods exposed by the address object to handle
each element of the data string separately.

Communicating with DirectPlay Objects

Microsofte DirectPlay® essentially consists of a collection of COM objects. Each
object exposes one or more interfaces that enable you to control various aspects of
DirectPlay. For instance, the DirectPlay peer object (CLSID_DirectPlay8Peer) is used
to manage peer-to-peer games.

[C++]

You communicate with a DirectPlay object by calling the methods exposed by its
interfaces. For instance, to send some data to another user in a peer-to-peer game, you
would send a message by calling the IDirectPlay8Peer::SendTo method. DirectPlay
then takes care of getting the message to its target.

[Visual Basic]

You communicate with a DirectPlay object by calling the methods exposed by its
interfaces. For instance, to send some data to another user in a peer-to-peer game, you
would send a message by calling the DirectPlay8Peer.SendTo method. DirectPlay
then takes care of getting the message to its target.

[CH+]

DirectPlay communicates with your application through one or more callback
functions. These functions are similar in principle to the familiar Window procedure.
Your application implements the callback function and passes a pointer to the



in.doc — page 11

function to DirectPlay during initialization. When DirectPlay needs to communicate
with your application, it calls the callback function and passes in two key items of
information:

® A message ID that identifies the message type
® A pointer to a block of data, typically a structure, that provides any needed
details.

For instance, when the message sent in the above example arrives at its target, the
target application's callback function will receive a message with a

DPNMSGID RECEIVE message id, indicating that a message has arrived from
another user. The accompanying structure contains the data.

Because much of DirectPlay messaging is multithreaded, it is critical that callback
functions be properly implemented.

[Visual Basic]

DirectPlay communicates with your application through one or more message
handlers. A message handler is an object that DirectPlay calls to notify your
application of various events. The documentation describes the methods that are
exposed by the object, but you must implement all of the objects methods in your
application. You then register the object during startup, and DirectPlay will call the
object's methods to notify you when an event has occurred. Additional information
about the event is passed through the method's parameters.

DirectPlay Lobby Support

A lobby is an application whose primary purpose is to enable players to meet and
arrange games. It is typically located on a remote computer, and accessed over the
Internet. Lobby servers often also perform a variety of other functions, such as
hosting chat rooms, posting news and information, and selling merchandise. While
lobby servers are convenient and commonly used to arrange multiplayer games, they
aren't required. Multiplayer games can also be arranged by direct communication
between lobby clients.

There are normally three components that are needed to enable a game to interact
with a lobby:

® A lobby server

® A lobby client

® A lobbyable game.

Microsofte DirectPlay® does not specify how you should implement a lobby server
application. Instead, DirectPlay provides support for a lobby client. A lobby client is
an application that is implemented by a lobby server vendor, and installed on each
user's system. It serves as a link between the user and the lobby. While you could



in.doc — page 12

handle such communication directly, you would have to know the specific
implementation details of every lobby that might launch your game.

The lobby client application handles the details of communicating with its associated
lobby server, using whatever protocols are appropriate. The lobby client
communicates with the user and their game applications through a DirectPlay
interface. DirectPlay then passes messages to the application. The application can also
use a DirectPlay interface to pass messages to the lobby client.

A lobby can launch virtually any application. However, the application must have
some specific lobby-aware components to take full advantage of lobby-launching. In
particular, a lobbyable application can communicate with the lobby client throughout
the course of the session. If an application is registered as lobbyable, the lobby client
also automatically receives updates for various changes in game status, such as host
migration.

DirectPlay Voice Communication

The current trend toward team-based multiplayer games makes player-to-player
communication an essential part of gameplay. Historically this has been confined to
text-based communication, where players type out the messages to their teammates.
Although suitable for slower, turn-based games, text-based communication is at best
an inconvenience for real-time games. Not only does it put slow typists at a
disadvantage during gameplay but also it is a significant break in the reality that
games attempt to create for the player. An obvious solution to the problem is the use
of speech as a means for communication. It requires no training and increases the
immersion of the game itself.

The windows platform provides all the tools required to provide real-time voice
conferencing to video game developers, but it requires a significant amount of effort
on the part of the game developer. This, combined with the cost and difficulty of
obtaining the rights to compression technology capable of handling extremely low
bandwidth situations, has prevented the wide-spread use of voice in games.

Microsofte DirectPlay® 8.0 provides the game developer with a robust real-time voice
conferencing system that requires a minimal amount of effort to use.

Understanding DirectPlay

This section of the Microsofte DirectPlay® documentation provides the basic
background you need to understand how to use the DirectPlay API in your
application.

® DPeer-to-Peer Sessions



in.doc — page 13

® (Client/Server Sessions

® DirectPlay Lobbies

® Basic Networking

¢ DirectPlay Callback Functions and Multithreading Issues
® Understanding DirectPlay Voice

Peer-to-Peer Sessions

A peer-to-peer session consists of a collection of users connected by a network. While
a lobby server may be used to arrange and launch the game, the messaging needed to
run the game is sent directly from one user's to another. Any communication with the
lobby server is for such limited purposes as updating the list of participants.

With a peer-to-peer game, everything that is needed to run the game is part of the
client software. With no server involved, all the processing needed to create and
maintain the game universe must be handled by the client applications. This
document discusses the basic principles of a lobbyable Microsoft® DirectPlay® peer-
to-peer game. For a simple working example of a peer-to-peer application, see the
SimplePeer application included with the SDK.

® Initiating a Peer-to-Peer Session

® Selecting a Service Provider for a Peer-to-Peer Session

® Selecting a Host for a Peer-to-Peer Session

¢ Connecting to a Peer-to-Peer Session

® Managing a Peer-to-Peer Session

® Host Migration

® Normal Peer-to-Peer Game Play

® Leaving a Peer-to-Peer Session

® Terminating a Peer-to-Peer Session

Initiating a Peer-to-Peer Session

A peer-to-peer game can be launched directly by the user, or lobby-launched by a
lobby client application that resides on the user's computer. This documentation will
assume that the game is lobbyable, and can communicate with the lobby client.

[CH+H]

One of the first steps you should take is to determine whether your game was lobby-
launched. To do so, create and initialize a lobbied application object
(CLSID_DirectPlay8LobbiedApplication). When you do so, you pass the object a
pointer to your lobbied application message handler. This message handler receives
messages directly from the lobbied application object, and indirectly from the lobby
client and the lobby.



in.doc — page 14

® If the application was lobby-launched, the
IDirectPlay8LobbiedApplication::Initialize method returns a connection
handle for the lobby client and a DPL._ MSGID_CONNECT message is sent to
your lobbied application message handler. The pdplConnectionSettings member
of the associated structure points to a DPL. CONNECTION_SETTINGS
structure that contains connection information such as address objects for the
members of the session.

® If the application was not lobby launched, you will receive neither the connection
handle, nor the message. However, if you call
IDirectPlay8LobbiedApplication::SetAppAvailable, a lobby client can later
connect your running application to a session by sending your lobbied
application message handler a DPL._MSGID _CONNECT message.

You should also create and initialize a peer object (CLSID DirectPlay8Peer). This
object will be your primary means of communicating with Microsofte DirectPlay®,
and the other users in the session. If you want to have multiple players in the session,
you must create a separate instance of this object for each player.

[Visual Basic]

One of the first steps you should take is to determine whether your game was lobby-
launched. To do so, create a DirectPlay8LobbiedApplication object and a
DirectPlay8LobbyEvent object. Register the DirectPlay8LobbyEvent object with
Microsofte DirectPlay® by calling
DirectPlay8LobbiedApplication.RegisterMessageHandler. The
DirectPlay8LobbyEvent object is essentially an event handler that receives
notifications directly from the lobbied application object, and indirectly from the
lobby client and the lobby. It is not provided by DirectPlay and must be implemented
by your application. See the reference documentation for details.

If the application was lobby-launched, DirectPlay will call your
DirectPlay8LobbyEvent.Connect method. The d/Notify parameter will contain a
DPL_MESSAGE_CONNECT type with connection information. such as address
objects for the members of the session.

You should also create a DirectPlay8Peer object and register a DirectPlayS8Event
notification handler object by calling DirectPlay8Peer.RegisterMessageHandler.
These objects will be your primary means of communicating with DirectPlay and the
other users in the session. If you want to have multiple players in the session, you
must create a separate instance of these objects for each player.




in.doc — page 15

Selecting a Service Provider for a Peer-to-Peer
Session
The service provider is your network connection. Most games use either the TCP/IP

or modem service provider, but Microsoft® DirectPlay® also provides support for
serial and IPX connections.

[C++]

If your user was connected to the session by a lobby client, you can determine the
appropriate service provider by examining the DPL._ CONNECTION_SETTINGS
structure that accompanies the DPL_MSGID_CONNECT message. Otherwise, you
may need to determine which service provider to use, perhaps by querying the user.
You can use the peer object's IDirectPlay8Peer::EnumServiceProviders method to
enumerate the available service providers. See Using DirectPlay Enumerations for
further discussion.

[Visual Basic]

If your user was connected to the session by a lobby client, you can determine the
appropriate service provider by examining the DPL. MESSAGE_CONNECT
structure that accompanies the DirectPlay8LobbyEvent.Connect method.
Otherwise, you may need to determine which service provider to use, perhaps by
querying the user. You can also use the peer object's
DirectPlay8Peer.GetServiceProvider enumerate the available service providers.

Once you have selected a service provider, you can then create a DirectPlay address
object for your user (a device address). You will use this address to identify your
device with a number of DirectPlay methods. See DirectPlay Addressing for a
detailed discussion of DirectPlay addresses and address objects.

Selecting a Host for a Peer-to-Peer Session

[CH+]

Although most aspects of peer-to-peer games can be handled by the various users'
communicating directly with each other, there are some tasks that must have a single
owner. These tasks are handled by the game host. To join a session, you must know
the address of the session's host. A common way to select a host is through a lobby
server. In that case, when a user's application is connected to the session, the
connection settings that you receive with the DPL_MSGID_CONNECT message
include the host's address object. To find out who the session host is:

® Check the dwFlags member of the DPL._CONNECTION_SETTINGS structure
that is returned. If that member is set to DPLCONNECTSETTINGS HOST,
your system is the host.



in.doc — page 16

¢ Ifthe DPLCONNECTSETTINGS HOST flag is not set, then you can get the
address of the host from the pdp8HostAddress member.

You can also create a broadcast session, perhaps on a LAN subnet, by advertising
yourself as a session host. To do so call IDirectPlay8Peer::SetPeerInfo to set the
player's name and then call IDirectPlay8Peer::Host to advertise yourself as a
potential host. You specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC structure that is passed through the pdnAppDesc
parameter of IDirectPlay8Peer::Host.

To allow your user to examine the available sessions and hosts, you can enumerate
the available hosts by calling IDirectPlay8Peer::EnumHosts. Once the user has
selected a session, you can request a connection.

[Visual Basic]

Although most aspects of peer-to-peer games can be handled by the various users'
communicating directly with each other, there are some tasks that must have a single
owner. These tasks are handled by the game host. To join a session, you must know
the address of the session's host. A common way to select a host is through a lobby
server. In that case, when a user's application is connected to the session, the
connection settings that you receive when Microsofte DirectPlay® calls your
DirectPlay8LobbyEvent.Connect method include the host's address object. To find
out who the session host is:

® Check the dwFlags member of the DPL._CONNECTION_SETTINGS structure
that is contained in the DPL._ MESSAGE_CONNECTION_SETTINGS passed
as the dINotify parameter. If that member is set to
DPLCONNECTSETTINGS HOST, your system is the host.

¢ If the DPLCONNECTSETTINGS HOST flag is not set, then you can get the
address of the host from the pdp8HostAddress member.

You can also create a broadcast session, perhaps on a LAN subnet, by advertising
yourself as a session host. To do so call DirectPlay8Peer.SetPeerInfo to set the
player's name and then call DirectPlay8Peer.Host to advertise yourself as a potential
host. You specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC type that is passed through the pdnAppDesc
parameter of IDirectPlay8Peer.Host.

To allow your user to examine the available sessions and hosts, you can enumerate
the available hosts by calling DirectPlay8Peer.EnumHosts. Once the user has
selected a session, you can request a connection.

Connecting to a Peer-to-Peer Session

[C++]



in.doc — page 17

Unless you are the session host, you will need to connect your player to the session.
To do so, you must have the address of the session host. If your application was
connected by a lobby client, you can obtain the host's address by calling
IDirectPlay8LobbiedApplication::GetConnectionSettings. You can also obtain the
address by enumerating the available hosts. The information returned by the
enumeration includes each host's addresses, and a DPN_APPLICATION_DESC
structure that describes the associated session.

To ask to join a session, call IDirectPlay8Peer::SetPeerInfo to set your player's
name, and then call IDirectPlay8Peer::Connect with the selected host's address to
connect to the session.

When a player attempts to join a session, the host receives a
DPN_MSGID_INDICATE_CONNECT message. To accept the player into the
session, return S_OK. Returning any other value rejects the request. In either case, the
player will receive a DPN_MSGID_CONNECT_COMPLETE message that
contains your response. If the host accepted the connection, the hResultCode
member of the associated structure will be set to S_OK. If not, hResultCode will be
set to DPNERR_HOSTREJECTEDCONNECTION.

The host can define a player context value when they receive the
DPN_MSGID_INDICATE_CONNECT message, however the player ID will not
yet be defined. The host can also wait to define a player context value until they
receive a DPN_MSGID_CREATE_PLAYER message, which includes the player
ID. Ordinary players to not receive a DPN_MSGID_INDICATE_CONNECT
message.

Once the new player is connected, each member of the session, including the host,
receives a DPN_MSGID_CREATE_PLAYER message announcing the new player.
The structure associated with the message contains the player ID that you will use to
send messages to that player. Peers that are not hosts must define the player context
value when they handle this message. Once a peer or host has returned from handling
this message, that player context value is set for the session, and cannot be changed.
See Using Player Context Values for more discussion of player context values.

[Visual Basic]

Unless you are the session host, you will need to connect your player to the session.
To do so, you must have the address of the session host. If your application was
connected by a lobby client, you can obtain the host's address by calling
DirectPlay8LobbiedApplication.GetConnectionSettings. You can also obtain the
address by enumerating the available hosts. The information returned by the
enumeration includes each host's addresses, and a DPN_APPLICATION_DESC
structure that describes the associated session.

To ask to join a session, call DirectPlay8Peer.SetPeerInfo to set your player's name,
and then call DirectPlay8Peer.Connect with the selected host's address to connect to
the session.



in.doc — page 18

When a player attempts to join a session, the Microsoft® DirectPlay® calls the host's
DirectPlay8Event.IndicateConnect method. To accept the player into the session,
set the method's fRejectMsg parameter to False before returning. Setting fRejectMsg
to True rejects the request. In either case, the player's
DirectPlay8Event.ConnectComplete method will be called with the response. If the
host accepted the connection, the hResultCode member of the
DPNMSG_CONNECT_COMPLETE type will be set to 0. If the request was
rejected or failed for some other reason, hResultCode will be set to an error code.

Once the new player is connected, DirectPlay announces the new player by calling
DirectPlay8Event.CreatePlayer for cach member of the session, including the host.
The [PlayerID parameter contains the player ID that you will use to send messages to
that player.

Managing a Peer-to-Peer Session

The session host is responsible for managing the session, including:

® Managing the list of session members and their network addresses
® Deciding whether a new user is allowed to join the session.

® Notifying all members when a new user joins the session, and passing them the
new user's address.

® Providing new users with the current game state

® Notifying all users when a user leaves the session

[C++]

When players attempt to join a session, the host will receive a
DPN_MSGID_INDICATE_CONNECT message. To accept the player into the
session return S_OK. Returning any other value rejects the request. In either case, the
player will receive a DPN_MSGID_CONNECT_COMPLETE message that
contains your response.

The host can remove a player from the session by calling
IDirectPlay8Peer::DestroyPeer. Other members of the session cannot call this
method successfully. If you want to allow players to request that another player be
removed from the session, you must send the request to the host with normal
Microsofte DirectPlay® messaging, and have the host handle the request.

[Visual Basic]

When players attempt to join a session, Microsoft® DirectPlay® will call the host's
DirectPlay8Event.IndicateConnect method. To accept the player into the session set
fRejectMsg to False. Setting fRejectMsg to any other value rejects the request. In
either case, DirectPlay calls the player's DirectPlay8Event.ConnectComplete
method with the response to the request.



in.doc — page 19

The host can remove a player from the session by calling
DirectPlay8Peer.DestroyPeer. Other members of the session cannot call this method
successfully. If you want to allow players to request that another player be removed
from the session, you must send the request to the host, and have the host handle the
request.

Host Migration

While the host must be one of the initial members of the session, they may choose to
leave before session is finished. When the host leaves the session, there are two
possible outcomes :

® The session terminates.

® The host migrates, and another user becomes host.

[CHH]

Sessions may or may not permit host migration. To enable host migration, the session
organizer must set the DPNSESSION MIGRATE HOST flag in the dwFlags
member of the DPN_APPLICATION_DESC structure when they set up the game.
If this flag is not set, the session terminates when the host leaves.

If the DPNSESSION_MIGRATE HOST flag is set, the host can still force the
session to terminate by calling IDirectPlay8Peer::TerminateSession.

If DPNSESSION MIGRATE HOST flag is set and the host leaves the session,
Microsofte DirectPlay® will select a new session host. All remaining session
members will receive a DPN_MSGID_HOST_MIGRATE message that includes
the ID of the new host.

[Visual Basic]

Sessions may or may not permit host migration. To enable host migration, the session
organizer must set the DPNSESSION _MIGRATE HOST flag in the dwFlags
member of the DPN_APPLICATION_DESC type when they set up the game. If this
flag is not set, the session terminates when the host leaves or loses their connection.

If the DPNSESSION_MIGRATE HOST flag is set, the host can still force the
session to terminate by calling DirectPlay8Peer.TerminateSession.

If DPNSESSION MIGRATE HOST flag is set and the host leaves the session,
Microsofte DirectPlay® will select a new session host. DirectPlay will call the
DirectPlay8Event.HostMigrate method of all remaining session members with the
ID of the new host.




in.doc — page 20

Normal Peer-to-Peer Game Play

In Microsofte DirectPlay®, a message is essentially a block of game-related data that
you send to one or more members of the session. DirectPlay does not specify the
contents or format of the data block, it just provides a mechanism to transmit the data
from one user to another. Once the game is underway, each session member will
normally send a constant stream of messages to all other members of the session for
the duration of the game. The primary purpose of these messages is to keep the game
state synchronized, so that each user's application displays the same UI. However,
messages can also be used for a variety of other game-specific purposes.

For many games, especially rapidly changing ones, you may have to manage your
messaging carefully. DirectPlay throttles outgoing messages to a level that can be
handled by the target. You will have be careful that you do not send messages too
rapidly, and ensure that the most important messages get through. See Basic
Networking for a discussion of how to effectively handle DirectPlay messaging.

[C++]

To send a message to another session member, call IDirectPlay8Peer::SendTo. That
member will receive a DPN_MSGID_RECEIVE message with the data. To send a
message to a specific player, set the dpnid parameter to the player ID that you
received with the associated DPN_MSGID _CREATE_ PLAYER message. You can
also send a message to every player in the session by setting dpnid to

DPNID_ALL PLAYERS GROUP. You can also define groups of players, and use a
single SendTo call to send a message to all members of a group.

Note
You can also use the IDirectPlay8Peer::SetPeerInfo method to send
information to other users. They will receive the information with a
DPN_MSGID_PEER_INFO message. However, this way of transmitting
information is not very efficient, and should not be used for normal messaging.

[Visual Basic]

To send a message to another session member, call DirectPlay8Peer.SendTo.
DirectPlay will call that members DirectPlay8Event.Receive method with the data.
To send a message to a specific player, set the idSend parameter to the player ID that
you when your DirectPlay8Event.CreatePlayer method was called. You can also
send a message to every player in the session by setting idSend to

DPNID ALL PLAYERS GROUP. You can also define groups of players, and use a
single SendTo call to send a message to all members of a group.

Note
You can also use the DirectPlay8Peer.SetPeerInfo method to send information
to other users. DirectPlay will call their DirectPlay8Event.InfoNotify method
with the information. However, this way of transmitting information is not very
efficient, and should not be used for normal messaging.



in.doc — page 21

Using Groups

[CH+H]

Many games allow players to be organized into groups. For instance, strategy games
typically allow individual players to be organized into groups that can then be
directed as a single entity. Microsoft® DirectPlay® also allows the formation of groups
of players. DirectPlay groups are essentially a way to simplify your messaging. Once
you have defined a group, you can send a message to every group member with a
single call to IDirectPlay8Peer::SendTo. While DirectPlay groups normally
correspond to the groups that are defined by the game, you are free to create a group
for any reason.

To create a DirectPlay group, call IDirectPlay8Peer::CreateGroup All session
members will then receive a DPN_MSGID_CREATE_GROUP message with the
details. The message will include a group ID that is used to send messages to the

group.

Once the group is created, you then add players by calling
IDirectPlay8Peer::AddPlayerToGroup. Session members will then receive a
DPN_MSGID_ADD_PLAYER_TO_GROUP message with the IDs of the group
and the player that was just added.

Once the group is established, you can send data to the group by calling
IDirectPlay8Peer::SendTo, with the dpnid parameter set to the group ID. All group
members will then receive a DPN_MSGID_RECEIVE message with the data.

To remove a player from a group, call
IDirectPlay8Peer::RemovePlayerFromGroup. The session members will receive a
DPN_MSGID_DESTROY_PLAYER message with the player's ID.

Finally, when you no longer need the group, you can destroy it by calling
IDirectPlay8Peer::DestroyGroup All session members will then receive a
DPN_MSGID_DESTROY_GROUP message with the group ID.

[Visual Basic]

Many games allow players to be organized into groups. For instance, strategy games
typically allow individual players to be organized into groups that can then be
directed as a single entity. Microsoft® DirectPlay® also allows the formation of groups
of players. DirectPlay groups are essentially a way to simplify your messaging. Once
you have defined a group, you can send a message to every group member with a
single DirectPlay8Peer.SendTo. While DirectPlay groups normally correspond to
the groups that are defined by the game, you are free to create a group for any reason.

To create a DirectPlay group, call DirectPlay8Peer.CreateGroup. DirectPlay will
call all session members' DirectPlay8Event.CreateGroup method with the details.



in.doc — page 22

The method's IGroupID parameter will be set to the group ID that you can use to send
messages to the group.

Once the group is created, you then add players by calling
DirectPlay8Peer.AddPlayerToGroup. DirectPlay will then call all members'
DirectPlay8Event.AddRemovePlayerGroup with the IDs of the group and the
player that was just added.

Once the group is established, you can send data to the group by calling
DirectPlay8Peer.SendTo, with the idSend parameter set to the group ID. DirectPlay
will call all group members' DirectPlay8Event.Receive method with the data.

To remove a player from a group, call DirectPlay8Peer.RemovePlayerFromGroup.
DirectPlay will call the session members'
DirectPlay8Event.AddRemovePlayerGroup method with the player's ID.

Finally, when you no longer need the group, you can destroy it by calling
DirectPlay8Peer.DestroyGroup. DirectPlay will call all session members'
DirectPlay8Event.DestroyGroup method with the group ID.

Leaving a Peer-to-Peer Session

[C+]

To leave a session, terminate the connection by calling IDirectPlay8Peer::Close.
The session members will be notified with a DPN_MSGID_DESTROY_PLAYER
message.

[Visual Basic]

To leave a session, terminate the connection by calling DirectPlay8Peer.Close.
Microsofte DirectPlay® will call the session members
DirectPlay8Event.DestroyPlayer method with the /PlayerID parameter set to the
player's ID.

If you are the session host, leaving also terminates the session unless you configured
the session to allow host migration. See Host Migration for details.

Terminating a Peer-to-Peer Session

[C++]

When the session is over, the host should terminate the session by calling
IDirectPlay8Peer::TerminateSession. This method terminates the session even if
host-migration is enabled. All session members will be notified by a
DPN_MSGID_TERMINATE_SESSION message. You should then perform any



in.doc — page 23

necessary cleanup. To start another session, you must first call
IDirectPlay8Peer::Close, and then IDirectPlay8Peer::Initialize.

If you registered your application as available for connection by calling
IDirectPlay8LobbiedApplication::SetAppAvailable, a lobby client can offer to
connect you to a new session by sending your lobbied application message handler a
DPL_MSGID_CONNECT message. You must have first called
IDirectPlay8Peer::Close and IDirectPlay8Peer::Initialize.

[Visual Basic]

When the session is over, the host should terminate the session by calling
DirectPlay8Peer.TerminateSession. This method terminates the session even if
host-migration is enabled. Microsoft® DirectPlay® will notify all session members by
calling their DirectPlay8Event.TerminateSession method. You should then perform
any necessary cleanup. To start another session, you must first call
DirectPlay8Peer.Close, and then DirectPlay8Peer.RegisterMessageHandler.

If you registered your application as available for connection by calling
DirectPlay8LobbiedApplication.SetAppAvailable a lobby client can offer to
connect you to a new session by calling your DirectPlay8LobbyEvent.Connect
method. You must have first called DirectPlay8Peer.Close and
DirectPlay8.RegisterMessageHandler.

Client/Server Sessions

A client/server session consists of a collection of players, or clients, connected to a
central server. As far as Microsoft® DirectPlay® is concerned, a client has no
knowledge of any other clients, only the server. The messaging needed to run the
game is between the individual clients and the server. DirectPlay does not provide
direct client-to-client messaging, as it does for peer-to-peer sessions.

A client/server session requires two distinctly different applications:.

® The server application runs on a remote server. At a minimum, it serves as a
central messaging hub and game host. The server must receive and handle all
incoming messages from the clients, and send appropriate messages back out.
Any transfer of data from one client to another must be handled by the server
application.

® A client application runs on each players' computer. The primary function of this
application is to handle the UI, and keep the player's game state synchronized
with the server.

There are certain aspects of the session that can be handled by only one of these
applications. For instance, updating a player's video display can only be done by the
client application. However, many aspects of the processing needed to maintain the
game universe can, at least in principle, be done by either application. Writing an



in.doc — page 24

effective client/server game requires some careful consideration of how to divide the
processing chores between the two applications.

This document describes the basic principles of client server games, and outlines how
to implement client and server applications.

® Initiating a Client/Server Session

® Selecting a Service Provider for a Client

® Selecting a Client/Server Host

® Connecting to a Client/Server Session

® Managing a Client/Server Session

® Normal Client/Server Game Play

® Leaving a Client/Server Session

® Terminating a Client/Server Session

Initiating a Client/Server Session

A client/server game can be launched through a lobby, or directly by the server
application.

The Server Application

Client/server games are often arranged through lobbies. The most straightforward

way to launch the server is to implement it as a lobbyable application. This approach
provides a way to launch the server, and supports communication between server and
lobby during the course of the session. See DirectPlay Lobbies for further discussion.

A server can also be directly launched, and then advertise itself as available and wait
for clients to connect. See Selecting a Client/Server Host for details.

[C++]

Once the server application has been launched, it should initialize itself by calling
IDirectPlay8Server::Initialize. As with other similar Microsoft® DirectPlay®
methods, the primary purpose of initialization is to provide DirectPlay with a pointer
to your callback message handler. You should also call
IDirectPlay8Server::SetServerInfo to describe the current game. Clients cannot
connect to a server until this method has been called.

[Visual Basic]

Once the server application has been launched, it should register it's
DirectPlay8Event notification handler object. The DirectPlay8Event object is
essentially an event handler that receives notifications from Microsoft® DirectPlay®.
It is not provided by DirectPlay and must be implemented by your application. See
the reference documentation for details. You should also call



in.doc — page 25

DirectPlay8Server.SetServerInfo to describe the current game. Clients cannot
connect to a server until this method has been called.

The Client Application

[C++]

One of the first steps you should take is to determine whether your game was lobby-
launched. To do so, create and initialize a lobbied application object
(CLSID_DirectPlay8LobbiedApplication). When you do so, you pass the object a
pointer to your lobbied application message handler. This message handler receives
messages directly from the lobbied application object, and indirectly from the lobby
client and the lobby.

¢ If the application was lobby-launched, the
IDirectPlay8LobbiedApplication::Initialize method returns a connection
handle for the lobby client and a DPL._ MSGID_CONNECT message is sent to
your lobbied application message handler. The pdplConnectionSettings member
of the associated structure points to a DPL. CONNECTION_SETTINGS
structure that contains connection information such as an address object for the
server.

® If the application was not lobby launched, you will receive neither the connection
handle, nor the message. However, if you call
IDirectPlay8LobbiedApplication::SetAppAvailable, a lobby client can later
connect your running application to a session by sending your lobbied
application message handler a DPL._MSGID_CONNECT message.

You should also create and initialize a client object (CLSID_DirectPlay8Client). This
object will be your primary means of communicating with Microsoft® DirectPlay®
and the server. If you want to have multiple players in the session, you must create a
separate instance of this object for each player.

[Visual Basic]

One of the first steps you should take is to determine whether your game was lobby-
launched. To do so, create a DirectPlay8LobbiedApplication object and a
DirectPlay8LobbyEvent object. Register the DirectPlay8LobbyEvent object with
Microsofte DirectPlay® by calling
DirectPlay8LobbiedApplication.RegisterMessageHandler. The
DirectPlay8LobbyEvent object is essentially an event handler that receives
notifications directly from the lobbied application object, and indirectly from the
lobby client and the lobby. It is not provided by DirectPlay and must be implemented
by your application. See the reference documentation for details.

If the application was lobby-launched, DirectPlay will call your
DirectPlay8LobbyEvent.Connect method. The d/Notify parameter will contain a



in.doc — page 26

DPL_MESSAGE_CONNECT type with connection information. such as address
objects for the members of the session.

You should also create a DirectPlay8Client object and register a DirectPlay8Event
notification handler object by calling DirectPlay8Client.RegisterMessageHandler.
These objects will be your primary means of communicating with the server.

Selecting a Service Provider for a Client

The service provider is your network connection. Most games use either the TCP/IP
or modem service provider, but Microsoft® DirectPlay® also provides support for
serial and IPX connections.

[CHH]

If your user was connected to the session by a lobby client, you can determine the
appropriate service provider by examining the DPL._ CONNECTION_SETTINGS
structure that accompanies the DPL_MSGID_CONNECT message. Otherwise, you
may need to determine which service provider to use, perhaps by querying the user.
You can use the client object's IDirectPlay8Client::EnumServiceProviders method
to enumerate the available service providers. See Using DirectPlay Enumerations for
further discussion.

[Visual Basic]

If your user was connected to the session by a lobby client, you can determine the
appropriate service provider by examining the DPL,_CONNECTION_SETTINGS
type that you receive when DirectPlay calls your DirectPlay8LobbyEvent.Connect.
Otherwise, you may need to determine which service provider to use, perhaps by
querying the user. You can use the client object's
DirectPlay8Client.GetServiceProvider method to enumerate the available service
providers. See Using DirectPlay Enumerations for further discussion.

Once you have selected a service provider, you can then create a DirectPlay address
object for your user (a device address). You will use this address to identify your
device with a number of DirectPlay methods. See DirectPlay Addressing for a
detailed discussion of DirectPlay addresses and address objects.

Selecting a Client/Server Host

[C++]

By definition, the server application hosts the session. To join a session, a client
application must determine the host server's address. A common way to select a host
is through a lobby server. In that case, when a user's application is connected to the



in.doc — page 27

session, the connection settings that you receive with the DPL_MSGID_CONNECT
message include the host's address object. The pdp8HostAddress member of the
associate structure points to an address object with the host's address.

Servers using an IP or IPX service provider can also create a broadcast session,
perhaps on a LAN subnet, by advertising themselves as session hosts. To create a
broadcast session, specify call IDirectPlay8Server::SetServerInfo specify the server
settings. Then call IDirectPlay8Server::Host to advertise the server as a session
host. You specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC structure that is passed through pdndppDesc
parameter of IDirectPlay8Server::Host.

To allow your user to look at the available sessions and hosts, a client application can
query for available hosts by calling IDirectPlay8Client::EnumHosts. Once the user
has selected a host, you can request a connection.

[Visual Basic]

By definition, the server application hosts the session. To join a session, a client
application must determine the host server's address. A common way to select a host
is through a lobby server. In that case, when a user's application is connected to the
session, the connection settings that you receive when your
DirectPlay8LobbyEvent.Connect method is called includes a connection ID and the
host's address.

Servers using an IP or IPX service provider can also create a broadcast session,
perhaps on a LAN subnet, by advertising themselves as session hosts. To create a
broadcast session, specify call DirectPlay8Server.SetServerInfo specify the server
settings. Then call DirectPlay8Server.Host to advertise the server as a session host.
You specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC structure that is passed through AppDesc parameter
of DirectPlay8Server.Host.

To allow your user to look at the available sessions and hosts, a client application can
query for available hosts by calling DirectPlay8Client. EnumHosts. Once the user
has selected a host, you can request a connection.

Connecting to a Client/Server Session

All clients must explicitly join the session by connecting to the host, even if the
session has been arranged through a lobby. A connection establishes the client as a
member of the session, and provides the host with the information it needs to
communicate with the client. The host has the option of accepting or rejecting a
connection request.



in.doc — page 28

The Server Application

[C++]

When a client attempts to join a session, the host receives a
DPN_MSGID_INDICATE_CONNECT message. To accept the player into the
session, return S_OK. Returning any other value rejects the request. In either case, the
client will receive a DPN_MSGID_CONNECT_COMPLETE message that
contains your response. You can define a player context value at this time, or wait
until you receive a DPN_MSGID_CREATE_PLAYER message. See Using Player
Context Values for more discussion of player context values.

If the player is successfully added to the session, all clients and the server will receive
a DPN_MSGID_CREATE_PLAYER message with the new player's ID (DPNID).
If you want to define a player context value, and have not yet done so, you must
define it before your message handler returns from handling this message. Once it has
done so, you cannot change the player context value.

[Visual Basic]

When a client attempts to join a session, the Microsoft® DirectPlay® calls the server's
DirectPlay8Event.IndicateConnect method. To accept the player into the session,
set the method's fRejectMsg parameter to False before returning. Setting fRejectMsg
to True rejects the request. In either case, the player's
DirectPlay8Event.ConnectComplete method will be called with the response. If the
host accepted the connection, hResultCode member of the
DPNMSG_CONNECT_COMPLETE type will be set to 0. If the request was
rejected or failed for some other reason, hResultCode will be set to an error code.

If the player is successfully added to the session, DirectPlay will call the
DirectPlay8Event.CreatePlayer method for the server and all client's with the new
player's ID (DPNID).

The Client Application

[CH+]

To connect to a session, you must have the address of the session host. If your
application was connected by a lobby client, you can obtain the host's address by
calling IDirectPlay8Lobbied Application::GetConnectionSettings.

If you not have the address of a session host and you are using either an IP or IPX
service provider, you can look for broadcast sessions by calling
IDirectPlay8Client:: EnumHosts and enumerating the available hosts. You can also
obtain the address by enumerating the available hosts. The information returned by
the enumeration includes each host's address, the device use to reach the host, and a
DPN_APPLICATION_DESC structure that describes the associated session.



in.doc — page 29

To ask to join a session, call IDirectPlay8Client::SetClientInfo to set your player's
name, and then call IDirectPlay8Client::Connect with the selected host's address to
connect to the session.

Your message handler will receive a DPN_MSGID_CONNECT_COMPLETE
message with the host's response. If the host accepted the connection, the

hResultCode member of the associated structure will be set to S OK. If not,
hResultCode will be set to DPNERR_HOSTREJECTEDCONNECTION.

[Visual Basic]

To connect to a session, you must have the address of the session host. If your
application was connected by a lobby client, you can obtain the host's address by
calling DirectPlay8Lobbied Application.GetConnectionSettings.

If you not have the address of a session host and you are using either an IP or IPX
service provider, you can look for broadcast sessions by calling
DirectPlay8Client. EnumHosts and enumerating the available hosts. You can also
obtain the address by enumerating the available hosts. The information returned by
the enumeration includes each host's address, the device use to reach the host, and a
DPN_APPLICATION_DESC type that describes the associated session.

To ask to join a session, call DirectPlay8Client.SetClientInfo to set your player's
name, and then call DirectPlay8Client.Connect with the selected host's address to
connect to the session.

Microsofte DirectPlay® will call your DirectPlay8Event.ConnectComplete method
with the host's response. If the host accepted the connection, the hResultCode
member of the DPNMSG_CONNECT_COMPLETE type will be set to 0. If the
request was rejected or failed for some other reason, hResultCode will be set to an
error code.

Managing a Client/Server Session

As host, the server is responsible for managing the course of the session. The details
will depend on how the application is designed, but a session host's duties include, at
a minimum,:

® Managing the list of session members and their network addresses. Microsoft®
DirectPlay® handles some of this task, but server applications typically need to
manage more player data than is provided by DirectPlay.

® Deciding whether a new user is allowed to join the session.

® Providing new users with the current game state.

[C++]



in.doc — page 30

When a player attempts to join a session, the host receives a
DPN_MSGID_INDICATE_CONNECT message. To accept the player into the
session return S_ OK. Returning any other value rejects the connection request. In
either case, the player will receive a DPN_MSGID_CONNECT_COMPLETE
message that contains your response.

The host can remove a player from the session by calling
IDirectPlay8Server::DestroyClient.

[Visual Basic]

When a player attempts to join a session, DirectPlay calls the host's
DirectPlay8Event.IndicateConnect method. To accept the player into the session set
fRejectMsg to False. Setting fRejectMsg to any other value rejects the request. In
either case, DirectPlay calls the player's DirectPlay8Event.ConnectComplete
method with the response to the request.

The host can remove a player from the session by calling
DirectPlay8Server.DestroyClient.

Normal Client/Server Game Play

In Microsoft® DirectPlay®, a message is essentially a block of game-related data that
is sent from client to server or vice versa. DirectPlay does not specify the contents or
format of the data block, it just provides a mechanism to transmit the data. Once the
game is underway, each client will normally send a constant stream of messages to
the server, and vice versa, for the duration of the game. The primary purpose of these
messages is to keep the game state synchronized, so that each user's application
displays the same UI. However, messages can also be used for a variety of other
game-specific purposes.

For many games, especially rapidly changing ones, you may have to manage your
messaging carefully. DirectPlay throttles outgoing messages to a level that can be
handled by the target. You will have be careful that you do not send messages too
rapidly, and ensure that the most important messages get through. See Basic
Networking for a discussion of how to effectively handle DirectPlay messaging.

The Server Application

[CH+]
To send a message to a client, call IDirectPlay8Server::SendTo. The client will
receive a DPN_MSGID_RECEIVE message with the data.

[Visual Basic]



in.doc — page 31

To send a message to a client, call DirectPlay8Server.SendTo. DirectPlay will call
the client's DirectPlay8Event.Receive method with the data.

The Client Application

[C++]
To send a message to the server, call IDirectPlay8Client::Send. The server will
receive a DPN_MSGID_RECEIVE message with the data.

[Visual Basic]
To send a message to the server, call DirectPlay8Client.Send. DirectPlay will call
the server's DirectPlay8Event.Receive method with the data.

Note
DirectPlay does not provide a mechanism for clients to communicate with other
clients, only with the server. Any client-client communication must be
implemented by the server application.

Using Groups

[C++]

Many games allow players to be organized into groups. For example, in a squad-
based game, every player in the squad could be a member of a group. DirectPlay
allows servers in a client/server game to create groups of players. While DirectPlay
groups typically correspond to the groups that defined by the game, you are free to
create a group for any reason. DirectPlay groups are essentially a way to simplify
your messaging. Once you have defined a group, you can send a message to every
group member with a single IDirectPlay8Server::SendTo call.

To create a DirectPlay group, call IDirectPlay8Server::CreateGroup. Your
message handler will then receive a DPN_MSGID_CREATE_GROUP message
with the details. The message will include a group ID that is used to send messages to
the group. Once the group is created, you then add players by calling
IDirectPlay8Server::AddPlayerToGroup.

Once the group is established, you can send data to the group by calling
IDirectPlay8Server::SendTo, with the dpnid parameter set to the group ID. All
group members will then receive a DPN_MSGID_RECEIVE message with the data.

To remove a player from a group, call
IDirectPlay8Server::RemovePlayerFromGroup. Finally, when you no longer need
the group, you can destroy it by calling IDirectPlay8Server::DestroyGroup




in.doc — page 32

[Visual Basic]

Many games allow players to be organized into groups. For example, in a squad-
based game, every player in the squad could be a member of a group. DirectPlay
allows servers in a client/server game to create groups of players. While DirectPlay
groups typically correspond to the groups that defined by the game, you are free to
create a group for any reason. DirectPlay groups are essentially a way to simplify
your messaging. Once you have defined a group, you can send a message to every
group member with a single DirectPlay8Server.SendTo call.

To create a DirectPlay group, call DirectPlay8Server.CreateGroup. DirectPlay will
call your DirectPlay8Event.CreateGroup method with the details. The notification

will include a group ID that is used to send messages to the group. Once the group is

created, you then add players by calling DirectPlay8Server.AddClientToGroup.

Once the group is established, you can send data to the group by calling
DirectPlay8Server.SendTo, with the idSend parameter set to the group ID.
DirectPlay will then call the group members' DirectPlay8Event.Receive method with
the data.

To remove a player from a group, call
DirectPlay8Server.RemoveClientFromGroup. Finally, when you no longer need
the group, you can destroy it by calling DirectPlay8Server.DestroyGroup.

Leaving a Client/Server Session

[CHH]
A client can leave a session by calling IDirectPlay8Client::Close. The server is
notified with a DPN_MSGID_DESTROY_PLAYER message.

[Visual Basic]

A client can leave a session by calling DirectPlay8Client.Close. Microsofte
DirectPlay® notifies the server by calling its DirectPlay8Event.DestroyPlayer
method.

Terminating a Client/Server Session

[C++]

To terminate a client/server session, the server calls IDirectPlay8Server::Close.

There is no host migration in a client/server session, so this method terminates all
connections and closes the session. The clients are notified of the session end by a
DPN_MSGID_TERMINATE_SESSION message.



in.doc — page 33

The server will then receive a DPN_MSGID_DESTROY_PLAYER message for
each player, including itself. IDirectPlay8Server::Close is synchronous, and will not
return until all the DPN_MSGID_DESTROY_PLAYER messages have been
processed. Once IDirectPlay8Server::Close has returned, you can safely shut down
the server application.

[Visual Basic]

To terminate a client/server session, the server calls DirectPlay8Server.Close. There
is no host migration in a client/server session, so this method terminates all
connections and closes the session. Microsoft® DirectPlay® notifies the clients by
calling their DirectPlay8Event.TerminateSession method.

DirectPlay then calls the server's DirectPlay8Event.DestroyPlayer method for each
player, including itself. DirectPlay8Server.Close is synchronous, and will not return
until all the DirectPlay8Event.DestroyPlayer method calls have been processed.
Once DirectPlay8Server.Close has returned, you can safely shut down the server
application.

DirectPlay Lobbies

A lobby is an application whose primary purpose is to help users arrange multiplayer
games. The lobby is usually an application that is hosted on a remote server. The user
visits the lobby, typically through the Internet, and either sets up a game session or
joins a session started by someone else. The lobby application then launches the
group's individual game applications, and the game is underway.

Because many multiplayer games are arranged through lobbies, most games based on
Microsofte DirectPlay® must be able to interact with lobby applications. Conversely,
because most lobbies will want to support DirectPlay-based games, the lobby
application must be able to interact with the game application. This document
discusses how to enable a Microsoft DirectX® game to interact with a lobby, and vice
versa.

¢ DirectPlay Lobby Architecture
® Lobby Servers

® Lobby Clients

¢ Lobbyable Applications

DirectPlay Lobby Architecture

The process of arranging and managing a session of a multiplayer game based on
Microsofte DirectPlay® involves five separate components. The lobby server
application is a third-party application that typically resides on a remote server and is



in.doc — page 34

accessed through the Internet. The remaining four components are installed on each
player's computer.

® Lobby client. The lobby client is a third-party application that communicates with
the lobby server. It also communicates with the user's game application through
the DirectPlay lobby client object.

® Lobbyable game application. The lobbyable game application is a third-party
application that uses the DirectPlay lobbied application object to communicate
with the lobby client, and through the lobby client with the lobby server.

® DirectPlay lobby client object.
® DirectPlay lobbied application object.

The two DirectPlay objects act as links between the game application and the lobby
client. They communicate with each other through private interfaces. The following
graphic shows how these pieces are linked, and how they communicate.:

Remote Server Labby .C\|:|¢pl|cat|on

The Network @

Client Computers \
3rd Party Labby Client Lobby Client Lobby Client
Lobby Application Application Application
applications Callback

Function

IDirectPlayELabbyCliant '\

Lobby Client ) Lobby Client Lobby Client
Object Cbject Object

Lobby Client
Ohject

f

IDirectF‘lagSLobbiedApplicatioy

DirectPlay
Objects

Lobby Client
Object

Lobby Client
Ohject

.

3rd Party Lobbyable Labbyable Lobbyable
Game Client =albak Client Client
aApplications atfhac

Function

Lobby Servers

The lobby server is an application whose primary purpose is to enable players to meet
and arrange games. It is typically located on a remote computer, and accessed over
the Internet. Lobby servers often perform a variety of other functions such as hosting
chat rooms, posting news and information, and selling merchandise.

To manage multiplayer games, a lobby server typically handles a variety of tasks,
including:



in.doc — page 35

® Managing the network addresses of the various game sessions and players.

® Launching a session by launching the associated game applications on the
players' computers.

® Adding players to an ongoing session.
¢ Connecting the various computers in a session to the correct network addresses.

¢ Keeping track of changes in the session, such as players leaving the game or
changes in the game's host.

The details of the lobby server application depend on what kind of services the
vendor wants to offer. Microsoft® DirectPlay® does not specify how a lobby server
should be implemented nor how it should communicate with its users' computers.
However, lobby vendors must implement and distribute to their users a lobby client
that is compatible with DirectPlay.

Lobby Clients

A lobby client is an application that is implemented by the lobby server vendor and
installed on each player's computer. It handles communication between the players
and their game applications, and the lobby server. A common way to install a lobby
client is to have the user download it from the lobby server's Web site as part of the
sign-up procedure.

The following is a typical scenario.

1. A new player goes to the Web site and signs up.

2. As part of the sign-up procedure, the lobby client is downloaded to the client's
computer.

3. The player determines which to play and asks to join a session.

4. The Web site launches the lobby client on the player's computer. A typical launch
mechanism is a URL that points to the lobby client's executable file.

5. The lobby client handles the mechanics of arranging the session, and then
launches the user's game application.

6. If the game is a lobbyable application, the lobby client enables the game
application to communicate with the lobby server. This connection enables the
lobby server to keep track of events such as players entering and leaving the
game and host migration.

Lobby clients do not necessarily have to be linked to a remote server. In another
scenario the user launches the lobby client directly. The lobby client then lists the
available games and sessions, perhaps among the people connected to the user's LAN
subnet. Once the user chooses a game and session, the lobby client launches the
game.

This section discusses some the general features of a lobby client. For more
information on communicating between a lobby client and its associated lobby server,
see Communicating with a Lobbyable Game.



in.doc — page 36

For more information on implementation details, see Implementing a Lobby Client or
the LobbyClient sample application included in the SDK.

Communicating with a Lobbyable Game

Communication between a lobby client and its associated lobby server can be handled
in any way that is convenient. Microsoft® DirectPlay® specifies only how the lobby
client must communicate with a lobbyable game application.

[C++]

Lobby clients do not communicate directly with game applications. Instead, they
communicate with the DirectPlay lobby client object
(CLSID_DirectPlay8LobbyClient) through its IDirectPlay8LobbyClient interface. If
the game application is lobbyable, the lobbied application object then passes
messages to the game. The IDirectPlay8LobbyClient interface enables the lobby
client to do the following.

® Enumerate the lobbyable applications on the user's system.
® Launch the application, if it is not already running, and connect it to the session.
® Release the application from a session, and close the link with the lobby client

® Send a message to a lobbied application that was launched or connected by the
lobby client.

[Visual Basic]

Lobby clients do not communicate directly with game applications. Instead, they
communicate with the DirectPlay8LobbyClient object. If the game application is
lobbyable, the lobbied application object then passes messages to the game. The
DirectPlay8LobbyClient object enables the lobby client to do the following.

® Enumerate the lobbyable applications on the user's system.
® Launch the application, if it is not already running, and connect it to the session.
® Release the application from a session, and close the link with the lobby client

¢ Send a message to a lobbied application that was launched or connected by the
lobby client.

Note
A DirectPlay lobby client can launch any application, whether or not it is
lobbyable. However, only lobbyable applications can use DirectPlay to
communicate back to the lobby client during the course of the game.

[CH+]
The lobby client object communicates with the lobby client through a callback
function that is implemented by the lobby client. A function pointer is passed to the




in.doc — page 37

lobby client object during initialization. This callback function enables the lobby
client object to send the lobby client information such as:

[Visual Basic]

The lobby client object communicates with the lobby client through a
DirectPlay8LobbyEvent message handler object. The DirectPlay8LobbyEvent
object is essentially an event handler that receives notifications directly from the
lobby client object, and indirectly from the application. It is not provided by
DirectPlay and must be implemented by your application. See the reference
documentation for details. You must register this object with DirectPlay by calling
DirectPlay8LobbyClient.RegisterMessageHandler.

The DirectPlay8LobbyEvent object enables the lobby client object to send the lobby
client information such as:

® (Connection information.
® (Connection status.
® Session status, including connection, disconnection, and host migration.

® Messages from the application to the lobby client.

Launching an Application

When you launch an application, you can attempt to pass a block of game-specific
information to the application. When a lobbyable application is launched by a lobby
client, the application creates and initializes a lobbied application object. The
information is passed to the game through the initialization method.

When the lobbied application object is initialized, the lobby client receives a message
indicating that the user has been connected. One primary purpose of this message is to
notify the lobby client that the application is lobbyable. If the lobby client has not
received a connect message after a reasonable period of time following the launch,
the game is not lobbyable and you can stop attempting to make this connection.

After Launching an Application

The lobby client has relatively little to do once a lobbyable game is in progress.
Depending on the game topology, most of the user's messages are sent directly to the
other players or to the game server,. However, DirectPlay sends the lobby client
messages in response to events such as disconnection and host migration. These
messages enable the lobby client to pass such status changes to the lobby server. For
instance, if the host migrates, the lobby server can update its Ul to indicate the new
host.

The application can also pass messages to the lobby client. This message can contain
virtually anything, and it can be used for any purpose. The lobby client typically
passes the data to the lobby server for processing. For example, at the end of the



in.doc — page 38

game, the application might send a message that enables the lobby server to update its
high-score list.

Lobbyable Applications

Lobbyable applications are designed to work with a lobby client based on Microsoft®
DirectPlay®. While a lobby client can use DirectPlay to launch any application,
lobbyable applications have a number of advantages.

® The lobby client receives automatic updates when game status changes.

® The lobby client can use a standard API to communicate with the application.

® The application can use a standard API to communicate with the lobby client.

In short, DirectPlay virtually eliminates the need for game-specific or lobby client-
specific communication code. You can use a standard API for everything with little or
no modification for the particular game or lobby client.

This section discusses some of the general features of a lobbyable application. For
more information, see Launching a Lobbyable Application.

For a discussion of implementation details, see Implementing a Lobbyable
Application or SDK samples such as SimplePeer, or StagedPeer.

Launching a Lobbyable Application

[CH++]

One of the first things a lobbyable application should do after it is launched is create a
lobbied application object. Among other things, this object enables your application
to determine whether it was lobby-launched. A lobbied application must also
implement a message-handler callback function to receive messages from the lobby
client. The basic procedure is:

® C(Create a lobbied application object.
® [Initialize the object.

® If the initialization method returns a valid connection handle, your application
was lobby launched.

® Examine the user context value that is returned by the initialization method. This
value might contain game-specific information from the lobby client.

® Examine the connection message received through the lobbied application
message handler. This message carries with it a variety of information, including
the ID that you will use to send messages to the lobby client.

Once an application has been successfully lobby launched, Microsofte DirectPlay®
can automatically send status updates to the lobby client when events such as host
migration occur. To enable automatic status updates, call the RegisterLobby method
of the IDirectPlay8Peer, IDirectPlay8Client, or IDirectPlay8Server interface. You
can also use the lobbied application interface to send messages to the lobby client.



in.doc — page 39

Be aware that your message handler function might receive messages from the lobby
client before the initialization method returns. In addition to the connection message,
the callback function receives messages when the lobby client changes connection
settings, or it breaks the connection. The lobby client can also send messages directly
to your message handler that contain game-specific information.

Note
It is possible to receive messages from more than one thread. To handle
messaging properly, your lobbied application callback function should be re-
entrant.

[Visual Basic]

One of the first things a lobbyable application should do after it is launched is create a
DirectPlay8LobbiedApplication object. Among other things, this object enables
your application to determine whether it was lobby-launched. A lobbied application
must also implement a message-handler callback function to receive messages from
the lobby client. The basic procedure is:

® Create a DirectPlay8LobbiedApplication object.

® Register a DirectPlay8LobbyEvent message handler object by calling
DirectPlay8LobbiedApplication.RegisterMessageHandler.

® If the application was lobby-launched, DirectPlay will call your
DirectPlay8LobbyEvent.Connect method. The d/Notify parameter will contain
a DPL_MESSAGE_CONNECT type with connection information. such as
address objects for the members of the session.

Note
The DirectPlay8LobbyEvent object is essentially an event handler that receives
notifications directly from the lobbied application object, and indirectly from the
lobby client and the lobby. It is not provided by DirectPlay and must be
implemented by your application. See the reference documentation for details.

Once an application has been successfully lobby launched, Microsofte DirectPlay®
automatically sends status updates to the lobby client when events such as host
migration occur. You can also use the lobbied application interface to send messages
to the lobby client.

Be aware that your message handler object might be called by the lobby client before
the initialization method returns. In addition to the connection message, the
DirectPlay calls the object when the lobby client changes connection settings, or it
breaks the connection. The lobby client can also send messages directly to your
message handler that contain game-specific information.




in.doc — page 40

Basic Networking

This section covers some basic networking technology topics that you need to
understand to write Microsoft® DirectPlay® applications. For a general discussion of
networking technology, see one of the standard texts on the subject, such as Computer
Networks by Andrew Tannenbaum.

® DirectPlay Service Providers

® DirectPlay Addressing

® DirectPlay Protocol

® Optimizing Network Usage

® Using the DirectX Protocol in an Application

DirectPlay Service Providers

Microsofte DirectPlay® provides your application with a virtual network connection
that enables you to communicate with other computers in the same way, regardless of
type of network involved. To provide this level of abstraction, network connections
are made through a service provider. Once you have selected a service provider, your
application uses the appropriate DirectPlay methods to communicate with other
computers in a session. The service provider handles the details of communicating
over the selected network hardware.

DirectPlay includes service providers for four types of network connections: TCP/IP,
IPX, modem, and serial. See DirectPlay Addressing for a discussion of how to select
a service provider.

[Visual Basic

Note
To use modems on Microsoft Windows® 95 systems, you must install version 2.0
of the Telephony API (TAPI). You can download TAPI 2.0 from
http://www.microsoft.com.

[C++]

Note
DirectPlay uses the telephony API (TAPI) to handle modem communication. The
use of this API means that the code that is used to answer the phone must be in
the message loop's thread. To use modems on Microsoft Windows® 95 systems,
you must install version 2.0 of the Telephony API (TAPI). You can download
TAPI 2.0 from http://www.microsoft.com.




in.doc — page 41

DirectPlay Addressing

To deliver messages, each participant in a multiplayer game must have a unique
address. Addresses can refer either to the computer that your application is running on
(device address), or a computer that your application needs to communicate with
(host address).

[C++]

Microsoft® DirectPlay® 8.0 represents addresses in the form of a URL string. That
address string is then encapsulated in a DirectPlay address object that is passed as a
parameter in or out of methods such as IDirectPlay8Peer::Connect.

This section describes two ways to handle DirectPlay addresses.

® DirectPlay URLSs discusses how to construct the address string directly.

® DirectPlay Address Objects discusses how to manipulate the address string using
the methods exposed by the address object's IDirectPlay8Address interface.

[Visual Basic]

Microsofte DirectPlay® 8.0 represents addresses in the form of a URL string. That
address string is then encapsulated in a DirectPlay8Address object that is passed as a
parameter in or out of methods such as DirectPlay8Peer.Connect.

This section describes two ways to handle DirectPlay addresses.

® DirectPlay URLSs discusses how to construct the address string directly.

® DirectPlay Address Objects discusses how to manipulate the address string using
the methods exposed by the address object's IDirectPlay8Address interface.

DirectPlay URLs

Microsoft® DirectPlay® represents addresses as URLs. In general, URLs are strings
that consist of three basic components in the following order: scheme, scheme
separator, and data string.

All DirectPlay addresses use "x-directplay" as the scheme, and ":/" (a colon followed
by a forward slash) as the scheme separator. Using ":/" as a separator implies that the
data that follows is opaque. In other words, the data string does not conform to any
Internet standard and should be passed to the receiving application without
modification. All DirectPlay URLs thus have the following general form.

x-directplay:/[data string]

Note
Do not use "://" (a colon followed by two forward slashes) as a scheme separator.
That separator implies that the data that follows conforms to an Internet standard



in.doc — page 42

and can be interpreted as such. To prevent confusion, DirectPlay flags any URL
containing"://" as invalid.
This section discusses

® Data Strings
® Data Values

® Data Value Summary
¢ Sample URLs

Data Strings

The data string holds address information. The first part of a data string consists of a
series of keyname=value elements separated by semicolons (;). You can include
optional user data by putting a number sign (#) after the last value, followed by an
application-defined string.

The key name is a lowercase string that identifies the data and implicitly indicates
what type of data is contained in the value. For instance, the "provider" key name
indicates that the value contains a Microsofte DirectPlay® service provider GUID, in
the form of a GUID string. The following characters are reserved and should not be
used in value strings.

Ampersand (&) Forward slash (/)
At sign (@) Number sign (#)
Colon (3) Question mark (?)
Equal sign (=) Semicolon (;)

The first element in the data string must be the provider. Other elements can follow in
any order. A generic URL looks something like this.

x-directplay:/provider=%provider GUID%,[keynamel=valuel];[keyname2=value2|[...J#[user
defined string]

Data Values

The values that need to be included in the data string depend on the particular service
provider. Modem providers, for instance, need a telephone number in their address,
whereas LAN providers might need a port number. This section provides a detailed
description of the standard data values. It also includes a key name that can be used in
place of the literal string. These names are defined in Dpaddr.h.

® Application Instance

¢ Baud

® Device

® Flow Control

¢ Host Name

® Parity



in.doc — page 43

® Phone Number
® Port

® Program

® Provider

¢ Stop Bits

Application Instance
An optional GUID that identifies an application instance. This value is used when
specifying the game that is to be connected to.

Key Name: DPNA_KEY APPLICATION INSTANCE
Key String: "applicationinstance"

Data Type: GUID

Providers: All

Valid Values: Any valid application instance GUID

Baud
The baud rate

Key Name: DPNA_KEY BAUD
Key String: "baud"

Data Type: DWORD

Providers: Modem and serial

Valid Values: Any valid baud rate. You can set this value to the appropriate integer,
or you can use one of the following predefined values from Dpaddr.h.

DPNA BAUD RATE 9600

DPNA BAUD RATE_14400
DPNA_BAUD RATE_19200
DPNA BAUD RATE 38400
DPNA _BAUD RATE_56000

Device
A GUID that identifies the device on the local computer that will be used. If the
service provider supports all adapters, you do not need to specify a device.

Key Name: DPNA_KEY DEVICE

Key String: "device"

Data Type: GUID

Providers: All, but for device addresses only, not host addresses

Valid Values: Any valid device GUID.



in.doc — page 44

Flow Control
The type of flow control to be used

Key Name: DPNA_ KEY FLOWCONTROL

Key String: "flowcontrol"

Data Type: String

Providers: Serial and modem

Valid Values: Any of the following predefined values from Dpaddr.h.

DPNA FLOW_CONTROL NONE  DPNA FLOW_CONTROL DTR
DPNA FLOW_CONTROL XONXOFF DPNA FLOW_CONTROL RTSDTR
DPNA_FLOW_CONTROL_RTS

Host Name
The name of a remote host computer

Key Name: DPNA_KEY HOSTNAME

Key String: "hostname"

Data Type: String

Providers: All, but for host addresses only, not device addresses

Valid Values: A fully-qualified host name, or a dotted address.

Parity
The parity of the connection

Key Name: DPNA KEY PARITY

Key String: "parity"

Data Type: String

Providers: Serial and modem

Valid Values: Any of the following predefined values from Dpaddr.h.

DPNA_PARITY NONE DPNA_PARITY MARK
DPNA_PARITY_EVEN DPNA_PARITY _SPACE
DPNA_PARITY_ODD

Phone Number
A phone number
Key Name: DPNA_KEY PHONENUMBER
Key String: "phonenumber"
Data Type: String



in.doc — page 45

Providers: Modem

Valid Values: Any valid phone number

Port
An optional port number

Key Name: DPNA _KEY PORT
Key String: "port"

Data Type: DWORD

Providers: 1P and IPX

Valid Values: Any 16-bit integer. Only the lower 16 bits of the value are valid. If you
do not specify a port, DirectPlay will choose one for you.

Program
An optional application GUID

Key Name: DPNA_KEY PROGRAM
Key String: "program"

Data Type: GUID

Providers: All

Valid Values: Any valid application GUID

Provider
A GUID that identifies the Microsoft® DirectPlay® service provider that will be used

Key Name: DPNA_KEY PROVIDER

Key String: "provider"

Data Type: GUID

Providers: All.

Valid Values: Any valid service provider GUID

Stop Bits
The number of stop bits

Key Name: DPNA_KEY _STOPBITS

Key String: "stopbits"

Data Type: String

Providers: Serial and modem

Valid Values: Any of the following predefined values from Dpaddr.h.

DPNA_STOP_BITS_ONE DPNA_STOP_BITS TWO
DPNA_STOP BITS_ONE_FIVE



in.doc — page 46

Data Value Summary

The following two tables outline the standard data values, and they indicate which
values are used by each type service provider for both host and device addresses.

Host Addresses

1P

Application  Optional
Instance
Baud Not used
Device Not used
Flow Control Not used
Host Name Required
Parity Not used
Phone Number Not used
Port Required
Program Optional
Provider Required
Stop Bits Not used

Device Addresses

1P

Application  Optional
Instance
Baud Not used
Flow Control Not used
Host Name  Optional
Device Optional
Parity Not used
Phone Not used
Number
Port Optional
Program Optional
Provider Required
Stop Bits Not used

Sample URLs

IPX

Optional

Not used
Optional
Not used
Required
Not used
Not used
Required
Optional
Required
Not used

IPX

Optional

Not used
Not used
Optional
Required
Not used
Not used

Required
Optional
Required
Not used

Serial

Optional

Required
Required
Required
Optional
Required
Not used
Not used
Optional
Required
Required

Serial

Optional

Required
Required
Optional
Required
Required
Not used

Not used
Optional
Required
Required

Modem

Optional

Required

Optional

Required
Not used
Optional
Required

Modem

Optional

Not used
Not used
Optional
Required
Not used
Not used

Not used
Optional
Required
Not used

The following sample URLs illustrate what a Microsoft® DirectPlay® URL might

look like for the four standard service providers.



in.doc — page 47

Local IP Address
x-directplay:/provider=%7BEBFE7BA0-628D-11D2-AEOF-006097B01411%7D;device=%7BIP
ADAPTER GUID%7D;port=0000230034+#IPUserData

Local IPX Address
x-directplay:/provider=%7B53934290-628D-11D2-AE0F-006097B01411%7D;device=%7BIPX
ADAPTER GUID%7D;port=00230#IPXUserData

Local Serial Address

x-directplay:/provider=%7B743B5D60-628D-11D2-
AEOF-006097B01411%7D;device=%7BCOM PORT
GUID%7D;baud=57600;stopbits=1;parity=NONE;flowcontrol=RTSDTR#SerialUserData

Remote Modem Address

x-directplay:/provider=%7B6D4A3650-628D-11D2-
AEOF-006097B01411%7D;device=%7BMODEM DEVICE GUID%7D;phonenumber=555-
1212#ModemUserData

Handling Addresses

If you call the Host, EnumHosts, or Connect methods exposed by the
IDirectPlay8Peer, IDirectPlay8Client, or IDirectPlay8Server you must pass
address objects as parameters. If Microsoft® DirectPlay® does not have sufficient
address information, the method that you called will fail, and it will return
DPNERR_ADDRESSING. However, it is not necessary to have all the information in
the address object at the time you call the method.

All address objects must have the service provider GUID set. However, it is possible
to omit other data values.

® You can omit the device if the service provider supports all adapters.

® You can omit the port number for IP and IPX service providers for the Host,
EnumHosts, and Connect methods. DirectPlay will assign a port number. This
number may vary.

¢ If you set the OKTOQUERYFORADDRESSING flag, the service provider can
display a dialog box asking the user for the information needed to complete the
address. If the user does not supply sufficient information, the method will fail. If
the OKTOQUERYFORADDRESSING flag is not set, no dialog box will be
displayed. If the address you pass to the method is insufficient, the method will
fail. In the last two cases, the error value that is returned will be
DPNERR ADDRESSING.

There are two important issues for IP and IPX service providers that you need to be
aware of. Failing to handle them properly may cause your application to fail.



in.doc — page 48

¢ Ifyou set the NOBROADCASTFALLBACK flag when you call an enumeration
method, you must supply a hostname. If you do not do so, the method will fail
and return DPNERR_ADDRESSING.

® If you do not specify a port, do not assume that DirectPlay will always choose the
same port number. The only way to be certain of the port number is to specify it
in your address. If you do not specify a port number, you must retrieve the actual
value later, after the command is in progress.

DirectPlay Address Objects

[C++]

Microsofte DirectPlay® does not handle URL strings directly. Instead, the string must
be encapsulated in a DirectPlay address object (CLSID DirectPlayAddress). This
object exposes the IDirectPlay8Address interface that enables you to insert URL
information into, or extract it from, the address object.

To create DirectPlay address, you must call CoCreatelnstance to create a DirectPlay
address object. You can then define the address in one of two ways:

® Create the URL string directly. Then use either
IDirectPlay8Address::BuildFromURLA or
IDirectPlay8Address::BuildFromURLW to insert the complete string.

® Use IDirectPlay8Address methods to insert the various pieces of data that make
up the string directly into the object.

When you receive an address object, you have a similar pair of options.

® Extract the entire URL string with either IDirectPlay8Address::GetURLA or
IDirectPlay8Address::GetURLW. Then parse the string and extract the needed
information

® Use other IDirectPlay8Address methods to extract the particular data you are
interested in from the address object.

[Visual Basic]

Microsofte DirectPlay® does not handle URL strings directly. Instead, the string must
be encapsulated in a DirectPlay8Address object. This object exposes a number of
methods that enable you to insert URL information into, or extract it from, the object.

To create DirectPlay address, you must first create a DirectPlay8Address object.
You can then define the address in one of two ways:

® Create the URL string directly. Then use DirectPlay8Address.BuildFromURL
to insert the complete string.

® Use other DirectPlay8Address methods to insert the various pieces of data that
make up the string directly into the object.

When you receive an address object, you have a similar pair of options.



in.doc — page 49

® Extract the entire URL string with DirectPlay8Address.GetURL. Then parse
the string and extract the needed information

® Use other DirectPlay8Address methods to extract the particular data you are
interested in from the address object.

DirectPlay Protocol

Multiplayer games require efficient and flexible network messaging services for
optimal performance. The Microsoft® DirectPlay® protocol is a transport-layer
messaging protocol that is used for all DirectPlay messaging. The protocol has been
substantially reworked for DirectPlay 8.0. It provides your application with the
messaging support it needs to make everything run smoothly. The DirectPlay protocol
includes the following messaging support.

® Reliable and unreliable delivery of messages

® Sequential and non-sequential delivery of messages

® Message fragmentation and reassembly

¢ Congestion control

® Send prioritization

® Message timeouts

Note
With previous versions of DirectPlay, the DirectPlay protocol was optional, and
had to be specified explicitly. With DirectPlay 8.0, this protocol is used for all
DirectPlay messaging.

This document provides a general description of how the DirectX protocol works, and

how you can use it in your application.

® Basic Message Handling

® Message Categories

® Congestion Control

® Send Prioritization

® Monitoring Messaging Statistics

® Monitoring the Pending Message Queues

Basic Message Handling

A message, as the term is used in this document, is a block of data that needs to be
sent to another computer. A network protocol creates a packet by adding some bits to
the data block that hold information such as the target's network address. This packet
is the basic unit of network data. When the target receives the packet, the target's
network protocol removes the extra bits and passes the data block to the receiving
application.



in.doc — page 50

Although similar in usage, the terms message and packet are not strictly
interchangeable. This document uses the term message to refer to the unit of
information that is passed to and received from the Microsoft® DirectPlay® API.
Packet refers to the unit of information handled by the network. DirectPlay handles
packets internally. With rare exceptions, DirectPlay applications need to deal only
with messages.

The primary reason for the distinction between message and packet is that networks
generally limit the maximum size of the packets they handle. This size is referred to
as a Maximum Transmission Unit (MTR). If a message is small, it is sent in a single
packet and the two terms are effectively synonymous. However, large messages
might need to be fragmented into two or more packets and then be reassembled by the
receiver. The DirectPlay protocol automatically handles fragmentation and
reassembly of messages as needed. As far as your application is concerned, you send
a message, and the target receives it.

[C+H]

Note
DirectPlay delivers messages of any size. However, the more packets that are
required for a single message, the greater the odds that one or more packets will
be lost and have to be retransmitted. Messages that are large enough to require
fragmentation and reassembly thus typically have more network latency than
single-packet messages. If you need to keep network latency to a minimum,
avoid sending large messages, especially on lossy networks. You can determine
the maximum size that your connection can accommodate in a single packet by
calling the GetSPCaps method exposed by the IDirectPlay8Peer,
IDirectPlay8Client, and IDirectPlay8Server interfaces.

[Visual Basic]

Note
DirectPlay delivers messages of any size. However, the more packets that are
required for a single message, the greater the odds that one or more packets will
be lost and have to be retransmitted. Messages that are large enough to require
fragmentation and reassembly thus typically have more network latency than
single-packet messages. If you need to keep network latency to a minimum,
avoid sending large messages, especially on lossy networks. You can determine
the maximum size that your connection can accommodate in a single packet by
calling the GetSPCaps method exposed by the DirectPlay8Peer,
DirectPlay8Client, and DirectPlay8Server interfaces.




in.doc — page 51

Message Categories

The Microsoft® DirectPlay® protocol is designed to handle the following two basic
types of network messaging.

® Reliable versus unreliable messaging determines whether messages are
guaranteed to be delivered to the target application.

® Non-sequential versus sequential messaging determines whether messages are
received by the target application in the same order they are sent.

Games use messaging for a variety of purposes, each with different demands. To
support this range of messaging needs, the DirectPlay protocol enables you to
designate a message as belonging to one of four categories:

® Reliable and sequential

® Unreliable and sequential

® Reliable and non-sequential

¢ Unreliable and non-sequential

The DirectPlay protocol enables you to optimize your messaging strategy by
assigning categories on a message-by-message basis.

Reliable and Unreliable Messaging

Messages are sometimes lost in transit. Reliable messaging provides a guarantee that
the target will receive every message. This type of messaging is required when data
loss cannot be tolerated. Most reliable messaging schemes require the target to
acknowledge receipt of each message. If the sender does not receive an
acknowledgment within a specified timeout period, it resends the message. This
process typically continues until the sender receives an acknowledgment, confirming
that the message has arrived.

The DirectPlay protocol imposes a limit on the number of resend attempts. If no
acknowledgment is received after a reasonable number of attempts, DirectPlay
assumes that the connection has been lost, and closes it.

Unreliable messaging is the simplest form of network communication. It might be
faster than reliable messaging because there is no guarantee that the message will be
delivered to the target. The sender transmits the message. If the target does not
receive the message, the sender will not transmit the message again, and the packet is
lost.

Unreliable messaging is used primarily when speed or bandwidth is more important
than an occasional lost message. For example, high-bandwidth streaming media
applications often use unreliable messaging. They cannot afford to take up bandwidth
with acknowledgments and retransmissions, nor can they wait for a lost message to be
retransmitted. An occasional lost message normally has only a minor impact on
quality, so it can be ignored.



in.doc — page 52

Sequential and Non-Sequential Messaging

Messages leave the sender in a particular sequence. However, there is no guarantee
that messages will arrive at the target's computer in the same order that they are sent.
For example, if a message is lost and must be retransmitted, that message will
typically arrive later than messages that followed it in the original sequence.

Sequential messaging uses sequencing information embedded in the message to
ensure that the messages are presented to the target application in the correct order.
This type of messaging is required when the target application must receive messages
in the correct order. Out-of-order messages are buffered until the missing messages
arrive.

Non-sequential messaging presents the received messages to the target as soon as
they arrive at the target computer, regardless of the order in which they were sent.
Because there is no need to wait for a missing packet, applications often use non-
sequential messaging when speed is more important than an occasional out-of-order
message. The out-of-order message is ignored.

Choosing the Best Message Category

Choosing the best category for messages is a core issue for multiplayer game
developers. While DirectPlay provides the tools to manage your messaging, the
choice of a message category ultimately depends on the semantic content of the
message and the nature of the game.

The following are general guidelines for choosing the best message category.

® Use non-guaranteed messaging whenever the content permits. For example, your
game might send frequent player-location updates. Each update is independent,
and it supersedes any previous updates. If an update is lost, the next update is
sufficient to maintain the player's game state. A lost and retransmitted message
might arrive later than the subsequent update message.

® Use guaranteed messaging when data loss cannot be tolerated. For example, a
text-based chat feature depends on every character being delivered to its target.

® Use sequential messaging when the order of the messages is important. For
example, streaming media typically uses sequential-unreliable messaging. An
occasional dropped message can be tolerated, but an out-of-order message would
cause problems.

Congestion Control

In an ideal world, your game can send messages as often as it needs to. They arrive at
the target immediately and are processed instantaneously. If all of the computers in
your game have ample processing power and are connected by a lightly used high-
bandwidth network link, you might approach this ideal situation. You can then send
messages as often as you like. However, a number of factors can create congestion
and cause messaging to work more slowly than this ideal:



in.doc — page 53

® Network latency. Even under ideal conditions, messages take a finite time to
traverse the network from sender to target, especially over the Internet. There
might be further delays for acknowledgments, retransmission of lost packets, or
reassembly of out-of-order packets.

® Network bandwidth. The network bandwidth controls the rate at which a message
can be sent or received by a computer. Network links have a wide range of
bandwidths, and even high-bandwidth networks might be slowed by high traffic
levels. If one or more of your players has a low-bandwidth connection, they will
be able to send and receive messages only at a limited rate.

® Processing speed. Even if network bandwidth is high and latency low, the target
application still needs some time to process a received message. If one or more of
the players in a session is using a relatively slow computer, the rate at which they
can process received messages might be below the rate at which messages can be
sent.

Message Throttling

If there is no control over the rate at which messages are sent, a target can be flooded
by more messages than it can handle. To prevent this situation, the Microsoft®
DirectPlay® protocol throttles the rate at which messages are sent. The net effect of
throttling is that the rate at which messages are sent is controlled by the rate at which
the target can handle them.

Throttling is implemented with a sliding window mechanism. The sliding window is
basically a queue with a limited number of slots that holds messages that have been
sent but not yet received. All outgoing messages are placed in this queue, regardless
of their category. Once the sent-message queue is full, it accepts no more outgoing
messages until one of the messages in the queue has been received.

For optimal performance, the size of the sliding window must be matched to current
network conditions. The DirectPlay protocol automatically monitors such factors as
the number of messages and the total number of bytes in the sent-message queue.
This information is then used to dynamically adjust the size of the sliding window to
optimize messaging for the current network conditions.

Connection Checking

If there is no activity on a link, the DirectPlay protocol periodically tests the
connection by sending an empty reliable packet. If no acknowledgment is received
from the target after a reasonable number of attempts, DirectPlay concludes that the
link has been disconnected.

Send Prioritization

Messages often vary widely in importance. Some are time-critical, and must be
delivered as quickly as possible. Others can be delayed if necessary, or possibly not
sent at all. One issue with congestion control algorithms is that an application might
create messages faster than they can be sent. Unsent messages must then be held in a
queue until an outgoing slot opens up. If all unsent messages are held in a single



in.doc — page 54

pending-message queue, high priority messages might be blocked while waiting for
lower priority messages to be sent first.

The Microsofte DirectPlay® protocol solves this problem by having three pending
message queues: low, medium, and high priority. When a slot opens up in the sent-
message queue, the protocol selects the next message to be sent as follows:

1. Send the oldest message in the high-priority queue.

2. If there are no messages in the high-priority queue, send the oldest message in
the medium-priority queue.

3. If there are no messages in the medium-priority queue, send the oldest
message in the low-priority queue.

This priority mechanism enables you to get your time-critical messages out as quickly
as possible, even though other less important messages have already been submitted.

Send Timeouts

One of the consequences of throttling is that messages might spend a relatively long
amount of time in a pending-message queue, especially if they are low priority. Some
messages might stay long enough to have been superseded by subsequent messages.
These messages are no longer relevant. For example, your application might
periodically send player-location update messages. Each update is independent of the
others, and supersedes any previous updates. If you have two player-location updates
in the pending message queue, only the most recent one needs to be sent.

The DirectPlay protocol enables you to handle the problem of outdated messages by
adding an optional timeout value to the message. If the message is still in a pending-
message queue when the timeout expires, the message will be canceled.

Disconnection

When an application sends a disconnect message, the message is placed at the end of
the low-priority pending-message queue, and the protocol stops accepting outgoing
messages. This practice guarantees that all pending messages are sent before the link
is disconnected. The disconnect message is sent as a reliable sequential message to
guarantee that it arrives, but not before all other messages in the queue have been
delivered.

Monitoring Messaging Statistics

While the Microsofte DirectPlay® protocol handles many aspects of messaging
automatically, your application should still monitor messaging behavior. For
example, if you are consistently sending messages faster than they can be delivered,
you might need to modify your messaging scheme.

[C++]

Because network conditions change continuously, your application should
periodically check the behavior of the network and adjust its messaging scheme
accordingly. To do so, call the GetConnectionInfo method that is exposed by every



in.doc — page 55

DirectPlay 8.0 interface that supports messaging. GetConnectionInfo returns a
structure that contains a wide variety of statistical information that you can use to
refine your messaging scheme, including the following:

[Visual Basic]

Because network conditions change continuously, your application should
periodically check the behavior of the network and adjust its messaging scheme
accordingly. To do so, call the GetConnectionInfo method that is exposed by every
DirectPlay 8.0 object that supports messaging. GetConnectionInfo returns a type that
contains a wide variety of statistical information that you can use to refine your
messaging scheme, including the following:

® Round trip latency

® Throughput

® Packets sent

® Packets received

® Packets resent

® Packets dropped

® Messages transmitted at different priority levels

Note
The messaging statistics are obtained by monitoring the actual network traffic. If
you call GetConnectionInfo immediately after you initialize the connection,
there will have been little time to collect data and the statistics might be
misleading.

Monitoring the Pending Message Queues

[CH++]

You should monitor your pending message queues to ensure that they do not become
too large. The IDirectPlay8Peer, IDirectPlay8Client, and IDirectPlay8Server
interfaces all expose a GetSendQueuelnfo method that can be used to check the
number of messages and the number of bytes currently in the queue. By default, the
method returns the total for all three queues, but you can also obtain values for each
of the three priority levels.

[Visual Basic]

You should monitor your pending message queues to ensure that they do not become
too large. The DirectPlay8Peer, DirectPlay8Client, and DirectPlay8Server objects
all expose a GetSendQueuelnfo method that can be used to check the number of
messages and the number of bytes currently in the queue. By default, the method



in.doc — page 56

returns the total for all three queues, but you can also obtain values for each of the
three priority levels.

Optimizing Network Usage

Providing the best gaming experience normally means sending updates and other
information as rapidly as possible without flooding the target with more messages
than it can handle. The Microsofte DirectPlay® protocol combined with asynchronous
messaging enables you to dynamically optimize your messaging strategy to provide
your users with the best possible game experience.

[C+]

The bulk of your messaging will use the IDirectPlay8Peer::SendTo,
IDirectPlay8Client::Send, or IDirectPlay8Server::SendTo methods. These
methods normally work asynchronously for all message categories. They return
immediately, and your message handler receives a DPNMSG_SEND_COMPLETE
message when the message is actually sent. You can choose to send messages
synchronously by setting the DPNSEND_SYNC flag. If you do so, the method will
block until the message is actually sent.

[Visual Basic]

The bulk of your messaging will use the DirectPlay8Peer.SendTo,
DirectPlay8Client.Send, or DirectPlay8Server.SendTo methods. These methods
normally work asynchronously for all message categories. They return immediately,
and DirectPlay calls your message handler's DirectPlay8Event.SendComplete
method when the message is actually sent.

You can choose to send messages synchronously by setting the DPNSEND SYNC
flag. If you do so, the Send/SendTo method will block until the message is actually
sent.

The DirectPlay protocol's throttling mechanism guarantees that the client will not
receive messages faster than they can be handled. However, the throttling protocol
does not control how frequently you submit messages to the outgoing queue. You can
easily end up with a large backlog of messages in your unsent message queues. You
can avoid this situation by sending messages as infrequently as possible, but then you
might unnecessarily degrade the user's experience. An optimal messaging strategy
sends messages as fast as possible without exceeding the target's ability to handle
them.

The following are tips for optimizing your messaging strategy.



in.doc — page 57

Send most if not all of your messages asynchronously. If you send a message
synchronously, the method will block until the throttling mechanism allows the
message to be sent.

Monitor the pending message queues and the network statistics. If there are few
or no messages in the queue, you can increase your transmission rate. If the
queues are large or growing rapidly, decrease your transmission rate and perhaps
cancel some messages. See the discussion of send timeouts in Send Prioritization
for further discussion.

Analyze the pending message queues on a player-by-player basis. Some players
might be able to receive messages at a much higher rate than others. The bulk
statistics might be misleading. Consider using directed sends rather than group
sends.

Choose the appropriate category for each message. Reserve the categories with
the highest overhead for the most important messages.

Prioritize your messages, so that the most important are assured of being sent
promptly and not delayed by relatively unimportant messages.

Do not let the pending message queues grow too large. In addition to delaying
the transmission of your messages, a large number of pending messages might
consume significant memory resources.

Use the timeout feature of the Send and SendTo methods to automatically clear
outdated messages from the pending message queue.

Minimize the amount of data per message. It is usually better to send frequent
small messages than a smaller number of large messages.

Do not loop tightly when checking the pending message queue. Doing so wastes
CPU cycles. Instead, use a sleep period based on how long it typically takes the
queue to get down to the level that it will be ready for another send.

Using the DirectX Protocol in an Application

This section covers how you can use the features of the Microsoft® DirectPlay®
protocol in your application.

[C+t]
You can use five DirectPlay interfaces to send messages.

IDirectPlay8Peer
IDirectPlay8Client
IDirectPlay8Server
IDirectPlay8LobbyClient
IDirectPlay8LobbiedApplication

Depending on which interface your application is using to send messages, you send a
message by calling a method named either Send, or SendTo. While the usage of these



in.doc — page 58

five methods is similar, they vary in detail. Refer to the appropriate reference pages
for further discussion.

[Visual Basic]
You can use five DirectPlay objects to send messages.
® DirectPlay8Peer
® DirectPlay8Client
® DirectPlay8Server
® DirectPlay8LobbyClient
® DirectPlay8LobbiedApplication

Depending on which object your application is using to send messages, you send a
message by calling a method named either Send, or SendTo. While the usage of these
five methods is similar, they vary in detail. Refer to the appropriate reference pages
for further discussion.

[CHH]
The Send/Sendto method's parameters might allow you to control many of the
DirectPlay protocol's features. For example, the dwFlags field of
IDirectPlay8Peer::SendTo allows you to specify:

® The message's priority level.

® Whether the message is reliable or unreliable.

® Whether the message is sequential or non-sequential.
Refer to the appropriate method reference for further details.
When your application receives a message, your callback function will receive a

DPN_RECEIVE message. The associated structure contains a pointer to the data
block, along with information such as the source of the message.

[Visual Basic]
The Send/Sendto method's parameters might allow you to control many of the
DirectPlay protocol's features. For example, the [Flags field of
DirectPlay8Peer.SendTo allows you to specify:

® The message's priority level.

® Whether the message is reliable or unreliable.

® Whether the message is sequential or non-sequential.
Refer to the appropriate method reference for further details.



in.doc — page 59

When your application receives a message, DirectPlay will call your message
handler's DirectPlay8Event.Receive method. The associated type contains a pointer
to the data block, along with information such as the source of the message.

DirectPlay Callback Functions and
Multithreading Issues

Microsofte DirectPlay® and DirectPlay Voice both require you to implement and
register several callback functions to handle the events fired by DirectPlay.
DirectPlay is multithreaded and will fire multiple events concurrently. It is possible
that your application will receive multiple overlapping callbacks.

DirectPlay maintains a thread pool to service callback indications, and your callback
is invoked on a thread from the pool of threads maintained by DirectPlay. The size of
this thread pool is configurable on a per process basis in Microsoft Windows 2000.
Also, DirectPlay will use I/O completion ports when running on Windows 2000. I/O
completion ports is an advanced topic beyond the scope of this document, and it is
recommended that you look in the Microsoft Developer Network documents or in one
of the Win32 multithreading references currently available.

In order to correctly and reliably access data in DirectPlay callbacks, you are required
to implement a method of multithreading synchronization. This is known as making
your callback re-entrant or threadsafe.

The Microsoft Windows family of operating systems currently offers three methods
of synchronizing data in multithreaded environments:

® Mutex Objects
® Semaphore Objects
® C(ritical Section Objects

The DirectPlay voice samples that ship with the DirectX 8.0 SDK demonstrate
synchronization using Critical Section Objects. If you wish to implement a Mutex or
Semaphore Object, these topics are discussed in the Microsoft Platform SDK as well
as in many reference books. Implementing any of these synchronization methods
requires an expert knowledge level in these areas due of the level of complexity and
difficulty in debugging should any issues arise.

The DirectPlay threading model is optimized for maximum efficiency and there are
no thread context switches during "send" operations and during "indication"
messages, including receive messages.

This section discusses DirectPlay Networking Callbacks.

See Implementing a Callback Function in DirectPlay and DirectPlay Voice for more
information.



in.doc — page 60

DirectPlay Networking Callbacks

[Visual Basic]
This topic pertains only to applications written in C++.

[CH++]

Microsofte DirectPlay® networking callback functions are of type
PFNDPNMESSAGEHANDLER. Depending on the type of networking session, you
register the address of your callback function with IDirectPlay8Peer::Initialize,
IDirectPlay8Client::Initialize, or IDirectPlay8Server::Initialize.

Synchronization Issues

You must employ one of the three thread synchronization objects in order to maintain
the integrity of your game data during processing in a DirectPlay callback.

In order to understand how your game data could be corrupted, consider that your
callback inserts a packet of game data into a structure. If another thread enters the
callback reentrantly before the first callback has completed, it is possible that this
thread could also attempt to access the structure at the same location in memory and
change the data. Therefore, the data placed in the structure by the first thread is
overwritten by the data placed in the structure by the second thread. Please note that
this is an oversimplified example of multithreading and there are many other
implications to not properly synchronizing multiple threads. Again, it is advisable to
achieve an expert level of knowledge in implementing multithreaded callbacks before
you attempt to create your own.

See Implementing a DirectPlay Networking Callback Using Critical Section Objects
for an example of how to synchronize data in a DirectPlay networking session.

Worker Threads

You have the option of creating your own "worker threads". A worker thread is
another multithreaded application defined callback that is created to process game
data independently of the DirectPlay callbacks. The most common way of
accomplishing this is to buffer data received during a DirectPlay networking callback
thread. Then, a new thread is created and a message is sent to your worker thread
callback to notify it to process the buffered data.

Multithreading Performance Issues and Asynchronous
Operations

It is important to carefully consider how much time is spent processing messages in
DirectPlay callbacks. If you process a lot of data within the DirectPlay callbacks and
you employ a data locking mechanism to synchronize threads, you will run into
blocking problems as other threads wait to enter the callback.



in.doc — page 61

If you choose to implement a worker thread and offset the processing of game data to
another callback, you run the risk of adding a lot of overhead processing time as the
CPU switches context between the threads you create and the threads created by
DirectPlay. This should be done only if the game data requires a large amount of
processing time, and the data is not critical to the real time operation of the game. For
example, it is not recommended to process player location data in a worker thread
because this data is critical to positioning players in real time within the game.

You can also return DPNSUCCESS_PENDING from the callback, create a pointer
to the data buffer, and make that pointer available the worker thread. When the
worker thread is finished processing the game data, it calls the ReturnBuffer method
of either IDirectPlay8Peer or IDirectPlay8Client, depending on the topology used.

Understanding DirectPlay Voice
Microsofte DirectPlay® Voice is a full-voice communications API that is integrated
with DirectPlay for network session management and network transport.

DirectPlay Voice is also integrated with DirectPlay Sound for voice recording and
playback, and all DirectPlay Sound audio features are inherited including the ability
to target voice data to different playback buffers and the use of special audio effects
such as three-dimensional sound positioning.

DirectPlay Voice Networking
DirectPlay Voice Topologies
Voice Host Migration

Audio Device Testing

Voice Codecs

Automatic Gain Control
Transmission Control
Capture Focus

Jitter Buffers

Working Set Guidelines

DirectPlay Voice Networking

Microsofte DirectPlay® Voice uses a DirectPlay session for media-independent
network transport and player management. The DirectPlay Voice API does not
duplicate session control features from DirectPlay. A DirectPlay network transport
session must also be created before DirectPlay Voice can transmit and receive voice



in.doc — page 62

communications. DirectPlay Voice can use either the IDirectPlay4 object or
IDirectPlay8 object for network transport.

Note that if DirectPlay Voice is being used in-process with a multiplayer game, the
game will most likely also use the transport session to exchange its game-specific
data. This makes it possible to optimize the use of network resources between the
game and voice data.

It is also acceptable to create and use a transport session specifically for the voice
session, as would be the case for a standalone voice conferencing application.

DirectPlay Voice Topologies

Microsofte DirectPlay® Voice sessions require a DirectPlay network session to
transport voice communication. Once the network session has been created, a
DirectPlay Voice object can be created to use one of three topologies.

® Peer-to-Peer Voice Topology

® Forwarding Server Voice Topology

® Mixing Server Sessions

The choice of topology is dependent on several factors, and these factors are
discussed in the individual DirectPlay Voice topology topics. Note that not all voice
topologies can be transported over all types of DirectPlay networking sessions.

Peer-to-Peer Voice Topology

In a Microsoft® DirectPlay® Voice session using a peer-to-peer topology, each voice-
session client streams its voice audio data directly to every other voice-session client.
Each client receives all individual incoming voice audio streams, mixes the received
streams, and plays the resulting mixed signal on the client's computer.

Client 1 Client 3

Record mE $@< ' %@@ Record

Playback voice \ / Playback voice

from Client 3 Client 2 from Client 1

Note: The Host of the Session %
can be any one of Clients 1, 2,

or 3, or anothar computer ! !

Playhack mix of voice
from clients 1& 3

The advantage of using a peer-to-peer topology is that no computer in the voice
session requires high bandwidth or processor power. However, the bandwidth and



in.doc — page 63

processor usage on each client's computer varies according to the number of incoming
and outgoing audio streams. The number of outgoing voice audio streams is equal to
the number of targets participating in the voice session, unless the network provider is
capable of true multicasting, as noted below. The number of incoming voice audio
streams depends on how many other voice-session clients are targeting the client in
question and also on how many of the other clients are speaking.

As a game design consideration, it is not useful for a voice-session client to be the
target of more than about six to eight other clients. If all six to eight clients are
speaking at once, the conversation can become confusing, and communication
between clients can be difficult.

If the DirectPlay network session supports true multicasting, the number of outgoing
voice audio streams can be reduced considerably. If all clients are part of a multicast
network and the target of the voice stream is a DirectPlay group, there is only one
outgoing stream.

[C++]

A DirectPlay voice session using a peer-to-peer voice topology supports 3-D
spatialization of the voice data using the
IDirectPlayVoiceClient::Create3DSoundBuffer method.

[Visual Basic]

A DirectPlay voice session using a peer-to-peer voice topology supports 3-D
spatialization of the voice data using the
DirectPlay8VoiceClient.Create3DSoundBuffer method.

It is important to note that a voice session using a peer-to-peer voice topology cannot
be used if the network transport is a client/server session.

Forwarding Server Voice Topology

In a Microsofte DirectPlay® voice session using a forwarding server topology, one
computer in the session acts as a forwarding server. Each client in the voice session
streams voice data to the forwarding server, which then forwards the voice data to all
other clients in the session. Each client receives all incoming audio streams forwarded
from the forwarding server. Each client's computer then mixes the incoming streams
and plays them back.



in.doc — page 64

Client 1 Forwarding server Client 3

weeer & {]q:| g&@i{}: Record

Playback voice Playback voice

from Client 3 Client 2 from Client 1

&
{4

Playback mix of voice
from clients 1 & 3

The outgoing bandwidth requirement on each client in a voice session using a
forwarding server topology is constant because there is only one outgoing voice audio
stream. The incoming bandwidth and processor requirements are identical to the
requirements of a voice session using a peer-to-peer topology, but they vary
depending on the number of incoming voice audio streams.

The server has much higher bandwidth requirements than the individual clients in a
forwarding server DirectPlay voice session. However, the processor requirements are
not high because no compression or decompression of voice data occurs on the
server. This reduced load on the computer's processor also means that an individual
client's computer with a high bandwidth connection can host the forwarding server
without adversely affecting the performance of the individual client's computer or the
performance of a game server and/or client program running on the same computer.

Note that in a voice session using a peer-to-peer topology, the outgoing bandwidth
requirements on the individual clients are usually much higher than the incoming
bandwidth requirements. Therefore, reducing the outgoing bandwidth requirement to
a single stream of audio can result in a significant reduction in total bandwidth usage.
For example, if a client is taking part in an eight-person voice session in which all
clients can hear one another, the client has seven outgoing voice streams each time
voice data is captured and transmitted on his or her computer. However, it is rare that
all clients talk at once, so there are most likely fewer than two or three incoming
voice streams at any one time.

Mixing Server Sessions

In mixing server sessions, one computer in the session acts as a mixing server. Each
client streams its voice data to the mixing server. The mixing server examines the
targets of each voice stream, performs decompression, mixing, and recompression as
appropriate to generate a mixed stream of audio data for each client. Each client
receives this single stream of pre-mixed audio data and plays it back.



in.doc — page 65

Client 1 Mixing server Client 3
Record q q
& e (= ISP (& Record
Flayback vaoice @ Playback voice
from Client 3 Cli from Client 1
ient 2

i}

4

Playback mix of voice
from clients 1 & 3

The outgoing bandwidth, incoming bandwidth, and CPU requirement on the client in
a mixing server session is easily predictable because each client has only one
outgoing stream of audio to compress and send, and one incoming stream of audio to
decompress and play back.

The mixing server has much higher bandwidth and CPU requirements than do the
clients. Typically, the mixing server is either a completely dedicated computer, or it
shares a computer with a dedicated game server.

[C++]
Mixing server voice sessions do not support 3-D spatialization of the voice data
through the IDirectPlayVoiceClient::Create3DSoundBuffer method.

[Visual Basic]
Mixing server voice sessions do not support 3-D spatialization of the voice data
through the DirectPlayVoiceClient8.Create3DSoundBuffer method.

You can run mixing server voice sessions using either a peer-to-peer or a client/server
transport session.

Voice Host Migration

In a peer-to-peer Microsoft® DirectPlay® network session, one client of the
networking session acts as host. If that host should exit the session or stop responding
for any reason, another client in the session is elected as host.

[C++]



in.doc — page 66

In a DirectPlay voice session, a similar process of host migration occurs in peer-to-
peer voice sessions, except that the voice host migrates independently of the
DirectPlay network session. The voice host migrates when the server calls
IDirectPlayVoiceServer::StopSession or if the voice host stops responding. When
the voice host migrates, each client in the voice session receives a

DVMSG HOSTMIGRATED callback. The structure passed to the new host has a
valid pdvServerInterface pointer and can begin making IDirectPlayVoiceServer
calls.

[Visual Basic]

In a DirectPlay voice session, a similar process of host migration occurs in peer-to-
peer voice sessions, except that the voice host migrates independently of the
DirectPlay network session. The voice host migrates when the server calls
DirectPlayVoiceServer8.StopSession or if the voice host stops responding. When
the voice host migrates, the DirectPlayVoiceEvent8.HostMigrated method is called
on each of the clients. If the local client has become the new voice session host, the
NewServer parameter will point to the newly created DirectPlayVoiceServer8 object
that can be used by the local client for providing host services. If the local client is not
the new host, the NewServer parameter will be NULL.

Audio Device Testing

[CH+H]

Microphone setup is supported by the IDirectPlayVoiceTest interface. This interface
has one method, IDirectPlayVoiceTest::CheckAudioSetup, that can be used to run
the test wizard. This wizard confirms that your system properly supports full duplex
operation and ensures your microphone and playback settings are correct. You need
to run the wizard only once for each combination of playback and capture device you
select. Each time your application starts, you should test the configuration by calling
IDirectPlayVoiceTest::CheckAudioSetup with the dwFlags parameter set to
DVFLAGS _QUERYONLY. This enables you to quickly test whether the device
configuration has changed since you last tested them. If your devices have not been
tested, you should run IDirectPlayVoiceTest::CheckAudioSetup again to invoke
the wizard. If you do not do so, then IDirectPlayVoiceClient::Connect will return
DVERR_RUNSETUP, and you will not be able to initialize DirectPlay Voice.

If the user's sound card does not have full duplex capability, it can only listen to voice
communications. It cannot send voice communications because the game typically
holds the audio card in playback mode. To prevent problems, DirectX 8.0 does not
enable switching dynamically between playback and capturing. The DirectX audio
setup wizard provides feedback to the user on the duplexing capabilities of the
system.




in.doc — page 67

[Visual Basic]
Microphone setup is supported by the DirectPlayVoiceTest8.CheckAudioSetup
method.

Calling this method invokes the DirectX audio setup wizard, which runs tests and
confirms that the system properly supports full duplex operation and ensures
microphone and playback settings are correct. You need to run the wizard only once
for each combination of playback and capture device you select. Each time your
application starts, you should test the configuration by calling
DirectPlayVoiceTest8.CheckAudioSetup with the /Flags parameter set to
DVFLAGS_QUERYONLY. This enables you to quickly test whether the device
configuration has changed since your devices were last tested. If your devices have
not been tested, you should run DirectPlayVoiceTest8.CheckAudioSetup again to
invoke the wizard. If the configuration has changed since the last test and you have
not run the wizard again, DirectPlayVoiceClient8.Connect will return
DVERR_RUNSETUP, and you will not be able to initialize DirectPlay Voice.

If the user's sound card does not have full duplex capability, it can only listen to voice
communications. It cannot send voice communications because the game typically
holds the audio card in playback mode. To prevent problems, DirectX 8.0 does not
enable switching dynamically between playback and capturing. The DirectX audio
setup wizard provides feedback to the user on the duplexing capabilities of the
system.

Note that there are still many computer systems in active use that do not include a full
duplex sound card. Full duplex sound cards came into popular use in 1998, although
at the time few of the audio card drivers had full duplex operation enabled. Customers
who purchased new systems in 1999 or upgraded drivers in 1999 are more likely to
have full duplex capability.

Voice Codecs

The compression/decompression (codec) algorithms provided specifically with
Microsofte DirectPlay® are voice-quality codecs. They are all 8 kHz, 16-bit mono-
format—based algorithms. Third-party codecs are not supported, and you cannot write
proprietary codecs for use with DirectPlay Voice.

It is important to note that as the bandwidth requirements drop, the audio quality of
the voice data also drops. The following table describes the sound quality of each
codec.

Codecs cannot be dynamically switched during a game voice session, and all users
must use the same codec in a voice session. However, a game could possibly create
an appropriate user interface to force codec switching by dropping a current session
and creating a new session using a different codec. This would be appropriate if the
game application's users were jumping from a lobby chat to a game.



in.doc — page 68

As with all other game setup parameters, the host should control the codec used. The
voice-session host does not necessarily have to be the same as the game-data host.

As with any form of network communication, it is important to analyze the cost of the
voice communication to ensure that adequate bandwidth is available to support
communication of the game data and voice data. Analyzing the voice bandwidth
consumption is straightforward. Estimate the number of simultaneous voice streams
that you anticipate and multiply that number by the sum of the bandwidth required by
the codec and the protocol overhead.

CPU consumption is another factor to consider when choosing a codec. Even low
bandwidth codecs typically require about 8 percent of a 200 megahertz (MHz)
Pentium processor's resources to encode a voice stream and an additional 4 percent to
decode. As with network bandwidth, CPU resource consumption is additive per
stream.

Automatic Gain Control

[CH+H]

Microsoft® DirectPlay® Voice offers functionality to adjust the hardware input
volume on the sound card automatically to provide the best recording input level
possible. To enable Automatic Gain Control, set the
DVCLIENTCONFIG_AUTORECORDVOLUME flag in the dwFlags member of the
DVCLIENTCONFIG structure when you set the client configuration. Automatic
Gain Control can be activated or deactivated at any time during the voice session.

[Visual Basic]

Microsoft® DirectPlay® Voice offers functionality to adjust the hardware input
volume on the sound card automatically to provide the best recording input level
possible. To enable Automatic Gain Control, set the
DVCLIENTCONFIG_AUTORECORDVOLUME flag in the /Flags member of the
DVCLIENTCONFIG structure when you set the client configuration. Automatic Gain
Control can be activated or deactivated at any time during the voice session.

Most game applications should use automatic gain control because it requires a
negligible amount of game resources and prevents the need for an in-game volume
recording control. Users are not required to set the level themselves, yet they
experience the highest quality of voice transmission and reception possible.

Transmission Control

To keep the performance requirements of Microsoft® DirectPlay® Voice low, voice
data should be transmitted only when the user is speaking. There are two methods to
control voice data transmission. The choice of which method to use depends on your
game's design considerations.



in.doc — page 69

® Voice Activation
® Push to Talk

Voice Activation

[C++]

With voice activated transmission control, the microphone input is constantly
analyzed to determine if the user is speaking. Voice activation has two benefits. It
does not require the user to do anything more than speak into the microphone. Also, it
is easily coded because it requires only setting the dwFlags parameter of the
DVCLIENTCONFIG structure to DVCLIENTCONFIG AUTOVOICEACTIVATED
when the voice session is connected.

[Visual Basic]

With voice-activated transmission control, the microphone input is constantly
analyzed to determine if the user is speaking. Voice activation has two benefits. It
does not require the user to do anything more than speak into the microphone. Also, it
is easily coded because it requires only setting the /Flags parameter of the
DVCLIENTCONFIG structure to DVCLIENTCONFIG_AUTOVOICEACTIVATED
when the voice session is connected.

However, one drawback of voice activation is that sounds such as the user breathing
directly on the microphone, high levels of ambient sound caused by a noisy
environment, or set of external speakers playing back the game's audio could cause
unwanted voice activation. In addition, low-quality microphones exaggerate this
possibility.

Push to Talk

Push-to-talk transmission control requires users to actively select when they want to
transmit voice data. With this transmission control method, there is no danger that
anything besides voice data will be transmitted. This method is analogous to pushing
the Talk button on a two-way radio, and this functionality adds reality to certain game
genres such as first-person shooters. Another benefit of using this method is that
requiring users to actively select when they want to speak reduces the number of
users speaking at once. This transmission control requires more design and
development than voice activation because user-control functionality is required.

Capture Focus

[C++]
The concept of capturing focus is integral to creating lobbyable game applications
and lobby applications with Microsoft® DirectPlay® Voice support. If your game



in.doc — page 70

application does not properly implement focus capture, it is possible that voice
communication will not function if your game was launched from a lobby application.

To illustrate this point, consider two players who meet in a lobby application that has
DirectPlay Voice support. The two players agree to launch the game. After the game
is launched, the lobby application loses focus on each player's computer, and each
copy of the game application gains focus. If the game application does not properly
gain focus from the lobby application, it is possible that the lobby application can still
have focus while the game application is running.

For example, this will occur if the first player's lobby application retains focus while
the game session is running while the second player's game session gains focus from
the lobby application. From the second player's perspective, the first player's voice
session has fallen back to half-duplex. The second player can hear the first player, but
the first player cannot hear the second player. From the first player's perspective, the
voice session has ended because the second player does not seem to be speaking.
Also, the first player does not know that the second player can hear him or her.

Note that this behavior is by design. Consider the same scenario as above, but when
the first player attempts to start the game session from the lobby application, there is a
problem and the session fails to start. If the second player's session starts successfully,
that player can hear the voice of the first player and the first player can inform the
second player that their game session failed. Both players might then drop back to the
lobby and attempt to start the session once again.

To handle capture focus properly, your game application must set the
hwndAppWindow parameter in the DVSOUNDDEVICECONFIG structure to the
window handle that will have focus when the game is running. The DirectPlay Voice
session can then be created through a call to Connect. The game application must then
handle the DVMSGID LOSTFOCUS and DVMSGID_GAINFOCUS messages.

See Implementing Capture Focus for more information.

[Visual Basic]
This topic pertains only to applications written in C++.

Jitter Buffers

Microsofte DirectPlay® Voice features a jitter buffer, an adaptive buffering algorithm
that provides optimal voice quality with the least amount of latency.

On busy networks, individual packets of voice data information might arrive in a
different sequence from that in which they were encoded on the host computer.
Because voice data is sequential in nature, these incoming packets must be queued for
a period of time so that delayed packets have an opportunity to arrive and be played
back in order.



in.doc — page 71

If the jitter buffer is set to maximize the quality voice communication, it takes longer
for the required number of voice packets to arrive and be queued for play. The result
is voice latency, and the effect is that voice communication is not heard in real time.
Instead, the voice data might be heard anywhere from a fraction of a second to several
seconds after it was recorded. This can introduce problems during cooperative
gameplay because events can occur in the game but players will not be able to
communicate information based on those events in real time. For example, if a player
in a first-person shooter is about to be attacked from behind and a teammate attempts
to warn the player, the voice communication might not be heard until after the player
has been attacked.

If the jitter buffer is set to a reduce latency, the number of packets required to fill the
queue is reduced. However, it is possible that not all sequential packets will arrive in
time and, as a result, voice data will be missing from the buffer when it is played. The
voice communication will be heard much closer to the actual time it was recorded.
However, it will have a "broken-up" quality.

The DirectPlay jitter buffer uses two methods to determine how to provide the best
quality of voice communication with the least amount of latency. First, network
conditions are monitored to determine the amount of lag or network congestion. The
size of the jitter buffer, or queue, is then dynamically sized to keep latency as low as
possible while providing the least amount of voice break up.

[C++]

The default behavior of DirectPlay Voice jitter buffer is to automatically adjust to
network conditions. You can manually adjust how closely the algorithm tracks
network conditions using the dwBufferAggressiveness and dwBufferQuality members
of the DVCLIENTCONTFIG structure. The higher the level of "aggressiveness", the
more closely the algorithm monitors network conditions. In general, the higher the
quality value, the higher the quality of the voice but the higher the latency. The lower
the quality value, the lower the latency but the lower the quality of the voice.

[Visual Basic]

The default behavior of DirectPlay Voice jitter buffer is to automatically adjust to
network conditions. You can manually adjust how closely the algorithm tracks
network conditions using the /BufferAggressiveness and [BufferQuality members of
the DVCLIENTCONFIG structure. The higher the level of aggressiveness, the more
closely the algorithm monitors network conditions. In general, the higher the quality
value, the higher the quality of the voice but the higher the latency. The lower the
quality value, the lower the latency but the lower the quality of the voice.

It is important to choose an appropriate level of aggressiveness for network
conditions when your game application is running because selecting a high level of
aggressiveness during times of steady network performance can cause the algorithm
to misinterpret a transitory problem and overcompensate for a problem that might not
exist.



in.doc — page 72

Working Set Guidelines

Determining the best configuration of transport topology, voice topology,
transmission control, and codec depends on the type or genre of game you are
creating, the number of players that will participate in a single game session, and the
type of connection that will be targeted.

It's important to note that the number of players participating in the voice session is
not necessarily the number of players actually participating in the game session. For
example, if your game is a first-person shooter, voice communication can be
represented in the game as a radio or communicator that is offered as a time-limited
powerup. Also, the radio metaphor can be used to limit communication to radios in
either vehicles or stationary command stations.

A second example to consider is an online bridge game, which involves four players
at one time. Because this is a small working set, it is appropriate to choose a peer-to-
peer voice topology transported over a peer-to-peer network topology. This small
working set also allows for the use of voice activation as the mode of transmission
control. The peer-to-peer voice topology is easily implemented and does not require
any player to act as a server. If all four players use the Voxware SC6 codec, the
maximum resulting bandwidth is 4.2 Kbps per speech stream, including the codec
protocol overhead. Further assuming that game data requires negligible bandwidth,
the outgoing maximum bandwidth requirement for an individual speaker is three
independent streams to the other three players, or 12.6 Kbps. The incoming stream to
any client ranges from 0 if no other players are talking, to 12.6 Kbps if all three other
players speak simultaneously. The CPU requirement is 8 percent for encoding and 0
to 12 percent for decoding. This results in a worst-case requirement of 25.2 Kbps.
Therefore each player must have a minimum of a 14,400-baud modem.

Another example is a squad combat game that can involve up to 32 players split
between 2 teams. Assume that the game data requires a 28,800 baud modem. In this
example, there is a larger number of players and it is appropriate to choose a
forwarding server voice topology. Again, if all players use the Voxware SC6 codec,
the bandwidth requirements are the same as the bridge game above: 4.2 Kbps. In this
example we see that there is 4.2 Kbps outgoing when speaking, and a maximum of
12.6 Kbps incoming from the squad. The maximum CPU requirement is 8 percent of
a Pentium 200 for encode and 12 percent receiving. Therefore, each player requires
28.8 Kbps for game data, and the greater incoming bandwidth of 12.6 Kbps requires a
minimum 41,400 baud rate from each player's modem.

The worst-case scenario for the forwarding server itself is if all 32 players talk at
once, requiring 134.4 Kbps. The server CPU use is minimal because the server is not
encoding or decoding the streams. It is merely redirecting them. More typically, there
might be 16 players talking simultaneously for 67.2 Kbps.

To illustrate the difference between choosing a mixing server voice topology and a
forwarding server voice topology, consider the same 32-player squad combat game
discussed above. If a mixing server voice topology is used, each client requires 4.2
Kbps to send and 4.2 Kbps to receive. The worst-case bandwidth requirements drop



in.doc — page 73

to 8.4 Kbps and 12 percent of the Pentium processor running at 200 MHz. This
reduces the modem requirement to a 33,600 Kbps baud rate for the client.

For the server, the CPU burden changes. The server is now decoding and re-encoding
all incoming streams and is also mixing the streams as required. The CPU burden mix
the stream is relatively low and is considered negligible. The worst case is the
decoding and encoding of 32 simultaneous streams. This results in a requirement of at
least a Pentium II processor running at 400 MHz for the voice service alone.

Using DirectPlay

This section of the Microsofte DirectPlay® documentation is designed to show you
how to use the DirectPlay API to implement a number of important aspects of
multiplayer applications.

® Using DirectPlay Enumerations

[C++]

Using Player Context Values

¢ Implementing a Lobby Client

¢ Implementing a Lobbyable Application

® Monitoring DirectPlay Network Traffic with Netmon

® Implementing a Callback Function in DirectPlay and DirectPlay Voice

¢ Implementing a DirectPlay Networking Callback Using Critical Section Objects
® Using the DirectPlay DPNSVR Application

Using DirectPlay Enumerations

[C++]

Enumeration is one of the ways that Microsoft® DirectPlay® provides information to
applications. Enumerations are used to collect data associated with a number of
similar elements. For instance, you can use an enumeration to obtain information
about each player in a session. To perform an enumeration, an application queries
DirectPlay for a particular type of information, and DirectPlay returns a data structure
for each related element, typically as an array of structures.

Most applications will need to perform at least one and often several enumeration
operations. Each DirectPlay interface supports a different set of enumerations. Thus
the details will vary from application to application. The following is a list of
available enumerations, along with the interfaces that support each type of
enumeration.



in.doc — page 74

® Session hosts (IDirectPlay8Peer, IDirectPlay8Client)

® Service providers (IDirectPlay8Peer, IDirectPlay8Client, IDirectPlay8Server)
¢ Players (IDirectPlay8Peer, IDirectPlay8Server)

® Groups (IDirectPlay8Peer, IDirectPlay8Server)

® Group members (IDirectPlay8Peer, IDirectPlay8Server)

® Local programs (IDirectPlay8LobbyClient)

For more information, see Implementing a DirectPlay Enumeration.

[Visual Basic]

Enumeration is one of the ways that Microsoft® DirectPlay® provides information to
applications. Enumerations are used to collect data associated with a number of
similar elements. For instance, you can use an enumeration to obtain information
about each player in a session. To perform an enumeration, an application queries
DirectPlay for a particular type of information, and DirectPlay returns a data type for
each related element, typically as an array of types.

Most applications will need to perform at least one and often several enumeration
operations. Each DirectPlay object supports a different set of enumerations. Thus the
details will vary from application to application. The following is a list of available
enumerations, along with the objects that support each type of enumeration.

® Session hosts (DirectPlay8Peer, DirectPlay8Client)

® Service providers (DirectPlay8Peer, DirectPlay8Client, DirectPlay8Server)

® Players (DirectPlay8Peer, DirectPlay8Server)

® Groups (DirectPlay8Peer, DirectPlay8Server)

® Group members (DirectPlay8Peer, DirectPlay8Server)

® Local programs (DirectPlay8LobbyClient)

For more information, see Implementing a DirectPlay Enumeration.

Implementing a DirectPlay Enumeration

[CH++]

Most Microsofte DirectPlay® enumerations follow a standard pattern: call the
appropriate enumeration method, and examine the returned data array. The exception
to this pattern is host enumerations, which are discussed separately.

Before you can call the method to obtain the data, you must allocate enough memory
to contain the returned data block. However, you typically do not know, in advance,
how large that array will be. Allocating a large enough block of memory to hold any



in.doc — page 75

conceivable array will work, but is inefficient. Instead DirectPlay is allows you query
for the required array size, and then repeat the query to obtain the structure itself.

The following procedure outlines how to enumerate the members of a group in a
peer-to-peer game. The same general procedure is followed by all other types of
enumeration, except for host enumerations. Because enumerations are often used to
obtain a snapshot of information that might be changing, you should perform
enumerations in a loop until you are successful.

1. Call IDirectPlay8Peer::EnumGroupMembers. This method returns an integer
array in the prgdpnid parameter that contains the ID of each player in the group.
The pcdpnid parameter is used to indicate the number of elements in the array.
Set the pcdpnid parameter to 0 to request the appropriate value. Set prgdpnid to
NULL.

2. When the method returns, pcdpnid will point to the number of elements that will
be in the array.

3. Allocate your array using the returned pcdpnid value, and assign the array to the
prgdpnid parameter.

4. Set pcdpnid to the value that was returned in the first method call.

5. Call IDirectPlay8Peer::EnumGroupMembers again.

6. When the method returns the second time, check the return value. If successful,
the method will return S_OK, and the array will contain the player's IDs.

7. If the method returns DPNERR BUFFERTOOSMALL again, the number of
players has increased since the previous method call. Return to step three and use
the new pcdpnid value to increase the array size. Be careful not to leak memory.

In some cases, the method returns an array of structures. In that case, you follow the
same procedure, but the value returned from the first method call gives you the size of
the array in bytes, instead of the number of elements in the array. Refer to the
individual method references for details.

For more information, see Enumerating Hosts.

[Visual Basic]

Most DirectPlay enumerations follow a standard pattern: determine how many items
are to be enumerated and call the appropriate enumeration method. The exception to
this pattern is host enumerations, which are discussed separately.

The following procedure outlines how to enumerate the members of a group in a
peer-to-peer game. The same general procedure is followed by all other types of
enumeration, except for host enumerations.

1. Call DirectPlay8Peer.GetCountGroupMembers. This method returns the
number of members in the group.

2. Call DirectPlay8Peer.GetGroupMember once for each member in the
group. The method returns the ID of the specified player.



in.doc — page 76

For more information, see Enumerating Hosts.

Enumerating Hosts

One way to arrange a session is to have session hosts advertise themselves as
available. This type of session is referred to as a broadcast session. Peers or clients
can look for a game to join by enumerating the available hosts, selecting one, and
then join the game by sending a connection request. See Peer-to-Peer Sessions or
Client/Server Sessions for a detailed discussion.

Unlike other enumerations, the information needed to respond to a request for
available hosts is not stored on the local computer. Instead, a client or peer must
broadcast a request, for instance on their local subnet, and wait for available hosts to
respond. Hosts, on the other hand, must wait for these requests, and then respond
appropriately. There are thus two slightly different procedures, depending on whether
you are a potential session member, or a session host.

[CH+H]

The following procedure illustrates how enumerate the available hosts for a peer-to-
peer session. The procedure for a client/server session is essentially the same.
IDirectPlay8Peer::EnumHosts is the method that starts the enumeration. The key
parameters to set are pApplicationDesc, pdpaddrDeviceinfo, and pdpaddrHost.

1. Assign the GUID of the game you are interested in playing to the
guidApplication member of the DPN_APPLICATION_DESC structure and
assign the structure pointer to the pApplicationDesc parameter.

2. Create an address object for your device and assign its pointer to
pdpaddrDeviceinfo. This object contains the information needed to make a
network connection.

3. To query a specific computer for available hosts, create a host address object for
that computer and assign its pointer to pdpaddrHost. If you set this parameter to
NULL, Microsofte DirectPlay® will create an address object from the
information contained in pdpaddrDeviceinfo. See DirectPlay Addressing for
further discussion of address objects. If you are using an IP or IPX service
provider, the query will then normally be broadcast to your local subnet. If you
set the DPNENUMHOSTS OKTOQUERYFORADDRESSING flag, the service
provider may display a dialog box to the user to request address information.

4. Call IDirectPlay8Peer::EnumHosts.

5. Your callback message handler will then receive a series of
DPN_MSGID_ENUM_HOSTS_RESPONSE messages, one for each host that
responds.

6. Examine the information returned to your message handler, select a
session, and ask to join it by calling IDirectPlay8Peer::Connect.



in.doc — page 77

If you want to be the host of a broadcast session, advertise yourself as available, and
wait for queries or connection requests. The following procedure applies to peer-to-
peer hosts, but is essentially similar to the procedure for client/server hosts.

1.

2.

Call IDirectPlay8Peer::SetPeerInfo to specify the static settings for your
player.

Specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC structure.

. Call IDirectPlay8Peer::Host to advertise yourself as a potential host. Set the

pdnAppDesc parameter to the DPN_APPLICATION_DESC structure defined
in the previous step.

. Wait for enumeration requests. They will take the form of a

DPN_MSGID_ENUM_HOSTS_QUERY message sent to your callback
message handler. If you wish to respond to the enumeration request, fill in the
DPN_APPLICATION DESC and return S_OK. The peer will receive a
DPN_MSGID_ENUM_HOSTS_RESPONSE message with the information.

. If the peer decides that they would like to join your session, you will receive a

DPN_MSGID_INDICATE_CONNECT message.

See the Peer-to-Peer Sessions and Client/Server Sessions sections for further
discussion of how to arrange and launch a game.

[Visual Basic]

The following procedure illustrates how enumerate the available hosts for a peer-to-
peer session. The procedure for a client/server session is essentially the same.
DirectPlay8Peer.EnumHosts is the method that starts the enumeration. The key
parameters to set are ApplicationDesc, Deviceinfo, and AddrHost.

1.

Assign the GUID of the game you are interested in playing to the
guidApplication member of the DPN_APPLICATION_DESC type and assign
assign it to the ApplicationDesc parameter.

. Create a DirectPlay8Address object for your device and assign it to Deviceinfo.

This object contains the information needed to make a network connection.

. To query a specific computer for available hosts, create a DirectPlay8Address

object for the host computer and assign it to pdpaddrHost. If you set leave the
object empty, DirectPlay will create an address from the information contained in
pdpaddrDeviceinfo. See DirectPlay Addressing for further discussion of address
objects. If you are using an IP or IPX service provider, the query will then
normally be broadcast to your local subnet.

4. Call DirectPlay8Peer.EnumHosts.

. DirectPlay will then make a series of calls to your message handler's

DirectPlay8Event.EnumHostsResponse method, once for each host that
responds.

6. Examine the information returned to your message handler, select a
session, and ask to join it by calling DirectPlay8Peer.Connect.



in.doc — page 78

If you want to be the host of a broadcast session, advertise yourself as available, and
wait for queries or connection requests. The following procedure applies to peer-to-
peer hosts, but is essentially similar to the procedure for client/server hosts.

1. Call DirectPlay8Peer.SetPeerInfo to specify the static settings for your player.

2. Specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC type.

3. Call DirectPlay8Peer.Host to advertise yourself as a potential host. Set the
AppDesc parameter to the DPN_APPLICATION_DESC type defined in the
previous step.

4. Wait for enumeration requests. They will take the form of a call to your message
handlers DirectPlay8Peer.EnumHostsQuery method. If you wish to respond to
the enumeration request, fill in the DPN_APPLICATION_DESC type and set
fRejectMsg to False.

5. If the peer decides that they would like to join your session, DirectPlay will call
your message handler's DirectPlay8Event.IndicateConnect method.

See the Peer-to-Peer Sessions and Client/Server Sessions sections for further
discussion of how to arrange and launch a game.

Using Player Context Values

[C++]

Most applications will want to associate some data with each player. However, when
you receive a message that is associated to a player, you need some way to access that
data quickly. Player context values are designed to provide you with an efficient way
to access your player data.

Note
Only the IDirectPlay8Peer and IDirectPlay8Server interfaces use player
context values. They are not needed for the IDirectPlay8Client interface because
clients use this interface to communicate only with the server, not other clients.

® Defining a Player Context Value

® Managing Player Context Data

[Visual Basic]
This topic pertains only to applications written in C++.




in.doc — page 79

Defining a Player Context Value

[CH++]

To user player context values, you need to have a block of data on your system for
each player, typically in the form of a structure. A player context value is normally an
index into an array of pointers to the various players' data blocks. When you receive a
message from a player, there is no need for time-consuming operations such as
searching for the player's ID in a table. The index contained in the player context
value allows you to quickly obtain the necessary pointer.

You define a player context value when you handle the

DPN_MSGID _CREATE_PLAYER message that notifies you that a player has been
added to the game. Host's can also define a player context value when they handle the
DPN_MSGID_INDICATE_CONNECT message. That player context value will be
set in the subsequent DPN_MSGID_CREATE_PLAYER message. When the host
processes that message, it has the option of changing the player context value. To
create a player context value:

® Allocate a structure to hold the player's data.
® Add the structure pointer to your player data array.

® Assign the index of that pointer to the pvPlayerContext member of the
message's DPNMSG_CREATE_PLAYER structure.

Microsofte DirectPlay® does not specify how you should obtain the data to populate
the structure. Each game is responsible for handling that issue in its own way.

Note
The only place you can define a player context value is in a
DPN_MSGID_CREATE_PLAYER or
DPN_MSGID_INDICATE_CONNECT message handler. Once the
DPN_MSGID_CREATE_PLAYER message handler returns, the player
context value is set. For each subsequent message associated with that player, the
player context value will be the same value that was set by the
DPN_MSGID _CREATE_PLAYER message handler. You can modify the
contents of the associated data structure, but you cannot change the player
context value itself.

[Visual Basic]
This topic pertains only to applications written in C++.

Managing Player Context Data

[C++]



in.doc — page 80

While player context values are fairly straightforward to handle, there are a couple of
issues that you need to be careful with.

The player context value provides you with a quick way to obtain a valid memory
address that will presumably be accessed each time a message arrives. However, you
must be careful that different parts of your application do not access the data at the
same time. Microsofte DirectPlay® serializes messages associated with a particular
player, which guarantees that you will never be handling two messages from the same
player at the same time. As long as you only access the data structure from your
callback message handler, you can safely access the structure. However, most
applications will need to access player data outside the message handler.

If your application accesses the data outside the callback message handler, you must
prevent concurrent access by providing some sort of global mechanism to lock the
structure. Even if your application does not require such locking in the early stages of
development, you should assume that locking will eventually be required, and build it
in from the beginning. If your player context values that are indexes into an array, you
should also make sure that you read and update that array safely.

Don't deallocate a player's data structure prematurely. When a player leaves the game,
you will normally want to deallocate their data structure and free the associated
memory. However, be careful about deallocating the structure as soon as you receive
a DPN_MSGID_DESTROY_PLAYER message. If your application accesses that
structure outside the callback message handler, that data may still be in use when the
message arrives. If you simply deallocate the structure as soon as the message arrives,
you may cause other parts of your application to fail.

To avoid prematurely deallocating the structure, you should not only provide an
application-level locking mechanism, you should also implement some sort of
reference counting. Increment this reference count when you create the structure, and
every time you use it. Decrement the reference count every time you have finished
with the structure, including in your DPN_MSGID_DESTROY_PLAYER message
handler. As long as the reference count is non-zero, some part of your application is
accessing the structure. Do not deallocate the structure until the reference count drops
to zero.

[Visual Basic]
This topic pertains only to applications written in C++.

Implementing a Lobby Client

A lobby client is an application that resides on a user's computer. It typically serves as
a link between a game application on the user's computer and a lobby server on a
remote computer. However, lobby clients can also function as stand-alone



in.doc — page 81

applications. For instance, they can be used to arrange a game session among the
users of a particular LAN subnet.

Lobby clients typically consist of three primary components that handle the following
tasks:

¢ Communicating with the outside world, either a lobby server or other lobby
clients.
¢ Communicating with the user, typically through a graphical user interface (GUI).

¢ Communicating with Microsofte DirectPlay®.

DirectPlay does not specify how the first two items should be implemented. Lobby
client vendors should use whatever approach is suitable to their product. What
DirectPlay provides is a standard API that a lobby client can use to communicate with
DirectPlay, and through DirectPlay with the user's lobbyable game applications.

This section discusses the following essential details of lobby client implementation.
® Initializing a Lobby Client
® Launching a Lobbied Application
® Implementing a Lobby Client Message Handler
¢ Communicating with a Lobbied Application
® Closing Down a Lobby Client

See the LobbyClient sample application for a fully implemented example of a simple
lobby client.

Initializing a Lobby Client

[CH+H]

Lobby clients are either launched by a lobby server or directly by a user. Once a
lobby client is launched, it must be initialized before it can launch an application.
Initialization involves the following tasks.

® (Call CoCreatelnstance to create a lobby client object
(CLSID_DirectPlay8LobbyClient). Use the riid parameter to request a
IDirectPlay8LobbyClient interface (IID_IDirectPlay8LobbyClient).
® (Call the lobby client's IDirectPlay8LobbyClient::Initialize method. Pass the
method a pointer to your lobby client's callback message handler.
¢ Use the IDirectPlay8LobbyClient::EnumLocalPrograms method to enumerate
the lobbyable applications on the user's system.
The first two steps create the lobby client object, and set up a communication link
between that object and your lobby client. The final step determines what lobbyable

applications are available on the user's system. You need this information in order to
launch the selected application.



in.doc — page 82

The following code sample illustrates how to enumerate local applications. It is a
simplified version of the EnumRegisteredApplications function in the SDK's
LobbyClient sample. Error handling and dialog-box-related code has been deleted for
clarity. See the LobbyClient sample in the SDK for the complete code.

HRESULT EnumRegisteredApplications()
{

HRESULT hr;

DWORD dwSize =0;

DWORD dwPrograms = 0;

DWORD iProgram;

BYTE* pData = NULL;

/lg_pLobbyClient is a pointer to an IDirectPlay8LobbyClient interface
/IStart with a NULL data buffer. The required buffer size is
/Ireturned through dwSize.
hr = g_pLobbyClient->EnumLocalPrograms( NULL, pData, &dwSize, &dwPrograms, 0 );

if(dwSize == 0)
{

/INo registered applications.
}

/ISet the data buffer to the appropriate size
pData = new BYTE[dwSize];
hr = g_pLobbyClient->EnumLocalPrograms( NULL, pData, &dwSize, &dwPrograms, 0 )

/ICast the returned data to the appropriate structure type
DPL_APPLICATION_INFO* pAppinfo = (DPL_APPLICATION_INFO*) pData;

/IEnumerate the names of the registered applications
for( iProgram=0; iProgram<dwPrograms; iProgram++ )
{
TCHAR strAppName[MAX_PATH];
DXUtil_ConvertWideStringToGeneric( strAppName, pApplnfo->pwszApplicationName );

}
SAFE_DELETE_ARRAY( pData );

return S_OK;
}

[Visual Basic]

Lobby clients are either launched by a lobby server or directly by a user. Once a
lobby client is launched, it must be initialized before it can launch an application.
Initialization involves the following tasks.



in.doc — page 83

® (Create a DirectPlay8LobbyClient object.

Create a DirectPlay8LobbyEvent object. The DirectPlay8LobbyEvent object is
essentially a message handler that receives messages directly from the lobby
client object, and indirectly from the application. It is not provided by Microsoft®
DirectPlay® and must be implemented by your application.

® You must register this object with DirectPlay by calling
DirectPlay8LobbyClient.RegisterMessageHandler.

¢ Use the DirectPlay8LobbyClient.GetLocalProgram method to enumerate the
lobbyable applications on the user's system.

The first two steps create the lobby client object, and set up a communication link
between that object and your lobby client. The final step determines what lobbyable
applications are available on the user's system. You need this information in order to
launch the selected application.

You should store the application GUIDs of the registered applications because you
need them to launch the application.

Depending on the design of your lobby client, you may also want to do one or more
of the following tasks.

® Perform any initialization that is not related to Microsoft® DirectPlay®, such as
establishing a link with the lobby server.

[C+]
® Create a DirectPlay peer or DirectPlay client object (CLSID DirectPlay8Peer or
CLSID DirectPlay8Client, respectively).

[Visual Basic]
® (Create a DirectPlay8Peer or DirectPlay8Client object.

® Use the peer or client object's enumeration methods to enumerate available
service providers, adapters, and so on.

Launching a Lobbied Application

[CH+H]

Once the user has selected an application, and your lobby client has verified that it
has been registered on the user's system, you can launch the application. To do so,
call IDirectPlay8LobbyClient::ConnectApplication. The first parameter is a
DPL_CONNECT_INFO structure that contains a variety of information needed to
launch the application including the following:

® The GUID that identifies the application.



in.doc — page 84

® The connection settings, including the user's Microsofte DirectPlay® address. See
DirectPlay Addressing for a discussion of DirectPlay addresses.

® Whether the application will be a host.

The IDirectPlay8LobbyClient::ConnectApplication method returns an application
handle that is used to identify the application in all further communication. Once the
application has launched and the connection successfully established, your message
handler receives a DPL. MESSAGE _CONNECT message.

Note
Your message handler may receive the DPL. MESSAGE CONNECT before the
IDirectPlay8LobbyClient::ConnectApplication method has confirmed the
connection by returning a success code. Your message handler should be
prepared to handle the message even if the method has not yet returned.

[Visual Basic]

Once the user has selected an application, and your lobby client has verified that it
has been registered on the user's system, you can launch the application. To do so,
call DirectPlay8LobbyClient.ConnectApplication. The first parameter is a
DPL_CONNECT_INFO structure that contains a variety of information needed to
launch the application including the following:

® The GUID that identifies the application.

® The connection settings, including the user's Microsoft® DirectPlay® address. See
DirectPlay Addressing for a discussion of DirectPlay addresses.

® Whether the application will be a host.

The DirectPlay8LobbyClient.ConnectApplication method returns an application
handle that is used to identify the application in all further communication. Once the
application has launched and the connection successfully established, DirectPlay will
call your message handlers DirectPlay8LobbyEvent.Connect method.

Note
Your message handler's DirectPlay§LobbyEvent.Connect method may be
called before the DirectPlay8LobbyClient.ConnectApplication method has
confirmed the connection by returning a success code. Your message handler
should be prepared to handle the message even if the method has not yet
returned.

Implementing a Lobby Client Message Handler

[C++]



in.doc — page 85

The message handler is a callback function that is used by the lobby client object to
communicate with the lobby client. The lobby client message handler has three
parameters that pass in the following information.
® A message ID that indicates the message type.
® A pointer to a message data block. You must cast this parameter to the structure
that is used by the particular message.

® A pointer to an optional application-defined user-context data block.

The user context value is defined by the lobby client when it calls
IDirectPlay8LobbyClient::Initialize. It can be used for such purposes as
differentiating between messages that are sent from different objects. See
PFNDPNMESSAGEHANDLER for a complete description the message handler
function.

Your message handler must be able to handle the following five lobby client-specific
messages.

* DPL_MESSAGE_CONNECT

* DPL_MESSAGE_CONNECTION_SETTINGS

* DPL_MESSAGE_DISCONNECT

* DPL_MESSAGE_RECEIVE

* DPL_MESSAGE_SESSION_STATUS

Most of these messages are generated by the lobby client object in response to
changes in the game status, or when the lobby client requests information. The
exception is DPL._MESSAGE_RECEIVE. This message is used to pass data
directly from the game application to the lobby client.

Note
Microsofte DirectPlay® message handlers must be written to work properly in a
multithreaded environment, or your application may not function well.

DPL_MSGID_CONNECT

This message is sent by the lobby client following the launch of a lobbyable
application. The message indicates that the application has been successfully
connected. The associated DPL._ MESSAGE_CONNECT structure holds a variety
of information, including:

® A connection ID. Use this ID when your lobby client needs to send data to the
application with IDirectPlay8LobbyClient::Send, or release the connection
with IDirectPlay8LobbyClient::ReleaseApplication.

® Lobby connection data.

® An optional connection context value.



in.doc — page 86

DPL_MSGID_CONNECTION_SETTINGS

This message is sent by DirectPlay whenever an associated lobbyable application
calls its IDirectPlay8LobbiedApplication::SetConnectionSettings method to
modify the session connections. The associated
DPL_MESSAGE_CONNECTION_SETTINGS structure contains the updated
connection information.

DPL_MSGID_DISCONNECT

This message is sent when the lobbyable application disconnects from the session by
calling IDirectPlay8LobbiedApplication::Close. Your lobby client application
should delete the connection from its list and free any data that is associated with the
application.

DPL_MSGID_RECEIVE

This message enables an application to pass data to the lobby client. DirectPlay
passes the data block from the application to the lobby client in a
DPL_MESSAGE_RECEIVE structure. It is up to the lobby client to process the
data.

DPL_MSGID_SESSION_STATUS

This message is sent by DirectPlay whenever one of the following six changes in the
session's status occurs.

® The session is connected.

® The session could not connect.

® The session has been disconnected.

® The session has been terminated.

® The session host has migrated.

® This computer has become the session host.

The type of status change is indicated by the value of the dwStatus field in the
associated DPL._ MESSAGE_SESSION_STATUS structure.

For more information, see A Sample Lobby Client Message Handler.

[Visual Basic]

The message handler is a DirectPlay8LobbyEvent object, that receives messages
directly from the lobby client object, and indirectly from the application. It is not
provided by DirectPlay and must be implemented by your application.

Your message handler must implement all of the following methods:

® DirectPlay8LobbyEvent.Connect



in.doc — page 87

® DirectPlay8LobbyEvent.ConnectionSettings
® DirectPlay8LobbyEvent.Disconnect

® DirectPlay8LobbyEvent.Receive

® DirectPlay8LobbyEvent.SessionStatus

Most of these methods are called by DirectPlay in response to changes in the game
status, or when the lobby client requests information. The exception is
DirectPlay8LobbyEvent.Receive. This method is called to pass data directly from
the game application to the lobby client.

DirectPlay8LobbyEvent.Connect

This method is called by DirectPlay following the launch of a lobbyable application.
The message indicates that the application has been successfully connected. The
associated DPL._ MESSAGE_CONNECT type holds a variety of information,
including:

® A connection ID. Use this ID when your lobby client needs to send data to the
application with DirectPlay8LobbyClient.Send, or release the connection with
DirectPlay8LobbyClient.ReleaseApplication.

® Lobby connection data.

® An optional connection context value.

DirectPlay8LobbyEvent.ConnectionSettings

This message is called by DirectPlay whenever an associated lobbyable application
calls its DirectPlay8LobbiedApplication.SetConnectionSettings method to modify
the session connections. The associated
DPL_MESSAGE_CONNECTION_SETTINGS type contains the updated
connection information.

DirectPlay8LobbyEvent.Disconnect

This message is sent when the lobbyable application disconnects from the session by
calling DirectPlay8LobbiedApplication.Close. Your lobby client application should
delete the connection from its list and free any data that is associated with the
application.

DirectPlay8LobbyEvent.Receive

This message enables an application to pass data to the lobby client by calling
DirectPlay8LobbiedApplication.Send. DirectPlay passes the data block from the
application to the lobby client in a DPL_MESSAGE_RECEIVE type. It is up to the
lobby client to process the data.



in.doc — page 88

DirectPlay8LobbyEvent.SessionStatus

This message is sent by DirectPlay whenever one of the following six changes in the
session's status occurs.

® The session is connected.

® The session could not connect.

® The session has been disconnected.

® The session has been terminated.

® The session host has migrated.

® This computer has become the session host.

The type of status change is indicated by the value of the method's status parameter.

For more information, see A Sample Lobby Client Message Handler.

A Sample Lobby Client Message Handler

[C++]

The following code is a simplified version of the message handler from the SDK's
LobbyClient sample. Error handling code has been removed for clarity. See the
sample for a complete version.

HRESULT WINAPI DirectPlayLobbyMessageHandler( PVOID pvUserContext,
DWORD dwMessageld,
PVOID pMsgBuffer)

{

switch( dwMessageld )

{
case DPL_MSGID_DISCONNECT:

{
PDPL_MESSAGE_DISCONNECT pDisconnectMsg;
pDisconnectMsg = (PDPL_MESSAGE_DISCONNECT)pMsgBuffer;

I/l Free any data associated with the application and
/l Remove the connection from the list
break;

}
case DPL_MSGID_RECEIVE:

{
PDPL_MESSAGE_RECEIVE pReceiveMsg;
pReceiveMsg = (PDPL_MESSAGE_RECEIVE)pMsgBuffer;

/I The lobby application sent data. Process the data and
/I Respond appropriately



in.doc — page 89

break;
}
case DPL_MSGID_SESSION_STATUS:
{
PDPL_MESSAGE_SESSION_STATUS pStatusMsg;
pStatusMsg = (PDPL_MESSAGE_SESSION_STATUS)pMsgBuffer;

switch( pStatusMsg->dwStatus )
{
case DPLSESSION_CONNECTED: //Session connected
break;
case DPLSESSION_COULDNOTCONNECT: //Session could not connect
break;
case DPLSESSION_DISCONNECTED: //Session disconnected
break;
case DPLSESSION_TERMINATED: //Session terminated
break;
case DPLSESSION_HOSTMIGRATED: //Host migrated
break;
case DPLSESSION_HOSTMIGRATEDHERE: //Host migrated here
break;
}
case DPL_MSGID_CONNECTION_SETTINGS:
{
PDPL_MESSAGE_CONNECTION_SETTINGS pConnectionStatusMsg;
pConnectionStatusMsg = (PDPL_MESSAGE_CONNECTION_SETTINGS)pMsgBuffer;
/I The application has changed the connection settings.
break;
}
}
return S_OK;
}

[Visual Basic]
This topic pertains only to applications written in C++.

Communicating with a Lobbied Application

[CH+]

Much of the lobby client's interaction with an associated application is indirect. The
lobby client does something that affects the application, and Microsoft® DirectPlay®
sends an appropriate message, and vice versa. For instance, if the lobby client



in.doc — page 90

changes the connection settings, DirectPlay notifies the application and provides the
new settings. However, the IDirectPlay8LobbyClient::Send method enables the
lobby client to send a message directly to the application. DirectPlay passes the data
to the application without modification. It is the responsibility of the application to
process that data.

The lobbied application can also send data directly to the lobby client. The data is
passed to the lobby client's message handler with a DPL_ MSGID RECEIVE
message. DirectPlay passes the data to the lobby client without modification. It is up
to the lobby client to process the data.

[Visual Basic]

Much of the lobby client's interaction with an associated application is indirect. The
lobby client does something that affects the application, and Microsoft® DirectPlay®
sends an appropriate message, and vice versa. For instance, if the lobby client
changes the connection settings, DirectPlay notifies the application and provides the
new settings. However, the DirectPlay8LobbyClient.Send method enables the lobby
client to send a message directly to the application. DirectPlay passes the data to the
application without modification. It is the responsibility of the application to process
that data.

The lobbied application can also send data directly to the lobby client. DirectPlay
transmits the data by calling the lobby client message handler's
DirectPlay8LobbyEvent.Receive method. DirectPlay passes the data to the lobby
client without modification. It is up to the lobby client to process the data.

Closing Down a Lobby Client

[C++]

When you are ready to close the session, disconnect the application by calling
IDirectPlay8LobbyClient::ReleaseApplication. The application receives a
DPL_MSGID_DISCONNECT message.

After releasing the application, perform any cleanup that is necessary, and close the
session by calling IDirectPlay8LobbyClient::Close. You should then free the lobby
client object by calling IDirectPlay8LobbyClient::Release.

[Visual Basic]

When you are ready to close the session, disconnect the application by calling
DirectPlay8LobbyClient.ReleaseApplication. Microsofte DirectPlay® will call
notification by calling its message handler's DirectPlay8LobbyEvent.Disconnect
method.



in.doc — page 91

After releasing the application, perform any cleanup that is necessary, and close the
session by calling DirectPlay8LobbyClient.Close.

Implementing a Lobbyable Application

A lobbyable application must be designed to work properly with a lobby client. While
a lobby client can launch any application, only lobby-launched applications can
receive messages from Microsoft® DirectPlay® and from the lobby client. To be
lobby launched, an application must be appropriately registered, and it must be able to
use a DirectPlay lobbied application object to communicate with DirectPlay and the
lobby client.

This section discusses how to implement lobbyable applications.
® Registering a Lobbyable Application
® Handling Lobby Launching
¢ Implementing a Lobbied Application Callback Message Handler
¢ Communicating with a Lobby Client

® Closing Down a Lobbied Application

Registering a Lobbyable Application

[C++]

A lobbyable application must be registered before it can be lobby launched. This
registration needs to be done only once and is typically handled by the application's
setup procedure. Do not attempt to modify the registry directly to register an
application as lobbyable. Instead, do the following:

® (Call CoCreatelnstance to create a lobbied application object
(CLSID_DirectPlay8LobbiedApplication). Set the riid parameter to
IID_IDirectPlay8LobbiedApplication to request an
IDirectPlay8LobbiedApplication interface.

¢ Call IDirectPlay8LobbiedApplication::RegisterProgram.This method takes
the information and creates appropriate registry keys and values.

You must provide IDirectPlay8LobbiedApplication::RegisterProgram with a
variety of information, including the following:

[Visual Basic]

A lobbyable application must be registered before it can be lobby launched. This
registration needs to be done only once and is typically handled by the application's
setup procedure. Do not attempt to modify the registry directly to register an
application as lobbyable. Instead, do the following:



in.doc — page 92

® Create a DirectPlay8LobbiedApplication object.
¢ (Call DirectPlay8LobbiedApplication.RegisterProgram.This method takes the
information and creates appropriate registry keys and values.

You must provide DirectPlay8LobbiedApplication.RegisterProgram with a variety
of information, including the following:

® A GUID that is used to identify the application.

® A friendly name for the application.

® The location and name of the application's executable file.
® The location and name of an optional launcher application.

® Any command-line arguments that need to be passed to the executable file when
it is launched.
Instead of launching the game application, Microsoft® DirectPlay® launches a

launcher application. The launcher application then launches the game. Launcher
applications can be used, for example, as an anti-piracy measure.

[C++]

To unregister a registered program, call
IDirectPlay8LobbiedApplication::UnregisterProgram. This method removes the
registry entries created by IDirectPlay8LobbiedApplication::RegisterProgram.

[Visual Basic]

To unregister a registered program, call
DirectPlay8LobbiedApplication.UnregisterProgram. This method removes the
registry entries created by DirectPlay8LobbiedApplication.RegisterProgram.

Handling Lobby Launching

[CH+H]

The first thing your lobbyable application should do when it is launched is to create
and initialize a Microsoft® DirectPlay® lobbied application object. To do this,
perform the following tasks.

® (Call CoCreatelnstance to create a lobbied application object
(CLSID_DirectPlay8LobbiedApplication). Set the riid parameter to
IID_IDirectPlay8LobbiedApplication to request an
IDirectPlay8LobbiedApplication interface.

¢ (Call IDirectPlay8Lobbied Application::Initialize to initialize the lobbied
application object. Pass the object a pointer to your lobbied application callback
message handler.



in.doc — page 93

Next, determine whether your application was lobby launched. If so, your application
needs to set up a communication channel with DirectPlay so that you can effectively
manage the session. Do the following to detect whether your application was lobby
launched.

® When the IDirectPlay8LobbiedApplication::Initialize method returns, examine
the pdpnhConnection parameter. If this parameter is set to a valid connection
handle, the game was lobby launched.

¢ Examine the DPL_MSGID_CONNECT message you receive through your
message handler. This message carries with it a variety of information, including
the ID that you use to send messages to the lobby client.

Note
Your message handler may receive the DPL. MSGID CONNECT message
before the IDirectPlay8LobbiedApplication::Initialize method returns. Your
message handler should be prepared to handle the message appropriately.

If your application was not lobby launched, you can indicate that your application is
available to lobby clients for connection by calling
IDirectPlay8LobbiedApplication::SetAppAvailable. This method is typically
called when the application has been launched by the user. However, it can also be
used if the user has closed one session but the application is still running and
available for another session. In either case, your message handler receives a
DPL_MSGID_CONNECT message when the lobby client connects your application
to a session.

[Visual Basic]

The first thing your lobbyable application should do when it is launched is to create
and initialize a Microsoft® DirectPlay® lobbied application object. To do this,
perform the following tasks.

® C(reate a DirectPlay8LobbiedApplication object.
® Create a DirectPlay8LobbyEvent message handler object

® Register the message handler object by calling
DirectPlay8LobbiedApplication.RegisterMessageHandler.

If the application was lobby-launched, DirectPlay will call your
DirectPlay8LobbyEvent.Connect method. The dINotify parameter will contain a
DPL_MESSAGE_CONNECT type with connection information. such as address
objects for the members of the session.

If your application was not lobby launched, you can indicate that your application is
available to lobby clients for connection by calling
DirectPlay8LobbiedApplication.SetAppAvailable. This method is typically called
when the application has been launched by the user. However, it can also be used if
the user has closed one session but the application is still running and available for
another session. In either case, DirectPlay will call your message handler's



in.doc — page 94

DirectPlay8LobbyEvent.Connect method when the lobby client connects your
application to a session.

[C++]

The following sample code illustrates how to initialize a lobbied application, and how
to detect whether an application was lobby launched. It is a simplified version of the
InitDirectPlay function used by the SDK's SimplePeer application. Refer to that
sample application for the complete code. In particular, error-handling code has been
deleted for clarity. The g bWasLobbyLaunched variable is a global variable that is set
to TRUE if the application was lobby launched.

HRESULT InitDirectPlay()

{
DPNHANDLE hLobbyLaunchedConnection = NULL;
HRESULT hr;

/I Create IDirectPlay8LobbiedApplication

hr = CoCreatelnstance( CLSID_DirectPlay8LobbiedApplication, NULL,
CLSCTX_INPROC_SERVER,
IID_IDirectPlay8LobbiedApplication,
(LPVOID*) &g_pLobbiedApp );

/I Initialize IDirectPlay8LobbiedApplication

hr = g_pLobbiedApp->Initialize( NULL,
DirectPlayLobbyMessageHandler,
&hLobbyLaunchedConnection,
0)

/ICheck for a valid connection handle. If it is non-NULL

/lthe application was lobby launched.

g_bWasLobbyLaunched = ( hLobbyLaunchedConnection != NULL );

return S_OK;
}

Implementing a Lobbied Application Callback
Message Handler

[C++]

The message handler is a callback function that is used by the lobbied application
object to communicate with a lobbied application. The lobbied application message
handler has three parameters that pass in the following information.

® A message ID that indicates the message type.



in.doc — page 95

® A pointer to a message data block. You must cast this parameter to the structure
that is used by the particular message.

® A pointer to an optional application-defined user-context data block.
The user context value is defined by the lobby client when it calls
IDirectPlay8LobbyClient::Initialize. It can be used for such purposes as
differentiating between messages that are sent from different objects. See
PFNDPNMESSAGEHANDLER for a complete description the message handler
function.

Your message handler must to be able to handle the following four lobbied
application-specific messages.

* DPL_MESSAGE_CONNECT

* DPL_MESSAGE_CONNECTION_SETTINGS

* DPL_MESSAGE_DISCONNECT

* DPL_MESSAGE_RECEIVE

Most of these messages are generated by the lobbied application object in response to
changes in the connection, or when the lobbied application requests connection
information. The exception is DPL._ MESSAGE_RECEIVE. This message is used to
pass data directly from the lobby client to the game application.

Note
Microsoft® DirectPlay® message handlers must be written to work properly in a
multithreaded environment, or your application may not function well.

DPL_MSGID_CONNECT

This message is sent by the lobbied application object when the lobby client calls
IDirectPlay8LobbyClient::ConnectApplication to connect an application to a
session. The associated DPL._MESSAGE_CONNECT structure includes the
following information.

® A connection ID. Use this ID when your application needs to send data to the
lobby client with IDirectPlay8LobbiedApplication::Send, or update the session
status with IDirectPlay8LobbiedApplication::UpdateStatus.

® Lobby connection data.

® An optional connection context value.

DPL_MSGID_CONNECTION_SETTINGS

DirectPlay sends this message whenever an associated lobby client calls its
IDirectPlay8LobbyClient::SetConnectionSettings method to modify the session
connections. The associated DPL._ MESSAGE_CONNECTION_SETTINGS
structure contains the updated connection information.



in.doc — page 96

DPL_MSGID_DISCONNECT

This message is sent when the lobby client disconnects the application from the
session by calling IDirectPlay8LobbyClient::ReleaseApplication. Your application
should delete the connection from its list, and free any data that is associated with the
session.

DPL_MSGID_RECEIVE

This message enables a lobby client to pass data to an application. DirectPlay passes
the data block from the lobby client to the application in a
DPL_MESSAGE_RECEIVE structure. It is up to the application to process the
data.

For more information, see A Sample Lobbied Application Message Handler.

[Visual Basic]

The message handler is a DirectPlay8LobbyEvent object, that receives messages
directly from the lobby client object, and indirectly from the application. It is not
provided by Microsoft® DirectPlay® and must be implemented by your application.

Your message handler must implement all of the following methods:

® DirectPlay8LobbyEvent.Connect

® DirectPlay8LobbyEvent.ConnectionSettings
® DirectPlay8LobbyEvent.Disconnect

® DirectPlay8LobbyEvent.Receive

® DirectPlay8LobbyEvent.SessionStatus

Most of these methods are called by DirectPlay in response to changes in the game
status, or when the lobbied application requests information. The exception is
DirectPlay8LobbyEvent.Receive. This method is called to pass data directly from
the lobby client to the game application.

DirectPlay8LobbyEvent.Connect

This method is called when the lobby client calls
DirectPlay8LobbyClient.ConnectApplication to connect an application to a
session. The associated DPL._ MESSAGE_CONNECT type holds a variety of
information, including:

® A connection ID. Use this ID when your lobby client needs to send data to the
application with DirectPlay8LobbyClient.Send, or release the connection with
DirectPlay8LobbyClient.ReleaseApplication.

® Lobby connection data.

® An optional connection context value.



in.doc — page 97

DirectPlay8LobbyEvent.ConnectionSettings

DirectPlay calls this method whenever an associated lobby client calls its
DirectPlay8LobbyClient.SetConnectionSettings method to modify the session
connections. The associated DPL. MESSAGE_CONNECTION_SETTINGS type
contains the updated connection information.

DirectPlay8LobbyEvent.Disconnect

This message is sent when the lobby client disconnects the application from the
session by calling DirectPlay8LobbyClient.ReleaseApplication. Your application
should delete the connection from its list, and free any data that is associated with the
session.

DirectPlay8LobbyEvent.Receive

This message enables a lobby client to pass data to an application. When the lobby
client calls DirectPlay8LobbyClient.Send, DirectPlay passes the data to the
application by calling DirectPlay8LobbyEvent.Receive. It is up to the application to
process the data.

DirectPlay8LobbyEvent.SessionStatus

DirectPlay does not call this method for lobbyable application message handlers. You
must implement this method, but it can simply return 0.

A Sample Lobbied Application Message Handler

[CH+H]

The following code is a simplified version of the message handler from the SDK's
SimplePeer sample. Error handling code has been removed for clarity. See the sample
for a complete version.

HRESULT WINAPI DirectPlayLobbyMessageHandler( PVOID pvUserContext,
DWORD dwMessageld,
PVOID pMsgBuffer )
{
switch( dwMessageld )
{
case DPL_MSGID_CONNECT:
{
PDPL_MESSAGE_CONNECT pConnectMsg;
pConnectMsg = (PDPL_MESSAGE_CONNECT)pMsgBuffer;



in.doc — page 98

/I Connected. Start the session.
break;
}
case DPL_MSGID_DISCONNECT:
{
PDPL_MESSAGE_DISCONNECT pDisconnectMsg;
pDisconnectMsg = (PDPL_MESSAGE_DISCONNECT)pMsgBuffer;

/I Disconnected. Free any data associated with
/I the lobby client.
break;
}
case DPL_MSGID_RECEIVE:
{
PDPL_MESSAGE_RECEIVE pReceiveMsg;
pReceiveMsg = (PDPL_MESSAGE_RECEIVE)pMsgBuffer;

/I The lobby client sent data. Process the data and
Il respond appropriately.
break;

case DPL_MSGID_CONNECTION_SETTINGS:

{
PDPL_MESSAGE_CONNECTION_SETTINGS pConnectionStatusMsg;
pConnectionStatusMsg = (PDPL_MESSAGE_CONNECTION_SETTINGS)pMsgBuffer;

/I The lobby client has changed the connection settings.
break;
}
}
return S_OK;

}

[Visual Basic]
This topic pertains only to applications written in C++.

Communicating with a Lobby Client

[C+]
Much of the lobbied application's interaction with an associated lobby client is
indirect. The application does something that affects the lobby client, Microsoft®



in.doc — page 99

DirectPlay® sends an appropriate message, and vice versa. For instance, if the
application changes the connection settings, DirectPlay notifies the lobby client, and
provides the new settings. However, there are two methods that provide information
directly to the lobby client: IDirectPlay8Lobbied Application::UpdateStatus and
IDirectPlay8LobbiedApplication::Send.

[Visual Basic]

Much of the lobbied application's interaction with an associated lobby client is
indirect. The application does something that affects the lobby client, Microsoft®
DirectPlay® sends an appropriate message, and vice versa. For instance, if the
application changes the connection settings, DirectPlay notifies the lobby client, and
provides the new settings. However, there are two methods that provide information
directly to the lobby client: DirectPlay8LobbiedApplication.UpdateStatus and
DirectPlay8LobbiedApplication.Send.

You must notify the lobby client when any of the following changes in the game
status take place.

® The session is connected.

® The session could not connect.

® The session has been disconnected.

® The session has been terminated.

® The session host has migrated.

® This computer has become the session host.

[CHH]

To notify the lobby client of one of these status changes, call
IDirectPlayLobbiedApplication::UpdateStatus, and set the dwStatus parameter to
the appropriate value. The lobby client receives a DPL. MSGID SESSION _STATUS
message to notify it of the status change.

The IDirectPlay8LobbiedApplication::Send method enables the application to send
a message directly to the lobby client. DirectPlay passes the data to the lobby client
without modification. It is the responsibility of the lobby client to process that data.

The lobby client can also send data directly to the application. The data is passed to
the lobby client's message handler with a DPL_ MSGID RECEIVE message.
DirectPlay passes the data to the application without modification. The lobby client
must process the data.

[Visual Basic]
To notify the lobby client of one of these status changes, call
DirectPlay8LobbiedApplication.UpdateStatus, and set the [Status parameter to the



in.doc — page 100

appropriate value. DirectPlay will call the lobby client message handler's
DirectPlay8LobbyEvent.SessionStatus method to notify it of the status change.

The DirectPlay8Lobbied Application.Send method enables the application to send a
message directly to the lobby client. DirectPlay passes the data to the lobby client
without modification. It is the responsibility of the lobby client to process that data.

The lobby client can also send data directly to the application. DirectPlay passes the
data to the lobby client's message handler by calling its
DirectPlay8LobbyEvent.Receive method. DirectPlay passes the data to the
application without modification. The lobby client must process the data.

Closing Down a Lobbied Application

[C++]

To close a session, call IDirectPlay8LobbiedApplication::Close. The lobby client
receives a DPL_ MSGID DISCONNECT message to notify it of the disconnection. If
you want to keep the application running and connect to another session, indicate that
your application is available by calling
IDirectPlay8LobbiedApplication::SetAppAvailable. Otherwise, call
IDirectPlay8LobbiedApplication::Release to free the lobbied application object,
and shut the application down.

[Visual Basic]

To close a session, call DirectPlay8LobbiedApplication.Close. Microsoft®
DirectPlay® calls the lobby client message handler's
DirectPlay8LobbyEvent.Disconnect method to notify it of the disconnection. If you
want to keep the application running and connect to another session, indicate that
your application is available by calling
DirectPlay8LobbiedApplication.SetAppAvailable.

Monitoring DirectPlay Network Traffic
with Netmon

During game development, you may find it useful to monitor Microsoft® DirectPlay®
network traffic, especially when trying understand bugs. The network monitor
(netmon) is a standard utility for analyzing network traffic. DirectPlay includes a set
of parsers, that allow you to use netmon to analyze four components of DirectPlay
messaging: the service provider layer, the transport layer, the session layer, and the
voice layer.

® How Netmon Works With DirectPlay



in.doc — page 101

® Configuring Netmon for DirectPlay
® Capturing DirectPlay Network Traffic
® Tips for Using Netmon with DirectPlay

How Netmon Works With DirectPlay

The Microsoft® DirectPlay® protocol stack has three basic layers.

® The voice and session layers share the top level of the stack. Normal messaging
passes through the session layer, and voice-related messaging passes through the
voice layer.

® The transport layer is the middle of the stack. Both voice and session traffic
passes through this layer, which is responsible for such tasks as fragmentation
and reassembly of messages and retransmission of lost packets.

® The service provider layer is at the bottom of the stack. All messaging is handled
by this layer, which is responsible for communicating with the network. For
example, for TCP/IP networking, the service provider uses the Winsock API to
communicate with the network stack. Netmon can only parse network traffic that
is carried on an IP or IPX service provider.

By installing the DirectPlay parsers, you can use Netmon to analyze the network
traffic as it passes through any of these four layers. You can see all DirectPlay traffic
by selecting the service provider parser. However, by selecting one of the higher level
parsers, you can filter out traffic that may not be of interest.

With the transport layer parser, you see all voice and session traffic, but not low-level
traffic such as connection handshaking. Be aware that the transport layer breaks
messages that are longer than the network's Maximum Transfer Unit (MTU) into one
or more fragments.

The session and voice layer parsers allow you to analyze session and voice-related
traffic separately. Both of these parsers are aware of fragmentation, and notify the
user, but cannot parse fragmented packets.

Configuring Netmon for DirectPlay

If you have a Windows 2000 Server system, Netmon is already installed. For
Windows 2000 Professional, you must purchase a copy of Systems Management
Server (SMS). See the Netmon documentation for a general discussion of how to use
Netmon. To configure Netmon to handle Microsoft® DirectPlay® traffic:

1. Copy DpS8parser.dll to the appropriate folder. The Netmon root folder is normally
installed in the \Winnt\System32 folder. If you have installed SMS, the root
folder will be called NetMonFull. For Windows 2000 Server, the root folder will
be called NetMon. Depending on which version of Netmon you are using, copy
the parser DLL to either the ...\NetMonFull\Parsers, or ...\NetMon\parsers folder.

2. Start Netmon



in.doc — page 102

3. Set the adapter to capture from (Capture[Networks...|Local Computer). Be sure to
choose the adapter with the "Dial-up Connection" property set to FALSE.

You are now ready to start capturing traffic.

Capturing DirectPlay Network Traffic

To start the capture process, click the Start Capture button on the Netmon toolbar to
open the capture view. Initially, you will see all the traffic that is passing through
your adapter. You can filter that raw traffic stream to focus on only those packets that
are of interest. By installing the Microsofte DirectPlay® parsers, you essentially add
four DirectPlay-oriented filters to Netmon that allow you to filter everything but
DirectPlay traffic from your capture view.

To select a filter:

1. Click the Edit Display Filter button on the Netmon toolbar.
2. Double-click "Protocol == Any".
3. Click "Disable All".

4. Under "Disabled Protocols", double-click DPLAYSESSION, DPLAYSP,
DPLAYTRANSPORT, and DPLAY VOICE.

Click OK twice to return to the capture view, and you are ready to start viewing
DirectPlay traffic.

You can also apply a filter to the capture process itself, ra