
Introducing DirectX 8.0
Microsoft® DirectX® is a set of low-level application programming interfaces (APIs)
for creating games and other high-performance multimedia applications. It includes
support for two-dimensional (2-D) and three-dimensional (3-D) graphics, sound
effects and music, input devices, and support for networked applications such as
multiplayer games.

This document gives general introductory information about DirectX 8.0. Information
is divided into the following sections.

· What’s New in DirectX 8.0

· Using the DirectX 8.0 Documentation

· DirectX 8.0 Components

· DirectX Tools

[C++]
· Programming DirectX with C/C++

[Visual Basic]
· Programming DirectX with Visual Basic

· Further Information

What’s New in DirectX 8.0
The following are some of the new features supported by Microsoft® DirectX® 8.0.

Complete integration of DirectDraw and Direct3D
Microsoft DirectDraw® and Microsoft Direct3D® are merged into a single
DirectX Graphics component. The API has been extensively updated to make it
even easier to use and to support the latest graphics hardware.

DirectMusic and DirectSound more integrated
Microsoft DirectMusic® and Microsoft DirectSound® are much more tightly
integrated than with DirectX 7.0. Wave files or resources can now be loaded by
the DirectMusic loader, and played through the DirectMusic performance,
synchronized with MIDI notes.

DirectPlay updated
The Microsoft DirectPlay® component has been extensively updated to increase
its capabilities and improve its ease-of-use. In particular, DirectPlay now
supports voice communication between players.

in.doc – page 2

DirectInput updated
Microsoft DirectInput® introduces one major new feature: action mapping.
Action mapping enables you to establish a connection between input actions and
input devices that does not depend on the existence of particular device objects. It
simplifies the input loop and reduces the need for custom game drivers, custom
device profilers, and custom configuration user interfaces in games.

[C++]
DirectShow included in DirectX

Microsoft DirectShow® is now part of DirectX and has been updated for this
release.

Debug build available
You can use the DirectX Control Panel Application to switch between the debug
and retail builds of DirectInput, Direct3D, and DirectMusic. To enable this
feature, select the debug option when you install the SDK. This option installs
both debug and retail DLLs on your system. The retail option installs only the
retail DLLs.

Using the DirectX 8.0
Documentation

The following conventions are used in the syntax of methods, functions, and other
API elements, as well as typographic conventions used in explanatory material and
sample code.

Convention Meaning

Italic text Denotes a placeholder or variable. You must provide the
actual value. For example, the statement SetCursorPos(X,
Y) requires you to substitute values for the X and Y
parameters.

Bold text Denotes a function, procedure, structure, macro,
interface, method, data type, or other keyword in the
programming interface or language.

[] Encloses optional parameters.

... Specifies that the preceding item may be repeated.

FULL BOLD CAPITALS Used for most type and structure names.

FULL CAPITALS Used for enumeration values, flags, and constants.

monospace Used for code examples and syntax spacing.

.

.

.

Represents an omitted portion of a sample application.

in.doc – page 3

DirectX 8.0 Components
Microsoft® DirectX® 8.0 is made up of the following components.

· DirectX Graphics combines the Microsoft DirectDraw® and Microsoft Direct3D®

components of previous DirectX versions into a single API that you can use for
all graphics programming. The component includes the Direct3DX utility library
that simplifies many graphics programming tasks.

· DirectX Audio combines the Microsoft DirectSound® and Microsoft
DirectMusic® components of previous DirectX versions into a single API that
you can use for all audio programming.

· Microsoft DirectInput® provides support for a variety of input devices, including
full support for force-feedback technology.

· Microsoft DirectPlay® provides support for multiplayer networked games.

[C++]
· Microsoft DirectShow® provides for high-quality capture and playback of

multimedia streams.

· Microsoft DirectSetup is a simple API that provides one-call installation of the
DirectX components.

DirectX Tools
The following tools can be useful in developing and troubleshooting Microsoft®
DirectX® applications.

· DirectX Caps Viewer

· DirectX Control Panel Application

· DirectX Diagnostic Tool

DirectX Caps Viewer

Description

The Microsoft® DirectX® Caps Viewer tool enumerates devices and capabilities for
all the components of DirectX.

in.doc – page 4

Path

Executable: (SDK root)\Bin\DXUtils\DXCapsViewer.exe

User's Guide

Select items in the tree view. Information appears in the pane on the right.

DirectX Control Panel Application
You can use the Microsoft® DirectX® Control Panel utility, which is installed with the
SDK, to examine and modify the properties of DirectX components. This utility
contains tabs for each DirectX component. Using this utility you can:

· Obtain version information for DirectX components.

· Change the debug output level and debug settings to aid in troubleshooting
during the development process.

· View specific driver and hardware support information for DirectX components.

· Toggle between debug and retail versions of the run times for Microsoft
Direct3D®, DirectMusic®, and DirectInput®.

DirectX Diagnostic Tool

Description

Microsoft® DirectX® Diagnostic Tool gathers information on the system and the
DirectX components installed on it, as well as providing a number of tests to ensure
that components are working properly. A special version of this tool installed with the
DirectX SDK enables developers to report problems directly to the DirectX
development team.

Path

Executable: (SDK root)\Bin\DXUtils\Dxdiag.exe

User's Guide

To display the DirectX Diagnostic Tool Help file, click the Help button.

Programming DirectX with C/C++

[Visual Basic]
This topic pertains only to applications written in C++.

in.doc – page 5

[C++]
Most Microsoft® DirectX® application development with C/C++ involves
conventional programming techniques. However, there are several aspects of DirectX
programming that may be unfamiliar to some developers. This section provides a
brief overview of several specialized topics, along with some guidelines for
compiling and debugging DirectX applications.

· Using COM

· Using Callback Functions

· Version Checking

· Compiling DirectX Samples and Other DirectX Applications

· Debugging DirectX Applications

Using COM

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
The Component Object Model (COM) is an object-oriented programming model used
by numerous applications. Because the bulk of the Microsoft® DirectX® run time is in
the form of COM-compliant objects, all DirectX developers need to have at least a
basic understanding of COM principles and programming techniques. However,
although COM has a reputation for being difficult and complex, the COM
programming required by most DirectX applications is straightforward.

There are two distinct types of COM programming:

· Using existing COM objects. This is not much more difficult than using C++
objects.

· Implementing your own COM objects. This can be a complicated and demanding
task. Much of COM's reputation for complexity comes from this type of COM
programming.

Most DirectX applications need to use only the COM objects provided by DirectX.
They do not need to implement their own COM objects. In other words, most DirectX
developers will need to concern themselves only with the first, and easiest, type of
COM programming.

This section provides a brief introduction to using the COM objects provided by
DirectX. It is primarily intended for novice COM programmers. For a more detailed
discussion of how to use COM objects, or for information on how to implement your
own COM objects, see Further Information.

in.doc – page 6

· What is a COM Object?

· Creating a COM Object

· Using COM Interfaces

· Managing a COM Object's Lifetime

· Using C to Access COM Objects

· Using Macros to Call DirectX COM Methods

· DirectX COM Documentation Conventions

· IUnknown Interface

What is a COM Object?

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
COM objects are basically black boxes that can be used by applications to perform
one or more tasks. They are most commonly implemented as DLLs. Like a
conventional DLL, COM objects expose methods that your application can call to
perform any of the supported tasks. Applications interact with COM objects in
somewhat the same way they do with C++ objects. However, there are some distinct
differences.

· COM objects enforce stricter encapsulation than C++ objects. You cannot simply
create the object and call any public method. A COM object's public methods are
grouped into one or more interfaces. To use a method, you must create the object
and obtain the appropriate interface from the object. An interface typically
contains a related set of methods that provide access to a particular feature of the
object. For example, the IDirect3DCubeTexture8 interface contains methods
that enable you to manipulate cube texture resources. Any methods that are not
part of an interface are not accessible.

· COM objects are not created in the same way as C++ objects. There are several
ways to create a COM object, but all involve COM-specific techniques. The
Microsoft® DirectX® API includes a variety of helper functions and methods that
simplify creating most of the DirectX objects.

· You must use COM-specific techniques to control the lifetime of the object.

· COM objects do not need to be explicitly loaded. COM objects are typically
contained in a DLL. However, you do not need to explicitly load the DLL or link
to a static library in order to use a COM object. Each COM object has a unique
registered identifier that is used to create the object. COM automatically loads
the correct DLL.

in.doc – page 7

· COM is a binary specification. COM objects can be written in and accessed from
a variety of languages. You don't need to know anything about the object's source
code. For example, Microsoft Visual Basic® applications routinely use COM
objects that were written in C++.

Objects and Interfaces

It is important to understand the distinction between objects and interfaces. In casual
usage, an object may sometimes be referred to by the name of its principle interface.
However, strictly speaking, the two terms are not interchangeable.

· An object may expose any number of interfaces. For example, while all objects
must expose the IUnknown interface, they normally expose at least one
additional interface, and they might expose many. In order to use a particular
method, you must not only create the object, you must also obtain the correct
interface.

· More than one object might expose the same interface. An interface is a group of
methods that perform a specified set of operations. The interface definition
specifies only the syntax of the methods and their general functionality. Any
COM object that needs to support a particular set of operations can do so by
exposing a suitable interface. Some interfaces are highly specialized and are
exposed only by a single object. Others are useful in a variety of circumstances
and are exposed by many objects. The extreme case is the IUnknown interface,
which must be exposed by all COM objects.

Note
If an object exposes an interface, it must support every method in the interface
definition. In other words, you can call any method and be confident that it
exists. However, the details of how a particular method is implemented may vary
from object to object. For example, different objects may use different algorithms
to arrive at the final result. There is also no guarantee that a method will be
supported in a non-trivial way. Sometimes an object exposes a commonly-used
interface, but needs to support only a subset of the methods. You will still be able
to call the remaining methods successfully, but they will return E_NOTIMPL.
You should refer to the documentation to see how an interface is implemented by
any particular object.

The COM standard requires that an interface definition must not change once it has
been published. You cannot, for example, add a new method to an existing interface.
You must instead create a new interface. While there are no restrictions on what
methods must be in an interface, a common practice is to have the next-generation
interface include all the of the old interface's methods, plus any new methods.

It is not unusual for an interface to have several generations. Typically, all
generations perform essentially the same overall task, but they will be different in
detail. Often, an object will expose every generation of interface. Doing so allows
older applications to continue using the object's older interfaces, while newer
applications can take advantage of the features of the newer interfaces. Typically, a

in.doc – page 8

family of interfaces will all have the same name, plus an integer indicating the
generation. For example, if the original interface were named IMyInterface, the next
two generations would be called IMyInterface2 and IMyInterface3. Microsoft
DirectX® typically labels successive generations of interfaces with the DirectX
version number.

GUIDs

Globally Unique Identifiers (GUIDs) are a key part of the COM programming model.
At its most basic, a GUID is a 128-bit structure. However, GUIDs are created in such
as way as to guarantee that no two GUIDs are the same. COM uses GUIDS
extensively for two primary purposes:

· To uniquely identify a particular COM object. A GUID that is assigned to a
COM object is called a Class ID (CLSID). You use a CLSID when you want to
create an instance of the associated COM object.

· To uniquely identify a particular COM interface. The GUID that is associated
with a particular COM interface is called an Interface ID (IID). You use an IID
when you request a particular interface from an object. An interface's IID will be
the same, regardless of which object exposes the interface.

Note
For convenience, documentation normally refers to objects and interfaces by a
descriptive name such as IDirect3D8. In the context of the documentation, there
is rarely any danger of confusion. However, strictly speaking, there is no
guarantee that another object or interface does not have the same descriptive
name. The only unambiguous way to refer to a particular object or interface is by
its GUID.

Although GUIDs are structures, they are often expressed as an equivalent string. The
general format of the string form of a GUID is "{VVVVVVVV-WWWW-XXXX-
YYYY-ZZZZZZZZZZZZ}", where each letter corresponds to a hexadecimal integer.
For example, the string form of the IID for the IDirect3D8 interface is:

{1DD9E8DA-1C77-4D40-B0CF-98FEFDFF9512}

Because the actual GUID is somewhat clumsy to use and easy to mistype, an
equivalent name is usually provided as well. You can use this name instead of the
actual structure when you call functions such as CoCreateInstance. The customary
naming convention is to prepend either IID_ or CLSID_ to the descriptive name of
the interface or object, respectively. For example, the name of the IDirect3D8
interface's IID is IID_IDirect3D8.

HRESULT Values

All COM methods return a 32-bit integer called an HRESULT. With most methods,
the HRESULT is essentially a structure that contains two separate pieces of
information:

· Whether the method succeeded or failed.

in.doc – page 9

· More detailed information about the outcome of the operation supported by the
method.

Some methods return HRESULT values only from the standard set defined in
Winerror.h. However, methods are free to return custom HRESULT values with more
specialized information. These values are normally documented on the method's
reference page.

Note
The list of HRESULT values that you find on a method's reference page is often
only a subset of the possible values that may be returned. The list typically
covers only those values that are specific to the method and those standard values
that have some method-specific meaning. You should assume that a method may
return a variety of standard HRESULT values, even if they are not explicitly
documented.

While HRESULT values are often used to return error information, you should not
think of them as error codes. The fact that the bit that indicates success or failure is
stored separately from the bits that contain the detailed information allows HRESULT
values to have any number of success and failure codes. By convention, success codes
are given names with an S_ prefix, and failure codes with an E_ prefix. For example,
the two most commonly used codes are S_OK and E_FAIL, which indicate simple
success or failure, respectively.

The fact that COM methods may return a variety of success or failure codes means
that you have to be careful how you test the HRESULT value. For example, consider
a hypothetical method with documented return values of S_OK if successful and
E_FAIL if not. However, remember that the method may also return other failure or
success codes. The following code fragment illustrates the danger of using a simple
test. The hr value is the HRESULT that was returned by the method.

if(hr == E_FAIL)

 {

 //Handle the failure

 }

else

 {

 //Handle the success

 }

As long as the method returns only E_FAIL to indicate failure, this test will work
properly. However, the method might also return an error value such as E_NOTIMPL
or E_INVALIDARG. That value would be interpreted as a success, perhaps causing
your application to fail.

If you need detailed information on the outcome of the method call, you will need to
test each relevant HRESULT value. However, you may be interested only in whether
the method succeeded or failed. A robust way to test whether an HRESULT value

in.doc – page 10

indicates success or failure is to pass the value to the one of the following macros,
defined in Winerror.h.

· The SUCCEEDED macro returns TRUE for a success code and FALSE for a
failure code.

· The FAILED macro returns TRUE for a failure code and FALSE for a success
code.

You can fix the preceding code fragment by using the FAILED macro.

if(FAILED(hr))

 {

 //Handle the failure

 }

else

 {

 //Handle the success

 }

This code fragment properly treats E_NOTIMPL and E_INVALIDARG as failures.

Although most COM methods return structured HRESULT values, a small number
use the HRESULT to return a simple integer. Implicitly, these methods are always
successful. If you pass an HRESULT of this sort to the SUCCESS macro, the macro
will always return TRUE. A commonly used example is the IUnknown::Release
method. This method decrements an object's reference count by one and returns the
current reference count. See Managing the Object's Lifetime for a discussion of
reference counting.

The Address of a Pointer

If you look at a few COM method reference pages, you will probably run across
something like the following:

HRESULT CreateDevice(

 ...,

 IDirect3DDevice8** ppReturnedDeviceInterface

);

While a normal pointer is quite familiar to any C/C++ developer, COM often uses an
additional level of indirection. This second level of indirection is indicated by a "**"
following the type declaration, and the variable name typically has a "pp" prefix. For
the example given above, ppReturnedDeviceInterface parameter is typically referred
to as the address of a pointer to an IDirect3DDevice8 interface.

Unlike C++, you do not access a COM object's methods directly. Instead, you must
obtain a pointer to an interface that exposes the method. To invoke the method, you
use essentially the same syntax that you would to invoke a pointer to a C++ method.
For example, to invoke the IMyInterface::DoSomething method, you would use the
following syntax.

in.doc – page 11

IMyInterface *pMyIface;

...

pMyIface->DoSomething(...);

The need for a second level of indirection comes from the fact that you do not create
interface pointers directly. You must call one of variety of methods, such as the
CreateDevice method shown above. To use such a method to obtain an interface
pointer, you declare a variable as a pointer to the desired interface, and pass the
address of that variable to the method. In other words, you pass the method the
address of a pointer. When the method returns, the variable will point to the requested
interface, and you can use that pointer to call any of the interface's methods. See
Obtaining and Using COM Interfaces for further discussion of how to use interface
pointers.

Creating a COM Object

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
There are several ways to create COM objects. The two most common ones used in
Microsoft® DirectX® programming are:

· Directly, by passing the object's CLSID to the CoCreateInstance function. The
function will create an instance of the object, and it will return a pointer to an
interface that you specify.

· Indirectly, by calling a DirectX method or function that creates the object for
you. The method creates the object and returns an interface on the object. When
you create an object this way, you usually cannot specify which interface should
be returned.

Before you create any objects, COM must be initialized by calling the CoInitialize
function. If you are creating objects indirectly, the object creation method will handle
this task. If you need to create an object with CoCreateInstance, you must call
CoInitialize explicitly. When you are finished, COM must be uninitialized by calling
CoUninitialize. If you make a call to CoInitialize you must match it with a call to
CoUninitialize. Typically, applications that need to explicitly initialize COM do so in
their startup routine, and they uninitialize COM in their cleanup routine.

To create a new instance of a COM object with CoCreateInstance, you must have
the object's CLSID. If this CLSID is publicly available, you will find it in the
reference documentation or the appropriate header file. If the CLSID is not publicly
available, you cannot create the object directly.

in.doc – page 12

The CoCreateInstance function has five parameters. For the COM objects you will
be using with DirectX, you can normally set the parameters as follows

· rclsid. Set this parameter to the CLSID of the object you want to create.

· pUnkOuter. Set this parameter to NULL. It is used only if you are aggregating
objects. See Further Information for a discussion of aggregation.

· dwClsContext. Set this parameter to CLSCTX_INPROC_SERVER. This setting
indicates that the object is implemented as a DLL and will run as part of your
application's process.

· riid. Set this parameter to the IID of the interface that you would like to have
returned. The function will create the object, and it will return the requested
interface pointer in the ppv parameter.

· ppv. Set this parameter to the address of a pointer that will be set to the interface
specified by riid when the function returns. This variable should be declared as a
pointer to the requested interface, and the reference to the pointer in the
parameter list should be cast as (LPVOID *).

For example, the following code fragment creates a new instance of the DirectPlay8
object, and it returns a pointer to the IDirectPlay8Peer interface in the g_pDP
variable. If an error occurs, a message box is displayed, and the application
terminates.

IDirectPlay8Peer* g_pDP = NULL;

...

CoInitialize(NULL);

...

hr = CoCreateInstance(CLSID_DirectPlay8, NULL, CLSCTX_INPROC_SERVER,

 IID_IDirectPlay8Peer, (LPVOID*) &g_pDP);

if(FAILED(hr))

 {

 MessageBox(NULL, TEXT("Failed Creating IDirectPlay8Peer. "),

 TEXT("DirectPlay Sample"), MB_OK | MB_ICONERROR);

 return FALSE;

 }

Creating an object indirectly is usually much simpler. You pass the object creation
method the address of an interface pointer. The method then creates the object and
returns an interface pointer. When you create an object indirectly, you typically
cannot choose which interface the method will return. However, you can often
specify a variety of things about how the object should be created. For example, the
following code fragment calls the IDirect3D8::CreateDevice method discussed
earlier to create a device object to represent a display adapter. It returns a pointer to
the object's IDirect3DDevice8 interface. The first four parameters provide a variety
of information needed to create the object, and the fifth parameter receives the
interface pointer. See the reference documentation for details.

IDirect3DDevice8 *g_pd3dDevice = NULL;

in.doc – page 13

...

if(FAILED(g_pD3D->CreateDevice(D3DADAPTER_DEFAULT,

 3DDEVTYPE_HAL,

 hWnd,

 D3DCREATE_SOFTWARE_VERTEXPROCESSING,

 &d3dpp,

 &g_pd3dDevice)))

 return E_FAIL;

Using COM Interfaces

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
When the object is created, the creation method returns an interface pointer. You can
then use that pointer to access any of the interface's methods. The syntax is identical
to that used with a pointer to a C++ method. The following code fragment extends the
example given in the previous section. After creating the DirectPlay8 object, the
example uses the IDirectPlay8Peer interface pointer returned by CoCreateInstance
to initialize the object by calling the IDirectPlay8Peer::Initialize method. Error
correction code is omitted for clarity.

IDirectPlay8Peer* g_pDP = NULL;

...

CoInitialize(NULL);

...

hr = CoCreateInstance(CLSID_DirectPlay8, NULL,CLSCTX_INPROC_SERVER,

 IID_IDirectPlay8Peer, (LPVOID*) &g_pDP);

hr = g_pDP->Initialize(NULL, DirectPlayMessageHandler, 0);

Requesting Additional Interfaces

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
In many cases, the interface pointer that you receive from the creation method may be
the only one that you need. In fact, it is not uncommon for an object to export only

in.doc – page 14

one interface other than IUnknown. However, many objects export multiple
interfaces, and you may need pointers to several of them. If you need more interfaces
than the one returned by the creation method, there is no need to create a new object.
Instead, you request another interface pointer by using the object's
IUnknown::QueryInterface method.

If you create your object with CoCreateInstance, you can request an IUnknown
interface pointer, and then call IUnknown::QueryInterface to request every
interface you need. However, this approach is inconvenient if you need only a single
interface, and it doesn't work at all if you use an object creation method that does not
allow you to specify which interface pointer should be returned. In practice, you
usually don't need to obtain an explicit IUnknown pointer because all COM
interfaces inherit from or extend the IUnknown interface.

Extending an interface is similar to inheriting from a C++ class. The child interface
exposes all of the parent interface's methods, plus one or more of its own. In fact, you
will often see "inherits from" used instead of "extends". What you need to remember
is that the inheritance is internal to the object. Your application cannot inherit from or
extend an object's interface. However, you can use the child interface to call any of
the child's or the parent's methods.

Because all interfaces are children of IUnknown you can use any of the interface
pointers you already have for the object to call QueryInterface. When you do so, you
must provide the IID of the interface you are requesting and the address of a pointer
that will contain the interface pointer when the method returns. For example, the
following code fragment calls IDirectSound8::CreateSoundBuffer to create a
primary sound buffer object. This object exposes several interfaces. The
CreateSoundBuffer method returns an IDirectSoundBuffer8 interface. The
subsequent code then uses the IDirectSoundBuffer8 interface to call
QueryInterface to request an IDirectSound3DListener8 interface.

IDirectSoundBuffer8* pDSBPrimary = NULL;

IDirectSound3DListener8* pDSListener;

...

if(FAILED(hr = g_pDS->CreateSoundBuffer(&dsbd, &pDSBPrimary, NULL)))

 return hr;

if(FAILED(hr = pDSBPrimary->QueryInterface(IID_IDirectSound3DListener8,

 (LPVOID *)&pDSListener)))

 return hr;

Managing a COM Object's Lifetime

[Visual Basic]
This topic pertains only to applications written in C++.

in.doc – page 15

[C++]
When an object is created, the system allocates the necessary memory resources.
When an object is no longer needed, it should be destroyed. The system can use that
memory for other purposes. With C++ objects, you can control the object's lifetime
directly with the new and delete operators. COM does not enable you to create or
destroy objects directly. The reason for this practice is that the same object may be
used by more than one application. If one of those applications were to destroy the
object, the other applications would probably fail. Instead COM uses a system of
reference counting, to control an object's lifetime.

An object's reference count is the number of times one of its interfaces has been
requested. Each time an interface is requested, the reference count is incremented. An
application releases an interface when that interface is no longer needed,
decrementing the reference count. As long as the reference count is greater than zero,
the object remains in memory. When the reference count reaches zero, the object
destroys itself. You don't need to know anything about the reference count of an
object. As long as you obtain and release an object's interfaces properly, the object
will have the appropriate lifetime.

Note
Properly handling reference counting is a crucial part of COM programming.
Failure to do so can easily create a memory leak. One of the most common
mistakes that COM programmers make is failing to release an interface. When
this happens, the reference count will never reach zero, and the object will remain
in memory indefinitely.

Incrementing and Decrementing the Reference Count

Whenever you obtain a new interface pointer, the reference count must be
incremented by a call to IUnknown::AddRef. However, your application does not
usually need to call this method. If you obtain an interface pointer by calling an object
creation method, or by calling IUnknown::QueryInterface, the object will
automatically increment the reference count. However, if you create an interface
pointer in some other way, such as copying an existing pointer, you must explicitly
call IUnknown::AddRef. Otherwise, when you release the original interface pointer,
the object may be destroyed even though you may still need to use the copy of the
pointer.

You must release all interface pointers, regardless of whether you or the object
incremented the reference count. When you no longer need an interface pointer, call
IUnknown::Release to decrement the reference count. A common practice is to
initialize all interface pointers to NULL, and set them back to NULL when they are
released. That allows you to test all interface pointers in your cleanup code. Those
that are non-NULL are still active and must be released before you terminate the
application.

The following code fragment extends the sample discussed in Requesting Additional
Interfaces to illustrate how to handle reference counting.

in.doc – page 16

IDirectSoundBuffer8* pDSBPrimary = NULL;

IDirectSound3DListener8* pDSListener = NULL;

IDirectSound3DListener8* pDSListener2 = NULL;

...

//Create the object and obtain an additional interface.

//The object increments the reference count.

if(FAILED(hr = g_pDS->CreateSoundBuffer(&dsbd, &pDSBPrimary, NULL)))

 return hr;

if(FAILED(hr=pDSBPrimary->QueryInterface(IID_IDirectSound3DListener8,

 (LPVOID *)&pDSListener)))

 return hr;

//Make a copy of the IDirectSound3DListener8 interface pointer.

//Call AddRef to increment the reference count and to ensure that

//the object is not destroyed prematurely

pDSListener2 = pDSListener;

pDSListener2->AddRef();

...

//Cleanup code. Check to see if the pointers are still active.

//If they are, call Release to release the interface.

if(pDSBPrimary != NULL)

{

 pDSBPrimary->Release();

 pDSBPrimary = NULL;

}

if(pDSListener != NULL)

{

 pDSListener->Release();

 pDSListener = NULL;

}

if(pDSListener2 != NULL)

{

 pDSListener2->Release();

 pDSListener2 = NULL;

}

Using C to Access COM Objects

[Visual Basic]
This topic pertains only to applications written in C++.

in.doc – page 17

[C++]
Although C++ is the most commonly used language for COM programming, you can
also access COM objects using C. Doing so is relatively straightforward, but requires
a somewhat more complex syntax.

· All methods have an additional parameter added to the beginning of the
parameter list. This parameter must be set to the interface pointer.

· You must explicitly reference the object's vtable.

Every COM object has a vtable that contains a list of pointers to methods that the
object exposes. An interface pointer points to the appropriate location in the vtable,
which in turn contains a pointer to the particular method you are calling. The vtable is
not mentioned elsewhere in this documentation because with C++, the vtable is
essentially invisible. However, if you wish to call COM methods with C, you must
include an additional level of indirection that explicitly references the vtable.

The following code fragment illustrates how to call the IDirectPlay8Peer::Initialize
method with the C++ calling convention.

g_pDP->Initialize(NULL, DirectPlayMessageHandler, 0);

To make the same method call from C, use the following syntax. The conventional
name for the vtable pointer is lpVtbl.

g_pDP->lpVtbl->Initialize(g_pDP,NULL, DirectPlayMessageHandler, 0);

Some components have macros defined in their header files that resolve to the correct
calling convention. See Using Macros to Call DirectX COM Methods for details.

Using Macros to Call DirectX COM Methods

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Many of the Microsoft® DirectX® interfaces have macros defined for each method
that make using the methods in your applications simpler. You can find definitions of
these macros in the same header file as the interface declaration. The macros are
designed to be used by both C and C++ applications. To use the C++ macros, you
must define _cplusplus. Otherwise, the C macros will be used. The macro syntax is
the same for both languages, but the header files include separate sets of macro
definitions that expand to the appropriate calling convention.

For example, the following code fragment from the d3d.h header file shows the
definitions of the C and C++ macros for the IDirect3D8::GetAdapterIdentifier
method.

in.doc – page 18

#if !defined(__cplusplus) || defined(CINTERFACE)

...

#define IDirect3D8_GetAdapterIdentifier(p,a,b,c) (p)->lpVtbl->GetAdapterIdentifier(p,a,b,c)

...

#else

...

#define IDirect3D8_GetAdapterIdentifier(p,a,b,c) (p)->GetAdapterIdentifier(a,b,c)

...
#endif

To use one of these macros, you must first obtain a pointer to the associated interface.
The first parameter of the macro must be set to that pointer. The remaining
parameters map to the method's parameters. The macro's return value is the
HRESULT value that is returned by the method. The following code fragment uses a
macro to call the IDirect3D8::GetAdapterIdentifier method. pD3D is a pointer to
an IDirect3D8 interface.

hr = IDirect3D8_GetAdapterIdentifier(pD3D,

 Adapter,

 dwFlags,

 pIdentifier);

DirectX COM Documentation Conventions

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
By convention, COM methods and interfaces are referred to in the documentation by
their equivalent C++ class names. The Initialize method of the IDirectPlay8Peer
interface is thus referred to as IDirectPlay8Peer::Initialize. The primary reason for
this convention is that different interfaces may export a method with the same name
but with entirely different functionality and syntax. For example, many interfaces
have an Init or Initialize method, but the functionality and parameters may be quite
different. Using the C++ class name is a convenient way to uniquely identify the
method.

The text and sample code generally uses C++ conventions for calling COM methods.
See Using C to Access COM Objects, for a discussion of how to convert a C++
method call to its C equivalent.

in.doc – page 19

IUnknown Interface

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
All COM objects support an interface called IUnknown. This interface provides
Microsoft® DirectX® with control of the object's lifetime and the ability to retrieve
other interfaces implemented by the object. IUnknown has three methods.

· AddRef increments the object's reference count by 1 when an interface or
another application binds itself to the object.

· QueryInterface queries the object about the features that it supports by
requesting pointers to a specific interface.

· Release decrements the object's reference count by 1. When the count reaches 0,
the object is deallocated.

The AddRef and Release methods maintain an object's reference count. For example,
if you create a Microsoft Direct3D® object, the object's reference count is set to 1.
Every time a function returns a pointer to an interface for that object, the function
must call AddRef through that pointer to increment the reference count. Match each
AddRef call with a call to Release. Before the pointer can be destroyed, you must
call Release through that pointer. After an object's reference count reaches 0, the
object is destroyed, and all interfaces to it become invalid.

The QueryInterface method determines whether an object supports a specific
interface. If an object supports an interface, QueryInterface returns a pointer to that
interface. You then can use the methods of that interface to communicate with the
object. If QueryInterface successfully returns a pointer to an interface, it implicitly
calls AddRef to increment the reference count, so your application must call Release
to decrement the reference count before destroying the pointer to the interface.

Requirements

 Windows NT/2000: Requires Windows NT 3.1 or later.
 Windows 95/98: Requires Windows 95 or later.
 Header: Declared in Unknwn.h.

IUnknown::AddRef
[Visual Basic]
This topic pertains only to applications written in C++.

in.doc – page 20

[C++]
Increases the reference count of the object by 1.

ULONG AddRef();

Parameters

There are no parameters.

Return Values

Returns the new reference count. This value is for diagnostic and testing purposes
only.

Remarks

When the object is created, its reference count is set to 1. Every time an application
obtains an interface to the object or calls the AddRef method, the object's reference
count is increased by 1. Use the Release method to decrease the object's reference
count by 1.

Requirements

 Windows NT/2000: Requires Windows NT 3.1 or later.
 Windows 95/98: Requires Windows 95 or later.
 Header: Declared in Unknwn.h.

IUnknown::QueryInterface
[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Determines whether the object supports a particular COM interface. If it does, the
system increases the object's reference count, and the application can use that
interface immediately.

HRESULT QueryInterface(
 REFIID riid,
 LPVOID* ppvObj
);

in.doc – page 21

Parameters

riid
Reference identifier of the interface being requested.

ppvObj
Address of a pointer to fill with the interface pointer if the query succeeds.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value may be E_NOINTERFACE or E_POINTER.
Some components also have their own definitions of these error values in their header
files. In Microsoft® DirectInput®, for example, DIERR_NOINTERFACE is
equivalent to E_NOINTERFACE.

Remarks

If the application does not need to use the interface retrieved by a call to this method,
it must call the Release method for that interface to free it. The QueryInterface
method enables Microsoft and third parties to extend objects without interfering with
existing or future functionality.

Requirements

 Windows NT/2000: Requires Windows NT 3.1 or later.
 Windows 95/98: Requires Windows 95 or later.
 Header: Declared in Unknwn.h.

IUnknown::Release
[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Decreases the reference count of the object by 1.

ULONG Release();

Parameters

There are no parameters.

in.doc – page 22

Return Values

Returns the new reference count. This value is for diagnostic and testing purposes
only.

Remarks

The object deallocates itself when its reference count reaches 0. Use the AddRef
method to increase the object's reference count by 1.

Applications must call this method to release only interfaces that the method
explicitly created in a previous call to IUnknown::AddRef,
IUnknown::QueryInterface, or a creation function such as Direct3DCreate8.

Requirements

 Windows NT/2000: Requires Windows NT 3.1 or later.
 Windows 95/98: Requires Windows 95 or later.
 Header: Declared in Unknwn.h.

Using Callback Functions

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
A callback function is essentially an event handler that is implemented by an
application and called by the system. Microsoft® Windows® applications typically
implement multiple callback functions, each one designed for a particular set of
events. When an event occurs, the system notifies the application by calling the
appropriate callback function. The callback function also usually has a parameter list
that the system can use to pass the application more detailed information about the
event. The most common example of a callback function is the window procedure.
This function is used by the system to pass Windows messages to the applications
that owns the window.

Microsoft DirectX® uses callback functions for a variety of purposes. For example,
your system supports multiple devices. Microsoft DirectInput® represents each device
by a device object, that contains the details of the device's capabilities. Your
application will typically need to enumerate the available devices and to examine the
device objects in order to handle user input properly. To do this enumeration, you
must implement a DIEnumDeviceObjectsCallback callback function.

You start the enumeration process by calling IDirectInputDevice8::EnumObjects
and passing the method a pointer to your DIEnumDeviceObjectsCallback callback

in.doc – page 23

function. The system will call this function once for each device, and it will pass in a
DIDEVICEOBJECTINSTANCE structure containing information about the
device's capabilities. After your callback function has processed the information, it
can return DIENUM_CONTINUE to request the next device object, or
DIENUM_STOP to stop the enumeration.

For more information, see Implementing a Callback Function.

DirectX uses a number of other callback functions for a variety of purposes. For
details, see the documentation for the particular DirectX component.

Implementing a Callback Function

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Because callback functions have different purposes and usage, they are documented
in the appropriate Reference section in much the same way as a regular function.
However, a callback function reference is essentially a template that describes how to
implement the function, not a normal API reference. The callback function reference
provides the following information:

· How the function is used

· The function's syntax

· An explanation of the information that will be contained by each parameter

· An explanation of the possible return values

You should declare the function as a CALLBACK or WINAPI type. Either type is
acceptable. You can use any function name that you wish. The name used in the
documentation is simply a convenient label for a particular callback function.

Implement the function according to the description in the reference. The
implementation details will depend on the particular function and the requirements of
your application. See the sample code for some examples of how to implement
various callback functions.

Pass a pointer to the function to the appropriate Microsoft® DirectX® component. The
DirectX component can then use the function pointer to call the function. The way in
which you pass this pointer varies from function to function, so you should see the
particular function's reference for details.

The following code fragment is borrowed from the Microsoft DirectInput® Joystick
sample. It sketches out the essential elements of a DIEnumDeviceObjectsCallback
implementation that is used to enumerate the axes of a joystick.

//The function declaration

in.doc – page 24

BOOL CALLBACK EnumAxesCallback(const DIDEVICEOBJECTINSTANCE* pdidoi,

 VOID* pContext);

...

//Pass the function pointer to DirectInput by calling the

//IDirectInputDevice8::EnumObjects method

if (FAILED(hr = g_pJoystick->EnumObjects(EnumAxesCallback,

 (VOID*)hDlg,

 DIDFT_AXIS)));

...

//The function implementation

BOOL CALLBACK EnumAxesCallback(const DIDEVICEOBJECTINSTANCE* pdidoi,

 VOID* pContext)

{

//Process the information passed in through the two parameters

//Return DIENUM_CONTINUE to request the next device object

//Return DIENUM_STOP to stop the enumeration

}

Version Checking

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Applications sometimes need to know which version of Microsoft® DirectX® is
currently available on the system. For example, if an older version of DirectX is on
the system, your application may need to scale itself to the capabilities of that version
or install the most recent version.

There is no direct way to obtain the DirectX version number. However, each version
has a characteristic set of objects and interfaces. Because any version of DirectX
supports all previous versions, this set of interfaces and objects will be supported by
the version in which they are introduced and all subsequent versions. Thus, the
preferred way to determine whether your desired version is available is to test for its
characteristic objects or interfaces. As long as those are present, your application will
work normally even though you might be using a more recent version of DirectX.

For example, suppose you need version 6.1 support. The Microsoft DirectMusic®
object (CLSID_DirectMusic) was introduced in DirectX version 6.1. You can test for
the presence of the DirectMusic object by attempting to create it with
CoCreateInstance. If you are successful, you have version 6.1 or later, and you will
be able to use all the DirectX 6.1 capabilities.

in.doc – page 25

Rather than provide a detailed list here of each version's characteristic interfaces and
objects, you should refer to the DirectX Software Development kit's sample section.
One of the samples is a function, GetDXVersion, that includes tests for all DirectX
versions. GetDXVersion returns an integer that corresponds to the DirectX version
that is present on the system. As long as this integer is greater than or equal to your
desired version number, your application will run normally. You can find the sample
code under your SDK root folder at \Samples\Multimedia\DXMisc\GetDXVer.

For more information, see Checking the Operating System Version.

Checking the Operating System Version

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
In addition to determining the Microsoft® DirectX® version, applications may also
need to know what operating system they are running on, and perhaps which Service
Pack has been installed. The preferred way to check the operating system version is to
use the Microsoft Windows® function, GetVersionEx. This function returns an
OSVERSIONINFO structure that contains a variety of information including:

· Whether the system is Microsoft Windows NT®-based or Windows 95/98/ME

· The major and minor version numbers

· The service pack number, for Windows NT-based systems

The general procedure is to determine the earliest version of the operating system that
your application is compliant with. If that version or later is installed, you can safely
install and run your application.

Note
The operating system information returned by GetVersionEx should not be used
to test for the presence or version number of DirectX. In particular, the fact that a
system is Windows NT-based does not necessarily mean that DirectX is absent.
The Windows 2000 operating system, for example, includes DirectX 7.0 or later.
Future versions of Windows NT-based operating systems can also be expected to
include a version of DirectX. Use the procedures described in the previous
section to determine whether DirectX is present and, if so, the version number.

The following sample function illustrates how to use GetVersionEx to test the
operating system version. If the installed version is identical to or more recent than
the version specified in the parameter list, the function returns TRUE. You can then
safely install and execute your application. Otherwise the function returns FALSE,
indicating that your application will not run properly, if at all.

in.doc – page 26

#include <windows.h>

#include <stdio.h>

#include <tchar.h>

BOOL bIsWindowsVersionOK(DWORD dwWin9xMajor, DWORD dwWin9xMinor,

 DWORD dwWinNTMajor, DWORD dwWinNTMinor, WORD

wWinNTSPMajor)

{

 OSVERSIONINFO osvi;

 // Initialize the OSVERSIONINFO structure.

 ZeroMemory(&osvi, sizeof(osvi));

 osvi.dwOSVersionInfoSize = sizeof(osvi);

 GetVersionEx(&osvi); // Assume this function succeeds.

 // Split code paths for NT and Win9x

 if(osvi.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS)

 {

 // Check the major version.

 if(osvi.dwMajorVersion > dwWin9xMajor)

 return TRUE;

 else if(osvi.dwMajorVersion == dwWin9xMajor)

 {

 // Check the minor version.

 if(osvi.dwMinorVersion >= dwWin9xMinor)

 return TRUE;

 }

 }

 else if(osvi.dwPlatformId == VER_PLATFORM_WIN32_NT)

 {

 // Check the major version.

 if(osvi.dwMajorVersion > dwWinNTMajor)

 return TRUE;

 else if(osvi.dwMajorVersion == dwWinNTMajor)

 {

 // Check the minor version.

 if(osvi.dwMinorVersion > dwWinNTMinor)

 return TRUE;

 else if(osvi.dwMinorVersion == dwWinNTMinor)

 {

 // Check the service pack.

 DWORD dwServicePack = 0;

 if(osvi.szCSDVersion)

 {

in.doc – page 27

 _stscanf(osvi.szCSDVersion,

 _T("Service Pack %d"),

 &dwServicePack);

 }

 return (dwServicePack >= wWinNTSPMajor);

 }

 }

 }

 return FALSE;

}

Compiling DirectX Samples and Other
DirectX Applications

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
This section provides information about considerations specific to compiling
Microsoft® DirectX® applications. DirectX 8.0 supports only Microsoft Visual C++
5.0 SP3, and later.

· Preparing for Compilation

· Component Version Constants

Preparing for Compilation

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
The samples included in this SDK use Microsoft® Visual C++® project files (DSP
files) that describe the appropriate source files, project resources, and linker settings
for each sample. However, you might need to make additional preparations to ensure
that the samples compile and link properly, or you might need to prepare settings for
a new project. The information provided here applies to the Microsoft DirectX®
samples and the DirectX applications that you create.

in.doc – page 28

After opening a project file in Visual C++, verify some settings before compiling the
application. The following descriptions are valid for Visual C++ 5 and 6.

Note
The following discussion uses the default installation paths, C:\Mssdk\Include
and C:\Mssdk\Lib, to describe file locations. Your installation paths might differ.

Include search paths

Be sure that the search path for header files is correct and the directory for DirectX
header files is the first path that the compiler searches. To check the include path,
choose Options from the Tools menu and select the Directories tab. The following
dialog box will appear.

The topmost path indicates the folder that contains the latest DirectX header files. The
default path is C:\Mssdk\Include. If the path is not present, add it to the list and move
it to the top of the search list by using the toolbar controls within the Directories tab.

Linker search paths

Check the search paths and search order that the linker uses to search for link
libraries. The link search paths are also listed on the Directories tab. Choose Options
from the Tools menu and select the Directories tab. When the dialog box appears,
choose the Library files option in the Show directories for list box. The topmost
path should be the folder that contains the latest DirectX link libraries. The default
path is C:\Mssdk\Lib.

in.doc – page 29

Project link libraries

If you are using the provided sample project files, you do not need to verify these
settings. They are specified with the project files. For new applications, on the
Project menu, click Settings. The following dialog box appears.

You should verify that the application is linked to the appropriate standard DirectX
link libraries.

Component Version Constants

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
For backward compatibility with earlier versions of Microsoft® DirectX®, some
DirectX components include variable API element definitions in their header files.
Affected elements are typically capability structures or flag sets that are version-
specific. Parts of some header files are surrounded by preprocessor conditionals that
cause the preprocessor to filter out unneeded definitions. The value of the defined
constant identifies a specific version of the component. If no value is defined, the
headers set a value that identifies the DirectX version for which the header file was
written. An example from the Microsoft Direct3D® header file, D3D8.h, is shown
here.

in.doc – page 30

#ifndef DIRECT3D_VERSION

#define DIRECT3D_VERSION 0x0800

#endif //DIRECT3D_VERSION

You can define other values for these constants to use newer versions of the header
files with older versions of the components. For example, to use the latest headers to
compile against the DirectX 7.0 version of D3D, define DIRECT3D_VERSION to be
0x0700.

Debugging DirectX Applications

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
This section covers the following topics pertaining to debugging C and C++
applications.

· Debug vs. Retail DLLs

· The DirectX 8.0 Error Handling Utility Library

Debug vs. Retail DLLs

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
The Microsoft® DirectX® SDK installation program provides the option of installing
either debug or retail builds of the DirectX dynamic-link libraries (DLLs).

When you develop software in C++, it is best to install the debug versions of the
DLLs. This option installs both debug and retail DLLs on your system. The retail
option installs only the retail DLLs. The debug DLLs have additional code that
validates internal data structures and output debug error messages, using the
Microsoft Win32® OutputDebugString function, while your program is executing.
When an error occurs, the debug output gives you a more detailed description of the
problem. The debug DLLs execute more slowly than the retail DLLs but are much
more useful for debugging an application. Be sure to ship the retail version with your
application.

in.doc – page 31

You can use the DirectX Control Panel utility to switch between the debug and retail
builds of Microsoft DirectInput®, Direct3D®, and DirectMusic®. To enable this
feature, select the debug option when you install the SDK.

To see the debug messages, configure your system so that debug output appears in a
window or on a remote computer. A development environment such as Visual
Microsoft C++® enables you to do this. Consult the environment documentation for
setup instructions.

To ensure that the debugger can find the relevant symbolic information when using
debug builds, locate the symbol files as follows:

OS Debugger Location for .pdb file Location for .dbg file

Windows®
95
Windows
98

Visual C+
+

Same directory as binary Same directory as binary

Windows N
T®
Windows 2
000

Visual C+
+

Same directory as binary %SystemRoot%
\Symbols\<binary extension>\

Windows N
T
Windows 2
000

NTSD/KD %SystemRoot%
\Symbols\<binary
extension>\

%SystemRoot%
\Symbols\<binary extension>\

Note
When debugging with the Visual C++ development system on Microsoft

Windows NT/Windows 2000, do not use the WIN32API Splitsym development
tool. WIN32API Splitsym copies private symbolic information from the
<binary>.dbg file into the symbol directory under the binary extension—for
example, %SystemRoot%\Symbols\Dll\—and deletes the original file from the
binary directory. Visual C++ relies on finding a private symbolic information
(<binary>.dbg) file in the same directory as the binary. Therefore, for debug
builds, you must copy the private symbolic information and not delete it. This is
an issue only when using Visual C++ with Windows NT/Windows 2000. Consult
Visual C++ documentation and Windows 2000 Driver Development Kit (DDK)
documentation for further debugging information.

The DirectX 8.0 Error Handling Utility Library

[Visual Basic]
This topic pertains only to applications written in C++.

in.doc – page 32

[C++]
The Microsoft® DirectX® 8.0 SDK includes a pair of utility functions and several
macros designed to simplify the task of debugging your application. These functions
and macros are contained in the Dxerr8.lib library. The declarations are in Dxerr8.h.

· DirectX 8.0 Error Handling Functions

· DirectX 8.0 Error Handling Macros

DirectX 8.0 Error Handling Functions

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
The following functions and macros are included in the DirectX error handling utility
library.

· DXGetErrorString8

· DXTrace

DXGetErrorString8
[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Returns the name associated with a Microsoft® DirectX error® code.

TCHAR* DXGetErrorString8(
 HRESULT hr
);

Parameters

hr
[in] HRESULT value returned from a DirectX method. This handles only error
codes.

in.doc – page 33

Return Values

If successful, this function returns a pointer to a string that contains the name of the
error code. If Unicode is set, DXGetErrorString8 will return a Unicode string.
Otherwise, it will return an ANSI string.

Remarks

This function is designed to retrieve the text equivalent of a DirectX error message
from a Microsoft Direct3D®, D3DX, DirectPlay®, DirectInput®, DirectMusic®, or
DirectSound® method. For example, if you set hr to 0x88768686,
DXGetErrorString8 will return D3DERR_DEVICELOST.

If an error code maps to more than one text string, DXGetErrorString8 will return a
generic string. For example, there are several DirectX error codes, such as
DIERR_OUTOFMEMORY, that indicate that you are out of memory, and all map to
the same value. If you set hr to any of these codes, DXGetErrorString8 will return
E_OUTOFMEMORY.

Requirements

 Windows NT/2000: Requires Windows® 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Version: Requires DirectX 8.0.
 Header: Declared in Dxerr8.h.
 Import Library: Use Dxerr8.lib

DXTrace
[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Displays a message box, and passes the error code to DXGetErrorString8.

HRESULT DXTrace(
 char *strFile,
 DWORD dwLine,
 HRESULT hr,
 TCHAR *strMsg,
 BOOL bPopMsgBox
);

in.doc – page 34

Parameters

strFile
[in] Pointer to the name of the current file. You can set this parameter easily with
the __FILE__ macro.

dwLine
[in] Line number. You can set this parameter easily with the __LINE__ macro.

hr
[in] HRESULT containing an error code. This value will be passed to
DXGetErrorString8 and converted to the equivalent name.

strMsg
[in] Pointer to an optional message that will be displayed along with the file
name, line number, and HRESULT.

bPopMsgBox
[in] Specifies whether a message box should be displayed. If bPopMsgBox is set
to TRUE and hr is non-zero, a message box will be displayed containing the
values of the first four parameters. If bPopMsgBox is set to FALSE, the
information is passed to the debugger.

Return Values

Returns zero if successful, or a non-zero value if not.

Requirements

 Windows NT/2000: Requires Windows® 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Version: Requires DirectX® 8.0.
 Header: Declared in Dxerr8.h.
 Import Library: Use Dxerr8.lib

DirectX 8.0 Error Handling Macros

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
The following macros simplify using the DXTrace function.

· DXTRACE_MSG

· DXTRACE_ERR

· DXTRACE_ERR_NOMSGBOX

in.doc – page 35

DXTRACE_MSG
[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Passes a string to the debugger.

HRESULT DXTRACE_MSG(
 char *str,
);

Parameters

str
Pointer to a string that will be passed to the debugger.

Return Values

Returns zero if successful, or a non-zero value if not.

Remarks

The string is accompanied by the file name and line number. The macro declaration
is:

DXTRACE_MSG(str) DXTrace(__FILE__, (DWORD)__LINE__, 0, str, FALSE)

Requirements

 Windows NT/2000: Requires Windows® 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Version: Requires DirectX® 8.0.
 Header: Declared in Dxerr8.h.

DXTRACE_ERR
[Visual Basic]
This topic pertains only to applications written in C++.

in.doc – page 36

[C++]
Displays a message box with error information.

HRESULT DXTRACE_ERR(
 char *str,
 HRESULT hr
);

Parameters

str
Pointer to a string to be displayed in the message box.

hr
HRESULT containing an error code. This value will be passed to
DXGetErrorString8 and converted to the equivalent name.

Return Values

Returns zero if successful, or a non-zero value if not.

Remarks

The string and error name is accompanied by the file name and line number. The
macro declaration is:

DXTRACE_ERR(str,hr) DXTrace(__FILE__,(DWORD)__LINE__,hr,str,TRUE)

Requirements

 Windows NT/2000: Requires Windows® 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Version: Requires DirectX® 8.0.
 Header: Declared in Dxerr8.h.

DXTRACE_ERR_NOMSGBOX
[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Passes error information to the debugger.

HRESULT DXTRACE_ERR_NOMSGBOX(

in.doc – page 37

 char *str,
 HRESULT hr
);

Parameters

str
Pointer to a string to be passed to the debugger.

hr
HRESULT containing an error code. This value will be passed to
DXGetErrorString8 and converted to the equivalent name.

Return Values

Returns zero if successful, or a non-zero value if not.

Remarks

The string and error name is accompanied by the file name and line number. The
macro declaration is:

DXTRACE_ERR_NOMSGBOX(str,hr) DXTrace(__FILE__,(DWORD)__LINE__,hr,str, FALSE)

Requirements

 Windows NT/2000: Requires Windows® 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Version: Requires DirectX® 8.0.
 Header: Declared in Dxerr8.h.

Programming DirectX with Visual
Basic

This section is an introduction to developing applications with Microsoft® DirectX®
for Microsoft Visual Basic®.

The following topics are covered:

· Referencing the Type Library

· Creating DirectX Objects

in.doc – page 38

· Using GUIDs

· Passing Arrays to Methods

· Using Flags

· Using Bitmasks

· DirectX Enumerations

· The IUnknown Data Type

· Error Handling

· DirectX Class Reference

Referencing the Type Library
To use Microsoft® DirectX® for Microsoft Visual Basic® in a project, you must first
ensure that the project has access to the type library.

To make sure that the project has access to the type library
1. In Microsoft Visual Studio®, on the Project menu, click References.

2. Select DirectX 8 for Visual Basic Type Library, and then click OK.

Creating DirectX Objects
Every Microsoft® DirectX® for Microsoft Visual Basic® application must have a
DirectX8 object. This is the parent object whose methods are used to create the
principal objects for each DirectX component. The DirectX8 object has many other
methods, such as methods to perform calculations for Microsoft Direct3D®.

To create a DirectX8 object, declare it as a new object. For example:

Public gObjDX As New DirectX8

Many of the primary DirectX component objects, such as DirectSound8 are not
created directly. Instead, you must create those objects by calling the appropriate
DirectX8 method. For example, to create a DirectSound8 object, create a variable
and assign it the return value of DirectX8.DirectSoundCreate.

Public gObjDSound As DirectSound8

Set gObjDSound = DirectX8.DirectSoundCreate(vbNullString)

The following objects must be created by calling the appropriate DirectX8 method.
See the DirectX Class Reference for details.

Direct3D8

DirectInput8

DirectMusicComposer8

in.doc – page 39

DirectMusicLoader8

DirectMusicPerformance8

DirectPlay8Address

DirectPlay8Client

DirectPlay8LobbiedApplication

DirectPlay8LobbyClient

DirectPlay8Peer

DirectPlay8Server

DirectPlayVoiceClient8

DirectPlayVoiceServer8

DirectPlayVoiceTest8

DirectSoundCapture8

DirectSound8

DirectSoundEnum8

DirectXFile

Using GUIDs
Microsoft® DirectX® uses globally unique identifiers (GUIDs) extensively for
purposes such as identifying objects. GUIDs are actually 128-bit integers, but they are
commonly represented by their equivalent string, such as {AC330441-9B71-11D2-
9AAB-0020781461AC}.

DirectX8 has a number of predefined GUIDs that are used to identify entities such as
particular properties. If a method requires you to pass in a predefined GUID, it is
handled as a String data type, and the string form of the GUID is expected. The most
convenient approach is to use a string alias, if one exists. For example, the
DirectInput8.CreateDevice method enables you to create a device for the standard
keyboard by passing in GUID_SysKeyboard rather than the actual GUID string. You
can also use the actual string, for example by copying and pasting it from a C++
header file.

To create a GUID
1. In the \Samples\Multimedia\VBSamples\DXMisc\Bin folder of the DirectX

SDK, run Vbguidgen.exe.

2. Paste the GUID into your Microsoft Visual Basic® application, and place
quotation marks around it.

You can also generate GUIDs at run time by calling the DirectX8.CreateNewGuid
method.

in.doc – page 40

Passing Arrays to Methods
Some methods, such as DirectInputDevice8.SendDeviceData, take a typed array as
a parameter. For example, in the following code fragment, formatArray is an array of
DIDEVICEOBJECTDATA types, lCount contains the number of elements in the
array, and lFlags is a flag parameter that controls how the data is sent.

MyDevice.SendDeviceData(lCount, formatArray(), lFlags)

A few DirectX8 methods use parameters with an Any type to return data. An
example is the DirectSoundCaptureBuffer8.ReadBuffer method's buffer parameter.
Typically you will want such methods to return their data as an array of bytes.
However, you cannot simply pass the name of the array to the method because
Microsoft® Visual Basic® arrays contain extra information ahead of the actual data.
Instead, you must pass the first element of the array. For example, in the following
code fragment, dsCaptureBuffer is a DirectSoundCaptureBuffer8 object, nBytes is a
Long value containing the number of bytes to be read, and buffer is a zero-based
array of bytes:

ReDim buffer(nBytes)

Call dsCaptureBuffer.ReadBuffer(0, nBytes, buffer(0), 0)

Using Flags
Many object methods in Microsoft® DirectX® for Microsoft Visual Basic® have a
parameter with the Long data type named flags or something similar. Types may also
have one or more flag members. These flag fields are a compact way to select from a
variety of options and are often used to specify the exact behavior of a method. For
example, the flags parameter of DirectInput8.GetDevicesBySemantics enables you
to define the scope of the enumeration by selecting from one of several options.

A flag is a single yes-no bit of information. In a flag field, each bit of the integer
corresponds to a separate flag that represents an independent piece of information. If
the bit is set, the flag is enabled. If the bit is zero, the flag is disabled. Flag fields
typically contain a set of related flags that are represented by an enumeration.
Normally, the numerical value of each member of the enumeration represents a
different bit in the flag field. However, some members may represent combinations of
two or more flags.

A common use of flag fields is to enable you to select one option from a variety of
options. You normally do so by assigning the appropriate enumerated value to the
flag parameter. However, because each flag corresponds to a different bit, flag fields
can also be used to select two or more options from a list. To do so, set all the
relevant bits by combining the enumerated values of the selected flags with the Or
operator. For example, the DirectInputDevice8.SetCooperativeLevel method has a
flag field that is used to specify the device's cooperative level. The following code
fragment selects a combination of foreground and exclusive cooperative levels by
combining the DISCL_FOREGROUND and DISCL_EXCLUSIVE flags.

in.doc – page 41

' diDevice is a DirectInputDevice8 object, and hwnd is a window handle

diDevice.SetCooperativeLevel(hwnd, _

 DISCL_FOREGROUND Or DISCL_EXCLUSIVE)

Note
Examine the reference page carefully to determine how the flag field is to be
used. Setting multiple flags in a flag field that is designed to have only one flag
set may have unpredictable results.

You should not use the addition operator instead of the Or operator to combine flags.
While the two operations are often equivalent, using the addition operator will
sometimes lead to incorrect results. In particular, the two operators are usually not
equivalent if one of the flags represents a combination of two or more flags. The
following example illustrates this case. The CF_PURPLE flag represents a
combination of CF_RED and CF_BLUE.

Enum COLORFLAGS

 CF_RED = 1

 CF_BLUE = 2

 CF_PURPLE = 3

 CF_GREEN = 4

End Enum

Dim Color As Integer

Color = CF_RED Or CF_PURPLE

The value of Color is now 3. Setting CF_RED has no effect, as that bit was already
set by CF_PURPLE.

The following operation, on the other hand, sets an incorrect value:

' This is wrong!

Color = CF_RED + CF_PURPLE

Adding the two flag values sets Color to 4, which is equivalent to CF_GREEN.

When you retrieve a value for flags, you can determine whether an individual flag is
set by combining the flag value with the flag field using the And operator. If the bit in
the flag field represented by a flag constant is set, an And operation will return a
nonzero value indicating that the flag is "on". If the And operation returns zero, the
flag is "off". For example the caps parameter of
DirectInputDevice8.GetCapabilities method is used to return a DIDEVCAPS type
that contains the device capabilities. The lFlags member of this type is a flag field
that may have one or more of the flags specified by the
CONST_DIDEVCAPSFLAGS enumeration set. If the DIDC_ATTACHED flag is
set, the device is physically attached to the system. The following code fragment
illustrates how to check whether the device is attached by examining the value of an
And operation that combines the lFlags member with DIDC_ATTACHED.

in.doc – page 42

Dim IsAttached As Boolean

IsAttached = diDevCaps.lFlags And DIDC_ATTACHED

Note that you should not simply test whether lFlags is equal to DIDC_ATTACHED.
This flag field may have more than one flag set. If multiple flags are set, the
following test will fail, even if DIDC_ATTACHED is set.

' This is wrong!

IsAttached = (diDevCaps.lFlags = DIDC_ATTACHED)

Using Bitmasks
Some Microsoft® DirectX® types, such as D3DCAPS8, have Long members that
serve as bitmasks. Bitmasks are similar to flag fields, but they are normally used to
mask off certain bits in a field. It is customary to use hexadecimal format to assign
values to these bitmasks because it is easier to determine which bits will be affected.
However, doing so may cause an error because Microsoft Visual Basic® normally
attempts to convert hexadecimal constants to the shortest type. For example, &HFF
would be converted to an Integer with a value of -1. If this value is then passed back
to DirectX for Visual Basic, where a Long is expected, it is converted to
&HFFFFFFFF.

To ensure that a hexadecimal bitmask is properly converted, place a second
ampersand after the expression. For example:

DDSD.ddpfPixelFormat.lRBitMask = &HFF&

DirectX Enumerations
Most Microsoft® DirectX® applications must enumerate available resources, usually
during initialization. For example, an application that uses DirectX Graphics might
need to find out what display modes are available, or an application using Microsoft
DirectInput® might need to enumerate the available buttons and axes on a joystick.

In DirectX for Microsoft Visual Basic®, applications handle enumeration by
obtaining the appropriate enumeration object. When an enumeration object is created,
it builds a collection that exists as long as the object exists. Your application can then
access that collection by using enumeration object's methods.

DirectX supports many enumeration objects, each tailored to a specific task. You
normally obtain an enumeration object by calling a method. For example, the
DirectX8 class contains two such methods. One of them, DirectX8.GetDSEnum
returns a DirectSoundEnum8 enumeration object. This object enables you to
enumerate Microsoft DirectSound® devices to obtain a GUID for a suitable device.
You can then use this GUID to create a DirectSound8 object.

in.doc – page 43

Other enumeration objects are obtained through various DirectX component objects.
For example, you can call the DirectInput8.GetDIDevices method to obtain an
enumeration object for input devices.

The following sample code illustrates how to enumerate all input devices attached to
the system. The di variable is a DirectInput8 object. The first step is to obtain a
DirectInputEnumDevices8 enumeration object.

Dim diEnum As DirectInputEnumDevices8

Set diEnum = di.GetDIDevices(0, DIEDFL_ATTACHEDONLY)

Next, use the DirectInputEnumDevices8 methods to iterate through the attached
devices. Examine each device to determine if it has the particular capabilities you
need. In the following example, the names of the devices are put in a list box:

Dim diDevice As DirectInputDeviceInstance

Dim X As Integer

For X = 1 To diEnum.GetCount

 Set diDevice = diEnum.GetItem(X)

 Call List1.AddItem(diDevice.ProductName)

 'Examine device capabilities

 '...

Next X

Note
All collections created by DirectX enumerations are 1-based.

The IUnknown Data Type
The IUnknown interface is exposed by all COM objects. The interface is used by C+
+ developers to gain access to an object's functionality and to manage the object's
lifetime. Microsoft® Visual Basic® developers rarely have to make use of IUnknown.
However, an object's IUnknown interface is represented in Visual Basic by the
IUnknown data type.

A handful of Microsoft DirectX® 8.0 Visual Basic methods have return values or
parameters that are declared as Unknown. The type of these values is undefined, and
will be either an IUnknown type, or another object type. DirectX 8.0 uses Unknown
declarations for two cases.

When an object is not represented by a class. Such objects expose no methods or
properties to your application. However, a reference may be passed to your
application by one method so that you can then pass that reference to another method.
For example, the return value of the DirectMusicSegment8.GetAudioPathConfig is
declared as Unknown. The method returns an IUnknown value that is a reference to
a configuration object that is not represented by a class. Your application then passes
the object reference to another method as a parameter.

in.doc – page 44

When a parameter needs to accept more than one object type. Declaring a parameter
as Unknown allows it to accept any object type. For example, the first parameter of
DirectMusicBand8.Unload is declared as Unknown. The parameter can accept
either a DirectMusicAudioPath8 or a DirectMusicPerformance8 object reference.

Note An Unknown declaration is similar to an Any declaration. When a
parameter or return value is declared as Any, you can pass or set any data type.
Similarly, when a parameter or return value is declared as Unknown, you can
pass or set any object type. You must be careful to use the correct object type,
however, or the results will be unpredictable.

An IUnknown variable does not provide direct access to an object's methods or to the
QueryInterface, Addref, and Release methods that are used in C++. When you have
an object reference in an IUnknown variable, you must set that variable to an
appropriately declared class variable in order to use the object's methods.

The following code fragment illustrates how to use the IUnknown data type.

'dmSeg is a DirectMusicSegment8 object

'dmPerf is a DirectMusicPerformance8 object

Dim config as IUnknown

Dim audioPath As DirectMusicAudioPath

Set config = dmSeg.GetAudioPathConfig

Set audioPath = dmPerf.CreateAudioPath(config)

The value that is returned by DirectMusicSegment8.GetAudioPathConfig is a
reference to a configuration object that is not represented by a class. All you need to
do with this object reference is pass it to another method, in this case,
DirectMusicPerformance8.CreateAudioPath.

The following use of the IUnknown data type is incorrect.

'objDiDev is a DirectInputDevice8 object

Dim unk As IUnknown

Set unk = objDiDev

NumItems = unk.GetDeviceData(diDeviceData,0) 'Incorrect!

The attempt to call the DirectInputDevice8.GetDeviceData method will raise a
"method not found" error.

Error Handling
In Microsoft® Visual Basic® a method call either succeeds or it fails. If the call fails,
an error is raised, and an error number is set in the global Visual Basic Err object.
Your application must then branch to an error handler that examines the Err object

in.doc – page 45

and deals with the error, or execution terminates. However, underlying every
Microsoft DirectX® Visual Basic method is a C++ method that handles errors
somewhat differently. In some cases, you will need to know something about C++
return values to interpret Visual Basic errors.

In C and C++, every method call returns an HRESULT value. This value is an
integer with a specific format that indicates the outcome of the operation. In some
cases, the HRESULT that a method returns simply indicates whether the operation
succeeded or failed. However, methods may sometimes use many HRESULT values
to indicate a variety of success or failure modes. There may, in fact, be more than one
return value that indicates success. Many of HRESULT values are system standards,
and are defined in the Winerror.h header file. System standard values typically use an
S_ prefix for success codes and an E_ prefix for failure. For example, S_OK and
E_FAIL are commonly used codes for success and failure, respectively. When the C+
+ code that typically underlies a Visual Basic method returns a standard HRESULT
value, the Visual Basic run time traps that value, and sets a standard Visual Basic
error code.

Many DirectX methods also support one or more non-standard HRESULT values.
These values are normally defined in an enumeration, and the meaning of each value
is given in the method reference. Because they are not standard values, there is no
corresponding Visual Basic error code. Instead, the Visual Basic run time sets
Err.Number to the HRESULT value. Refer to the method reference for the meaning
of the value. For more information on HRESULT values, see the COM
documentation in the Microsoft Platform Software Development Kit (SDK).

DirectX Class Reference
This section contains references for the following classes that are common to all
components of Microsoft® DirectX®:

· DirectX8

· DirectXEvent8

DirectX8
#

The DirectX8 class serves as a starting point for the Microsoft® DirectX® component
technologies. It contains methods that create the primary objects for the various
DirectX components as well as some methods that are used by multiple components.
This class is usually the first object created in your DirectX application.

The methods of the DirectX8 class can be organized into the following groups:

Object Creation Direct3DCreate

DirectInputCreate

IDH_DirectX8_vbintro

in.doc – page 46

DirectMusicComposerCreate

DirectMusicLoaderCreate

DirectMusicPerformanceCreate

DirectPlayAddressCreate

DirectPlayClientCreate

DirectPlayLobbiedApplicationCreate

DirectPlayLobbyClientCreate

DirectPlayPeerCreate

DirectPlayServerCreate

DirectPlayVoiceClientCreate

DirectPlayVoiceServerCreate

DirectPlayVoiceSetupCreate

DirectSoundCaptureCreate

DirectSoundCreate

DirectXFileCreate

Enumeration GetDSCaptureEnum

GetDSEnum

Event Handling CreateEvent

DestroyEvent

SetEvent

GUID Creation CreateNewGuid

DirectX8.CreateEvent
#

Creates a handle for the form's event object.

object.CreateEvent(_
 event As DirectXEvent8 _
) As Long

IDH_DirectX8.CreateEvent_vbintro

in.doc – page 47

Parts

object
Object expression that resolves to a DirectX8 object.

event
The form's DirectXEvent8 object.

Return Values

Returns a Long value set to the form's event handle.

Error Codes

If the method fails, an error is raised and Err.Number is set.

Remarks

A DirectXEvent object must be implemented by a form in order to receive
notifications from Microsoft® DirectX®. This method creates an event handle for this
object that is used by the notification methods of Microsoft DirectSound®,
DirectMusic®, DirectPlay®, and DirectInput®.

DirectX automatically sets the event object to be signaled when an appropriate event
occurs. You can also set the event manually by calling the DirectX8.SetEvent
method. This procedure is normally used to test the event-handling code.

Applications must explicitly destroy all the events they create by calling the
DirectX8.DestroyEvent method. Failure to do so will cause unpredictable results.

DirectX8.CreateNewGuid
#

Generates a new globally unique identifier (GUID).

object.CreateNewGuid() As String

Parts

object
Object expression that resolves to a DirectX8 object.

Return Values

Returns a String value containing the new GUID.

IDH_DirectX8.CreateNewGuid_vbintro

in.doc – page 48

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DestroyEvent
#

Deletes an event handle created by the DirectX8.CreateEvent method.

object.DestroyEvent(_
 eventid As Long)

Parts
object

Object expression that resolves to a DirectX8 object.

eventid
Long value set to the event handle to be destroyed. This handle must have been
created by calling DirectX8.CreateEvent.

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.Direct3DCreate
#

Creates a Direct3D8 object.

object.Direct3DCreate() As Direct3D8

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a Direct3D8 object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

IDH_DirectX8.DestroyEvent_vbintro
IDH_DirectX8.Direct3DCreate_vbintro

in.doc – page 49

Remarks

This function succeeds in all cases except out-of-memory conditions. It creates a
Direct3D8 object that supports enumeration and enables the creation of
Direct3DDevice8 objects.

Note that calling this method samples the current set of active display adapters. If the
user dynamically adds adapters, either by adding devices to the desktop or by hot-
docking a laptop, then those devices will not be enumerated for the lifetime of this
Direct3D8 object. Creating a new Direct3D8 object will expose the new devices.

DirectX8.DirectInputCreate
#

Creates a DirectInput8 object.

object.DirectInputCreate() As DirectInput8

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectInput8 object.

Error Codes

If the method fails, an error is raised and Err.Number may be set to one of the
following Microsoft® DirectInput® error codes:

· DIERR_BETADIRECTINPUTVERSION

· DIERR_INVALIDPARAM

· DIERR_OLDDIRECTINPUTVERSION

· DIERR_OUTOFMEMORY

DirectX8.DirectMusicComposerCreate
#

Creates a DirectMusicComposer8 object.

object.DirectMusicComposerCreate() As DirectMusicComposer8

IDH_DirectX8.DirectInputCreate_vbintro
IDH_DirectX8.DirectMusicComposerCreate_vbintro

in.doc – page 50

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectMusicComposer8 object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DirectMusicLoaderCreate
#

Creates a DirectMusicLoader8 object.

object.DirectMusicLoaderCreate() As DirectMusicLoader8

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectMusicLoader8 object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DirectMusicPerformanceCreate
#

Creates a DirectMusicPerformance8 object.

object.DirectMusicPerformanceCreate() _
 As DirectMusicPerformance8

Parts
object

Object expression that resolves to a DirectX8 object.

IDH_DirectX8.DirectMusicLoaderCreate_vbintro
IDH_DirectX8.DirectMusicPerformanceCreate_vbintro

in.doc – page 51

Return Values

Returns a DirectMusicPerformance8 object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DirectPlayAddressCreate
#

Creates a DirectPlay8Address object.

object.DirectPlayAddressCreate() As DirectPlay8Address

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectPlay8Address object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DirectPlayClientCreate
#

Creates a DirectPlay8Client object.

object.DirectPlayClientCreate() As DirectPlay8Client

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectPlay8Client object.

IDH_DirectX8.DirectPlayAddressCreate_vbintro
IDH_DirectX8.DirectPlayClientCreate_vbintro

in.doc – page 52

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DirectPlayLobbiedApplicationCr
eate

#

Creates a DirectPlay8LobbiedApplication object.

object.DirectPlayLobbiedApplicationCreate() _
 As DirectPlay8LobbiedApplication

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectPlay8LobbiedApplication object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DirectPlayLobbyClientCreate
#

Creates a DirectPlay8LobbyClient object.

object.DirectPlayLobbyClientCreate() _
 As DirectPlay8LobbyClient

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectPlay8LobbyClient object.

IDH_DirectX8.DirectPlayLobbiedApplicationCreate_vbintro
IDH_DirectX8.DirectPlayLobbyClientCreate_vbintro

in.doc – page 53

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DirectPlayPeerCreate
#

Creates a DirectPlay8Peer object.

object.DirectPlayPeerCreate() As DirectPlay8Peer

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectPlay8Peer object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DirectPlayServerCreate
#

Creates a DirectPlay8Server object.

object.DirectPlayServerCreate() As DirectPlay8Server

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectPlay8Server object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

IDH_DirectX8.DirectPlayPeerCreate_vbintro
IDH_DirectX8.DirectPlayServerCreate_vbintro

in.doc – page 54

DirectX8.DirectPlayVoiceClientCreate
#

Creates a DirectPlayVoiceClient8 object.

object.DirectPlayVoiceClientCreate() _
 As DirectPlayVoiceClient8

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectPlayVoiceClient8 object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DirectPlayVoiceServerCreate
#

Creates a DirectPlayVoiceServer8 object.

object.DirectPlayVoiceServerCreate() _
 As DirectPlayVoiceServer8

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectPlayVoiceServer8 object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

IDH_DirectX8.DirectPlayVoiceClientCreate_vbintro
IDH_DirectX8.DirectPlayVoiceServerCreate_vbintro

in.doc – page 55

DirectX8.DirectPlayVoiceSetupCreate
#

Creates a DirectPlayVoiceTest8 object.

object.DirectPlayVoiceSetupCreate() As DirectPlayVoiceSetup8

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectPlayVoiceSetup8 object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.DirectSoundCaptureCreate
#

Creates a DirectSoundCapture8 object.

object.DirectSoundCaptureCreate(_
 guid As String _
) As DirectSoundCapture8

Parts
object

Object expression that resolves to a DirectX8 object.

guid
A GUID string that identifies the sound capture device. The value of this
parameter must be one of the GUIDs returned by
DirectX8.getDSCaptureEnum, vbNullString for the default device, or one of
the following values:

DSDEVID_DEFAULTCAPTURE
System-wide default audio capture device.

DSDEVID_DEFAULTVOICECAPTURE
Default voice capture device.

IDH_DirectX8.DirectPlayVoiceSetupCreate_vbintro
IDH_DirectX8.DirectSoundCaptureCreate_vbintro

in.doc – page 56

Return Values

Returns a DirectSoundCapture8 object.

Error Codes

If the method fails, an error is raised and Err.Number may be set to one of the
following Microsoft® DirectSound® error codes:

· DSERR_INVALIDPARAM

· DSERR_NOAGGREGATION

· DSERR_OUTOFMEMORY

Remarks

This method could fail on some sound cards that do not support full duplex. Calling
DirectX8.DirectSoundCreate may set the capture device to an unsupported capture
frequency, which will cause DirectX8.DirectSoundCaptureCreate to fail.

DirectX8.DirectSoundCreate
#

Creates a DirectSound8 object.

object.DirectSoundCreate(_
 guid As String _
) As DirectSound8

Parts
object

Object expression that resolves to a DirectX8 object.

guid
A GUID string that identifies the sound capture device. The value of this
parameter must be one of the GUIDs returned by DirectSoundEnum8.GetGuid,
vbNullString for the default device, or one of the following values:

DSDEVID_DEFAULTPLAYBACK
System-wide default audio playback device.

DSDEVID_DEFAULTVOICEPLAYBACK
Default voice playback device.

Return Values

Returns a DirectSound8 object.

IDH_DirectX8.DirectSoundCreate_vbintro

in.doc – page 57

Error Codes

If the method fails, an error is raised and Err.Number may be set to one of the
following Microsoft® DirectSound® error codes:

· DSERR_ALLOCATED

· DSERR_INVALIDPARAM

· DSERR_NOAGGREGATION

· DSERR_NODRIVER

· DSERR_OUTOFMEMORY

DirectX8.DirectXFileCreate
#

Creates a DirectXFile object.

object.DirectXFileCreate() As DirectXFile

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectXFile object.

Error Codes

If the method fails, an error is raised and Err.Number is set.

DirectX8.GetDSCaptureEnum
#

Creates a DirectSoundEnum8 object.

object.GetDSCaptureEnum() As DirectSoundEnum8

Parts
object

Object expression that resolves to a DirectX8 object.

IDH_DirectX8.DirectXFileCreate_vbintro
IDH_DirectX8.GetDSCaptureEnum_vbintro

in.doc – page 58

Return Values

Returns a DirectSoundEnum8 object.

Error Codes

If the method fails, an error is raised and Err.Number may be set to
DSERR_OUTOFMEMORY.

Remarks

The DirectSoundEnum8 object returned by this method is used to enumerate the
DirectSoundCapture8 objects installed on the system.

See Also

DirectX8.GetDSEnum

DirectX8.GetDSEnum
#

Creates a DirectSoundEnum8 object.

object.GetDSEnum() As DirectSoundEnum8

Parts
object

Object expression that resolves to a DirectX8 object.

Return Values

Returns a DirectSoundEnum8 object.

Error Codes

If the method fails, an error is raised and Err.Number may be set to
DSERR_OUTOFMEMORY.

Remarks

The DirectSoundEnum8 object returned by this method is used to enumerate the
Microsoft® DirectSound® drivers installed on the system.

See Also

DirectX8.GetDSCaptureEnum

IDH_DirectX8.GetDSEnum_vbintro

in.doc – page 59

DirectX8.SetEvent
#

Sets the state of an event object to signaled.

object.SetEvent(_
 eventid As Long)

Parts
object

Object expression that resolves to a DirectX8 object.

eventid
Long value containing the event handle. This handle must have been created by
DirectX8.CreateEvent.

Error Codes

If the method fails, an error is raised and Err.Number is set.

Remarks

This method is used primarily for testing purposes. Microsoft® DirectX®
automatically sets all created event objects to be signaled when an appropriate event
occurs.

DirectXEvent8
#

The DirectXEvent8 class creates event objects used in Microsoft® DirectSound®,
DirectMusic®, DirectPlay, and DirectInput®. The purpose of this class is to provide a
callback method for handling notification events. DirectXEvent8 objects are created
by implementing the class in a form.

The DirectXEvent8 class has one method, DirectXEvent8.DXCallback.

DirectXEvent8.DXCallback
#

A callback routine for event handles.

object.DXCallback(_
 eventid As Long)

IDH_DirectX8.SetEvent_vbintro
IDH_DirectXEvent8_vbintro
IDH_DirectXEvent8.DXCallback_vbintro

in.doc – page 60

Parts
object

Object expression that resolves to a DirectXEvent8 object.

eventid
Long value containing the event handle. This handle must have been created by
DirectX8.CreateEvent.

Error Codes

If the method fails, an error is raised and Err.Number is set.

Remarks

When you implement DirectXEvent8 in a form, you must also supply an
implementation of the DirectXEvent.DXCallback method. The declaration and end
of the method are automatically placed in the Code window when you select
DirectXEvent8 in the Object box and DXCallback in the Procedures/Events box.
The method takes the following form:

Private Sub DirectXEvent8_DXCallBack(ByVal eventid as Long)

 ' Add your own event-handling code

 .

 .

 .

End Sub

The event handle passed to the method must have been created by
DirectX8.CreateEvent.

See Also

DirectX8.SetEvent

Further Information
You can find further explanations of the graphics and multimedia concepts and terms
discussed throughout the Microsoft® DirectX® documentation, as well as information
on Microsoft Windows® programming in general, in the following sources:

· Bargen, Bradley and Peter Donnelly, Inside DirectX, Microsoft Press®, 1998.

· Begault, Durand R., 3-D Sound for Virtual Reality and Multimedia, Academic
Press, 1994.

in.doc – page 61

· Blinn, James, Jim Blinn's Corner: A Trip Down the Graphics Pipeline, Morgan
Kaufmann, 1996.

· Dodge, Charles and Thomas A. Jerse, Computer Music: Synthesis, Composition,
and Performance, Schirmer Books, 1997 (2nd edition).

· Foley, James D., Computer Graphics: Principles and Practice, Addison-Wesley,
1991 (2nd edition).

· Hearn, Donald and M. Pauline Baker, Computer Graphics, Prentice-Hall, 1986.

· Kientzle, Tim, A Programmer's Guide to Sound, Addison-Wesley Developers
Press, 1998.

· Kovach, Peter J., Inside Direct3D, Microsoft Press, 2000.

· Petzold, Charles, Programming Windows 98, Microsoft Press, 1998 (5th edition).

· Thompson, Nigel, 3D Graphics Programming for Windows 95, Microsoft Press,
1996.

· Watt, Alan H., and Mark Watt, Advanced Animation and Rendering Techniques,
Addison-Wesley, 1992.

Additional sources for the concepts and terms associated with COM can be found in
the following sources:

· Brockschmidt, Kraig, Inside OLE 2, Microsoft Press, 1995 (2nd edition).

· Rogerson, Dale E., Inside COM, Microsoft Press, 1997.

	What’s New in DirectX 8.0
	Using the DirectX 8.0 Documentation
	DirectX 8.0 Components
	DirectX Tools
	DirectX Caps Viewer
	DirectX Control Panel Application
	DirectX Diagnostic Tool

	Programming DirectX with C/C++
	Using COM
	What is a COM Object?
	Objects and Interfaces
	GUIDs
	HRESULT Values
	The Address of a Pointer

	Creating a COM Object
	Using COM Interfaces
	Requesting Additional Interfaces

	Managing a COM Object's Lifetime
	Incrementing and Decrementing the Reference Count

	Using C to Access COM Objects
	Using Macros to Call DirectX COM Methods
	DirectX COM Documentation Conventions
	IUnknown Interface

	Using Callback Functions
	Implementing a Callback Function

	Version Checking
	Checking the Operating System Version

	Compiling DirectX Samples and Other DirectX Applications
	Preparing for Compilation
	Component Version Constants

	Debugging DirectX Applications
	Debug vs. Retail DLLs
	The DirectX 8.0 Error Handling Utility Library
	DirectX 8.0 Error Handling Functions
	DirectX 8.0 Error Handling Macros

	Programming DirectX with Visual Basic
	Referencing the Type Library
	Creating DirectX Objects
	Using GUIDs
	Passing Arrays to Methods
	Using Flags
	Using Bitmasks
	DirectX Enumerations
	The IUnknown Data Type
	Error Handling
	DirectX Class Reference

	Further Information

