
DirectPlay
The Microsoft® DirectPlay® application programming interface (API) is the
component of Microsoft DirectX® that enables you to write network applications such
as multiplayer games.

Like other components of DirectX, DirectPlay can be used with C, C++, and
Microsoft Visual Basic®.

For an overview of the organization of the DirectPlay Help, see Roadmap.

Roadmap
Information on Microsoft® DirectPlay® is presented in the following sections.

What's New in DirectPlay. New features and functionality of this component in
Microsoft DirectX® 8. If you've used DirectPlay before, read this section first because
this technology has been completely redesigned since DirectX 7.

Introduction to DirectPlay. An overview of what DirectPlay is and what it can do for
your application, together with a first look at some key objects and the steps involved
in creating a network application.

Understanding DirectPlay. A deeper look at the underlying mechanisms. This section
won't teach you how to implement a DirectPlay session, but it will help you
understand the application programming interface (API) when you get into the
details.

Using DirectPlay. A guide to using the API. You'll probably want to familiarize
yourself with the table of contents for this section and then refer to parts of it as you
need specific information. Use it in conjunction with the reference section.

[C++]
DirectPlay C++ Samples. A guide to the C/C++ sample applications in the SDK.

[Visual Basic]
DirectPlay Visual Basic Samples. A guide to the Visual Basic sample applications in
the SDK.

[C++]
DirectPlay C/C++ Reference. Detailed information for the DirectPlay C++ API.

in.doc – page 2

[Visual Basic]
DirectPlay Visual Basic Reference. Detailed information the DirectPlay Visual Basic
API.

What's New in DirectPlay
The networking component of Microsoft® DirectX® has undergone a major revision.
Microsoft DirectPlay® introduces a new set of interfaces that enable games to have
more direct access to the hardware, providing better performance.

The following list describes some of the new DirectPlay features.

[C++]
Interfaces have been completely rewritten.

The complexity of creating a networked application has been dramatically
simplified by separating the interfaces for creating peer-to-peer and client/server
sessions. The interfaces for creating DirectPlay transport sessions, which are
defined in the Dplay8.h header file, are now:

IDirectPlay8Peer
Provides methods for creating peer-to-peer sessions.

IDirectPlay8Client
Provides methods for creating the client-side portion of a client/server
application.

IDirectPlay8Server
Provides methods for creating the server-side portion of a client/server
application.

Lobbying is now independent from the rest of DirectPlay.
DirectPlay has removed the requirement that a lobby client work only with a
DirectPlay application. This will allow for either the lobby service provider or
the application to implement DirectPlay without concern for the other. Lobby
implementation is now separated into two simplified interfaces that are defined in
the Dplobby8.h header file.

IDirectPlay8LobbyClient
This interface is used to manage a lobby client and for enumerating and
launching lobby-aware applications.

IDirectPlay8LobbiedApplication
This interface is used to register a lobby launchable application with the
system so it can be lobby launched. It also is used to get the connection
information from the lobby to enable game launching without querying the
user.

Voice transmission has been added.

in.doc – page 3

DirectPlay Voice provides a set of interfaces to add real-time voice
communication to an application. The following interfaces are defined in the
Dvoice.h header file.

IDirectPlayVoiceClient
Provides methods to create and manage clients in a DirectPlay Voice session.

IDirectPlayVoiceServer
Provides methods to host and manage a DirectPlay Voice session.

IDirectPlayVoiceTest
Used to test DirectPlay Voice audio configurations.

Addressing information has moved from GUID-based data to URL-based data
format.

Previous versions of DirectPlay used binary chunks of data with GUID addresses
that were difficult to implement and that humans could not read. In DirectX 8.0,
DirectPlay introduces the representation of addresses in URL format. A set of
interfaces, defined in Dpaddr.h, is used to create and manipulate the new
addressing format.

IDirectPlay8Address
Provides generic addressing methods used to create and manipulate DirectPlay
addresses.

IDirectPlay8AddressIP
Provides IP provider-specific addressing services.

Higher scalability and better memory management have been added.
Increases in consumer bandwidth have dramatically affected network game
design and implementation. Improved DirectPlay thread-pool management
makes it easier to for the developer to design scalable, more robust applications
that can support massive multiplayer online applications.

[Visual Basic]
Objects have been completely rewritten.

The complexity of creating a networked application has been dramatically
simplified by separating the objects used for creating peer-to-peer and
client/server sessions. The objects for creating DirectPlay transport sessions are
now

DirectPlay8Peer
Provides methods for creating peer-to-peer sessions.

DirectPlay8Client
Provides methods for creating the client-side portion of a client/server
application.

DirectPlay8Server
Provides methods for creating the server-side portion of a client/server
application.

Lobbying is now independent from the rest of DirectPlay.

in.doc – page 4

DirectPlay has removed the requirement that a lobby client work only with a
DirectPlay application. This will allow for either the lobby service provider or
the application to implement DirectPlay without concern for the other. Lobby
implementation is now separated into two simplified objects.

DirectPlay8LobbyClient
This object is used to manage a lobby client and for enumerating and launching
lobby-aware applications.
DirectPlay8LobbiedApplication

This object is used to register a lobby launchable application with the system
so it can be lobby launched. It also is used to get the connection information
from the lobby to enable game launching without querying the user.

Voice transmission has been added.
DirectPlay Voice provides a set of objects to add real-time voice communication
to an application. The following objects are defined in the Dvoice.h header file.

DirectPlayVoiceClient
Provides methods to create and manage clients in a DirectPlay Voice session.

DirectPlayVoiceServer
Provides methods to host and manage a DirectPlay Voice session.

DirectPlayVoiceTest
Used to test DirectPlay Voice audio configurations.

Addressing information has moved from GUID-based data to URL-based data
format.

Previous versions of DirectPlay used binary chunks of data with GUID addresses
that were difficult to implement and that humans could not read. In DirectX 8.0,
DirectPlay introduces the representation of addresses in URL format. DirectPlay
provides an object that is used to create and manipulate the new addressing
format.

DirectPlay8Address
Provides generic addressing methods used to create and manipulate DirectPlay
addresses.

Higher scalability and better memory management have been added.
Increases in consumer bandwidth have dramatically affected network game
design and implementation. Improved DirectPlay thread-pool management
makes it easier to for the developer to design scalable, more robust applications
that can support massive multiplayer online applications.

Better support for Firewalls and Network Address Translators has been added.
Writing network games that traverse Network Address Translators (NATs),
Firewalls, and other Internet Connection Sharing (ICS) methods can be difficult,
particularly for non-guaranteed (UDP) traffic. Because DirectPlay 8.0 has been
developed with these issues in mind, it will support NAT solutions where
possible. The DirectPlay 8 TCP/IP service provider uses a single, developer-
selectable UDP port for game data, making it possible to configure firewalls and
NATs appropriately. Additionally, DirectPlay makes use of UDP so that, for

in.doc – page 5

client/server games, clients behind some NATs will be able to connect to games
without additional configuration.

Introduction To DirectPlay
The Microsoft® DirectPlay® API provides developers with the tools to develop
multiplayer applications such as games or chat clients. For simplicity, this
documentation will refer to all such applications as "games". A multiplayer
application has two basic characteristics:

· Two or more individual users, each with a game client on their computer.

· Network links that enable the users' computers to communicate with each other,
perhaps through a centralized server.

DirectPlay provides a layer that largely isolates your application from the underlying
network. For most purposes, your application can simply use the DirectPlay API, and
enable DirectPlay to handle the details of network communication. DirectPlay
provides many features that simplify the process of implementing many aspects of a
multiplayer application, including:

· Creating and managing both peer-to-peer and client/server sessions

· Managing users and groups within a session

· Managing messaging between the members of a session over different network
links and varying network conditions

· Enabling applications to interact with lobbies

· Enabling users to communicate with each other by voice

This documentation provides a high-level overview of the capabilities of DirectPlay.
Subsequent sections will take you into the details of how to use DirectPlay in your
multiplayer game.

· Creating and Managing Sessions

· DirectPlay Network Communication

· Communicating with DirectPlay Objects

· DirectPlay Lobby Support

· DirectPlay Voice Communication

Creating and Managing Sessions
A game session is an instance of a particular multiplayer game. A session has two or
more users playing simultaneously, each with the same game client on his or her
computer. A player is an entity in the game itself, and is defined by the particular
game. Each user may have more than one player in a game. However, the game
application must manage these players itself, using separate Microsoft® DirectPlay®
interfaces or objects for each player.

in.doc – page 6

The first step in creating a session is to collect a group of users. There are two basic
approaches:

· Many game sessions are arranged by a lobby application running on a remote
computer. This approach is used by most Internet-based games.

· It is also possible to arrange games by having the individual users' computers
communicate with each other. This approach is typically limited such situations
as a group of potential users that are all on the same LAN.

Once the session has been arranged, the game is launched and gameplay begins. As
the session proceeds, players may be eliminated from the session, or new players
added. The details are up to the individual game.

With a multiplayer game, each user's UI can be synchronized with that of all the other
users in the session. Managing a multiplayer session thus requires a continual stream
of messages to and from each user. For example, every time a player moves, a
message must be sent to update that player's position on all the other game clients in
the session. The core of DirectPlay is that part of the API that supports efficient and
flexible messaging between all the computers in a session.

There are two basic ways to structure the messaging topology of a session: peer-to-
peer and client/server. Both topologies have their advantages and limitations, so you
will need to evaluate which is most appropriate for your game.

This section discusses

· Peer-to-Peer Topology

· Client/Server Topology

Peer-to-Peer Topology
A peer-to-peer game consists of the individual players' computers, connected by
network links. Schematically, the topology of a four-player peer-to-peer game looks
like:

Gameplay is handled by having each user's game client communicate directly with
the other users' clients. For instance, when one user moves, the game client must send
three update messages, one to each of the other users' computers.

in.doc – page 7

A peer-to-peer game is normally arranged and launched through a lobby client
application that resides on the user's computer. There are two basic ways the lobby
client can arrange a session:

· The lobby client communicates directly with other potential users' lobby clients.
This approach can be used, for instance, to arrange a game among users on the
same LAN subnet.

· The lobby client acts as a link to lobby server application running on a remote
computer. This is the way Internet-based games are normally arranged.

Once a session has been arranged and launched, most or all of the messaging will be
user to user. If a lobby server is involved, it will only be handling such tasks as
updating its list of session members when a player leaves the game, or enabling a new
user to request entry to the session. Otherwise, the server stays in the background, and
is typically not even aware of most of the messages that are being sent.

Because the server is either non-existent or at least not directly involved with the
game play, one user is designated as the game host. They are responsible for handling
logistical details such as bringing new players into an ongoing session.

Peer-to-peer games have the advantage of simplicity. All that is needed is a collection
of players with game clients, and a way to organize a session. The primary drawback
of the peer-to-peer topology is scalability. As the number of users increase, the
number of messages needed to facilitate game play increases geometrically. The
maximum number of users that can be accommodated depends on the game and the
network bandwidth, but is typically no more than 20-30.

Client/Server Topology
A client/server game consists of the individual players' computers, connected to a
central server computer. Schematically, the topology of a four-player peer-to-peer
game looks like:

Gameplay is handled by having each user's game client communicate with the server.
The server is responsible for passing information on to the other users. For instance,
when one user moves, they send a message to the server. The server then sends
messages to the other players to inform them of a change in game state. The server
can have a number of responsibilities:

in.doc – page 8

· Act as the session's messaging hub. Each computer only needs to send messages
to the server. The server handles the logistics of synchronizing all the other users.
This arrangement can substantially reduce message traffic, especially for large
games.

· Host the game. The server normally takes care of the tasks that must be handled
by the session host in a peer-to-peer game.

· Support many aspects of the game. The server often does much more than
support game logistics. With many games, especially large ones, much of the
processing that maintains the "game universe" takes place on the server. The
game clients are primarily responsible for handling the user's UI.

A client/server game is normally arranged and launched through a lobby client
application that resides on the user's computer. The lobby client acts as a link to a
lobby server application that is normally running on a the same remote computer that
is hosting the game. Once the game has been launched, the game server application
becomes the host, and handles tasks such as admitting new users to the game.

There are a number of advantages to client/server games:

· They are more efficient, especially for large-scale games. In particular, the scale
much better than peer-to-peer games, because additional players only cause a
linear increase in the messaging traffic. The client/server topology is necessary
for massively-multiplayer games.

· You not limited by the processing power of your users' computers. You can
locate much of the processing required to maintain a large complex "game
universe" on a single powerful computer, and let the users' computers handle the
UI.

· You can control key aspects of your game at a central site. For instance, you can
often update the game or fix bugs by simply modifying the server application,
avoiding the need to update large numbers of game clients.

However, once you have developed and shipped a peer-to-peer game, you are
essentially finished. The game clients are largely self-sufficient. With a client/server
game, you have an ongoing commitment to your users that goes beyond providing
normal support services. You must also provide and maintain a game server computer
and the associated software, along with the network links to handle all the messaging,
for the lifetime of the application. In the case of massively multiplayer games, you
may need to operate your servers for extended periods with few or no breaks in
service, or risk angering users by disrupting their gameplay.

DirectPlay Network Communication
The primary function of Microsoft® DirectPlay® is to provide you with efficient and
flexible messaging support that largely isolates your application from the underlying
network hardware and software. If you need to send a status update, you can simply
call the relevant DirectPlay API, regardless of what kind of network link is involved.

in.doc – page 9

DirectPlay network service providers support communication over TCP/IP, IPX,
modem, and serial links.

This section discusses.

· DirectPlay Transport Protocol

· DirectPlay Addresses

Notes

DirectPlay does not support secure communications.

To use modems on Microsoft Windows® 95 systems, you must install version 2.0 of
the Telephony API (TAPI). You can download TAPI 2.0 from
http://www.microsoft.com.

DirectPlay Transport Protocol
The core of the Microsoft® DirectPlay® networking capabilities is the DirectPlay
protocol. This transport-layer protocol has been completely overhauled for DirectPlay
8, and is now used for all messaging. The DirectPlay protocol is focused on making it
simple for you to send data from the sending application to the target application,
without needing to worry about what happens in between. The protocol offers a
number of features that are tailored to the needs of multiplayer games, including:

· Reliable and unreliable delivery of messages. Reliable messages will be resent
until the target application receives them. You can assign the delivery type on a
message-by-message basis.

· Sequential and non-sequential delivery of messages. Sequential messages will be
passed to the target application in the order they were sent.

· Message fragmentation and reassembly. If message size exceeds the capacity of a
particular network, DirectPlay automatically fragments and reassembles the
message.

· Congestion control. DirectPlay automatically throttles your outgoing messages to
a level that can be handled by the target. This feature prevents you from flooding
the target with more messages than it can process.

· Send prioritization. To ensure that the most important messages get sent first,
DirectPlay enables you to designate messages as low, medium, or high priority.
The high priority messages are sent to the front of the output queue, followed by
medium and low priority messages.

· Message timeouts. To prevent the outgoing message queue from being clogged
with messages that have been superseded by more recent messages, DirectPlay
enables you to assign a timeout value to all messages. When a message times out,
it is removed from the outgoing message queue, regardless of whether it has been
sent or not.

in.doc – page 10

DirectPlay Addresses
In order to deliver messages, each participant in a multiplayer game must have a
unique address. Addresses can refer either to the computer that your application is
running on (device address), or a computer that your application needs to
communicate with (host address).

Microsoft® DirectPlay® addresses are in the form of URL strings. These strings
consist of a scheme, scheme separator, and data string in the following general
format.

x-directplay:/[data string]

The data string contains several elements that specify everything that is needed to
enable communication to take place between sender and target, over a variety of
different types of network link.

In use, the URL strings are embedded in a DirectPlay address object which is passed
to or from DirectPlay API methods. You have the option of either manipulating the
URL string directly, or using the methods exposed by the address object to handle
each element of the data string separately.

Communicating with DirectPlay Objects
Microsoft® DirectPlay® essentially consists of a collection of COM objects. Each
object exposes one or more interfaces that enable you to control various aspects of
DirectPlay. For instance, the DirectPlay peer object (CLSID_DirectPlay8Peer) is used
to manage peer-to-peer games.

[C++]
You communicate with a DirectPlay object by calling the methods exposed by its
interfaces. For instance, to send some data to another user in a peer-to-peer game, you
would send a message by calling the IDirectPlay8Peer::SendTo method. DirectPlay
then takes care of getting the message to its target.

[Visual Basic]
You communicate with a DirectPlay object by calling the methods exposed by its
interfaces. For instance, to send some data to another user in a peer-to-peer game, you
would send a message by calling the DirectPlay8Peer.SendTo method. DirectPlay
then takes care of getting the message to its target.

[C++]
DirectPlay communicates with your application through one or more callback
functions. These functions are similar in principle to the familiar Window procedure.
Your application implements the callback function and passes a pointer to the

in.doc – page 11

function to DirectPlay during initialization. When DirectPlay needs to communicate
with your application, it calls the callback function and passes in two key items of
information:

· A message ID that identifies the message type

· A pointer to a block of data, typically a structure, that provides any needed
details.

For instance, when the message sent in the above example arrives at its target, the
target application's callback function will receive a message with a
DPNMSGID_RECEIVE message id, indicating that a message has arrived from
another user. The accompanying structure contains the data.

Because much of DirectPlay messaging is multithreaded, it is critical that callback
functions be properly implemented.

[Visual Basic]
DirectPlay communicates with your application through one or more message
handlers. A message handler is an object that DirectPlay calls to notify your
application of various events. The documentation describes the methods that are
exposed by the object, but you must implement all of the objects methods in your
application. You then register the object during startup, and DirectPlay will call the
object's methods to notify you when an event has occurred. Additional information
about the event is passed through the method's parameters.

DirectPlay Lobby Support
A lobby is an application whose primary purpose is to enable players to meet and
arrange games. It is typically located on a remote computer, and accessed over the
Internet. Lobby servers often also perform a variety of other functions, such as
hosting chat rooms, posting news and information, and selling merchandise. While
lobby servers are convenient and commonly used to arrange multiplayer games, they
aren't required. Multiplayer games can also be arranged by direct communication
between lobby clients.

There are normally three components that are needed to enable a game to interact
with a lobby:

· A lobby server

· A lobby client

· A lobbyable game.

Microsoft® DirectPlay® does not specify how you should implement a lobby server
application. Instead, DirectPlay provides support for a lobby client. A lobby client is
an application that is implemented by a lobby server vendor, and installed on each
user's system. It serves as a link between the user and the lobby. While you could

in.doc – page 12

handle such communication directly, you would have to know the specific
implementation details of every lobby that might launch your game.

The lobby client application handles the details of communicating with its associated
lobby server, using whatever protocols are appropriate. The lobby client
communicates with the user and their game applications through a DirectPlay
interface. DirectPlay then passes messages to the application. The application can also
use a DirectPlay interface to pass messages to the lobby client.

A lobby can launch virtually any application. However, the application must have
some specific lobby-aware components to take full advantage of lobby-launching. In
particular, a lobbyable application can communicate with the lobby client throughout
the course of the session. If an application is registered as lobbyable, the lobby client
also automatically receives updates for various changes in game status, such as host
migration.

DirectPlay Voice Communication
The current trend toward team-based multiplayer games makes player-to-player
communication an essential part of gameplay. Historically this has been confined to
text-based communication, where players type out the messages to their teammates.
Although suitable for slower, turn-based games, text-based communication is at best
an inconvenience for real-time games. Not only does it put slow typists at a
disadvantage during gameplay but also it is a significant break in the reality that
games attempt to create for the player. An obvious solution to the problem is the use
of speech as a means for communication. It requires no training and increases the
immersion of the game itself.

The windows platform provides all the tools required to provide real-time voice
conferencing to video game developers, but it requires a significant amount of effort
on the part of the game developer. This, combined with the cost and difficulty of
obtaining the rights to compression technology capable of handling extremely low
bandwidth situations, has prevented the wide-spread use of voice in games.

Microsoft® DirectPlay® 8.0 provides the game developer with a robust real-time voice
conferencing system that requires a minimal amount of effort to use.

Understanding DirectPlay
This section of the Microsoft® DirectPlay® documentation provides the basic
background you need to understand how to use the DirectPlay API in your
application.

· Peer-to-Peer Sessions

in.doc – page 13

· Client/Server Sessions

· DirectPlay Lobbies

· Basic Networking

· DirectPlay Callback Functions and Multithreading Issues

· Understanding DirectPlay Voice

Peer-to-Peer Sessions
A peer-to-peer session consists of a collection of users connected by a network. While
a lobby server may be used to arrange and launch the game, the messaging needed to
run the game is sent directly from one user's to another. Any communication with the
lobby server is for such limited purposes as updating the list of participants.

With a peer-to-peer game, everything that is needed to run the game is part of the
client software. With no server involved, all the processing needed to create and
maintain the game universe must be handled by the client applications. This
document discusses the basic principles of a lobbyable Microsoft® DirectPlay® peer-
to-peer game. For a simple working example of a peer-to-peer application, see the
SimplePeer application included with the SDK.

· Initiating a Peer-to-Peer Session

· Selecting a Service Provider for a Peer-to-Peer Session

· Selecting a Host for a Peer-to-Peer Session

· Connecting to a Peer-to-Peer Session

· Managing a Peer-to-Peer Session

· Host Migration

· Normal Peer-to-Peer Game Play

· Leaving a Peer-to-Peer Session

· Terminating a Peer-to-Peer Session

Initiating a Peer-to-Peer Session
A peer-to-peer game can be launched directly by the user, or lobby-launched by a
lobby client application that resides on the user's computer. This documentation will
assume that the game is lobbyable, and can communicate with the lobby client.

[C++]
One of the first steps you should take is to determine whether your game was lobby-
launched. To do so, create and initialize a lobbied application object
(CLSID_DirectPlay8LobbiedApplication). When you do so, you pass the object a
pointer to your lobbied application message handler. This message handler receives
messages directly from the lobbied application object, and indirectly from the lobby
client and the lobby.

in.doc – page 14

· If the application was lobby-launched, the
IDirectPlay8LobbiedApplication::Initialize method returns a connection
handle for the lobby client and a DPL_MSGID_CONNECT message is sent to
your lobbied application message handler. The pdplConnectionSettings member
of the associated structure points to a DPL_CONNECTION_SETTINGS
structure that contains connection information such as address objects for the
members of the session.

· If the application was not lobby launched, you will receive neither the connection
handle, nor the message. However, if you call
IDirectPlay8LobbiedApplication::SetAppAvailable, a lobby client can later
connect your running application to a session by sending your lobbied
application message handler a DPL_MSGID_CONNECT message.

You should also create and initialize a peer object (CLSID_DirectPlay8Peer). This
object will be your primary means of communicating with Microsoft® DirectPlay®,
and the other users in the session. If you want to have multiple players in the session,
you must create a separate instance of this object for each player.

[Visual Basic]
One of the first steps you should take is to determine whether your game was lobby-
launched. To do so, create a DirectPlay8LobbiedApplication object and a
DirectPlay8LobbyEvent object. Register the DirectPlay8LobbyEvent object with
Microsoft® DirectPlay® by calling
DirectPlay8LobbiedApplication.RegisterMessageHandler. The
DirectPlay8LobbyEvent object is essentially an event handler that receives
notifications directly from the lobbied application object, and indirectly from the
lobby client and the lobby. It is not provided by DirectPlay and must be implemented
by your application. See the reference documentation for details.

If the application was lobby-launched, DirectPlay will call your
DirectPlay8LobbyEvent.Connect method. The dlNotify parameter will contain a
DPL_MESSAGE_CONNECT type with connection information. such as address
objects for the members of the session.

You should also create a DirectPlay8Peer object and register a DirectPlay8Event
notification handler object by calling DirectPlay8Peer.RegisterMessageHandler.
These objects will be your primary means of communicating with DirectPlay and the
other users in the session. If you want to have multiple players in the session, you
must create a separate instance of these objects for each player.

in.doc – page 15

Selecting a Service Provider for a Peer-to-Peer
Session

The service provider is your network connection. Most games use either the TCP/IP
or modem service provider, but Microsoft® DirectPlay® also provides support for
serial and IPX connections.

[C++]
If your user was connected to the session by a lobby client, you can determine the
appropriate service provider by examining the DPL_CONNECTION_SETTINGS
structure that accompanies the DPL_MSGID_CONNECT message. Otherwise, you
may need to determine which service provider to use, perhaps by querying the user.
You can use the peer object's IDirectPlay8Peer::EnumServiceProviders method to
enumerate the available service providers. See Using DirectPlay Enumerations for
further discussion.

[Visual Basic]
If your user was connected to the session by a lobby client, you can determine the
appropriate service provider by examining the DPL_MESSAGE_CONNECT
structure that accompanies the DirectPlay8LobbyEvent.Connect method.
Otherwise, you may need to determine which service provider to use, perhaps by
querying the user. You can also use the peer object's
DirectPlay8Peer.GetServiceProvider enumerate the available service providers.

Once you have selected a service provider, you can then create a DirectPlay address
object for your user (a device address). You will use this address to identify your
device with a number of DirectPlay methods. See DirectPlay Addressing for a
detailed discussion of DirectPlay addresses and address objects.

Selecting a Host for a Peer-to-Peer Session

[C++]
Although most aspects of peer-to-peer games can be handled by the various users'
communicating directly with each other, there are some tasks that must have a single
owner. These tasks are handled by the game host. To join a session, you must know
the address of the session's host. A common way to select a host is through a lobby
server. In that case, when a user's application is connected to the session, the
connection settings that you receive with the DPL_MSGID_CONNECT message
include the host's address object. To find out who the session host is:

· Check the dwFlags member of the DPL_CONNECTION_SETTINGS structure
that is returned. If that member is set to DPLCONNECTSETTINGS_HOST,
your system is the host.

in.doc – page 16

· If the DPLCONNECTSETTINGS_HOST flag is not set, then you can get the
address of the host from the pdp8HostAddress member.

You can also create a broadcast session, perhaps on a LAN subnet, by advertising
yourself as a session host. To do so call IDirectPlay8Peer::SetPeerInfo to set the
player's name and then call IDirectPlay8Peer::Host to advertise yourself as a
potential host. You specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC structure that is passed through the pdnAppDesc
parameter of IDirectPlay8Peer::Host.

To allow your user to examine the available sessions and hosts, you can enumerate
the available hosts by calling IDirectPlay8Peer::EnumHosts. Once the user has
selected a session, you can request a connection.

[Visual Basic]
Although most aspects of peer-to-peer games can be handled by the various users'
communicating directly with each other, there are some tasks that must have a single
owner. These tasks are handled by the game host. To join a session, you must know
the address of the session's host. A common way to select a host is through a lobby
server. In that case, when a user's application is connected to the session, the
connection settings that you receive when Microsoft® DirectPlay® calls your
DirectPlay8LobbyEvent.Connect method include the host's address object. To find
out who the session host is:

· Check the dwFlags member of the DPL_CONNECTION_SETTINGS structure
that is contained in the DPL_MESSAGE_CONNECTION_SETTINGS passed
as the dlNotify parameter. If that member is set to
DPLCONNECTSETTINGS_HOST, your system is the host.

· If the DPLCONNECTSETTINGS_HOST flag is not set, then you can get the
address of the host from the pdp8HostAddress member.

You can also create a broadcast session, perhaps on a LAN subnet, by advertising
yourself as a session host. To do so call DirectPlay8Peer.SetPeerInfo to set the
player's name and then call DirectPlay8Peer.Host to advertise yourself as a potential
host. You specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC type that is passed through the pdnAppDesc
parameter of IDirectPlay8Peer.Host.

To allow your user to examine the available sessions and hosts, you can enumerate
the available hosts by calling DirectPlay8Peer.EnumHosts. Once the user has
selected a session, you can request a connection.

Connecting to a Peer-to-Peer Session

[C++]

in.doc – page 17

Unless you are the session host, you will need to connect your player to the session.
To do so, you must have the address of the session host. If your application was
connected by a lobby client, you can obtain the host's address by calling
IDirectPlay8LobbiedApplication::GetConnectionSettings. You can also obtain the
address by enumerating the available hosts. The information returned by the
enumeration includes each host's addresses, and a DPN_APPLICATION_DESC
structure that describes the associated session.

To ask to join a session, call IDirectPlay8Peer::SetPeerInfo to set your player's
name, and then call IDirectPlay8Peer::Connect with the selected host's address to
connect to the session.

When a player attempts to join a session, the host receives a
DPN_MSGID_INDICATE_CONNECT message. To accept the player into the
session, return S_OK. Returning any other value rejects the request. In either case, the
player will receive a DPN_MSGID_CONNECT_COMPLETE message that
contains your response. If the host accepted the connection, the hResultCode
member of the associated structure will be set to S_OK. If not, hResultCode will be
set to DPNERR_HOSTREJECTEDCONNECTION.

The host can define a player context value when they receive the
DPN_MSGID_INDICATE_CONNECT message, however the player ID will not
yet be defined. The host can also wait to define a player context value until they
receive a DPN_MSGID_CREATE_PLAYER message, which includes the player
ID. Ordinary players to not receive a DPN_MSGID_INDICATE_CONNECT
message.

Once the new player is connected, each member of the session, including the host,
receives a DPN_MSGID_CREATE_PLAYER message announcing the new player.
The structure associated with the message contains the player ID that you will use to
send messages to that player. Peers that are not hosts must define the player context
value when they handle this message. Once a peer or host has returned from handling
this message, that player context value is set for the session, and cannot be changed.
See Using Player Context Values for more discussion of player context values.

[Visual Basic]
Unless you are the session host, you will need to connect your player to the session.
To do so, you must have the address of the session host. If your application was
connected by a lobby client, you can obtain the host's address by calling
DirectPlay8LobbiedApplication.GetConnectionSettings. You can also obtain the
address by enumerating the available hosts. The information returned by the
enumeration includes each host's addresses, and a DPN_APPLICATION_DESC
structure that describes the associated session.

To ask to join a session, call DirectPlay8Peer.SetPeerInfo to set your player's name,
and then call DirectPlay8Peer.Connect with the selected host's address to connect to
the session.

in.doc – page 18

When a player attempts to join a session, the Microsoft® DirectPlay® calls the host's
DirectPlay8Event.IndicateConnect method. To accept the player into the session,
set the method's fRejectMsg parameter to False before returning. Setting fRejectMsg
to True rejects the request. In either case, the player's
DirectPlay8Event.ConnectComplete method will be called with the response. If the
host accepted the connection, the hResultCode member of the
DPNMSG_CONNECT_COMPLETE type will be set to 0. If the request was
rejected or failed for some other reason, hResultCode will be set to an error code.

Once the new player is connected, DirectPlay announces the new player by calling
DirectPlay8Event.CreatePlayer for each member of the session, including the host.
The lPlayerID parameter contains the player ID that you will use to send messages to
that player.

Managing a Peer-to-Peer Session
The session host is responsible for managing the session, including:

· Managing the list of session members and their network addresses

· Deciding whether a new user is allowed to join the session.

· Notifying all members when a new user joins the session, and passing them the
new user's address.

· Providing new users with the current game state

· Notifying all users when a user leaves the session

[C++]
When players attempt to join a session, the host will receive a
DPN_MSGID_INDICATE_CONNECT message. To accept the player into the
session return S_OK. Returning any other value rejects the request. In either case, the
player will receive a DPN_MSGID_CONNECT_COMPLETE message that
contains your response.

The host can remove a player from the session by calling
IDirectPlay8Peer::DestroyPeer. Other members of the session cannot call this
method successfully. If you want to allow players to request that another player be
removed from the session, you must send the request to the host with normal
Microsoft® DirectPlay® messaging, and have the host handle the request.

[Visual Basic]
When players attempt to join a session, Microsoft® DirectPlay® will call the host's
DirectPlay8Event.IndicateConnect method. To accept the player into the session set
fRejectMsg to False. Setting fRejectMsg to any other value rejects the request. In
either case, DirectPlay calls the player's DirectPlay8Event.ConnectComplete
method with the response to the request.

in.doc – page 19

The host can remove a player from the session by calling
DirectPlay8Peer.DestroyPeer. Other members of the session cannot call this method
successfully. If you want to allow players to request that another player be removed
from the session, you must send the request to the host, and have the host handle the
request.

Host Migration
While the host must be one of the initial members of the session, they may choose to
leave before session is finished. When the host leaves the session, there are two
possible outcomes :

· The session terminates.

· The host migrates, and another user becomes host.

[C++]
Sessions may or may not permit host migration. To enable host migration, the session
organizer must set the DPNSESSION_MIGRATE_HOST flag in the dwFlags
member of the DPN_APPLICATION_DESC structure when they set up the game.
If this flag is not set, the session terminates when the host leaves.

If the DPNSESSION_MIGRATE_HOST flag is set, the host can still force the
session to terminate by calling IDirectPlay8Peer::TerminateSession.

If DPNSESSION_MIGRATE_HOST flag is set and the host leaves the session,
Microsoft® DirectPlay® will select a new session host. All remaining session
members will receive a DPN_MSGID_HOST_MIGRATE message that includes
the ID of the new host.

[Visual Basic]
Sessions may or may not permit host migration. To enable host migration, the session
organizer must set the DPNSESSION_MIGRATE_HOST flag in the dwFlags
member of the DPN_APPLICATION_DESC type when they set up the game. If this
flag is not set, the session terminates when the host leaves or loses their connection.

If the DPNSESSION_MIGRATE_HOST flag is set, the host can still force the
session to terminate by calling DirectPlay8Peer.TerminateSession.

If DPNSESSION_MIGRATE_HOST flag is set and the host leaves the session,
Microsoft® DirectPlay® will select a new session host. DirectPlay will call the
DirectPlay8Event.HostMigrate method of all remaining session members with the
ID of the new host.

in.doc – page 20

Normal Peer-to-Peer Game Play
In Microsoft® DirectPlay®, a message is essentially a block of game-related data that
you send to one or more members of the session. DirectPlay does not specify the
contents or format of the data block, it just provides a mechanism to transmit the data
from one user to another. Once the game is underway, each session member will
normally send a constant stream of messages to all other members of the session for
the duration of the game. The primary purpose of these messages is to keep the game
state synchronized, so that each user's application displays the same UI. However,
messages can also be used for a variety of other game-specific purposes.

For many games, especially rapidly changing ones, you may have to manage your
messaging carefully. DirectPlay throttles outgoing messages to a level that can be
handled by the target. You will have be careful that you do not send messages too
rapidly, and ensure that the most important messages get through. See Basic
Networking for a discussion of how to effectively handle DirectPlay messaging.

[C++]
To send a message to another session member, call IDirectPlay8Peer::SendTo. That
member will receive a DPN_MSGID_RECEIVE message with the data. To send a
message to a specific player, set the dpnid parameter to the player ID that you
received with the associated DPN_MSGID_CREATE_PLAYER message. You can
also send a message to every player in the session by setting dpnid to
DPNID_ALL_PLAYERS_GROUP. You can also define groups of players, and use a
single SendTo call to send a message to all members of a group.

Note
You can also use the IDirectPlay8Peer::SetPeerInfo method to send
information to other users. They will receive the information with a
DPN_MSGID_PEER_INFO message. However, this way of transmitting
information is not very efficient, and should not be used for normal messaging.

[Visual Basic]
To send a message to another session member, call DirectPlay8Peer.SendTo.
DirectPlay will call that members DirectPlay8Event.Receive method with the data.
To send a message to a specific player, set the idSend parameter to the player ID that
you when your DirectPlay8Event.CreatePlayer method was called. You can also
send a message to every player in the session by setting idSend to
DPNID_ALL_PLAYERS_GROUP. You can also define groups of players, and use a
single SendTo call to send a message to all members of a group.

Note
You can also use the DirectPlay8Peer.SetPeerInfo method to send information
to other users. DirectPlay will call their DirectPlay8Event.InfoNotify method
with the information. However, this way of transmitting information is not very
efficient, and should not be used for normal messaging.

in.doc – page 21

Using Groups

[C++]
Many games allow players to be organized into groups. For instance, strategy games
typically allow individual players to be organized into groups that can then be
directed as a single entity. Microsoft® DirectPlay® also allows the formation of groups
of players. DirectPlay groups are essentially a way to simplify your messaging. Once
you have defined a group, you can send a message to every group member with a
single call to IDirectPlay8Peer::SendTo. While DirectPlay groups normally
correspond to the groups that are defined by the game, you are free to create a group
for any reason.

To create a DirectPlay group, call IDirectPlay8Peer::CreateGroup All session
members will then receive a DPN_MSGID_CREATE_GROUP message with the
details. The message will include a group ID that is used to send messages to the
group.

Once the group is created, you then add players by calling
IDirectPlay8Peer::AddPlayerToGroup. Session members will then receive a
DPN_MSGID_ADD_PLAYER_TO_GROUP message with the IDs of the group
and the player that was just added.

Once the group is established, you can send data to the group by calling
IDirectPlay8Peer::SendTo, with the dpnid parameter set to the group ID. All group
members will then receive a DPN_MSGID_RECEIVE message with the data.

To remove a player from a group, call
IDirectPlay8Peer::RemovePlayerFromGroup. The session members will receive a
DPN_MSGID_DESTROY_PLAYER message with the player's ID.

Finally, when you no longer need the group, you can destroy it by calling
IDirectPlay8Peer::DestroyGroup All session members will then receive a
DPN_MSGID_DESTROY_GROUP message with the group ID.

[Visual Basic]
Many games allow players to be organized into groups. For instance, strategy games
typically allow individual players to be organized into groups that can then be
directed as a single entity. Microsoft® DirectPlay® also allows the formation of groups
of players. DirectPlay groups are essentially a way to simplify your messaging. Once
you have defined a group, you can send a message to every group member with a
single DirectPlay8Peer.SendTo. While DirectPlay groups normally correspond to
the groups that are defined by the game, you are free to create a group for any reason.

To create a DirectPlay group, call DirectPlay8Peer.CreateGroup. DirectPlay will
call all session members' DirectPlay8Event.CreateGroup method with the details.

in.doc – page 22

The method's lGroupID parameter will be set to the group ID that you can use to send
messages to the group.

Once the group is created, you then add players by calling
DirectPlay8Peer.AddPlayerToGroup. DirectPlay will then call all members'
DirectPlay8Event.AddRemovePlayerGroup with the IDs of the group and the
player that was just added.

Once the group is established, you can send data to the group by calling
DirectPlay8Peer.SendTo, with the idSend parameter set to the group ID. DirectPlay
will call all group members' DirectPlay8Event.Receive method with the data.

To remove a player from a group, call DirectPlay8Peer.RemovePlayerFromGroup.
DirectPlay will call the session members'
DirectPlay8Event.AddRemovePlayerGroup method with the player's ID.

Finally, when you no longer need the group, you can destroy it by calling
DirectPlay8Peer.DestroyGroup. DirectPlay will call all session members'
DirectPlay8Event.DestroyGroup method with the group ID.

Leaving a Peer-to-Peer Session

[C++]
To leave a session, terminate the connection by calling IDirectPlay8Peer::Close.
The session members will be notified with a DPN_MSGID_DESTROY_PLAYER
message.

[Visual Basic]
To leave a session, terminate the connection by calling DirectPlay8Peer.Close.
Microsoft® DirectPlay® will call the session members
DirectPlay8Event.DestroyPlayer method with the lPlayerID parameter set to the
player's ID.

If you are the session host, leaving also terminates the session unless you configured
the session to allow host migration. See Host Migration for details.

Terminating a Peer-to-Peer Session

[C++]
When the session is over, the host should terminate the session by calling
IDirectPlay8Peer::TerminateSession. This method terminates the session even if
host-migration is enabled. All session members will be notified by a
DPN_MSGID_TERMINATE_SESSION message. You should then perform any

in.doc – page 23

necessary cleanup. To start another session, you must first call
IDirectPlay8Peer::Close, and then IDirectPlay8Peer::Initialize.

If you registered your application as available for connection by calling
IDirectPlay8LobbiedApplication::SetAppAvailable, a lobby client can offer to
connect you to a new session by sending your lobbied application message handler a
DPL_MSGID_CONNECT message. You must have first called
IDirectPlay8Peer::Close and IDirectPlay8Peer::Initialize.

[Visual Basic]
When the session is over, the host should terminate the session by calling
DirectPlay8Peer.TerminateSession. This method terminates the session even if
host-migration is enabled. Microsoft® DirectPlay® will notify all session members by
calling their DirectPlay8Event.TerminateSession method. You should then perform
any necessary cleanup. To start another session, you must first call
DirectPlay8Peer.Close, and then DirectPlay8Peer.RegisterMessageHandler.

If you registered your application as available for connection by calling
DirectPlay8LobbiedApplication.SetAppAvailable a lobby client can offer to
connect you to a new session by calling your DirectPlay8LobbyEvent.Connect
method. You must have first called DirectPlay8Peer.Close and
DirectPlay8.RegisterMessageHandler.

Client/Server Sessions
A client/server session consists of a collection of players, or clients, connected to a
central server. As far as Microsoft® DirectPlay® is concerned, a client has no
knowledge of any other clients, only the server. The messaging needed to run the
game is between the individual clients and the server. DirectPlay does not provide
direct client-to-client messaging, as it does for peer-to-peer sessions.

A client/server session requires two distinctly different applications:.

· The server application runs on a remote server. At a minimum, it serves as a
central messaging hub and game host. The server must receive and handle all
incoming messages from the clients, and send appropriate messages back out.
Any transfer of data from one client to another must be handled by the server
application.

· A client application runs on each players' computer. The primary function of this
application is to handle the UI, and keep the player's game state synchronized
with the server.

There are certain aspects of the session that can be handled by only one of these
applications. For instance, updating a player's video display can only be done by the
client application. However, many aspects of the processing needed to maintain the
game universe can, at least in principle, be done by either application. Writing an

in.doc – page 24

effective client/server game requires some careful consideration of how to divide the
processing chores between the two applications.

This document describes the basic principles of client server games, and outlines how
to implement client and server applications.

· Initiating a Client/Server Session

· Selecting a Service Provider for a Client

· Selecting a Client/Server Host

· Connecting to a Client/Server Session

· Managing a Client/Server Session

· Normal Client/Server Game Play

· Leaving a Client/Server Session

· Terminating a Client/Server Session

Initiating a Client/Server Session
A client/server game can be launched through a lobby, or directly by the server
application.

The Server Application

Client/server games are often arranged through lobbies. The most straightforward
way to launch the server is to implement it as a lobbyable application. This approach
provides a way to launch the server, and supports communication between server and
lobby during the course of the session. See DirectPlay Lobbies for further discussion.

A server can also be directly launched, and then advertise itself as available and wait
for clients to connect. See Selecting a Client/Server Host for details.

[C++]
Once the server application has been launched, it should initialize itself by calling
IDirectPlay8Server::Initialize. As with other similar Microsoft® DirectPlay®
methods, the primary purpose of initialization is to provide DirectPlay with a pointer
to your callback message handler. You should also call
IDirectPlay8Server::SetServerInfo to describe the current game. Clients cannot
connect to a server until this method has been called.

[Visual Basic]
Once the server application has been launched, it should register it's
DirectPlay8Event notification handler object. The DirectPlay8Event object is
essentially an event handler that receives notifications from Microsoft® DirectPlay®.
It is not provided by DirectPlay and must be implemented by your application. See
the reference documentation for details. You should also call

in.doc – page 25

DirectPlay8Server.SetServerInfo to describe the current game. Clients cannot
connect to a server until this method has been called.

The Client Application

[C++]
One of the first steps you should take is to determine whether your game was lobby-
launched. To do so, create and initialize a lobbied application object
(CLSID_DirectPlay8LobbiedApplication). When you do so, you pass the object a
pointer to your lobbied application message handler. This message handler receives
messages directly from the lobbied application object, and indirectly from the lobby
client and the lobby.

· If the application was lobby-launched, the
IDirectPlay8LobbiedApplication::Initialize method returns a connection
handle for the lobby client and a DPL_MSGID_CONNECT message is sent to
your lobbied application message handler. The pdplConnectionSettings member
of the associated structure points to a DPL_CONNECTION_SETTINGS
structure that contains connection information such as an address object for the
server.

· If the application was not lobby launched, you will receive neither the connection
handle, nor the message. However, if you call
IDirectPlay8LobbiedApplication::SetAppAvailable, a lobby client can later
connect your running application to a session by sending your lobbied
application message handler a DPL_MSGID_CONNECT message.

You should also create and initialize a client object (CLSID_DirectPlay8Client). This
object will be your primary means of communicating with Microsoft® DirectPlay®
and the server. If you want to have multiple players in the session, you must create a
separate instance of this object for each player.

[Visual Basic]
One of the first steps you should take is to determine whether your game was lobby-
launched. To do so, create a DirectPlay8LobbiedApplication object and a
DirectPlay8LobbyEvent object. Register the DirectPlay8LobbyEvent object with
Microsoft® DirectPlay® by calling
DirectPlay8LobbiedApplication.RegisterMessageHandler. The
DirectPlay8LobbyEvent object is essentially an event handler that receives
notifications directly from the lobbied application object, and indirectly from the
lobby client and the lobby. It is not provided by DirectPlay and must be implemented
by your application. See the reference documentation for details.

If the application was lobby-launched, DirectPlay will call your
DirectPlay8LobbyEvent.Connect method. The dlNotify parameter will contain a

in.doc – page 26

DPL_MESSAGE_CONNECT type with connection information. such as address
objects for the members of the session.

You should also create a DirectPlay8Client object and register a DirectPlay8Event
notification handler object by calling DirectPlay8Client.RegisterMessageHandler.
These objects will be your primary means of communicating with the server.

Selecting a Service Provider for a Client
The service provider is your network connection. Most games use either the TCP/IP
or modem service provider, but Microsoft® DirectPlay® also provides support for
serial and IPX connections.

[C++]
If your user was connected to the session by a lobby client, you can determine the
appropriate service provider by examining the DPL_CONNECTION_SETTINGS
structure that accompanies the DPL_MSGID_CONNECT message. Otherwise, you
may need to determine which service provider to use, perhaps by querying the user.
You can use the client object's IDirectPlay8Client::EnumServiceProviders method
to enumerate the available service providers. See Using DirectPlay Enumerations for
further discussion.

[Visual Basic]
If your user was connected to the session by a lobby client, you can determine the
appropriate service provider by examining the DPL_CONNECTION_SETTINGS
type that you receive when DirectPlay calls your DirectPlay8LobbyEvent.Connect.
Otherwise, you may need to determine which service provider to use, perhaps by
querying the user. You can use the client object's
DirectPlay8Client.GetServiceProvider method to enumerate the available service
providers. See Using DirectPlay Enumerations for further discussion.

Once you have selected a service provider, you can then create a DirectPlay address
object for your user (a device address). You will use this address to identify your
device with a number of DirectPlay methods. See DirectPlay Addressing for a
detailed discussion of DirectPlay addresses and address objects.

Selecting a Client/Server Host

[C++]
By definition, the server application hosts the session. To join a session, a client
application must determine the host server's address. A common way to select a host
is through a lobby server. In that case, when a user's application is connected to the

in.doc – page 27

session, the connection settings that you receive with the DPL_MSGID_CONNECT
message include the host's address object. The pdp8HostAddress member of the
associate structure points to an address object with the host's address.

Servers using an IP or IPX service provider can also create a broadcast session,
perhaps on a LAN subnet, by advertising themselves as session hosts. To create a
broadcast session, specify call IDirectPlay8Server::SetServerInfo specify the server
settings. Then call IDirectPlay8Server::Host to advertise the server as a session
host. You specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC structure that is passed through pdnAppDesc
parameter of IDirectPlay8Server::Host.

To allow your user to look at the available sessions and hosts, a client application can
query for available hosts by calling IDirectPlay8Client::EnumHosts. Once the user
has selected a host, you can request a connection.

[Visual Basic]
By definition, the server application hosts the session. To join a session, a client
application must determine the host server's address. A common way to select a host
is through a lobby server. In that case, when a user's application is connected to the
session, the connection settings that you receive when your
DirectPlay8LobbyEvent.Connect method is called includes a connection ID and the
host's address.

Servers using an IP or IPX service provider can also create a broadcast session,
perhaps on a LAN subnet, by advertising themselves as session hosts. To create a
broadcast session, specify call DirectPlay8Server.SetServerInfo specify the server
settings. Then call DirectPlay8Server.Host to advertise the server as a session host.
You specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC structure that is passed through AppDesc parameter
of DirectPlay8Server.Host.

To allow your user to look at the available sessions and hosts, a client application can
query for available hosts by calling DirectPlay8Client.EnumHosts. Once the user
has selected a host, you can request a connection.

Connecting to a Client/Server Session
All clients must explicitly join the session by connecting to the host, even if the
session has been arranged through a lobby. A connection establishes the client as a
member of the session, and provides the host with the information it needs to
communicate with the client. The host has the option of accepting or rejecting a
connection request.

in.doc – page 28

The Server Application

[C++]
When a client attempts to join a session, the host receives a
DPN_MSGID_INDICATE_CONNECT message. To accept the player into the
session, return S_OK. Returning any other value rejects the request. In either case, the
client will receive a DPN_MSGID_CONNECT_COMPLETE message that
contains your response. You can define a player context value at this time, or wait
until you receive a DPN_MSGID_CREATE_PLAYER message. See Using Player
Context Values for more discussion of player context values.

If the player is successfully added to the session, all clients and the server will receive
a DPN_MSGID_CREATE_PLAYER message with the new player's ID (DPNID).
If you want to define a player context value, and have not yet done so, you must
define it before your message handler returns from handling this message. Once it has
done so, you cannot change the player context value.

[Visual Basic]
When a client attempts to join a session, the Microsoft® DirectPlay® calls the server's
DirectPlay8Event.IndicateConnect method. To accept the player into the session,
set the method's fRejectMsg parameter to False before returning. Setting fRejectMsg
to True rejects the request. In either case, the player's
DirectPlay8Event.ConnectComplete method will be called with the response. If the
host accepted the connection, hResultCode member of the
DPNMSG_CONNECT_COMPLETE type will be set to 0. If the request was
rejected or failed for some other reason, hResultCode will be set to an error code.

If the player is successfully added to the session, DirectPlay will call the
DirectPlay8Event.CreatePlayer method for the server and all client's with the new
player's ID (DPNID).

The Client Application

[C++]
To connect to a session, you must have the address of the session host. If your
application was connected by a lobby client, you can obtain the host's address by
calling IDirectPlay8LobbiedApplication::GetConnectionSettings.

If you not have the address of a session host and you are using either an IP or IPX
service provider, you can look for broadcast sessions by calling
IDirectPlay8Client::EnumHosts and enumerating the available hosts. You can also
obtain the address by enumerating the available hosts. The information returned by
the enumeration includes each host's address, the device use to reach the host, and a
DPN_APPLICATION_DESC structure that describes the associated session.

in.doc – page 29

To ask to join a session, call IDirectPlay8Client::SetClientInfo to set your player's
name, and then call IDirectPlay8Client::Connect with the selected host's address to
connect to the session.

Your message handler will receive a DPN_MSGID_CONNECT_COMPLETE
message with the host's response. If the host accepted the connection, the
hResultCode member of the associated structure will be set to S_OK. If not,
hResultCode will be set to DPNERR_HOSTREJECTEDCONNECTION.

[Visual Basic]
To connect to a session, you must have the address of the session host. If your
application was connected by a lobby client, you can obtain the host's address by
calling DirectPlay8LobbiedApplication.GetConnectionSettings.

If you not have the address of a session host and you are using either an IP or IPX
service provider, you can look for broadcast sessions by calling
DirectPlay8Client.EnumHosts and enumerating the available hosts. You can also
obtain the address by enumerating the available hosts. The information returned by
the enumeration includes each host's address, the device use to reach the host, and a
DPN_APPLICATION_DESC type that describes the associated session.

To ask to join a session, call DirectPlay8Client.SetClientInfo to set your player's
name, and then call DirectPlay8Client.Connect with the selected host's address to
connect to the session.

Microsoft® DirectPlay® will call your DirectPlay8Event.ConnectComplete method
with the host's response. If the host accepted the connection, the hResultCode
member of the DPNMSG_CONNECT_COMPLETE type will be set to 0. If the
request was rejected or failed for some other reason, hResultCode will be set to an
error code.

Managing a Client/Server Session
As host, the server is responsible for managing the course of the session. The details
will depend on how the application is designed, but a session host's duties include, at
a minimum,:

· Managing the list of session members and their network addresses. Microsoft®

DirectPlay® handles some of this task, but server applications typically need to
manage more player data than is provided by DirectPlay.

· Deciding whether a new user is allowed to join the session.

· Providing new users with the current game state.

[C++]

in.doc – page 30

When a player attempts to join a session, the host receives a
DPN_MSGID_INDICATE_CONNECT message. To accept the player into the
session return S_OK. Returning any other value rejects the connection request. In
either case, the player will receive a DPN_MSGID_CONNECT_COMPLETE
message that contains your response.

The host can remove a player from the session by calling
IDirectPlay8Server::DestroyClient.

[Visual Basic]
When a player attempts to join a session, DirectPlay calls the host's
DirectPlay8Event.IndicateConnect method. To accept the player into the session set
fRejectMsg to False. Setting fRejectMsg to any other value rejects the request. In
either case, DirectPlay calls the player's DirectPlay8Event.ConnectComplete
method with the response to the request.

The host can remove a player from the session by calling
DirectPlay8Server.DestroyClient.

Normal Client/Server Game Play
In Microsoft® DirectPlay®, a message is essentially a block of game-related data that
is sent from client to server or vice versa. DirectPlay does not specify the contents or
format of the data block, it just provides a mechanism to transmit the data. Once the
game is underway, each client will normally send a constant stream of messages to
the server, and vice versa, for the duration of the game. The primary purpose of these
messages is to keep the game state synchronized, so that each user's application
displays the same UI. However, messages can also be used for a variety of other
game-specific purposes.

For many games, especially rapidly changing ones, you may have to manage your
messaging carefully. DirectPlay throttles outgoing messages to a level that can be
handled by the target. You will have be careful that you do not send messages too
rapidly, and ensure that the most important messages get through. See Basic
Networking for a discussion of how to effectively handle DirectPlay messaging.

The Server Application

[C++]
To send a message to a client, call IDirectPlay8Server::SendTo. The client will
receive a DPN_MSGID_RECEIVE message with the data.

[Visual Basic]

in.doc – page 31

To send a message to a client, call DirectPlay8Server.SendTo. DirectPlay will call
the client's DirectPlay8Event.Receive method with the data.

The Client Application

[C++]
To send a message to the server, call IDirectPlay8Client::Send. The server will
receive a DPN_MSGID_RECEIVE message with the data.

[Visual Basic]
To send a message to the server, call DirectPlay8Client.Send. DirectPlay will call
the server's DirectPlay8Event.Receive method with the data.

Note
DirectPlay does not provide a mechanism for clients to communicate with other
clients, only with the server. Any client-client communication must be
implemented by the server application.

Using Groups

[C++]
Many games allow players to be organized into groups. For example, in a squad-
based game, every player in the squad could be a member of a group. DirectPlay
allows servers in a client/server game to create groups of players. While DirectPlay
groups typically correspond to the groups that defined by the game, you are free to
create a group for any reason. DirectPlay groups are essentially a way to simplify
your messaging. Once you have defined a group, you can send a message to every
group member with a single IDirectPlay8Server::SendTo call.

To create a DirectPlay group, call IDirectPlay8Server::CreateGroup. Your
message handler will then receive a DPN_MSGID_CREATE_GROUP message
with the details. The message will include a group ID that is used to send messages to
the group. Once the group is created, you then add players by calling
IDirectPlay8Server::AddPlayerToGroup.

Once the group is established, you can send data to the group by calling
IDirectPlay8Server::SendTo, with the dpnid parameter set to the group ID. All
group members will then receive a DPN_MSGID_RECEIVE message with the data.

To remove a player from a group, call
IDirectPlay8Server::RemovePlayerFromGroup. Finally, when you no longer need
the group, you can destroy it by calling IDirectPlay8Server::DestroyGroup

in.doc – page 32

[Visual Basic]
Many games allow players to be organized into groups. For example, in a squad-
based game, every player in the squad could be a member of a group. DirectPlay
allows servers in a client/server game to create groups of players. While DirectPlay
groups typically correspond to the groups that defined by the game, you are free to
create a group for any reason. DirectPlay groups are essentially a way to simplify
your messaging. Once you have defined a group, you can send a message to every
group member with a single DirectPlay8Server.SendTo call.

To create a DirectPlay group, call DirectPlay8Server.CreateGroup. DirectPlay will
call your DirectPlay8Event.CreateGroup method with the details. The notification
will include a group ID that is used to send messages to the group. Once the group is
created, you then add players by calling DirectPlay8Server.AddClientToGroup.

Once the group is established, you can send data to the group by calling
DirectPlay8Server.SendTo, with the idSend parameter set to the group ID.
DirectPlay will then call the group members' DirectPlay8Event.Receive method with
the data.

To remove a player from a group, call
DirectPlay8Server.RemoveClientFromGroup. Finally, when you no longer need
the group, you can destroy it by calling DirectPlay8Server.DestroyGroup.

Leaving a Client/Server Session

[C++]
A client can leave a session by calling IDirectPlay8Client::Close. The server is
notified with a DPN_MSGID_DESTROY_PLAYER message.

[Visual Basic]
A client can leave a session by calling DirectPlay8Client.Close. Microsoft®
DirectPlay® notifies the server by calling its DirectPlay8Event.DestroyPlayer
method.

Terminating a Client/Server Session

[C++]
To terminate a client/server session, the server calls IDirectPlay8Server::Close.
There is no host migration in a client/server session, so this method terminates all
connections and closes the session. The clients are notified of the session end by a
DPN_MSGID_TERMINATE_SESSION message.

in.doc – page 33

The server will then receive a DPN_MSGID_DESTROY_PLAYER message for
each player, including itself. IDirectPlay8Server::Close is synchronous, and will not
return until all the DPN_MSGID_DESTROY_PLAYER messages have been
processed. Once IDirectPlay8Server::Close has returned, you can safely shut down
the server application.

[Visual Basic]
To terminate a client/server session, the server calls DirectPlay8Server.Close. There
is no host migration in a client/server session, so this method terminates all
connections and closes the session. Microsoft® DirectPlay® notifies the clients by
calling their DirectPlay8Event.TerminateSession method.

DirectPlay then calls the server's DirectPlay8Event.DestroyPlayer method for each
player, including itself. DirectPlay8Server.Close is synchronous, and will not return
until all the DirectPlay8Event.DestroyPlayer method calls have been processed.
Once DirectPlay8Server.Close has returned, you can safely shut down the server
application.

DirectPlay Lobbies
A lobby is an application whose primary purpose is to help users arrange multiplayer
games. The lobby is usually an application that is hosted on a remote server. The user
visits the lobby, typically through the Internet, and either sets up a game session or
joins a session started by someone else. The lobby application then launches the
group's individual game applications, and the game is underway.

Because many multiplayer games are arranged through lobbies, most games based on
Microsoft® DirectPlay® must be able to interact with lobby applications. Conversely,
because most lobbies will want to support DirectPlay-based games, the lobby
application must be able to interact with the game application. This document
discusses how to enable a Microsoft DirectX® game to interact with a lobby, and vice
versa.

· DirectPlay Lobby Architecture

· Lobby Servers

· Lobby Clients

· Lobbyable Applications

DirectPlay Lobby Architecture
The process of arranging and managing a session of a multiplayer game based on
Microsoft® DirectPlay® involves five separate components. The lobby server
application is a third-party application that typically resides on a remote server and is

in.doc – page 34

accessed through the Internet. The remaining four components are installed on each
player's computer.

· Lobby client. The lobby client is a third-party application that communicates with
the lobby server. It also communicates with the user's game application through
the DirectPlay lobby client object.

· Lobbyable game application. The lobbyable game application is a third-party
application that uses the DirectPlay lobbied application object to communicate
with the lobby client, and through the lobby client with the lobby server.

· DirectPlay lobby client object.

· DirectPlay lobbied application object.

The two DirectPlay objects act as links between the game application and the lobby
client. They communicate with each other through private interfaces. The following
graphic shows how these pieces are linked, and how they communicate.:

Lobby Servers
The lobby server is an application whose primary purpose is to enable players to meet
and arrange games. It is typically located on a remote computer, and accessed over
the Internet. Lobby servers often perform a variety of other functions such as hosting
chat rooms, posting news and information, and selling merchandise.

To manage multiplayer games, a lobby server typically handles a variety of tasks,
including:

in.doc – page 35

· Managing the network addresses of the various game sessions and players.

· Launching a session by launching the associated game applications on the
players' computers.

· Adding players to an ongoing session.

· Connecting the various computers in a session to the correct network addresses.

· Keeping track of changes in the session, such as players leaving the game or
changes in the game's host.

The details of the lobby server application depend on what kind of services the
vendor wants to offer. Microsoft® DirectPlay® does not specify how a lobby server
should be implemented nor how it should communicate with its users' computers.
However, lobby vendors must implement and distribute to their users a lobby client
that is compatible with DirectPlay.

Lobby Clients
A lobby client is an application that is implemented by the lobby server vendor and
installed on each player's computer. It handles communication between the players
and their game applications, and the lobby server. A common way to install a lobby
client is to have the user download it from the lobby server's Web site as part of the
sign-up procedure.

The following is a typical scenario.

1. A new player goes to the Web site and signs up.

2. As part of the sign-up procedure, the lobby client is downloaded to the client's
computer.

3. The player determines which to play and asks to join a session.

4. The Web site launches the lobby client on the player's computer. A typical launch
mechanism is a URL that points to the lobby client's executable file.

5. The lobby client handles the mechanics of arranging the session, and then
launches the user's game application.

6. If the game is a lobbyable application, the lobby client enables the game
application to communicate with the lobby server. This connection enables the
lobby server to keep track of events such as players entering and leaving the
game and host migration.

Lobby clients do not necessarily have to be linked to a remote server. In another
scenario the user launches the lobby client directly. The lobby client then lists the
available games and sessions, perhaps among the people connected to the user's LAN
subnet. Once the user chooses a game and session, the lobby client launches the
game.

This section discusses some the general features of a lobby client. For more
information on communicating between a lobby client and its associated lobby server,
see Communicating with a Lobbyable Game.

in.doc – page 36

For more information on implementation details, see Implementing a Lobby Client or
the LobbyClient sample application included in the SDK.

Communicating with a Lobbyable Game

Communication between a lobby client and its associated lobby server can be handled
in any way that is convenient. Microsoft® DirectPlay® specifies only how the lobby
client must communicate with a lobbyable game application.

[C++]
Lobby clients do not communicate directly with game applications. Instead, they
communicate with the DirectPlay lobby client object
(CLSID_DirectPlay8LobbyClient) through its IDirectPlay8LobbyClient interface. If
the game application is lobbyable, the lobbied application object then passes
messages to the game. The IDirectPlay8LobbyClient interface enables the lobby
client to do the following.

· Enumerate the lobbyable applications on the user's system.

· Launch the application, if it is not already running, and connect it to the session.

· Release the application from a session, and close the link with the lobby client

· Send a message to a lobbied application that was launched or connected by the
lobby client.

[Visual Basic]
Lobby clients do not communicate directly with game applications. Instead, they
communicate with the DirectPlay8LobbyClient object. If the game application is
lobbyable, the lobbied application object then passes messages to the game. The
DirectPlay8LobbyClient object enables the lobby client to do the following.

· Enumerate the lobbyable applications on the user's system.

· Launch the application, if it is not already running, and connect it to the session.

· Release the application from a session, and close the link with the lobby client

· Send a message to a lobbied application that was launched or connected by the
lobby client.

Note
A DirectPlay lobby client can launch any application, whether or not it is
lobbyable. However, only lobbyable applications can use DirectPlay to
communicate back to the lobby client during the course of the game.

[C++]
The lobby client object communicates with the lobby client through a callback
function that is implemented by the lobby client. A function pointer is passed to the

in.doc – page 37

lobby client object during initialization. This callback function enables the lobby
client object to send the lobby client information such as:

[Visual Basic]
The lobby client object communicates with the lobby client through a
DirectPlay8LobbyEvent message handler object. The DirectPlay8LobbyEvent
object is essentially an event handler that receives notifications directly from the
lobby client object, and indirectly from the application. It is not provided by
DirectPlay and must be implemented by your application. See the reference
documentation for details. You must register this object with DirectPlay by calling
DirectPlay8LobbyClient.RegisterMessageHandler.

The DirectPlay8LobbyEvent object enables the lobby client object to send the lobby
client information such as:

· Connection information.

· Connection status.

· Session status, including connection, disconnection, and host migration.

· Messages from the application to the lobby client.

Launching an Application

When you launch an application, you can attempt to pass a block of game-specific
information to the application. When a lobbyable application is launched by a lobby
client, the application creates and initializes a lobbied application object. The
information is passed to the game through the initialization method.

When the lobbied application object is initialized, the lobby client receives a message
indicating that the user has been connected. One primary purpose of this message is to
notify the lobby client that the application is lobbyable. If the lobby client has not
received a connect message after a reasonable period of time following the launch,
the game is not lobbyable and you can stop attempting to make this connection.

After Launching an Application

The lobby client has relatively little to do once a lobbyable game is in progress.
Depending on the game topology, most of the user's messages are sent directly to the
other players or to the game server,. However, DirectPlay sends the lobby client
messages in response to events such as disconnection and host migration. These
messages enable the lobby client to pass such status changes to the lobby server. For
instance, if the host migrates, the lobby server can update its UI to indicate the new
host.

The application can also pass messages to the lobby client. This message can contain
virtually anything, and it can be used for any purpose. The lobby client typically
passes the data to the lobby server for processing. For example, at the end of the

in.doc – page 38

game, the application might send a message that enables the lobby server to update its
high-score list.

Lobbyable Applications
Lobbyable applications are designed to work with a lobby client based on Microsoft®
DirectPlay®. While a lobby client can use DirectPlay to launch any application,
lobbyable applications have a number of advantages.

· The lobby client receives automatic updates when game status changes.

· The lobby client can use a standard API to communicate with the application.

· The application can use a standard API to communicate with the lobby client.

In short, DirectPlay virtually eliminates the need for game-specific or lobby client-
specific communication code. You can use a standard API for everything with little or
no modification for the particular game or lobby client.

This section discusses some of the general features of a lobbyable application. For
more information, see Launching a Lobbyable Application.

For a discussion of implementation details, see Implementing a Lobbyable
Application or SDK samples such as SimplePeer, or StagedPeer.

Launching a Lobbyable Application

[C++]
One of the first things a lobbyable application should do after it is launched is create a
lobbied application object. Among other things, this object enables your application
to determine whether it was lobby-launched. A lobbied application must also
implement a message-handler callback function to receive messages from the lobby
client. The basic procedure is:

· Create a lobbied application object.

· Initialize the object.

· If the initialization method returns a valid connection handle, your application
was lobby launched.

· Examine the user context value that is returned by the initialization method. This
value might contain game-specific information from the lobby client.

· Examine the connection message received through the lobbied application
message handler. This message carries with it a variety of information, including
the ID that you will use to send messages to the lobby client.

Once an application has been successfully lobby launched, Microsoft® DirectPlay®
can automatically send status updates to the lobby client when events such as host
migration occur. To enable automatic status updates, call the RegisterLobby method
of the IDirectPlay8Peer, IDirectPlay8Client, or IDirectPlay8Server interface. You
can also use the lobbied application interface to send messages to the lobby client.

in.doc – page 39

Be aware that your message handler function might receive messages from the lobby
client before the initialization method returns. In addition to the connection message,
the callback function receives messages when the lobby client changes connection
settings, or it breaks the connection. The lobby client can also send messages directly
to your message handler that contain game-specific information.

Note
It is possible to receive messages from more than one thread. To handle
messaging properly, your lobbied application callback function should be re-
entrant.

[Visual Basic]
One of the first things a lobbyable application should do after it is launched is create a
DirectPlay8LobbiedApplication object. Among other things, this object enables
your application to determine whether it was lobby-launched. A lobbied application
must also implement a message-handler callback function to receive messages from
the lobby client. The basic procedure is:

· Create a DirectPlay8LobbiedApplication object.

· Register a DirectPlay8LobbyEvent message handler object by calling
DirectPlay8LobbiedApplication.RegisterMessageHandler.

· If the application was lobby-launched, DirectPlay will call your
DirectPlay8LobbyEvent.Connect method. The dlNotify parameter will contain
a DPL_MESSAGE_CONNECT type with connection information. such as
address objects for the members of the session.

Note
The DirectPlay8LobbyEvent object is essentially an event handler that receives
notifications directly from the lobbied application object, and indirectly from the
lobby client and the lobby. It is not provided by DirectPlay and must be
implemented by your application. See the reference documentation for details.

Once an application has been successfully lobby launched, Microsoft® DirectPlay®
automatically sends status updates to the lobby client when events such as host
migration occur. You can also use the lobbied application interface to send messages
to the lobby client.

Be aware that your message handler object might be called by the lobby client before
the initialization method returns. In addition to the connection message, the
DirectPlay calls the object when the lobby client changes connection settings, or it
breaks the connection. The lobby client can also send messages directly to your
message handler that contain game-specific information.

in.doc – page 40

Basic Networking
This section covers some basic networking technology topics that you need to
understand to write Microsoft® DirectPlay® applications. For a general discussion of
networking technology, see one of the standard texts on the subject, such as Computer
Networks by Andrew Tannenbaum.

· DirectPlay Service Providers

· DirectPlay Addressing

· DirectPlay Protocol

· Optimizing Network Usage

· Using the DirectX Protocol in an Application

DirectPlay Service Providers
Microsoft® DirectPlay® provides your application with a virtual network connection
that enables you to communicate with other computers in the same way, regardless of
type of network involved. To provide this level of abstraction, network connections
are made through a service provider. Once you have selected a service provider, your
application uses the appropriate DirectPlay methods to communicate with other
computers in a session. The service provider handles the details of communicating
over the selected network hardware.

DirectPlay includes service providers for four types of network connections: TCP/IP,
IPX, modem, and serial. See DirectPlay Addressing for a discussion of how to select
a service provider.

[Visual Basic

Note
To use modems on Microsoft Windows® 95 systems, you must install version 2.0
of the Telephony API (TAPI). You can download TAPI 2.0 from
http://www.microsoft.com.

[C++]

Note
DirectPlay uses the telephony API (TAPI) to handle modem communication. The
use of this API means that the code that is used to answer the phone must be in
the message loop's thread. To use modems on Microsoft Windows® 95 systems,
you must install version 2.0 of the Telephony API (TAPI). You can download
TAPI 2.0 from http://www.microsoft.com.

in.doc – page 41

DirectPlay Addressing
To deliver messages, each participant in a multiplayer game must have a unique
address. Addresses can refer either to the computer that your application is running on
(device address), or a computer that your application needs to communicate with
(host address).

[C++]
Microsoft® DirectPlay® 8.0 represents addresses in the form of a URL string. That
address string is then encapsulated in a DirectPlay address object that is passed as a
parameter in or out of methods such as IDirectPlay8Peer::Connect.

This section describes two ways to handle DirectPlay addresses.

· DirectPlay URLs discusses how to construct the address string directly.

· DirectPlay Address Objects discusses how to manipulate the address string using
the methods exposed by the address object's IDirectPlay8Address interface.

[Visual Basic]
Microsoft® DirectPlay® 8.0 represents addresses in the form of a URL string. That
address string is then encapsulated in a DirectPlay8Address object that is passed as a
parameter in or out of methods such as DirectPlay8Peer.Connect.

This section describes two ways to handle DirectPlay addresses.

· DirectPlay URLs discusses how to construct the address string directly.

· DirectPlay Address Objects discusses how to manipulate the address string using
the methods exposed by the address object's IDirectPlay8Address interface.

DirectPlay URLs

Microsoft® DirectPlay® represents addresses as URLs. In general, URLs are strings
that consist of three basic components in the following order: scheme, scheme
separator, and data string.

All DirectPlay addresses use "x-directplay" as the scheme, and ":/" (a colon followed
by a forward slash) as the scheme separator. Using ":/" as a separator implies that the
data that follows is opaque. In other words, the data string does not conform to any
Internet standard and should be passed to the receiving application without
modification. All DirectPlay URLs thus have the following general form.

x-directplay:/[data string]

Note
Do not use "://" (a colon followed by two forward slashes) as a scheme separator.
That separator implies that the data that follows conforms to an Internet standard

in.doc – page 42

and can be interpreted as such. To prevent confusion, DirectPlay flags any URL
containing"://" as invalid.

This section discusses

· Data Strings

· Data Values

· Data Value Summary

· Sample URLs

Data Strings

The data string holds address information. The first part of a data string consists of a
series of keyname=value elements separated by semicolons (;). You can include
optional user data by putting a number sign (#) after the last value, followed by an
application-defined string.

The key name is a lowercase string that identifies the data and implicitly indicates
what type of data is contained in the value. For instance, the "provider" key name
indicates that the value contains a Microsoft® DirectPlay® service provider GUID, in
the form of a GUID string. The following characters are reserved and should not be
used in value strings.

Ampersand (&) Forward slash (/)

At sign (@) Number sign (#)

Colon (:) Question mark (?)

Equal sign (=) Semicolon (;)

The first element in the data string must be the provider. Other elements can follow in
any order. A generic URL looks something like this.

x-directplay:/provider=%provider GUID%;[keyname1=value1];[keyname2=value2][...]#[user

defined string]

Data Values

The values that need to be included in the data string depend on the particular service
provider. Modem providers, for instance, need a telephone number in their address,
whereas LAN providers might need a port number. This section provides a detailed
description of the standard data values. It also includes a key name that can be used in
place of the literal string. These names are defined in Dpaddr.h.

· Application Instance

· Baud

· Device

· Flow Control

· Host Name

· Parity

in.doc – page 43

· Phone Number

· Port

· Program

· Provider

· Stop Bits

Application Instance
An optional GUID that identifies an application instance. This value is used when
specifying the game that is to be connected to.

Key Name: DPNA_KEY_APPLICATION_INSTANCE

Key String: "applicationinstance"

Data Type: GUID

Providers: All

Valid Values: Any valid application instance GUID

Baud
The baud rate

Key Name: DPNA_KEY_BAUD

Key String: "baud"

Data Type: DWORD

Providers: Modem and serial

Valid Values: Any valid baud rate. You can set this value to the appropriate integer,
or you can use one of the following predefined values from Dpaddr.h.

DPNA_BAUD_RATE_9600

DPNA_BAUD_RATE_14400

DPNA_BAUD_RATE_19200

DPNA_BAUD_RATE_38400

DPNA_BAUD_RATE_56000

Device
A GUID that identifies the device on the local computer that will be used. If the
service provider supports all adapters, you do not need to specify a device.

Key Name: DPNA_KEY_DEVICE

Key String: "device"

Data Type: GUID

Providers: All, but for device addresses only, not host addresses

Valid Values: Any valid device GUID.

in.doc – page 44

Flow Control
The type of flow control to be used

Key Name: DPNA_KEY_FLOWCONTROL

Key String: "flowcontrol"

Data Type: String

Providers: Serial and modem

Valid Values: Any of the following predefined values from Dpaddr.h.

DPNA_FLOW_CONTROL_NONE DPNA_FLOW_CONTROL_DTR

DPNA_FLOW_CONTROL_XONXOFF DPNA_FLOW_CONTROL_RTSDTR

DPNA_FLOW_CONTROL_RTS

Host Name
The name of a remote host computer

Key Name: DPNA_KEY_HOSTNAME

Key String: "hostname"

Data Type: String

Providers: All, but for host addresses only, not device addresses

Valid Values: A fully-qualified host name, or a dotted address.

Parity
The parity of the connection

Key Name: DPNA_KEY_PARITY

Key String: "parity"

Data Type: String

Providers: Serial and modem

Valid Values: Any of the following predefined values from Dpaddr.h.

DPNA_PARITY_NONE DPNA_PARITY_MARK

DPNA_PARITY_EVEN DPNA_PARITY_SPACE

DPNA_PARITY_ODD

Phone Number
A phone number

Key Name: DPNA_KEY_PHONENUMBER

Key String: "phonenumber"

Data Type: String

in.doc – page 45

Providers: Modem

Valid Values: Any valid phone number

Port
An optional port number

Key Name: DPNA_KEY_PORT

Key String: "port"

Data Type: DWORD

Providers: IP and IPX

Valid Values: Any 16-bit integer. Only the lower 16 bits of the value are valid. If you
do not specify a port, DirectPlay will choose one for you.

Program
An optional application GUID

Key Name: DPNA_KEY_PROGRAM

Key String: "program"

Data Type: GUID

Providers: All

Valid Values: Any valid application GUID

Provider
A GUID that identifies the Microsoft® DirectPlay® service provider that will be used

Key Name: DPNA_KEY_PROVIDER

Key String: "provider"

Data Type: GUID

Providers: All.

Valid Values: Any valid service provider GUID

Stop Bits
The number of stop bits

Key Name: DPNA_KEY_STOPBITS

Key String: "stopbits"

Data Type: String

Providers: Serial and modem

Valid Values: Any of the following predefined values from Dpaddr.h.

DPNA_STOP_BITS_ONE DPNA_STOP_BITS_TWO

DPNA_STOP_BITS_ONE_FIVE

in.doc – page 46

Data Value Summary

The following two tables outline the standard data values, and they indicate which
values are used by each type service provider for both host and device addresses.

Host Addresses
IP IPX Serial Modem

Application
Instance

Optional Optional Optional Optional

Baud Not used Not used Required

Device Not used Optional Required Required

Flow Control Not used Not used Required

Host Name Required Required Optional Optional

Parity Not used Not used Required

Phone Number Not used Not used Not used Required

Port Required Required Not used Not used

Program Optional Optional Optional Optional

Provider Required Required Required Required

Stop Bits Not used Not used Required

Device Addresses
IP IPX Serial Modem

Application
Instance

Optional Optional Optional Optional

Baud Not used Not used Required Not used

Flow Control Not used Not used Required Not used

Host Name Optional Optional Optional Optional

Device Optional Required Required Required

Parity Not used Not used Required Not used

Phone
Number

Not used Not used Not used Not used

Port Optional Required Not used Not used

Program Optional Optional Optional Optional

Provider Required Required Required Required

Stop Bits Not used Not used Required Not used

Sample URLs

The following sample URLs illustrate what a Microsoft® DirectPlay® URL might
look like for the four standard service providers.

in.doc – page 47

Local IP Address
x-directplay:/provider=%7BEBFE7BA0-628D-11D2-AE0F-006097B01411%7D;device=%7BIP

ADAPTER GUID%7D;port=0000230034#IPUserData

Local IPX Address
x-directplay:/provider=%7B53934290-628D-11D2-AE0F-006097B01411%7D;device=%7BIPX

ADAPTER GUID%7D;port=00230#IPXUserData

Local Serial Address
x-directplay:/provider=%7B743B5D60-628D-11D2-

AE0F-006097B01411%7D;device=%7BCOM PORT

GUID%7D;baud=57600;stopbits=1;parity=NONE;flowcontrol=RTSDTR#SerialUserData

Remote Modem Address
x-directplay:/provider=%7B6D4A3650-628D-11D2-

AE0F-006097B01411%7D;device=%7BMODEM DEVICE GUID%7D;phonenumber=555-

1212#ModemUserData

Handling Addresses

If you call the Host, EnumHosts, or Connect methods exposed by the
IDirectPlay8Peer, IDirectPlay8Client, or IDirectPlay8Server you must pass
address objects as parameters. If Microsoft® DirectPlay® does not have sufficient
address information, the method that you called will fail, and it will return
DPNERR_ADDRESSING. However, it is not necessary to have all the information in
the address object at the time you call the method.

All address objects must have the service provider GUID set. However, it is possible
to omit other data values.

· You can omit the device if the service provider supports all adapters.

· You can omit the port number for IP and IPX service providers for the Host,
EnumHosts, and Connect methods. DirectPlay will assign a port number. This
number may vary.

· If you set the OKTOQUERYFORADDRESSING flag, the service provider can
display a dialog box asking the user for the information needed to complete the
address. If the user does not supply sufficient information, the method will fail. If
the OKTOQUERYFORADDRESSING flag is not set, no dialog box will be
displayed. If the address you pass to the method is insufficient, the method will
fail. In the last two cases, the error value that is returned will be
DPNERR_ADDRESSING.

There are two important issues for IP and IPX service providers that you need to be
aware of. Failing to handle them properly may cause your application to fail.

in.doc – page 48

· If you set the NOBROADCASTFALLBACK flag when you call an enumeration
method, you must supply a hostname. If you do not do so, the method will fail
and return DPNERR_ADDRESSING.

· If you do not specify a port, do not assume that DirectPlay will always choose the
same port number. The only way to be certain of the port number is to specify it
in your address. If you do not specify a port number, you must retrieve the actual
value later, after the command is in progress.

DirectPlay Address Objects

[C++]
Microsoft® DirectPlay® does not handle URL strings directly. Instead, the string must
be encapsulated in a DirectPlay address object (CLSID_DirectPlayAddress). This
object exposes the IDirectPlay8Address interface that enables you to insert URL
information into, or extract it from, the address object.

To create DirectPlay address, you must call CoCreateInstance to create a DirectPlay
address object. You can then define the address in one of two ways:

· Create the URL string directly. Then use either
IDirectPlay8Address::BuildFromURLA or
IDirectPlay8Address::BuildFromURLW to insert the complete string.

· Use IDirectPlay8Address methods to insert the various pieces of data that make
up the string directly into the object.

When you receive an address object, you have a similar pair of options.

· Extract the entire URL string with either IDirectPlay8Address::GetURLA or
IDirectPlay8Address::GetURLW. Then parse the string and extract the needed
information

· Use other IDirectPlay8Address methods to extract the particular data you are
interested in from the address object.

[Visual Basic]
Microsoft® DirectPlay® does not handle URL strings directly. Instead, the string must
be encapsulated in a DirectPlay8Address object. This object exposes a number of
methods that enable you to insert URL information into, or extract it from, the object.

To create DirectPlay address, you must first create a DirectPlay8Address object.
You can then define the address in one of two ways:

· Create the URL string directly. Then use DirectPlay8Address.BuildFromURL
to insert the complete string.

· Use other DirectPlay8Address methods to insert the various pieces of data that
make up the string directly into the object.

When you receive an address object, you have a similar pair of options.

in.doc – page 49

· Extract the entire URL string with DirectPlay8Address.GetURL. Then parse
the string and extract the needed information

· Use other DirectPlay8Address methods to extract the particular data you are
interested in from the address object.

DirectPlay Protocol
Multiplayer games require efficient and flexible network messaging services for
optimal performance. The Microsoft® DirectPlay® protocol is a transport-layer
messaging protocol that is used for all DirectPlay messaging. The protocol has been
substantially reworked for DirectPlay 8.0. It provides your application with the
messaging support it needs to make everything run smoothly. The DirectPlay protocol
includes the following messaging support.

· Reliable and unreliable delivery of messages

· Sequential and non-sequential delivery of messages

· Message fragmentation and reassembly

· Congestion control

· Send prioritization

· Message timeouts

Note
With previous versions of DirectPlay, the DirectPlay protocol was optional, and
had to be specified explicitly. With DirectPlay 8.0, this protocol is used for all
DirectPlay messaging.

This document provides a general description of how the DirectX protocol works, and
how you can use it in your application.

· Basic Message Handling

· Message Categories

· Congestion Control

· Send Prioritization

· Monitoring Messaging Statistics

· Monitoring the Pending Message Queues

Basic Message Handling

A message, as the term is used in this document, is a block of data that needs to be
sent to another computer. A network protocol creates a packet by adding some bits to
the data block that hold information such as the target's network address. This packet
is the basic unit of network data. When the target receives the packet, the target's
network protocol removes the extra bits and passes the data block to the receiving
application.

in.doc – page 50

Although similar in usage, the terms message and packet are not strictly
interchangeable. This document uses the term message to refer to the unit of
information that is passed to and received from the Microsoft® DirectPlay® API.
Packet refers to the unit of information handled by the network. DirectPlay handles
packets internally. With rare exceptions, DirectPlay applications need to deal only
with messages.

The primary reason for the distinction between message and packet is that networks
generally limit the maximum size of the packets they handle. This size is referred to
as a Maximum Transmission Unit (MTR). If a message is small, it is sent in a single
packet and the two terms are effectively synonymous. However, large messages
might need to be fragmented into two or more packets and then be reassembled by the
receiver. The DirectPlay protocol automatically handles fragmentation and
reassembly of messages as needed. As far as your application is concerned, you send
a message, and the target receives it.

[C++]

Note
DirectPlay delivers messages of any size. However, the more packets that are
required for a single message, the greater the odds that one or more packets will
be lost and have to be retransmitted. Messages that are large enough to require
fragmentation and reassembly thus typically have more network latency than
single-packet messages. If you need to keep network latency to a minimum,
avoid sending large messages, especially on lossy networks. You can determine
the maximum size that your connection can accommodate in a single packet by
calling the GetSPCaps method exposed by the IDirectPlay8Peer,
IDirectPlay8Client, and IDirectPlay8Server interfaces.

[Visual Basic]

Note
DirectPlay delivers messages of any size. However, the more packets that are
required for a single message, the greater the odds that one or more packets will
be lost and have to be retransmitted. Messages that are large enough to require
fragmentation and reassembly thus typically have more network latency than
single-packet messages. If you need to keep network latency to a minimum,
avoid sending large messages, especially on lossy networks. You can determine
the maximum size that your connection can accommodate in a single packet by
calling the GetSPCaps method exposed by the DirectPlay8Peer,
DirectPlay8Client, and DirectPlay8Server interfaces.

in.doc – page 51

Message Categories

The Microsoft® DirectPlay® protocol is designed to handle the following two basic
types of network messaging.

· Reliable versus unreliable messaging determines whether messages are
guaranteed to be delivered to the target application.

· Non-sequential versus sequential messaging determines whether messages are
received by the target application in the same order they are sent.

Games use messaging for a variety of purposes, each with different demands. To
support this range of messaging needs, the DirectPlay protocol enables you to
designate a message as belonging to one of four categories:

· Reliable and sequential

· Unreliable and sequential

· Reliable and non-sequential

· Unreliable and non-sequential

The DirectPlay protocol enables you to optimize your messaging strategy by
assigning categories on a message-by-message basis.

Reliable and Unreliable Messaging

Messages are sometimes lost in transit. Reliable messaging provides a guarantee that
the target will receive every message. This type of messaging is required when data
loss cannot be tolerated. Most reliable messaging schemes require the target to
acknowledge receipt of each message. If the sender does not receive an
acknowledgment within a specified timeout period, it resends the message. This
process typically continues until the sender receives an acknowledgment, confirming
that the message has arrived.

The DirectPlay protocol imposes a limit on the number of resend attempts. If no
acknowledgment is received after a reasonable number of attempts, DirectPlay
assumes that the connection has been lost, and closes it.

Unreliable messaging is the simplest form of network communication. It might be
faster than reliable messaging because there is no guarantee that the message will be
delivered to the target. The sender transmits the message. If the target does not
receive the message, the sender will not transmit the message again, and the packet is
lost.

Unreliable messaging is used primarily when speed or bandwidth is more important
than an occasional lost message. For example, high-bandwidth streaming media
applications often use unreliable messaging. They cannot afford to take up bandwidth
with acknowledgments and retransmissions, nor can they wait for a lost message to be
retransmitted. An occasional lost message normally has only a minor impact on
quality, so it can be ignored.

in.doc – page 52

Sequential and Non-Sequential Messaging

Messages leave the sender in a particular sequence. However, there is no guarantee
that messages will arrive at the target's computer in the same order that they are sent.
For example, if a message is lost and must be retransmitted, that message will
typically arrive later than messages that followed it in the original sequence.

Sequential messaging uses sequencing information embedded in the message to
ensure that the messages are presented to the target application in the correct order.
This type of messaging is required when the target application must receive messages
in the correct order. Out-of-order messages are buffered until the missing messages
arrive.

Non-sequential messaging presents the received messages to the target as soon as
they arrive at the target computer, regardless of the order in which they were sent.
Because there is no need to wait for a missing packet, applications often use non-
sequential messaging when speed is more important than an occasional out-of-order
message. The out-of-order message is ignored.

Choosing the Best Message Category

Choosing the best category for messages is a core issue for multiplayer game
developers. While DirectPlay provides the tools to manage your messaging, the
choice of a message category ultimately depends on the semantic content of the
message and the nature of the game.

The following are general guidelines for choosing the best message category.

· Use non-guaranteed messaging whenever the content permits. For example, your
game might send frequent player-location updates. Each update is independent,
and it supersedes any previous updates. If an update is lost, the next update is
sufficient to maintain the player's game state. A lost and retransmitted message
might arrive later than the subsequent update message.

· Use guaranteed messaging when data loss cannot be tolerated. For example, a
text-based chat feature depends on every character being delivered to its target.

· Use sequential messaging when the order of the messages is important. For
example, streaming media typically uses sequential-unreliable messaging. An
occasional dropped message can be tolerated, but an out-of-order message would
cause problems.

Congestion Control

In an ideal world, your game can send messages as often as it needs to. They arrive at
the target immediately and are processed instantaneously. If all of the computers in
your game have ample processing power and are connected by a lightly used high-
bandwidth network link, you might approach this ideal situation. You can then send
messages as often as you like. However, a number of factors can create congestion
and cause messaging to work more slowly than this ideal:

in.doc – page 53

· Network latency. Even under ideal conditions, messages take a finite time to
traverse the network from sender to target, especially over the Internet. There
might be further delays for acknowledgments, retransmission of lost packets, or
reassembly of out-of-order packets.

· Network bandwidth. The network bandwidth controls the rate at which a message
can be sent or received by a computer. Network links have a wide range of
bandwidths, and even high-bandwidth networks might be slowed by high traffic
levels. If one or more of your players has a low-bandwidth connection, they will
be able to send and receive messages only at a limited rate.

· Processing speed. Even if network bandwidth is high and latency low, the target
application still needs some time to process a received message. If one or more of
the players in a session is using a relatively slow computer, the rate at which they
can process received messages might be below the rate at which messages can be
sent.

Message Throttling

If there is no control over the rate at which messages are sent, a target can be flooded
by more messages than it can handle. To prevent this situation, the Microsoft®
DirectPlay® protocol throttles the rate at which messages are sent. The net effect of
throttling is that the rate at which messages are sent is controlled by the rate at which
the target can handle them.

Throttling is implemented with a sliding window mechanism. The sliding window is
basically a queue with a limited number of slots that holds messages that have been
sent but not yet received. All outgoing messages are placed in this queue, regardless
of their category. Once the sent-message queue is full, it accepts no more outgoing
messages until one of the messages in the queue has been received.

For optimal performance, the size of the sliding window must be matched to current
network conditions. The DirectPlay protocol automatically monitors such factors as
the number of messages and the total number of bytes in the sent-message queue.
This information is then used to dynamically adjust the size of the sliding window to
optimize messaging for the current network conditions.

Connection Checking

If there is no activity on a link, the DirectPlay protocol periodically tests the
connection by sending an empty reliable packet. If no acknowledgment is received
from the target after a reasonable number of attempts, DirectPlay concludes that the
link has been disconnected.

Send Prioritization

Messages often vary widely in importance. Some are time-critical, and must be
delivered as quickly as possible. Others can be delayed if necessary, or possibly not
sent at all. One issue with congestion control algorithms is that an application might
create messages faster than they can be sent. Unsent messages must then be held in a
queue until an outgoing slot opens up. If all unsent messages are held in a single

in.doc – page 54

pending-message queue, high priority messages might be blocked while waiting for
lower priority messages to be sent first.

The Microsoft® DirectPlay® protocol solves this problem by having three pending
message queues: low, medium, and high priority. When a slot opens up in the sent-
message queue, the protocol selects the next message to be sent as follows:

1. Send the oldest message in the high-priority queue.

2. If there are no messages in the high-priority queue, send the oldest message in
the medium-priority queue.

3. If there are no messages in the medium-priority queue, send the oldest
message in the low-priority queue.

This priority mechanism enables you to get your time-critical messages out as quickly
as possible, even though other less important messages have already been submitted.

Send Timeouts

One of the consequences of throttling is that messages might spend a relatively long
amount of time in a pending-message queue, especially if they are low priority. Some
messages might stay long enough to have been superseded by subsequent messages.
These messages are no longer relevant. For example, your application might
periodically send player-location update messages. Each update is independent of the
others, and supersedes any previous updates. If you have two player-location updates
in the pending message queue, only the most recent one needs to be sent.

The DirectPlay protocol enables you to handle the problem of outdated messages by
adding an optional timeout value to the message. If the message is still in a pending-
message queue when the timeout expires, the message will be canceled.

Disconnection

When an application sends a disconnect message, the message is placed at the end of
the low-priority pending-message queue, and the protocol stops accepting outgoing
messages. This practice guarantees that all pending messages are sent before the link
is disconnected. The disconnect message is sent as a reliable sequential message to
guarantee that it arrives, but not before all other messages in the queue have been
delivered.

Monitoring Messaging Statistics

While the Microsoft® DirectPlay® protocol handles many aspects of messaging
automatically, your application should still monitor messaging behavior. For
example, if you are consistently sending messages faster than they can be delivered,
you might need to modify your messaging scheme.

[C++]
Because network conditions change continuously, your application should
periodically check the behavior of the network and adjust its messaging scheme
accordingly. To do so, call the GetConnectionInfo method that is exposed by every

in.doc – page 55

DirectPlay 8.0 interface that supports messaging. GetConnectionInfo returns a
structure that contains a wide variety of statistical information that you can use to
refine your messaging scheme, including the following:

[Visual Basic]
Because network conditions change continuously, your application should
periodically check the behavior of the network and adjust its messaging scheme
accordingly. To do so, call the GetConnectionInfo method that is exposed by every
DirectPlay 8.0 object that supports messaging. GetConnectionInfo returns a type that
contains a wide variety of statistical information that you can use to refine your
messaging scheme, including the following:

· Round trip latency

· Throughput

· Packets sent

· Packets received

· Packets resent

· Packets dropped

· Messages transmitted at different priority levels

Note
The messaging statistics are obtained by monitoring the actual network traffic. If
you call GetConnectionInfo immediately after you initialize the connection,
there will have been little time to collect data and the statistics might be
misleading.

Monitoring the Pending Message Queues

[C++]
You should monitor your pending message queues to ensure that they do not become
too large. The IDirectPlay8Peer, IDirectPlay8Client, and IDirectPlay8Server
interfaces all expose a GetSendQueueInfo method that can be used to check the
number of messages and the number of bytes currently in the queue. By default, the
method returns the total for all three queues, but you can also obtain values for each
of the three priority levels.

[Visual Basic]
You should monitor your pending message queues to ensure that they do not become
too large. The DirectPlay8Peer, DirectPlay8Client, and DirectPlay8Server objects
all expose a GetSendQueueInfo method that can be used to check the number of
messages and the number of bytes currently in the queue. By default, the method

in.doc – page 56

returns the total for all three queues, but you can also obtain values for each of the
three priority levels.

Optimizing Network Usage
Providing the best gaming experience normally means sending updates and other
information as rapidly as possible without flooding the target with more messages
than it can handle. The Microsoft® DirectPlay® protocol combined with asynchronous
messaging enables you to dynamically optimize your messaging strategy to provide
your users with the best possible game experience.

[C++]
The bulk of your messaging will use the IDirectPlay8Peer::SendTo,
IDirectPlay8Client::Send, or IDirectPlay8Server::SendTo methods. These
methods normally work asynchronously for all message categories. They return
immediately, and your message handler receives a DPNMSG_SEND_COMPLETE
message when the message is actually sent. You can choose to send messages
synchronously by setting the DPNSEND_SYNC flag. If you do so, the method will
block until the message is actually sent.

[Visual Basic]
The bulk of your messaging will use the DirectPlay8Peer.SendTo,
DirectPlay8Client.Send, or DirectPlay8Server.SendTo methods. These methods
normally work asynchronously for all message categories. They return immediately,
and DirectPlay calls your message handler's DirectPlay8Event.SendComplete
method when the message is actually sent.

You can choose to send messages synchronously by setting the DPNSEND_SYNC
flag. If you do so, the Send/SendTo method will block until the message is actually
sent.

The DirectPlay protocol's throttling mechanism guarantees that the client will not
receive messages faster than they can be handled. However, the throttling protocol
does not control how frequently you submit messages to the outgoing queue. You can
easily end up with a large backlog of messages in your unsent message queues. You
can avoid this situation by sending messages as infrequently as possible, but then you
might unnecessarily degrade the user's experience. An optimal messaging strategy
sends messages as fast as possible without exceeding the target's ability to handle
them.

The following are tips for optimizing your messaging strategy.

in.doc – page 57

· Send most if not all of your messages asynchronously. If you send a message
synchronously, the method will block until the throttling mechanism allows the
message to be sent.

· Monitor the pending message queues and the network statistics. If there are few
or no messages in the queue, you can increase your transmission rate. If the
queues are large or growing rapidly, decrease your transmission rate and perhaps
cancel some messages. See the discussion of send timeouts in Send Prioritization
for further discussion.

· Analyze the pending message queues on a player-by-player basis. Some players
might be able to receive messages at a much higher rate than others. The bulk
statistics might be misleading. Consider using directed sends rather than group
sends.

· Choose the appropriate category for each message. Reserve the categories with
the highest overhead for the most important messages.

· Prioritize your messages, so that the most important are assured of being sent
promptly and not delayed by relatively unimportant messages.

· Do not let the pending message queues grow too large. In addition to delaying
the transmission of your messages, a large number of pending messages might
consume significant memory resources.

· Use the timeout feature of the Send and SendTo methods to automatically clear
outdated messages from the pending message queue.

· Minimize the amount of data per message. It is usually better to send frequent
small messages than a smaller number of large messages.

· Do not loop tightly when checking the pending message queue. Doing so wastes
CPU cycles. Instead, use a sleep period based on how long it typically takes the
queue to get down to the level that it will be ready for another send.

Using the DirectX Protocol in an Application
This section covers how you can use the features of the Microsoft® DirectPlay®
protocol in your application.

[C++]
You can use five DirectPlay interfaces to send messages.

· IDirectPlay8Peer

· IDirectPlay8Client

· IDirectPlay8Server

· IDirectPlay8LobbyClient

· IDirectPlay8LobbiedApplication

Depending on which interface your application is using to send messages, you send a
message by calling a method named either Send, or SendTo. While the usage of these

in.doc – page 58

five methods is similar, they vary in detail. Refer to the appropriate reference pages
for further discussion.

[Visual Basic]
You can use five DirectPlay objects to send messages.

· DirectPlay8Peer

· DirectPlay8Client

· DirectPlay8Server

· DirectPlay8LobbyClient

· DirectPlay8LobbiedApplication

Depending on which object your application is using to send messages, you send a
message by calling a method named either Send, or SendTo. While the usage of these
five methods is similar, they vary in detail. Refer to the appropriate reference pages
for further discussion.

[C++]
The Send/Sendto method's parameters might allow you to control many of the
DirectPlay protocol's features. For example, the dwFlags field of
IDirectPlay8Peer::SendTo allows you to specify:

· The message's priority level.

· Whether the message is reliable or unreliable.

· Whether the message is sequential or non-sequential.

Refer to the appropriate method reference for further details.

When your application receives a message, your callback function will receive a
DPN_RECEIVE message. The associated structure contains a pointer to the data
block, along with information such as the source of the message.

[Visual Basic]
The Send/Sendto method's parameters might allow you to control many of the
DirectPlay protocol's features. For example, the lFlags field of
DirectPlay8Peer.SendTo allows you to specify:

· The message's priority level.

· Whether the message is reliable or unreliable.

· Whether the message is sequential or non-sequential.

Refer to the appropriate method reference for further details.

in.doc – page 59

When your application receives a message, DirectPlay will call your message
handler's DirectPlay8Event.Receive method. The associated type contains a pointer
to the data block, along with information such as the source of the message.

DirectPlay Callback Functions and
Multithreading Issues

Microsoft® DirectPlay® and DirectPlay Voice both require you to implement and
register several callback functions to handle the events fired by DirectPlay.
DirectPlay is multithreaded and will fire multiple events concurrently. It is possible
that your application will receive multiple overlapping callbacks.

DirectPlay maintains a thread pool to service callback indications, and your callback
is invoked on a thread from the pool of threads maintained by DirectPlay. The size of
this thread pool is configurable on a per process basis in Microsoft Windows 2000.
Also, DirectPlay will use I/O completion ports when running on Windows 2000. I/O
completion ports is an advanced topic beyond the scope of this document, and it is
recommended that you look in the Microsoft Developer Network documents or in one
of the Win32 multithreading references currently available.

In order to correctly and reliably access data in DirectPlay callbacks, you are required
to implement a method of multithreading synchronization. This is known as making
your callback re-entrant or threadsafe.

The Microsoft Windows family of operating systems currently offers three methods
of synchronizing data in multithreaded environments:

· Mutex Objects

· Semaphore Objects

· Critical Section Objects

The DirectPlay voice samples that ship with the DirectX 8.0 SDK demonstrate
synchronization using Critical Section Objects. If you wish to implement a Mutex or
Semaphore Object, these topics are discussed in the Microsoft Platform SDK as well
as in many reference books. Implementing any of these synchronization methods
requires an expert knowledge level in these areas due of the level of complexity and
difficulty in debugging should any issues arise.

The DirectPlay threading model is optimized for maximum efficiency and there are
no thread context switches during "send" operations and during "indication"
messages, including receive messages.

This section discusses DirectPlay Networking Callbacks.

See Implementing a Callback Function in DirectPlay and DirectPlay Voice for more
information.

in.doc – page 60

DirectPlay Networking Callbacks

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Microsoft® DirectPlay® networking callback functions are of type
PFNDPNMESSAGEHANDLER. Depending on the type of networking session, you
register the address of your callback function with IDirectPlay8Peer::Initialize,
IDirectPlay8Client::Initialize, or IDirectPlay8Server::Initialize.

Synchronization Issues

You must employ one of the three thread synchronization objects in order to maintain
the integrity of your game data during processing in a DirectPlay callback.

In order to understand how your game data could be corrupted, consider that your
callback inserts a packet of game data into a structure. If another thread enters the
callback reentrantly before the first callback has completed, it is possible that this
thread could also attempt to access the structure at the same location in memory and
change the data. Therefore, the data placed in the structure by the first thread is
overwritten by the data placed in the structure by the second thread. Please note that
this is an oversimplified example of multithreading and there are many other
implications to not properly synchronizing multiple threads. Again, it is advisable to
achieve an expert level of knowledge in implementing multithreaded callbacks before
you attempt to create your own.

See Implementing a DirectPlay Networking Callback Using Critical Section Objects
for an example of how to synchronize data in a DirectPlay networking session.

Worker Threads

You have the option of creating your own "worker threads". A worker thread is
another multithreaded application defined callback that is created to process game
data independently of the DirectPlay callbacks. The most common way of
accomplishing this is to buffer data received during a DirectPlay networking callback
thread. Then, a new thread is created and a message is sent to your worker thread
callback to notify it to process the buffered data.

Multithreading Performance Issues and Asynchronous
Operations

It is important to carefully consider how much time is spent processing messages in
DirectPlay callbacks. If you process a lot of data within the DirectPlay callbacks and
you employ a data locking mechanism to synchronize threads, you will run into
blocking problems as other threads wait to enter the callback.

in.doc – page 61

If you choose to implement a worker thread and offset the processing of game data to
another callback, you run the risk of adding a lot of overhead processing time as the
CPU switches context between the threads you create and the threads created by
DirectPlay. This should be done only if the game data requires a large amount of
processing time, and the data is not critical to the real time operation of the game. For
example, it is not recommended to process player location data in a worker thread
because this data is critical to positioning players in real time within the game.

You can also return DPNSUCCESS_PENDING from the callback, create a pointer
to the data buffer, and make that pointer available the worker thread. When the
worker thread is finished processing the game data, it calls the ReturnBuffer method
of either IDirectPlay8Peer or IDirectPlay8Client, depending on the topology used.

Understanding DirectPlay Voice
Microsoft® DirectPlay® Voice is a full-voice communications API that is integrated
with DirectPlay for network session management and network transport.

DirectPlay Voice is also integrated with DirectPlay Sound for voice recording and
playback, and all DirectPlay Sound audio features are inherited including the ability
to target voice data to different playback buffers and the use of special audio effects
such as three-dimensional sound positioning.

DirectPlay Voice Networking

DirectPlay Voice Topologies

Voice Host Migration

Audio Device Testing

Voice Codecs

Automatic Gain Control

Transmission Control

Capture Focus

Jitter Buffers

Working Set Guidelines

DirectPlay Voice Networking
Microsoft® DirectPlay® Voice uses a DirectPlay session for media-independent
network transport and player management. The DirectPlay Voice API does not
duplicate session control features from DirectPlay. A DirectPlay network transport
session must also be created before DirectPlay Voice can transmit and receive voice

in.doc – page 62

communications. DirectPlay Voice can use either the IDirectPlay4 object or
IDirectPlay8 object for network transport.

Note that if DirectPlay Voice is being used in-process with a multiplayer game, the
game will most likely also use the transport session to exchange its game-specific
data. This makes it possible to optimize the use of network resources between the
game and voice data.

It is also acceptable to create and use a transport session specifically for the voice
session, as would be the case for a standalone voice conferencing application.

DirectPlay Voice Topologies
Microsoft® DirectPlay® Voice sessions require a DirectPlay network session to
transport voice communication. Once the network session has been created, a
DirectPlay Voice object can be created to use one of three topologies.

· Peer-to-Peer Voice Topology

· Forwarding Server Voice Topology

· Mixing Server Sessions

The choice of topology is dependent on several factors, and these factors are
discussed in the individual DirectPlay Voice topology topics. Note that not all voice
topologies can be transported over all types of DirectPlay networking sessions.

Peer-to-Peer Voice Topology

In a Microsoft® DirectPlay® Voice session using a peer-to-peer topology, each voice-
session client streams its voice audio data directly to every other voice-session client.
Each client receives all individual incoming voice audio streams, mixes the received
streams, and plays the resulting mixed signal on the client's computer.

The advantage of using a peer-to-peer topology is that no computer in the voice
session requires high bandwidth or processor power. However, the bandwidth and

in.doc – page 63

processor usage on each client's computer varies according to the number of incoming
and outgoing audio streams. The number of outgoing voice audio streams is equal to
the number of targets participating in the voice session, unless the network provider is
capable of true multicasting, as noted below. The number of incoming voice audio
streams depends on how many other voice-session clients are targeting the client in
question and also on how many of the other clients are speaking.

As a game design consideration, it is not useful for a voice-session client to be the
target of more than about six to eight other clients. If all six to eight clients are
speaking at once, the conversation can become confusing, and communication
between clients can be difficult.

If the DirectPlay network session supports true multicasting, the number of outgoing
voice audio streams can be reduced considerably. If all clients are part of a multicast
network and the target of the voice stream is a DirectPlay group, there is only one
outgoing stream.

[C++]
A DirectPlay voice session using a peer-to-peer voice topology supports 3-D
spatialization of the voice data using the
IDirectPlayVoiceClient::Create3DSoundBuffer method.

[Visual Basic]
A DirectPlay voice session using a peer-to-peer voice topology supports 3-D
spatialization of the voice data using the
DirectPlay8VoiceClient.Create3DSoundBuffer method.

It is important to note that a voice session using a peer-to-peer voice topology cannot
be used if the network transport is a client/server session.

Forwarding Server Voice Topology

In a Microsoft® DirectPlay® voice session using a forwarding server topology, one
computer in the session acts as a forwarding server. Each client in the voice session
streams voice data to the forwarding server, which then forwards the voice data to all
other clients in the session. Each client receives all incoming audio streams forwarded
from the forwarding server. Each client's computer then mixes the incoming streams
and plays them back.

in.doc – page 64

The outgoing bandwidth requirement on each client in a voice session using a
forwarding server topology is constant because there is only one outgoing voice audio
stream. The incoming bandwidth and processor requirements are identical to the
requirements of a voice session using a peer-to-peer topology, but they vary
depending on the number of incoming voice audio streams.

The server has much higher bandwidth requirements than the individual clients in a
forwarding server DirectPlay voice session. However, the processor requirements are
not high because no compression or decompression of voice data occurs on the
server. This reduced load on the computer's processor also means that an individual
client's computer with a high bandwidth connection can host the forwarding server
without adversely affecting the performance of the individual client's computer or the
performance of a game server and/or client program running on the same computer.

Note that in a voice session using a peer-to-peer topology, the outgoing bandwidth
requirements on the individual clients are usually much higher than the incoming
bandwidth requirements. Therefore, reducing the outgoing bandwidth requirement to
a single stream of audio can result in a significant reduction in total bandwidth usage.
For example, if a client is taking part in an eight-person voice session in which all
clients can hear one another, the client has seven outgoing voice streams each time
voice data is captured and transmitted on his or her computer. However, it is rare that
all clients talk at once, so there are most likely fewer than two or three incoming
voice streams at any one time.

Mixing Server Sessions

In mixing server sessions, one computer in the session acts as a mixing server. Each
client streams its voice data to the mixing server. The mixing server examines the
targets of each voice stream, performs decompression, mixing, and recompression as
appropriate to generate a mixed stream of audio data for each client. Each client
receives this single stream of pre-mixed audio data and plays it back.

in.doc – page 65

The outgoing bandwidth, incoming bandwidth, and CPU requirement on the client in
a mixing server session is easily predictable because each client has only one
outgoing stream of audio to compress and send, and one incoming stream of audio to
decompress and play back.

The mixing server has much higher bandwidth and CPU requirements than do the
clients. Typically, the mixing server is either a completely dedicated computer, or it
shares a computer with a dedicated game server.

[C++]
Mixing server voice sessions do not support 3-D spatialization of the voice data
through the IDirectPlayVoiceClient::Create3DSoundBuffer method.

[Visual Basic]
Mixing server voice sessions do not support 3-D spatialization of the voice data
through the DirectPlayVoiceClient8.Create3DSoundBuffer method.

You can run mixing server voice sessions using either a peer-to-peer or a client/server
transport session.

Voice Host Migration
In a peer-to-peer Microsoft® DirectPlay® network session, one client of the
networking session acts as host. If that host should exit the session or stop responding
for any reason, another client in the session is elected as host.

[C++]

in.doc – page 66

In a DirectPlay voice session, a similar process of host migration occurs in peer-to-
peer voice sessions, except that the voice host migrates independently of the
DirectPlay network session. The voice host migrates when the server calls
IDirectPlayVoiceServer::StopSession or if the voice host stops responding. When
the voice host migrates, each client in the voice session receives a
DVMSG_HOSTMIGRATED callback. The structure passed to the new host has a
valid pdvServerInterface pointer and can begin making IDirectPlayVoiceServer
calls.

[Visual Basic]
In a DirectPlay voice session, a similar process of host migration occurs in peer-to-
peer voice sessions, except that the voice host migrates independently of the
DirectPlay network session. The voice host migrates when the server calls
DirectPlayVoiceServer8.StopSession or if the voice host stops responding. When
the voice host migrates, the DirectPlayVoiceEvent8.HostMigrated method is called
on each of the clients. If the local client has become the new voice session host, the
NewServer parameter will point to the newly created DirectPlayVoiceServer8 object
that can be used by the local client for providing host services. If the local client is not
the new host, the NewServer parameter will be NULL.

Audio Device Testing

[C++]
Microphone setup is supported by the IDirectPlayVoiceTest interface. This interface
has one method, IDirectPlayVoiceTest::CheckAudioSetup, that can be used to run
the test wizard. This wizard confirms that your system properly supports full duplex
operation and ensures your microphone and playback settings are correct. You need
to run the wizard only once for each combination of playback and capture device you
select. Each time your application starts, you should test the configuration by calling
IDirectPlayVoiceTest::CheckAudioSetup with the dwFlags parameter set to
DVFLAGS_QUERYONLY. This enables you to quickly test whether the device
configuration has changed since you last tested them. If your devices have not been
tested, you should run IDirectPlayVoiceTest::CheckAudioSetup again to invoke
the wizard. If you do not do so, then IDirectPlayVoiceClient::Connect will return
DVERR_RUNSETUP, and you will not be able to initialize DirectPlay Voice.

If the user's sound card does not have full duplex capability, it can only listen to voice
communications. It cannot send voice communications because the game typically
holds the audio card in playback mode. To prevent problems, DirectX 8.0 does not
enable switching dynamically between playback and capturing. The DirectX audio
setup wizard provides feedback to the user on the duplexing capabilities of the
system.

in.doc – page 67

[Visual Basic]
Microphone setup is supported by the DirectPlayVoiceTest8.CheckAudioSetup
method.

Calling this method invokes the DirectX audio setup wizard, which runs tests and
confirms that the system properly supports full duplex operation and ensures
microphone and playback settings are correct. You need to run the wizard only once
for each combination of playback and capture device you select. Each time your
application starts, you should test the configuration by calling
DirectPlayVoiceTest8.CheckAudioSetup with the lFlags parameter set to
DVFLAGS_QUERYONLY. This enables you to quickly test whether the device
configuration has changed since your devices were last tested. If your devices have
not been tested, you should run DirectPlayVoiceTest8.CheckAudioSetup again to
invoke the wizard. If the configuration has changed since the last test and you have
not run the wizard again, DirectPlayVoiceClient8.Connect will return
DVERR_RUNSETUP, and you will not be able to initialize DirectPlay Voice.

If the user's sound card does not have full duplex capability, it can only listen to voice
communications. It cannot send voice communications because the game typically
holds the audio card in playback mode. To prevent problems, DirectX 8.0 does not
enable switching dynamically between playback and capturing. The DirectX audio
setup wizard provides feedback to the user on the duplexing capabilities of the
system.

Note that there are still many computer systems in active use that do not include a full
duplex sound card. Full duplex sound cards came into popular use in 1998, although
at the time few of the audio card drivers had full duplex operation enabled. Customers
who purchased new systems in 1999 or upgraded drivers in 1999 are more likely to
have full duplex capability.

Voice Codecs
The compression/decompression (codec) algorithms provided specifically with
Microsoft® DirectPlay® are voice-quality codecs. They are all 8 kHz, 16-bit mono-
format–based algorithms. Third-party codecs are not supported, and you cannot write
proprietary codecs for use with DirectPlay Voice.

It is important to note that as the bandwidth requirements drop, the audio quality of
the voice data also drops. The following table describes the sound quality of each
codec.

Codecs cannot be dynamically switched during a game voice session, and all users
must use the same codec in a voice session. However, a game could possibly create
an appropriate user interface to force codec switching by dropping a current session
and creating a new session using a different codec. This would be appropriate if the
game application's users were jumping from a lobby chat to a game.

in.doc – page 68

As with all other game setup parameters, the host should control the codec used. The
voice-session host does not necessarily have to be the same as the game-data host.

As with any form of network communication, it is important to analyze the cost of the
voice communication to ensure that adequate bandwidth is available to support
communication of the game data and voice data. Analyzing the voice bandwidth
consumption is straightforward. Estimate the number of simultaneous voice streams
that you anticipate and multiply that number by the sum of the bandwidth required by
the codec and the protocol overhead.

CPU consumption is another factor to consider when choosing a codec. Even low
bandwidth codecs typically require about 8 percent of a 200 megahertz (MHz)
Pentium processor's resources to encode a voice stream and an additional 4 percent to
decode. As with network bandwidth, CPU resource consumption is additive per
stream.

Automatic Gain Control

[C++]
Microsoft® DirectPlay® Voice offers functionality to adjust the hardware input
volume on the sound card automatically to provide the best recording input level
possible. To enable Automatic Gain Control, set the
DVCLIENTCONFIG_AUTORECORDVOLUME flag in the dwFlags member of the
DVCLIENTCONFIG structure when you set the client configuration. Automatic
Gain Control can be activated or deactivated at any time during the voice session.

[Visual Basic]
Microsoft® DirectPlay® Voice offers functionality to adjust the hardware input
volume on the sound card automatically to provide the best recording input level
possible. To enable Automatic Gain Control, set the
DVCLIENTCONFIG_AUTORECORDVOLUME flag in the lFlags member of the
DVCLIENTCONFIG structure when you set the client configuration. Automatic Gain
Control can be activated or deactivated at any time during the voice session.

Most game applications should use automatic gain control because it requires a
negligible amount of game resources and prevents the need for an in-game volume
recording control. Users are not required to set the level themselves, yet they
experience the highest quality of voice transmission and reception possible.

Transmission Control
To keep the performance requirements of Microsoft® DirectPlay® Voice low, voice
data should be transmitted only when the user is speaking. There are two methods to
control voice data transmission. The choice of which method to use depends on your
game's design considerations.

in.doc – page 69

· Voice Activation

· Push to Talk

Voice Activation

[C++]
With voice activated transmission control, the microphone input is constantly
analyzed to determine if the user is speaking. Voice activation has two benefits. It
does not require the user to do anything more than speak into the microphone. Also, it
is easily coded because it requires only setting the dwFlags parameter of the
DVCLIENTCONFIG structure to DVCLIENTCONFIG_AUTOVOICEACTIVATED
when the voice session is connected.

[Visual Basic]
With voice-activated transmission control, the microphone input is constantly
analyzed to determine if the user is speaking. Voice activation has two benefits. It
does not require the user to do anything more than speak into the microphone. Also, it
is easily coded because it requires only setting the lFlags parameter of the
DVCLIENTCONFIG structure to DVCLIENTCONFIG_AUTOVOICEACTIVATED
when the voice session is connected.

However, one drawback of voice activation is that sounds such as the user breathing
directly on the microphone, high levels of ambient sound caused by a noisy
environment, or set of external speakers playing back the game's audio could cause
unwanted voice activation. In addition, low-quality microphones exaggerate this
possibility.

Push to Talk

Push-to-talk transmission control requires users to actively select when they want to
transmit voice data. With this transmission control method, there is no danger that
anything besides voice data will be transmitted. This method is analogous to pushing
the Talk button on a two-way radio, and this functionality adds reality to certain game
genres such as first-person shooters. Another benefit of using this method is that
requiring users to actively select when they want to speak reduces the number of
users speaking at once. This transmission control requires more design and
development than voice activation because user-control functionality is required.

Capture Focus

[C++]
The concept of capturing focus is integral to creating lobbyable game applications
and lobby applications with Microsoft® DirectPlay® Voice support. If your game

in.doc – page 70

application does not properly implement focus capture, it is possible that voice
communication will not function if your game was launched from a lobby application.

To illustrate this point, consider two players who meet in a lobby application that has
DirectPlay Voice support. The two players agree to launch the game. After the game
is launched, the lobby application loses focus on each player's computer, and each
copy of the game application gains focus. If the game application does not properly
gain focus from the lobby application, it is possible that the lobby application can still
have focus while the game application is running.

For example, this will occur if the first player's lobby application retains focus while
the game session is running while the second player's game session gains focus from
the lobby application. From the second player's perspective, the first player's voice
session has fallen back to half-duplex. The second player can hear the first player, but
the first player cannot hear the second player. From the first player's perspective, the
voice session has ended because the second player does not seem to be speaking.
Also, the first player does not know that the second player can hear him or her.

Note that this behavior is by design. Consider the same scenario as above, but when
the first player attempts to start the game session from the lobby application, there is a
problem and the session fails to start. If the second player's session starts successfully,
that player can hear the voice of the first player and the first player can inform the
second player that their game session failed. Both players might then drop back to the
lobby and attempt to start the session once again.

To handle capture focus properly, your game application must set the
hwndAppWindow parameter in the DVSOUNDDEVICECONFIG structure to the
window handle that will have focus when the game is running. The DirectPlay Voice
session can then be created through a call to Connect. The game application must then
handle the DVMSGID_LOSTFOCUS and DVMSGID_GAINFOCUS messages.

See Implementing Capture Focus for more information.

[Visual Basic]
This topic pertains only to applications written in C++.

Jitter Buffers
Microsoft® DirectPlay® Voice features a jitter buffer, an adaptive buffering algorithm
that provides optimal voice quality with the least amount of latency.

On busy networks, individual packets of voice data information might arrive in a
different sequence from that in which they were encoded on the host computer.
Because voice data is sequential in nature, these incoming packets must be queued for
a period of time so that delayed packets have an opportunity to arrive and be played
back in order.

in.doc – page 71

If the jitter buffer is set to maximize the quality voice communication, it takes longer
for the required number of voice packets to arrive and be queued for play. The result
is voice latency, and the effect is that voice communication is not heard in real time.
Instead, the voice data might be heard anywhere from a fraction of a second to several
seconds after it was recorded. This can introduce problems during cooperative
gameplay because events can occur in the game but players will not be able to
communicate information based on those events in real time. For example, if a player
in a first-person shooter is about to be attacked from behind and a teammate attempts
to warn the player, the voice communication might not be heard until after the player
has been attacked.

If the jitter buffer is set to a reduce latency, the number of packets required to fill the
queue is reduced. However, it is possible that not all sequential packets will arrive in
time and, as a result, voice data will be missing from the buffer when it is played. The
voice communication will be heard much closer to the actual time it was recorded.
However, it will have a "broken-up" quality.

The DirectPlay jitter buffer uses two methods to determine how to provide the best
quality of voice communication with the least amount of latency. First, network
conditions are monitored to determine the amount of lag or network congestion. The
size of the jitter buffer, or queue, is then dynamically sized to keep latency as low as
possible while providing the least amount of voice break up.

[C++]
The default behavior of DirectPlay Voice jitter buffer is to automatically adjust to
network conditions. You can manually adjust how closely the algorithm tracks
network conditions using the dwBufferAggressiveness and dwBufferQuality members
of the DVCLIENTCONFIG structure. The higher the level of "aggressiveness", the
more closely the algorithm monitors network conditions. In general, the higher the
quality value, the higher the quality of the voice but the higher the latency. The lower
the quality value, the lower the latency but the lower the quality of the voice.

[Visual Basic]
The default behavior of DirectPlay Voice jitter buffer is to automatically adjust to
network conditions. You can manually adjust how closely the algorithm tracks
network conditions using the lBufferAggressiveness and lBufferQuality members of
the DVCLIENTCONFIG structure. The higher the level of aggressiveness, the more
closely the algorithm monitors network conditions. In general, the higher the quality
value, the higher the quality of the voice but the higher the latency. The lower the
quality value, the lower the latency but the lower the quality of the voice.

It is important to choose an appropriate level of aggressiveness for network
conditions when your game application is running because selecting a high level of
aggressiveness during times of steady network performance can cause the algorithm
to misinterpret a transitory problem and overcompensate for a problem that might not
exist.

in.doc – page 72

Working Set Guidelines
Determining the best configuration of transport topology, voice topology,
transmission control, and codec depends on the type or genre of game you are
creating, the number of players that will participate in a single game session, and the
type of connection that will be targeted.

It's important to note that the number of players participating in the voice session is
not necessarily the number of players actually participating in the game session. For
example, if your game is a first-person shooter, voice communication can be
represented in the game as a radio or communicator that is offered as a time-limited
powerup. Also, the radio metaphor can be used to limit communication to radios in
either vehicles or stationary command stations.

A second example to consider is an online bridge game, which involves four players
at one time. Because this is a small working set, it is appropriate to choose a peer-to-
peer voice topology transported over a peer-to-peer network topology. This small
working set also allows for the use of voice activation as the mode of transmission
control. The peer-to-peer voice topology is easily implemented and does not require
any player to act as a server. If all four players use the Voxware SC6 codec, the
maximum resulting bandwidth is 4.2 Kbps per speech stream, including the codec
protocol overhead. Further assuming that game data requires negligible bandwidth,
the outgoing maximum bandwidth requirement for an individual speaker is three
independent streams to the other three players, or 12.6 Kbps. The incoming stream to
any client ranges from 0 if no other players are talking, to 12.6 Kbps if all three other
players speak simultaneously. The CPU requirement is 8 percent for encoding and 0
to 12 percent for decoding. This results in a worst-case requirement of 25.2 Kbps.
Therefore each player must have a minimum of a 14,400-baud modem.

Another example is a squad combat game that can involve up to 32 players split
between 2 teams. Assume that the game data requires a 28,800 baud modem. In this
example, there is a larger number of players and it is appropriate to choose a
forwarding server voice topology. Again, if all players use the Voxware SC6 codec,
the bandwidth requirements are the same as the bridge game above: 4.2 Kbps. In this
example we see that there is 4.2 Kbps outgoing when speaking, and a maximum of
12.6 Kbps incoming from the squad. The maximum CPU requirement is 8 percent of
a Pentium 200 for encode and 12 percent receiving. Therefore, each player requires
28.8 Kbps for game data, and the greater incoming bandwidth of 12.6 Kbps requires a
minimum 41,400 baud rate from each player's modem.

The worst-case scenario for the forwarding server itself is if all 32 players talk at
once, requiring 134.4 Kbps. The server CPU use is minimal because the server is not
encoding or decoding the streams. It is merely redirecting them. More typically, there
might be 16 players talking simultaneously for 67.2 Kbps.

To illustrate the difference between choosing a mixing server voice topology and a
forwarding server voice topology, consider the same 32-player squad combat game
discussed above. If a mixing server voice topology is used, each client requires 4.2
Kbps to send and 4.2 Kbps to receive. The worst-case bandwidth requirements drop

in.doc – page 73

to 8.4 Kbps and 12 percent of the Pentium processor running at 200 MHz. This
reduces the modem requirement to a 33,600 Kbps baud rate for the client.

For the server, the CPU burden changes. The server is now decoding and re-encoding
all incoming streams and is also mixing the streams as required. The CPU burden mix
the stream is relatively low and is considered negligible. The worst case is the
decoding and encoding of 32 simultaneous streams. This results in a requirement of at
least a Pentium II processor running at 400 MHz for the voice service alone.

Using DirectPlay
This section of the Microsoft® DirectPlay® documentation is designed to show you
how to use the DirectPlay API to implement a number of important aspects of
multiplayer applications.

· Using DirectPlay Enumerations

[C++]
· Using Player Context Values

· Implementing a Lobby Client

· Implementing a Lobbyable Application

· Monitoring DirectPlay Network Traffic with Netmon

· Implementing a Callback Function in DirectPlay and DirectPlay Voice

· Implementing a DirectPlay Networking Callback Using Critical Section Objects

· Using the DirectPlay DPNSVR Application

Using DirectPlay Enumerations

[C++]
Enumeration is one of the ways that Microsoft® DirectPlay® provides information to
applications. Enumerations are used to collect data associated with a number of
similar elements. For instance, you can use an enumeration to obtain information
about each player in a session. To perform an enumeration, an application queries
DirectPlay for a particular type of information, and DirectPlay returns a data structure
for each related element, typically as an array of structures.

Most applications will need to perform at least one and often several enumeration
operations. Each DirectPlay interface supports a different set of enumerations. Thus
the details will vary from application to application. The following is a list of
available enumerations, along with the interfaces that support each type of
enumeration.

in.doc – page 74

· Session hosts (IDirectPlay8Peer, IDirectPlay8Client)

· Service providers (IDirectPlay8Peer, IDirectPlay8Client, IDirectPlay8Server)

· Players (IDirectPlay8Peer, IDirectPlay8Server)

· Groups (IDirectPlay8Peer, IDirectPlay8Server)

· Group members (IDirectPlay8Peer, IDirectPlay8Server)

· Local programs (IDirectPlay8LobbyClient)

For more information, see Implementing a DirectPlay Enumeration.

[Visual Basic]
Enumeration is one of the ways that Microsoft® DirectPlay® provides information to
applications. Enumerations are used to collect data associated with a number of
similar elements. For instance, you can use an enumeration to obtain information
about each player in a session. To perform an enumeration, an application queries
DirectPlay for a particular type of information, and DirectPlay returns a data type for
each related element, typically as an array of types.

Most applications will need to perform at least one and often several enumeration
operations. Each DirectPlay object supports a different set of enumerations. Thus the
details will vary from application to application. The following is a list of available
enumerations, along with the objects that support each type of enumeration.

· Session hosts (DirectPlay8Peer, DirectPlay8Client)

· Service providers (DirectPlay8Peer, DirectPlay8Client, DirectPlay8Server)

· Players (DirectPlay8Peer, DirectPlay8Server)

· Groups (DirectPlay8Peer, DirectPlay8Server)

· Group members (DirectPlay8Peer, DirectPlay8Server)

· Local programs (DirectPlay8LobbyClient)

For more information, see Implementing a DirectPlay Enumeration.

Implementing a DirectPlay Enumeration

[C++]
Most Microsoft® DirectPlay® enumerations follow a standard pattern: call the
appropriate enumeration method, and examine the returned data array. The exception
to this pattern is host enumerations, which are discussed separately.

Before you can call the method to obtain the data, you must allocate enough memory
to contain the returned data block. However, you typically do not know, in advance,
how large that array will be. Allocating a large enough block of memory to hold any

in.doc – page 75

conceivable array will work, but is inefficient. Instead DirectPlay is allows you query
for the required array size, and then repeat the query to obtain the structure itself.

The following procedure outlines how to enumerate the members of a group in a
peer-to-peer game. The same general procedure is followed by all other types of
enumeration, except for host enumerations. Because enumerations are often used to
obtain a snapshot of information that might be changing, you should perform
enumerations in a loop until you are successful.

1. Call IDirectPlay8Peer::EnumGroupMembers. This method returns an integer
array in the prgdpnid parameter that contains the ID of each player in the group.
The pcdpnid parameter is used to indicate the number of elements in the array.
Set the pcdpnid parameter to 0 to request the appropriate value. Set prgdpnid to
NULL.

2. When the method returns, pcdpnid will point to the number of elements that will
be in the array.

3. Allocate your array using the returned pcdpnid value, and assign the array to the
prgdpnid parameter.

4. Set pcdpnid to the value that was returned in the first method call.

5. Call IDirectPlay8Peer::EnumGroupMembers again.

6. When the method returns the second time, check the return value. If successful,
the method will return S_OK, and the array will contain the player's IDs.

7. If the method returns DPNERR_BUFFERTOOSMALL again, the number of
players has increased since the previous method call. Return to step three and use
the new pcdpnid value to increase the array size. Be careful not to leak memory.

In some cases, the method returns an array of structures. In that case, you follow the
same procedure, but the value returned from the first method call gives you the size of
the array in bytes, instead of the number of elements in the array. Refer to the
individual method references for details.

For more information, see Enumerating Hosts.

[Visual Basic]
Most DirectPlay enumerations follow a standard pattern: determine how many items
are to be enumerated and call the appropriate enumeration method. The exception to
this pattern is host enumerations, which are discussed separately.

The following procedure outlines how to enumerate the members of a group in a
peer-to-peer game. The same general procedure is followed by all other types of
enumeration, except for host enumerations.

1. Call DirectPlay8Peer.GetCountGroupMembers. This method returns the
number of members in the group.

2. Call DirectPlay8Peer.GetGroupMember once for each member in the
group. The method returns the ID of the specified player.

in.doc – page 76

For more information, see Enumerating Hosts.

Enumerating Hosts

One way to arrange a session is to have session hosts advertise themselves as
available. This type of session is referred to as a broadcast session. Peers or clients
can look for a game to join by enumerating the available hosts, selecting one, and
then join the game by sending a connection request. See Peer-to-Peer Sessions or
Client/Server Sessions for a detailed discussion.

Unlike other enumerations, the information needed to respond to a request for
available hosts is not stored on the local computer. Instead, a client or peer must
broadcast a request, for instance on their local subnet, and wait for available hosts to
respond. Hosts, on the other hand, must wait for these requests, and then respond
appropriately. There are thus two slightly different procedures, depending on whether
you are a potential session member, or a session host.

[C++]
The following procedure illustrates how enumerate the available hosts for a peer-to-
peer session. The procedure for a client/server session is essentially the same.
IDirectPlay8Peer::EnumHosts is the method that starts the enumeration. The key
parameters to set are pApplicationDesc, pdpaddrDeviceinfo, and pdpaddrHost.

1. Assign the GUID of the game you are interested in playing to the
guidApplication member of the DPN_APPLICATION_DESC structure and
assign the structure pointer to the pApplicationDesc parameter.

2. Create an address object for your device and assign its pointer to
pdpaddrDeviceinfo. This object contains the information needed to make a
network connection.

3. To query a specific computer for available hosts, create a host address object for
that computer and assign its pointer to pdpaddrHost. If you set this parameter to
NULL, Microsoft® DirectPlay® will create an address object from the
information contained in pdpaddrDeviceinfo. See DirectPlay Addressing for
further discussion of address objects. If you are using an IP or IPX service
provider, the query will then normally be broadcast to your local subnet. If you
set the DPNENUMHOSTS_OKTOQUERYFORADDRESSING flag, the service
provider may display a dialog box to the user to request address information.

4. Call IDirectPlay8Peer::EnumHosts.

5. Your callback message handler will then receive a series of
DPN_MSGID_ENUM_HOSTS_RESPONSE messages, one for each host that
responds.

6. Examine the information returned to your message handler, select a
session, and ask to join it by calling IDirectPlay8Peer::Connect.

in.doc – page 77

If you want to be the host of a broadcast session, advertise yourself as available, and
wait for queries or connection requests. The following procedure applies to peer-to-
peer hosts, but is essentially similar to the procedure for client/server hosts.

1. Call IDirectPlay8Peer::SetPeerInfo to specify the static settings for your
player.

2. Specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC structure.

3. Call IDirectPlay8Peer::Host to advertise yourself as a potential host. Set the
pdnAppDesc parameter to the DPN_APPLICATION_DESC structure defined
in the previous step.

4. Wait for enumeration requests. They will take the form of a
DPN_MSGID_ENUM_HOSTS_QUERY message sent to your callback
message handler. If you wish to respond to the enumeration request, fill in the
DPN_APPLICATION_DESC and return S_OK. The peer will receive a
DPN_MSGID_ENUM_HOSTS_RESPONSE message with the information.

5. If the peer decides that they would like to join your session, you will receive a
DPN_MSGID_INDICATE_CONNECT message.

See the Peer-to-Peer Sessions and Client/Server Sessions sections for further
discussion of how to arrange and launch a game.

[Visual Basic]
The following procedure illustrates how enumerate the available hosts for a peer-to-
peer session. The procedure for a client/server session is essentially the same.
DirectPlay8Peer.EnumHosts is the method that starts the enumeration. The key
parameters to set are ApplicationDesc, Deviceinfo, and AddrHost.

1. Assign the GUID of the game you are interested in playing to the
guidApplication member of the DPN_APPLICATION_DESC type and assign
assign it to the ApplicationDesc parameter.

2. Create a DirectPlay8Address object for your device and assign it to Deviceinfo.
This object contains the information needed to make a network connection.

3. To query a specific computer for available hosts, create a DirectPlay8Address
object for the host computer and assign it to pdpaddrHost. If you set leave the
object empty, DirectPlay will create an address from the information contained in
pdpaddrDeviceinfo. See DirectPlay Addressing for further discussion of address
objects. If you are using an IP or IPX service provider, the query will then
normally be broadcast to your local subnet.

4. Call DirectPlay8Peer.EnumHosts.

5. DirectPlay will then make a series of calls to your message handler's
DirectPlay8Event.EnumHostsResponse method, once for each host that
responds.

6. Examine the information returned to your message handler, select a
session, and ask to join it by calling DirectPlay8Peer.Connect.

in.doc – page 78

If you want to be the host of a broadcast session, advertise yourself as available, and
wait for queries or connection requests. The following procedure applies to peer-to-
peer hosts, but is essentially similar to the procedure for client/server hosts.

1. Call DirectPlay8Peer.SetPeerInfo to specify the static settings for your player.

2. Specify the configuration of the game by assigning values the
DPN_APPLICATION_DESC type.

3. Call DirectPlay8Peer.Host to advertise yourself as a potential host. Set the
AppDesc parameter to the DPN_APPLICATION_DESC type defined in the
previous step.

4. Wait for enumeration requests. They will take the form of a call to your message
handlers DirectPlay8Peer.EnumHostsQuery method. If you wish to respond to
the enumeration request, fill in the DPN_APPLICATION_DESC type and set
fRejectMsg to False.

5. If the peer decides that they would like to join your session, DirectPlay will call
your message handler's DirectPlay8Event.IndicateConnect method.

See the Peer-to-Peer Sessions and Client/Server Sessions sections for further
discussion of how to arrange and launch a game.

Using Player Context Values

[C++]
Most applications will want to associate some data with each player. However, when
you receive a message that is associated to a player, you need some way to access that
data quickly. Player context values are designed to provide you with an efficient way
to access your player data.

Note
Only the IDirectPlay8Peer and IDirectPlay8Server interfaces use player
context values. They are not needed for the IDirectPlay8Client interface because
clients use this interface to communicate only with the server, not other clients.

· Defining a Player Context Value
· Managing Player Context Data

[Visual Basic]
This topic pertains only to applications written in C++.

in.doc – page 79

Defining a Player Context Value

[C++]
To user player context values, you need to have a block of data on your system for
each player, typically in the form of a structure. A player context value is normally an
index into an array of pointers to the various players' data blocks. When you receive a
message from a player, there is no need for time-consuming operations such as
searching for the player's ID in a table. The index contained in the player context
value allows you to quickly obtain the necessary pointer.

You define a player context value when you handle the
DPN_MSGID_CREATE_PLAYER message that notifies you that a player has been
added to the game. Host's can also define a player context value when they handle the
DPN_MSGID_INDICATE_CONNECT message. That player context value will be
set in the subsequent DPN_MSGID_CREATE_PLAYER message. When the host
processes that message, it has the option of changing the player context value. To
create a player context value:

· Allocate a structure to hold the player's data.

· Add the structure pointer to your player data array.

· Assign the index of that pointer to the pvPlayerContext member of the
message's DPNMSG_CREATE_PLAYER structure.

Microsoft® DirectPlay® does not specify how you should obtain the data to populate
the structure. Each game is responsible for handling that issue in its own way.

Note
The only place you can define a player context value is in a
DPN_MSGID_CREATE_PLAYER or
DPN_MSGID_INDICATE_CONNECT message handler. Once the
DPN_MSGID_CREATE_PLAYER message handler returns, the player
context value is set. For each subsequent message associated with that player, the
player context value will be the same value that was set by the
DPN_MSGID_CREATE_PLAYER message handler. You can modify the
contents of the associated data structure, but you cannot change the player
context value itself.

[Visual Basic]
This topic pertains only to applications written in C++.

Managing Player Context Data

[C++]

in.doc – page 80

While player context values are fairly straightforward to handle, there are a couple of
issues that you need to be careful with.

The player context value provides you with a quick way to obtain a valid memory
address that will presumably be accessed each time a message arrives. However, you
must be careful that different parts of your application do not access the data at the
same time. Microsoft® DirectPlay® serializes messages associated with a particular
player, which guarantees that you will never be handling two messages from the same
player at the same time. As long as you only access the data structure from your
callback message handler, you can safely access the structure. However, most
applications will need to access player data outside the message handler.

If your application accesses the data outside the callback message handler, you must
prevent concurrent access by providing some sort of global mechanism to lock the
structure. Even if your application does not require such locking in the early stages of
development, you should assume that locking will eventually be required, and build it
in from the beginning. If your player context values that are indexes into an array, you
should also make sure that you read and update that array safely.

Don't deallocate a player's data structure prematurely. When a player leaves the game,
you will normally want to deallocate their data structure and free the associated
memory. However, be careful about deallocating the structure as soon as you receive
a DPN_MSGID_DESTROY_PLAYER message. If your application accesses that
structure outside the callback message handler, that data may still be in use when the
message arrives. If you simply deallocate the structure as soon as the message arrives,
you may cause other parts of your application to fail.

To avoid prematurely deallocating the structure, you should not only provide an
application-level locking mechanism, you should also implement some sort of
reference counting. Increment this reference count when you create the structure, and
every time you use it. Decrement the reference count every time you have finished
with the structure, including in your DPN_MSGID_DESTROY_PLAYER message
handler. As long as the reference count is non-zero, some part of your application is
accessing the structure. Do not deallocate the structure until the reference count drops
to zero.

[Visual Basic]
This topic pertains only to applications written in C++.

Implementing a Lobby Client
A lobby client is an application that resides on a user's computer. It typically serves as
a link between a game application on the user's computer and a lobby server on a
remote computer. However, lobby clients can also function as stand-alone

in.doc – page 81

applications. For instance, they can be used to arrange a game session among the
users of a particular LAN subnet.

Lobby clients typically consist of three primary components that handle the following
tasks:

· Communicating with the outside world, either a lobby server or other lobby
clients.

· Communicating with the user, typically through a graphical user interface (GUI).

· Communicating with Microsoft® DirectPlay®.

DirectPlay does not specify how the first two items should be implemented. Lobby
client vendors should use whatever approach is suitable to their product. What
DirectPlay provides is a standard API that a lobby client can use to communicate with
DirectPlay, and through DirectPlay with the user's lobbyable game applications.

This section discusses the following essential details of lobby client implementation.

· Initializing a Lobby Client

· Launching a Lobbied Application

· Implementing a Lobby Client Message Handler

· Communicating with a Lobbied Application

· Closing Down a Lobby Client

See the LobbyClient sample application for a fully implemented example of a simple
lobby client.

Initializing a Lobby Client

[C++]
Lobby clients are either launched by a lobby server or directly by a user. Once a
lobby client is launched, it must be initialized before it can launch an application.
Initialization involves the following tasks.

· Call CoCreateInstance to create a lobby client object
(CLSID_DirectPlay8LobbyClient). Use the riid parameter to request a
IDirectPlay8LobbyClient interface (IID_IDirectPlay8LobbyClient).

· Call the lobby client's IDirectPlay8LobbyClient::Initialize method. Pass the
method a pointer to your lobby client's callback message handler.

· Use the IDirectPlay8LobbyClient::EnumLocalPrograms method to enumerate
the lobbyable applications on the user's system.

The first two steps create the lobby client object, and set up a communication link
between that object and your lobby client. The final step determines what lobbyable
applications are available on the user's system. You need this information in order to
launch the selected application.

in.doc – page 82

The following code sample illustrates how to enumerate local applications. It is a
simplified version of the EnumRegisteredApplications function in the SDK's
LobbyClient sample. Error handling and dialog-box-related code has been deleted for
clarity. See the LobbyClient sample in the SDK for the complete code.

HRESULT EnumRegisteredApplications()

{

 HRESULT hr;

 DWORD dwSize = 0;

 DWORD dwPrograms = 0;

 DWORD iProgram;

 BYTE* pData = NULL;

//g_pLobbyClient is a pointer to an IDirectPlay8LobbyClient interface

//Start with a NULL data buffer. The required buffer size is

//returned through dwSize.

 hr = g_pLobbyClient->EnumLocalPrograms(NULL, pData, &dwSize, &dwPrograms, 0);

 if(dwSize == 0)

 {

//No registered applications.

 }

//Set the data buffer to the appropriate size

 pData = new BYTE[dwSize];

 hr = g_pLobbyClient->EnumLocalPrograms(NULL, pData, &dwSize, &dwPrograms, 0)

//Cast the returned data to the appropriate structure type

 DPL_APPLICATION_INFO* pAppInfo = (DPL_APPLICATION_INFO*) pData;

//Enumerate the names of the registered applications

 for(iProgram=0; iProgram<dwPrograms; iProgram++)

 {

 TCHAR strAppName[MAX_PATH];

 DXUtil_ConvertWideStringToGeneric(strAppName, pAppInfo->pwszApplicationName);

 }

 SAFE_DELETE_ARRAY(pData);

 return S_OK;

}

[Visual Basic]
Lobby clients are either launched by a lobby server or directly by a user. Once a
lobby client is launched, it must be initialized before it can launch an application.
Initialization involves the following tasks.

in.doc – page 83

· Create a DirectPlay8LobbyClient object.

Create a DirectPlay8LobbyEvent object. The DirectPlay8LobbyEvent object is
essentially a message handler that receives messages directly from the lobby
client object, and indirectly from the application. It is not provided by Microsoft®

DirectPlay® and must be implemented by your application.

· You must register this object with DirectPlay by calling
DirectPlay8LobbyClient.RegisterMessageHandler.

· Use the DirectPlay8LobbyClient.GetLocalProgram method to enumerate the
lobbyable applications on the user's system.

The first two steps create the lobby client object, and set up a communication link
between that object and your lobby client. The final step determines what lobbyable
applications are available on the user's system. You need this information in order to
launch the selected application.

You should store the application GUIDs of the registered applications because you
need them to launch the application.

Depending on the design of your lobby client, you may also want to do one or more
of the following tasks.

· Perform any initialization that is not related to Microsoft® DirectPlay®, such as
establishing a link with the lobby server.

[C++]
· Create a DirectPlay peer or DirectPlay client object (CLSID_DirectPlay8Peer or

CLSID_DirectPlay8Client, respectively).

[Visual Basic]
· Create a DirectPlay8Peer or DirectPlay8Client object.

· Use the peer or client object's enumeration methods to enumerate available
service providers, adapters, and so on.

Launching a Lobbied Application

[C++]
Once the user has selected an application, and your lobby client has verified that it
has been registered on the user's system, you can launch the application. To do so,
call IDirectPlay8LobbyClient::ConnectApplication. The first parameter is a
DPL_CONNECT_INFO structure that contains a variety of information needed to
launch the application including the following:

· The GUID that identifies the application.

in.doc – page 84

· The connection settings, including the user's Microsoft® DirectPlay® address. See
DirectPlay Addressing for a discussion of DirectPlay addresses.

· Whether the application will be a host.

The IDirectPlay8LobbyClient::ConnectApplication method returns an application
handle that is used to identify the application in all further communication. Once the
application has launched and the connection successfully established, your message
handler receives a DPL_MESSAGE_CONNECT message.

Note
Your message handler may receive the DPL_MESSAGE_CONNECT before the
IDirectPlay8LobbyClient::ConnectApplication method has confirmed the
connection by returning a success code. Your message handler should be
prepared to handle the message even if the method has not yet returned.

[Visual Basic]
Once the user has selected an application, and your lobby client has verified that it
has been registered on the user's system, you can launch the application. To do so,
call DirectPlay8LobbyClient.ConnectApplication. The first parameter is a
DPL_CONNECT_INFO structure that contains a variety of information needed to
launch the application including the following:

· The GUID that identifies the application.

· The connection settings, including the user's Microsoft® DirectPlay® address. See
DirectPlay Addressing for a discussion of DirectPlay addresses.

· Whether the application will be a host.

The DirectPlay8LobbyClient.ConnectApplication method returns an application
handle that is used to identify the application in all further communication. Once the
application has launched and the connection successfully established, DirectPlay will
call your message handlers DirectPlay8LobbyEvent.Connect method.

Note
Your message handler's DirectPlay8LobbyEvent.Connect method may be
called before the DirectPlay8LobbyClient.ConnectApplication method has
confirmed the connection by returning a success code. Your message handler
should be prepared to handle the message even if the method has not yet
returned.

Implementing a Lobby Client Message Handler

[C++]

in.doc – page 85

The message handler is a callback function that is used by the lobby client object to
communicate with the lobby client. The lobby client message handler has three
parameters that pass in the following information.

· A message ID that indicates the message type.

· A pointer to a message data block. You must cast this parameter to the structure
that is used by the particular message.

· A pointer to an optional application-defined user-context data block.

The user context value is defined by the lobby client when it calls
IDirectPlay8LobbyClient::Initialize. It can be used for such purposes as
differentiating between messages that are sent from different objects. See
PFNDPNMESSAGEHANDLER for a complete description the message handler
function.

Your message handler must be able to handle the following five lobby client-specific
messages.

· DPL_MESSAGE_CONNECT

· DPL_MESSAGE_CONNECTION_SETTINGS

· DPL_MESSAGE_DISCONNECT

· DPL_MESSAGE_RECEIVE

· DPL_MESSAGE_SESSION_STATUS

Most of these messages are generated by the lobby client object in response to
changes in the game status, or when the lobby client requests information. The
exception is DPL_MESSAGE_RECEIVE. This message is used to pass data
directly from the game application to the lobby client.

Note
Microsoft® DirectPlay® message handlers must be written to work properly in a
multithreaded environment, or your application may not function well.

DPL_MSGID_CONNECT

This message is sent by the lobby client following the launch of a lobbyable
application. The message indicates that the application has been successfully
connected. The associated DPL_MESSAGE_CONNECT structure holds a variety
of information, including:

· A connection ID. Use this ID when your lobby client needs to send data to the
application with IDirectPlay8LobbyClient::Send, or release the connection
with IDirectPlay8LobbyClient::ReleaseApplication.

· Lobby connection data.

· An optional connection context value.

in.doc – page 86

DPL_MSGID_CONNECTION_SETTINGS

This message is sent by DirectPlay whenever an associated lobbyable application
calls its IDirectPlay8LobbiedApplication::SetConnectionSettings method to
modify the session connections. The associated
DPL_MESSAGE_CONNECTION_SETTINGS structure contains the updated
connection information.

DPL_MSGID_DISCONNECT

This message is sent when the lobbyable application disconnects from the session by
calling IDirectPlay8LobbiedApplication::Close. Your lobby client application
should delete the connection from its list and free any data that is associated with the
application.

DPL_MSGID_RECEIVE

This message enables an application to pass data to the lobby client. DirectPlay
passes the data block from the application to the lobby client in a
DPL_MESSAGE_RECEIVE structure. It is up to the lobby client to process the
data.

DPL_MSGID_SESSION_STATUS

This message is sent by DirectPlay whenever one of the following six changes in the
session's status occurs.

· The session is connected.

· The session could not connect.

· The session has been disconnected.

· The session has been terminated.

· The session host has migrated.

· This computer has become the session host.

The type of status change is indicated by the value of the dwStatus field in the
associated DPL_MESSAGE_SESSION_STATUS structure.

For more information, see A Sample Lobby Client Message Handler.

[Visual Basic]
The message handler is a DirectPlay8LobbyEvent object, that receives messages
directly from the lobby client object, and indirectly from the application. It is not
provided by DirectPlay and must be implemented by your application.

Your message handler must implement all of the following methods:

· DirectPlay8LobbyEvent.Connect

in.doc – page 87

· DirectPlay8LobbyEvent.ConnectionSettings

· DirectPlay8LobbyEvent.Disconnect

· DirectPlay8LobbyEvent.Receive

· DirectPlay8LobbyEvent.SessionStatus

Most of these methods are called by DirectPlay in response to changes in the game
status, or when the lobby client requests information. The exception is
DirectPlay8LobbyEvent.Receive. This method is called to pass data directly from
the game application to the lobby client.

DirectPlay8LobbyEvent.Connect

This method is called by DirectPlay following the launch of a lobbyable application.
The message indicates that the application has been successfully connected. The
associated DPL_MESSAGE_CONNECT type holds a variety of information,
including:

· A connection ID. Use this ID when your lobby client needs to send data to the
application with DirectPlay8LobbyClient.Send, or release the connection with
DirectPlay8LobbyClient.ReleaseApplication.

· Lobby connection data.

· An optional connection context value.

DirectPlay8LobbyEvent.ConnectionSettings

This message is called by DirectPlay whenever an associated lobbyable application
calls its DirectPlay8LobbiedApplication.SetConnectionSettings method to modify
the session connections. The associated
DPL_MESSAGE_CONNECTION_SETTINGS type contains the updated
connection information.

DirectPlay8LobbyEvent.Disconnect

This message is sent when the lobbyable application disconnects from the session by
calling DirectPlay8LobbiedApplication.Close. Your lobby client application should
delete the connection from its list and free any data that is associated with the
application.

DirectPlay8LobbyEvent.Receive

This message enables an application to pass data to the lobby client by calling
DirectPlay8LobbiedApplication.Send. DirectPlay passes the data block from the
application to the lobby client in a DPL_MESSAGE_RECEIVE type. It is up to the
lobby client to process the data.

in.doc – page 88

DirectPlay8LobbyEvent.SessionStatus

This message is sent by DirectPlay whenever one of the following six changes in the
session's status occurs.

· The session is connected.

· The session could not connect.

· The session has been disconnected.

· The session has been terminated.

· The session host has migrated.

· This computer has become the session host.

The type of status change is indicated by the value of the method's status parameter.

For more information, see A Sample Lobby Client Message Handler.

A Sample Lobby Client Message Handler

[C++]
The following code is a simplified version of the message handler from the SDK's
LobbyClient sample. Error handling code has been removed for clarity. See the
sample for a complete version.

HRESULT WINAPI DirectPlayLobbyMessageHandler(PVOID pvUserContext,

 DWORD dwMessageId,

 PVOID pMsgBuffer)

{

 switch(dwMessageId)

 {

 case DPL_MSGID_DISCONNECT:

 {

 PDPL_MESSAGE_DISCONNECT pDisconnectMsg;

 pDisconnectMsg = (PDPL_MESSAGE_DISCONNECT)pMsgBuffer;

 // Free any data associated with the application and

 // Remove the connection from the list

 break;

 }

 case DPL_MSGID_RECEIVE:

 {

 PDPL_MESSAGE_RECEIVE pReceiveMsg;

 pReceiveMsg = (PDPL_MESSAGE_RECEIVE)pMsgBuffer;

 // The lobby application sent data. Process the data and

 // Respond appropriately

in.doc – page 89

 break;

 }

 case DPL_MSGID_SESSION_STATUS:

 {

 PDPL_MESSAGE_SESSION_STATUS pStatusMsg;

 pStatusMsg = (PDPL_MESSAGE_SESSION_STATUS)pMsgBuffer;

 switch(pStatusMsg->dwStatus)

 {

 case DPLSESSION_CONNECTED: //Session connected

 break;

 case DPLSESSION_COULDNOTCONNECT: //Session could not connect

 break;

 case DPLSESSION_DISCONNECTED: //Session disconnected

 break;

 case DPLSESSION_TERMINATED: //Session terminated

 break;

 case DPLSESSION_HOSTMIGRATED: //Host migrated

 break;

 case DPLSESSION_HOSTMIGRATEDHERE: //Host migrated here

 break;

 }

 case DPL_MSGID_CONNECTION_SETTINGS:

 {

 PDPL_MESSAGE_CONNECTION_SETTINGS pConnectionStatusMsg;

 pConnectionStatusMsg = (PDPL_MESSAGE_CONNECTION_SETTINGS)pMsgBuffer;

 // The application has changed the connection settings.

 break;

 }

 }

 return S_OK;

}

[Visual Basic]
This topic pertains only to applications written in C++.

Communicating with a Lobbied Application

[C++]
Much of the lobby client's interaction with an associated application is indirect. The
lobby client does something that affects the application, and Microsoft® DirectPlay®
sends an appropriate message, and vice versa. For instance, if the lobby client

in.doc – page 90

changes the connection settings, DirectPlay notifies the application and provides the
new settings. However, the IDirectPlay8LobbyClient::Send method enables the
lobby client to send a message directly to the application. DirectPlay passes the data
to the application without modification. It is the responsibility of the application to
process that data.

The lobbied application can also send data directly to the lobby client. The data is
passed to the lobby client's message handler with a DPL_MSGID_RECEIVE
message. DirectPlay passes the data to the lobby client without modification. It is up
to the lobby client to process the data.

[Visual Basic]
Much of the lobby client's interaction with an associated application is indirect. The
lobby client does something that affects the application, and Microsoft® DirectPlay®
sends an appropriate message, and vice versa. For instance, if the lobby client
changes the connection settings, DirectPlay notifies the application and provides the
new settings. However, the DirectPlay8LobbyClient.Send method enables the lobby
client to send a message directly to the application. DirectPlay passes the data to the
application without modification. It is the responsibility of the application to process
that data.

The lobbied application can also send data directly to the lobby client. DirectPlay
transmits the data by calling the lobby client message handler's
DirectPlay8LobbyEvent.Receive method. DirectPlay passes the data to the lobby
client without modification. It is up to the lobby client to process the data.

Closing Down a Lobby Client

[C++]
When you are ready to close the session, disconnect the application by calling
IDirectPlay8LobbyClient::ReleaseApplication. The application receives a
DPL_MSGID_DISCONNECT message.

After releasing the application, perform any cleanup that is necessary, and close the
session by calling IDirectPlay8LobbyClient::Close. You should then free the lobby
client object by calling IDirectPlay8LobbyClient::Release.

[Visual Basic]
When you are ready to close the session, disconnect the application by calling
DirectPlay8LobbyClient.ReleaseApplication. Microsoft® DirectPlay® will call
notification by calling its message handler's DirectPlay8LobbyEvent.Disconnect
method.

in.doc – page 91

After releasing the application, perform any cleanup that is necessary, and close the
session by calling DirectPlay8LobbyClient.Close.

Implementing a Lobbyable Application
A lobbyable application must be designed to work properly with a lobby client. While
a lobby client can launch any application, only lobby-launched applications can
receive messages from Microsoft® DirectPlay® and from the lobby client. To be
lobby launched, an application must be appropriately registered, and it must be able to
use a DirectPlay lobbied application object to communicate with DirectPlay and the
lobby client.

This section discusses how to implement lobbyable applications.

· Registering a Lobbyable Application

· Handling Lobby Launching

· Implementing a Lobbied Application Callback Message Handler

· Communicating with a Lobby Client

· Closing Down a Lobbied Application

Registering a Lobbyable Application

[C++]
A lobbyable application must be registered before it can be lobby launched. This
registration needs to be done only once and is typically handled by the application's
setup procedure. Do not attempt to modify the registry directly to register an
application as lobbyable. Instead, do the following:

· Call CoCreateInstance to create a lobbied application object
(CLSID_DirectPlay8LobbiedApplication). Set the riid parameter to
IID_IDirectPlay8LobbiedApplication to request an
IDirectPlay8LobbiedApplication interface.

· Call IDirectPlay8LobbiedApplication::RegisterProgram.This method takes
the information and creates appropriate registry keys and values.

You must provide IDirectPlay8LobbiedApplication::RegisterProgram with a
variety of information, including the following:

[Visual Basic]
A lobbyable application must be registered before it can be lobby launched. This
registration needs to be done only once and is typically handled by the application's
setup procedure. Do not attempt to modify the registry directly to register an
application as lobbyable. Instead, do the following:

in.doc – page 92

· Create a DirectPlay8LobbiedApplication object.

· Call DirectPlay8LobbiedApplication.RegisterProgram.This method takes the
information and creates appropriate registry keys and values.

You must provide DirectPlay8LobbiedApplication.RegisterProgram with a variety
of information, including the following:

· A GUID that is used to identify the application.

· A friendly name for the application.

· The location and name of the application's executable file.

· The location and name of an optional launcher application.

· Any command-line arguments that need to be passed to the executable file when
it is launched.

Instead of launching the game application, Microsoft® DirectPlay® launches a
launcher application. The launcher application then launches the game. Launcher
applications can be used, for example, as an anti-piracy measure.

[C++]
To unregister a registered program, call
IDirectPlay8LobbiedApplication::UnregisterProgram. This method removes the
registry entries created by IDirectPlay8LobbiedApplication::RegisterProgram.

[Visual Basic]
To unregister a registered program, call
DirectPlay8LobbiedApplication.UnregisterProgram. This method removes the
registry entries created by DirectPlay8LobbiedApplication.RegisterProgram.

Handling Lobby Launching

[C++]
The first thing your lobbyable application should do when it is launched is to create
and initialize a Microsoft® DirectPlay® lobbied application object. To do this,
perform the following tasks.

· Call CoCreateInstance to create a lobbied application object
(CLSID_DirectPlay8LobbiedApplication). Set the riid parameter to
IID_IDirectPlay8LobbiedApplication to request an
IDirectPlay8LobbiedApplication interface.

· Call IDirectPlay8LobbiedApplication::Initialize to initialize the lobbied
application object. Pass the object a pointer to your lobbied application callback
message handler.

in.doc – page 93

Next, determine whether your application was lobby launched. If so, your application
needs to set up a communication channel with DirectPlay so that you can effectively
manage the session. Do the following to detect whether your application was lobby
launched.

· When the IDirectPlay8LobbiedApplication::Initialize method returns, examine
the pdpnhConnection parameter. If this parameter is set to a valid connection
handle, the game was lobby launched.

· Examine the DPL_MSGID_CONNECT message you receive through your
message handler. This message carries with it a variety of information, including
the ID that you use to send messages to the lobby client.

Note
Your message handler may receive the DPL_MSGID_CONNECT message
before the IDirectPlay8LobbiedApplication::Initialize method returns. Your
message handler should be prepared to handle the message appropriately.

If your application was not lobby launched, you can indicate that your application is
available to lobby clients for connection by calling
IDirectPlay8LobbiedApplication::SetAppAvailable. This method is typically
called when the application has been launched by the user. However, it can also be
used if the user has closed one session but the application is still running and
available for another session. In either case, your message handler receives a
DPL_MSGID_CONNECT message when the lobby client connects your application
to a session.

[Visual Basic]
The first thing your lobbyable application should do when it is launched is to create
and initialize a Microsoft® DirectPlay® lobbied application object. To do this,
perform the following tasks.

· Create a DirectPlay8LobbiedApplication object.

· Create a DirectPlay8LobbyEvent message handler object

· Register the message handler object by calling
DirectPlay8LobbiedApplication.RegisterMessageHandler.

If the application was lobby-launched, DirectPlay will call your
DirectPlay8LobbyEvent.Connect method. The dlNotify parameter will contain a
DPL_MESSAGE_CONNECT type with connection information. such as address
objects for the members of the session.

If your application was not lobby launched, you can indicate that your application is
available to lobby clients for connection by calling
DirectPlay8LobbiedApplication.SetAppAvailable. This method is typically called
when the application has been launched by the user. However, it can also be used if
the user has closed one session but the application is still running and available for
another session. In either case, DirectPlay will call your message handler's

in.doc – page 94

DirectPlay8LobbyEvent.Connect method when the lobby client connects your
application to a session.

[C++]
The following sample code illustrates how to initialize a lobbied application, and how
to detect whether an application was lobby launched. It is a simplified version of the
InitDirectPlay function used by the SDK's SimplePeer application. Refer to that
sample application for the complete code. In particular, error-handling code has been
deleted for clarity. The g_bWasLobbyLaunched variable is a global variable that is set
to TRUE if the application was lobby launched.

HRESULT InitDirectPlay()

{

 DPNHANDLE hLobbyLaunchedConnection = NULL;

 HRESULT hr;

 // Create IDirectPlay8LobbiedApplication

 hr = CoCreateInstance(CLSID_DirectPlay8LobbiedApplication, NULL,

 CLSCTX_INPROC_SERVER,

 IID_IDirectPlay8LobbiedApplication,

 (LPVOID*) &g_pLobbiedApp);

 // Initialize IDirectPlay8LobbiedApplication

 hr = g_pLobbiedApp->Initialize(NULL,

 DirectPlayLobbyMessageHandler,

 &hLobbyLaunchedConnection,

 0);

 //Check for a valid connection handle. If it is non-NULL

 //the application was lobby launched.

 g_bWasLobbyLaunched = (hLobbyLaunchedConnection != NULL);

 return S_OK;

}

Implementing a Lobbied Application Callback
Message Handler

[C++]
The message handler is a callback function that is used by the lobbied application
object to communicate with a lobbied application. The lobbied application message
handler has three parameters that pass in the following information.

· A message ID that indicates the message type.

in.doc – page 95

· A pointer to a message data block. You must cast this parameter to the structure
that is used by the particular message.

· A pointer to an optional application-defined user-context data block.

The user context value is defined by the lobby client when it calls
IDirectPlay8LobbyClient::Initialize. It can be used for such purposes as
differentiating between messages that are sent from different objects. See
PFNDPNMESSAGEHANDLER for a complete description the message handler
function.

Your message handler must to be able to handle the following four lobbied
application-specific messages.

· DPL_MESSAGE_CONNECT

· DPL_MESSAGE_CONNECTION_SETTINGS

· DPL_MESSAGE_DISCONNECT

· DPL_MESSAGE_RECEIVE

Most of these messages are generated by the lobbied application object in response to
changes in the connection, or when the lobbied application requests connection
information. The exception is DPL_MESSAGE_RECEIVE. This message is used to
pass data directly from the lobby client to the game application.

Note
Microsoft® DirectPlay® message handlers must be written to work properly in a
multithreaded environment, or your application may not function well.

DPL_MSGID_CONNECT

This message is sent by the lobbied application object when the lobby client calls
IDirectPlay8LobbyClient::ConnectApplication to connect an application to a
session. The associated DPL_MESSAGE_CONNECT structure includes the
following information.

· A connection ID. Use this ID when your application needs to send data to the
lobby client with IDirectPlay8LobbiedApplication::Send, or update the session
status with IDirectPlay8LobbiedApplication::UpdateStatus.

· Lobby connection data.

· An optional connection context value.

DPL_MSGID_CONNECTION_SETTINGS

DirectPlay sends this message whenever an associated lobby client calls its
IDirectPlay8LobbyClient::SetConnectionSettings method to modify the session
connections. The associated DPL_MESSAGE_CONNECTION_SETTINGS
structure contains the updated connection information.

in.doc – page 96

DPL_MSGID_DISCONNECT

This message is sent when the lobby client disconnects the application from the
session by calling IDirectPlay8LobbyClient::ReleaseApplication. Your application
should delete the connection from its list, and free any data that is associated with the
session.

DPL_MSGID_RECEIVE

This message enables a lobby client to pass data to an application. DirectPlay passes
the data block from the lobby client to the application in a
DPL_MESSAGE_RECEIVE structure. It is up to the application to process the
data.

For more information, see A Sample Lobbied Application Message Handler.

[Visual Basic]
The message handler is a DirectPlay8LobbyEvent object, that receives messages
directly from the lobby client object, and indirectly from the application. It is not
provided by Microsoft® DirectPlay® and must be implemented by your application.

Your message handler must implement all of the following methods:

· DirectPlay8LobbyEvent.Connect

· DirectPlay8LobbyEvent.ConnectionSettings

· DirectPlay8LobbyEvent.Disconnect

· DirectPlay8LobbyEvent.Receive

· DirectPlay8LobbyEvent.SessionStatus

Most of these methods are called by DirectPlay in response to changes in the game
status, or when the lobbied application requests information. The exception is
DirectPlay8LobbyEvent.Receive. This method is called to pass data directly from
the lobby client to the game application.

DirectPlay8LobbyEvent.Connect

This method is called when the lobby client calls
DirectPlay8LobbyClient.ConnectApplication to connect an application to a
session. The associated DPL_MESSAGE_CONNECT type holds a variety of
information, including:

· A connection ID. Use this ID when your lobby client needs to send data to the
application with DirectPlay8LobbyClient.Send, or release the connection with
DirectPlay8LobbyClient.ReleaseApplication.

· Lobby connection data.

· An optional connection context value.

in.doc – page 97

DirectPlay8LobbyEvent.ConnectionSettings

DirectPlay calls this method whenever an associated lobby client calls its
DirectPlay8LobbyClient.SetConnectionSettings method to modify the session
connections. The associated DPL_MESSAGE_CONNECTION_SETTINGS type
contains the updated connection information.

DirectPlay8LobbyEvent.Disconnect

This message is sent when the lobby client disconnects the application from the
session by calling DirectPlay8LobbyClient.ReleaseApplication. Your application
should delete the connection from its list, and free any data that is associated with the
session.

DirectPlay8LobbyEvent.Receive

This message enables a lobby client to pass data to an application. When the lobby
client calls DirectPlay8LobbyClient.Send, DirectPlay passes the data to the
application by calling DirectPlay8LobbyEvent.Receive. It is up to the application to
process the data.

DirectPlay8LobbyEvent.SessionStatus

DirectPlay does not call this method for lobbyable application message handlers. You
must implement this method, but it can simply return 0.

A Sample Lobbied Application Message Handler

[C++]
The following code is a simplified version of the message handler from the SDK's
SimplePeer sample. Error handling code has been removed for clarity. See the sample
for a complete version.

HRESULT WINAPI DirectPlayLobbyMessageHandler(PVOID pvUserContext,

 DWORD dwMessageId,

 PVOID pMsgBuffer)

{

 switch(dwMessageId)

 {

 case DPL_MSGID_CONNECT:

 {

 PDPL_MESSAGE_CONNECT pConnectMsg;

 pConnectMsg = (PDPL_MESSAGE_CONNECT)pMsgBuffer;

in.doc – page 98

 // Connected. Start the session.

 break;

 }

 case DPL_MSGID_DISCONNECT:

 {

 PDPL_MESSAGE_DISCONNECT pDisconnectMsg;

 pDisconnectMsg = (PDPL_MESSAGE_DISCONNECT)pMsgBuffer;

 // Disconnected. Free any data associated with

 // the lobby client.

 break;

 }

 case DPL_MSGID_RECEIVE:

 {

 PDPL_MESSAGE_RECEIVE pReceiveMsg;

 pReceiveMsg = (PDPL_MESSAGE_RECEIVE)pMsgBuffer;

 // The lobby client sent data. Process the data and

 // respond appropriately.

 break;

 }

 case DPL_MSGID_CONNECTION_SETTINGS:

 {

 PDPL_MESSAGE_CONNECTION_SETTINGS pConnectionStatusMsg;

 pConnectionStatusMsg = (PDPL_MESSAGE_CONNECTION_SETTINGS)pMsgBuffer;

 // The lobby client has changed the connection settings.

 break;

 }

 }

 return S_OK;

}

[Visual Basic]
This topic pertains only to applications written in C++.

Communicating with a Lobby Client

[C++]
Much of the lobbied application's interaction with an associated lobby client is
indirect. The application does something that affects the lobby client, Microsoft®

in.doc – page 99

DirectPlay® sends an appropriate message, and vice versa. For instance, if the
application changes the connection settings, DirectPlay notifies the lobby client, and
provides the new settings. However, there are two methods that provide information
directly to the lobby client: IDirectPlay8LobbiedApplication::UpdateStatus and
IDirectPlay8LobbiedApplication::Send.

[Visual Basic]
Much of the lobbied application's interaction with an associated lobby client is
indirect. The application does something that affects the lobby client, Microsoft®
DirectPlay® sends an appropriate message, and vice versa. For instance, if the
application changes the connection settings, DirectPlay notifies the lobby client, and
provides the new settings. However, there are two methods that provide information
directly to the lobby client: DirectPlay8LobbiedApplication.UpdateStatus and
DirectPlay8LobbiedApplication.Send.

You must notify the lobby client when any of the following changes in the game
status take place.

· The session is connected.

· The session could not connect.

· The session has been disconnected.

· The session has been terminated.

· The session host has migrated.

· This computer has become the session host.

[C++]
To notify the lobby client of one of these status changes, call
IDirectPlayLobbiedApplication::UpdateStatus, and set the dwStatus parameter to
the appropriate value. The lobby client receives a DPL_MSGID_SESSION_STATUS
message to notify it of the status change.

The IDirectPlay8LobbiedApplication::Send method enables the application to send
a message directly to the lobby client. DirectPlay passes the data to the lobby client
without modification. It is the responsibility of the lobby client to process that data.

The lobby client can also send data directly to the application. The data is passed to
the lobby client's message handler with a DPL_MSGID_RECEIVE message.
DirectPlay passes the data to the application without modification. The lobby client
must process the data.

[Visual Basic]
To notify the lobby client of one of these status changes, call
DirectPlay8LobbiedApplication.UpdateStatus, and set the lStatus parameter to the

in.doc – page 100

appropriate value. DirectPlay will call the lobby client message handler's
DirectPlay8LobbyEvent.SessionStatus method to notify it of the status change.

The DirectPlay8LobbiedApplication.Send method enables the application to send a
message directly to the lobby client. DirectPlay passes the data to the lobby client
without modification. It is the responsibility of the lobby client to process that data.

The lobby client can also send data directly to the application. DirectPlay passes the
data to the lobby client's message handler by calling its
DirectPlay8LobbyEvent.Receive method. DirectPlay passes the data to the
application without modification. The lobby client must process the data.

Closing Down a Lobbied Application

[C++]
To close a session, call IDirectPlay8LobbiedApplication::Close. The lobby client
receives a DPL_MSGID_DISCONNECT message to notify it of the disconnection. If
you want to keep the application running and connect to another session, indicate that
your application is available by calling
IDirectPlay8LobbiedApplication::SetAppAvailable. Otherwise, call
IDirectPlay8LobbiedApplication::Release to free the lobbied application object,
and shut the application down.

[Visual Basic]
To close a session, call DirectPlay8LobbiedApplication.Close. Microsoft®
DirectPlay® calls the lobby client message handler's
DirectPlay8LobbyEvent.Disconnect method to notify it of the disconnection. If you
want to keep the application running and connect to another session, indicate that
your application is available by calling
DirectPlay8LobbiedApplication.SetAppAvailable.

Monitoring DirectPlay Network Traffic
with Netmon

During game development, you may find it useful to monitor Microsoft® DirectPlay®
network traffic, especially when trying understand bugs. The network monitor
(netmon) is a standard utility for analyzing network traffic. DirectPlay includes a set
of parsers, that allow you to use netmon to analyze four components of DirectPlay
messaging: the service provider layer, the transport layer, the session layer, and the
voice layer.

· How Netmon Works With DirectPlay

in.doc – page 101

· Configuring Netmon for DirectPlay

· Capturing DirectPlay Network Traffic

· Tips for Using Netmon with DirectPlay

How Netmon Works With DirectPlay
The Microsoft® DirectPlay® protocol stack has three basic layers.

· The voice and session layers share the top level of the stack. Normal messaging
passes through the session layer, and voice-related messaging passes through the
voice layer.

· The transport layer is the middle of the stack. Both voice and session traffic
passes through this layer, which is responsible for such tasks as fragmentation
and reassembly of messages and retransmission of lost packets.

· The service provider layer is at the bottom of the stack. All messaging is handled
by this layer, which is responsible for communicating with the network. For
example, for TCP/IP networking, the service provider uses the Winsock API to
communicate with the network stack. Netmon can only parse network traffic that
is carried on an IP or IPX service provider.

By installing the DirectPlay parsers, you can use Netmon to analyze the network
traffic as it passes through any of these four layers. You can see all DirectPlay traffic
by selecting the service provider parser. However, by selecting one of the higher level
parsers, you can filter out traffic that may not be of interest.

With the transport layer parser, you see all voice and session traffic, but not low-level
traffic such as connection handshaking. Be aware that the transport layer breaks
messages that are longer than the network's Maximum Transfer Unit (MTU) into one
or more fragments.

The session and voice layer parsers allow you to analyze session and voice-related
traffic separately. Both of these parsers are aware of fragmentation, and notify the
user, but cannot parse fragmented packets.

Configuring Netmon for DirectPlay
If you have a Windows 2000 Server system, Netmon is already installed. For
Windows 2000 Professional, you must purchase a copy of Systems Management
Server (SMS). See the Netmon documentation for a general discussion of how to use
Netmon. To configure Netmon to handle Microsoft® DirectPlay® traffic:

1. Copy Dp8parser.dll to the appropriate folder. The Netmon root folder is normally
installed in the \Winnt\System32 folder. If you have installed SMS, the root
folder will be called NetMonFull. For Windows 2000 Server, the root folder will
be called NetMon. Depending on which version of Netmon you are using, copy
the parser DLL to either the ...\NetMonFull\Parsers, or ...\NetMon\parsers folder.

2. Start Netmon

in.doc – page 102

3. Set the adapter to capture from (Capture|Networks...|Local Computer). Be sure to
choose the adapter with the "Dial-up Connection" property set to FALSE.

You are now ready to start capturing traffic.

Capturing DirectPlay Network Traffic
To start the capture process, click the Start Capture button on the Netmon toolbar to
open the capture view. Initially, you will see all the traffic that is passing through
your adapter. You can filter that raw traffic stream to focus on only those packets that
are of interest. By installing the Microsoft® DirectPlay® parsers, you essentially add
four DirectPlay-oriented filters to Netmon that allow you to filter everything but
DirectPlay traffic from your capture view.

To select a filter:

1. Click the Edit Display Filter button on the Netmon toolbar.

2. Double-click "Protocol == Any".

3. Click "Disable All".

4. Under "Disabled Protocols", double-click DPLAYSESSION, DPLAYSP,
DPLAYTRANSPORT, and DPLAYVOICE.

Click OK twice to return to the capture view, and you are ready to start viewing
DirectPlay traffic.

You can also apply a filter to the capture process itself, rather than to the capture
view. This allows you, for instance, to capture only IP packets with specified source
and destination ports. See the Netmon documentation for details.

Tips for Using Netmon with DirectPlay
Here are a few tips to using Netmon with Microsoft® DirectPlay®:

· By default, Netmon only captures 1MB of the most recent traffic. You will
probably want to increase this value to at least 10-20 MB.

· Netmon doesn't stream to the hard drive, so all you can see is what is in the
capture buffer. To stream captured traffic to a hard drive, you will need to
implement your own capturer. See MSDN for details.

· By default, DirectPlay parsing uses the [2302,2400]U{6073} port/socket range to
filter IP and IPX packets. If you are using non-standard port/socket ranges, you
can have the parsers recognize user-defined port/socket values. To do so, add two
DWORD values, MinUserPort and MaxUserPort, to the
\HKEY_CURRENT_USER\Software\Microsoft\DirectX\DirectPlay\Parsers
registry key. This allows you to extend the port/socket range to
[2302,2400]U{6073}U[MinUserPort,MaxUserPort].

· Because the DirectPlay and RTP protocols are both layered on top of the UDP
protocol, their parsers may conflict. You should disable the RTP parser when
analyzing DirectPlay traffic, and vice versa.

in.doc – page 103

Implementing a Callback Function in
DirectPlay and DirectPlay Voice

[Visual Basic]
This topic pertains only to applications written in C++.

[C++]
Microsoft® DirectPlay® and DirectPlay Voice both require you to implement and
register several callback functions to handle the events fired by DirectPlay.
DirectPlay is multithreaded and will fire multiple events concurrently. Therefore, in
order to correctly and reliably access data in DirectPlay callbacks, you are required to
implement a method of multithreading synchronization. This is known as making
your callback re-entrant or threadsafe.

Callback Function Structure

The structure of the callback follows standard Microsoft Windows Win32 API
programming guidelines.

HRESULT WINAPI Callback(

 PVOID pvUserContext,

 DWORD dwMessageType,

 PVOID pMessage);

pvUserContext is the a context value you supply when you register the callback
function with DirectPlay. If you pass this value to DirectPlay when you register your
callback, the context value will be returned when DirectPlay invokes your callback.

dwMessageType is one of the ID values passed to your callback by DirectPlay.

pMessage will contain the message passed by DirectPlay.

Registering Your Callback

Microsoft DirectPlay networking callback functions are of type
PFNDPNMESSAGEHANDLER. Depending on the type of networking session, you
register the address of your callback function with IDirectPlay8Peer::Initialize,
IDirectPlay8Client::Initialize, or IDirectPlay8Server::Initialize. If you are registering
a DirectPlay voice callback function, register the address of your callback with
IDirectPlayVoiceClient::Initialize or IDirectPlayVoiceServer::Initialize, depending on
the type of DirectPlay voice session you wish to create.

The following code snippet demonstrates how to register a callback function with the
IDirectPlay8Peer interface.

HRESULT WINAPI Callback(PVOID, DWORD, PVOID);

IDirectPlay8Peer* pdp8Peer;

in.doc – page 104

// Get the server interface

hr = CoCreateInstance(CLSID_DirectPlay8Peer, ...)

...

// Register the callback

hr = pdp8Peer->Initialize(NULL, Callback, 0);

Implementing a DirectPlay Networking
Callback Using Critical Section Objects

[C++]
Microsoft® DirectPlay® networking and voice callback are multithreaded. Therefore,
in order to correctly and reliably access data in DirectPlay callbacks, you are required
to implement a method of multithreading synchronization.

Currently, there are three methods of synchronizing mulithreaded callback data.

· Mutex Objects

· Semaphore Objects

· Critical Section Objects

The DirectPlay voice samples that ship with the DirectX 8.0 SDK demonstrate
synchronization using Critical Section Objects, and the following topics will also
demonstrate how Critical Section Objects are used. If you wish to implement a Mutex
or Semaphore Object, these topics are discussed in the Microsoft Platform Software
Development Kit (SDK) as well as in many reference books. Implementing any of
these synchronization methods requires an expert knowledge level in these areas due
of the level of complexity and difficulty in debugging should any issues arise.

CRITICAL_SECTION g_csPlayerContext;

InitializeCriticalSection(&g_csPlayerContext);

Next, implement the DirectPlay message callback handler.

HRESULT WINAPI DirectPlayMessageHandler(PVOID pvUserContext,

 DWORD dwMessageId,

 PVOID pMsgBuffer)

{

 switch(dwMessageId)

 {

 case DPN_MSGID_CREATE_PLAYER:

 {

 EnterCriticalSection(&g_csPlayerContext);

 //callback is now locked

 //perform operation on player data

in.doc – page 105

 LeaveCriticalSection(&g_csPlayerContext);

 }

 }

}

Finally, during application exit, ensure that you call the DeleteCriticalSection
function to free the memory associated with your critical section object.

DeleteCriticalSection(&g_csPlayerContext);

[Visual Basic]
Multithreaded callbacks are not used in Visual Basic.

Using the DirectPlay DPNSVR
Application

Microsoft Windows does not allow multiple processes to share a single IP or IPX
port. Each application that wants to act as a communication host must use a separate
port. This restriction creates several issues, especially when doing such tasks as
enumerating running games:

· Avoiding port conflicts. You must choose a port that does not conflict with other
applications.

· Managing multiple communications hosts on a single system. Each instance of a
host must use a different port. Client applications then have to determine which
port a particular host is using.

· Avoiding ports that are already in use. If your preferred port is in use, your
application must be able to use another port.

The DPNSVR application addresses these issues by acting as a forwarding service for
enumeration requests. When an application begins hosting, it informs DPNSVR
which port it is running on. DPNSVR listens on a well-known port, and forwards any
enumeration requests to all Microsoft® DirectPlay® hosts on the system. Responses to
enumeration requests contain the actual port that the host is connected to. DPNSVR
offers developers the following advantages:

· You can write generic enumeration routines that enumerate all the games running
on a particular system.

· You can use DirectPlay to select the host's port. Client applications can use the
services of DPNSVR to enumerate the running games on a well-known port, and
the responses will contain the actual port that the host is connected to.

· You do not have to allow for the situation where your application does not get
the port it requests.

in.doc – page 106

· You do not need to be concerned about conflicts with other applications on the
system

While most applications will want to use the services of DPNSVR, there are some
circumstances where you may want to disable it. Two examples are:

· You know what port you want to use, and only one instance of your application
will be running on the computer.

· You want to restrict the ability of players to enumerate your session. If you
disable DPNSVR, only those players that know the port that your host is
connected to will be able to enumerate your host.

For more information, see How to Use DPNSVR.

How to Use DPNSVR

[C++]
To determine whether DPNSVR is supported by your service provider, call the
GetSPCaps methods supported by the IDirectPlay8Peer, IDirectPlay8Client, or
IDirectPlay8Server. If the service provider supports DPNSVR, the
DPNSPCAPS_SUPPORTSDPNSRV flag will be set in the dwFlags member or the
returned DPN_SP_CAPS structure. Only IP and IPX service providers currently
support DPNSVR.

Using DPNSVR requires no special effort, because it is selected by default. If you do
not want enumeration requests forwarded to your host, you must explicitly disable
DPNSVR by setting the DPNSESSION_NODPNSVR flag in the dwFlags member of
the DPN_APPLICATION_DESC structure.

Note
Applications can always enumerate your host if they know the port that it is
running on, even if the DPNSESSION_NODPNSVR flag is set.

[Visual Basic]
To determine whether DPNSVR is supported by your service provider, call the
GetSPCaps methods supported by the DirectPlay8Peer, DirectPlay8Client, or
DirectPlay8Server. If the service provider supports DPNSVR, the
DPNSPCAPS_SUPPORTSDPNSRV flag will be set in the dwFlags member or the
returned DPN_SP_CAPS type. Only IP and IPX service providers currently support
DPNSVR.

Using DPNSVR requires no special effort, because it is selected by default. If you do
not want enumeration requests forwarded to your host, you must explicitly disable
DPNSVR by setting the DPNSESSION_NODPNSVR flag in the dwFlags member of
the DPN_APPLICATION_DESC type.

Note

in.doc – page 107

Applications can always enumerate your host if they know the port that it is
running on, even if the DPNSESSION_NODPNSVR flag is set.

Implementing Capture Focus

[C++]
The concept of capturing focus is integral to creating lobbyable game applications
and lobby applications with Microsoft® DirectPlay® Voice support. If your game
application does not properly implement focus capture, it is possible that voice
communication will not function if your game was launched from a lobby application.

Before the DirectPlay voice session is created, there are several initialization steps to
be completed:

// Create a DirectPlay voice client interface

hr = CoCreateInstance(CLSID_DirectPlayVoiceClient,

 NULL,

 CLSCTX_INPROC_SERVER,

 IID_IDirectPlayVoiceClient,

 (LPVOID*) &m_pVoiceClient)

// Set the hwndAppWindow member to the window that will have

// focus when your game application is running

DVSOUNDDEVICECONFIG dvSoundDeviceConfig;

dvSoundDeviceConfig.hwndAppWindow = hWnd;

// Set dwFlags to DVSOUNDCONFIG_STRICTFOCUS so that only application

// windows that are in the foreground will gain focus

dvSoundDeviceConfig.dwFlags = DVSOUNDCONFIG_STRICTFOCUS;

// Connect to the voice session

hr = m_pVoiceClient->Connect(&dvSoundDeviceConfig,

 pdvClientConfig,

 DVFLAGS_SYNC)

Once the application is connected to the session, message will be received by your
DirectPlay voice callback. The two messages which you must handle to properly
implement capture focus are DVMSGID_GAINFOCUS and
DVMSGID_LOSTFOCUS.

HRESULT CALLBACK DirectPlayVoiceClientMessageHandler(

 LPVOID lpvUserContext,

 DWORD dwMessageType,

 LPVOID lpMessage)

in.doc – page 108

{

 switch(dwMessageType)

 {

 case DVMSGID_GAINFOCUS:

 // the game application has gained focus in the system

 break;

 case DVMSGID_LOSTFOCUS:

 // the game application has lost focus in the system

 break;

 }

 ...

}

If recording is muted, focus will be lost. DirectPlay voice will send a
DVMSGID_LOSTFOCUS message to your callback. When recording is unmuted,
focus will be regained, with the exception that applications using
DVSOUNDCONFIG_STRICTFOCUS will only gain focus is the application
window is in the foreground.

DVCLIENTCONFIG dvClientConfig;

dvClientConfig.dwFlags = DVCLIENTCONFIG_RECORDMUTE;

// Mute recording, DVMSGID_LOSTFOCUS is sent to DirectPlay

// voice callback function

m_pVoiceClient->SetClientConfig(dvClientConfig);

[Visual Basic]
This topic pertains only to applications written in C++.

DirectPlay C++ Samples
The following sample applications demonstrate the use and capabilities of the
Microsoft® DirectPlay® application programming interface for the C++ programming
language. Refer to the Readme.txt file in each sample folder for details. All sample
folders can be found under the SDK root directory, typically C:\mssdk.

· AddressOverride

· ChatPeer

· DataRelay

· LobbyClient

· Maze

in.doc – page 109

· SimpleClientServer

· SimplePeer

· StagedPeer

· VoiceClientServer

· VoiceConnect

· VoiceGroup

· VoicePosition

AddressOverride
AddressOverride demonstrates how to override the Microsoft® DirectPlay®
addressing in order to host or connect to another session on the network.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\AddressOverride

ChatPeer
The ChatPeer sample is similar in form to SimplePeer. Once a player hosts or
connects to a session, the players can chat with each other by passing text strings.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\ChatPeer

DataRelay
The DataRelay sample is similar to SimplePeer but differs by sending a single target
(or everyone) a packet of data with options specified in the dialog box's UI.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\DataRelay

LobbyClient
LobbyClient is a simple lobby client application. It displays all registered Microsoft®
DirectPlay® applications on the local system. It enables the user to launch one or
more of these applications using a chosen service provider. A launched lobbied
application may be told to either join or host a game.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\LobbyClient

in.doc – page 110

Maze
The maze sample is a Microsoft® DirectPlay® client/server application. The client
comes in two flavors: a console-based version and a D3D client. The D3D client can
optionally be run as screen saver by copying Mazeclient.exe to your \winnt\system32\
folder and renaming it Mazeclient.scr. Doing so will make it a screen saver that can
be detected by the display control panel application.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\Maze

SimpleClientServer
The SimpleClientServer sample is a simple client/server application.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\SimpleClientServer

SimplePeer
The SimplePeer sample illustrates how to implement a simple peer-to-peer
application. After joining or creating a session, the game begins immediately. Other
players may join the session in progress at any time.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\SimplePeer

StagedPeer
The StagedPeer sample connects players together with two dialog boxes that prompt
users on the connection settings needed to join or create a session. After the user
connects to a session, the sample displays a multiplayer stage that enables all players
connected to the same session to chat. Players can start a new game when everyone is
ready and the host decides to begin. The host may reject players or close player slots.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\StagedPeer

VoiceClientServer
The VoiceClientServer sample is a simple Microsoft® DirectPlay® voice-based
client/server application.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\VoiceClientServer

in.doc – page 111

VoiceConnect
The VoiceConnect sample shows how to network other players to start a Microsoft®
DirectPlay® Voice chat session. After joining or creating a session, the players may
use a microphone to talk to one other. Other players may join the session in progress
at any time.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\VoiceConnect

VoiceGroup
The VoiceGroup sample shows how use Microsoft® DirectPlay® voice to enable users
to talk to a specific group of players.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\VoiceGroup

VoicePosition
The VoicePosition sample shows how use Microsoft® DirectPlay® Voice with 3-D
positioning. The sample uses a simple 2-D grid to represent a playing field. Players
can move around the playing field to hear the effects of 3-D spatialization.

Path
(SDK Root)\Samples\Multimedia\DirectPlay\VoicePosition

DirectPlay Visual Basic Samples
The following sample applications demonstrate the use and capabilities of the
Microsoft® DirectPlay® application programming interface for the Visual Basic
programming language. Refer to the Readme.txt file in each sample folder for details.
All sample folders can be found under the SDK root directory, typically C:\mssdk.

· Chat

· Conferencer

· DataRelay

· DXVB Messenger

· Memory

· SimpleClient

· SimplePeer

· SimpleServer

in.doc – page 112

· SimpleVoice

· StagedPeer

· VoiceGroup

Chat
The Chat sample is similar in form to SimplePeer. Once a player hosts or connects to
a session, the players can chat with either other by passing text strings.

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\Chat

Conferencer
The Conferencer sample is similar in form to Microsoft NetMeeting.

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\Conferencer

DataRelay
The DataRelay sample is similar to SimplePeer but differs by sending a packet of data
to a single target (or everyone) with options specified in the dialog box's UI.

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\DataRelay

DXVB Messenger
The DXVBMessenger sample is a simple client/server instant messaging application.

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\DXVBMessenger

Memory
Memory is a simple game in which you match 'tiles' and try to score the most points.

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\Memory

SimpleClient
The SimpleClient sample is a simple application that can connect to a server, and
make funny faces to other players on that server.

in.doc – page 113

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\SimpleClient

SimplePeer
The SimplePeer sample allows players to make funny faces. Players can either be
peers, or the session host.

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\SimplePeer

SimpleServer
The SimpleServer sample is a simple Server application that can connect and route
client messages.

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\SimpleServer

SimpleVoice
The SimpleVoice sample is similar in form to SimplePeer. Once a player hosts or
connects to a session, the players can chat with either other.

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\SimpleVoice

StagedPeer
The StagedPeer sample connects players together with two dialog boxes that prompt
users on the connection settings needed to join or create a session. After the user
connects to a session, the sample displays a multiplayer stage that allows all players
connected to the same session to chat. Players can start a new game when everyone is
ready and the host decides to begin. The host may reject players or close player slots.

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\StagedPeer

VoiceGroup
The VoiceGroup sample is similar in form to SimpleVoice. Once a player hosts or
connects to a session, the players can chat with either other.

Path
(SDK Root)\Samples\Multimedia\VBSamples\DirectPlay\VoiceGroup

y

in.doc – page 114

DirectPlay C/C++ Reference
Reference material for the Microsoft® DirectPlay® C/C++ application programming
interface is divided into the following categories.

· Interfaces

· Functions

· Callback Functions

· System Messages

· Structures

· Return Values

Interfaces
This section contains references for methods of the following Microsoft® DirectPlay®

interfaces.

· IDirectPlay8Peer

· IDirectPlay8Client

· IDirectPlay8Server

· IDirectPlayVoiceClient

· IDirectPlayVoiceServer

· IDirectPlayVoiceTest

· IDirectPlay8LobbyClient

· IDirectPlay8LobbiedApplication

· IDirectPlay8Address

· IDirectPlay8AddressIP

IDirectPlay8Peer
Applications use the methods of the IDirectPlay8Peer interface to create a peer-to-
peer Microsoft® DirectPlay® session.

The methods of the IDirectPlay8Peer interface can be organized into the following
groups.

Session Management Close

Connect

EnumHosts

in.doc – page 115

EnumServiceProviders

GetApplicationDesc

GetCaps

GetConnectionInfo

GetSPCaps

Host

SetApplicationDesc

SetCaps

SetSPCaps

TerminateSession

Message Management GetSendQueueInfo

Initialize

ReturnBuffer

SendTo

Player Management DestroyPeer

GetPeerInfo

SetPeerInfo

GetPlayerContext

Group Management AddPlayerToGroup

CreateGroup

DestroyGroup

EnumPlayersAndGroups

EnumGroupMembers

GetGroupContext

GetGroupInfo

RemovePlayerFromGroup

SetGroupInfo

Miscellaneous CancelAsyncOperation

GetLocalHostAddresses

GetPeerAddress

RegisterLobby

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 116

IDirectPlay8Peer::AddPlayerToGroup
Adds a peer to a group.

When this method is called, all peers connected to the application receive a
DPN_MSGID_ADD_PLAYER_TO_GROUP message.

HRESULT AddPlayerToGroup(
const DPNID idGroup,
const DPNID idClient,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

idGroup
Variable of type DPNID that specifies the identifier of the group to add the peer
to.

idClient
Variable of type DPNID that specifies the identifier of the peer that is added to
the group.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.
This parameter is optional and may be set to NULL.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNADDPLAYERTOGROUP_SYNC
Causes the method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method runs asynchronously and usually returns
DPNSUCCESS_PENDING. It may also return one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

in.doc – page 117

Remarks

Any peer can add itself or another peer to an existing group. Once the peer is
successfully added to the group, all messages sent to the group are also sent to the
peer.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::CancelAsyncOperation
Cancels asynchronous requests. For instance, several methods of the
IDirectPlay8Peer interface run asynchronously by default. Depending on the
situation, you might want to cancel requests before they are processed. All the
methods of this interface that can run asynchronously return an hAsyncHandle
parameter.

Specific requests are canceled by passing the hAsyncHandle of the request in this
method’s hAsyncHandle parameter. You can cancel all pending asynchronous
operations by calling this method, specifying NULL in the hAsyncHandle parameter,
and specifying DPNCANCEL_ALL_OPERATIONS in the dwFlags parameter. If a
specific handle is provided to this method, no flags should be set.

HRESULT CancelAsyncOperation(
const DPNHANDLE hAsyncHandle,
const DWORD dwFlags
);

Parameters

hAsyncHandle
Handle of the asynchronous operation to stop. You receive this handle when you
call one of several methods that support asynchronous operations. This value can
be set to NULL to stop all operations or a particular type of asynchronous
request. If you specify a particular handle for the request, the dwFlags parameter
must be 0.

dwFlags
Flag that specifies which asynchronous request is to be canceled. One of the
following flags can be set.

DPNCANCEL_ENUM
Cancel all asynchronous IDirectPlay8Peer::EnumHosts requests. A single
EnumHosts request can be canceled by specifying the handle returned from
the EnumHosts method.

DPNCANCEL_CONNECT
Cancel an asynchronous IDirectPlay8Peer::Connect request.

in.doc – page 118

DPNCANCEL_SEND
Cancel an asynchronous IDirectPlay8Peer::SendTo request.

DPNCANCEL_ALL_OPERATIONS
Cancel all asynchronous Connect, Send, and SentTo operations.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_CANNOTCANCEL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDHANDLE

Remarks

You can use this method to cancel an asynchronous operation for the
IDirectPlay8Peer::Connect, IDirectPlay8Peer::SendTo, and
IDirectPlay8Peer::EnumHosts methods. Microsoft® DirectPlay® 8.0 does not
support cancellation of other asynchronous operations.

You can cancel a send request by providing the handle returned from the
IDirectPlay8Peer::SendTo method. A DPN_MSGID_SEND_COMPLETE, or
DPN_CONNECT_COMPLETE system message is still posted to the application’s
message handler for each asynchronous send request that is sent without the
DPNSEND_NOCOMPLETE flag set. Send requests that are canceled by this method
return DPNERR_USERCANCEL in the hResultCode member of the
DPN_MSGID_SEND_COMPLETE message.

If you set the DPNCANCEL_ALL_OPERATIONS, DPN_CANCELCONNECT,
DPN_CANCELSEND, or DPNCANCEL_ENUM flags in dwFlags, DirectPlay will
attempt to cancel all matching operations. This method will return an error if any
attempted cancellation fails, even though some cancellations may have been
successful.

Note
The completion message might not arrive until after this method returns. Do not
assume that the operation has been terminated until you have received a
DPN_MSGID_SEND_COMPLETE,
DPN_MSGID_CONNECT_COMPLETE, or
DPN_MSGID_ASYNC_OP_COMPLETE message.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 119

IDirectPlay8Peer::Close
Closes the open connection with a session. This method must be called on any object
successfully initialized with IDirectPlay8Peer::Initialize.

HRESULT Close(
const DWORD dwFlags
);

Parameters

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_UNINITIALIZED

Remarks

This method will cancel any operations still outstanding. It will block until all
callback indications on other threads have returned.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::Connect
Establishes the connection to all the peers in a peer-to-peer session. Once a
connection is established, the communication channel on the interface is open and the
application should expect messages to arrive immediately. No messages can be sent
by way of the IDirectPlay8Peer::SendTo method until the connection has
completed.

Before this method is called, you can obtain application descriptions and the
addresses of the associated hosts by calling IDirectPlay8Peer::EnumHosts. The
EnumHosts method returns a DPN_APPLICATION_DESC structure for each
currently hosted application. The structure describes the application, including the
instance GUID of the application.

If this method is called asynchronously (which is the default choice) and returns
DPNSUCCESS_PENDING, when the connection completes a
DPN_MSGID_CONNECT_COMPLETE message is sent to the application’s
message handler.

in.doc – page 120

HRESULT Connect(
const DPN_APPLICATION_DESC *const pdnAppDesc,
IDirectPlay8Address *const pHostAddr,
IDirectPlay8Address *const pDeviceInfo,
const DPN_SECURITY_DESC *const pdnSecurity,
const DPN_SECURITY_CREDENTIALS *const pdnCredentials,
const void *const pvUserConnectData,
const DWORD dwUserConnectDataSize,
void *const pvPlayerContext,
void *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

pdnAppDesc
Pointer to a DPN_APPLICATION_DESC structure that describes the
application. Only some of the members of this structure are used by this method.
The only members that you must set are dwSize and guidApplication. You can
also set guidInstance, pwszPassword, and dwFlags.

pHostAddr
Pointer to an IDirectPlay8Address interface that specifies the addressing
information to use to connect to the computer that is hosting.

pDeviceInfo
Pointer to an IDirectPlay8Address interface that specifies the network adapter
(for example, NIC, modem, and so on) to use to connect to the server.

pdnSecurity
Reserved. Must be NULL.

pdnCredentials
Reserved. Must be NULL.

pvUserConnectData
Pointer to application-specific data provided to the host or server to further
validate the connection. This data is sent to the
DPN_MSGID_INDICATE_CONNECT message in the pvUserConnectData
member. This parameter is optional and may be set to NULL if no additional
connection validation is provided by the user code.

dwUserConnectDataSize
Variable of type DWORD that specifies the size of the data contained in the
pvUserConnectData parameter.

pvPlayerContext
Pointer to the context value of the local player. This value is preset when the
local computer handles the DPN_MSGID_CREATE_PLAYER message. This
parameter is optional and may be set to NULL.

pvAsyncContext

in.doc – page 121

Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_CONNECT_COMPLETE system message. This
parameter is optional and may be set to NULL.

phAsyncHandle
A DPNHANDLE. When the method returns, phAsyncHandle will point to a
handle that you can pass to IDirectPlay8Peer::CancelAsyncOperation to
cancel the operation. This parameter must be set to NULL if you set the
DPNCONNECT_SYNC flag in dwFlags.

dwFlags
Flag that describes the connection mode. You can set the following flags.

DPNCONNECT_OKTOQUERYFORADDRESSING
Setting this flag will display a standard Microsoft® DirectPlay® dialog box,
which queries the user for more information if not enough information is
passed in this method.

DPNCONNECT_SYNC
Process the connection request synchronously. Your message handler still
receives a DPN_MSGID_CONNECT_COMPLETE message, so that you can
process any connection reply data from the host. You will receive this
message before IDirectPlay8Peer::Connect returns.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method runs asynchronously and normally returns
DPNSUCCESS_PENDING. It may also return one of the following error values.

DPNERR_HOSTREJECTEDCONNECTION

DPNERR_INVALIDAPPLICATION

DPNERR_INVALIDDEVICEADDRESS

DPNERR_INVALIDFLAGS

DPNERR_INVALIDHOSTADDRESS

DPNERR_INVALIDINSTANCE

DPNERR_INVALIDINTERFACE

DPNERR_INVALIDPASSWORD

DPNERR_NOCONNECTION

DPNERR_NOTHOST

DPNERR_SESSIONFULL

Remarks

Although multiple enumerations can be run concurrently and can be run across the
duration of a connection, only one connection is allowed per interface. To establish a
connection to more than one application, you must create another interface.

in.doc – page 122

If this method is called asynchronously (which is the default choice), when the
connection completes a DPN_MSGID_CONNECT_COMPLETE message is
posted to the application’s message handler. If this method returns an error, no
completion message is posted.

When this method is called, a DPN_MSGID_INDICATE_CONNECT message is
posted to the host’s message handler. When the host handles this message, it can
specify connection reply data that the player will receive with the
DPN_MSGID_CONNECT_COMPLETE message. If the host accepts the
connection, the connection reply data might contain custom startup information. If the
connection was rejected, the connection reply data might contain an explanation of
the rejection.

You must call IDirectPlay8Peer::Close to end the connection to the host.

Note
If you set the DPNCONNECT_OKTOQUERYFORADDRESSING flag in
dwFlags, the service provider may attempt to display a dialog box to ask the user
to complete the address information. You must have a visible window present
when the service provider tries to display the dialog box, or your application will
lock.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::CreateGroup
Creates a group in the current session. A group is a logical collection of players.

Note
Multicasting is not supported for this release.

When this method is called, all peers connected to the application receive a
DPN_MSGID_CREATE_GROUP system message.

HRESULT CreateGroup(
const DPN_GROUP_INFO *const pdpnGroupInfo,
VOID *const pvGroupContext,
VOID *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

pdpnGroupInfo
Pointer to a DPN_GROUP_INFO structure that contains the group description.

pvGroupContext

in.doc – page 123

Pointer to the group’s context value. This value is preset when the local
application’s message handler receives the associated
DPN_MSGID_CREATE_GROUP message. This parameter is optional and may
be set to NULL.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.
This parameter is optional and may be set to NULL.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNCREATEGROUP_SYNC
Causes the method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and normally returns
DPNSUCCESS_PENDING. It can also return the following error value.

DPNERR_INVALIDFLAGS

Remarks

Microsoft® DirectPlay® does not maintain hierarchical groups because these can
easily be implemented with flat groups and expeditious use of the group data.

All peers receive a DPN_MSGID_CREATE_GROUP message when this method is
called.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::DestroyPeer
Deletes a peer from the session.

HRESULT DestroyPeer(
const DPNID dpnidClient,
void *const pDestroyInfo,
const DWORD dwDestroyInfoSize,

in.doc – page 124

const DWORD dwFlags
);

Parameters

dpnidClient
Variable of type DPNID that specifies the identifier of the peer to delete.

pDestroyInfo
Pointer to a value that describes additional delete data information.

dwDestroyInfoSize
Variable of type DWORD that specifies the size of the data contained in the
pDestroyInfo parameter.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDPLAYER

DPNERR_NOTHOST

Remarks

A player can only be deleted by the session host. The deleted player will be notified
through a DPN_MSGID_TERMINATE_SESSION message. The structure
associated with the message will contain the data passed through the pDestroyInfo
parameter. If any other session member calls this method, it will fail, and return
DPNERR_NOTHOST.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::DestroyGroup
Deletes a group created by the IDirectPlay8Peer::CreateGroup method. This
method can be called by any peer in the session.

HRESULT DestroyGroup(
const DPNID idGroup,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags

in.doc – page 125

);

Parameters

idGroup
Variable of type DPNID that should be set to the identifier of the group to be
deleted.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.
This parameter is optional and may be set to NULL.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNDESTROYGROUP_SYNC
Causes the method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and normally returns
DPNSUCCESS_PENDING. It can also return one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::EnumPlayersAndGrou
ps

Retrieves a list of all the player and/or group identifiers for the session.

HRESULT EnumPlayersAndGroups(
DPNID *const prgdpnid,
DWORD *const pcdpnid,
const DWORD dwFlags
);

in.doc – page 126

Parameters

prgdpnid
Pointer to an array that will be filled with the session’s group and/or player
identifiers.

pcdpnid
Pointer to a variable of type DWORD that specifies the number of identifiers that
can be contained in the buffer pointed to by prgdpnid. If the buffer is too small,
this method returns DPNERR_BUFFERTOOSMALL and this parameter
contains the number of entries that are required.

dwFlags
Flag that describes enumeration behavior. You can set one or both of the
following flags.

DPNENUM_PLAYERS
Return a list of player identifiers.

DPNENUM_GROUPS
Return a list of group identifiers.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

Remarks

Because group and player information changes frequently, the required buffer size
returned may change between subsequent calls. Check and reallocate the buffer until
the method succeeds.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::EnumGroupMembers
Retrieves a list of all players in a group.

HRESULT EnumGroupMembers(
const DPNID dpnid,
DPNID *const prgdpnid,
DWORD *const pcdpnid,
const DWORD dwFlags
);

in.doc – page 127

Parameters

dpnid
Variable of type DPNID that specifies the group that contains the players to
enumerate.

prgdpnid
Pointer to an array that will contain the identifiers of the group’s players.

pcdpnid
Pointer to a variable of type DWORD that specifies the number of identifiers that
can be contained in the buffer pointed to by dpnid. If the buffer is too small, this
method returns DPNERR_BUFFERTOOSMALL and this parameter contains the
number of entries that are required.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

Remarks

Because player information changes frequently, the required buffer size returned may
change between subsequent calls. Check and reallocate the buffer until the method
succeeds.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::EnumHosts
Enumerates applications that host Microsoft® DirectPlay® games. When an
application is found that meets the enumeration criteria, the application’s message
handler is called with a DPN_MSGID_ENUM_HOSTS_RESPONSE system
message. The message contains a DPN_APPLICATION_DESC structure describing
the applications found.

Any number of enumerations can be run concurrently. The pvUserContext value is
provided in the message handler to help differentiate replies to different
enumerations.

in.doc – page 128

Because of the variation in the number of ways enumeration can happen, an
application should not attempt to specify dwEnumPeriod, dwRetryInterval, or
dwTimeOut unless the application has some specific media knowledge.

The default enumeration count and timeout values will cause EnumHosts to
complete within a reasonable amount of time. These values are set by the service
provider, and can be obtained by calling IDirectPlay8Peer::GetSPCaps.
Asynchronous enumerations can be stopped at any time by calling
IDirectPlay8Peer::CancelAsyncOperation and either passing the handle returned in
the pAsyncHandle parameter or setting the DPENUM_CANCEL flag in the dwFlags
parameter. An enumeration can also be stopped by returning anything other than
S_OK from the message handler.

HRESULT EnumHosts(
PDPN_APPLICATION_DESC const pApplicationDesc,
IDirectPlay8Address *const pdpaddrHost,
IDirectPlay8Address *const pdpaddrDeviceInfo,
PVOID const pvUserEnumData,
const DWORD dwUserEnumDataSize,
const DWORD dwEnumCount,
const DWORD dwRetryInterval,
const DWORD dwTimeOut,
PVOID const pvUserContext,
HANDLE *const pAsyncHandle
const DWORD dwFlags,
);

Parameters

pApplicationDesc
Pointer to a DPN_APPLICATION_DESC structure that specifies which
application hosts to enumerate. You must set the pApplicationDesc.dwSize
member to the appropriate value. To reduce the number of responses, set
pApplicationDesc.guidApplication to the GUID of the application to be found. If
this member is not set, the search will include all applications.

pdpaddrHost
Pointer to an IDirectPlay8Address object that specifies the address of the
computer that is hosting the application. If you specify NULL, DirectPlay will
create an address. By default, DirectPlay will create the address from the
pdpaddrDeviceInfo parameter. If you set the
DPNENUMHOSTS_OKTOQUERYFORADDRESSING flag in dwFlags, the
user can be queried for address information.

pdpaddrDeviceInfo
Pointer to an IDirectPlay8Address object that specifies the service provider and
local device settings to use when enumerating.

pvUserEnumData

in.doc – page 129

Pointer to a block of data that is sent in the enumeration request to the host. The
size of the data is limited depending on the network type. Call
IDirectPlay8Peer::GetSPCaps to obtain the exact value.

dwUserEnumDataSize
Variable of type DWORD that specifies the size of the data pointed at in the
pvUserEnumData parameter.

dwEnumCount
Value specifying how many times that the enumeration data will be sent. Set this
parameter to zero to use the default value. You can obtain the default value for
dwEnumCount by calling IDirectPlay8Peer::GetSPCaps. If dwEnumCount is
set to INFINITE, the enumeration will continue until canceled.

dwRetryInterval
Value specifying how many milliseconds between enumeration retries. Set this
parameter to zero to use the default value. You can obtain the default value for
dwRetryInterval by calling IDirectPlay8Peer::GetSPCaps.

dwTimeOut
Variable of type DWORD that specifies the number of milliseconds that
DirectPlay will wait for replies after the last enumeration is sent. Set this
parameter to zero to use the default value. You can obtain the default value for
dwTimeOut by calling IDirectPlay8Peer::GetSPCaps. If INFINITE is specified,
the enumeration continues until it is canceled.

pvUserContext
Context that is provided in the peer’s message handler when it is called with
responses to the enumeration. This can be useful to differentiate replies from
concurrent enumerations.

pAsyncHandle
A DPNHANDLE. When the method returns, phAsyncHandle will point to a
handle that you can pass to IDirectPlay8Peer::CancelAsyncOperation to
cancel the operation. This parameter must be set to NULL if you set the
DPNENUMHOSTS_SYNC flag in dwFlags.

dwFlags
The following flags can be set.

DPNENUMHOSTS_SYNC
Causes the method to process synchronously.

DPNENUMHOSTS_OKTOQUERYFORADDRESSING
Setting this flag will display a standard DirectPlay® dialog box, which queries
the user for more information if not enough information is passed in this
method.

DPNENUMHOSTS_NOBROADCASTFALLBACK
If the service provider supports broadcasting, setting this flag will disable the
broadcast capabilities. Check to see if broadcasting is supported by examining
the DPN_SP_CAPS structure before setting this flag.

in.doc – page 130

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and normally returns
DPNSUCCESS_PENDING. It can also return one of the following error values.

DPNERR_INVALIDDEVICEADDRESS

DPNERR_INVALIDFLAGS

DPNERR_INVALIDHOSTADDRESS

DPNERR_INVALIDPARAM

DPNERR_ENUMQUERYTOOLARGE

Remarks

If you set the DPNENUMHOSTS_OKTOQUERYFORADDRESSING flag in
dwFlags, the service provider may attempt to display a dialog box to ask the user to
complete the address information. You must have a visible window present when the
service provider tries to display the dialog box, or your application will lock.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::EnumServiceProviders
Enumerates all the registered service providers available to the application.

HRESULT EnumServiceProviders(
const GUID *const pguidServiceProvider,
const GUID *const pguidApplication,
const DPN_SERVICE_PROVIDER_INFO *const pSPInfoBuffer,
DWORD *const pcbEnumData,
DWORD *const pcReturned
constDWORD dwFlags,
);

Parameters

pguidServiceProvider
Pointer to a variable of type GUID that specifies a service provider. This optional
parameter forces the enumeration of subdevices for the specified service
provider. You should normally set this value to NULL, to enumerate all available
service providers.

pguidApplication

in.doc – page 131

Pointer to a variable of type GUID that specifies an application. If a pointer is
passed in this parameter, only service providers who can be connected by the
application are enumerated. You can also pass NULL to enumerate all the
registered service providers for the system.

pSPInfoBuffer
Pointer to an array of DPN_SERVICE_PROVIDER_INFO structures that will
be filled with service provider information.

pcbEnumData
Pointer to DWORD that is filled with the size of the pEnumData buffer if the
buffer is too small.

pcReturned
Pointer to a variable of type DWORD that specifies the number of
DPN_SERVICE_PROVIDER_INFO structures returned in the pcbEnumData
array.

dwFlags
The following flag can be specified.

DPNENUMSERVICEPROVIDERS_ALL
Enumerates all the registered service providers for the system, including those
that are not available to the application or do not have devices installed.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

Remarks

Call this method initially by specifying NULL in the pguidServiceProvider parameter
to determine the base service providers available to the system. Specific devices for a
service provider can then be obtained by passing a pointer to a service provider GUID
in the pguidServiceProvider. This is useful, for example, when using the Modem
Connection for Microsoft® DirectPlay® service provider. You can choose different
modems for dialing out and specific modems for hosting.

If the pcbEnumData buffer is not big enough to hold the requested service provider
information, the method returns DPNERR_BUFFERTOOSMALL and the
pcbEnumData parameter contains the required buffer size. Typically, the best strategy
is to call the method once with a zero-length buffer to determine the required size.
Then call it again with the appropriate-sized buffer.

Normally, this method will return only those service providers that can be used by the
application. For example, if the IPX networking protocol is not installed, DirectPlay
will not return the IPX service provider. To have DirectPlay return all service
providers, even those that cannot be used by the application, set the
DPNENUMSERVICEPROVIDERS_ALL flag in dwFlags.

in.doc – page 132

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetApplicationDesc
Retrieves the full application description for the connected application.

HRESULT GetApplicationDesc(
DPN_APPLICATION_DESC *const pAppDescBuffer,
DWORD *const pcbDataSize,
const DWORD dwFlags
);

Parameters

pAppDescBuffer
Pointer to a DPN_APPLICATION_DESC structure where the application
description data is to be written. Set this parameter to NULL to request only the
size of data. If pAppDescBuffer is not set to NULL, you must set the
pAppDescBuffer.dwSize member to an appropriate value. The pcbDataSize
parameter is set to the size required to hold the data.

pcbDataSize
Pointer to a variable of type DWORD that is initialized to the size of the buffer
before calling this method. After the method returns, this parameter is set to the
size, in bytes, of the session data. If the buffer is too small, this method returns
the DPNERR_BUFFERTOOSMALL error value, and this parameter is set to the
buffer size required. If this parameter is NULL, the method returns
DPNERR_INVALIDPARAM.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_NOCONNECTION

in.doc – page 133

Remarks

Call this method initially by passing NULL in the pAppDescBuffer parameter to
obtain the size of the required buffer. When you call the method a second time to fill
the buffer, be sure to set the structures dwSize member to the appropriate value.

The returned DPN_APPLICATION_DESC structure will have the guidInstance,
guidApplication, and pwszSessionName members set. It will not contain
information about other clients that are connected to the session. That information, if
available, can be obtained only from the server application. In particular, the
dwCurrentPlayers member will always be set to 0.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetCaps
Retrieves the DPN_CAPS structure for the current interface.

HRESULT GetCaps(
DPN_CAPS *const pdpnCaps,
const DWORD dwFlags
);

Parameters

pdpnCaps
Pointer to a DPN_CAPS structure to receive caps information. You must set the
dwSize member of this structure to an appropriate value.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

A successful call to Initialize must be made before this method can be called.

in.doc – page 134

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetConnectionInfo
Retrieves statistical information about the connection between the local application
and the specified remote player.

HRESULT GetConnectionInfo(
const DPNID dpnidEndPoint,
DPN_CONNECTION_INFO *const pdnConnectInfo,
const DWORD dwFlags
);

Parameters

dpnidEndPoint
The DPNID of the remote player whose connection information will be retrieved.

pdnConnectInfo
Pointer to a DPN_CONNECTION_INFO structure to retrieve information
about the specified connection. The dwSize member of this structure must be set
to the size of a DPN_CONNECTION_INFO structure.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

DPNERR_INVALIDPLAYER

Remarks

This method can be called only after a successful Host or Connect call has
completed.

in.doc – page 135

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetGroupContext
Retrieves the group context value for the specified group.

HRESULT GetGroupContext(
const DPNID dpnid,
PVOID *const ppvGroupContext,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the group to retrieve
context data for.

ppvGroupContext
Pointer to the context value of the group.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDPARAM

Remarks

Group context values are set by pointing the pvGroupContext member of the
DPN_MSGID_CREATE_GROUP system message to the context value data.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetGroupInfo
Retrieves a block of data associated with a group, including the group name.

in.doc – page 136

This method is typically called after a DPN_MSGID_GROUP_INFO system
message is received indicating that the group data has been modified.

HRESULT GetGroupInfo(
const DPNID dpnid,
DPN_GROUP_INFO *const pdpnGroupInfo,
DWORD *const pdwSize,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the group whose data
block will be retrieved.

pdpnGroupInfo
Pointer to a DPN_GROUP_INFO structure that describes the group data. If
pdwSize is not set to NULL, you must set pdpnGroupInfo.dwSize to the size of a
DPN_GROUP_INFO structure.

pdwSize
Pointer to a variable of type DWORD that returns the size of the data in the
pdpnGroupInfo parameter. If the buffer is too small, this method returns
DPNERR_BUFFERTOOSMALL and this parameter contains the required size.

dwFlags
Reserved. Set to 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

Remarks

Microsoft® DirectPlay® returns the DPN_GROUP_INFO structure, and the pointers
assigned to the structure’s pwszName and pvData members in a contiguous buffer. If
the two pointers were set, you must have allocated enough memory for the structure,
plus the two pointers. The most robust way to use this method is to first call it with
pdwSize set to NULL. When the method returns, pdwSize will point to the correct
value. Use that value to allocate memory for your structure and call the method a
second time to retrieve the information.

When the method returns, the dwInfoFlags member of the DPN_GROUP_INFO
structure will always have the DPNINFO_DATA and DPNINFO_NAME flags set,
even if the corresponding pointers are set to NULL. These flags are used when calling
IDirectPlay8Peer::SetGroupInfo, to notify DirectPlay which values have changed.

in.doc – page 137

Transmission of nonstatic information should be handled with the
IDirectPlay8Peer::SendTo method because of the high cost of using the
IDirectPlay8Peer::SetGroupInfo method.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetLocalHostAddresse
s

Retrieves the local addresses being used to host the session.

HRESULT GetLocalHostAddresses(
IDirectPlay8Address **const prgpAddress,
DWORD *const pcAddress,
const DWORD dwFlags
);

Parameters

prgpAddress
A pointer to an array of IDirectPlay8Address objects that specify the local host
addresses. You must release these objects when you no longer need them, or you
will create memory leaks.

pcAddress
The maximum number of address objects that can be returned in the array
pointed to by prgpAddress. If the buffer is too small, this method returns
DPNERR_BUFFERTOOSMALL and this parameter contains the required size.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

DPNERR_NOTHOST

in.doc – page 138

Remarks

The most robust way to use this method is to call it first with pcAddress set to 0.
When the method returns, pcAddress will point to the correct value, and you can use
that value to call the method a second time to retrieve the information.

If the caller is not the session host, the method returns DPNERR_NOTHOST. Use
IDirectPlay8Peer::GetPeerAddress to retrieve the address of a remote player.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetPeerAddress
Retrieves the address for the specified player in the session.

HRESULT GetPeerAddress(
const DPNID dpnid,
IDirectPlay8Address **const pAddress,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID specifying the identification of the player.

pAddress
Address of a pointer to an IDirectPlay8Address object that specifies the address
of the peer. You must release this object when you no longer need it.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPLAYER

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

in.doc – page 139

Remarks

Use IDirectPlay8Peer::GetLocalHostAddresses to retrieve addresses that can be
used to connect to the session.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetPeerInfo
Retrieves peer information set for the specified peer.

HRESULT GetPeerInfo(
const DPNID dpnid,
DPN_PLAYER_INFO *const pdpnPlayerInfo,
DWORD *const pdwSize,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the peer whose
information will be retrieved.

pdpnPlayerInfo
Pointer to a DPN_PLAYER_INFO structure to fill with peer information. If
pdwSize is not set to NULL, you must set pdpnPlayerInfo.dwSize to the size of a
DPN_PLAYER_INFO structure.

pdwSize
Pointer to a variable of type DWORD that contains the size of the peer data
returned in the pdpnPlayerInfo parameter. If the buffer is too small this method
returns DPNERR_BUFFERTOOSMALL and this parameter contains the size of
the required buffer.

dwFlags
Reserved. Set to 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_INVALIDPLAYER

in.doc – page 140

Remarks

Call this method after the peer receives a DPN_MSGID_PEER_INFO message from
the application, which indicates a peer has updated their information.

Microsoft® DirectPlay® returns the DPN_PLAYER_INFO structure, and the pointers
assigned to the structure’s pwszName and pvData members in a contiguous buffer. If
the two pointers were set, you must have allocated enough memory for the structure,
plus the two pointers. The most robust way to use this method is to first call it with
pdwSize set to NULL. When the method returns, pdwSize will point to the correct
value. Use that value to allocate memory for the structure and call the method a
second time to retrieve the information.

When the method returns, the dwInfoFlags member of the DPN_PLAYER_INFO
structure will always have the DPNINFO_DATA and DPNINFO_NAME flags set,
even if the corresponding pointers are set to NULL. These flags are used when calling
IDirectPlay8Peer::SetPeerInfo, to notify DirectPlay of which values have changed.

Transmission of nonstatic information should be handled with the
IDirectPlay8Peer::SendTo method because of the high cost of using the
IDirectPlay8Peer::SetPeerInfo method.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetPlayerContext
Retrieves the player context value for the specified peer.

HRESULT GetPlayerContext(
const DPNID dpnid,
PVOID *const ppvPlayerContext,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the player to get context
data for.

ppvPlayerContext
Pointer to the context data of the peer.

dwFlags
Reserved. Must be 0.

in.doc – page 141

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDPLAYER

Remarks

Player context values are set by pointing the pvPlayerContext member of the
DPN_MSGID_CREATE_PLAYER system message to the context value data.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetSendQueueInfo
Used by the application to monitor the size of the send queue. Microsoft® DirectPlay®

will not send messages faster than the receiving computer can process them. As a
result, if the sending computer is sending faster than the receiver can receive,
messages accumulate in the sender’s queue. If the application registers that the send
queue is growing too large, it should slow the rate that messages are sent.

HRESULT GetSendQueueInfo(
DWORD *const pdwNumMsgs,
DWORD *const pdwNumBytes,
const DWORD dwFlags
);

Parameters

dpnid
DPNID of the player to get send queue information for.

pdwNumMsgs
Pointer to a variable of type DWORD that contains the number of messages
currently queued. This value is optional, and may be set to NULL.

pdwNumBytes
Pointer to a variable of type DWORD that specifies the total number of bytes of
data of the messages currently queued. This value is optional, and may be set to
NULL.

dwFlags
You may specify the DPNGETSENDQUEUEINFO_PRIORITY_NORMAL,
DPNGETSENDQUEUEINFO_PRIORITY_HIGH, or

in.doc – page 142

DPNGETSENDQUEUEINFO_PRIORITY_LOW flag to inquire about specific
messages of that priority.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_INVALIDPARAM

Remarks

You cannot set both pdwNumMsgs and pdwNumBytes to NULL. At least one of them
must be set to a valid pointer.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::GetSPCaps
Retrieves the DPN_SP_CAPS structure for the specified service provider.

HRESULT GetSPCaps(
const GUID *const pguidSP,
DPN_SP_CAPS *const pdpnSPCaps,
const DWORD dwFlags
);

Parameters

pguidSP
Pointer to a GUID specifying the service provider you want to get information
about.

pdpnSPCaps
Pointer to a DPN_SP_CAPS structure to receive the information about the
specified service provider. You must set the pdpnSPCaps.dwSize member of the
structure.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

in.doc – page 143

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

This method retrieves information about the specified service provider. A successful
call to IDirectPlay8Peer::Initialize must be made before this method can be called.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::Host
Creates a new peer-to-peer session, hosted by the local computer.

HRESULT Host(
const DPN_APPLICATION_DESC *const pdnAppDesc,
IDirectPlay8Address **const prgpDeviceInfo,
const DWORD cDeviceInfo,
const DPN_SECURITY_DESC *const pdpSecurity,
const DPN_SECURITY_CREDENTIALS *const pdpCredentials,
VOID *const pvPlayerContext,
const DWORD dwFlags
);

Parameters

pdnAppDesc
Pointer to a DPN_APPLICATION_DESC structure that describes the
application.

prgpDeviceInfo
A pointer to an array of IDirectPlay8Address objects containing the device
addresses that should be used to host the application. You must release these
objects when you no longer need them.

cDeviceInfo
Variable of type DWORD that specifies the number of device address objects in
the array pointed to by prgpDeviceInfo.

pdpSecurity
Reserved. Must be NULL.

pdpCredentials
Reserved. Must be NULL.

pvPlayerContext

in.doc – page 144

Pointer to the context value of the local player. This value is preset when the
local computer handles the DPN_MSGID_CREATE_PLAYER message. This
parameter is optional and may be set to NULL.

dwFlags
The following flag can be specified.

DPNHOST_OKTOQUERYFORADDRESSING
Setting this flag will display a standard Microsoft® DirectPlay® dialog box,
which queries the user for more information if not enough information is
passed in this method.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_DATATOOLARGE

DPNERR_INVALIDPARAM

DPNERR_INVALIDDEVICEADDRESS

Remarks

If you set the DPNHOST_OKTOQUERYFORADDRESSING flag in dwFlags, the
service provider may attempt to display a dialog box to ask the user to complete the
address information. You must have a visible window present when the service
provider tries to display the dialog box, or your application will lock.

The maximum size of the application data that you assign to the
pvApplicationReservedData member of the DPN_APPLICATION_DESC
structure is limited by the service provider's Maximum Transmission Unit. If your
application data is too large, the method will fail and return
DPNERR_DATATOOLARGE.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::Initialize
Registers an entry point in the peer’s code that receives all the messages from the
IDirectPlay8Peer interface and from remote peers. This method must be called
before calling any other methods of this interface.

HRESULT Initialize(
PVOID const pvUserContext,
const PFNDPNMESSAGEHANDLER pfn,
const DWORD dwFlags

in.doc – page 145

);

Parameters

pvUserContext
Pointer to the user-provided context value in calls to the message handler. A
user-provided context value can be used to differentiate messages coming from
multiple interfaces to a common message handler.

pfn
Pointer to a PFNDPNMESSAGEHANDLER callback function that is used to
receive all messages from remote peers and indications of session changes from
the IDirectPlay8Peer interface.

dwFlags
You may specify the following flag.

DPNINITIALIZE_DISABLEPARAMVAL
Passing this flag will disable parameter validation for the current object.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

Call this method first after using CoCreateInstance to obtain the IDirectPlay8Peer
interface.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::RegisterLobby
Allows launched applications to automatically propagate game status to the lobby.

HRESULT RegisterLobby(
const DPNHANDLE dpnHandle,
IDirectPlay8LobbiedApplication *const pIDP8LobbiedApplication,
const DWORD dwFlags
);

Parameters

dpnHandle

in.doc – page 146

The connection handle used when making the calls to
IDirectPlay8LobbiedApplication::UpdateStatus.

pIDP8LobbiedApplication
Pointer to the IDirectPlay8LobbiedApplication object that specifies the
application.

dwFlags
One of the following flags:

DPNLOBBY_REGISTER
Registers the lobby with the application.

DPNLOBBY_UNREGISTER
Unregisters the lobby with the application.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_INVALIDPARAM

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::RemovePlayerFromGr
oup

Removes a peer from a group.

When this method is called all peers connected to the application receive a
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP message.

HRESULT RemovePlayerFromGroup(
const DPNID idGroup,
const DPNID idClient,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

idGroup
Variable of type DPNID that specifies the identifier of the group that the peer
will be removed from.

idClient

in.doc – page 147

Variable of type DPNID that specifies the identifier of the peer that will be
removed from the group.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNREMOVEPLAYERFROMGROUP_SYNC
Causes the method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and normally returns
DPNSUCCESS_PENDING. It can also return one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

DPNERR_INVALIDPLAYER

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::ReturnBuffer
Retrieves message buffers provided to the application through the pReceiveData
member of the DPN_MSGID_RECEIVE system message. If the user’s message
handler returns DPNSUCCESS_PENDING to the RECEIVE callback, Microsoft®
DirectPlay® assumes that ownership of the buffer is transferred to the application, and
neither frees nor modifies it until ownership is returned to DirectPlay through this
call.

HRESULT ReturnBuffer(
const DPNHANDLE hBufferHandle,
const DWORD dwFlags
);

Parameters

hBufferHandle

in.doc – page 148

Variable of type DPNHANDLE that specifies the buffer handle for the message.
This is obtained in the hBufferHandle member of the
DPN_MSGID_RECEIVE system message.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDHANDLE

DPNERR_INVALIDPARAM

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::SendTo
Transmits data to another peer or group within the session by sending a message to
the appropriate message handlers. The message can be sent synchronously or
asynchronously.

HRESULT SendTo(
const DPNID dpnid,
const DPN_BUFFER_DESC *const pBufferDesc,
const DWORD cBufferDesc,
const DWORD dwTimeOut,
void *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

dpnid
Identifier of the peer or group that receives data. Set this parameter to
DPNID_ALL_PLAYERS_GROUP to send a message to all players in the
session.

pBufferDesc
Pointer to a DPN_BUFFER_DESC structure that contains the data to be sent.

cBufferDesc
The number of DPN_BUFFER_DESC structures pointed to by pBufferDesc.
There can only be one buffer in this version of Microsoft® DirectPlay®.

dwTimeOut

in.doc – page 149

Number of milliseconds to wait for the message to send. If the message has not
been sent by the dwTimeOut value, the message is not sent. If you do not want a
time out for message sends, set this parameter to 0.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_SEND_COMPLETE system message. This
parameter is optional and may be set to NULL.

phAsyncHandle
A DPNHANDLE. When the method returns, phAsyncHandle will point to a
handle that you can pass to IDirectPlay8Peer::CancelAsyncOperation to
cancel the operation. This parameter must be set to NULL if you set the
DPNSEND_SYNC flag in dwFlags.

dwFlags
Flags that describe send behavior. You can set one or more of the following
flags.

DPNSEND_SYNC
Process the SendTo request synchronously.

DPNSEND_NOCOPY
Use the data in the DPN_BUFFER_DESC structure and do not make an
internal copy. This may be a more efficient method of sending data. However,
it is less robust because the sender might be able to modify message before the
receiver has processed it. This flag cannot be combined with
DPNSEND_NOCOMPLETE.

DPNSEND_NOCOMPLETE
Does not send the DPN_MSGID_SEND_COMPLETE to the message
handler. This flag may not be used with DPNSEND_NOCOPY or
DPNSEND_GUARANTEED. Additionally, when using this flag the
pvAsyncContext must be NULL.

DPNSEND_COMPLETEONPROCESS
Sends the DPN_MSGID_SEND_COMPLETE to the message handler when
this message has been delivered to the target and the target’s message handler
returns from indicating its reception. There is additional internal message
overhead when this flag is set, and the message transmission process may
become significantly slower. If you set this flag, DPNSEND_GUARANTEED
must also be set.

DPNSEND_GUARANTEED
Sends the message by a guaranteed method of delivery.

DPNSEND_PRIORITY_HIGH
Sets the priority of the message to high. This flag cannot be used with
DPNSEND_PRIORITY_LOW.

DPNSEND_PRIORITY_LOW
Sets the priority of the message to low. This flag cannot be used with
DPNSEND_PRIORITY_HIGH.

DPNSEND_NONSEQUENTIAL

in.doc – page 150

If this flag is set, the target application will receive the messages in the order
that they arrive at the user’s computer. If this flag is not set, messages are
delivered sequentially, and will be received by the target application in the
order that they were sent. Doing so may require buffering incoming messages
until missing messages arrive.

DPNSEND_NOLOOPBACK
Suppresses the DPN_MSGID_RECEIVE system message to your message
handler when you are sending to a group that includes the local player. For
example, this flag is useful if you are broadcasting to the entire session.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and normally returns
DPNSUCCESS_PENDING. It can also return one of the following error values.

DPNERR_CONNECTIONLOST

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_INVALIDPLAYER

DPNERR_TIMEDOUT

Remarks

This method generates a DPN_MSGID_RECEIVE system message in the receiver’s
message handler. The data buffer is contained in the pReceiveData member of the
associated structure.

Messages can have one of three priorities: low, normal, and high. To specify a low or
high priority for the message, set the appropriate flag in dwFlags. If neither of the
priority flags is set, the message will have normal priority. See Basic Networking for
a discussion of send priorities.

When the SendTo request is completed, a DPN_MSGID_SEND_COMPLETE
system message is normally posted to the sender’s message handler. The success or
failure of the request is contained in the hResultCode member of the associated
structure. You can suppress send completions by setting the
DPNSEND_NOCOMPLETE flag in dwFlags.

Send completions are typically posted on the source computer as soon as the message
is sent. In other words, a send completion does not necessarily mean that the message
has been processed on the target. It may still be in a queue. If you want to be certain
that the message has been processed by the target, set the
DPNSEND_COMPLETEONPROCESS flag in dwFlags. This flag ensures that the
send completion will not be sent until the target’s message handler has processed the
message, and returned.

Note

in.doc – page 151

Do not assume that resources such as the data buffer will remain valid until the
method has returned. If you call this method asynchronously, the
DPN_MSGID_SEND_COMPLETE message may be received and processed
by your message handler before the call has returned. If your message handler
deallocates or otherwise invalidates a resource such as the data buffer, that
resource may become invalid at any time after the method has been called.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::SetApplicationDesc
Changes the settings for the application that is being hosted. Only some settings can
be changed.

HRESULT SetApplicationDesc(
const DPN_APPLICATION_DESC *const pad,
const DWORD dwFlags
);

Parameters

pad
Pointer to a DPN_APPLICATION_DESC structure that describes the
application settings to modify.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_DATATOOLARGE

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_NOTHOST

Remarks

You can use this method to modify only the following members of the
DPN_APPLICATION_DESC structure:

· dwMaxPlayers

· pwszSessionName

· pwszPassword

in.doc – page 152

· pvApplicationReservedData

· dwApplicationReservedDataSize

The maximum size of the application data that you assign to the
pvApplicationReservedData member of the DPN_APPLICATION_DESC
structure is limited by the service provider's Maximum Transmission Unit. If your
application data is too large, the method will fail and return
DPNERR_DATATOOLARGE.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::SetCaps
Sets the DPN_CAPS structure for the current interface.

HRESULT SetCaps(
const DPN_CAPS *const pdpCaps,
const DWORD dwFlags
);

Parameters

pdpCaps
Pointer to a DPN_CAPS structure used to set the information about the current
interface.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

This method sets parameters for the specified service provider. A successful call to
Initialize must be made before this method can be called.

in.doc – page 153

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::SetGroupInfo
Sets a block of data associated with a group, including the name of the group.

Calling this method generates a DPN_MSGID_GROUP_INFO message, which is
sent to all the peers connected to the application.

HRESULT SetGroupInfo(
const DPNID dpnid,
DPN_GROUP_INFO *const pdpnGroupInfo,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the group whose data
block will be modified.

pdpnGroupInfo
Pointer to a DPN_GROUP_INFO structure that describes the group data to set.
To change the values of the pwszName or pvData members, you must set the
corresponding DPNINFO_NAME or DPNINFO_DATA flags in the
dwInfoFlags member.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method:

DPNSETGROUPINFO_SYNC
Causes the method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and normally returns
DPNSUCCESS_PENDING. It can also return one of the following error values.

in.doc – page 154

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

Remarks

Transmission of nonstatic information should be handled with the
IDirectPlay8Peer::SendTo method because of the high cost of using the
IDirectPlay8Peer::SetGroupInfo method.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::SetPeerInfo
Sets the static settings of the local peer. Call this method before connecting to relay
basic player information with the application. Once the peer successfully connects
with the application, information set through this method can be retrieved by other
players by calling the IDirectPlay8Peer::GetPeerInfo method.

HRESULT SetPeerInfo(
const DPN_PLAYER_INFO *const pdpnPlayerInfo,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

pdpnPlayerInfo
Pointer to a DPN_PLAYER_INFO structure that contains the peer information
to set.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNSETPEERINFO_SYNC
Causes the method to process synchronously.

in.doc – page 155

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and normally returns
DPNSUCCESS_PENDING. It can also return one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_NOCONNECTION

Remarks

This method can be called at any time during the session.

Transmission of nonstatic information should be handled with the
IDirectPlay8Peer::SendTo method because of the high cost of using the
IDirectPlay8Peer::SetPeerInfo method.

You can modify the peer information with this method after connecting to the
application. Calling this method after connection generates a
DPN_MSGID_PEER_INFO system message to all players, informing them that
data has been updated.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::SetSPCaps
Sets the DPN_SP_CAPS structure for the specified service provider.

HRESULT SetSPCaps(
const GUID *const pguidSP,
const DPN_SP_CAPS *const pdpSPCaps
);

Parameters

pguidSP
Pointer to a GUID specifying the service provider you want to set information
about.

pdpSPCaps
Pointer to a DPN_SP_CAPS structure to set the information about the specified
service provider.

in.doc – page 156

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

This method sets parameters for the specified service provider. A successful call to
Initialize must be made before this method can be called. Currently only the
dwNumThreads field can be set by this call, the dwFlags field must be 0.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Peer::TerminateSession
Terminates the current Microsoft® DirectPlay® session.

HRESULT TerminateSession(
void *const pvTerminateData,
const DWORD dwTerminateDataSize,
const DWORD dwFlags
);

Parameters

pvTerminateData
Pointer to termination data. This data is also sent in the pvTerminateData
member of the DPN_MSGID_TERMINATE_SESSION system message.

dwTerminateDataSize
Size of data contained in the pvTerminateData parameter.

dwFlags
Reserved. Must be 0.

Remarks

This method may be called only by the host player.

When this method is called, the DPN_MSGID_TERMINATE_SESSION will be
sent to the message handler of each player in the session.

in.doc – page 157

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client
Applications use the methods of the IDirectPlay8Client interface to create and
manage client applications for client/server sessions.

The methods of the IDirectPlay8Client interface can be organized into the following
groups.

Session Management Close

Connect

EnumHosts

EnumServiceProviders

GetApplicationDesc

GetCaps

GetSPCaps

SetCaps

SetSPCaps

Message Management GetSendQueueInfo

Initialize

ReturnBuffer

Send

Client Information SetClientInfo

Server Information GetServerInfo

Miscellaneous CancelAsyncOperation

RegisterLobby

GetConnectionInfo

GetServerAddress

IDirectPlay8Client::CancelAsyncOperatio
n

Cancels asynchronous requests. Many methods of the IDirectPlay8Client interface
run asynchronously by default. Depending on the situation, you might want to cancel
requests before they are processed. All the methods of this interface that can be run
asynchronously return a hAsyncHandle parameter.

in.doc – page 158

Specific requests are canceled by passing the hAsyncHandle of the request in this
method’s hAsyncHandle parameter. You can cancel all pending asynchronous
operations by calling this method, specifying NULL in the hAsyncHandle parameter,
and specifying DPNCANCEL_ALL_OPERATIONS in the dwFlags parameter. If a
specific handle is provided to this method, no flags should be set.

HRESULT CancelAsyncOperation(
const DPNHANDLE hAsyncHandle,
const DWORD dwFlags
);

Parameters

hAsyncHandle
Handle of the asynchronous operation to stop. You receive this handle when you
call one of several methods that support asynchronous operations. This value can
be set to NULL to stop all requests or a particular type of asynchronous request.
If a particular handle is specified, the dwFlags parameter must be 0.

dwFlags
Flag that specifies which asynchronous request to canceled. You can set one of
the following flags.

DPNCANCEL_ENUM
Cancel all asynchronous IDirectPlay8Client::EnumHosts requests. A single
EnumHosts request can be canceled by specifying the handle returned from
the EnumHosts method.

DPNCANCEL_CONNECT
Cancel an asynchronous IDirectPlay8Client::Connect request.

DPNCANCEL_SEND
Cancel an asynchronous IDirectPlay8Client::Send request.

DPNCANCEL_ALL_OPERATIONS
Cancel all asynchronous requests.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_CANNOTCANCEL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDHANDLE

DPNSUCCESS_PENDING

Remarks

You can use this method to cancel an asynchronous operation for the
IDirectPlay8Client::Connect, IDirectPlay8Client::Send, and
IDirectPlay8Client::EnumHosts methods. Microsoft® DirectPlay® 8.0 does not
support cancellation of other asynchronous operations.

in.doc – page 159

You can cancel a send by providing the handle returned from
IDirectPlay8Client::Send method. A DPN_MSGID_SEND_COMPLETE system
message is still posted to the applications message handler for each asynchronous
send that is sent without the DPNSEND_NOCOMPLETE flag set. Sends that are
canceled by this method return DPNERR_USERCANCEL in their hResultCode
member of the DPN_MSGID_SEND_COMPLETE message.

If you set the DPNCANCEL_ALL_OPERATIONS, DPN_CANCELCONNECT,
DPN_CANCELSEND, or DPNCANCEL_ENUM flags in dwFlags, DirectPlay will
attempt to cancel all matching operations. This method will return an error if any
attempted cancellation fails, even though some cancellations may have been
successful.

Note
The completion message might not arrive until after this method returns. Do not
assume that the operation has been terminated until you have received a
DPN_MSGID_SEND_COMPLETE,
DPN_MSGID_CONNECT_COMPLETE, or
DPN_MSGID_ASYNC_OP_COMPLETE message.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::Close
Closes the open connection with a session. This method must be called on any object
that is successfully initialized with a call to the IDirectPlay8Client::Initialize
method.

HRESULT Close(
const DWORD dwFlags
);

Parameters

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_UNINITIALIZED

in.doc – page 160

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::Connect
Establishes the connection to the server. After a connection is established, the
communication channel on the interface is open and the application should expect
messages to arrive immediately. No messages can be sent by means of the
IDirectPlay8Client::Send method until the connection has completed.

Before this method is called, you can obtain an application description by calling
IDirectPlay8Client::EnumHosts. The EnumHosts method returns a
DPN_APPLICATION_DESC structure for each hosted application. The structure
describes the application, including the GUID of the application.

If this method is called asynchronously (by default), when the connection completes a
DPN_MSGID_CONNECT_COMPLETE message is sent to the application’s
message handler.

HRESULT Connect(
const DPN_APPLICATION_DESC *const pdnAppDesc,
IDirectPlay8Address *const pHostAddr,
IDirectPlay8Address *const pDeviceInfo,
const DPN_SECURITY_DESC *const pdnSecurity,
const DPN_SECURITY_CREDENTIALS *const pdnCredentials,
const void *const pvUserConnectData,
const DWORD dwUserConnectDataSize,
void *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

pdnAppDesc
Pointer to a DPN_APPLICATION_DESC structure that describes the
application. The only member of this structure that you must set is the
guidApplication member. Only some of the members of this structure are used
by this method. The only member that you must set is guidApplication. You can
also set guidInstance, pwszPassword, dwFlags, and dwSize.

pHostAddr
Pointer to an IDirectPlay8Address interface that specifies the addressing
information to use to connect to the computer that is hosting.

pDeviceInfo

in.doc – page 161

Pointer to an IDirectPlay8Address object that specifies what network adapter
(for example, NIC, modem, and so on) to use to connect to the server.

pdnSecurity
Reserved. Must be NULL.

pdnCredentials
Reserved. Must be NULL.

pvUserConnectData
Pointer to application-specific data provided to the host or server to further
validate the connection. This data is sent to the
DPN_MSGID_INDICATE_CONNECT message in the pvUserConnectData
member. This parameter is optional and you may pass NULL to bypass the
connection validation provided by the user code.

dwUserConnectDataSize
Variable of type DWORD that specifies the size of the data contained in
pvUserConnectData.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_CONNECT_COMPLETE system message. This
parameter is optional and may be set to NULL.

phAsyncHandle
A DPNHANDLE. When the method returns, phAsyncHandle will point to a
handle that you can pass to IDirectPlay8Client::CancelAsyncOperation to
cancel the operation. This parameter must be set to NULL if you set the
DPNCONNECT_SYNC flag in dwFlags.

dwFlags
Flag that describes the connection mode. You can set the following flag.

DPNCONNECT_OKTOQUERYFORADDRESSING
Setting this flag will display a standard Microsoft® DirectPlay® dialog box,
which queries the user for more information if not enough information is
passed in this method.

DPNCONNECT_SYNC
Process the connection request synchronously. Setting this flag does not
generate a DPN_MSGID_CONNECT_COMPLETE system message.

Return Values

Returns S_OK if this method is processed synchronously and is successful. If the
request is processed asynchronously, S_OK will be returned if the method is instantly
processed. By default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or one of the following error values.

DPNERR_HOSTREJECTEDCONNECTION

DPNERR_INVALIDAPPLICATION

DPNERR_INVALIDDEVICEADDRESS

DPNERR_INVALIDFLAGS

in.doc – page 162

DPNERR_INVALIDHOSTADDRESS

DPNERR_INVALIDINSTANCE

DPNERR_INVALIDINTERFACE

DPNERR_INVALIDPASSWORD

DPNERR_NOCONNECTION

DPNERR_NOTHOST

DPNERR_SESSIONFULL

DPNERR_ALREADYCONNECTED

Remarks

Although multiple enumerations can be run concurrently, and can be run across the
duration of a connection, only one connection is allowed per interface. To establish a
connection to more than one application, you must create another interface.

When this method is called, a DPN_MSGID_INDICATE_CONNECT message is
posted to the server’s message handler. On retrieval of this message, the host can pass
back connection reply data to the Connect method. Connection reply data can send a
message indicating that the host does not approve the connection. The calling
application can then handle this reply appropriately.

The hResultCode on the completion will indicate S_OK if the Connect() attempt was
successful, or an error otherwise. If the Host player returned anything other than
S_OK from the DPN_MSGID_INDICATE_CONNECT message, the likely error
code in the completion will be DPNERR_HOSTREJECTEDCONNECTION.

When the connection completes, a DPN_MSGID_CONNECT_COMPLETE
message is sent to the application’s message handler.

To close the connection established with this method, call the
IDirectPlay8Client::Close method.

Note
If you set the DPNCONNECT_OKTOQUERYFORADDRESSING flag in dwFlags,
the service provider may attempt to display a dialog box to ask the user to complete
the address information. You must have a visible window present when the service
provider tries to display the dialog box, or your application will lock.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 163

IDirectPlay8Client::EnumHosts
Enumerates applications that host Microsoft® DirectPlay® games. When an
application is found that meets the enumeration criteria, the application’s message
handler is called with a DPN_MSGID_ENUM_HOSTS_RESPONSE system
message. The message contains a DPN_APPLICATION_DESC structure describing
the applications found.

Any number of enumerations can be run concurrently. The pvUserContext value is
provided in the message handler to help differentiate replies to different
enumerations.

Because of the variation in the number of ways enumeration can happen, it is not
recommended that an application attempt to specify dwEnumPeriod, dwRetryInterval,
or dwTimeOut unless the application has some specific media knowledge.

The default enumeration count and timeout values will cause EnumHosts to
complete within a reasonable amount of time. These values are set by the service
provider, and can be obtained by calling IDirectPlay8Client::GetSPCaps.
Asynchronous enumerations can be stopped at any time by calling
IDirectPlay8Client::CancelAsyncOperation and either passing the handle returned
in the pAsyncHandle parameter or setting the DPENUM_CANCEL flag in the
dwFlags parameter. An enumeration can also be stopped by returning anything other
than S_OK from the message handler.

HRESULT EnumHosts(
PDPN_APPLICATION_DESC const pApplicationDesc,
IDirectPlay8Address *const pdpaddrHost,
IDirectPlay8Address *const pdpaddrDeviceInfo,
PVOID const pvUserEnumData,
const DWORD dwUserEnumDataSize,
const DWORD dwEnumCount,
const DWORD dwRetryInterval,
const DWORD dwTimeOut,
PVOID const pvUserContext,
HANDLE *const pAsyncHandle,
const DWORD dwFlags
);

Parameters

pApplicationDesc
Pointer to a DPN_APPLICATION_DESC structure that specifies which
application hosts to enumerate. You must set the pApplicationDesc.dwSize
member to the appropriate value. To reduce the number of responses, set
pApplicationDesc.guidApplication to the GUID of the application to be found.
If this member is not set, the search will include all applications.

pdpaddrHost

in.doc – page 164

Pointer to an IDirectPlay8Address object that specifies the address of the
computer that is hosting the application. If you specify NULL. DirectPlay will
create an address. By default, DirectPlay will create the address from the
pdpaddrDeviceInfo parameter. If you set the
DPNENUMHOSTS_OKTOQUERYFORADDRESSING flag in dwFlags, the
user can be queried for address information.

pdpaddrDeviceInfo
Pointer to an IDirectPlay8Address object that specifies the service provider and
local device settings to use when enumerating.

pvUserEnumData
Pointer to a block of data that is sent in the enumeration request to the host. The
size of the data is limited depending on the network type. Call
IDirectPlay8Client::GetSPCaps to obtain the exact value.

dwUserEnumDataSize
Variable of type DWORD that specifies the size of the data pointed at in the
pvUserEnumData parameter.

dwEnumCount
Value specifying how many times the enumeration data will be sent. Set this
parameter to zero to use the default value. You can obtain the default value for
dwEnumCount by calling IDirectPlay8Client::GetSPCaps. If dwEnumCount is
set to INFINITE, the enumeration will continue until canceled.

dwRetryInterval
Value specifying how many milliseconds between enumeration retries. Set this
parameter to zero to use the default value. You can obtain the default value for
dwRetryInterval by calling IDirectPlay8Client::GetSPCaps.

dwTimeOut
Variable of type DWORD that specifies the number of milliseconds that
DirectPlay will wait for replies after the last enumeration is sent. Set this
parameter to zero to use the default value. You can obtain the default value for
dwTimeOut by calling IDirectPlay8Client::GetSPCaps If INFINITE is
specified, the enumeration continues until it is canceled.

pvUserContext
Context that is provided in the client’s message handler when it is called with
responses to the enumeration. This can be useful to differentiate replies from
concurrent enumerations.

pAsyncHandle
A DPNHANDLE. When the method returns, phAsyncHandle will point to a
handle that you can pass to IDirectPlay8Client::CancelAsyncOperation to
cancel the operation. This parameter must be set to NULL if you set the
DPNENUMHOSTS_SYNC flag in dwFlags.

dwFlags
The following flags can be set.

DPNENUMHOSTS_SYNC
Causes the method to process synchronously.

DPNENUMHOSTS_OKTOQUERYFORADDRESSING

in.doc – page 165

Setting this flag will display a standard DirectPlay dialog box, which queries
the user for more information if not enough information is passed in this
method.

DPNENUMHOSTS_NOBROADCASTFALLBACK
If the service provider supports broadcasting, setting this flag will disable the
broadcast capabilities. Check to see if broadcasting is supported by examining
the DPN_SP_CAPS structure before setting this flag.

Return Values

Returns S_OK if this method is processed synchronously and is successful. If the
request is processed asynchronously, S_OK can return if the method is instantly
processed. By default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or one of the following error values.

DPNERR_INVALIDDEVICEADDRESS

DPNERR_INVALIDFLAGS

DPNERR_INVALIDHOSTADDRESS

DPNERR_INVALIDPARAM

DPNERR_ENUMQUERYTOOLARGE

Remarks

If you set the DPNENUMHOSTS_OKTOQUERYFORADDRESSING flag in
dwFlags, the service provider may attempt to display a dialog box to ask the user to
complete the address information. You must have a visible window present when the
service provider tries to display the dialog box, or your application will lock.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::EnumServiceProvider
s

Enumerates the registered service providers available to the application.

HRESULT EnumServiceProviders(
const GUID *const pguidServiceProvider,
const GUID *const pguidApplication,
DPN_SERVICE_PROVIDER_INFO *const pSPInfoBuffer,
PDWORD const pcbEnumData,
PDWORD const pcReturned,
const DWORD dwFlags

in.doc – page 166

);

Parameters

pguidServiceProvider
Pointer to a variable of type GUID that specifies a service provider. This optional
parameter forces the enumeration of subdevices for the specified service
provider. You should normally set this value to NULL, to enumerate all available
service providers.

pguidApplication
Pointer to a variable of type GUID that specifies an application. If a pointer is
passed in this parameter, only service providers who can be connected to the
application are enumerated. You can also pass NULL to enumerate the registered
service providers for the system.

pSPInfoBuffer
Pointer to an array of DPN_SERVICE_PROVIDER_INFO structures that will
be filled with service provider information.

pcbEnumData
Pointer to DWORD, which is filled with the size of the pEnumData buffer if the
buffer is too small.

pcReturned
Pointer to a variable of type DWORD that specifies the number of
DPN_SERVICE_PROVIDER_INFO structures returned in the pEnumData
array.

dwFlags
The following flag can be specified.

DPNENUMSERVICEPROVIDERS_ALL
Enumerates all the registered service providers for the system, including those
that are not available to the application or do not have devices installed.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

Remarks

Call this method initially by specifying NULL in the pguidServiceProvider parameter
to determine the base service providers available to the system. Specific devices for a
service provider can be obtained by passing a pointer to a service provider GUID in
the pguidServiceProvider. This is useful, for example, when using the Modem
Connection for Microsoft® DirectPlay® service provider. You can choose among
different modems for dialing out and select specific modems for hosting.

in.doc – page 167

If the pEnumData buffer is not big enough to hold the requested service provider
information, the method returns DPNERR_BUFFERTOOSMALL and the
cbEnumData parameter contains the required buffer size. Typically, the best strategy
is to call the method once with a zero-length buffer to determine the required size.
Then call the method again with the appropriate-sized buffer.

Normally, this method will return only those service providers that can be used by the
application. For example, if the IPX networking protocol is not installed, DirectPlay
will not return the IPX service provider. To have DirectPlay return all service
providers, even those that cannot be used by the application, set the
DPNENUMSERVICEPROVIDERS_ALL flag in dwFlags.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::GetApplicationDesc
Retrieves the full application description for the connected application.

HRESULT GetApplicationDesc(
DPN_APPLICATION_DESC *const pAppDescBuffer,
DWORD *const pcbDataSize,
const DWORD dwFlags
);

Parameters

pAppDescBuffer
Pointer to a DPN_APPLICATION_DESC structure where the application
description data is written. Set this parameter to NULL to request only the size of
data. If pAppDescBuffer is not set to NULL, you must set the
pAppDescBuffer.dwSize member to an appropriate value. The pcbDataSize
parameter is set to the size required to hold the data.

pcbDataSize
Pointer to a variable of type DWORD that is initialized to the size of the buffer
before calling this method. After the method returns, this parameter is set to the
size, in bytes, of the session data. If the buffer is too small, this method returns
the DPNERR_BUFFERTOOSMALL error value, and this parameter is set to the
buffer size required. If this parameter is NULL, the method returns
DPNERR_INVALIDPARAM.

dwFlags
Reserved. Must be 0.

in.doc – page 168

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_NOCONNECTION

Remarks

Call this method initially by passing NULL in the pvData parameter to obtain the size
of the required buffer. When you call the method a second time to fill the buffer, be
sure to set the structures dwSize member to the appropriate value.

The returned DPN_APPLICATION_DESC structure will have the guidInstance,
guidApplication, and pwszSessionName members set. It will not contain
information about other clients that are connected to the session. That information, if
available, can be obtained only from the server application. In particular, the
dwCurrentPlayers member will always be set to 0.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::GetCaps
Retrieves the DPN_CAPS structure for the current interface.

HRESULT GetCaps(
DPN_CAPS *const pdpCaps,
const DWORD dwFlags
);

Parameters

pdpnCaps
Pointer to a DPN_CAPS structure to receive caps information. You must set the
dwSize member of this structure to an appropriate value.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

in.doc – page 169

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

A successful call to Initialize must be made before this method can be called.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::GetConnectionInfo
Retrieves statistical information about the connection between the local client and the
server.

HRESULT GetConnectionInfo(
DPN_CONNECTION_INFO *const pdnConnectInfo,
const DWORD dwFlags
);

Parameters

pdnConnectInfo
Pointer to a DPN_CONNECTION_INFO structure to retrieve information
about the specified connection. You must set the dwSize member of this structure
to an appropriate value.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

This method can be called only after a successful Connect call has completed.

in.doc – page 170

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::GetSendQueueInfo
Used by the application to monitor the size of the send queue. Microsoft® DirectPlay®

does not send messages faster than the receiving computer can process them. As a
result, if the sending computer is sending faster than the receiver can receive,
messages accumulate in the sender’s queue. If the application registers that the send
queue is growing too large, it should decrease the rate that messages are sent.

HRESULT GetSendQueueInfo(
DWORD *const pdwNumMsgs,
DWORD *const pdwNumBytes,
const DWORD dwFlags
);

Parameters

pdwNumMsgs
Pointer to a variable of type DWORD that contains the number of messages
currently queued. This value is optional, and may be set to NULL.

pdwNumBytes
Pointer to a variable of type DWORD that specifies the total number of bytes of
data of the messages currently queued. This value is optional, and may be set to
NULL.

dwFlags
You may specify the DPNGETSENDQUEUEINFO_PRIORITY_NORMAL,
DPNGETSENDQUEUEINFO_PRIORITY_HIGH, or
DPNGETSENDQUEUEINFO_PRIORITY_LOW flag to inquire about specific
messages of that priority.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_INVALIDPARAM

Remarks

You cannot set both pdwNumMsgs and pdwNumBytes to NULL. At least one of them
must be set to a valid pointer.

in.doc – page 171

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::GetServerAddress
Retrieves the address of the server for the session.

HRESULT GetServerAddress(
IDirectPlay8Address **const ppAddress,
const DWORD dwFlags
);

Parameters

ppAddress
Address of a pointer to an IDirectPlay8Address object that specifies the address
of the server. You must release this object when you no longer need it.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::GetServerInfo
Retrieves the data set for the server set by the call to the
IDirectPlay8Server::SetServerInfo method.

HRESULT GetServerInfo(
DPN_PLAYER_INFO *const pdpnPlayerInfo,
DWORD *const pdwSize,
const DWORD dwFlags
);

in.doc – page 172

Parameters

pdpnPlayerInfo
Pointer to a DPN_PLAYER_INFO structure to be filled with the server's
information. If pdwSize is not set to NULL, you must set pdpnPlayerInfo.dwSize
to the size of a DPN_PLAYER_INFO structure.

pdwSize
Pointer to a variable of type DWORD that contains the size of the data returned
in the pdpnPlayerInfo parameter. If this value is too small, the method returns
DPNERR_BUFFERTOOSMALL, and this parameter is set to the required size
of the buffer.

dwFlags
Reserved. Must be set to 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

Remarks

Call this method after the client receives a DPN_MSGID_SERVER_INFO message,
indicating that the server has updated its information.

Microsoft® DirectPlay® returns the DPN_PLAYER_INFO structure and the pointers
assigned to the structure’s pwszName and pvData members in a contiguous buffer. If
the two pointers were set, you must have allocated enough memory for the structure,
plus the two pointers. The most robust way to use this method is to first call it with
pdwSize set to NULL. When the method returns, pdwSize will point to the correct
value. Use that value to allocate memory for your structure and call the method a
second time to retrieve the information.

When the method returns, the dwInfoFlags member of the DPN_PLAYER_INFO
structure will always have the DPNINFO_DATA and DPNINFO_NAME flags set,
even if the corresponding pointers are set to NULL. These flags are used when calling
IDirectPlay8Server::SetServerInfo, to notify DirectPlay of which values have
changed.

Transmission of nonstatic information should be handled with the
IDirectPlay8Server::SendTo method because of the high cost of using the
IDirectPlay8Server::SetServerInfo method.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 173

IDirectPlay8Client::GetSPCaps
Retrieves the DPN_SP_CAPS structure for the specified service provider.

HRESULT GetSPCaps(
const GUID *const pguidSP,
DPN_SP_CAPS *const pdpnSPCaps,
const DWORD dwFlags
);

Parameters

pguidSP
Pointer to a GUID specifying the service provider you want to get information
about.

pdpnSPCaps
Pointer to a DPN_SP_CAPS structure to receive the information about the
specified service provider. You must set the pdpnSPCaps.dwSize member to the
size of a DPN_SP_CAPS structure.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

This method retrieves information about the specified service provider. A successful
call to Initialize must be made before this method can be called.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::Initialize
Registers an entry point in the client’s code that receives the messages from the
IDirectPlay8Client interface and from the server. This method must be called before
calling any other methods of this interface.

in.doc – page 174

HRESULT Initialize(
PVOID const pvUserContext,
const PFNDPNMESSAGEHANDLER pfn,
const DWORD dwFlags
);

Parameters

pvUserContext
Pointer to the user-provided context value in calls to the message handler.
Providing a user-context value can be useful to differentiate messages coming
from multiple interfaces to a common message handler.

pfn
Pointer to a PFNDPNMESSAGEHANDLER callback function that receives all
messages from the server, and receives indications of session changes from the
IDirectPlay8Client interface.

dwFlags
You may specify the following flag.

DPNINITIALIZE_DISABLEPARAMVAL
Disable parameter validation for the current object.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

This is the first method you should call after using CoCreateInstance to obtain the
IDirectPlay8Client interface.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::RegisterLobby
Allows launched applications to automatically propagate game status to the lobby.

HRESULT RegisterLobby(
const DPNHANDLE dpnHandle,
IDirectPlay8LobbiedApplication *const pIDP8LobbiedApplication,
const DWORD dwFlags

in.doc – page 175

);

Parameters

dpnHandle
Connection handle used when making the calls to
IDirectPlay8LobbiedApplication::UpdateStatus.

pIDP8LobbiedApplication
Pointer to the IDirectPlay8LobbiedApplication object that specifies the
application.

dwFlags
One of the following flags:

DPNLOBBY_REGISTER
Registers the lobby with the application.

DPNLOBBY_UNREGISTER
Unregisters the lobby with the application.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_INVALIDPARAM

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::ReturnBuffer
Retrieves message buffers provided to the application through the pReceiveData
member of the DPN_MSGID_RECEIVE system message. If the user’s message
handler returns DPNSUCCESS_PENDING to the RECEIVE callback, Microsoft®
DirectPlay® assumes ownership of the buffer has been transferred to the application,
and neither frees nor modifies it until ownership is returned to DirectPlay through this
call.

HRESULT ReturnBuffer(
const DPNHANDLE hBufferHandle,
const DWORD dwFlags
);

Parameters

hBufferHandle

in.doc – page 176

Variable of type DPNHANDLE that specifies the buffer handle for the message.
This is obtained in the hBufferHandle member of the
DPN_MSGID_RECEIVE system message.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDHANDLE

DPNERR_INVALIDPARAM

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::Send
Transmits data to the server. The message can be sent synchronously or
asynchronously.

HRESULT Send(
const DPN_BUFFER_DESC *const pBufferDesc,
const DWORD cBufferDesc,
const DWORD dwTimeOut,
void *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

pBufferDesc
Pointer to a DPN_BUFFER_DESC structure that describes the data to send.

cBufferDesc
Number of DPN_BUFFER_DESC structures pointed to by pBufferDesc. There
can only be one buffer in this version of Microsoft® DirectPlay®.

dwTimeOut
Number of milliseconds to wait for the message to be sent. If the message has not
been sent by the dwTimeOut value, the message is not sent. If you do not want a
time out for message sends, set this parameter to 0.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_SEND_COMPLETE system message.

in.doc – page 177

phAsyncHandle
A DPNHANDLE. When the method returns, phAsyncHandle will point to a
handle that you can pass to IDirectPlay8Client::CancelAsyncOperation to
cancel the operation. This parameter must be set to NULL if you set the
DPNSEND_SYNC flag in dwFlags.

dwFlags
Flags that describe send behavior. You can set one or more of the following
flags.

DPNSEND_SYNC
Process the Send request synchronously.

DPNSEND_NOCOPY
Use the data in the DPN_BUFFER_DESC structure and do not make an
internal copy. This may be a more efficient method of sending data to the
server. However, it is less robust, because the sender might be able to modify
the message before the receiver has processed it. This flag cannot be
combined with DPNSEND_NOCOMPLETE.

DPNSEND_NOCOMPLETE
Does not send DPN_MSGID_SEND_COMPLETE to the message handler.
This flag may not be used with DPNSEND_NOCOPY or
DPNSEND_GUARANTEED. Additionally, when using this flag
pvAsyncContext must be NULL.

DPNSEND_COMPLETEONPROCESS
Send DPN_MSGID_SEND_COMPLETE to the message handler when this
message has been delivered to the target and the target’s message handler
returns from indicating its reception. There is additional internal message
overhead when this flag is set, and the message transmission process may
become significantly slower. If you set this flag, DPNSEND_GUARANTEED
must also be set.

DPNSEND_GUARANTEED
Send the message by a guaranteed method of delivery.

DPNSEND_PRIORITY_HIGH
Sets the priority of the message to high. This flag cannot be used with
DPNSEND_PRIORITY_LOW.

DPNSEND_PRIORITY_LOW
Sets the priority of the message to low. This flag cannot be used with
DPNSEND_PRIORITY_HIGH.

DPNSEND_NOLOOPBACK
Suppress the DPN_MSGID_RECEIVE system message to your message
handler if you are sending to yourself.

DPNSEND_NONSEQUENTIAL
If the flag is not set, messages are delivered to the target application in the
order that they are sent, which may necessitate buffering out of sequence
messages until the missing messages arrive. Messages are simply delivered to
the target application in the order that they are received.

in.doc – page 178

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_TIMEDOUT

Remarks

This method generates a DPN_MSGID_RECEIVE system message in the server’s
message handler. The data buffer is contained in the pReceiveData member of the
associated structure.

Messages can have one of three priorities: low, normal, and high. To specify a low or
high priority for the message, set the appropriate flag in dwFlags. If neither of the
priority flags is set, the message will have normal priority. See Basic Networking for
a discussion of send priorities.

When the Send request is completed, a DPN_MSGID_SEND_COMPLETE system
message is posted to the sender’s message handler. The success or failure of the
request is contained in the hResultCode member of the associate structure. You can
suppress the send completion by setting the DPN_NOCOMPLETE flag in dwflags.

Send completions are typically posted on the source computer as soon as the message
is sent. In other words, a send completion does not necessarily mean that the message
has been processed on the target. It may still be in a queue. If you want to be certain
that the message has been processed by the target, set the
DPN_COMPLETEONPROCESS flag in dwFlags. This flag ensures that the send
completion will not be sent until the target’s message handler has processed the
message, and returned.

Note
Do not assume that resources such as the data buffer will remain valid until the
method has returned. If you call this method asynchronously, the
DPN_MSGID_SEND_COMPLETE message may be received and processed
by your message handler before the call has returned. If your message handler
deallocates or otherwise invalidates a resource such as the data buffer, that
resource may become invalid at any time after the method has been called.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::SetCaps
Sets the DPN_CAPS structure for the current interface.

in.doc – page 179

HRESULT SetCaps(
const DPN_CAPS *const pdpCaps,
const DWORD dwFlags
);

Parameters

pdpCaps
Pointer to a DPN_CAPS structure used to set the information about the current
interface.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

This method sets parameters for the specified service provider. A successful call to
Initialize must be made before this method can be called.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Client::SetClientInfo
Sets the static settings of a client with an application. Call this method before
connecting to relay basic player information to the application. Once the client
successfully connects with the application, the server can retrieve information
obtained through this method by calling the IDirectPlay8Server::GetClientInfo
method.

HRESULT SetClientInfo(
const DPN_PLAYER_INFO *const pdpnPlayerInfo,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

in.doc – page 180

Parameters

pdpnPlayerInfo
Pointer to a DPN_PLAYER_INFO structure that contains the client information
to set.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNSETCLIENTINFO_SYNC
Causes the method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. If the
request is processed asynchronously, S_OK can return if the method is instantly
processed. By default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or one of the following error values.

DPNERR_NOCONNECTION

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

This method can be called at any time during the session.

Transmission of nonstatic information should be handled with the
IDirectPlay8Client::Send method because of the high cost of using the
IDirectPlay8Client::SetClientInfo method.

You can modify the client information with this method after connecting to the
application. Calling this method after connection generates a
DPN_MSGID_CLIENT_INFO system message to all players, informing them that
data has been updated.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 181

IDirectPlay8Client::SetSPCaps
Sets the DPN_SP_CAPS structure for the specified service provider.

HRESULT SetSPCaps(
const GUID *const pguidSP,
constDPN_SP_CAPS *const pdpnSPCaps
);

Parameters

pguidSP
Pointer to a GUID specifying the service provider you want to set information
about.

pdpnSPCaps
Pointer to a DPN_SP_CAPS structure to set the information about the specified
service provider.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

This method sets parameters for the specified service provider. A successful call to
Initialize must be made before this method can be called. Currently only the
dwNumThreads member can be set by this call; dwFlags must be 0.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server
Applications use the methods of the IDirectPlay8Server interface to create and
manage the server for a Microsoft® DirectPlay® client/server transport session

The methods of the IDirectPlay8Server interface can be organized into the following
groups.

Session Management Close

in.doc – page 182

EnumServiceProviders

GetApplicationDesc

GetCaps

GetSPCaps

GetSendQueueInfo

Host

Initialize

ReturnBuffer

SendTo

SetApplicationDesc

SetCaps

SetServerInfo

SetSPCaps

Client Management DestroyClient

GetClientInfo

GetPlayerContext

Group Management AddPlayerToGroup

CreateGroup

DestroyGroup

EnumPlayersAndGroups

EnumGroupMembers

GetGroupContext

GetGroupInfo

RemovePlayerFromGroup

SetGroupInfo

Miscellaneous CancelAsyncOperation

GetClientAddress

GetConnectionInfo

GetLocalHostAddresses

RegisterLobby

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 183

IDirectPlay8Server::AddPlayerToGroup
Adds a client to a group. After the client is successfully added to the group, all
messages sent to the group are sent to the client.

HRESULT AddPlayerToGroup(
const DPNID idGroup,
const DPNID idClient,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

idGroup
Variable of type DPNID that specifies the identifier of the group to add the client
to.

idClient
Variable of type DPNID that specifies the identifier of the client to add to the
group.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.
This parameter is optional and can be set to NULL.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNADDPLAYERTOGROUP_SYNC
Causes this method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

DPNERR_INVALIDPLAYER

in.doc – page 184

Remarks

The server can add itself or a client to an existing group. After a player is successfully
added to a group, all messages sent to the group will be received by the player.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::CancelAsyncOperati
on

Cancels asynchronous requests. Many methods of the IDirectPlay8Server interface
run asynchronously by default. Depending on the situation, you might want to cancel
requests before they are processed. All the methods of this interface that can be run
asynchronously return an hAsyncHandle parameter.

Specific requests are canceled by passing the hAsyncHandle of the request in this
method’s hAsyncHandle parameter. You can cancel all pending asynchronous
operations by calling this method, specifying NULL in the hAsyncHandle parameter,
and specifying DPNCANCEL_ALL_OPERATIONS in the dwFlags parameter. If a
specific handle is provided to this method, no flags should be set.

HRESULT CancelAsyncOperation(
const DPNHANDLE hAsyncHandle,
const DWORD dwFlags
);

Parameters

hAsyncHandle
Handle of the asynchronous operation to stop. This value can be NULL to stop
all requests or a particular type of asynchronous request. If a specific handle for
the request to be canceled is specified, the dwFlags parameter must be 0. You
will receive this handle when you call one of several methods that support
asynchronous operations.

dwFlags
Flag that specifies which asynchronous request to cancel. You can set one of the
following flags.

DPNCANCEL_SEND
Cancel an asynchronous IDirectPlay8Server::SendTo request.

DPNCANCEL_ALL_OPERATIONS
Cancel all asynchronous requests.

in.doc – page 185

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_CANNOTCANCEL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDHANDLE

DPNSUCCESS_PENDING

Remarks

You can use this method to cancel an asynchronous operation for the
IDirectPlay8Server::SendTo method. Microsoft® DirectPlay® 8.0 does not support
cancellation of other asynchronous operations.

You can cancel a Send request by providing the handle returned from
IDirectPlay8Server::SendTo method. A DPN_MSGID_SEND_COMPLETE
system message is still posted to the applications message handler for each
asynchronous Send request that is sent without the DPNSEND_NOCOMPLETE flag
set. Send requests that are canceled by this method return DPNERR_USERCANCEL
in their hResultCode member of the DPN_MSGID_SEND_COMPLETE message.

If you set the DPNCANCEL_ALL_OPERATIONS or DPNCANCEL_SEND flags in
dwFlags, DirectPlay will attempt to cancel all matching operations. This method will
return an error if any attempted cancellation fails, even though some cancellations
may have been successful.

Note
The completion message might not arrive until after this method returns. Do not
assume that the operation has been terminated until you have received a
DPN_MSGID_SEND_COMPLETE,
DPN_MSGID_CONNECT_COMPLETE, or
DPN_MSGID_ASYNC_OP_COMPLETE message.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::Close
Closes the open connection with a session.

HRESULT Close(
const DWORD dwFlags
);

in.doc – page 186

Parameters

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_UNINITIALIZED

Remarks

This method must be called on any object successfully initialized with
IDirectPlay8Server::Initialize.

This method is a counterpart to IDirectPlay8Server::Host. It closes all active
network connections hosted by the server. This method is synchronous, and will not
return until the server has processed all DPN_MSGID_DESTROY_PLAYER
messages. This feature guarantees that when Close returns, you can safely shut down
the server application.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::CreateGroup
Creates a group in the current session. When this method is called, the server’s
message handler receives a DPN_MSGID_CREATE_GROUP message.

Note
Multicasting is not supported for this release.

HRESULT CreateGroup(
const DPN_GROUP_INFO *const pdpnGroupInfo,
VOID *const pvGroupContext,
VOID *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

pdpnGroupInfo
Pointer to a DPN_GROUP_INFO structure that contains the group description.

pvGroupContext

in.doc – page 187

Pointer to the context value for the group. This value is preset when the local
application's message handler processes the DPN_MSGID_CREATE_GROUP
message. This parameter is optional and may be set to NULL.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNCREATEGROUP_SYNC
Causes this method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or the following error value.

DPNERR_INVALIDFLAGS

Remarks

Microsoft® DirectPlay® does not maintain hierarchical groups because these can
easily be implemented with flat groups and expeditious use of the group data.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::DestroyClient
Deletes a client from the session.

HRESULT DestroyClient(
const DPNID dpnidClient,
const VOID *const pDestroyInfo,
const DWORD dwDestroyInfoSize,
const DWORD dwFlags
);

Parameters

dpnidClient

in.doc – page 188

Variable of type DPNID that specifies the identifier of the client to delete.

pDestroyInfo
Pointer that describes additional delete data information.

dwDestroyInfoSize
Variable of type DWORD that specifies the size of the data in the pDestroyInfo
parameter.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDPLAYER

DPNERR_NOTHOST

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::DestroyGroup
Deletes a group created by the IDirectPlay8Server::CreateGroup method.

HRESULT DestroyGroup(
const DPNID idGroup,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

idGroup
DPNID of the group to delete.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.
This parameter is optional and may be set to NULL.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags

in.doc – page 189

Flag that controls how this method is processed. The following flag can be set for
this method.

DPNDESTROYGROUP_SYNC
Causes the method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::EnumPlayersAndGro
ups

Retrieves a list of all the player and/or group identifiers for the application.

HRESULT EnumPlayersAndGroups(
DPNID *const prgdpnid,
DWORD *const pcdpnid,
const DWORD dwFlags
);

Parameters

prgdpnid
Pointer to an array that will be filled with the session's group and/or player
identifiers.

pcdpnid
Pointer to a variable of type DWORD that specifies the number of identifiers in
the prgdpnid parameter. If the buffer is too small, this method returns
DPNERR_BUFFERTOOSMALL and this parameter contains the number of
entries that are required.

dwFlags
Flag that describes enumeration behavior. You can set one or both of the
following flags.

DPNENUM_PLAYERS
Return a list of player identifiers.

in.doc – page 190

DPNENUM_GROUPS
Return a list of group identifiers.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

Remarks

Because group and player information changes frequently, the required buffer size
returned may change between subsequent calls. Check and reallocate the buffer until
the method succeeds.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::EnumGroupMembers
Retrieves a list of all players in a group.

HRESULT EnumGroupMembers(
const DPNID dpnid,
DPNID *const prgdpnid,
DWORD *const pcdpnid,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the group that contains the players to
enumerate.

prgdpnid
Pointer to an array that contains the identifiers of the group's players.

pcdpnid
Pointer to a variable of type DWORD that contains the number of player
identifiers in the prgdpnid parameter. If the buffer is too small, this method
returns DPNERR_BUFFERTOOSMALL and this parameter is set to the number
of entries that are required.

dwFlags
Reserved. Must be 0.

in.doc – page 191

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::EnumServiceProvide
rs

Enumerates the registered service providers available to the application.

HRESULT EnumServiceProviders(
const GUID *const pguidServiceProvider,
const GUID *const pguidApplication,
DPN_SERVICE_PROVIDER_INFO *const pSPInfoBuffer,
PDWORD const pcbEnumData,
PDWORD const pcReturned
const DWORD dwFlags
);

Parameters

pguidServiceProvider
Pointer to a variable of type GUID that specifies a service provider. This optional
parameter forces the enumeration of subdevices for the specified service
provider. You should normally set this value to NULL, to enumerate all available
service providers.

pguidApplication
Pointer to a variable of type GUID that specifies an application. If a pointer is
passed in this parameter, only service providers who can be connected to the
application are enumerated. You can also pass NULL to enumerate the registered
service providers for the system.

pSPInfoBuffer
Pointer to an array of DPN_SERVICE_PROVIDER_INFO structures that will
be filled with service provider information.

pcbEnumData
Pointer to DWORD, which is filled with the size of the pEnumData buffer if the
buffer is too small.

in.doc – page 192

pcReturned
Pointer to a variable of type DWORD that specifies the number of
DPN_SERVICE_PROVIDER_INFO structures returned in the pEnumData
array.

dwFlags
The following flag can be specified.

DPNENUMSERVICEPROVIDERS_ALL
Enumerates all the registered service providers for the system including those
that are not available to the application or do not have devices installed.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

Remarks

Call this method initially by specifying NULL in the pguidServiceProvider parameter
to determine the base service providers available to the system. Specific devices for a
service provider can be obtained by passing a pointer to a specific service provider
GUID in the pguidServiceProvider. This is useful, for example, when using the
Modem Connection for Microsoft® DirectPlay® service provider. You can choose
between different modems for dialing out and select specific modems for hosting.

If the pEnumData buffer is not big enough to hold the requested service provider
information, the method returns DPNERR_BUFFERTOOSMALL and the
cbEnumData parameter contains the required buffer size. Typically, the best strategy
is to call the method once with a zero-length buffer to determine the required size.
Then call the method again with the appropriate sized buffer.

Normally, this method will return only those service providers that can be used by the
application. For example, if the IPX networking protocol is not installed, DirectPlay
will not return the IPX service provider. To have DirectPlay return all service
providers, even those that cannot be used by the application, set the
DPNENUMSERVICEPROVIDERS_ALL flag in dwFlags.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::GetApplicationDesc
Retrieves the full application description for the connected application.

in.doc – page 193

HRESULT GetApplicationDesc(
DPN_APPLICATION_DESC *const pAppDescBuffer,
DWORD *const pcbDataSize,
const DWORD dwFlags
);

Parameters

pAppDescBuffer
Pointer to a DPN_APPLICATION_DESC structure where the application
description data is to be written. Set this parameter to NULL to request only the
size of data. If pAppDescBuffer is not set to NULL, you must set the
pAppDescBuffer.dwSize member to an appropriate value. The pcbDataSize
parameter is set to the size required to hold the data.

pcbDataSize
Pointer to a variable of type DWORD that is initialized to the size of the buffer
before calling this method. After the method returns, this parameter is set to the
size, in bytes, of the session data. If the buffer is too small, this method returns
the DPNERR_BUFFERTOOSMALL error value, and this parameter is set to the
buffer size required. If this parameter is NULL, the method returns
DPNERR_INVALIDPARAM.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_NOCONNECTION

Remarks

Call this method initially by passing NULL in the pvData parameter to obtain the size
of the required buffer. When you call the method a second time to fill the buffer, be
sure to set the structures dwSize member to the appropriate value.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 194

IDirectPlay8Server::GetCaps
Retrieves the DPN_CAPS structure for the current interface.

HRESULT GetCaps(
DPNCAPS *const pdpnCaps,
const DWORD dwFlags
);

Parameters

pdpnCaps
Pointer to a DPN_CAPS structure to receive caps information. You must set the
dwSize member of this structure to an appropriate value.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

A successful call to Initialize must be made before this method can be called.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::GetClientAddress
Retrieves the address for the specified player in the session.

HRESULT GetClientAddress(
const DPNID dpnid,
IDirectPlay8Address **const pAddress,
const DWORD dwFlags
);

in.doc – page 195

Parameters

dpnid
Variable of type DPNID specifying the identification of the player.

pAddress
Address of a pointer to an IDirectPlay8Address object that specifies the address
of the client. You must release this object when you no longer need it.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPLAYER

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

Use the IDirectPlay8Server::GetLocalHostAddresses method to retrieve addresses
that can be used to connect to the session.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::GetClientInfo
Retrieves the client information set for the specified client.

HRESULT GetClientInfo(
const DPNID dpnid,
DPN_PLAYER_INFO *const pdpnPlayerInfo,
DWORD *const pdwSize,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the client to retrieve the
information for.

in.doc – page 196

pdpnPlayerInfo
Pointer to a DPN_PLAYER_INFO structure that is filled with client
information. If pdwSize is not set to NULL, you must set pdpnPlayerInfo.dwSize
to an appropriate value.

pdwSize
Pointer to a variable of type DWORD that contains the size of the client data
returned in the pdpnPlayerInfo parameter. If the buffer is too small, this method
returns DPNERR_BUFFERTOOSMALL and this parameter contains the size of
the required buffer.

dwFlags
Flags describing the information returned for the client. Currently, both of the
following flags are returned.

DPNINFO_NAME
The DPN_PLAYER_INFO structure contains the name set for the client.

DPNINFO_DATA
The DPN_PLAYER_INFO structure contains the data set for the client.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

DPNERR_INVALIDPLAYER

Remarks

Call this method after the server receives a DPN_MSGID_CLIENT_INFO message
from the application. This message indicates that a client has updated its information.

Microsoft® DirectPlay® returns the DPN_PLAYER_INFO structure, and the pointers
assigned to the structure’s pwszName and pvData members in a contiguous buffer. If
the two pointers were set, you must have allocated enough memory for the structure,
plus the two pointers. The most robust way to use this method is to first call it with
pdwSize set to NULL. When the method returns, pdwSize will point to the correct
value. Use that value to allocate memory for the structure and call the method a
second time to retrieve the information.

When the method returns, the dwInfoFlags member of the DPN_PLAYER_INFO
structure will always have the DPNINFO_DATA and DPNINFO_NAME flags set,
even if the corresponding pointers are set to NULL. These flags are used when calling
IDirectPlay8Client::SetClientInfo, to notify DirectPlay of which values have
changed.

Transmission of nonstatic information should be handled with the
IDirectPlay8Client::Send method because of the high cost of using the
IDirectPlay8Client::SetPeerInfo method.

in.doc – page 197

The player sets the information by calling IDirectPlay8Client::SetClientInfo.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::GetConnectionInfo
Retrieves statistical information about the connection between the local server and the
specified remote client.

HRESULT GetConnectionInfo(
const DPNID dpnidEndPoint,
DPN_CONNECTION_INFO *const pdnConnectInfo,
const DWORD dwFlags
);

Parameters

dpnidEndPoint
DPNID of the player whose connection information will be retrieved.

pdnConnectInfo
Pointer to a DPN_CONNECTION_INFO structure to retrieve information
about the specified connection. The dwSize member of this structure must be set
to the size of a DPN_CONNECTION_INFO structure.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

This method can be called only after a successful Host call has completed.

in.doc – page 198

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::GetGroupContext
Retrieves the group context value for a group.

HRESULT GetGroupContext(
const DPNID dpnid,
PVOID *const ppvGroupContext,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the group to get context
data for.

ppvGroupContext
Pointer to the context value of the group.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDPARAM

Remarks

Group context values are set by pointing the pvGroupContext member of the
DPN_MSGID_CREATE_GROUP system message to the context value data.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::GetGroupInfo
Retrieves a block of data associated with a group, including the group name.

in.doc – page 199

This method is typically called after a DPN_MSGID_GROUP_INFO system
message is received, indicating that the group data has been modified.

HRESULT GetGroupInfo(
const DPNID dpnid,
DPN_GROUP_INFO *const pdpnGroupInfo,
DWORD *const pdwSize,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the group whose data
block will be retrieved.

pdpnGroupInfo
Pointer to a DPN_GROUP_INFO structure that describes the group data. If
pdwSize is not set to NULL, you must set pdpnGroupInfo.dwSize to the size of a
DPN_GROUP_INFO structure.

pdwSize
Pointer to a variable of type DWORD that returns the size of the data in the
pdpnGroupInfo parameter. If the buffer is too small, this method returns
DPNERR_BUFFERTOOSMALL and this parameter contains the required size.

dwFlags
Flags describing the information returned for the group. Currently, both of the
following flags are returned.

DPNINFO_NAME
The DPN_PLAYER_INFO structure contains the name set for the client.

DPNINFO_DATA
The DPN_PLAYER_INFO structure contains the data set for the client.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

Remarks

Microsoft® DirectPlay® returns the DPN_GROUP_INFO structure, and the pointers
assigned to the structure’s pwszName and pvData members in a contiguous buffer. If
the two pointers were set, you must have allocated enough memory for the structure,
plus the two pointers. The most robust way to use this method is to first call it with
pdwSize set to NULL. When the method returns, pdwSize will point to the correct

in.doc – page 200

value. Use that value to allocate memory for the structure and call the method a
second time to retrieve the information.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::GetLocalHostAddres
ses

Retrieves the local addresses being used to host the session.

HRESULT GetLocalHostAddresses(
IDirectPlay8Address **const prgpAddress,
DWORD *const pcAddress,
constDWORD dwFlags
);

Parameters

prgpAddress
Address of a pointer to an array of IDirectPlay8Address objects that specify the
local host addresses. You must release these objects when you no longer need
them or you will create memory leaks.

pcAddress
Maximum number of address objects that can be contained in the array pointed to
by prgpAddress. If the buffer is too small, the method returns
DPNERR_BUFFERTOOSMALL, and pcAddress will be set to the required
value.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

in.doc – page 201

Remarks

The most robust way to use this method is to first call it with pcAddress set to 0.
When the method returns, pcAddress will point to the required value. You can use
that value when you call the method for a second time to retrieve the information.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::GetPlayerContext
Retrieves the player context value for a client.

HRESULT GetPlayerContext(
const DPNID dpnid,
PVOID *const ppvPlayerContext,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the player to get context
data for.

ppvPlayerContext
Pointer to the context data of the client.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDPLAYER

Remarks

Player context values are set by pointing the pvPlayerContext member of the
DPN_MSGID_CREATE_PLAYER system message to the context value data.

in.doc – page 202

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::GetSendQueueInfo
Used by the application to monitor the size of the send queue. Microsoft® DirectPlay®

does not send messages faster than the receiving computer can process them. As a
result, if the sending computer is sending faster than the receiver can receive,
messages accumulate in the sender’s queue. If the application registers that the send
queue is growing too large, it should slow the rate that messages are sent.

HRESULT GetSendQueueInfo(
const DPNID dpnid,
DWORD *const pdwNumMsgs,
DWORD *const pdwNumBytes,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the player to get the send-
queue information for.

pdwNumMsgs
Pointer to a variable of type DWORD that contains the number of messages
currently queued. This value is optional, and may be set to NULL.

pdwNumBytes
Pointer to a variable of type DWORD that specifies the total number of bytes of
data of the messages currently queued. This value is optional, and may be set to
NULL.

dwFlags
You may specify the DPNGETSENDQUEUEINFO_PRIORITY_NORMAL,
DPNGETSENDQUEUEINFO_PRIORITY_HIGH, or
DPNGETSENDQUEUEINFO_PRIORITY_LOW flag to inquire about specific
messages of that priority.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_INVALIDPARAM

in.doc – page 203

Remarks

You cannot set both pdwNumMsgs and pdwNumBytes to NULL. At least one of them
must be set to a valid pointer.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::GetSPCaps
Retrieves the DPN_SP_CAPS structure for the specified service provider.

HRESULT GetSPCaps(
const GUID *const pguidSP,
DPN_SP_CAPS *const pdpnSPCaps,
const DWORD dwFlags
);

Parameters

pguidSP
Pointer to a GUID specifying the service provider you want to get information
about.

pdpnSPCaps
Pointer to a DPN_SP_CAPS structure to receive the information about the
specified service provider. You must set the pdpnSPCaps.dwSize member of this
structure to an appropriate value.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

This method retrieves information about the specified service provider. A successful
call to Initialize must be made before this method can be called.

in.doc – page 204

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::Host
Creates a new client/server session, hosted by the local computer.

HRESULT Host(
const DPN_APPLICATION_DESC *const pdnAppDesc,
IDirectPlay8Address **const prgpDeviceInfo,
const DWORD cDeviceInfo,
const DPN_SECURITY_DESC *const pdpSecurity,
const DPN_SECURITY_CREDENTIALS *const pdpCredentials,
VOID *const pvPlayerContext,
const DWORD dwFlags
);

Parameters

pdnAppDesc
Pointer to a DPN_APPLICATION_DESC structure that describes the
application.

prgpDeviceInfo
Pointer to an array of IDirectPlay8Address objects containing device addresses
that should be used to host the application.

cDeviceInfo
Variable of type DWORD that specifies the number of device address objects in
the array pointed to by prgpDeviceInfo.

pdpSecurity
Reserved. Must be set to NULL.

pdpCredentials
Reserved. Must be set to NULL.

pvPlayerContext
Pointer to the context value of the player. This value is preset when the local
computer handles the DPN_MSGID_CREATE_PLAYER message. This
parameter is optional, and may be set to NULL.

dwFlags
The following flag can be specified.

DPNHOST_OKTOQUERYFORADDRESSING
Setting this flag will display a standard Microsoft® DirectPlay® dialog box,
which queries the user for more information if not enough information is
passed in this method.

in.doc – page 205

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_DATATOOLARGE

DPNERR_INVALIDPARAM

Remarks

If you set the DPNHOST_OKTOQUERYFORADDRESSING flag in dwFlags, the
service provider may attempt to display a dialog box to ask the user to complete the
address information. You must have a visible window present when the service
provider tries to display the dialog box, or your application will lock.

The maximum size of the application data that you assign to the
pvApplicationReservedData member of the DPN_APPLICATION_DESC
structure is limited by the service provider's Maximum Transmission Unit. If your
application data is too large, the method will fail and return
DPNERR_DATATOOLARGE.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::Initialize
Registers an entry point in the server’s code that receives the messages from the
IDirectPlay8Server interface and from remote clients. This method must be called
before calling any other methods of this interface.

HRESULT Initialize(
PVOID const pvUserContext,
const PFNDPNMESSAGEHANDLER pfn,
const DWORD dwFlags
);

Parameters

pvUserContext
Pointer to the user-provided context value in calls to the message handler.
Providing a user-context value is useful to differentiate messages from multiple
interfaces to a common message handler.

pfn
Pointer to a PFNDPNMESSAGEHANDLER callback function that receives all
messages from remote clients and indications of session changes from the
IDirectPlay8Server interface.

in.doc – page 206

dwFlags
You may specify the following flag.

DPNINITIALIZE_DISABLEPARAMVAL
Passing this flag will disable parameter validation for the current object.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

Call this method first after using CoCreateInstance to obtain the
IDirectPlay8Server interface.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::RegisterLobby
Allows launched applications to automatically propagate game status to the lobby.

HRESULT RegisterLobby(
const DPNHANDLE dpnHandle,
IDirectPlay8LobbiedApplication *const pIDP8LobbiedApplication,
const DWORD dwFlags
);

Parameters

dpnHandle
Connection handle used when making the calls to
IDirectPlay8LobbiedApplication::UpdateStatus.

pIDP8LobbiedApplication
Pointer to the IDirectPlay8LobbiedApplication object that specifies the
application.

dwFlags
One of the following flags.

DPNLOBBY_REGISTER
Registers the lobby with the application.

DPNLOBBY_UNREGISTER
Unregisters the lobby with the application.

in.doc – page 207

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_INVALIDPARAM

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::RemovePlayerFromG
roup

Removes a client from a group.

HRESULT RemovePlayerFromGroup(
const DPNID idGroup,
const DPNID idClient,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

idGroup
Variable of type DPNID that specifies the identifier of the group to remove the
client from.

idClient
Variable of type DPNID that specifies the identifier of the client to remove from
the group.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNREMOVEPLAYERFROMGROUP_SYNC
Causes this method to process synchronously.

in.doc – page 208

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

Remarks

When this method is called, the server’s message handler receives a
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP message.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::ReturnBuffer
Retrieves message buffers provided to the application through the pReceiveData
member of the DPN_MSGID_RECEIVE system message. If the user’s message
handler returns DPNSUCCESS_PENDING to the RECEIVE callback, Microsoft®
DirectPlay® assumes ownership of the buffer has been transferred to the application,
and neither frees nor modifies it until ownership is returned to DirectPlay through this
call.

HRESULT ReturnBuffer(
const DPNHANDLE hBufferHandle,
const DWORD dwFlags
);

Parameters

hBufferHandle
Variable of type DPNHANDLE that specifies the buffer handle for the message.
This is obtained in the hBufferHandle member of the
DPN_MSGID_RECEIVE system message.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDHANDLE

DPNERR_INVALIDPARAM

in.doc – page 209

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::SendTo
Transmits data to a client or group within the session. The message can be sent
synchronously or asynchronously.

HRESULT SendTo(
const DPNID dpnid,
const DPN_BUFFER_DESC *const pBufferDesc,
const DWORD cBufferDesc,
const DWORD dwTimeOut,
void *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

dpnid
Identifier of the client or group to receive data. Set this parameter to
DPNID_ALL_PLAYERS_GROUP to send a message to all players in the
session.

pBufferDesc
Pointer to a DPN_BUFFER_DESC structure that describes the data to send.

cBufferDesc
Number of DPN_BUFFER_DESC structures pointed to by pBufferDesc. There
can be only one buffer in this version of Microsoft® DirectPlay®.

dwTimeOut
Number of milliseconds to wait for the message to be sent. If the message has not
been sent by the dwTimeOut value, the message is not sent. If you do not want a
time out for message sends, set this parameter to 0.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_SEND_COMPLETE system message.

phAsyncHandle
A DPNHANDLE. When the method returns, phAsyncHandle will point to a
handle that you can pass to IDirectPlay8Server::CancelAsyncOperation to
cancel the operation. This parameter must be set to NULL if you set the
DPNSEND_SYNC flag in dwFlags.

in.doc – page 210

dwFlags
Flags that describe send behavior. You can set one or more of the following
flags.

DPNSEND_SYNC
Process the SendTo request synchronously.

DPNSEND_NOCOPY
Use the data in the DPN_BUFFER_DESC structure and do not make an
internal copy. This may be a more efficient method of sending data. However,
it is less robust because the sender might be able to modify the message before
the receiver has processed it. This flag cannot be used with
DPNSEND_NOCOMPLETE.

DPNSEND_NOCOMPLETE
Do not send the DPN_MSGID_SEND_COMPLETE structure to the
message handler. This flag may not be used with DPNSEND_NOCOPY or
DPNSEND_GUARANTEED. Additionally, when using this flag
pvAsyncContext must be NULL.

DPNSEND_COMPLETEONPROCESS
Send the DPN_MSGID_SEND_COMPLETE to the message handler when
this message has been delivered to the target and the target’s message handler
returns from indicating its reception. There is additional internal message
overhead when this flag is set, and the message transmission process may
become significantly slower. If you set this flag, DPNSEND_GUARANTEED
must also be set.

DPNSEND_GUARANTEED
Send the message by a guaranteed method of delivery.

DPNSEND_PRIORITY_HIGH
Sets the priority of the message to high. This flag cannot be used with
DPNSEND_PRIORITY_LOW.

DPNSEND_PRIORITY_LOW
Sets the priority of the message to low. This flag cannot be used with
DPNSEND_PRIORITY_HIGH.

DPNSEND_NOLOOPBACK
Suppress the DPN_MSGID_RECEIVE system message to your message
handler when you are sending to a group that includes the local player. For
example, this flag is useful if you are broadcasting to the entire session.

DPNSEND_NONSEQUENTIAL
If this flag is set, the target application will receive the messages in the order
that they arrive at the user’s computer. If this flag is not set, messages are
delivered sequentially, and will be received by the target application in the
order that they were sent. Doing so may require buffering incoming messages
until missing messages arrive.

in.doc – page 211

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or one of the following error values.

DPNERR_CONNECTIONLOST

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_INVALIDPLAYER

DPNERR_TIMEDOUT

Remarks

This method generates a DPN_MSGID_RECEIVE system message in the receiver’s
message handler. The data is contained in the pReceiveData member of the
associated structure.

Messages can have one of three priorities: low, normal, and high. To specify a low or
high priority for the message set the appropriate flag in dwFlags. If neither of the
priority flags is set, the message will have normal priority. See Basic Networking for
a discussion of send priorities.

When the SendTo request is completed, a DPN_MSGID_SEND_COMPLETE
system message is posted to the sender’s message handler. The success or failure of
the request is contained in the hResultCode member of the associated structure. You
can suppress the send completion by setting the DPNSEND_NOCOMPLETE flag in
dwflags.

Send completions are typically posted on the source computer as soon as the message
is sent. In other words, a send completion does not necessarily mean that the message
has been processed on the target. It may still be in a queue. If you want to be certain
that the message has been processed by the target, set the
DPNSEND_COMPLETEONPROCESS flag in dwFlags. This flag ensures that the
send completion will not be sent until the target’s message handler has processed the
message, and returned.

Note
Do not assume that resources such as the data buffer will remain valid until the
method has returned. If you call this method asynchronously, the
DPN_MSGID_SEND_COMPLETE message may be received and processed
by your message handler before the call has returned. If your message handler
deallocates or otherwise invalidates a resource such as the data buffer, that
resource may become invalid at any time after the method has been called.

in.doc – page 212

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::SetApplicationDesc
Changes the settings for the application that is being hosted. Only some settings can
be changed.

HRESULT SetApplicationDesc(
const DPN_APPLICATION_DESC *const pad,
const DWORD dwFlags
);

Parameters

pad
Pointer to a DPN_APPLICATION_DESC structure that describes the
application settings to modify.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_DATATOOLARGE

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

You can use this method to modify only the following members of the
DPN_APPLICATION_DESC structure:

· dwMaxPlayers

· pwszSessionName

· pwszPassword

· pvApplicationReservedData

· dwApplicationReservedDataSize

The maximum size of the application data that you assign to the
pvApplicationReservedData member of the DPN_APPLICATION_DESC
structure is limited by the service provider's Maximum Transmission Unit. If your
application data is too large, the method will fail and return
DPNERR_DATATOOLARGE.

in.doc – page 213

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::SetCaps
Sets the DPN_CAPS structure for the current interface.

HRESULT SetCaps(
const DPNCAPS *const pdpCaps,
const DWORD dwFlags
);

Parameters

pdpCaps
Pointer to a DPN_CAPS structure used to set the information about the current
interface.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

This method sets parameters for the specified service provider. A successful call to
Initialize must be made before this method can be called.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::SetGroupInfo
Sets a block of data associated with a group, including the name of the group.

HRESULT SetGroupInfo(

in.doc – page 214

const DPNID dpnid,
DPN_GROUP_INFO *const pdpnGroupInfo,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

dpnid
Variable of type DPNID that specifies the identifier of the group whose data
block will be modified.

pdpnGroupInfo
Pointer to a DPN_GROUP_INFO structure that describes the group data to set.
To change the values of the pwszName or pvData members of this structure, you
must set the corresponding DPNINFO_NAME OR DPNINFO_DATA flag in the
dwInfoFlags member.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNSETGROUPINFO_SYNC
Causes this method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. By
default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 215

IDirectPlay8Server::SetServerInfo
Sets the static settings of a server with an application. After clients successfully
connect to the server, they can retrieve the information set by this method by calling
theIDirectPlay8Client::GetServerInfo method.

HRESULT SetServerInfo(
const DPN_PLAYER_INFO *const pdpnPlayerInfo,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags
);

Parameters

pdpnPlayerInfo
Pointer to a DPN_PLAYER_INFO structure that contains the server information
to set.

pvAsyncContext
Pointer to the user-supplied context, which is returned in the pvUserContext
member of the DPN_MSGID_ASYNC_OP_COMPLETE system message.

phAsyncHandle
A DPNHANDLE. A value will be returned. However, Microsoft® DirectPlay®
8.0 does not permit cancellation of this operation, so the value cannot be used.

dwFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNSETSERVERINFO_SYNC
Causes this method to process synchronously.

Return Values

Returns S_OK if this method is processed synchronously and is successful. If the
request is processed asynchronously, S_OK can return if the method is instantly
processed. By default, this method is run asynchronously and generally returns
DPNSUCCESS_PENDING or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_NOCONNECTION

Remarks

This method may be called before calling IDirectPlayServer::Host, and at any time
during the session.

in.doc – page 216

Handle transmission of nonstatic information with the IDirectPlay8Server::SendTo
method because of the high cost of using the IDirectPlay8Server::SetServerInfo
method.

You can modify the server information with this method after clients have connected
to the application. Calling this method after connection generates a
DPN_MSGID_SERVER_INFO system message to all players, informing them that
data has been updated.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlay8Server::SetSPCaps
Sets the DPN_SP_CAPS structure for the specified service provider.

HRESULT SetSPCaps(
const GUID *const pguidSP,
const DPN_SP_CAPS *const pdpnSPCaps
);

Parameters

pguidSP
Pointer to a GUID specifying the service provider you want to set information
about.

pdpnSPCaps
Pointer to a DPN_SP_CAPS structure to set the information about the specified
service provider.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_UNINITIALIZED

Remarks

This method sets parameters for the specified service provider. A successful call to
Initialize must be made before this method can be called. Currently only the
dwNumThreads member can be set by this call; the dwFlags member must be 0.

in.doc – page 217

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

IDirectPlayVoiceClient
Applications use the methods of the IDirectPlayVoiceClient interface to manage
clients in a voice session.

The methods of the IDirectPlayVoiceClient interface can be organized into the
following groups.

Buffer management Create3DSoundBuffer

Delete3DSoundBuffer

Miscellaneous GetCaps

GetCompressionTypes

GetSoundDeviceConfig

SetNotifyMask

Session management Connect

Disconnect

GetClientConfig

GetSessionDesc

GetTransmitTargets

Initialize

SetClientConfig

SetTransmitTargets

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::Connect
Connects the client to a Microsoft® DirectPlay® Voice session.

HRESULT Connect(
PDVSOUNDDEVICECONFIG pSoundDeviceConfig,
PDVCLIENTCONFIG pdvClientConfig,
DWORD dwFlags
);

in.doc – page 218

Parameters

pSoundDeviceConfig
Pointer to a DVSOUNDDEVICECONFIG structure that describes the sound
device configuration.

pdvClientConfig
Pointer to a DVCLIENTCONFIG structure that describes the general
configuration of the client.

dwFlags
Flag. You can specify the following flag.

DVFLAGS_SYNC
The method does not return until the operation is completed.

Return Values

If the method is processed synchronously and is successful, it returns DV_OK. By
default, this method is run asynchronously and returns DVERR_PENDING. On error,
this method will return one of the following values.

DVERR_ALREADYPENDING

DVERR_COMPRESSIONNOTSUPPORTED

DVERR_INCOMPATIBLEVERSION

DVERR_INVALIDBUFFER

DVERR_INVALIDDEVICE

DVERR_INVALIDFLAGS

DVERR_INVALIDOBJECT

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTINITIALIZED

DVERR_OUTOFMEMORY

DVERR_RUNSETUP

DVERR_SENDERROR

DVERR_SOUNDINITFAILURE

DVERR_TIMEOUT

DVERR_TRANSPORTNOPLAYER

DVERR_TRANSPORTNOSESSION

DVERR_CONNECTED

DVERR_NOVOICESESSION

Remarks

You must test the sound devices selected for playback and capture by invoking the
setup wizard before connecting the client to the DirectPlay Voice session. On

in.doc – page 219

application startup, check the audio configuration by using
IDirectPlayVoiceTest::CheckAudioSetup. If this method returns
DVERR_RUNSETUP, the sound configuration specified has not been tested. The
setup wizard needs to be run only once for any configuration.

If you specify a buffer that is not the right format, the method will return
DVERR_INVALIDBUFFER.

If the buffer or a portion of the buffer is locked when DirectPlay Voice attempts to
write to it, the method will return DVERR_INVALIDBUFFER, and DirectPlay Voice
will disconnect from the session. You will also receive a
DVMSGID_SESSIONLOST message. The hResult member of the associated
structure will be set to DVERR_LOCKEDBUFFER. Subsequent method calls will
return a DVERR_NOTCONNECTED error code.

If full duplex operation is not supported, DirectPlay Voice falls back to half duplex
(listen only) mode. To determine if you are in half-duplex mode, call
IDirectPlayVoiceClient::GetSoundDeviceConfig after you have completed the
connection. If you are in half-duplex mode, the dwFlags member of the
DVSOUNDDEVICECONFIG structure will have the
DVSOUNDCONFIG_HALFDUPLEX flag set.

Regardless of how the interfaces are obtained, the DirectPlayVoiceClient object
maintains a reference, through a call to AddRef, to the IDirectSound and
IDirectSoundCapture interfaces it uses until IDirectPlayVoiceClient::Disconnect
is called. When Disconnect is called, the DirectPlayVoiceClient object calls Release
on both interfaces.

If this method is called synchronously by setting the DVFLAGS_SYNC flag, the
DVMSG_CONNECTRESULT message is not sent to the message handler. In this
case, the connection result is determined by the return value of this method.

If this method is called asynchronously (by default), calling this method immediately
returns a DVERR_PENDING error value and proceeds to process the connection
request in the background. The status of the connection is not be known until the
DirectPlay Voice client generates a DVMSG_CONNECTRESULT message with
the connection result.

Any calls to IDirectPlayVoiceClient::Connect while a connection is pending return
DVERR_ALREADYPENDING. Additionally, only one connection can be pending at
a time.

A transport session must be started on the specified DirectPlay object before calling
this method. A successful call to IDirectPlayVoiceClient::Initialize must be made
before calling the Connect method.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

in.doc – page 220

IDirectPlayVoiceClient::Create3DSoundB
uffer

Retrieves a 3-D sound buffer for a player or group. You can use the methods of the 3-
D sound buffer object to change the virtual 3-D position of incoming voice
transmissions from the specified group or player.

HRESULT Create3DSoundBuffer(
DVID dvID,
LPDIRECTSOUNDBUFFER lpdsSourceBuffer,
DWORD dwPriority,
DWORD dwFlags,
LPDIRECTSOUND3DBUFFER* lpUserBuffer
);

Parameters

dvID
Variable of type DVID that specifies the identification of the player or group that
the user wants to reserve a buffer for. You can also specify DVID_REMAINING
to create a 3-D user buffer for all players or groups that do not have a user buffer.
If DVID_REMAINING is specified, the lpdsBufferDesc must be NULL and the
dwPriority and dwFlags parameters must be set to 0.

lpdsSourceBuffer
Pointer to an IDirectSoundBuffer interface, which is used to create the
Microsoft® DirectPlay® Voice main buffer. This can be either NULL or a user-
created Microsoft DirectSound® buffer. If this member is set to NULL, then
DirectPlay Voice creates a buffer for you.

dwPriority
Direct pass-through. This value is passed in the dwPriority parameter when the
call to IDirectSoundBuffer::Play is made. For more information, see
IDirectSoundBuffer8::Play. This parameter must be 0 if lpdsMainBufferDesc is
NULL.

dwFlags
Direct pass-through. This value is passed to the dwFlags parameter when the call
to IDirectSoundBuffer::Play is made. For more information, see
IDirectSoundBuffer8::Play. This parameter must be 0 if lpdsMainBufferDesc is
NULL.

lpUserBuffer
Pointer to memory where the reserved buffer is placed.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_ALREADYBUFFERED

DVERR_INVALIDOBJECT

in.doc – page 221

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTALLOWED

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

DVERR_OUTOFMEMORY

DVERR_SESSIONLOST

Remarks

If the DirectPlay voice session is a mixing server session, this method fails and
returns DVERR_NOTALLOWED.

Although you can access all the member functions of the 3-D sound buffer object,
because the DirectPlay voice client uses the buffer to stream incoming audio, do not
use the Lock, UnLock, or Play methods of the DirectSound3DBuffer object.

If the user specifies a buffer, DirectPlay uses that buffer for the player's or group's
buffer. User-created buffers have the following restrictions.

· The buffer must be 22 kilohertz, 16-bit, Mono format.

· The buffer must be at least 1 second in length.

· The buffer must have been created with the
DSBCAPS_GETCURRENTPOSITION2 and DSBCAPS_CTRL3D flags.

· The buffer must not be a primary buffer.

· The buffer must not be playing when it is passed to DirectPlay.

If the buffer is not the right format, the method will return
DVERR_INVALIDBUFFER.

The buffer must not be locked when you pass it to DirectPlay. When the buffer for the
individual user is no longer required or when a player leaves the voice session, it is
important to call IDirectPlayVoiceClient::Delete3DSoundBuffer to free up
resources.

If the buffer or a portion of the buffer is locked when DirectPlay Voice attempts to
write to it, the method will return DVERR_INVALIDBUFFER. If you lock the buffer
after the method has returned, you will receive a DVMSGID_SESSIONLOST
message. The hResult member of the associated structure will be set to
DVERR_LOCKEDBUFFER. Subsequent method calls will return a
DVERR_NOTCONNECTED error code.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

in.doc – page 222

IDirectPlayVoiceClient::Delete3DSoundB
uffer

Returns exclusive control of the 3-D sound buffer object to the Microsoft®
DirectPlay® voice client object.

HRESULT Delete3DSoundBuffer(
DVID dvID
LPDIRECTSOUND3DBUFFER* lpUserBuffer
);

Parameters

dvID
DVID of the player or group that the user wants to delete a buffer for.

lpUserBuffer
Pointer to the user buffer to delete. This must be a user buffer obtained through
the IDirectPlayVoiceClient::Create3DSoundBuffer method.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_ALREADYBUFFERED

DVERR_INVALIDOBJECT

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTALLOWED

DVERR_NOTBUFFERED

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

DVERR_SESSIONLOST

Remarks

If the DirectPlay Voice session is a mixing server session, this method fails and
returns DVERR_NOTALLOWED.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

in.doc – page 223

IDirectPlayVoiceClient::Disconnect
Disconnects the Microsoft® DirectPlay® Voice client from the existing DirectPlay
Voice session.

HRESULT Disconnect(
DWORD dwFlags
);

Parameters

dwFlags
Flag. You can specify the following flag.

DVFLAGS_SYNC

Do not return until the operation is completed.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_ALREADYPENDING

DVERR_CONNECTABORTING

DVERR_INVALIDFLAGS

DVERR_INVALIDPARAM

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

DVERR_PENDING

DVERR_SESSIONLOST

DVERR_TIMEOUT

Remarks

On calling this method, all recording and playback is stopped. If a connection is being
processed, it is canceled by this call.

Unless the DVFLAGS_SYNC is specified, calling this method immediately returns a
DVERR_PENDING error value and proceeds to process the disconnection request in
the background. The status of the disconnection is not known until the DirectPlay
Voice client generates a DVMSG_DISCONNECTRESULT message that contains
the disconnection result. Only one disconnection can be pending at a time. If you call
IDirectPlayVoiceClient::Disconnect while a disconnect is pending, DirectPlay will
return a DVERR_ALREADYPENDING error value.

If this method is called synchronously by setting the DVFLAGS_SYNC flag, the
method does not return until the Disconnect method completes. The result of the
disconnection is the return value from this method. No
DVMSGID_DISCONNECTRESULT message is generated.

in.doc – page 224

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::GetCaps
Retrieves the Microsoft® DirectPlay® Voice capabilities.

HRESULT GetCaps(
PDVCAPS pCaps
);

Parameters

pCaps
Pointer to the DVCAPS structure that contains the capabilities of the
DirectPlayVoiceClient object.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::GetClientConfig
Retrieves the client configuration.

HRESULT GetClientConfig(
PDVCLIENTCONFIG pClientConfig
);

Parameters

pClientConfig
Pointer to a DVCLIENTCONFIG structure that contains the configuration of
the local client.

Return Values

Returns DV_OK if successful, or one of the following error values.

in.doc – page 225

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

DVERR_SESSIONLOST

Remarks

Before calling this member, you must set the dwSize member of the
DVCLIENTCONFIG structure.

You can call this method only after a connection is successfully established with a
Microsoft® DirectPlay® Voice session.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::GetCompression
Types

Retrieves the available compression types on the system.

HRESULT GetCompressionTypes(
PVOID pData,
PDWORD pdwDataSize,
PDWORD pdwNumElements,
DWORD dwFlags
);

Parameters

pData
Pointer to buffer that receives an array of DVCOMPRESSIONINFO structures,
one structure for every compression type supported through this object.

pdwDataSize
Pointer to a DWORD that contains the size of the buffer, in bytes, passed in the
pData parameter.

pdwNumElements
Pointer to a DWORD where the method writes the number of elements returned
in the array of DVCOMPRESSIONINFO structures. This contains the number
of structures only if the buffer specified in the pData is large enough to hold the
information.

dwFlags

in.doc – page 226

Reserved. Must be 0.

Return Values

Returns DP_OK if successful, or one of the following error values.

DVERR_BUFFERTOOSMALL

DVERR_INVALIDFLAGS

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

Remarks

If the buffer passed is not large enough to store the list of compression types, the
method returns DVERR_BUFFERTOOSMALL and the pdwDataSize parameter is
set to the minimum required size.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::GetSessionDesc
Retrieves the session properties.

HRESULT GetSessionDesc(
PDVSESSIONDESC pvSessionDesc
);

Parameters

pvSessionDesc
Pointer to a DVSESSIONDESC structure to receive the session description.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

DVERR_SESSIONLOST

in.doc – page 227

Remarks

Before calling this method, make sure to set the dwSize member of the
DVSESSIONDESC structure.

This method may be called only after a connection is successfully established with a
Microsoft® DirectPlay® Voice session.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::GetSoundDevice
Config

Retrieves the sound device configuration of the session.

HRESULT GetSoundDeviceConfig(
PDVSOUNDDEVICECONFIG pSoundDeviceConfig,
PDWORD pdwSize
);

Parameters

pSoundDeviceConfig
Pointer to a DVSOUNDDEVICECONFIG structure that is filled with the
configuration of the sound device.

pdwSize
Pointer to a DWORD that specifies the size of the buffer in pSoundDeviceConfig
parameter. If the buffer is too small, the method returns
DVERR_BUFFERTOOSMALL and this parameter contains the size of the
required buffer.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

DVERR_SESSIONLOST

in.doc – page 228

Remarks

You can call this method only after a connection is successfully established with a
Microsoft® DirectPlay® Voice session.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::GetTransmitTarg
ets

Retrieves the transmit targets, if any, of the voice stream from this client.

HRESULT GetTransmitTargets(
PDVID pdvIDTargets,
PDWORD pdwNumTargets,
DWORD dwFlags
);

Parameters

pdvIDTargets
Member to fill with an array of DVIDs that specify the targets that were set by
the IDirectPlayVoiceClient::SetTransmitTargets or
IDirectPlayVoiceServer::SetTransmitTargets method. You can retrieve the
number of targets by specifying NULL for this parameter.

pdwNumTargets
Number of DVIDs in the array. When you call this method, this should be the
same value as the number of targets set in the
IDirectPlayVoiceClient::SetTransmitTargets method. If the call is successful,
Microsoft® DirectPlay® returns the number of elements written to the
pdvIDTargets array.

If pdvIDTargets is NULL, this must be 0.

dwFlags
Reserved. Must be 0.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_BUFfERTOOSMALL

DVERR_INVALIDFLAGS

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

in.doc – page 229

DVERR_NOTALLOWED

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

Remarks

The value returned in the pdvIDTargets parameter can be player or group DVIDs or
the DVID_ALLPLAYERS constant.

If the buffer specified in pdvIDTargets is not large enough to store the list of targets,
this method returns DVERR_INVALIDPOINTER and pdwNumTargets is set to the
required number of elements.

If there is no target specified, pdwNumTargets is set to 0 and the return value is
DV_OK.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::Initialize
Initializes the DirectPlayVoiceClient object by associating it with a DirectPlay object.
Additionally, this method registers a message handler with the DirectPlayVoiceClient
object.

This method must be called successfully before IDirectPlayVoiceClient::Connect
method is called.

HRESULT Initialize(
PVOID pVoid,
PDVMESSAGEHANDLER pMessageHandler,
PVOID pUserContext,
PDWORD pdwMessageMask,
DWORD dwMessageMaskElements
);

Parameters

pVoid
Pointer to the IUnknown interface for the DirectPlay object that this
DirectPlayVoiceClient object should use.

pMessageHandler
User-defined callback function that is called when there is a
DirectPlayVoiceClient message to be processed. Threads within the

in.doc – page 230

DirectPlayVoiceClient object call the callback function, so it will not be called in
the context of your process’s main thread.

pUserContext
Pointer to an application-defined structure that is passed to the callback function
each time the function is called.

pdwMessageMask
Array of DWORDs that contain the message identifiers that you want DirectPlay
Voice to send to your callback function. If a message identifier is not specified in
this array, it is not sent. Each message identifier should appear only once in the
array and only valid message identifiers are allowed. For example,
DVMSGID_CONNECTRESULT is not valid for the server interface, but is for
the client interface. To enable all messages, specify NULL for this value.

dwMessageMaskElements
Number of elements specified in the pdwMessageMask parameter. If
pdwMessageMask is NULL, this must be 0.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_ALREADYINITIALIZED

DVERR_GENERIC

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOCALLBACK

DVERR_TRANSPORTNOTINIT

Remarks

You can call IDirectPlayVoiceClient::SetNotifyMask to change the notify mask
during the course of the voice session.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::SetClientConfig
Sets the client configuration.

HRESULT SetClientConfig(
PDVCLIENTCONFIG pClientConfig
);

in.doc – page 231

Parameters

pClientConfig
Pointer to the DVCLIENTCONFIG structure that contains the configuration
description to set.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDFLAGS

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

DVERR_SESSIONLOST

Remarks

You can call this method only after a connection is successfully established with a
Microsoft® DirectPlay® Voice session.

Calling this method sets all the parameters in the DVCLIENTCONFIG structure.
Therefore, to leave a setting unmodified, you must retrieve the current configuration
with IDirectPlayVoiceClient::GetClientConfig. Then modify the parameters to
change and call IDirectPlayVoiceClient::SetClientConfig.

If the session is running in half duplex, the members of GetClientConfig related to
recording are ignored.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::SetNotifyMask
Specifies which messages are sent to the message handler.

HRESULT SetNotifyMask(
PDWORD pdwMessageMask,
DWORD dwMessageMaskElements
);

Parameters

pdwMessageMask

in.doc – page 232

Pointer to an array of DWORDs containing the message identifiers that you want
Microsoft® DirectPlay® Voice to send to your callback function. If a message
identifier is not specified in this array, it is not sent. Each message identifier
should appear only once in the array, and only valid message identifiers are
allowed. For example, DVMSGID_CONNECTRESULT is not valid for the
server interface, but is for the client interface. To enable all messages, specify
NULL for this value.

dwMessageMaskElements
Number of elements specified in the pdwMessageMask parameter. If
pdwMessageMask is NULL, this must be 0.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOCALLBACK

DVERR_NOTINITIALIZED

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceClient::SetTransmitTarg
ets

Specifies which players and/or groups receive audio transmissions from the local
client.

HRESULT SetTransmitTargets(
PDVID pdvIDTargets,
DWORD dwNumTargets,
DWORD dwFlags
);

Parameters

pdvIDTargets
Pointer an array of DVIDs that specify your targets. To specify no targets, pass
NULL for this parameter. Additionally, this parameter can be set to the following
value.

DVID_ALLPLAYERS
The client is targeting all players in the session. This must be the only element
in the array.

in.doc – page 233

dwNumTargets
Number of DVIDs in the array. This value cannot exceed 64. If pdvIDTargets is
NULL, this must be 0.

dwFlags
Reserved. Must be 0.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDFLAGS

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_INVALIDTARGET

DVERR_NOTINITIALIZED

Remarks

For Microsoft® DirectX® 8.0, the number of individual targets that you can transmit
to is limited to 64. If you exceed this value, the method will fail, and return
DVERR_NOTALLOWED. However, you can transmit to more than 64 players. To
do so, form the players into groups, and then use the group as your target.

The pdvIDTargets parameter specifies an array of player and/or group DVIDs. There
must be no duplicate targets in this parameter, and all entries must be valid DVIDs. If
a target contains a player as its individual DVID and through a group that the target
belongs to, Microsoft® DirectPlay® Voice ensures duplicate speech packets are not
sent to the player.

If the session was created with the DVSESSION_SERVERCONTROLTARGET flag,
only the server can set the targets for this local client. A call to this method returns
DVERR_NOTALLOWED.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceServer
Applications use the methods of the IDirectPlayVoiceServer interface to manage the
host of the voice session.

The methods of the IDirectPlayVoiceServer interface can be organized into the
following groups.

Miscellaneous GetCaps

in.doc – page 234

GetCompressionTypes

SetNotifyMask

Session management GetSessionDesc

GetTransmitTargets

Initialize

SetSessionDesc

SetTransmitTargets

StartSession

 StopSession

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceServer::GetCaps
Retrieves the capabilities of the Microsoft® DirectPlay® Voice server for this system.

HRESULT GetCaps(
PDVCAPS pDVCaps
);

Parameters

pDVCaps
Pointer to the DVCAPS structure that contains the capabilities of the
DirectPlayVoiceServer object.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDOBJECT

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

in.doc – page 235

IDirectPlayVoiceServer::GetCompression
Types

Retrieves available compression types for the system.

HRESULT GetCompressionTypes(
PVOID pData,
PDWORD pdwDataSize,
PDWORD pdwNumElements,
DWORD dwFlags
);

Parameters

pData
Pointer to the buffer that receives an array of DVCOMPRESSIONINFO
structures that describe the compression types supported by this object.

pdwDataSize
Pointer to a DWORD that contains the size of the buffer, in bytes, passed in the
pData parameter.

pdwNumElements
Pointer to a DWORD where the method writes the number of elements returned
in the array of DVCOMPRESSIONINFO structures.

dwFlags
Reserved. Must be 0.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_BUFFERTOOSMALL

DVERR_INVALIDFLAGS

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

Remarks

If the buffer is not large enough to store the list of compression types, the method
returns DVERR_BUFFERTOOSMALL and the pdwDataSize parameter is set to the
minimum required size.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

in.doc – page 236

IDirectPlayVoiceServer::GetSessionDesc
Retrieves the Microsoft® DirectPlay® Voice session settings.

HRESULT GetSessionDesc(
PDVSESSIONDESC pvSessionDesc
);

Parameters

pvSessionDesc
Pointer to a DVSESSIONDESC structure to receive the session description.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDOBJECT

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTHOSTING

DVERR_NOTINITIALIZED

DVERR_SESSIONLOST

Remarks

Before calling this method, make sure to set the dwSize member of the
DVSESSIONDESC structure.

A successful call to IDirectPlayVoiceServer::StartSession must be made before this
method can be called.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceServer::GetTransmitTarg
ets

Retrieves the transmit targets, if any, of the voice stream for a player in a session.

HRESULT GetTransmitTargets(
DVID dvSource,
PDVID pdvIDTargets,
PDWORD pdwNumTargets,

in.doc – page 237

DWORD dwFlags
);

Parameters

dvSource
DVID of the user or group whose target is returned.

pdvIDTargets
Array of DVIDs that specify the current targets of the player or group that were
set by the IDirectPlayVoiceServer::SetTransmitTargets method. You can
retrieve the number of targets by specifying NULL for this parameter.

pdwNumTargets
Number of DVIDs in the array. When you call this method, this should be the
same value as the number of targets set in the
IDirectPlayVoiceServer::SetTransmitTargets method. If the call is successful,
Microsoft® DirectPlay® returns the number of elements in the pdvIDTargets
array.

If pdvIDTargets is NULL, this must be 0.

dwFlags
Reserved. Must be 0.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_BUFFERTOOSMALL

DVERR_INVALIDFLAGS

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTALLOWED

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

Remarks

This method can be used only if the DVSESSION_SERVERCONTROLTARGET
flag is specified on creation of the DirectPlay Voice session. If the flag is not
specified, this method returns DVERR_NOTALLOWED.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

in.doc – page 238

IDirectPlayVoiceServer::Initialize
Initializes the DirectPlayVoiceServer object by associating it with a DirectPlay
object. Additionally, this method registers a message handler with this interface.

HRESULT Initialize(
LPVOID lpVoid,
PDVMESSAGEHANDLER pMessageHandler,
PVOID pUserContext,
LPDWORD lpdwMessageMask,
DWORD dwMessageMaskElements
);

Parameters

lpVoid
Pointer to the IUnknown interface for the DirectPlay object that this
DirectPlayVoiceServer object should use.

pMessageHandler
User-defined callback function that is called when there is a
DirectPlayVoiceClient message to process. A thread within the
DirectPlayVoiceClient object calls the callback function, so it is not called in the
context of your process’s main thread.

pUserContext
Pointer to an application-defined structure that is passed to the callback function
each time the method is called.

lpdwMessageMask
Array of DWORDs that contain the message identifiers that you want DirectPlay
Voice to send to your callback function. If a message identifier is not specified in
this array, it is not sent. Each message identifier should appear only once in the
array, and only valid message identifiers are allowed. For example,
DVMSGID_CONNECTRESULT is not valid for the server interface but is for
the client interface. To enable all messages, specify NULL for this value.

dwMessageMaskElements
Number of elements specified in the lpdwMessageMask parameter. If
lpdwMessageMask is NULL, this must be 0.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_ALREADYINITIALIZED

DVERR_GENERIC

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOCALLBACK

DVERR_TRANSPORTNOTINIT

in.doc – page 239

Remarks

You can call IDirectPlayVoiceServer::SetNotifyMask to change the notify mask
during the course of the voice session.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceServer::SetNotifyMask
Specifies which messages are sent to the message handler.

HRESULT SetNotifyMask(
PDWORD pdwMessageMask,
DWORD dwMessageMaskElements
);

Parameters

pdwMessageMask
Pointer to an array of DWORDs that contain the message identifiers that you
want Microsoft® DirectPlay® Voice to send to your callback function. If a
message identifier is not specified in this array, it is not sent. Each message
identifier should appear only once in the array, and only valid message identifiers
are allowed. For example, DVMSGID_CONNECTRESULT is not valid for the
server interface but is for the client interface. To enable all messages, specify
NULL for this value.

dwMessageMaskElements
Number of elements specified in the pdwMessageMask parameter. If
pdwMessageMask is NULL, this must be 0.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOCALLBACK

DVERR_NOTINITIALIZED

in.doc – page 240

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceServer::SetSessionDesc
Sets the session settings.

HRESULT SetSessionDesc(
PDVSESSIONDESC pSessionDesc
);

Parameters

pSessionDesc
Pointer to a DVSESSIONDESC structure that contains the session description.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDOBJECT

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTHOSTING

DVERR_NOTINITIALIZED

DVERR_SESSIONLOST

Remarks

After the Microsoft® DirectPlay® voice session has started, not all the session
properties of the DVSESSIONDESC structure can be changed. For more
information, see DVSESSIONDESC.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceServer::SetTransmitTarg
ets

Controls the transmission of audio from the client to the specified members of the
session.

in.doc – page 241

HRESULT SetTransmitTargets(
DVID dvSource,
PDVID pdvIDTargets,
DWORD dwNumTargets,
DWORD dwFlags
);

Parameters

dvSource
DVID of the user whose targets are set.

pdvIDTargets
List of player DVIDs and/or group DVIDs that are the target for audio
transmission. To specify no targets, pass NULL for this parameter. Additionally,
this parameter can be set to the following value.

DVID_ALLPLAYERS
This client is targeting all players in the session. This must be the only
element in the array.

dwNumTargets
Number of DVIDs in the array. This value cannot exceed 64. If pdvIDTargets is
NULL this must be 0.

dwFlags
Reserved. Must be 0.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_INVALIDFLAGS

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_INVALIDTARGET

DVERR_NOTALLOWED

DVERR_NOTINITIALIZED

Remarks

For Microsoft® DirectX® 8.0, the number of individual targets that you can transmit
to is limited to 64. If you exceed this value, the method will fail, and return
DVERR_NOTALLOWED. However, you can transmit to more than 64 players. To
do so, form the players into groups, and then use the group as your target.

There must be no duplicate targets in this parameter, and all entries must be valid
DVIDs. If a target contains a player as its individual DVID and through a group that
the target belongs to, Microsoft® DirectPlay® Voice ensures duplicate speech packets
are not sent to the player.

in.doc – page 242

This method can be used only if the DVSESSION_SERVERCONTROLTARGET
flag is specified on creation of the DirectPlay Voice session. If the flag is not
specified, this method returns DVERR_NOTALLOWED.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceServer::StartSession
Starts an initialized Microsoft® DirectPlay® Voice session within a running
DirectPlay transport session. This method must be successfully called before the
clients can complete a connection-to-the-voice session.

HRESULT StartSession(
PDVSESSIONDESC pSessionDesc,
DWORD dwFlags
);

Parameters

pSessionDesc
Pointer to a DVSESSIONDESC structure that contains the session description.

dwFlags
Reserved. Must be 0.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_ALREADYPENDING

DVERR_HOSTING

DVERR_INVALIDFLAGS

DVERR_INVALIDOBJECT

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTINITIALIZED

Remarks

The IDirectPlayVoiceServer::Initialize method must be called before this method is
called. The voice session can be hosted on any client in the session if the voice
session is peer-to-peer. If the voice session is not peer-to-peer, it must be hosted on
the transport client, which is the host of a active transport session.

in.doc – page 243

The DVSESSIONDESC structure contains the type of voice session to start. The
type of voice session can have a dramatic effect on the CPU and bandwidth usage for
both the client and the server. You can set the guidCT member of
DVSESSIONDESC to DPVCTGUID_DEFAULT.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceServer::StopSession
Stops the Microsoft® DirectPlay® Voice session.

HRESULT StopSession(
DWORD dwFlags
);

Parameters

dwFlags
Flag. The following flag can be set.

DVFLAGS_NOHOSTMIGRATE
The host will not migrate regardless of session and transport settings. Use this
flag when you want to shut down the voice session completely.

Return Values

Returns DV_OK if successful, or one of the following error values.

DVERR_ALREADYPENDING

DVERR_INVALIDFLAGS

DVERR_INVALIDOBJECT

DVERR_INVALIDPARAM

DVERR_NOTHOSTING

DVERR_NOTINITIALIZED

DVERR_SESSIONLOST

Remarks

This method returns DVERR_ALREADYPENDING if it is called while another
thread is processing a StopSession request.

in.doc – page 244

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceTest
Applications use the CheckAudioSetup method of the IDirectPlayVoiceTest
interface to test the Microsoft® DirectPlay® Voice audio configuration.

Audio Configuration CheckAudioSetup

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlayVoiceTest::CheckAudioSetup
Runs the Audio Setup Wizard on the specified devices. This wizard runs a series of
tests on the devices to determine if they are capable of full duplex audio and to ensure
that the microphone is plugged in and working correctly on the capture device.

HRESULT CheckAudioSetup(
const GUID * pguidPlaybackDevice,
const GUID * pguidCaptureDevice,
HWND hwndParent,
DWORD dwFlags
);

Parameters

pguidPlaybackDevice
Pointer to the GUID that identifies the playback device to test. If NULL is passed
for this parameter, Microsoft® DirectPlay® Voice tests the system default
playback device defined by Microsoft® DirectSound®. You can also pass one of
the DirectSound default GUIDs:

DSDEVID_DefaultPlayback
The system default playback device.

DSDEVID_DefaultVoicePlayback
The default voice playback device.

pguidCaptureDevice
Pointer to the GUID that identifies the capture device to test. If NULL is passed
for this parameter, DirectPlay Voice tests the system default capture device

in.doc – page 245

defined by DirectSound. You can also pass one of the DirectSound default
GUIDs:

DSDEVID_DefaultCapture
The default system capture device. You can also specify this device by
passing a NULL pointer in the device GUID parameter.

DSDEVID_DefaultVoiceCapture
The default voice communications capture device. Typically, this is a
secondary device such as a USB headset with microphone.

hwndParent
The test wizard invoked by this method is modal. If the calling application has a
window that should be the parent window of the wizard, it should pass a handle
to that window in this parameter. If the calling application does not have a
window, it can pass NULL. If the DVFLAGS_QUERYONLY flag is specified,
this parameter is not used and the application can pass NULL.

dwFlags
Flags. The following flags can be set.

DVFLAGS_QUERYONLY
Audio setup is not run. Instead, the method checks the registry to see if the
devices have been tested. If the devices have not been tested, the method
returns DVERR_RUNSETUP. If the devices have been tested, the method
returns DV_FULLDUPLEX if the devices support full duplex audio, or
DV_HALFDUPLEX if the devices do not support full duplex audio.

DVFLAGS_ALLOWBACK
Passing this flag enables the Back button on the wizard’s Welcome page. If
the user clicks the Back button on the Welcome page, the wizard exits, and
CheckAudioSetup returns DVERR_USERBACK.

Return Values

Returns DV_OK, DV_FULLDUPLEX, DV_HALFDUPLEX if successful, or one of
the following error values.

DVERR_INVALIDPARAM

DVERR_RUNSETUP

DVERR_INVALIDDEVICE

Remarks

This method contains user interface (UI) elements and displays dialog boxes. If the
DVFLAGS_QUERYONLY flag is specified, the tests are not actually run and no UI
is raised. Instead, the registry is checked to determine the results of a previous test of
these devices.

If the user cancels the wizard, the CheckAudioSetup call returns
DVERR_USERCANCEL. The calling application can then handle the situation
appropriately. For example, in DirectPlay Voice part of the gaming options control

in.doc – page 246

panel application, if the user clicks Cancel, the dialog box displays a message
indicating that voice cannot be used because the wizard has been canceled.

This method might return DVERR_INVALIDDEVICE if the device specified does
not exist. Also, if you specify the default device and this method still returns this
error, then there are no sound devices on the system.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

IDirectPlay8LobbyClient
The IDirectPlay8LobbyClient interface is used by a lobby client application and is
responsible for enumerating and launching lobby-enabled game applications on the
local computer, and communicating with them once they are running. The lobby
client must register a message handler routine to process messages from the lobby and
the lobbied game application.

The methods of the IDirectPlay8LobbyClient interface are:

IDirectPlay8LobbyClient
Methods

Close

ConnectApplication

EnumLocalPrograms

Initialize

ReleaseApplication

Send

GetConnectionSettings

SetConnectionSettings

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbyClient::Close
Deletes the lobby client.

HRESULT Close(
const DWORD dwFlags
);

in.doc – page 247

Parameters

dwFlags
Reserved, must be 0.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_UNINITIALIZED

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbyClient::ConnectApplic
ation

Connects a lobby-enabled application to the session specified in the
DPL_CONNECT_INFO structure. If the application is not running, this method can
be used to launch the application.

When the connection is successfully established, the lobbied application generates a
DPL_MSGID_CONNECT system message to the message handler.

HRESULT ConnectApplication(
DPL_CONNECT_INFO *const pdplConnectionInfo,
const PVOID pvUserApplicationContext,
DPNHANDLE *const phApplication,
const DWORD dwTimeOut,
const DWORD dwFlags
);

Parameters

pdplConnectionInfo
Pointer to a DPL_CONNECT_INFO structure, which describes the connection
parameters, including the GUID of the application to connect to.

pvUserApplicationContext
Pointer to a context value defined for the lobby client that is passed in calls to the
lobby client’s message handler.

phApplication
Pointer to a DPNHANDLE that specifies the application connect handle that is
set if this method succeeds. This handle is used for further communication with
the application. Additionally, this handle is used in the phApplication parameter
in the IDirectPlay8LobbyClient::ReleaseApplication method.

in.doc – page 248

dwTimeOut
Variable of type DWORD that specifies the number of milliseconds to wait for
the connection to process.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_CANTLAUNCHAPPLICATION

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_TIMEDOUT

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbyClient::EnumLocalPro
grams

Enumerates the lobbied applications that are registered on the system.

HRESULT EnumLocalPrograms(
GUID *const pGuidApplication,
BYTE *const pEnumData,
DWORD *const pdwEnumData,
DWORD *const pdwItems.
const DWORD dwFlags
);

Parameters

pGuidApplication
Pointer to a variable of type GUID that specifies the lobbied application to
enumerate. This parameter is optional, and passing NULL enumerates all
available lobbied applications.

pEnumData
Pointer to a variable of type BYTE, which is filled with a description of the
lobbied application.

pdwEnumData
Pointer to variable of type DWORD that specifies the number of bytes contained
in the pEnumData buffer. If the buffer in pEnumData is too small, this method

in.doc – page 249

returns DPNERR_BUFFERTOOSMALL and sets this parameter to the size of
the required buffer.

pdwItems
Pointer to a variable of type DWORD that contains the number of
DPL_APPLICATION_INFO structures in the pEnumData buffer. This
parameter is filled only if the method succeeds.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

This method is generally called twice—once to obtain the size of the required buffer,
and then with the correct buffer size.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbyClient::Initialize
Registers an entry point in the lobby client’s code that receives notifications on
changes of state for any launched applications. The message handler also receives
messages from the lobbied application. This method must be called before calling any
other methods of this interface.

HRESULT Initialize(
const PVOID pvUserContext,
const PFNDPNMESSAGEHANDLER pfn,
const DWORD dwFlags
);

Parameters

pvUserContext
Pointer to the user-provided context value provided in calls to the message
handler. Providing a user-context value is useful to differentiate messages from
multiple interfaces to a common message handler.

in.doc – page 250

pfn
Pointer to a PFNDPNMESSAGEHANDLER callback function that receives all
messages from the IDirectPlay8LobbyClient interface and indications of
session changes from the IDirectPlay8LobbiedApplication interface.

dwFlags
The following flag can be specified.

DPLINITIALIZE_DISABLEPARAMVAL
Disables parameter validation.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

Call this is method first after using CoCreateInstance to obtain the
IDirectPlay8LobbyClient interface.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbyClient::ReleaseApplica
tion

Releases a lobbied application and closes the connection between the lobby client and
the application. This method should be called whenever a lobby client has finished its
session with an application.

HRESULT ReleaseApplication(
const DPNHANDLE hApplication.
const DWORD dwFlags
);

Parameters

hApplication
The DPNHANDLE of the lobbied application to release. This value is set in the
phApplication parameter of the
IDirectPlay8LobbyClient::ConnectApplication method. You may also specify
the following flag.

DPLHANDLE_ALLAPPLICATIONS

in.doc – page 251

All application connections will be released.

dwFlags
Reserved, must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDHANDLE

DPNERR_INVALIDPARAM

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbyClient::Send
Sends a message to a lobbied application that was launched by this lobby client or
was connected by this lobby client.

This method sends a DPL_MSGID_RECEIVE system message to the target’s
message handler.

HRESULT Send(
const DPNHANDLE hConnection,
BYTE *const pBuffer,
const DWORD pBufferSize,
const DWORD dwFlags
);

Parameters

hConnection
Variable of type DPNHANDLE that specifies the target for the message
transmission. You may also specify the following flag.

DPLHANDLE_ALLAPPLICATIONS
The message you have specified will be sent to all lobbied applications that
are connected to your lobby client application.

pBuffer
Pointer to an array of bytes that contains the message.

pBufferSize
Variable of type DWORD that specifies the size of the message buffer in the
pBuffer parameter, in bytes. This parameter must be at least 1 byte and no more
than 64 KB.

in.doc – page 252

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDHANDLE

DPNERR_INVALIDPARAM

DPNERR_SENDTOOLARGE

Remarks

If the buffer size is larger than 64 KB, the method returns
DPNERR_SENDTOOLARGE. If the buffer size is set to 0, the method returns
DPNERR_INVALIDPARAM.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbyClient::GetConnection
Settings

Retrieves the set of connection settings for the specified connection. These settings
can be set through a call to the IDirectPlay8LobbyClient::ConnectApplication,
IDirectPlay8LobbyClient::SetConnectionSettings, or
IDirectPlay8LobbiedApplication::SetConnectionSettings method.

When you get connection settings, a reference will be added for each address object
that is returned to the user. Therefore, users must be sure to call Release on each
address object when they are finished with the structure.

HRESULT GetConnectionSettings(
const DPNHANDLE hConnection,
DPL_CONNECTION_SETTINGS *const pdplConnectSettings,
DWORD*pdwDataSize,
const DWORD dwFlags
);

Parameters

hConnection
Handle to the connection for which to retrieve the settings.

in.doc – page 253

pdplConnectSettings
Pointer to a buffer to receive the connection settings for the specified connection.

pdwDataSize
Pointer to a DWORD containing the size, in bytes, of the buffer specified in the
pdplConnectSettings structure. If the buffer is not large enough to hold the
connection settings, DPNERR_BUFFERTOOSMALL is returned and this value
is set to the required buffer size. On success, this value contains the number of
bytes written to the specified buffer.

dwFlags
Reserved, must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDOBJECT

DPNERR_INVALIDFLAGS

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbyClient::SetConnection
Settings

Sets the connection settings to be associated with the specified connection. Calling
this method will generate a DPL_MSGID_CONNECTION_SETTINGS message to
be sent to the client specified by hConnection.

When you set connection settings, the lobby application will add a reference to each
of the address objects specified in the call.

HRESULT SetConnectionSettings(
const DPNHANDLE hConnection,
const DPL_CONNECTION_SETTINGS *const pdplConnectSettings,
const DWORD dwFlags
);

Parameters

hConnection
Handle to the connection to set the settings for. You may also specify the
following flag.

in.doc – page 254

DPLHANDLE_ALLAPPLICATIONS
The connection settings will be updated for all the lobbied applications you
are connected to.

pdplConnectSettings
Pointer to a DPL_CONNECTION_SETTINGS structure containing the settings
associated with the specified connection.

dwFlags
Reserved, must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDOBJECT

DPNERR_INVALIDFLAGS

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbiedApplication
The IDirectPlay8LobbiedApplication interface is used by an application that
supports lobbying. This interface allows the application to register with the system so
that it can be lobby launched. Additionally, it also lets the application get the
connection information necessary to launch a game without querying the user. Lastly,
this interface allows the lobbied application to send messages and notifications to the
lobby client that launched the application.

The methods of the IDirectPlay8LobbiedApplication interface are:

IDirectPlay8LobbiedApplicatio
n Methods

Close

SetAppAvailable

Initialize

RegisterProgram

Send

UnRegisterProgram

UpdateStatus

GetConnectionSettings

SetConnectionSettings

in.doc – page 255

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbiedApplication::Close
Deletes the lobbied application.

HRESULT Close(
const DWORD dwFlags
);

Parameters

dwFlags
Reserved, must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_UNINITIALIZED

DPNERR_INVALIDOBJECT

DPNERR_OUTOFMEMORY

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbiedApplication::SetApp
Available

Makes an application available or unavailable for a lobby client to connect to. This
method is typically called if a lobbied application is independently launched, that is,
not launched by a lobby client. Additionally, this method should be called if a game
has ended and the lobbied application needs to be available to connect to a lobby
client at the start of another game.

HRESULT SetAppAvailable(
const BOOL fAvailable,
const DWORD dwFlags
);

in.doc – page 256

Parameters

fAvailable
Boolean value that sets the availability of the application. Set this value to TRUE
to indicate that your application is available, or to FALSE to indicate that it is not
available.

dwFlags
The following flag can be set for this method.

DPLAVAILABLE_ALLOWMULTIPLECONNECT
The default behavior for this method is to automatically mark the interface as
Unavailable when the first connection is established. By specifying this flag,
the interface is not automatically marked unavailable after the first connection
is established, thereby allowing multiple connections.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDOBJECT

DPNERR_UNINITIALIZED

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbiedApplication::Initialize
Registers a message handler function that receives notifications about changes in the
state of the lobby client and receives messages from the lobby client.

HRESULT Initialize(
const PVOID pvUserContext,
const PFNDPNMESSAGEHANDLER pfn,
DPNHANDLE *const pdpnhConnection,
const DWORD dwFlags
);

Parameters

pvUserContext
Pointer to the user-provided context value in calls to the message handler.
Providing a user-context value is useful to differentiate messages from multiple
interfaces to a common message handler.

pfn

in.doc – page 257

Pointer to a PFNDPNMESSAGEHANDLER callback function that receives all
messages from the IDirectPlay8LobbyClient interface and indications of
session changes from the IDirectPlay8LobbiedApplication interface.

pdpnhConnection
Value used to detect if your application was lobby launched. If your application
was lobby launched, this parameter will be set to the connection handle for the
lobby client. If your process was not lobby launched, this parameter is set to
NULL.

dwFlags
The following flag can be specified.

DPLINITIALIZE_DISABLEPARAMVAL
Disables parameter validation.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

Call this method first after using CoCreateInstance to obtain the
IDirectPlay8LobbiedApplication interface.

This method automatically establishes a connection to the lobby client if you were
lobby launched. If you call Initialize and you were lobby launched and the lobbied
application interface is unable to contact the lobby client process, Initialize will time
out after four seconds. In this case, Initialize will return DPNERR_TIMEDOUT but
will still succeed.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbiedApplication::Registe
rProgram

Registers a lobby-aware application with DirectPlay. Applications must be registered
to enable lobby launching.

HRESULT RegisterProgram(
PDPL_PROGRAM_DESC pdplProgramDesc,
const DWORD dwFlags
);

in.doc – page 258

Parameters

pdplProgramDesc
Pointer to the DPL_PROGRAM_DESC structure that describes the lobby-aware
application to register.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

The application needs to register only once. It should be unregistered with a call to
the IDirectPlay8LobbiedApplication::UnRegisterProgram method when it is
uninstalled.

In Microsoft DirectX® 8.0, RegisterProgram must be used. You cannot manually
enter application information in the registry. Failure to use this interface makes your
application nonportable and incompatible with future versions of DirectPlay.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbiedApplication::Send
Sends a message from the lobbied application to the lobby client.

HRESULT Send(
const DPNHANDLE hConnection,
BYTE *const pBuffer,
const DWORD pBufferSize,
const DWORD dwFlags
);

Parameters

hConnection
Variable of type DPNHANDLE that specifies the lobby client that the message
is sent to. You may also specify the following flag.

DPLHANDLE_ALLAPPLICATIONS

in.doc – page 259

The message you have specified will be sent to all lobby clients to which you
are connected.

pBuffer
Pointer to a variable of type BYTE that contains the message buffer.

pBufferSize
Variable of type DWORD that specifies the size of the message buffer in the
pBuffer parameter, in bytes. This parameter must be at least 1 byte and no more
than 64 KB.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDHANDLE

DPNERR_INVALIDPARAM

DPNERR_SENDTOOLARGE

Remarks

If the buffer size is larger than 64 KB, the method returns
DPNERR_SENDTOOLARGE. If the buffer size is set to 0, the method returns
DPNERR_INVALIDPARAM.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbiedApplication::UnRegi
sterProgram

Unregisters a lobby-aware application that was registered through the
IDirectPlay8LobbiedApplication::RegisterProgram method.

HRESULT UnRegisterProgram(
GUID* pguidApplication,
const DWORD dwFlags

);

in.doc – page 260

Parameters

pguidApplication
Pointer to the GUID of the application to unregister.

dwFlags
Reserved. Must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbiedApplication::Update
Status

Updates the status of a connected lobby client.

HRESULT UpdateStatus(
const DPNHANDLE hConnection,
const DWORD dwStatus,
const DWORD dwFlags
);

Parameters

hConnection
Variable of type DPNHANDLE that specifies the lobby client. You may also
specify the following flag.

DPLHANDLE_ALLAPPLICATIONS
The status update will be sent to all lobby clients to which you are connected.

dwStatus
Variable of type DWORD that is filled with one of the following values that
indicate the status between the lobby client and the lobbied application.

DPLSESSION_CONNECTED
The lobby client and lobbied application are currently connected.

DPLSESSION_COULDNOTCONNECT
The lobby client was not able to connect to the lobbied application.

DPLSESSION_DISCONNECTED

in.doc – page 261

The lobby client and lobbied application are currently disconnected.

DPLSESSION_TERMINATED
The connection between the lobby client and lobbied application has been
terminated.

DPLSESSION_HOSTMIGRATED
The peer object associated with the connection is involved in a session where
a host migration takes place and the local client is not the new host.

DPLSESSION_HOSTMIGRATEDHERE
The peer object associated with the connection is involved in a session where
a host migration takes place and the local client becomes the new host.

dwFlags
Reserved, must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDHANDLE

DPNERR_INVALIDPARAM

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbiedApplication::GetCon
nectionSettings

Retrieves the set of connection settings for the specified connection. These settings
can be set through a call to the IDirectPlay8LobbyClient::ConnectApplication,
IDirectPlay8LobbyClient::SetConnectionSettings, or
IDirectPlay8LobbiedApplication::SetConnectionSettings method.

When you get connection settings, a reference will be added for each address object
that is returned to the user. Therefore, users must be sure to call Release on each
address object when they are done with the structure.

HRESULT GetConnectionSettings(
const DPNHANDLE hLobbyClient,
DPL_CONNECTION_SETTINGS *const pdplSessionInfo,
DWORD* pdwInfoSize,
const DWORD dwFlags
);

in.doc – page 262

Parameters

hLobbyClient
Handle to the connection for which to retrieve the settings.

pdplSessionInfo
Pointer to a DPL_CONNECTION_SETTINGS structure to receive the
connection settings for the specified connection.

pdwInfoSize
Pointer to a DWORD containing the size, in bytes, of the buffer specified in the
pdplSessionInfo structure. If the buffer is not large enough to hold the connection
settings, DPNERR_BUFFERTOOSMALL is returned and this value will be set
to the required buffer size. On success, this value will contain the number of
bytes written to the specified buffer.

dwFlags
Reserved, must be 0.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_INVALIDPARAM

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDOBJECT

DPNERR_INVALIDFLAGS

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8LobbiedApplication::SetCon
nectionSettings

Sets the connection settings to be associated with the specified connection. Calling
this method generates a DPL_MSGID_CONNECTION_SETTINGS message to be
sent to the client specified by hConnection.

When you set connection settings, the lobby application will add a reference to each
of the address objects specified in the call.

HRESULT SetConnectionSettings(
const DPNHANDLE hConnection,
const DPL_CONNECTION_SETTINGS *const pdplConnectSettings,
const DWORD dwFlags
);

in.doc – page 263

Parameters

hConnection
Handle to the connection to set the settings for. You may also specify the
following flag.

DPLHANDLE_ALLAPPLICATIONS
The connection settings will be updated for all the lobby clients to which you
are connected.

pdplConnectSettings
Pointer to a DPL_CONNECTION_SETTINGS structure containing the settings
associated with the specified connection.

dwFlags
Reserved, must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDOBJECT

DPNERR_INVALIDFLAGS

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

IDirectPlay8Address
The IDirectPlay8Address interface contains generic addressing methods used to
create and manipulate addresses for Microsoft® DirectPlay®. This interface is one of
the interfaces available through the CLSID_DirectPlayAddress COM object. To
create an object that supports this interface, use the CoCreateInstanceEx method for
the CLSID CLSID_DirectPlayAddress that specifies the IID_IDirectPlayAddress8
interface.

The IDirectPlay8Address interface contains the following methods.

IDirectPlay8Address Methods BuildFromURLW

BuildFromURLA

Duplicate

SetEqual

IsEqual

Clear

in.doc – page 264

GetURLW

GetURLA

GetSP

GetUserData

SetSP

SetUserData

GetNumComponents

GetComponentByName

GetComponentByIndex

AddComponent

GetDevice

SetDevice

BuildFromDPADDRESS

Remarks

In order to deliver messages, each participant in a multiplayer game must have a
unique address. Addresses can refer either to the computer that your application is
running on (device address), or a computer that your application needs to
communicate with (host address).

DirectPlay represents addresses as URLs. These URLs are then encapsulated in the
address object so that they can be passed to or from the DirectPlay API. In general,
address URLs are strings that consist of three basic components in the following
order: scheme, scheme separator, and data string.

All DirectPlay addresses use “x-directplay” as the scheme, and “:/” as the scheme
separator. Using “:/” as a separator implies that the data that follows is opaque. In
other words, the data string does not conform to any Internet standard, and should
simply be passed on to the receiving application without modification. All DirectPlay
URLs thus have the following general form:

x-directplay:/[data string]

There are two basic approaches to handling address objects:

· Handle the data string directly, using normal string manipulation techniques.

· Use the methods exposed by IDirectPlay8Address to obtain or modify the
individual elements of the data string.

For more information on DirectPlay addresses, see DirectPlay Addressing.

in.doc – page 265

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::BuildFromURLW
Sets the object equal to the address in the DirectPlay 8 URL. It erases the contents of
the object.

HRESULT BuildFromURLW(
WCHAR* pwszSourceURL
);

Parameters

pwszSourceURL
Pointer to a NULL-terminated Unicode string that contains a properly formatted
DirectPlay 8 address.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPOINTER

DPNERR_INVALIDURL

DPNERR_NOTALLOWED

Remarks

The Dpaddr.h header file defines a number of standard strings that you can use to
construct your URL instead using a literal string. All of the string names have the
form DPNA_XXX. For example, DPNA_HEADER can be used in place of L"x-
directplay:/" for the URL header.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::BuildFromURLA
Sets the object equal to the specified in the DirectPlay 8 URL. It erases the contents
of the object.

HRESULT BuildFromURLA(
CHAR* pszSourceURL

in.doc – page 266

);

Parameters

pszSourceURL
Pointer to a NULL-terminated ANSI string that contains a properly formatted
DirectPlay 8 address.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPOINTER

DPNERR_INVALIDURL

DPNERR_NOTALLOWED

Remarks

The Dpaddr.h header file defines a number of standard strings that you can use to
construct your URL instead using a literal string. All of the string names have the
form DPNA_XXX. For example, DPNA_HEADER can be used in place of L"x-
directplay:/" for the URL header.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::Duplicate
Creates a DirectPlay Address object that duplicates the address in this object.

HRESULT Duplicate(
PDIRECTPLAY8ADDRESS* ppdpaNewAddress
);

Parameters

ppdpaNewAddress
Address of a pointer to receive the IDirectPlay8Address pointer for the
duplicate object. DirectPlay increments the reference count for this interface.
You must release the interface when you no longer need it.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_GENERIC

in.doc – page 267

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::SetEqual
Sets the contents of the object it is called on to match the contents of the address
object passed to the method.

HRESULT SetEqual(
PDIRECTPLAY8ADDRESS pdpaAddress
);

Parameters

pdpaAddress
Pointer to a DirectPlay8Address object that this object will be set to.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDADDRESSFORMAT

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::IsEqual
Compares two addresses to see if they are equal.

HRESULT IsEqual(
PDIRECTPLAY8ADDRESS pdpaAddress
);

Parameters

pdpaAddress
Address to compare to the address contained within the object.

in.doc – page 268

Return Values

If the method is successful, one of the following values is returned.

DPNSUCCESS_EQUAL
The two addresses are equal.

DPNSUCCESS_NOTEQUAL
The two addresses are not equal.

If the method fails, one of the following error values may be returned.

DPNERR_INVALIDADDRESSFORMAT

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

Remarks

This method checks the contents of the address specified by the pdpaAddress
parameter and compares it to the address contained within the object this method was
called on. This method does not affect the contents of either address.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::Clear
Resets the address object to an empty address.

HRESULT Clear();

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_NOTALLOWED

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::GetURLW
Retrieves the DirectPlay 8 address URL string represented by this object.

in.doc – page 269

HRESULT GetURLW(
WCHAR* pwszURL,
PDWORD pdwNumChars
);

Parameters

pwszURL
Address of a pointer to receive the URL represented by this object. This
parameter can be NULL if pdwNumChars points to a DWORD containing 0.

pdwNumChars
Pointer to a DWORD that contains the number of characters the specified buffer
can hold, including NULL terminator. On success this value contains the number
of characters written to the specified buffer, including NULL terminator. On
failure this value contains the number of characters, including NULL terminator,
required to hold the URL and the method returns
DPNERR_BUFFERTOOSMALL.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_GENERIC

DPNERR_INVALIDURL

DPNERR_OUTOFMEMORY

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::GetURLA
Retrieves the Microsoft® DirectPlay® address URL string represented by this object.
(ANSI Version.)

HRESULT GetURLA(
CHAR* pszURL,
PDWORD pdwNumChars
);

Parameters

pszURL
Address of a pointer to receive the URL represented by this object. This
parameter can be NULL if pdwNumChars points to a DWORD containing 0.

in.doc – page 270

pdwNumChars
Pointer to a DWORD that contains the number of characters the specified buffer
can hold, including NULL terminator. On success this value contains the number
of characters written to the specified buffer, including NULL terminator. On
failure this value contains the number of characters, including NULL terminator,
required to hold the URL and the method returns
DPNERR_BUFFERTOOSMALL.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_GENERIC

DPNERR_INVALIDURL

DPNERR_OUTOFMEMORY

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::GetSP
Retrieves the service provider GUID in the address object. If no service provider is
specified, this method returns DPNERR_DOESNOTEXIST.

HRESULT GetSP(
GUID* pguidSP
);

Parameters

pguidSP
Pointer to a GUID to receive the service provider in the address object.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_DOESNOTEXIST

DPNERR_INVALIDPOINTER

in.doc – page 271

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::GetUserData
Retrieves the user data in the address object. If no user data exists in this address
object, this method returns DPNERR_DOESNOTEXIST.

HRESULT GetUserData(
void* pvUserData,
PDWORD pdwBufferSize
);

Parameters

pvUserData
Pointer to a buffer to receive the user data from this address. To retrieve the
required size, set this parameter to NULL and the DWORD in pdwBufferSize to
0.

pdwBufferSize
Size in bytes of the buffer pointed to by pvUserData. If pvUserData is NULL,
this parameter must point to a DWORD containing 0. On output, the contained
DWORD is set to the number of bytes written to the buffer. On failure, this
contains the number of bytes required to retrieve the user data and the method
returns DPNERR_BUFFERTOOSMALL.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_DOESNOTEXIST

DPNERR_INVALIDPOINTER

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::SetSP
Sets the service provider GUID in the address object. If a service provider is specified
for this address, it is overwritten by this call.

HRESULT SetSP(

in.doc – page 272

const GUID *const pguidSP
);

Parameters

pguidSP
Pointer to the service provider GUID.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPOINTER

DPNERR_NOTALLOWED

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::SetUserData
Sets the user data in the address object. If there is user data in this address, it is
overwritten by this call.

HRESULT SetUserData(
const void *const pvUserData,
const DWORD dwDataSize
);

Parameters

pvUserData
Pointer to a buffer that contains the data to place in the user data section of the
address. Set to NULL to clear the user data.

dwDataSize
Size, in bytes, of the data in pvUserData. If pvUserData is NULL, this must be 0.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPOINTER

DPNERR_NOTALLOWED

in.doc – page 273

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::GetNumComponen
ts

Retrieves the number of components in the address.

HRESULT GetNumComponents(
PDWORD pdwNumComponents
);

Parameters

pdwNumComponents
Pointer to a DWORD to receive the number of components in this address
object.

Return Values

Returns S_OK if successful, or the following error value.

DPNERR_INVALIDPOINTER

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::GetComponentByN
ame

Retrieves information on the component at the specified key. Values for the
component are retrieved in their native format. If the component key is not found,
DPNERR_DOESNOTEXIST is returned.

The value of the component is retrieved in its native format. Therefore, if the
component’s value is a DWORD, a DWORD is retrieved by this call. So buffer size
= 4 and pvBuffer should be a recast PDWORD.

HRESULT GetComponentByName(
const WCHAR *const pwszName,
void* pvBuffer,
PDWORD pdwBufferSize,

in.doc – page 274

PDWORD pdwDataType
);

Parameters

pwszName
String specifying the name of the component you want to retrieve.

pvBuffer
Buffer to retrieve the data stored in the value of the component. To retrieve the
size required, specify NULL for this parameter and 0 for the DWORD pointed to
by pdwBufferSize. The method returns DPNERR_BUFFERTOOSMALL in this
case.

pdwBufferSize
On input, a pointer to a DWORD that contains the size of the buffer, in bytes,
pointed to by pvBuffer. On output, a pointer to a DWORD that contains the
number of bytes written to the buffer on success and on failure, the number of
bytes required to store the data.

pdwDataType
DWORD pointed to by this parameter that is set to the type of data that is stored
in this component. This can be one of the following:

DPNA_DATATYPE_STRING
Data is a NULL-terminated string.

DPNA_DATATYPE_DWORD
Data is a DWORD.

DPNA_DATATYPE_GUID
Data is a GUID.

DPNA_DATATYPE_BINARY
Data is raw binary.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_DOESNOTEXIST

DPNERR_INVALIDPARAM

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

in.doc – page 275

IDirectPlay8Address::GetComponentByI
ndex

Retrieves information on the component at the specified index. Values for the
component are retrieved in their native format. If the component key is not found, the
method returns DPNERR_DOESNOTEXIST.

The value of the component is retrieved in its native format. Therefore, if the
component’s value is a DWORD, a DWORD is retrieved by this call. So buffer size
= 4 and pvBuffer should be a recast PDWORD.

HRESULT GetComponentByIndex(
const DWORD dwComponentID,
WCHAR* pwszName,
PDWORD pdwNameLen,
void* pvBuffer,
PDWORD pdwBufferSize,
PDWORD pdwDataType
);

Parameters

dwComponentID
Index of the component to retrieve. This value is zero-based and should be in the
range of [0..GetNumComponents()-1].

pwszName
Buffer to retrieve the name of the component on a successful call. To retrieve the
size required, specify NULL for this parameter and 0 for the DWORD pointed to
by pdwNameBufferSize. The method returns DPNERR_BUFFERTOOSMAL in
this case.

pdwNameLen
On input, a pointer to a DWORD that contains the size of the buffer, in
characters including NULL terminator, pointed to by pwszName. On output, a
pointer to a DWORD that contains the number of characters written to the buffer,
including NULL terminator, on success and on failure, the number of characters
required, including NULL terminator, to store this value.

pvBuffer
Buffer to retrieve the data stored in the value of the component. To retrieve the
size required, specify NULL for this parameter and 0 for the DWORD pointed to
by pdwBufferSize. The method returns DPNERR_BUFFERTOOSMALL in this
case.

pdwBufferSize
On input, a pointer to a DWORD containing the size of the buffer, in bytes,
pointed to by pvBuffer. On output, a pointer to a DWORD that contains the
number of bytes written to the buffer on success and on failure, the number of
bytes required to store the data.

pdwDataType

in.doc – page 276

DWORD pointed to by this parameter that is set to the type of data that is stored
in this component. This can be one of the following:

DPNA_DATATYPE_STRING
Data is a NULL-terminated string.

DPNA_DATATYPE_DWORD
Data is a DWORD.

DPNA_DATATYPE_GUID
Data is a GUID.

DPNA_DATATYPE_BINARY
Data is raw binary.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_DOESNOTEXIST

DPNERR_INVALIDPARAM

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::AddComponent
Adds a component to the address. If the component is part of the address, then it is
replaced by the new value in this call.

Values are specified in native formats when making this call. Therefore, the lpvData
parameter should be a recast pointer to a variable that holds the data in the native
format. For example, if the component is a GUID, the lpvData parameter should be a
recast pointer to a GUID.

This method validates that the predefined component types are the right format.

HRESULT AddComponent(
const WCHAR *const pwszName,
const void *const lpvData,
const DWORD dwDataSize,
const DWORD dwDataType
);

Parameters

pwszName
NULL-terminated Unicode string that contains the key for the component.

in.doc – page 277

lpvData
Pointer to a buffer that contains the value associated with the specified key. Data
should be specified in its native format.

dwDataSize
Size, in bytes, of the data in the buffer located at lpvData. The size depends on
the data type. If the size is not specified correctly, the method returns
DPNERR_INVALIDPARAM.

DWORD
Size = sizeof(DWORD)

GUID
Size = sizeof(GUID)

String
Size = size of the string in bytes, including NULL terminator.

dwDataType
Data type of the value associated with this key. The data type can be one of the
following:

DPNA_DATATYPE_STRING
Data is a NULL-terminated string.

DPNA_DATATYPE_DWORD
Data is a DWORD.

DPNA_DATATYPE_GUID
Data is a GUID.

DPNA_DATATYPE_BINARY
Data is in raw binary format.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_NOTALLOWED

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::GetDevice
Retrieves the local device GUID in the address object. If no device is specified, this
method returns DPNERR_DOESNOTEXIST.

HRESULT GetDevice(

in.doc – page 278

GUID* pguidDevice
);

Parameters

pguidDevice
Pointer to a GUID to receive the device in the address object.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_DOESNOTEXIST

DPNERR_INVALIDPOINTER

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8Address::SetDevice
Sets the local device GUID in the address object. If a local device is specified for this
address, it is overwritten by this call.

HRESULT SetDevice(
const GUID *const pguidDevice
);

Parameters

pguidDevice
Pointer to a GUID of the local device.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPOINTER

DPNERR_NOTALLOWED

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

in.doc – page 279

IDirectPlay8Address::BuildFromDPADDR
ESS

Sets the current object’s internal address to be the DirectPlay 8 equivalent of the
specified DirectPlay 4 address. The purpose of this method is to allow lobby
developers to launch games with the new Microsoft® DirectPlay® interface using the
old lobby code.

This method enumerates the address components in the specified address and adds the
corresponding element to the DirectPlay 8 address.

HRESULT BuildFromDPADDRESS(
LPVOID pvAddress,
DWORD dwDataSize
);

Parameters

pvAddress
Pointer to a DirectPlay4 address that will be converted to the DirectPlay 8
address format.

dwDataSize
Size of data contained in the pvAddress parameter.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDADDRESSFORMAT

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

Remarks

This method builds a DirectPlay 8 address from a DirectPlay4 address. This method
will clear the current address of all elements before building the new address.

This method has the following limitations.

· The method cannot map the DPAID_Modem address element because DirectPlay
4 used modem names, while DirectPlay 8 uses GUIDs to identify modems.

· Elements of the DirectPlay 4 address that are not part of the predefined
DirectPlay 4 address elements will result in an error and a return value of
DPNERR_INVALIDADDRESSFORMAT. See DirectPlay 4 documentation on
DirectPlay addresses for a complete list of the DirectPlay 4 address elements.

in.doc – page 280

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8AddressIP
The IDirectPlay8AddressIP interface is available through the
CLSID_DirectPlayAddress COM object. This interface is used for IP provider-
specific addressing services.

The IDirectPlay8AddressIP interface contains the following methods.

IDirectPlay8AddressIP
Methods

BuildFromSockAddr

BuildAddress

BuildLocalAddress

GetSockAddress

GetLocalAddress

GetAddress

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8AddressIP::BuildFromSockA
ddr

Builds a remote DirectPlay 8 IP address from a valid SOCKADDR structure. The
SOCKADDR structure must specify an IP address. If the address is not in the correct
format, DPNERR_INVALIDPARAM is returned.

The result of a successful call is a valid remote address with the following elements.

· DPNA_KEY_PROVIDER = CLSID_DP8SP_TCPIP

· DPNA_KEY_HOSTNAME = specified host name

· DPNA_KEY_PORT = specified port

All addressing information contained in the object before the call is erased.

HRESULT BuildFromSockAddr(
const SOCKADDR *const pSockAddr
);

in.doc – page 281

Parameters

pSockAddr
Valid UDP address specified in SOCKADDR form.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

DPNERR_NOTALLOWED

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8AddressIP::BuildAddress
Builds a remote DirectPlay 8 IP address from a host name and a port. The result of a
successful call is a valid remote address with the following elements.

· DPNA_KEY_PROVIDER = CLSID_DP8SP_TCPIP

· DPNA_KEY_HOSTNAME = specified host name

· DPNA_KEY_PORT = specified port

All addressing information contained in the object before the call is erased.

HRESULT BuildAddress(
const WCHAR *const wszAddress,
const USHORT usPort
);

Parameters

wszAddress
Remote host address can be a dotted Internet address—for example, 127.0.0.1—
or a valid host name—for example, example.microsoft.com.

usPort
Port on the remote host to which to connect.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

in.doc – page 282

DPNERR_NOTALLOWED

Remarks

Note
The DPNSVR is a DirectPlay feature that allows multiple processes to share a
single port for enumeration. Do not use the DPNA_DPNSVR_PORT flag when
constructing a device address, or when making a connection. This flag should
only be used for enumerations. If you do not add a port element to the
enumeration address, the port represented by the flag will be automatically added
to that address. See Using the DirectPlay DPNSVR Application for a further
discussion of DPNSVR.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8AddressIP::BuildLocalAddre
ss

Builds a local DirectPlay 8 IP address from a device and port. The result of a
successful call is a valid remote address with the following elements.

· DPNA_KEY_PROVIDER = CLSID_DP8SP_TCPIP

· DPNA_KEY_DEVICE= specified device

· DPNA_KEY_PORT = specified port

All addressing information contained in the object before the call is erased.

HRESULT BuildLocalAddress(
const GUID *const pguidAdapter,
const USHORT usPort
);

Parameters

pguidAdapter
Local device identifier to host on.

usPort
Port on the local device to host on. This value can be set to 0 to allow DirectPlay
8.0 to automatically select the port.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

in.doc – page 283

DPNERR_INVALIDPOINTER

DPNERR_NOTALLOWED

Remarks

Note
The DPNSVR is a DirectPlay feature that allows multiple processes to share a
single port for enumeration. Do not use the DPNA_DPNSVR_PORT flag when
constructing a device address, or when making a connection. This flag should
only be used for enumerations. If you do not add a port element to the
enumeration address, the port represented by the flag will be automatically added
to that address. See Using the DirectPlay DPNSVR Application for a further
discussion of DPNSVR.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8AddressIP::GetSockAddress
Retrieves a list of SOCKADDR structures describing the addresses represented by
this object. If the host name specified in the object requires a DNS lookup, it is
performed. Therefore, this method may block while the DNS is queried. It is also
possible for a host name to resolve to multiple addresses.

To succeed, the contained address must have at least the following elements.

· DPNA_KEY_PROVIDER

· DPNA_KEY_HOSTNAME

· DPNA_KEY_PORT = specified port

HRESULT GetSockAddress(
SOCKADDR* psockAddress,
PDWORD pdwAddressBufferSize
);

Parameters

psockAddress
Pointer to buffer to retrieve the array of SOCKADDR structures. There is one
SOCKADDR structure for each address the host resolves to.

pdwAddressBufferSize
Size, in bytes, of the buffer specified in psockAddresses. On success, this
parameter contains the number of bytes written to the specified buffer. On
failure, this parameter contains the number of bytes required to retrieve the array
of SOCKADDR structures. You can divide the value of this parameter by the

in.doc – page 284

size of the SOCKADDR structure to determine the number of items present in
the returned array.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8AddressIP::GetLocalAddress
Retrieves the local address information from a DirectPlay 8 IP address. To succeed,
the contained address must have at least the following elements.

· DPNA_KEY_PROVIDER

· DPNA_KEY_DEVICE

· DPNA_KEY_PORT

HRESULT GetLocalAddress(
GUID* pguidAdapter,
USHORT* pusPort
);

Parameters

pguidAdapter
Pointer to a GUID to retrieve the GUID of the local device specified in this
address.

pusPort
Pointer to a USHORT to contain the port specified in this local address.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

in.doc – page 285

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

IDirectPlay8AddressIP::GetAddress
Retrieves the remote address information from a remote DirectPlay 8 IP address. To
succeed, the contained address must have at least the following elements.

· DPNA_KEY_PROVIDER

· DPNA_KEY_HOSTNAME

· DPNA_KEY_PORT = specified port

HRESULT GetAddress(
WCHAR* wszAddress,
PDWORD pdwAddressLength,
USHORT* psPort
);

Parameters

wszAddress
Pointer to a buffer to receive the host name. This parameter can be NULL to
retrieve the required size.

pdwAddressLength
Size, in characters, of the buffer specified in wszAddress, including NULL
terminator. On success, this parameter contains the number of characters,
including NULL terminator, written to the specified buffer. On failure, this
parameter contains the number of characters, including NULL terminator,
required to retrieve the host name.

psPort
Pointer to a USHORT to contain the port specified in this local address.

Return Values

Returns S_OK if successful, or one of the following error values.

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

DPNERR_INVALIDPOINTER

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

in.doc – page 286

Functions
The Microsoft® DirectPlay® functions are:

· DirectPlay8Create

· DirectPlay8LobbyCreate

· DirectPlay8AddressCreate

· DirectPlayVoiceCreate

DirectPlay8Create
The DirectPlay8Create function is an external creation function used to create
interfaces defined in the Dplay8.h header file.

HRESULT WINAPI DirectPlay8Create(
 GUID* pcIID,
 void** ppvInterface,
 IUnknown* pUnknown
);

Parameters

pcIID
Pointer to the interface ID you want to create. You may specify the
IID_IDirectPlay8Client, IID_IDirectPlay8Server or IID_IDirectPlay8Peer
interface ID.

ppvInterface
Address of a variable to receive the new interface pointer.

pUnknown
Address of the controlling object's IUnknown interface for COM aggregation.
Must be NULL.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DirectPlay8LobbyCreate
The DirectPlay8LobbyCreate function is an external creation function used to create
one of the lobby interfaces defined in the Dplobby8.h header file.

HRESULT WINAPI DirectPlay8LobbyCreate(

in.doc – page 287

 GUID* pcIID,
 void** ppvInterface,
 IUnknown* pUnknown
);

Parameters

pcIID
Pointer to the interface ID you want to create. You may specify the
IID_IDirectPlay8LobbiedApplication or IID_IDirectPlay8LobbyClient interface
ID.

ppvInterface
Address of a variable to receive the new interface pointer.

pUnknown
Address of the controlling object's IUnknown interface for COM aggregation.
Must be NULL.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

DirectPlay8AddressCreate
The DirectPlay8AddressCreate function is an external creation function used to
create one of the addressing interfaces defined in the Dpaddr.h header file.

HRESULT WINAPI DirectPlay8AddressCreate(
 GUID* pcIID,
 void** ppvInterface,
 IUnknown* pUnknown
);

Parameters

pcIID
Pointer to the interface ID you want to create. You may specify the
IID_IDirectPlay8Address or IID_IDirectPlay8AddressIP interface ID.

ppvInterface
Address of a variable to receive the new interface pointer.

pUnknown
Address of the controlling object's IUnknown interface for COM aggregation.
Must be NULL.

in.doc – page 288

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dpaddr.h.

DirectPlayVoiceCreate
The DirectPlayVoiceCreate function is an external creation function used to create
one of the interfaces used in Microsoft® DirectPlay® Voice that are defined in the
Dvoice.h header file.

HRESULT WINAPI DirectPlayVoiceCreate(
 GUID* pcIID,
 void** ppvInterface,
 IUnknown* pUnknown
);

Parameters

pcIID
Pointer to the interface ID you want to create. You may specify the
IID_IDirectPlayVoiceTest, IID_IDirectPlayVoiceClient or
IID_IDirectPlayVoiceServer interface ID.

ppvInterface
Address of a variable to receive the new interface pointer.

pUnknown
Address of the controlling object's IUnknown interface for COM aggregation.
Must be NULL.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

Callback Functions
The Microsoft® DirectPlay® callback functions are:

· PFNDPNMESSAGEHANDLER

· PDVMESSAGEHANDLER

in.doc – page 289

PFNDPNMESSAGEHANDLER
PFNDPNMESSAGEHANDLER is an application-defined callback function used by
the IDirectPlay8Peer, IDirectPlay8Client, and IDirectPlay8Server
IDirectPlay8LobbyClient and IDirectPlay8LobbiedApplication interfaces to
process messages.

typedef HRESULT (WINAPI *PFNDPNMESSAGEHANDLER)(
 PVOID pvUserContext,
 DWORD dwMessageType,
 PVOID pMessage
);

Parameters

pvUserContext
Pointer to the application-defined structure that will be passed to this callback
function. This is defined in the pvUserContext parameter of the Initialize
method.

dwMessageType
One of the following message types that are generated by the IDirectPlay8Peer,
IDirectPlay8Client, and IDirectPlay8Server interfaces. Each interface uses a
different subset of the available messages. Refer to the interface documentation
for details.

DPN_MSGID_ADD_PLAYER_TO_GROUP

DPN_MSGID_ASYNC_OP_COMPLETE

DPN_MSGID_CLIENT_INFO

DPN_MSGID_CONNECT_COMPLETE

DPN_MSGID_CREATE_GROUP

DPN_MSGID_CREATE_PLAYER

DPN_MSGID_DESTROY_GROUP

DPN_MSGID_DESTROY_PLAYER

DPN_MSGID_ENUM_HOSTS_QUERY

DPN_MSGID_ENUM_HOSTS_RESPONSE

DPN_MSGID_GROUP_INFO

DPN_MSGID_HOST_MIGRATE

DPN_MSGID_INDICATE_CONNECT

DPN_MSGID_INDICATED_CONNECT_ABORTED

DPN_MSGID_PEER_INFO

DPN_MSGID_RECEIVE

DPN_MSGID_REMOVE_PLAYER_FROM_GROUP

in.doc – page 290

DPN_MSGID_RETURN_BUFFER

DPN_MSGID_SEND_COMPLETE

DPN_MSGID_SERVER_INFO

DPN_MSGID_TERMINATE_SESSION

Additionally, if the application supports Microsoft® DirectPlay® lobby
functionality, this parameter can specify one of the following message types that
are generated by the IDirectPlay8LobbyClient and
IDirectPlay8LobbiedApplication interfaces. Each interface uses a different
subset of the available messages. Refer to the interface documentation for details.

DPL_MSGID_CONNECT

DPL_MSGID_CONNECTION_SETTINGS

DPL_MSGID_DISCONNECT

DPL_MSGID_RECEIVE

DPL_MSGID_SESSION_STATUS

pMessage
Structure containing message information.

Return Values

See the documentation for the individual messages for appropriate return values.
Unless otherwise noted, this function should return S_OK.

Remarks

This function must be threadsafe because it might be called reentrantly through
multiple threads.

Callback messages from the same player are serialized. Once you receive a message
from a player, you will not receive another until you have handled the first message,
and the callback function has returned.

The message structures have the same name as the message type except the
"DPN_MSGID" is replaces with "DPNMSG". For example, the
DPN_MSGID_CONNECTION_TERMINATED message type uses the
DPNMSG_CONNECTION_TERMINATED message structure to convey the
actual message information.

When implementing this callback function, first look at the message type returned in
the dwMessageType parameter and then cast the message structure (pMessage) to that
type to obtain message information. Some messages don't have a defined structure
because they have no parameters. For these messages, the pMessage parameter is
NULL.

in.doc – page 291

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

PDVMESSAGEHANDLER
PDVMESSAGEHANDLER is an application-defined callback function used by the
IDirectPlayVoiceClient and IDirectPlayVoiceServer interfaces to send messages to
the user.

typedef HRESULT (FAR PASCAL *PDVMESSAGEHANDLER)(
 LPVOID pvUserContext,
 DWORD dwMessageType,
 LPVOID lpMessage
);

Parameters

pvUserContext
Pointer to the application-defined structure that will be passed to this callback
function. This is defined in the lpUserContext parameter of the
IDirectPlayVoiceServer::Initialize and IDirectPlayVoiceClient::Initialize
methods.

dwMessageType
One of the following message types.

DVMSGID_CONNECTRESULT
DVMSGID_CREATEVOICEPLAYER
DVMSGID_DELETEVOICEPLAYER
DVMSGID_DISCONNECTRESULT
DVMSGID_GAINFOCUS
DVMSGID_HOSTMIGRATED
DVMSGID_INPUTLEVEL
DVMSGID_LOCALHOSTSETUP
DVMSGID_LOSTFOCUS
DVMSGID_OUTPUTLEVEL
DVMSGID_PLAYEROUTPUTLEVEL
DVMSGID_PLAYERVOICESTART
DVMSGID_PLAYERVOICESTOP
DVMSGID_RECORDSTART
DVMSGID_RECORDSTOP
DVMSGID_SESSIONLOST
DVMSGID_SETTARGETS

lpMessage
Structure containing message information.

in.doc – page 292

Return Values

See the documentation for the individual messages for appropriate return values.
Unless otherwise noted, this function should return DV_OK.

Remarks

When implementing this callback function, you must first look at the message type
returned in the dwMessageType parameter and then cast the message structure
(lpMessage) to that type to obtain message information. Some messages don't have a
defined structure because they have no parameters. For these messages, the
lpMessage parameter is NULL.

Note
This function may be called on multiple different threads at the same time. It
must thus be threadsafe and reentrant.

All message structures have the same name as the corresponding message types
except the prefix is DVMSG_ instead of DVMSGID_. For example, the structure for
DVMSGID_RECORDSTART is DVMSG_RECORDSTART.

The structure sent to the message handler is valid only for the duration of the call.
Therefore, if you want to use any of the information passed into the function after the
handler function has returned you must make a copy of the data.

Callback messages from the same player are serialized. Once you receive a message
from a player, you will not receive another until you have handled the first message,
and the callback function has returned.

Only messages that are specified in the message mask through a call to the
IDirectPlayVoiceClient::Initialize, IDirectPlayVoiceServer::Initialize,
IDirectPlayVoiceClient::SetNotifyMask and
IDirectPlayVoiceServer::SetNotifyMask methods are sent to this callback function.

The DVMSGID_GAINFOCUS and DVMSGID_LOSTFOCUS message structures
have not been implemented in this release of Microsoft® DirectPlay®.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

in.doc – page 293

System Messages
Microsoft® DirectPlay® messages are received by a DirectPlay callback message
handler. DirectPlay uses these messages to convey information from the system to a
DirectPlay application.

· DirectPlay Server Messages

· DirectPlay Client Messages

· DirectPlay Lobby Messages

· DirectPlay Voice Messages

DirectPlay Server Messages

The following messages should be processed by all Microsoft® DirectPlay® server
callback message handlers.

· DPN_MSGID_CREATE_PLAYER

· DPN_MSGID_DESTROY_PLAYER

· DPN_MSGID_INDICATE_CONNECT

· DPN_MSGID_INDICATED_CONNECT_ABORTED

· DPN_MSGID_RECEIVE

· DPN_MSGID_RETURN_BUFFER

The following messages can be processed by DirectPlay server callback message
handlers, but are not required.

· DPN_MSGID_ADD_PLAYER_TO_GROUP

· DPN_MSGID_ASYNC_OP_COMPLETE

· DPN_MSGID_CLIENT_INFO

· DPN_MSGID_CREATE_GROUP

· DPN_MSGID_DESTROY_GROUP

· DPN_MSGID_GROUP_INFO

· DPN_MSGID_ENUM_HOSTS_QUERY

· DPN_MSGID_REMOVE_PLAYER_FROM_GROUP

· DPN_MSGID_SEND_COMPLETE

· DPN_MSGID_SERVER_INFO

DirectPlay Client Messages

The following messages should be processed by all DirectPlay client callback
message handlers.

· DPN_MSGID_RECEIVE

in.doc – page 294

· DPN_MSGID_TERMINATE_SESSION

· DPN_MSGID_RETURN_BUFFER

The following messages can be processed by DirectPlay client callback message
handlers, but are not required.

· DPN_MSGID_ASYNC_OP_COMPLETE

· DPN_MSGID_CLIENT_INFO

· DPN_MSGID_CONNECT_COMPLETE

· DPN_MSGID_ENUM_HOSTS_RESPONSE

· DPN_MSGID_SEND_COMPLETE

· DPN_MSGID_SERVER_INFO

· DPN_MSGID_GROUP_INFO

DirectPlay Lobby Messages

The following messages are handled by lobby client and lobbied application callback
message handlers.

· DPL_MSGID_CONNECT

· DPL_MSGID_CONNECTION_SETTINGS

· DPL_MSGID_DISCONNECT

· DPL_MSGID_RECEIVE

· DPL_MSGID_SESSION_STATUS

DirectPlay Voice Messages

The following messages are handled by Microsoft® DirectPlay® voice callback
message handlers.

· DVMSGID_CONNECTRESULT

· DVMSGID_CREATEVOICEPLAYER

· DVMSGID_DELETEVOICEPLAYER

· DVMSGID_DISCONNECTRESULT

· DVMSGID_GAINFOCUS

· DVMSGID_HOSTMIGRATED

· DVMSGID_INPUTLEVEL

· DVMSGID_LOCALHOSTSETUP

· DVMSGID_LOSTFOCUS

· DVMSGID_OUTPUTLEVEL

· DVMSGID_PLAYEROUTPUTLEVEL

in.doc – page 295

· DVMSGID_PLAYERVOICESTART

· DVMSGID_PLAYERVOICESTOP

· DVMSGID_RECORDSTART

· DVMSGID_RECORDSTOP

· DVMSGID_SESSIONLOST

· DVMSGID_SETTARGETS

DPL_MSGID_CONNECT
Microsoft® DirectPlay® generates a DPL_MSGID_CONNECT message when a lobby
client connects to the lobbied application through the
IDirectPlay8LobbyClient::ConnectApplication method.

DPL_MESSAGE_CONNECT
The DPL_MESSAGE_CONNECT structure is passed with the
DPL_MSGID_CONNECT message.

typedef struct _DPL_MESSAGE_CONNECT{
 DWORD dwSize;
 DPNHANDLE hConnectId;
 PDPL_CONNECTION_SETTINGS pdplConnectionSettings;
 PVOID pvLobbyConnectData;
 DWORD dwLobbyConnectDataSize;
 PVOID pvConnectionContext;
} DPL_MESSAGE_CONNECT, *PDPL_MESSAGE_CONNECT;

dwSize
Size of the DPL_MESSAGE_CONNECT message structure. The application
must set this member before it uses the structure.

hConnectId
Handle used to identify the connection. This handle is used in subsequent calls to
IDirectPlay8LobbyClient::Send and
IDirectPlay8LobbyClient::ReleaseApplication.

pdplConnectionSettings
Pointer to a DPL_CONNECTION_SETTINGS structure with connection
information.

pvLobbyConnectData
Pointer to lobby connection data.

dwLobbyConnectDataSize
Variable of type DWORD specifying the size of the data contained in the
pvLobbyConnectData member.

pvConnectionContext

in.doc – page 296

Context value associated with this connection. For lobbied applications, set this
parameter when this message is received in your message handler to associate the
context value with the connection. This may be set to NULL to disable context
values.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

DPL_MSGID_CONNECTION_SETTI
NGS

The DPL_MSGID_CONNECTION_SETTINGS message is sent from the lobby
client to the lobby application when
IDirectPlay8LobbyClient::SetConnectionSettings is called. It is also sent from the
lobby application to the lobby client when
IDirectPlay8LobbiedApplication::SetConnectionSettings is called. The contents
of the message are valid only for the duration of the message callback. Therefore, if
you want to use the data contained in the message, you must make a copy before
returning. In addition, if you want to use the addressing objects you must call AddRef
on each address to ensure you retain a reference.

DPL_MESSAGE_CONNECTION_SETTIN
GS

The DPL_MESSAGE_CONNECTION_SETTINGS structure is passed with the
DPL_MSGID_CONNECTION_SETTINGS message.

typedef struct _DPL_MESSAGE_CONNECTION_SETTINGS{
 DWORD dwSize;
 DPNHANDLE hSender;
 PDPL_CONNECTION_SETTINGS pdplConnectionSettings;
 PVOID pvConnectionContext
} DPL_MESSAGE_CONNECTION_SETTINGS,
*PDPL_MESSAGE_CONNECTION_SETTINGS;

dwSize
Contains the size of the DPL_MESSAGE_CONNECTION_SETTINGS
structure. It should be set to
sizeof(DPL_MESSAGE_CONNECTION_SETTINGS).

hSender
Contains the handle for the connection that sent this message.

pdplConnectionSettings

in.doc – page 297

Contains a pointer to a DPL_CONNECTION_SETTINGS structure describing
the connection settings for the specified connection.

pvConnectionContext
Pointer to a context value that has been set for the connection.

Remarks

For lobbied applications, the context value is set through the pvConnectionContext
member of the DPL_MESSAGE_CONNECT message structure. When your
message handler receives this message, whatever you set this member to before
returning will be the context value for that connection.

For lobby clients, the pvConnectionContext parameter in the
IDirectPlay8LobbyClient::ConnectApplication method will be used as the
connection's context value if the connection is successful.

Context values are not shared between lobby client and lobbied application. For
example, if you set your context value for a lobby connection in your
IDirectPlay8LobbyClient interface to pointer A and in your
IDirectPlay8LobbiedApplication interface you set it to pointer B, indications in
your IDirectPlay8LobbyClient interface will have pointer A as their context value
and in your IDirectPlay8LobbiedApplication interface pointer B will be the context
value.

You can also set your context values to NULL if you do not want to use this feature.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

DPL_MSGID_DISCONNECT
Microsoft® DirectPlay® generates a DPL_MSGID_DISCONNECT message when a
lobby client disconnects from a lobbied application through the
IDirectPlay8LobbyClient::ReleaseApplication method.

DPL_MESSAGE_DISCONNECT
The DPL_MESSAGE_DISCONNECT structure contains information for the
DPL_MSGID_DISCONNECT system message.

typedef struct _DPL_MESSAGE_DISCONNECT{
 DWORD dwSize;
 DPNHANDLE hDisconnectId;
 HRESULT hrReason;
 PVOID pvConnectionContext;

in.doc – page 298

} DPL_MESSAGE_DISCONNECT, *PDPL_MESSAGE_DISCONNECT;
dwSize

Size of the DPL_MESSAGE_DISCONNECT message structure. The
application must set this member before it uses the structure.

hDisconnectId
Handle specifying the disconnection ID.

hrReason
Reason for the disconnection.

S_OK
It was a standard disconnection.

DPNERR_CONNECTIONLOST
This will be set if the process running the client or application exited
abnormally.

pvConnectionContext
Context value that has been set for the connection.

Remarks

For lobbied applications, the context value is set through the pvConnectionContext
member of the DPL_MESSAGE_CONNECT message structure. When your
message handler receives this message, whatever you set this member to before
returning will be the context value for that connection.

For lobby clients, the pvConnectionContext parameter in the
IDirectPlay8LobbyClient::ConnectApplication method will be used as the
connection's context value if the connection is successful.

Context values are not shared between lobby client and lobbied application. For
example, if you set your context value for a lobby connection in your
IDirectPlay8LobbyClient interface to pointer A and in your
IDirectPlay8LobbiedApplication interface you set it to pointer B, indications in
your IDirectPlay8LobbyClient interface will have pointer A as their context value
and in your IDirectPlay8LobbiedApplication interface pointer B will be the context
value.

You can also set your context values to NULL if you do not want to use this feature.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

in.doc – page 299

DPL_MSGID_RECEIVE
Microsoft® DirectPlay® generates the DPL_MSGID_RECEIVE message when the
target receives a message sent by the IDirectPlay8LobbyClient::Send or
IDirectPlay8LobbiedApplication::Send method.

DPL_MESSAGE_RECEIVE
The DPL_MESSAGE_RECEIVE structure contains information for the
DPL_MSGID_RECEIVE system message.

typedef struct _DPL_MESSAGE_RECEIVE{
 DWORD dwSize;
 DPNHANDLE hSender;
 BYTE* pBuffer;
 DWORD dwBufferSize;
 PVOID pvConnectionContext;
} DPL_MESSAGE_RECEIVE, *PDPL_MESSAGE_RECEIVE;

dwSize
Size of the DPL_MESSAGE_RECEIVE message structure. The application
must set this member before it uses the structure.

hSender
Handle of the client that sent the message.

pBuffer
Pointer to message data.

dwBufferSize
Size of the message data contained in the pBuffer member.

pvConnectionContext
Context value that has been set for the connection.

Remarks

For lobbied applications, the context value is set through the pvConnectionContext
member of the DPL_MESSAGE_CONNECT message structure. When your
message handler receives this message, whatever you set this member to before
returning will be the context value for that connection.

For lobby clients, the pvConnectionContext parameter in the
IDirectPlay8LobbyClient::ConnectApplication method will be used as the
connection's context value if the connection is successful.

Context values are not shared between lobby client and lobbied application. For
example, if you set your context value for a lobby connection in your
IDirectPlay8LobbyClient interface to pointer A and in your
IDirectPlay8LobbiedApplication interface you set it to pointer B, indications in
your IDirectPlay8LobbyClient interface will have pointer A as their context value

in.doc – page 300

and in your IDirectPlay8LobbiedApplication interface pointer B will be the context
value.

You can also set your context values to NULL if you do not want to use this feature.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

DPL_MSGID_SESSION_STATUS
Microsoft® DirectPlay® generates the DPL_MSGID_SESSION_STATUS message
when the session has been updated with a call to the
IDirectPlay8LobbiedApplication::UpdateStatus method.

DPL_MESSAGE_SESSION_STATUS
The DPL_MESSAGE_SESSION_STATUS structure contains information for the
DPL_MSGID_SESSION_STATUS system message.

typedef struct _DPL_MESSAGE_SESSION_STATUS{
 DWORD dwSize;
 DPNHANDLE hSender;
 DWORD dwStatus;
 PVOID pvConnectionContext;
} DPL_MESSAGE_SESSION_STATUS,
*PDPL_MESSAGE_SESSION_STATUS;

dwSize
Size of the DPL_MESSAGE_SESSION_STATUS message structure. The
application must set this member before it uses the structure.

hSender
The handle of the application that sent the status update message.

dwStatus
Updated status of the session. This member can be set to one of the following
values.

DPLSESSION_CONNECTED
The lobbied application is currently connected to a session.

DPLSESSION_COULDNOTCONNECT
The lobbied application could not connect to the session.

DPLSESSION_DISCONNECTED
The lobbied application is currently disconnected from the session.

DPLSESSION_TERMINATED

in.doc – page 301

The connection between session host and the lobbied application has been
terminated.

DPLSESSION_HOSTMIGRATED
The host of a peer-to-peer session has migrated. The local client is not the new
host.

DPLSESSION_HOSTMIGRATEDHERE
The host of a peer-to-peer session has migrated. The local client is the new
host.

pvConnectionContext
Context value that has been set for the connection.

Remarks

For lobbied applications, the context value is set through the pvConnectionContext
member of the DPL_MESSAGE_CONNECT message structure. When your
message handler receives this message, whatever you set this member to before
returning will be the context value for that connection.

For lobby clients, the pvConnectionContext in the
IDirectPlay8LobbyClient::ConnectApplication method will be used as the
connection's context value if the connection is successful.

Context values are not shared between lobby client and lobbied application. For
example, if you set your context value for a lobby connection in your
IDirectPlay8LobbyClient interface to pointer A and in your
IDirectPlay8LobbiedApplication interface you set it to pointer B, indications in
your IDirectPlay8LobbyClient interface will have pointer A as their context value
and in your IDirectPlay8LobbiedApplication interface pointer B will be the context
value.

You can also set your context values to NULL if you do not want to use this feature.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

DPN_MSGID_APPLICATION_DESC
This message indicates that the application description has been changed. There is no
accompanying structure. To determine the new application description, call the
GetApplicationDesc method exposed by IDirectPlay8Peer, IDirectPlay8Client, or
IDirectPlay8Server interfaces.

in.doc – page 302

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

DPN_MSGID_ADD_PLAYER_TO_G
ROUP

Microsoft® DirectPlay® generates the DPN_MSGID_ADD_PLAYER_TO_GROUP
message when a player has been added to a group in a peer-to-peer or client/server
session.

DPNMSG_ADD_PLAYER_TO_GROUP
The DPNMSG_ADD_PLAYER_TO_GROUP structure contains information for
the DPN_MSGID_ADD_PLAYER_TO_GROUP system message.

typedef struct _DPNMSG_ADD_PLAYER_TO_GROUP{
 DWORD dwSize;
 DPNID dpnidGroup;
 PVOID pvGroupContext;
 DPNID dpnidPlayer;
 PVOID pvPlayerContext;
} DPNMSG_ADD_PLAYER_TO_GROUP,
*PDPNMSG_ADD_PLAYER_TO_GROUP;

dwSize
Size of this structure.

dpnidGroup
DPNID of the group to add the player.

pvGroupContext
Group context value.

dpnidPlayer
DPNID of the player added to the group.

pvPlayerContext
Player context value.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 303

DPN_MSGID_ASYNC_OP_COMPLE
TE

Microsoft® DirectPlay® generates the DPN_MSGID_ASYNC_OP_COMPLETE
message when an asynchronous request has completed.

DPNMSG_ASYNC_OP_COMPLETE
The DPNMSG_ASYNC_OP_COMPLETE structure contains information for the
DPN_MSGID_ASYNC_OP_COMPLETE system message.

typedef struct _DPNMSG_ASYNC_OP_COMPLETE{
 DWORD dwSize;
 DPNHANDLE hAsyncOp;
 PVOID pvUserContext;
 HRESULT hResultCode;
} DPNMSG_ASYNC_OP_COMPLETE,
*PDPNMSG_ASYNC_OP_COMPLETE;

dwSize
Size of this structure.

hAsyncOp
Asynchronous operation handle.

pvUserContext
Supplied user context.

hResultCode
HRESULT indicating the result of the asynchronous operation.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_CLIENT_INFO
Microsoft® DirectPlay® generates the DPN_MSGID_CLIENT_INFO message when
client data is modified during a client/server session.

DPNMSG_CLIENT_INFO
The DPNMSG_CLIENT_INFO structure contains information for the
DPN_MSGID_CLIENT_INFO system message.

typedef struct _DPNMSG_CLIENT_INFO{

in.doc – page 304

 DWORD dwSize;
 DPNID dpnidClient;
 PVOID pvPlayerContext;
} DPNMSG_CLIENT_INFO, *PDPNMSG_CLIENT_INFO;

dwSize
Size of this structure.

dpnidClient
DPNID of the client for client information.

pvPlayerContext
Player context value.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_CONNECT_COMPLE
TE

Microsoft® DirectPlay® generates the DPN_MSGID_CONNECT_COMPLETE
message when the connection attempt has been completed in a peer-to-peer or
client/server session. This message is generated whether or not the connection was
successful.

DPNMSG_CONNECT_COMPLETE
The DPNMSG_CONNECT_COMPLETE structure contains information for the
DPN_MSGID_CONNECT_COMPLETE system message.

typedef struct _DPNMSG_CONNECT_COMPLETE{
 DWORD dwSize;
 DPNHANDLE hAsyncOp;
 PVOID pvUserContext;
 HRESULT hResultCode;
 PVOID pvApplicationReplyData;
 DWORD dwApplicationReplyDataSize;
} DPNMSG_CONNECT_COMPLETE, *PDPNMSG_CONNECT_COMPLETE;

dwSize
Size of this structure.

hAsyncOp
Asynchronous operation handle.

pvUserContext

in.doc – page 305

User context supplied when the IDirectPlay8Peer::Connect or
IDirectPlay8Client::Connect methods are called.

hResultCode
HRESULT describing the result of the connection attempt. See the Return Values
section in the IDirectPlay8Peer::Connect or IDirectPlay8Client::Connect
method for more information. Additionally,
DPNERR_PLAYERNOTREACHABLE will be returned if a player has tried to
join a peer-to-peer session where at least one other existing player in the session
cannot connect to the joining player.

pvApplicationReplyData
Connection reply data returned from the host or server.

dwApplicationReplyDataSize
Size of the data, in bytes, of the pvApplicationReplyData member.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_CREATE_GROUP
Microsoft® DirectPlay® generates the DPN_MSGID_CREATE_GROUP message
when a group is created.

DPNMSG_CREATE_GROUP
The DPNMSG_CREATE_GROUP structure contains information for the
DPN_MSGID_CREATE_GROUP system message.

typedef struct _DPNMSG_CREATE_GROUP{
 DWORD dwSize;
 DPNID dpnidGroup;
 DPNID dpnidOwner;
 PVOID pvGroupContext;
} DPNMSG_CREATE_GROUP, *PDPNMSG_CREATE_GROUP;

dwSize
Size of this structure.

dpnidGroup
DPNID of the of the created group.

dpnidOwner
DPNID of the of the group's owner. This value is only set for groups that have
the DPNGROUP_AUTODESTRUCT flag set in the dwGroupFlags member of
the DPN_GROUP_INFO structure.

pvGroupContext

in.doc – page 306

Group context value.

Remarks

The only method of setting the group context value is through this system message.
Group context values once set cannot be changed.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_CREATE_PLAYER
Microsoft® DirectPlay® generates the DPN_MSGID_CREATE_PLAYER message
when a player is added to a peer-to-peer or client/server session.

DPNMSG_CREATE_PLAYER
The DPNMSG_CREATE_PLAYER structure contains information for the
DPN_MSGID_CREATE_PLAYER system message.

typedef struct _DPNMSG_CREATE_PLAYER{
 DWORD dwSize;
 DPNID dpnidPlayer;
 PVOID pvPlayerContext;
} DPNMSG_CREATE_PLAYER, *PDPNMSG_CREATE_PLAYER;

dwSize
Size of this structure.

dpnidPlayer
DPNID of the player that was added to the session.

pvPlayerContext
Player context value.

Remarks

The only method of setting the player context value is through this system message.
You can either set the player context value directly, through this message, or
indirectly through DPN_MSGID_INDICATE_CONNECT. Once a player context
value has been set, it cannot be changed.

in.doc – page 307

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_DESTROY_PLAYER
Microsoft® DirectPlay® generates the DPN_MSGID_DESTROY_PLAYER
message when a player leaves a peer-to-peer or client/server session.

DPNMSG_DESTROY_PLAYER
The DPNMSG_DESTROY_PLAYER structure contains information for the
DPN_MSGID_DESTROY_PLAYER system message.

typedef struct _DPNMSG_DESTROY_PLAYER{
 DWORD dwSize;
 DPNID dpnidPlayer;
 PVOID pvPlayerContext;
 DWORD dwReason;
} DPNMSG_DESTROY_PLAYER, *PDPNMSG_DESTROY_PLAYER;

dwSize
Size of this structure.

dpnidPlayer
DPNID of the player deleted from the session.

pvPlayerContext
Player context value.

dwReason
One of the following flags indicating why the player was destroyed.

DPNDESTROYPLAYERREASON_NORMAL
The player is being deleted for normal reasons.

DPNDESTROYPLAYERREASON_CONNECTIONLOST
The player is being deleted because the connection was lost.

DPNDESTROYPLAYERREASON_SESSIONTERMINATED
The player is being deleted because the session was terminated.

DPNDESTROYPLAYERREASON_HOSTDESTROYEDPLAYER
The player is being deleted because the host called
IDirectPlay8Peer::DestroyPeer.

Remarks

In client/server mode, this message is received only by the server. In peer-to-peer
mode, all players receive this message.

in.doc – page 308

You may receive DPN_MSGID_CREATE_PLAYER and
DPN_MSGID_DESTROY_PLAYER messages on different threads. However, you
will not receive a DPN_MSGID_DESTROY_PLAYER message before your
callback function has returned from receiving a DPN_MSGID_CREATE_PLAYER
message.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_DESTROY_GROUP
Microsoft® DirectPlay® generates the DPN_MSGID_DESTROY_GROUP message
when a group is destroyed from a peer-to-peer or client/server session.

DPNMSG_DESTROY_GROUP
The DPNMSG_DESTROY_GROUP structure contains information for the
DPN_MSGID_DESTROY_GROUP system message.

typedef struct _DPNMSG_DESTROY_GROUP{
 DWORD dwSize;
 DPNID dpnidGroup;
 PVOID pvGroupContext;
 DWORD dwReason;
} DPNMSG_DESTROY_GROUP, *PDPNMSG_DESTROY_GROUP;

dwSize
Size of this structure.

dpnidGroup
DPNID of the group deleted from the session.

pvGroupContext
Group context value.

dwReason
One of the following flags indicating why the player was destroyed.

DPNDESTROYGROUPREASON_SESSIONTERMINATED
The group is being destroyed because the session was terminated.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 309

DPN_MSGID_ENUM_HOSTS_QUE
RY

Microsoft® DirectPlay® sends the DPN_MSGID_ENUM_HOSTS_QUERY
message to the host's message handler when a peer or client is enumerating the
available hosts.

DPNMSG_ENUM_HOSTS_QUERY
The DPNMSG_ENUM_HOSTS_QUERY structure contains information for the
DPN_MSGID_ENUM_HOSTS_QUERY system message.

typedef struct _DPNMSG_ENUM_HOSTS_QUERY{
 DWORD dwSize;
 IDirectPlay8Address* pAddressSender;
 IDirectPlay8Address* pAddressDevice;
 PVOID pvReceivedData;
 DWORD dwReceivedDataSize;
 DWORD dwMaxResponseDataSize;
 PVOID pvResponseData;
 DWORD dwResponseDataSize;
 PVOID pvResponseContext;
} DPNMSG_ENUM_HOSTS_QUERY, *PDPNMSG_ENUM_HOSTS_QUERY;

dwSize
Size of this structure.

pAddressSender
Pointer an IDirectPlay8Address interface specifying the address of the sender.
You must call IDirectPlay8Address::AddRef to increment the interface's
reference count. Call IDirectPlay8Address::Release when you no longer need
the interface.

pAddressDevice
Pointer an IDirectPlay8Address interface specifying the address of the device.
You must call IDirectPlay8Address::AddRef to increment the interface's
reference count. Call IDirectPlay8Address::Release when you no longer need
the interface.

pvReceivedData
Pointer to the data received from the enumeration.

dwReceivedDataSize
Size of the data pointed to in the pvReceivedData member.

dwMaxResponseDataSize
Maximum allowed size for the enumeration response.

pvResponseData

in.doc – page 310

Pointer to the response data from the enumeration. This data must be valid
beyond the scope of the callback message handler. It cannot be stack-based. You
will receive a DPN_MSGID_RETURN_BUFFER message when Microsoft®
DirectPlay® is finished with this buffer.

dwResponseDataSize
Size of the data pointed to in the pvResponseData member.

pvUserContext
Pointer to a response context value. This value will be passed to the host's
message handler with the DPN_MSGID_RETURN_BUFFER message as the
pvUserContext member of the associated structure.

Remarks

When you respond normally to this query, DirectPlay will send you a
DPN_MSGID_RETURN_BUFFER message once the buffer is no longer needed.
You can then safely free the buffer.

You can reject the query by returning a value that is not equal to S_OK. However,
when you reject a query, DirectPlay does not send a reply, does not need a reply
buffer, and does not generate a DPN_MSGID_RETURN_BUFFER message.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_ENUM_HOSTS_RESP
ONSE

Microsoft® DirectPlay® sends the DPN_MSGID_ENUM_HOSTS_RESPONSE
message to a peer or client's message handler to convey the host's response to an
enumeration request.

DPNMSG_ENUM_HOSTS_RESPONSE
The DPNMSG_ENUM_HOSTS_RESPONSE structure contains information for the
DPN_MSGID_ENUM_HOSTS_RESPONSE system message.

typedef struct _DPNMSG_ENUM_HOSTS_RESPONSE{
 DWORD dwSize;
 IDirectPlay8Address* pAddressSender;
 IDirectPlay8Address* pAddressDevice;
 const DPN_APPLICATION_DESC* pApplicationDescription;
 PVOID pvResponseData;
 DWORD dwResponseDataSize;

in.doc – page 311

 PVOID pvUserContext;
 DWORD dwRoundTripLatencyMS;
} DPNMSG_ENUM_HOSTS_RESPONSE,
*PDPNMSG_ENUM_HOSTS_RESPONSE;

dwSize
Size of this structure.

pAddressSender
Pointer to an IDirectPlay8Address interface specifying the address of the host
responding to the enumeration. You must call IDirectPlay8Address::AddRef to
increment the interface's reference count. Call IDirectPlay8Address::Release
when you no longer need the interface.

pAddressDevice
Pointer an IDirectPlay8Address interface specifying the address of the device.
You must call IDirectPlay8Address::AddRef to increment the interface's
reference count. Call IDirectPlay8Address::Release when you no longer need
the interface.

pApplicationDescription
Pointer to a DPN_APPLICATION_DESC structure containing the application
description.

pvResponseData
Pointer to the response data from the enumeration.

dwResponseDataSize
Size of the data pointed to in the pvResponseData member.

pvUserContext
Pointer to the user context value. This value is the same as the user context value
passed to IDirectPlay8Peer::EnumHosts or IDirectPlay8Client::EnumHosts.

dwRoundTripLatencyMS
Latency measured in milliseconds.

Remarks

Because there is no buffer to fill, this message does not generate a
DPN_MSGID_RETURN_BUFFER message.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_GROUP_INFO
Microsoft® DirectPlay® generates the DPN_MSGID_GROUP_INFO message when
group data is modified during a peer-to-peer or client/server session.

in.doc – page 312

DPNMSG_GROUP_INFO
The DPNMSG_GROUP_INFO structure contains information for the
DPN_MSGID_GROUP_INFO system message.

typedef struct _DPNMSG_GROUP_INFO{
 DWORD dwSize;
 DPNID dpnidGroup;
 PVOID pvGroupContext;
} DPNMSG_GROUP_INFO, *PDPNMSG_GROUP_INFO;

dwSize
Size of this structure.

dpnidGroup
DPNID of the group for group information.

pvGroupContext
Group context value.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_HOST_MIGRATE
Microsoft® DirectPlay® generates the DPN_MSGID_HOST_MIGRATE message if
the DPNSESSION_MIGRATE_HOST flag is set in the
DPN_APPLICATION_DESC structure and the host has migrated.

DPNMSG_HOST_MIGRATE
The DPNMSG_HOST_MIGRATE structure contains information for the
DPN_MSGID_HOST_MIGRATE system message.

typedef struct _DPNMSG_HOST_MIGRATE{
 DWORD dwSize;
 DPNID dpnidNewHost;
 PVOID pvPlayerContext;
} DPNMSG_HOST_MIGRATE, *PDPNMSG_HOST_MIGRATE;

dwSize
Size of this structure.

dpnidNewHost
DPNID of the player that is now hosting the session.

pvPlayerContext
Player context value.

in.doc – page 313

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_INDICATE_CONNECT
Microsoft® DirectPlay® generates the DPN_MSGID_INDICATE_CONNECT
message when a player attempts to connect to a peer-to-peer or client/server session.

DPNMSG_INDICATE_CONNECT
The DPNMSG_INDICATE_CONNECT structure contains information for the
DPN_MSGID_INDICATE_CONNECT system message.

This structure gives the opportunity for the host application to allow or reject the
connection based on user data and provide reply information to the connecting
application.

typedef struct {
 DWORD dwSize;
 PVOID pvUserConnectData;
 DWORD dwUserConnectDataSize;
 PVOID pvReplyData;
 DWORD dwReplyDataSize;
 PVOID pvReplyContext;
 PVOID pvPlayerContext;
 IDirectPlay8Address* pAddressPlayer;
 IDirectPlay8Address* pAddressDevice;
} DPNMSG_INDICATE_CONNECT, *PDPNMSG_INDICATE_CONNECT;

dwSize
Size of this structure.

pvUserConnectData
Data of the connecting player.

dwUserConnectDataSize
Size of the data, in bytes, contained in the pvUserConnectData member.

pvReplyData
Connection reply data. This data must be valid beyond the scope of the callback
message handler. You will receive a DPN_MSGID_RETURN_BUFFER
message when Microsoft® DirectPlay® is finished with this buffer.

dwReplyDataSize
Size of the data, in bytes, contained in the pvReplyData member.

pvReplyContext

in.doc – page 314

Buffer context for pvReplyData. This value will be passed to the host's message
handler with the DPN_MSGID_RETURN_BUFFER message as the
pvUserContext member of the associated structure.

pvPlayerContext
Player context preset.

pAddressPlayer
Pointer to an IDirectPlay8Address interface for the connecting player. You must
call IDirectPlay8Address::AddRef to increment the interface's reference count.
Call IDirectPlay8Address::Release when you no longer need the interface.

pAddressDevice
Pointer to an IDirectPlay8Address interface for the device receiving the connect
attempt. You must call IDirectPlay8Address::AddRef to increment the
interface's reference count. Call IDirectPlay8Address::Release when you no
longer need the interface.

Remarks

Return S_OK to allow the player to join the session. Any other return value will reject
the requested connection. The hResultCode member of the structure associated with
the DPN_MSGID_CONNECT_COMPLETE message that is sent to the player
requesting a connection will be set to S_OK if the connection was successful. If the
connection is rejected, hResultCode will be set to
DPNERR_HOSTREJECTEDCONNECTION, not the value you return from this
message.

When an DPN_MSGID_INDICATE_CONNECT notification arrives on the host
player's message handler, setting pvPlayerContext before returning the thread will
preset the player context value on the respective
DPN_MSGID_CREATE_PLAYER notification. This feature allows you to pass a
player context value to DPN_MSGID_CREATE_PLAYER.

If you set a player context value, that value is not frozen until the subsequent
DPN_MSGID_CREATE_PLAYERmessage has been processed. You thus have the
option of modifying this player context value when you process
DPN_MSGID_CREATE_PLAYER.

If a client drops the connection after the server has processed the
DPN_MSGID_INDICATE_CONNECT message but before it has processed
DPN_MSGID_CREATE_PLAYER, the server will receive a
DPN_MSGID_INDICATED_CONNECT_ABORTED message. If you receive this
message, free any memory that you allocated while processing
DPN_MSGID_INDICATE_CONNECT. Once
DPN_MSGID_CREATE_PLAYER has been processed, this memory should be
freed when you process DPN_MSGID_DESTROY_PLAYER.

If you specify a value for pvUserConnectData, you will subsequently be sent a
DPN_MSGID_RETURN_BUFFER message to notify you that you can safely free
the buffer.

in.doc – page 315

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_INDICATED_CONNEC
T_ABORTED

Microsoft® DirectPlay® generates the
DPN_MSGID_INDICATED_CONNECT_ABORTED message if a player's
connection drops after it was indicated on the host, but prior to being added to the
session though DPN_MSGID_CREATE_PLAYER.

DPNMSG_INDICATED_CONNECT_ABOR
TED

The DPNMSG_INDICATED_CONNECT_ABORTED structure contains
information for the DPN_MSGID_INDICATED_CONNECT_ABORTED system
message.

typedef struct {
 DWORD dwSize;
 PVOID pvPlayerContext;
} DPNMSG_INDICATED_CONNECT_ABORTED,
*PDPNMSG_INDICATED_CONNECT_ABORTED;

dwSize
Size of this structure.

pvPlayerContext
Player context value.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_PEER_INFO
Microsoft® DirectPlay® generates the DPN_MSGID_PEER_INFO message when
peer data is modified during a peer-to-peer session.

in.doc – page 316

DPNMSG_PEER_INFO
The DPNMSG_PEER_INFO structure contains information for the
DPN_MSGID_PEER_INFO system message.

typedef struct {
 DWORD dwSize;
 DPNID dpnidPeer;
 PVOID pvPlayerContext;
} DPNMSG_PEER_INFO, *PDPNMSG_PEER_INFO;

dwSize
Size of this structure.

dpnidPeer
DPNID of the peer for peer information.

pvPlayerContext
Player context value.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_RECEIVE
Microsoft® DirectPlay® generates the DPN_MSGID_RECEIVE message when a
message has been processed by the receiver.

DPNMSG_RECEIVE
The DPNMSG_RECEIVE structure contains information for the
DPN_MSGID_RECEIVE system message.

typedef struct {
 DWORD dwSize;
 DPNID dpnidSender;
 PVOID pvPlayerContext;
 PBYTE pReceiveData;
 DWORD dwReceiveDataSize;
 DPNHANDLE hBufferHandle;
} DPNMSG_RECEIVE, *PDPNMSG_RECEIVE;

dwSize
Size of this structure.

dpnidSender

in.doc – page 317

DPNID of the player that sent the message.

pvPlayerContext
Player context value of the player that sent the message.

pReceiveData
PBYTE pointer to the message data buffer. This buffer is normally only valid
while the DPN_MSGID_RECEIVE message is being processed by the callback
message handler. Because you should not spend large amounts of time
processing messages, you should copy this data, and process the message.
Alternatively, you can return DPNSUCCESS_PENDING from the callback
message handler. Doing so transfers ownership of the buffer to the application. If
you return DPNSUCCESS_PENDING, you must call
IDirectPlay8Peer::ReturnBuffer, IDirectPlay8Client::ReturnBuffer, or
IDirectPlay8Server::ReturnBuffer when you are finished with the buffer. Pass
the method the value you receive in the hBufferHandle member to identify the
buffer. If you fail to call ReturnBuffer, you will create a memory leak.

dwReceiveDataSize
Size of the data, in bytes, of the pReceiveData member.

hBufferHandle
Buffer handle for the pReceiveData member. If you have returned
DPNSUCCESS_PENDING , pass this value to ReturnBuffer to notify
Microsoft® DirectPlay® to free the buffer.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_REMOVE_PLAYER_F
ROM_GROUP

Microsoft® DirectPlay® generates the
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP message when a player has
been deleted from a group in a peer-to-peer or client/server session.

DPNMSG_REMOVE_PLAYER_FROM_GR
OUP

The DPNMSG_REMOVE_PLAYER_FROM_GROUP structure contains
information for the DPN_MSGID_REMOVE_PLAYER_FROM_GROUP system
message.

typedef struct _DPNMSG_REMOVE_PLAYER_FROM_GROUP{
 DWORD dwSize;

in.doc – page 318

 DPNID dpnidGroup;
 PVOID pvGroupContext;
 DPNID dpnidPlayer;
 PVOID pvPlayerContext;
} DPNMSG_REMOVE_PLAYER_FROM_GROUP,
*PDPNMSG_REMOVE_PLAYER_FROM_GROUP;

dwSize
Size of this structure.

dpnidGroup
DPNID of the group that the player was deleted from.

pvGroupContext
Group context value.

dpnidPlayer
DPNID of the player deleted from the group.

pvPlayerContext
Player context value.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_RETURN_BUFFER
Microsoft® DirectPlay® generates the DPN_MSGID_RETURN_BUFFER message
when DirectPlay is done with a user buffer.

DPNMSG_RETURN_BUFFER
The DPNMSG_RETURN_BUFFER structure contains information for the
DPN_MSGID_RETURN_BUFFER system message.

typedef struct {
 DWORD dwSize;
 HRESULT hResultCode;
 PVOID pvBuffer;
 PVOID pUserContext;
} DPNMSG_RETURN_BUFFER, *PDPNMSG_RETURN_BUFFER;

dwSize
Size of this structure.

hResultCode
Return value of the operation. This will be set to
DPNERR_ENUMRESPONSETOOLARGE if the response to a
DPN_MSGID_ENUM_HOSTS_QUERY message is too large.

in.doc – page 319

pvBuffer
Pointer to the buffer being returned.

pUserContext
Context value associated with the buffer.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_SEND_COMPLETE
Microsoft® DirectPlay® generates the DPN_MSGID_SEND_COMPLETE message
when a send message request has completed.

DPNMSG_SEND_COMPLETE
The DPNMSG_SEND_COMPLETE structure contains information for the
DPN_MSGID_SEND_COMPLETE system message.

typedef struct {
 DWORD dwSize;
 DPNHANDLE hAsyncOp;
 PVOID pvUserContext;
 HRESULT hResultCode;
 DWORD dwSendTime;
} DPNMSG_SEND_COMPLETE, *PDPNMSG_SEND_COMPLETE;

dwSize
Size of this structure.

hAsyncOp
Asynchronous operation handle.

pvUserContext
User context supplied in the IDirectPlay8Client::Send,
IDirectPlay8Peer::SendTo and IDirectPlay8Server::SendTo methods.

hResultCode
HRESULT indicating the result of the send message request.

dwSendTime
Total time, in milliseconds, between send call and completion.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 320

DPN_MSGID_SERVER_INFO
Microsoft® DirectPlay® generates the DPN_MSGID_SERVER_INFO message
when server data is modified during a client/server session.

DPNMSG_SERVER_INFO
The DPNMSG_SERVER_INFO structure contains information for the
DPN_MSGID_SERVER_INFO system message.

typedef struct {
 DWORD dwSize;
 DPNID dpnidServer;
 PVOID pvPlayerContext;
} DPNMSG_SERVER_INFO, *PDPNMSG_SERVER_INFO;

dwSize
Size of this structure.

dpnidServer
DPNID of the server for server information.

pvPlayerContext
Player context value.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_MSGID_TERMINATE_SESSIO
N

Microsoft® DirectPlay® generates the DPN_MSGID_TERMINATE_SESSION
message when a session is terminated by the host.

DPNMSG_TERMINATE_SESSION
The DPNMSG_TERMINATE_SESSION structure contains information for the
DPN_MSGID_TERMINATE_SESSION system message.

typedef struct {
 DWORD dwSize;
 HRESULT hResultCode;
 PVOID pvTerminateData;
 DWORD dwTerminateDataSize;
} DPNMSG_TERMINATE_SESSION, *PDPNMSG_TERMINATE_SESSION;

in.doc – page 321

dwSize
Size of this structure.

hResultCode
Specifies how the session was terminated. This member is set to
DPNERR_HOSTTERMINATEDSESSION if the session was peer-to-peer, and
the host called IDirectPlay8Peer::TerminateSession. If the session was ended
by the host calling Close, or if the host stops responding, hResultCode is set to
DPNERR_CONNECTIONLOST.

pvTerminateData
Termination data. If hResultCode is set to
DPNERR_HOSTTERMINATEDSESSION, pvTerminateData points to the
data block that the host passed through the pvTerminateData parameter of
IDirectPlay8Peer::TerminateSession.

dwTerminateDataSize
Size of the data block pointed to by pvTerminateData. This member will be
zero if pvTerminateData is set to NULL.

Remarks

In a peer-peer game that permits host-migration, if the current host calls Close or
stops responding, the session does not terminate. Instead, the host migrates and all
nonhost players receive a DPN_MSGID_DESTROY_PLAYER message for the
host's players, and a DPN_MSGID_HOST_MIGRATE message for the new host.
To prevent host migration, the host must shut down the session by calling
IDirectPlay8Peer::TerminateSession. When the host terminates a session this way,
all players receive a DPN_MSGID_TERMINATE_SESSION message with
hResultCode set to DPNERR_HOSTTERMINATEDSESSION. The session will
terminate, generating DPN_MSGID_DESTROY_PLAYER messages for every
player.

In a peer-peer game that does not permit host-migration, the session is terminated if
the host calls IDirectPlay8Peer::Close, or stops responding. In that case,
DPN_MSGID_TERMINATE_SESSION is sent to all players with hResultCode
set to DPNERR_CONNECTIONLOST. The session will terminate, generating
DPN_MSGID_DESTROY_PLAYER messages for every player.

In a client/server game, the session is also terminated if the host calls
IDirectPlay8Server::Close or stops responding. In that case,
DPN_MSGID_TERMINATE_SESSION is sent to all connected clients with
hResultCode set to DPNERR_CONNECTIONLOST. The
DPN_MSGID_DESTROY_PLAYER message not sent to clients. If the server
disconnected by calling IDirectPlay8Server::Close, it will receive
DPN_MSGID_DESTROY_PLAYER messages for all players, including its own.
Otherwise, the server will only receive DPN_MSGID_DESTROY_PLAYER for the
clients' players.

Note

in.doc – page 322

The DPN_MSGID_TERMINATE_SESSION message typically arrives before
any DPN_MSGID_DESTROY_PLAYER messages. However, the order of
arrival is not guaranteed.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DVMSGID_CONNECTRESULT
Microsoft® DirectPlay® Voice generates the DVMSGID_CONNECTRESULT
message when the connect request generated through a call to the
IDirectPlayVoiceClient::Connect method has completed. This message is sent only
if the Connect method is called asynchronously.

DVMSG_CONNECTRESULT
The DVMSG_CONNECTRESULT structure contains information for the
DVMSGID_CONNECTRESULT system message.

typedef struct {
 DWORD dwSize;
 HRESULT hrResult;
} DVMSG_CONNECTRESULT, *LPDVMSG_CONNECTRESULT,
*PDVMSG_CONNECTRESULT;

dwSize
Size of the DVMSG_CONNECTRESULT message structure.

hrResult
Result of the connection attempt.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_CREATEVOICEPLAYER
Microsoft® DirectPlay® Voice generates the DVMSGID_CREATEVOICEPLAYER
message when a new player joins the voice session.

Upon connecting to a voice session, clients will receive one of these messages for
each player in the voice session. These messages are sent only to clients in peer-to-
peer voice sessions.

The host receives these messages when players join the voice session.

in.doc – page 323

Players do not join the voice session until they have called
IDirectPlayVoiceClient::Connect. Therefore, it is possible for a player to be in the
transport session but not part of the voice session.

DVMSG_CREATEVOICEPLAYER
The DVMSG_CREATEVOICEPLAYER structure contains information for the
DVMSGID_CREATEVOICEPLAYER system message.

typedef struct {
 DWORD dwSize;
 DVID dvidPlayer;
 DWORD dwFlags;
 PVOID pvPlayerContext;
} DVMSG_CREATEVOICEPLAYER, *LPDVMSG_CREATEVOICEPLAYER,
*PDVMSG_CREATEVOICEPLAYER;

dwSize
Size of the this message structure.

dvidPlayer
DVID of the player who connected.

dwFlags
Flag specifying information about the player:

DVPLAYERCAPS_HALFDUPLEX
The specified player is running in half duplex mode. The player will only be
able to receive voice, not transmit it.

DVPLAYERCAPS_LOCAL
The player is the local player.

pvPlayerContext
Player context value for the player in the voice session. This value is set through
this parameter when this message is received.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_DELETEVOICEPLAYER
For clients, Microsoft® DirectPlay® Voice generates the
DVMSGID_DELETEVOICEPLAYER message when a player quits the voice
session. This message is available only to clients in peer-to-peer voice sessions.

For the host, Microsoft® DirectPlay® Voice generates the
DVMSGID_DELETEVOICEPLAYER message when a player quits the voice
session.

in.doc – page 324

Players do not leave the voice session until they have called
IDirectPlayVoiceClient::Disconnect or they have disconnected from the transport
session. Therefore, a client might be part of the transport session but not part of the
voice session.

DVMSG_DELETEVOICEPLAYER
The DVMSG_DELETEVOICEPLAYER structure contains information for the
DVMSGID_DELETEVOICEPLAYER system message.

typedef struct {
 DWORD dwSize;
 DVID dvidPlayer;
 PVOID pvPlayerContext;
} DVMSG_DELETEVOICEPLAYER, *LPDVMSG_DELETEVOICEPLAYER,
*PDVMSG_DELETEVOICEPLAYER;

dwSize
Size of the DVMSG_DELETEVOICEPLAYER message structure.

dvidPlayer
DVID of player who disconnected.

pvPlayerContext
Pointer to the context value set for the player. This value is set through the
pvPlayerContext member of the DVMSG_CREATEVOICEPLAYER
message structure.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_DISCONNECTRESULT
Microsoft® DirectPlay® Voice generates the DVMSGID_DISCONNECTRESULT
message when the disconnect request generated through a call to the
IDirectPlayVoiceClient::Disconnect method has completed. This message is sent
only if the Disconnect method is called asynchronously.

DVMSG_DISCONNECTRESULT
The DVMSG_DISCONNECTRESULT structure contains information for the
DVMSGID_DISCONNECTRESULT system message.

typedef struct {
 DWORD dwSize;
 HRESULT hrResult;

in.doc – page 325

} DVMSG_DISCONNECTRESULT, *LPDVMSG_DISCONNECTRESULT,
*PDVMSG_DISCONNECTRESULT;

dwSize
Size of the DVMSG_DISCONNECTRESULT message structure.

hrResult
Result of the disconnect request.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_GAINFOCUS
The DVMSGID_GAINFOCUS message is sent to notify you that you have begun
capturing audio. It is sent when an application that has lost capture focus recovers it.
There is no data associated with this message. Refer to the Microsoft® DirectSound®
documentation for more information on capturing audio.

DVMSGID_HOSTMIGRATED
Microsoft® DirectPlay® Voice generates the DVMSGID_HOSTMIGRATED
message when the voice host has changed.

DVMSG_HOSTMIGRATED
The DVMSG_HOSTMIGRATED structure contains information for the
DVMSGID_HOSTMIGRATED system message.

typedef struct {
 DWORD dwSize;
 DVID dvidNewHostID;
 LPDIRECTPLAYVOICESERVER pdvServerInterface;
} DVMSG_HOSTMIGRATED, *LPDVMSG_HOSTMIGRATED,
*PDVMSG_HOSTMIGRATED;

dwSize
Size of the DVMSG_HOSTMIGRATED message structure.

dvidNewHostID
DVID of the new host.

pdvServerInterface
If the local client has become the new voice session host, this member will point
to a newly created IDirectPlayVoiceServer object that can be used by the local
client for providing host services. If the local client is not the new host, then this
member will be NULL. If this parameter points to an IDirectPlayVoiceServer

in.doc – page 326

interface, you must call IDirectPlayVoiceServer::AddRef to increment the
interface's reference count. Call IDirectPlayVoiceServer::Release when you no
longer need the interface.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_INPUTLEVEL
Microsoft® DirectPlay® Voice generates the DVMSGID_INPUTLEVEL message
periodically to notify the user of the input level from the microphone. The period of
notification is set by the dwNotifyPeriod member of the DVCLIENTCONFIG
structure. If the notification period is set to 0, this message will not be sent. In
addition, if the client is running in half duplex mode, this message is not available.

DVMSG_INPUTLEVEL
The DVMSG_INPUTLEVEL structure contains information for the
DVMSGID_INPUTLEVEL system message.

typedef struct {
 DWORD dwSize;
 DWORD dwPeakLevel;
 LONG lRecordVolume;
 PVOID pvLocalPlayerContext;
} DVMSG_INPUTLEVEL, *LPDVMSG_INPUTLEVEL,
*PDVMSG_INPUTLEVEL;

dwSize
Size of the DVMSG_INPUTLEVEL message structure.

dwPeakLevel
Integer representing peak level across the current frame, which corresponds to
approximately 1/10 second of audio stream. The current frame typically lags 50-
200 ms behind real-time. This value can range from 0 through 99, with 0 being
completely silent and 99 being the highest possible input level.

lRecordVolume
Current recording volume for the client. The value can range from -10,000 to 0.
This member is available even when automatic gain control is active.

pvLocalPlayerContext
Pointer to the context value set for the local player. This value is set through the
pvPlayerContext member of the DVMSG_CREATEVOICEPLAYER
message structure.

in.doc – page 327

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_LOCALHOSTSETUP
The DVMSGID_LOCALHOSTSETUP message is sent when the local client is
elected to become the new voice host during host migration. The message is sent
before the DVMSGID_HOSTMIGRATED message and gives you the chance to set
the callback function and context value that will be used when creating the new host
object. If you do not set either of the values, then the new server interface will have
no callback function. Once the application returns from handling this message it will
receive the DVMSGID_HOSTMIGRATED message. The new message has the
following associated structure, which is passed in the void * field of the message
handler.

DVMSG_LOCALHOSTSETUP
The DVMSG_LOCALHOSTSETUP structure contains information for the
DVMSGID_LOCALHOSTSETUP system message.

typedef struct {
 DWORD dwSize;
 PVOID pvContext;
 PDVMESSAGEHANDLER pMessageHandler;
} DVMSG_LOCALHOSTSETUP, *LPDVMSG_LOCALHOSTSETUP,
*PDVMSG_LOCALHOSTSETUP;

dwSize
Size of the DVMSG_LOCALHOSTSETUP message structure.

pvContext
Set to the context value you want to set for the new server.

pMessageHandler
Set to the callback function to be used for the new server.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

in.doc – page 328

DVMSGID_LOSTFOCUS
The DVMSGID_LOSTFOCUS message is sent to notify you that you have stopped
capturing audio. It is sent when an application that has capture focus loses it to
another application. There is no data associated with this message. Refer to the
Microsoft® DirectSound® documentation for more information on capturing audio.

DVMSGID_OUTPUTLEVEL
Microsoft® DirectPlay® Voice generates the DVMSGID_OUTPUTLEVEL message
periodically to notify the user of the output level of playback. The period of
notification is set by the dwNotifyPeriod member of the DVCLIENTCONFIG
structure. If the notification period is set to 0, this message will not be sent.

DVMSG_OUTPUTLEVEL
The DVMSG_OUTPUTLEVEL structure contains information for the
DVMSGID_OUTPUTLEVEL system message.

typedef struct {
 DWORD dwSize;
 DWORD dwPeakLevel;
 LONG lOutputVolume;
 PVOID pvLocalPlayerContext;
} DVMSG_OUTPUTLEVEL, *LPDVMSG_OUTPUTLEVEL,
*PDVMSG_OUTPUTLEVEL;

dwSize
Size of the DVMSG_OUTPUTLEVEL message structure.

dwPeakLevel
Integer representing the current output level of playback. This value is in the
range from 0 through 99, with 0 being completely silent and 99 being the highest
possible output level.

lOutputVolume
Current playback volume for the client.

pvLocalPlayerContext
Pointer to the context value set for the local player. This value is set through the
pvPlayerContext member of the DVMSG_CREATEVOICEPLAYER
message structure.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

in.doc – page 329

DVMSGID_PLAYEROUTPUTLEVEL
Microsoft® DirectPlay® Voice generates the
DVMSGID_PLAYEROUTPUTLEVEL message periodically to notify the user of the
output level of an individual player’s voice stream. It is generated while voice is
being played back for an individual player. If multiple player voices are being played,
one message for each player speaking will be sent each notification period.

The period of notification is set by the dwNotifyPeriod member of the
DVCLIENTCONFIG structure. If the notification period is set to 0, this message
will not be sent.

DVMSG_PLAYEROUTPUTLEVEL
The DVMSG_PLAYEROUTPUTLEVEL structure contains information for the
DVMSGID_PLAYEROUTPUTLEVEL system message.

typedef struct {
 DWORD dwSize;
 DVID dvidSourcePlayerID;
 DWORD dwPeakLevel;
 PVOID pvPlayerContext;
} DVMSG_PLAYEROUTPUTLEVEL, *LPDVMSG_PLAYEROUTPUTLEVEL,
*PDVMSG_PLAYEROUTPUTLEVEL;

dwSize
Size of the DVMSG_PLAYEROUTPUTLEVEL message structure.

dvidSourcePlayerID
DVID of the player whose voice is being played back.

dwPeakLevel
Integer representing the current output level of the player’s voice stream. This
value is in the range from 0 through 99, with 0 being completely silent and 99
being the highest possible output level.

pvPlayerContext
Pointer to the context value set for the player. This value is set through the
pvPlayerContext member of the DVMSG_CREATEVOICEPLAYER
message structure.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

in.doc – page 330

DVMSGID_PLAYERVOICESTART
Microsoft® DirectPlay® Voice generates the DVMSGID_PLAYERVOICESTART
message when an incoming audio stream begins playing back.

DVMSG_PLAYERVOICESTART
The DVMSG_PLAYERVOICESTART structure contains information for the
DVMSGID_PLAYERVOICESTART system message.

typedef struct {
 DWORD dwSize;
 DVID dvidSourcePlayerID;
 PVOID pvPlayerContext;
} DVMSG_PLAYERVOICESTART, *LPDVMSG_PLAYERVOICESTART,
*PDVMSG_PLAYERVOICESTART;

dwSize
Size of the DVMSG_PLAYERVOICESTART message structure.

dvidSourcePlayerID
DVID of the player where the voice transmission originated.

pvPlayerContext
Pointer to the context value set for the player. This value is set through the
pvPlayerContext member of the DVMSG_CREATEVOICEPLAYER
message structure.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_PLAYERVOICESTOP
Microsoft® DirectPlay® Voice generates the DVMSGID_PLAYERVOICESTOP
message when an incoming audio stream stops.

DVMSG_PLAYERVOICESTOP
The DVMSG_PLAYERVOICESTOP structure contains information for the
DVMSGID_PLAYERVOICESTOP system message.

typedef struct {
 DWORD dwSize;
 DVID dvidSourcePlayerID;
 PVOID pvPlayerContext;

in.doc – page 331

} DVMSG_PLAYERVOICESTOP, *LPDVMSG_PLAYERVOICESTOP,
*PDVMSG_PLAYERVOICESTOP;

dwSize
Size of the DVMSG_PLAYERVOICESTOP message structure.

dvidSourcePlayerID
DVID of the player where the voice transmission originated.

pvPlayerContext
Pointer to the context value set for the player. This value is set through the
pvPlayerContext member of the DVMSG_CREATEVOICEPLAYER
message structure.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_RECORDSTART
Microsoft® DirectPlay® Voice generates the DVMSGID_RECORDSTART message
when audio input on the local client begins. This can be caused by the voice
activation sensitivity level being exceeded or when a valid target is specified in push-
to-talk mode.

DVMSG_RECORDSTART
The DVMSG_RECORDSTART structure contains information for the
DVMSGID_RECORDSTART system message.

typedef struct {
 DWORD dwSize;
 DWORD dwPeakLevel;
 PVOID pvLocalPlayerContext;
} DVMSG_RECORDSTART, *LPDVMSG_RECORDSTART,
*PDVMSG_RECORDSTART;

dwSize
Size of the DVMSG_RECORDSTART message structure.

dwPeakLevel
Voice activation level that caused the transmission to begin. In push-to-talk
mode, this value is 0.

pvLocalPlayerContext
Pointer to the context value set for the local player. This value is set through the
pvPlayerContext member of the DVMSG_CREATEVOICEPLAYER
message structure.

in.doc – page 332

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_RECORDSTOP
Microsoft® DirectPlay® Voice generates the DVMSGID_RECORDSTOP message
when audio input on the local client stops. This can be caused by the voice activation
sensitivity level not being reached or when a target is deselected in push-to-talk
mode.

DVMSG_RECORDSTOP
The DVMSG_RECORDSTOP structure contains information for the
DVMSGID_RECORDSTOP system message.

typedef struct {
 DWORD dwSize;
 DWORD dwPeakLevel;
 PVOID pvLocalPlayerContext;
} DVMSG_RECORDSTOP, *LPDVMSG_RECORDSTOP,
*PDVMSG_RECORDSTOP;

dwSize
Size of the DVMSG_RECORDSTOP message structure.

dwPeakLevel
Voice activation level that caused the transmission to stop. In push-to-talk mode,
this value is 0.

pvLocalPlayerContext
Pointer to the context value set for the local player. This value is set through the
pvPlayerContext member of the DVMSG_CREATEVOICEPLAYER
message structure.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_SESSIONLOST
Microsoft® DirectPlay® Voice generates the DVMSGID_SESSIONLOST message
when the voice session terminates.

in.doc – page 333

DVMSG_SESSIONLOST
The DVMSG_SESSIONLOST structure contains information for the
DVMSGID_SESSIONLOST system message.

typedef struct {
 DWORD dwSize;
 HRESULT hrResult;
} DVMSG_SESSIONLOST, *LPDVMSG_SESSIONLOST,
*PDVMSG_SESSIONLOST;

dwSize
Size of the DVMSG_SESSIONLOST message structure.

hrResult
HRESULT indicating why the session was terminated.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

DVMSGID_SETTARGETS
Microsoft® DirectPlay® Voice generates the DVMSGID_SETTARGETS message
when the IDirectPlayVoiceClient::SetTransmitTargets or
IDirectPlayVoiceServer::SetTransmitTargets methods are called.

DVMSG_SETTARGETS
The DVMSG_SETTARGETS structure contains information for the
DVMSGID_SETTARGETS system message.

typedef struct {
 DWORD dwSize;
 DWORD dwNumTargets;
 PDVID pdvidTargets;
} DVMSG_SETTARGETS, *LPDVMSG_SETTARGETS,
*PDVMSG_SETTARGETS;

dwSize
Size of the DVMSG_SETTARGETS message structure.

dwNumTargets
Number of DVIDs contained in the pdvidTargets member.

pdvidTargets
Array of DVIDs specifying the set targets. This can also be set to NULL if there
are no targets.

in.doc – page 334

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice.h.

Structures
The Microsoft® DirectPlay® structures are:

· DPL_APPLICATION_INFO

· DPL_CONNECT_INFO

· DPL_CONNECTION_SETTINGS

· DPL_PROGRAM_DESC

· DPN_APPLICATION_DESC

· DPN_BUFFER_DESC

· DPN_CAPS

· DPN_CONNECTION_INFO

· DPN_GROUP_INFO

· DPN_PLAYER_INFO

· DPN_SECURITY_CREDENTIALS

· DPN_SECURITY_DESC

· DPN_SERVICE_PROVIDER_INFO

· DPN_SP_CAPS

· DVCAPS

· DVCLIENTCONFIG

· DVCOMPRESSIONINFO

· DVSESSIONDESC

· DVSOUNDDEVICECONFIG

DPL_APPLICATION_INFO
Used in the pEnumData parameter of the
IDirectPlay8LobbyClient::EnumLocalPrograms method to describe the lobbied
application.

typedef struct _DPL_APPLICATION_INFO {
 GUID guidApplication;
 PWSTR pwszApplicationName;

in.doc – page 335

 DWORD dwNumRunning;
 DWORD dwNumWaiting;
 DWORD dwFlags;
} DPL_APPLICATION_INFO, *PDPL_APPLICATION_INFO;

Members

guidApplication
Variable of type GUID specifying the lobbied application.

pwszApplicationName
Pointer to a variable of type WSTR containing the name of the lobbied
application.

dwNumRunning
Number of instances of the application.

dwNumWaiting
Number of clients waiting to connect to the lobbied application.

dwFlags
Reserved. Must be 0.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

DPL_CONNECT_INFO
Used to specify connection information for a lobby client when connecting to the
lobby application in the IDirectPlay8LobbyClient::ConnectApplication method.

typedef struct _DPL_CONNECT_INFO {
 DWORD dwSize;
 DWORD dwFlags;
 GUID guidApplication;
 PDPL_CONNECTION_SETTINGS pdplConnectionSettings;
 PVOID pvLobbyConnectData;
 DWORD dwLobbyConnectDataSize;
} DPL_CONNECT_INFO, *PDPL_CONNECT_INFO;

Members

dwSize
Size of the DPL_CONNECT_INFO structure. The application must set this
member before it uses the structure.

dwFlags
One of the following flags, which determine connection behavior.

DPLCONNECT_LAUNCHNEW

in.doc – page 336

Launches a new instance of the application.

DPLCONNECT_LAUNCHNOTFOUND
Launches a new instance of the application only if there is currently no
application running that can supply launch settings.

guidApplication
Variable of type GUID specifying the application.

pdplConnectionSettings
Contains the connection settings you want to associate with the connection when
it is established.

pvLobbyConnectData
Pointer to connection data passed to the lobbied application.

dwLobbyConnectDataSize
Variable of type DWORD specifying the size of the data buffer in the
pvLobbyConnectData member.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

DPL_CONNECTION_SETTINGS
Used to specify the settings you want to associate with a connection. These settings
contain all the information required to create, initialize and connect/host a Microsoft®

DirectPlay® object.

typedef struct _DPL_CONNECTION_SETTINGS {
 DWORD dwSize;
 DWORD dwFlags;
 DPN_APPLICATION_DESC dpnAppDesc;
 IDirectPlay8Address* pdp8HostAddress;
 IDirectPlay8Address** ppdp8DeviceAddresses;
 DWORD cNumDeviceAddresses;
 PWSTR pwszPlayerName
} DPL_CONNECTION_SETTINGS, *PDPL_CONNECTION_SETTINGS;

Members

dwSize
Size of the DPL_CONNECTION_SETTINGS structure. The application must
set this to sizeof(DPL_CONNECTION_SETTINGS) before using this structure.

dwFlags
Combination of the following flags.

DPLCONNECTSETTINGS_CLIENTSERVER

in.doc – page 337

The application should be launched with a client/server session.

DPLCONNECTSETTINGS_HOST
The application should host the session.

dpnAppDesc
Pointer to the application description that should be passed to the Connect or
Host call when DirectPlay initialized.

pdp8HostAddress
If DPLCONNECTSETTINGS_HOST is not specified, this is the address of the
session the client should connect to. If DPLCONNECTSETTINGS_HOST is
specified, this member must be NULL.

ppdp8DeviceAddresses
This structure contains an array of pointers to device addresses. If
DPLCONNECTSETTINGS_HOST is specified, this member will contain the
addresses the host should listen on. If DPLCONNECTSETTINGS_HOST is not
specified, this member will contain the address of the devices the client should
use when connecting.

cNumDeviceAddresses
Number of addresses specified in the ppdp8DeviceAddresses member.

pwszPlayerName
Can be used to pass the player name you want the DirectPlay object to use when
launching. This member can be NULL.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

DPL_PROGRAM_DESC
Describes a Microsoft® DirectPlay® lobby-aware application.

typedef struct _DPL_PROGRAM_DESC {
 DWORD dwSize;
 DWORD dwFlags;
 GUID guidApplication;
 PWSTR pwszApplicationName;
 PWSTR pwszCommandLine;
 PWSTR pwszCurrentDirectory;
 PWSTR pwszDescription;
 PWSTR pwszExecutableFilename;
 PWSTR pwszExecutablePath;
 PWSTR pwszLauncherFilename;
 PWSTR pwszLauncherPath;
} DPL_PROGRAM_DESC, *PDPL_PROGRAM_DESC;

in.doc – page 338

Members

dwSize
Size of the DPL_PROGRAM_DESC structure. The application must set this
member before it uses the structure.

dwFlags
Reserved. Must be 0.

guidApplication
Variable of type GUID specifying the application.

pwszApplicationName
Pointer to the application name.

pwszCommandLine
Pointer to the command-line arguments.

pwszCurrentDirectory
Pointer to the directory that should be set as the application's working directory..

pwszDescription
Pointer to the application description.

pwszExecutableFilename
Pointer to the file name of the application executable.

pwszExecutablePath
Pointer to the path of the application executable.

pwszLauncherFilename
Pointer to the file name of the launcher executable.

pwszLauncherPath
Pointer to the path of the launcher executable.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplobby8.h.

DPN_APPLICATION_DESC
Describes the settings for a Microsoft® DirectPlay® application.

typedef struct _DPN_APPLICATION_DESC{
 DWORD dwSize;
 DWORD dwFlags;
 GUID guidInstance;
 GUID guidApplication;
 DWORD dwMaxPlayers;
 DWORD dwCurrentPlayers;
 WCHAR* pwszSessionName;

in.doc – page 339

 WCHAR* pwszPassword;
 PVOID pvReservedData;
 DWORD dwReservedDataSize;
 PVOID pvApplicationReservedData;
 DWORD dwApplicationReservedDataSize;
} DPN_APPLICATION_DESC, *PDPN_APPLICATION_DESC;

Members

dwSize
Size of the DPN_APPLICATION_DESC structure. The application must set
this member before it uses the structure.

dwFlags
One of the following flags describing application behavior.

DPNSESSION_CLIENT_SERVER
This type of session is client/server. This flag cannot be combined with
DPNSESSION_MIGRATE_HOST.

DPNSESSION_MIGRATE_HOST
Used in peer-to-peer sessions, enables host migration. This flag cannot be
combined with DPNSESSION_CLIENT_SERVER.

DPNSESSION_NODPNSVR
You do not want enumerations forwarded to your host from DPNSVR. See
Using the DirectPlay DPNSVR Application.

DPNSESSION_REQUIREPASSWORD
The session is password protected. If this flag is set, pwszPassword must be a
valid string.

guidInstance
Globally unique identifier (GUID) that is generated by DirectPlay at startup
representing the instance of this application. This member is an [out] parameter
when calling the GetApplicationDesc method exposed by the
IDirectPlay8Peer, IDirectPlay8Client, and IDirectPlay8Server interfaces. It is
an optional [in] parameter when calling the Connect method exposed by the
IDirectPlay8Peer and IDirectPlay8Client interfaces. It must be set to NULL
when you call the SetApplicationDesc method exposed by the
IDirectPlay8Server and IDirectPlay8Peer interfaces. You can not obtain this
GUID by calling the IDirectPlay8Server::Host or IDirectPlay8Peer::Host
methods. You must obtain the GUID by calling a GetApplicationDesc method.

guidApplication
Application GUID.

dwMaxPlayers
Variable of type DWORD specifying the maximum number of players allowed
in the session. Set this member to 0 to specify an unlimited number of players.

dwCurrentPlayers
Variable of type DWORD specifying the number of players currently connected
to the session. This member is an [out] parameter that is set only by the

in.doc – page 340

GetApplicationDescription method exposed by IDirectPlay8Peer,
IDirectPlay8Client, and IDirectPlay8Server.

pwszSessionName
Pointer to a variable of type WCHAR specifying the Unicode™ name of the
session. This member is set by the host or server only for informational purposes.
A client cannot use this name to connect to a host or server.

pwszPassword
Pointer to a variable of type WCHAR specifying the Unicode password that is
required to connect to the session. This must be NULL if the
DPNSESSION_REQUIREPASSWORD is not set in the dwFlags member.

pvReservedData
Pointer to DirectPlay reserved data. An application should never modify this
value.

dwReservedDataSize
Variable of type DWORD specifying the size of data contained in the
pvReservedData member. An application should never modify this value.

pvApplicationReservedData
Pointer to application-specific reserved data. This value is optional and may be
set to NULL.

dwApplicationReservedDataSize
Variable of type DWORD specifying the size of the data in the
pvApplicationReservedData member. This value is optional and may be set to
0.

Remarks

The dwMaxPlayers, pvApplicationReservedData,
dwApplicationReservedDataSize, pwszPassword, and pwszSessionName members
can be set when calling the Host or SetApplicationDesc methods exposed by the
IDirectPlay8Server and IDirectPlay8Peer interfaces.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_BUFFER_DESC
Used by Microsoft® DirectPlay® for generic buffer information.

typedef struct _BUFFERDESC{
 DWORD dwBufferSize;
 BYTE* pBufferData;
} BUFFERDESC, DPN_BUFFER_DESC;

in.doc – page 341

Members

dwBufferSize
Variable of type DWORD that specifies the size of the data buffer in the
pBufferData member.

pBufferData
Pointer to a variable of type BYTE that contains the buffer data.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_CAPS
Used to set and retrieve general parameters for DirectPlay.

typedef struct _DPN_CAPS{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwConnectTimeout;
 DWORD dwConnectRetries;
 DWORD dwTimeoutUntilKeepAlive;
} DPN_CAPS, *PDPN_CAPS;

Members

dwSize
This value must be set to the size of the structure.

dwFlags
Reserved, this must be 0.

dwConnectTimeout
Number of milliseconds DirectPlay should wait before it retries a connection
request.

dwConnectRetries
Number of connection retries DirectPlay should make during the connection
process.

dwTimeoutUntilKeepAlive
Number of milliseconds DirectPlay should wait since the last time it received a
packet from an endpoint, before it sends a keep-alive message.

in.doc – page 342

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_CONNECTION_INFO
Used to retrieve statistics for the connection between you and a remote computer that
you are connected to.

typedef struct _DPN_CONNECTION_INFO{
 DWORD dwSize;
 DWORD dwRoundTripLatencyMS;
 DWORD dwThroughputBPS;
 DWORD dwPeakThroughputBPS;
 DWORD dwBytesSentGuaranteed;
 DWORD dwPacketsSentGuaranteed;
 DWORD dwBytesSentNonGuaranteed;
 DWORD dwPacketsSentNonGuaranteed;
 DWORD dwBytesRetried;
 DWORD dwPacketsRetried;
 DWORD dwBytesDropped;
 DWORD dwPacketsDropped;
 DWORD dwMessagesTransmittedHighPriority;
 DWORD dwMessagesTimedOutHighPriority;
 DWORD dwMessagesTransmittedNormalPriority;
 DWORD dwMessagesTimedOutNormalPriority;
 DWORD dwMessagesTransmittedLowPriority;
 DWORD dwMessagesTimedOutLowPriority;
 DWORD dwBytesReceivedGuaranteed;
 DWORD dwPacketsReceivedGuaranteed;
 DWORD dwBytesReceivedNonGuaranteed;
 DWORD dwPacketsReceivedNonGuaranteed;
 DWORD dwMessagesReceived;
} DPN_CONNECTION_INFO, *PDPN_CONNECTION_INFO;

Members

dwSize
Size of the structure.

dwRoundTripLatencyMS
Approximate time, in milliseconds (ms), it takes a packet to reach the remote
computer and be returned to the local computer. This number will change
throughout the session as link conditions change.

dwThroughputBPS

in.doc – page 343

Approximate throughput, in bytes per second (Bps), for the link. This number
will change throughout the session as link conditions change. This value is
approximate, and you may want to calculate your own value for greater accuracy.

dwPeakThroughputBPS
Peak throughput, in bytes per second (Bps) for the link. This number will change
throughout the session as link conditions change. This value is approximate, and
you may want to calculate your own value for greater accuracy.

dwBytesSentGuaranteed
Amount, in bytes, of guaranteed messages that have been sent.

dwPacketsSentGuaranteed
Number of packets of guaranteed messages that have been sent.

dwBytesSentNonGuaranteed
Amount, in bytes, of nonguaranteed messages that have been sent.

dwPacketsSentNonGuaranteed
Number of packets of nonguaranteed messages that have been sent.

dwBytesRetried
Amount, in bytes, of messages that have been retried.

dwPacketsRetried
Amount of packets that have been retried.

dwBytesDropped
Amount, in bytes, of messages that have been dropped.

dwPacketsDropped
Number of packets that have been dropped.

dwMessagesTransmittedHighPriority
Number of high-priority messages that have been transmitted.

dwMessagesTimedOutHighPriority
Number of high-priority messages that have timed out.

dwMessagesTransmittedNormalPriority
Number of normal-priority messages that have been transmitted.

dwMessagesTimedOutNormalPriority
Number of normal-priority messages that have timed out.

dwMessagesTransmittedLowPriority
Number of low-priority messages that have been transmitted.

dwMessagesTimedOutLowPriority
Number of low priority messages that have timed out.

dwBytesReceivedGuaranteed
Amount, in bytes, of guaranteed messages that have been received.

dwPacketsReceivedGuaranteed
Number of packets of guaranteed messages that have been received.

dwBytesReceivedNonGuaranteed
Amount, in bytes, of nonguaranteed messages that have been received.

dwPacketsReceivedNonGuaranteed
Number of packets of nonguaranteed messages that have been received.

in.doc – page 344

dwMessagesReceived
Number of messages that have been received.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_GROUP_INFO
Describes static group information.

typedef struct _DPN_GROUP_INFO{
 DWORD dwSize;
 DWORD dwInfoFlags;
 PWSTR pwszName;
 PVOID pvData;
 DWORD dwDataSize;
 DWORD dwGroupFlags;
} DPN_GROUP_INFO, *PDPN_GROUP_INFO;

Members

dwSize
Variable of type DWORD describing the size of this structure.

dwInfoFlags
Variable of type DWORD containing flags that specify the type of information
contained in this structure. When a GetGroupInfo method returns, the dwInfoFlags
member of the DPN_GROUP_INFO will always have both flags set, even if the
corresponding pointers are set to NULL. These flags are used when calling
IDirectPlay8Peer::SetGroupInfo, to notify Microsoft® DirectPlay® of which values
have changed.

DPNINFO_NAME
The pwszName member contains valid data.

DPNINFO_DATA
The pvData member contains valid data.

pwszName
Pointer to a variable of type PWSTR specifying the Unicode name of the group.

pvData
Pointer to the data describing the group.

dwDataSize
Variable of type DWORD that specifies the size of the data contained in the
pvData member.

dwGroupFlags

in.doc – page 345

Variable of type DWORD that can be set to the following description flag.

DPNGROUP_AUTODESTRUCT
Causes the group to be automatically destroyed when the group creator leaves
the group.

Remarks

When using this structure in the IDirectPlay8Peer::GetGroupInfo and
IDirectPlay8Server::GetGroupInfo methods, dwInfoFlags must be set to 0.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_PLAYER_INFO
Describes static player information.

typedef struct _DPN_PLAYER_INFO{
 DWORD dwSize;
 DWORD dwInfoFlags;
 PWSTR pwszName;
 PVOID pvData;
 DWORD dwDataSize;
 DWORD dwPlayerFlags;
} DPN_PLAYER_INFO, *PDPN_PLAYER_INFO;

Members

dwSize
Variable of type DWORD describing the size of this structure.

dwInfoFlags
Variable of type DWORD containing flags that specify the type of information
contained in this structure. When a GetPlayerInfo method returns, the
dwInfoFlags member of the DPN_PLAYER_INFO will always have both flags
set, even if the corresponding pointers are set to NULL. These flags are used
when calling IDirectPlay8Peer::SetPeerInfo, to notify Microsoft® DirectPlay®
which values have changed.

DPNINFO_NAME
The pwszName member contains valid data.

DPNINFO_DATA
The pvData member contains valid data.

pwszName

in.doc – page 346

Pointer to a variable of type PWSTR specifying the Unicode name of the player.

pvData
Pointer to the data describing the player.

dwDataSize
Variable of type DWORD that specifies the size of the data contained in the
pvData member.

dwPlayerFlags
Variable of type DWORD that may contain one of the following flags.

DPNPLAYER_LOCAL
This information is for the local player.

DPNPLAYER_HOST
This player is the host for the application.

Remarks

When using this structure in the IDirectPlay8Peer::GetPeerInfo and
IDirectPlay8Server::GetClientInfo methods, dwInfoFlags must be set to 0.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_SECURITY_CREDENTIALS
Not implemented.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_SECURITY_DESC
Not implemented.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

in.doc – page 347

DPN_SERVICE_PROVIDER_INFO
Used when enumerating information for a specific service provider.

typedef struct _DPN_SERVICE_PROVIDER_INFO{
 DWORD dwFlags;
 GUID Guid;
 WCHAR* pwszName;
 PVOID pvReserved;
 DWORD dwReserved;
} DPN_SERVICE_PROVIDER_INFO, *PDPN_SERVICE_PROVIDER_INFO;

Members

dwFlags
Reserved. Must be 0.

pGuid
GUID for the service provider.

pwszName
Name of the service provider.

pvReserved
Reserved. Must be 0.

dwReserved
Reserved. Must be 0.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DPN_SP_CAPS
Used to set and retrieve parameters for service providers.

typedef struct _DPN_SP_CAPS{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwNumThreads;
 DWORD dwDefaultEnumCount;
 DWORD dwDefaultEnumRetryInterval;
 DWORD dwDefaultEnumTimeout;
 DWORD dwMaxEnumPayloadSize;
 DWORD dwBuffersPerThread;
 DWORD dwSystemBufferSize;

in.doc – page 348

} DPN_SP_CAPS, *PDPN_SP_CAPS;

Members

dwSize
This value must be set to the size of the structure.

dwFlags
This can be a combination of the following flags.

DPNSPCAPS_SUPPORTSDPNSRV
DPNSVR.EXE will provide port sharing for the given SP. Currently this flag
is available on IP and IPX only. See Using the DirectPlay DPNSVR
Application for a further discussion of DPNSVR.

DPNSPCAPS_SUPPORTSBROADCAST
On IP and IPX applications, the service provider has the ability to broadcast to
find games if not enough addressing information is passed.

DPNSPCAPS_SUPPORTSALLADAPTERS
The service provider will use all devices on the system. There is no need to
specify a device element.

dwNumThreads
Number of threads the service provider will use for servicing network requests.
The default value for this is based on an algorithm that takes into account the
number of processors on the system. Most applications will not need to modify
this value.

After a service provider is active in your process, you may only increase this
value. Decreasing the value will have no effect. The setting is process wide,
which means it will affect your current DirectPlay object and any other
DirectPlay objects in your process.

You may specify a lower value than the default if you call the SetSPCaps
method before you call an EnumHosts, Connect, or Host method.

dwDefaultEnumCount
Default enumeration count.

dwDefaultEnumRetryInterval
Default retry interval, in milliseconds.

dwDefaultEnumTimeout
Default enumeration timeout value, in milliseconds.

dwMaxEnumPayloadSize
Maximum size of the payload information that can be sent in the
pvResponseData member of the structures that accompany the
DPN_MSGID_ENUM_HOST_QUERY and
DPN_MSGID_ENUM_HOST_RESPONSE messages..

dwBuffersPerThread
The number of outstanding receive buffers allocated for each DirectPlay thread.
If you increase the number of receive buffers, DirectPlay can pull more data out
of the operating system buffers. However, you may also increase latency if data
is arriving faster than your application can process it.

in.doc – page 349

dwSystemBufferSize
The size of the operating system buffer. This buffer holds data from the
communications device when your application cannot process data as fast as it
arrives. The purpose of this buffer is to prevent data loss if you receive a sudden
burst of data, or if the receive threads are momentarily stalled. Increasing
dwSystemBufferSize may increase latency if your application cannot process the
received data fast enough. You can eliminate the operating system buffer by
setting dwSystemBufferSize to 0. However, if you do so, you run the risk of
losing data if you cannot process the received data as fast as it arrives.

Remarks

For DirectX 8.0, the dwBuffersPerThread and dwSystemBufferSize members are
used only by IP and IPX service providers. The default values for these members are
set by the service provider. To determine the default value, call the appropriate
GetSPCaps method. Most applications should use the default values for these two
members. They are intended primarily for use by developers writing server
applications for massively-multiplayer games.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dplay8.h.

DVCAPS
Describes the capabilities of the Microsoft® DirectPlay® VoiceClient object.

typedef struct{
 DWORD dwSize;
 DWORD dwFlags;
} DVCAPS, *LPDVCAPS, *PDVCAPS;

Members

dwSize
Must be set the to size of this structure, in bytes, before using this structure.

dwFlags
Reserved. Must be 0.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice8.h.

in.doc – page 350

DVCLIENTCONFIG
Controls the run-time parameters for the client. The structure is first used in the call to
IDirectPlayVoiceClient::Connect, where it sets the initial state of these parameters.
The structure can be retrieved after a connection has been made by calling
IDirectPlayVoiceClient::GetClientConfig, and set using
IDirectPlayVoiceClient::SetClientConfig.

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 LONG lRecordVolume;
 LONG lPlaybackVolume;
 DWORD dwThreshold;
 DWORD dwBufferQuality;
 DWORD dwBufferAggressiveness;
 DWORD dwNotifyPeriod;
} DVCLIENTCONFIG, *LPDVCLIENTCONFIG, *PDVCLIENTCONFIG;

Members

dwSize
Must be set the to size of this structure, in bytes, before using this structure.

dwFlags
Combination of the following flags.

DVCLIENTCONFIG_AUTORECORDVOLUME
Activates automatic gain control. With automatic gain control, Microsoft®
DirectPlay® Voice adjusts the hardware input volume on your sound card
automatically to get the best input level possible. You can determine the
current input volume by looking at the lRecordVolume member after a call to
IDirectPlayVoiceClient::GetClientConfig, or by looking at the
lRecordVolume member of DVMSG_INPUTLEVEL messages.

DVCLIENTCONFIG_ECHOSUPPRESSION
Activates the echo suppression mode. This mode reduces echo introduced by
configurations with external speakers and extremely sensitive microphones.
While remote players' voices are being played back on the local speaker, the
microphone is automatically muted. If the local player is transmitting, the
playback of remote player voices is buffered until local input stops. After local
input stops, playback resumes.

DVCLIENTCONFIG_MUTEGLOBAL
Mutes playback of the main sound buffer. Only sound buffers created through
calls to IDirectPlayVoiceClient::Create3DSoundBuffer will be heard.

DVCLIENTCONFIG_PLAYBACKMUTE
Mutes playback of all DirectPlay Voice output and stops playback. This also
stops decompression of incoming packets so CPU usage is reduced. Packets
are effectively discarded while this flag is specified.

in.doc – page 351

DVCLIENTCONFIG_RECORDMUTE
Mutes input from the microphone and stops recording. This also stops
compression so CPU usage is reduced.

In addition to the preceding flags, the method of transmission is controlled by
setting only one of the following flags or by not specifying either flag.

DVCLIENTCONFIG_AUTOVOICEACTIVATED
Places the transmission control system into automatic voice activation mode.
In this mode, the sensitivity of voice activation is determined automatically by
the system. The input level is adaptive, adjusting itself automatically to the
input signal. For most applications this should be the setting used. This flag is
mutually exclusive with the
DVCLIENTCONFIG_MANUALVOICEACTIVATED flag.

DVCLIENTCONFIG_MANUALVOICEACTIVATED
Places the transmission control system into manual voice activation mode. In
this mode, transmission of voice begins when the input level passes the level
specified by the dwThreshold member. When input levels drop below the
specified level, transmission stops. This flag is mutually exclusive with the
DVCLIENTCONFIG_AUTOVOICEACTIVATED flag.

If you do not specify either
DVCLIENTCONFIG_MANUALVOICEACTIVATED or
DVCLIENTCONFIG_AUTOVOICEACTIVATED, the system will operate in
push-to-talk mode. In push-to-talk mode, as long as there is a valid target
specified the input from the microphone will be transmitted. Voice transmission
stops when a NULL target is set or the current target leaves the session or is
destroyed.

lRecordVolume
Value indicating what the volume of the recording should be set to. See the
IDirectSoundBuffer8::SetVolume method for valid values.

If automatic gain control is enabled, this value can be set to
DVRECORDVOLUME_LAST, which tells the system to use the current volume
as determined by the automatic gain control algorithm. If a value other than
DVRECORDVOLUME_LAST is specified in combination with automatic gain
control, this value will be used to restart the algorithm at the specified value.

On return from a call to IDirectPlayVoiceClient::GetClientConfig, this value
will contain the current recording volume. When adjusting the recording volume,
DirectPlay Voice will adjust the volume for the microphone (if a microphone
volume is present for the card) and the master recording volume (if one is present
on the card). If neither a microphone volume nor a master record volume is
present, DirectPlay Voice will be unable to adjust the recording volume.

lPlaybackVolume
Value indicating what the volume of the playback should be set to. Adjusting this
volume adjusts both the main buffer and all 3-D sound buffers. See the
IDirectSoundBuffer8::SetVolume method for valid values. You can specify
DVPLAYBACKVOLUME_DEFAULT to use a default value that is appropriate
for most situations (full volume).

in.doc – page 352

dwThreshold
Input level used to trigger voice transmission if the
DVCLIENTCONFIG_MANUALVOICEACTIVATED flag is specified in the
dwFlags member. When the flag is specified, this value can be set to anywhere
in the range of DVTHRESHOLD_MIN to DVTHRESHOLD_MAX.
Additionally, DVTHRESHOLD_DEFAULT can be set to use a default value.

If DVCLIENTCONFIG_MANUALVOICEACTIVATED or
DVCLIENTCONFIG_AUTOVOICEACTIVATED is not specified in the
dwFlags member of this structure (indicating push-to-talk mode) this value must
be set to DVTHRESHOLD_UNUSED.

dwBufferQuality
Buffer quality setting for the adaptive buffering algorithm. For most applications,
this should be set to DVBUFFERQUALITY_DEFAULT. It can be set to
anything in the range of DVBUFFERQUALITY_MIN to
DVBUFFERQUALITY_MAX. In general, the higher the value, the higher the
quality of the voice but the higher the latency. The lower the value, the lower the
latency but the lower the quality.

dwBufferAggressiveness
Buffer aggressiveness setting for the adaptive buffer algorithm. For most
applications, this can be set to DVBUFFERAGGRESSIVENESS_DEFAULT. It
can also be set to anything in the range of
DVBUFFERAGGRESSIVENESS_MIN and
DVBUFFERAGGRESSIVENESS_MAX. In general, the higher the value, the
quicker the adaptive buffering adjusts to changing conditions. The lower the
value, the slower the adaptive buffering adjusts to changing conditions.

dwNotifyPeriod
Value indicating how often you want to receive DVMSGID_OUTPUTLEVEL
and DVMSGID_INPUTLEVEL (if session is full duplex) messages. If this value
is set to 0, these messages are disabled. The value specifies the number of
milliseconds between these messages. DVNOTIFYPERIOD_MINPERIOD
specifies the minimum period between messages that is allowed.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice8.h.

DVCOMPRESSIONINFO
Describes the attributes of a specific Microsoft® DirectPlay® Voice compression type.

typedef struct{
 DWORD dwSize;
 GUID guidType;
 LPWSTR lpszName;

in.doc – page 353

 LPWSTR lpszDescription;
 DWORD dwFlags;
 DWORD dwMaxBitsPerSecond;
} DVCOMPRESSIONINFO, *LPDVCOMPRESSIONINFO,
*PDVCOMPRESSIONINFO;

Members

dwSize
Must be set the to size of this structure, in bytes, before using this structure.

guidType
GUID used to identify this compression type by DirectPlay Voice.

lpszName
Pointer to a name describing the codec.

lpszDescription
Pointer to a longer name of the codec.

dwFlags
Reserved; must be 0.

dwMaxBitsPerSecond
Maximum number of bits per second claimed by the codec.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice8.h.

DVSESSIONDESC
Describes the desired or current session settings for the Microsoft® DirectPlay® Voice
server. This structure is used by the voice session host to configure the session, and
by the session host and clients to retrieve information about the current session. The
dwFlags, dwSessionType, and guidCT members can only be set when the host starts
the voice session. The host can change the buffer settings at any time.

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwSessionType;
 GUID guidCT;
 DWORD dwBufferQuality;
 DWORD dwBufferAggresiveness;
} DVSESSIONDESC, *LPDVSESSIONDESC, *PDVSESSIONDESC;

in.doc – page 354

Members

dwSize
Must be set the to size of this structure, in bytes, before using this structure.

dwFlags
Combination of the following flags.

DVSESSION_NOHOSTMIGRATION
The voice host will not migrate regardless of the transport settings. If this flag
is not specified, the voice host will migrate if the transport supports it.

DVSESSION_SERVERCONTROLTARGET
The clients are unable to control the target of their speech. Only the server
player can control the target of their speech. If the server does not specify this
flag, only the clients can control the target of their speech. This flag can be
specified only in multicast and mixing sessions.

dwSessionType
The type of DirectPlay Voice session to run. The DVSESSIONTYPE_PEER flag
is not available in client/server sessions; all other flags are valid for all session
types. This member can be one of the following values.

DVSESSIONTYPE_PEER
Voice messages will be sent directly between players.

DVSESSIONTYPE_MIXING
Voice session will use a mixing server. In this mode of operation, all voice
messages are sent to the server, which mixes them and then forwards a single,
premixed stream to each client. This reduces the bandwidth and CPU usage on
clients significantly at the cost of increased bandwidth and CPU usage on the
server.

DVSESSIONTYPE_FOWARDING
Voice messages will be routed through the session host. This will save
bandwidth on the clients at the expense of bandwidth usage on the server. This
option is only useful if the session host has a high-speed connection.

guidCT
GUID specifying the compression type of the session.

dwBufferQuality
The buffer quality setting. This member is unused for all session types except
mixing sessions. For all sessions except mixing sessions, set this member to
DVBUFFERQUALITY_DEFAULT.

Allowable values are between DVBUFFERQUALITY_MIN and
DVBUFFERQUALITY_MAX. Additionally, this member can be set to the
following value.

DVBUFFERQUALITY_DEFAULT
Specifying this value tells DirectPlay Voice to use the system default for this
value, which is adjustable through a registry entry that can also be set through
Sounds and Multimedia in Control Panel.

dwBufferAggresiveness

in.doc – page 355

Buffer aggressiveness setting. This member is unused for all session types except
mixing sessions. For all sessions except mixing sessions, set this member to
DVBUFFERAGGRESIVENESS_DEFAULT.

Allowable values are between DVBUFFERAGGRESIVENESS _MIN and
DVBUFFERAGGRESIVENESS _MAX. Additionally, this member can be set to
the following value.

DVBUFFERAGGRESIVENESS_DEFAULT
Specifying this value tells DirectPlay Voice to use the system default for this
value, which is adjustable through a registry entry that can also be set through
Control Panel.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice8.h.

DVSOUNDDEVICECONFIG
Used to set and retrieve information about the sound device configuration and cannot
be changed once a connection has been made. After a connection is made, you can
retrieve the current sound device configuration by calling
IDirectPlayVoiceClient::GetSoundDeviceConfig.

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 GUID guidPlaybackDevice;
 LPDIRECTSOUND lpdsPlaybackDevice;
 GUID guidCaptureDevice;
 LPDIRECTSOUNDCAPTURE lpdsCaptureDevice;
 HWND hwndAppWindow;
 LPDIRECTSOUNDBUFFER lpdsMainBuffer;
 DWORD dwMainBufferFlags;
 DWORD dwMainBufferPriority;
} DVSOUNDDEVICECONFIG, *LPDVSOUNDDEVICECONFIG,
*PDVSOUNDDEVICECONFIG;

Members

dwSize
Must be set the to size of this structure, in bytes, before using this structure.

dwFlags
A combination of the following flags.

DVSOUNDCONFIG_AUTOSELECT

in.doc – page 356

Tells Microsoft® DirectPlay® Voice to attempt to automatically select (or
unmute) the microphone line in the mixer for the specified recording device.

DVSOUNDCONFIG_HALFDUPLEX
Tells DirectPlay Voice to initialize itself in half-duplex mode. In half-duplex
mode no recording takes place. If the initialization of the sound system fails in
full-duplex mode, this flag will be set by the system.

DVSOUNDCONFIG_NORMALMODE
Tells DirectPlay Voice to use Microsoft® DirectSound® Normal Mode when
initializing the DirectSound object. If this flag is not specified, the
DirectSound object is initialized with DirectSound Priority Mode. See
documentation for IDirectSound8::SetCooperativeLevel for more
information. If a valid DirectSound object is specified in the
lpdsPlaybackDevice member, this flag is ignored.

DVSOUNDCONFIG_SETCONVERSIONQUALITY
Enables better quality audio at the expense of higher CPU usage.

DVSOUNDCONFIG_NORECVOLAVAILABLE
Set by DirectPlay Voice if there are no volume controls available on the
recording device you specified. You cannot set this flag.

DVSOUNDCONFIG_NOFOCUS
The voice application will never go out of focus. In other words, the
application will never release the sound capture device. Use of this flag is not
recommended.

DVSOUNDCONFIG_STRICTFOCUS
The voice application will lose focus whenever its window is not the
foreground window.

Note
Applications should set the DVSOUNDCONFIG_NOFOCUS or
DVSOUNDCONFIG_STRICTFOCUS flags only when strictly necessary.
Instead, you should normally use the default behavior that results when neither
flag is set.

guidPlaybackDevice
When this structure is used in the IDirectPlayVoiceClient::Connect method,
this member specifies the GUID of the device used for playback. This must be
specified even if the lpdsPlaybackDevice member is used. You can also specify
the following default GUIDs provided by DirectSound.

DSDEVID_DefaultPlayback
The system default playback device.

DSDEVID_DefaultVoicePlayback
The default voice playback device.

When this structure is used in the
IDirectPlayVoiceClient::GetSoundDeviceConfig method, this member
contains the actual device GUID used for playback.

lpdsPlaybackDevice

in.doc – page 357

When this structure is used in the IDirectPlayVoiceClient::Connect method,
this member specifies the DirectSound object you want DirectPlay Voice to use
for playback. The GUID specified in guidPlaybackDevice must match the one
used to create the device specified by this parameter. If you used NULL when
specifying the device when you created your DirectSound object, pass
DSDEVID_DefaultPlayback for this member.

When this structure is used in the
IDirectPlayVoiceClient::GetSoundDeviceConfig method, this member
contains a pointer to the DirectSound object being used by DirectPlay Voice.
This will either be a pointer to the object specified when Connect was called or a
pointer to a newly created and initialized DirectSound object. If you want to use
this DirectSound object, you must store the pointer and increment the reference
count by calling AddRef on the DirectSound interface.

guidCaptureDevice
When this structure is used in IDirectPlayVoiceClient::Connect method, this
member specifies the GUID of the device used for capture. This must be
specified even if the lpdsCaptureDevice member is used. If you used NULL
when specifying the device when you created your DirectSoundCapture object,
pass DSDEVID_DefaultCapture for this member.

When this structure is used in the
IDirectPlayVoiceClient::GetSoundDeviceConfig method, this member will
contain the actual device GUID used for capture.

lpdsCaptureDevice
When this structure is used in the IDirectPlayVoiceClient::Connect method,
this member specifies the DirectSound object you want DirectPlay Voice to use
for capture. The GUID specified in guidCaptureDevice must match the one used
to create the device specified by this parameter. If you want to have DirectPlay
Voice create the DirectSoundCapture object for you, specify NULL for this
member.

When this structure is used in the
IDirectPlayVoiceClient::GetSoundDeviceConfig method, this member
contains a pointer to the DirectSoundCapture object being used by DirectPlay
Voice. This will either be a pointer to the object specified when Connect was
called or a pointer to a newly created and initialized DirectSoundCapture object.
If you want to use this DirectSoundCapture object, you must store the pointer and
increment the reference count by calling AddRef on the IDirectSoundCapture8
interface. If the DirectPlay Voice object is operating in half duplex mode, this
member will be NULL.

hwndAppWindow
Must be set to the handle of the window that will be used to determine focus for
sound playback. See IDirectSound8::SetCooperativeLevel for information on
DirectSound focus. If you do not have a window to use for focus, use
GetDesktopWindow to use the desktop window.

lpdsMainBuffer
Pointer to an IDirectSoundBuffer8 interface, which is used to create the
DirectPlay Voice main buffer. This can be either NULL or a user-created

in.doc – page 358

DirectSound buffer. If this member is set to NULL, DirectPlay Voice will create
a buffer for the main voice buffer. If users specify a buffer here, DirectPlay
Voice will use their buffer for the main voice buffer. User-created buffers have
the following restrictions.

· The buffer must be 22 kilohertz, 16-bit, Mono format.

· The buffer must be at least 1 second in length.

· The buffer must have been created with the
DSBCAPS_GETCURRENTPOSITION2 and DSBCAPS_CTRL3D flags.

· The buffer must not be a primary buffer.

· The buffer must not be playing when it is passed to the DirectPlay Voice
software.

· The buffer must not be locked when it is passed to the DirectPlay Voice
software.

dwMainBufferFlags
Passed directly to the dwFlags parameter of the IDirectSoundBuffer8::Play
method when Play is called for the main buffer. The DSBPLAY_LOOPING flag
is automatically added to this field. See the documentation on
IDirectSoundBuffer8::Play for details. This parameter must be 0 if the
lpdsMainBufferDesc member of this structure is NULL.

dwMainBufferPriority
Passed directly to the dwPriority parameter of the IDirectSoundBuffer8::Play
method when Play is called on the main buffer. See documentation for
IDirectSoundBuffer8::Play for more information. This member must be set to 0
if lpdsMainBufferDesc is NULL.

Requirements

 Windows NT/2000: Available as a redistributable for Windows 2000 and later.
 Windows 95/98: Available as a redistributable for Windows 95 and later.
 Header: Declared in Dvoice8.h.

Return Values
Errors are represented by negative values and cannot be combined.

The following table lists the interfaces to which the error values listed below apply.

Interface Interface

IDirectPlay8Address IDirectPlay8Peer

in.doc – page 359

IDirectPlay8AddressIP IDirectPlay8Server

IDirectPlay8Client IDirectPlayVoiceClient

IDirectPlay8LobbiedApplication IDirectPlayVoiceServer

IDirectPlay8LobbyClient IDirectPlayVoiceTest

For a list of the error values each method can return, see the individual method
descriptions.

Many of the Microsoft® DirectPlay® samples include a GetDirectPlayErrStr
function that converts HRESULT values to string names for the DirectPlay errors.
You can copy this code into your own applications for diagnostic traces or error
reports.

Success Codes

DPNSUCCESS_PENDING
An asynchronous operation has reached the point where it is successfully queued.

S_OK
The operation completed successfully.

Error Codes

DPNERR_ABORTED
The operation was canceled before it could be completed.

DPNERR_ADDRESSING
The address specified is invalid.

DPNERR_ALREADYCONNECTED
The object is already connected to the session.

DPNERR_ALREADYCLOSING
An attempt to call the Close method on a session has been made more than once.

DPNERR_ALREADYDISCONNECTING
The client is already disconnecting from the session.

DPNERR_ALREADYINITIALIZED
The object has already been initialized.

DPNERR_BUFFERTOOSMALL
The supplied buffer is not large enough to contain the requested data.

DPNERR_CANNOTCANCEL
The operation could not be canceled.

DPNERR_CANTCREATEGROUP
A new group cannot be created.

DPNERR_CANTCREATEPLAYER
A new player cannot be created.

DPNERR_CANTLAUNCHAPPLICATION
The lobby cannot launch the specified application.

in.doc – page 360

DPNERR_CONNECTING
The method is in the process of connecting to the network.

DPNERR_CONNECTIONLOST
The service provider connection was reset while data was being sent.

DPNERR_DATATOOLARGE
The application data is too large for the service provider's Maximum
Transmission Unit.

DPNERR_DOESNOTEXIST
Requested element is not part of the address.

DPNERR_ENUMQUERYTOOLARGE
The query data specified is too large.

DPNERR_ENUMRESPONSETOOLARGE
The response to an enumeration query is too large.

DPNERR_EXCEPTION
An exception occurred when processing the request.

DPNERR_GENERIC
An undefined error condition occurred.

DPNERR_GROUPNOTEMPTY
The specified group is not empty.

DPNERR_HOSTREJECTEDCONNECTION
The DPN_MSGID_INDICATE_CONNECT system message returned
something other than S_OK in response to a connect request.

DPNERR_HOSTTERMINATEDSESSION
The host in a peer session (with host migration enabled) terminated the session.

DPNERR_INCOMPLETEADDRESS
The address specified is not complete.

DPNERR_INVALIDADDRESSFORMAT
Address format is invalid.

DPNERR_INVALIDAPPLICATION
The GUID supplied for the application is invalid.

DPNERR_INVALIDCOMMAND
The command specified is invalid.

DPNERR_INVALIDDEVICEADDRESS
The address for the local computer or adapter is invalid.

DPNERR_INVALIDFLAGS
The flags passed to this method are invalid.

DPNERR_INVALIDGROUP
The group ID is not recognized as a valid group ID for this game session.

DPNERR_INVALIDHANDLE
The handle specified is invalid.

DPNERR_INVALIDHOSTADDRESS
The specified remote address is invalid.

in.doc – page 361

DPNERR_INVALIDINSTANCE
The GUID for the application instance is invalid.

DPNERR_INVALIDINTERFACE
The interface parameter is invalid. This value will be returned in a connect
request if the connecting player was not a client in a client/server game or a peer
in a peer-to-peer game.

DPNERR_INVALIDOBJECT
The DirectPlay object pointer is invalid.

DPNERR_INVALIDPARAM
One or more of the parameters passed to the method are invalid.

DPNERR_INVALIDPASSWORD
An invalid password was supplied when attempting to join a session that requires
a password.

DPNERR_INVALIDPLAYER
The player ID is not recognized as a valid player ID for this game session.

DPNERR_INVALIDPOINTER
Pointer specified as a parameter is invalid.

DPNERR_INVALIDPRIORITY
The specified priority is not within the range of allowed priorities, which is
inclusively from 0 through 65535.

DPNERR_INVALIDSTRING
String specified as a parameter is invalid.

DPNERR_INVALIDURL
Specified string is not a valid DirectPlay URL.

DPNERR_INVALIDVERSION
There was an attempt to connect to an invalid version of DirectPlay.

DPNERR_NOCAPS
The communication link that DirectPlay is attempting to use is not capable of this
function.

DPNERR_NOCONNECTION
No communication link was established.

DPNERR_NOHOSTPLAYER
There is currently no player acting as the host of the session.

DPNERR_NOINTERFACE
The interface is not supported.

DPNERR_NORESPONSE
There was no response from the specified target.

DPNERR_NOTALLOWED
Object is read-only; this function is not allowed on this object.

DPNERR_NOTHOST
An attempt by the client to connect to a nonhost computer. Additionally, this
error value may be returned by a nonhost that tries to set the application
description.

in.doc – page 362

DPNERR_OUTOFMEMORY
There is insufficient memory to perform the requested operation.

DPNERR_PENDING
Not an error, this return indicates that an asynchronous operation has reached the
point where it is successfully queued. SUCCEEDED(DPNERR_PENDING) will
return TRUE. This error value has been superseded by DPNERR_SUCCESS,
which should be used by all new applications. DPNERR_PENDING is only
included for backward compatibility.

DPNERR_PLAYERLOST
A player has lost the connection to the session.

DPNERR_PLAYERNOTREACHABLE
A player has tried to join a peer-peer session where at least one other existing
player in the session cannot connect to the joining player.

DPNERR_SESSIONFULL
The request to connect to the host or server failed because the maximum number
of players allotted for the session has been reached.

DPNERR_TIMEDOUT
The operation could not complete because it has timed out.

DPNERR_UNINITIALIZED
The requested object has not been initialized.

DPNERR_UNSUPPORTED
The function or feature is not available in this implementation or on this service
provider.

DPNERR_USERCANCEL
The user canceled the operation.

DV_OK
The request completed successfully.

DV_FULLDUPLEX
The sound card is capable of full-duplex operation.

DV_HALFDUPLEX
The sound card can only be run in half-duplex mode.

DVERR_BUFFERTOOSMALL
The supplied buffer is not large enough to contain the requested data.

DVERR_EXCEPTION
An exception occurred when processing the request.

DVERR_GENERIC
An undefined error condition occurred.

DVERR_INVALIDFLAGS
The flags passed to this method are invalid.

DVERR_INVALIDOBJECT
The DirectPlay object pointer is invalid.

DVERR_INVALIDPARAM

in.doc – page 363

One or more of the parameters passed to the method are invalid.

DVERR_INVALIDPLAYER
The player ID is not recognized as a valid player ID for this game session.

DVERR_INVALIDGROUP
The group ID is not recognized as a valid group ID for this game session.

DVERR_INVALIDHANDLE
The handle specified is invalid.

DVERR_OUTOFMEMORY
There is insufficient memory to perform the requested operation.

DVERR_PENDING
Not an error, this return indicates that an asynchronous operation has reached the
point where it is successfully queued.

DVERR_NOTSUPPORTED
The operation is not supported.

DVERR_NOINTERFACE
The specified interface is not supported. Could indicate using the wrong version
of DirectPlay.

DVERR_SESSIONLOST
The transport has lost the connection to the session.

DVERR_NOVOICESESSION
The session specified is not a voice session.

DVERR_CONNECTIONLOST
The connection to the voice session has been lost.

DVERR_NOTINITIALIZED
The IDirectPlayVoiceClient::Initialize or IDirectPlayVoiceServer::Initialize
method must be called before calling this method.

DVERR_CONNECTED
The DirectPlayVoice object is connected.

DVERR_NOTCONNECTED
The DirectPlayVoice object is not connected.

DVERR_CONNECTABORTING
The connection is being disconnected.

DVERR_NOTALLOWED
The object does not have the permission to perform this operation.

DVERR_INVALIDTARGET
The specified target is not a valid player ID or group ID for this voice session.

DVERR_TRANSPORTNOTHOST
The object is not the host of the voice session.

DVERR_COMPRESSIONNOTSUPPORTED
The specified compression type is not supported on the local computer.

DVERR_ALREADYPENDING
An asynchronous call of this type is already pending.

in.doc – page 364

DVERR_ALREADYINITIALIZED
The object has already been initialized.

DVERR_SOUNDINITFAILURE
A failure was encountered initializing the sound card.

DVERR_TIMEOUT
The operation could not be performed in the specified time.

DVERR_CONNECTABORTED
The connect operation was canceled before it could be completed.

DVERR_NO3DSOUND
The local computer does not support 3-D sound.

DVERR_ALREADYBUFFERED
There is already a user buffer for the specified ID.

DVERR_NOTBUFFERED
There is no user buffer for the specified ID.

DVERR_HOSTING
The object is the host of the session.

DVERR_NOTHOSTING
The object is not the host of the session.

DVERR_INVALIDDEVICE
The specified device is invalid.

DVERR_RECORDSYSTEMERROR
An error in the recording system occurred.

DVERR_PLAYBACKSYSTEMERROR
An error in the playback system occurred.

DVERR_SENDERROR
An error occurred while sending data.

DVERR_USERCANCEL
The user canceled the operation.

DVERR_UNKNOWN
An unknown error occurred.

DVERR_RUNSETUP
The specified audio configuration has not been tested. Call the
IDirectPlayVoiceTest::CheckAudioSetup method.

DVERR_INCOMPATIBLEVERSION
The client connected to a voice session that is incompatible with the host.

DVERR_INITIALIZED
The Initialize method failed because the object has already been initialized.

DVERR_INVALIDPOINTER
The pointer specified is invalid.

DVERR_NOTRANSPORT
The specified object is not a valid transport.

DVERR_NOCALLBACK

in.doc – page 365

This operation cannot be performed because no callback function was specified.

DVERR_TRANSPORTNOTINIT
Specified transport is not yet initialized.

DVERR_TRANSPORTNOSESSION
Specified transport is valid but is not connected/hosting.

DVERR_TRANSPORTNOPLAYER
Specified transport is connected/hosting but no local player exists.

DirectPlay Visual Basic Reference
This section contains reference information for the API elements of Microsoft®
DirectPlay® for Microsoft® Visual Basic®. Reference material is divided into the
following categories.

· Classes

· Functions

· Types

· Enumerations

· Error Codes

Classes
This section contains references for methods of the following Microsoft® DirectPlay®

classes.

· DirectPlay8Address

· DirectPlay8Client

· DirectPlay8Event

· DirectPlay8LobbiedApplication

· DirectPlay8LobbyClient

· DirectPlay8LobbyEvent

· DirectPlay8Peer

· DirectPlay8Server

· DirectPlayVoiceClient8

· DirectPlayVoiceEvent8

in.doc – page 366

· DirectPlayVoiceServer8

· DirectPlayVoiceTest8

DirectPlay8Address
#The DirectPlay8Address class provides methods for creating and managing
DirectPlay addresses.

The methods of the DirectPlay8Address class are:

DirectPlay8Address
Methods

AddComponentLong

AddComponentString

BuildFromURL

Clear

Duplicate

GetComponentLong

GetComponentString

GetDevice

GetNumComponents

GetSP

GetURL

GetUserData

SetDevice

SetEqual

SetSP

SetUserData

DirectPlay8Address.AddComponentLong
#Adds a component of type Long to the address. If the component is part of the
address, then it is replaced by the new value in this call.

AddComponentLong(sComponent As String, lValue As Long)

Parts

sComponent
String that contains the key for the component.

lValue
Long value to be added to the component.

IDH_DirectPlay8Address_dplay_vb
IDH_DirectPlay8Address.AddComponentLong_dplay_vb

in.doc – page 367

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDPARAM

DPNERR_NOTALLOWED

DirectPlay8Address.AddComponentStrin
g

#Adds a component of type String to the address. If the component is part of the
address, then it is replaced by the new value in this call.

AddComponentString(sComponent As String, sValue As String)

Parts

sComponent
String that contains the key for the component.

sValue
String value to be added to the component.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDPARAM

DPNERR_NOTALLOWED

DirectPlay8Address.BuildFromURL
#Sets the object equal to the address of a DirectPlay URL. It erases the contents of the
object.

BuildFromURL(SourceURL As String)

Parts

SourceURL
String that contains a properly formatted DirectPlay address.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

IDH_DirectPlay8Address.AddComponentString_dplay_vb
IDH_DirectPlay8Address.BuildFromURL_dplay_vb

in.doc – page 368

DPNERR_INVALIDURL

DPNERR_NOTALLOWED

DirectPlay8Address.Clear
#Resets the address object to an empty address.

Clear()

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_NOTALLOWED

DirectPlay8Address.Duplicate
#Creates a DirectPlay8Address object that duplicates the address in this object.

Duplicate() As DirectPlay8Address

Return Values

Returns a DirectPlay8Address object.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_GENERIC

DirectPlay8Address.GetComponentLong
#Retrieves one of the integer components in the address URL string.

GetComponentLong(sComponent As String) As Long

Parts

sComponent
Name of the component to retrieve.

Return Values

Returns the value of the requested component.

IDH_DirectPlay8Address.Clear_dplay_vb
IDH_DirectPlay8Address.Duplicate_dplay_vb
IDH_DirectPlay8Address.GetComponentLong_dplay_vb

in.doc – page 369

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_DOESNOTEXIST

DPNERR_INVALIDPARAM

DPNERR_BUFFERTOOSMALL

Remarks

For a discussion of the URL string, see DirectPlay Addressing.

DirectPlay8Address.GetComponentStrin
g

#Retrieves one of the integer components in the address URL string.

GetComponentString(sComponent As String) As String

Parts

sComponent
Name of the component to retrieve.

Return Values

Returns the requested string.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_DOESNOTEXIST

DPNERR_INVALIDPARAM

DPNERR_BUFFERTOOSMALL

Remarks

For a discussion of the URL string, see DirectPlay Addressing.

DirectPlay8Address.GetDevice
#Retrieves the local device GUID in the address object. If no device is specified, this
method raises DPNERR_DOESNOTEXIST.

IDH_DirectPlay8Address.GetComponentString_dplay_vb
IDH_DirectPlay8Address.GetDevice_dplay_vb

in.doc – page 370

GetDevice() As String

Return Values

Returns a String value representing the device in the address object.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_DOESNOTEXIST

DirectPlay8Address.GetNumComponent
s

#Retrieves the number of components in the address.

GetNumComponents() As Long

Return Values

Returns the number of components in this address object.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

DirectPlay8Address.GetSP
#Retrieves the service provider GUID in the address object. If no service provider is
specified, this method raises DPNERR_DOESNOTEXIST.

GetSP() As String

Return Values

Returns the service provider in the address object.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_DOESNOTEXIST

IDH_DirectPlay8Address.GetNumComponents_dplay_vb
IDH_DirectPlay8Address.GetSP_dplay_vb

in.doc – page 371

DirectPlay8Address.GetURL
#Retrieves the DirectPlay address URL represented by this object.

GetURL() As String

Return Values

Returns the URL represented by this object.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_OUTOFMEMORY

DPNERR_INVALIDURL

DPNERR_GENERIC

DirectPlay8Address.GetUserData
#Retrieves the user data in the address object. If no user data exists in this address
object, DPNERR_DOESNOTEXIST is raised.

GetUserData(UserData As Long)

Parts

UserData
User data from this address.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_DOESNOTEXIST

DirectPlay8Address.SetDevice
#Sets the local device GUID in the address object. If a local device is specified for this
address, it is overwritten by this call.

SetDevice(guidDevice As String)

Parts

guidDevice

IDH_DirectPlay8Address.GetURL_dplay_vb
IDH_DirectPlay8Address.GetUserData_dplay_vb
IDH_DirectPlay8Address.SetDevice_dplay_vb

in.doc – page 372

GUID of the local device.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_NOTALLOWED

DirectPlay8Address.SetEqual
#Sets this DirectPlay8Address object to the address specified.

SetEqual(Address As DirectPlay8Address)

Parts

Address
DirectPlay8Address object that this object will be set to.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_NOTALLOWED

DirectPlay8Address.SetSP
#Sets the service provider GUID in the address object. If a service provider is
specified for this address, it is overwritten by this call.

SetSP(guidSP As String)

Parts

guidSP
Service provider GUID to set.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_NOTALLOWED

IDH_DirectPlay8Address.SetEqual_dplay_vb
IDH_DirectPlay8Address.SetSP_dplay_vb

in.doc – page 373

DirectPlay8Address.SetUserData
#Sets the user data in the address object. If there is user data in this address, it is
overwritten by this call.

SetUserData(UserData As Long, lDataSize As Long)

Parts

UserData
Data to place in the user data section of the address. Set to 0 to clear the user
data.

lDataSize
Size, in bytes, of the data in UserData. If UserData is 0, this must be 0.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_NOTALLOWED

DirectPlay8Client
#Applications use the methods of the DirectPlay8Client class to create and manage
client applications for client/server sessions.

The methods of the DirectPlay8Client class can be organized into the following
groups.

Session Management Close

Connect

EnumHosts

GetApplicationDesc

GetCaps

GetCountServiceProviders

GetServiceProvider

GetSPCaps

SetCaps

SetSPCaps

Message Management GetSendQueueInfo

RegisterMessageHandler

UnRegisterMessageHandler

IDH_DirectPlay8Address.SetUserData_dplay_vb
IDH_DirectPlay8Client_dplay_vb

in.doc – page 374

Send

Client Information SetClientInfo

Server Information GetServerAddress

GetServerInfo

Miscellaneous CancelAsyncOperation

GetConnectionInfo

RegisterLobby

DirectPlay8Client.CancelAsyncOperation
#Cancels asynchronous requests. Many methods of the DirectPlay8Client class run
asynchronously by default. Depending on the situation, you might want to cancel
requests before they are processed. All the methods of this class that can be run
asynchronously return an lAsyncHandle parameter.

Specific requests are canceled by passing the lAsyncHandle of the request in this
method's lAsyncHandle parameter. You can cancel all pending asynchronous
operations by calling this method, passing 0 in the lAsyncHandle parameter, and
specifying DPNCANCEL_ALL_OPERATIONS in the lFlags parameter. If a specific
handle is provided to this method, you must pass 0 in the lFlags parameter.

CancelAsyncOperation(lAsyncHandle As Long, _
 [lFlags As CONST_DPNCANCELFLAGS])

Parts

lAsyncHandle
Handle of the asynchronous operation to stop. This value can be 0 to stop all
requests or a particular type of asynchronous request. If a specific handle for the
request to cancel is specified, the lFlags parameter must be 0.

lFlags
Flag that specifies which asynchronous request to cancel. You can set this
parameter to one of the flags of the CONST_DPNCANCELFLAGS
enumeration.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_PENDING

DPNERR_INVALIDFLAGS

DPNERR_CANNOTCANCEL

DPNERR_INVALIDHANDLE

IDH_DirectPlay8Client.CancelAsyncOperation_dplay_vb

in.doc – page 375

Remarks

You can cancel a send by providing the handle returned from
DirectPlay8Client.Send method. The DirectPlay8Event.SendComplete method
will still be called unless the message was sent with the DPNSEND_NOCOMPLETE
flag set. If you cancel a send operation by calling
DirectPlay8Peer.CancelAsyncOperation the hResultCode member of the
DPNMSG_SEND_COMPLETE type that is passed to the
DirectPlay8Event.SendComplete method will be set to DPNERR_CANCELLED.

DirectPlay8Client.Close
#Closes the open connection with a session.

Close([lFlags As Long]);

Parts

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_UNINITIALIZED

DirectPlay8Client.Connect
#Establishes the connection to the server. Once a connection is established, the
communication channel on the interface is open and active and the application should
expect messages to arrive immediately. No messages can be sent by means of the
DirectPlay8Client.Send method until the connection has completed.

Before this method is called, you can obtain an application description by calling
DirectPlay8Client.EnumHosts. The EnumHosts method returns a
DPN_APPLICATION_DESC type for each hosted application. The type describes
the application, including the GUID of the application.

When the connection to the host is requested, the
DirectPlay8Event.IndicateConnect method is called in the host's message handler.
The host may either accept or reject the connection. In either case, once the host has
acted, the client message handler's DirectPlay8Event.ConnectComplete method will
be called to convey the response.

Connect(AppDesc As DPN_APPLICATION_DESC, _
 Address As DirectPlay8Address, _
 DeviceInfo As DirectPlay8Address, _

IDH_DirectPlay8Client.Close_dplay_vb
IDH_DirectPlay8Client.Connect_dplay_vb

in.doc – page 376

 lFlags As CONST_DPNOPERATIONS, _
 UserData As Any, _
 UserDataSize As Long) As Long

Parts

AppDesc
DPN_APPLICATION_DESC type that describes the application. The only
member of this type that you must set is the guidApplication member. Only some
of the members of this type are used by this method. The only member that you
must set is guidApplication. You can also set guidInstance, pwszPassword,
dwFlags, and dwSize.

Address
Optional DirectPlay8Address object that specifies the addressing information to
use to connect to the computer that is hosting.

DeviceInfo
DirectPlay8Address object that specifies the network adapter (that is, NIC,
modem, and so on) to use to connect to the server.

lFlags
Flag from the CONST_DPNOPERATIONS enumeration that describes the
connection mode. You can set the following flag.

DPNOP_SYNC
Process the connection request synchronously. Setting this flag does not generate
a DirectPlay8Event.ConnectComplete method call.

UserData
Application-specific user data.

UserDataSize
Size of the data contained in the UserData parameter.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Client.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_NOCONNECTION

DPNERR_INVALIDPASSWORD

DPNERR_INVALIDFLAGS

DPNERR_INVALIDINTERFACE

DPNERR_INVALIDAPPLICATION

in.doc – page 377

DPNERR_NOTHOST

DPNERR_SESSIONFULL

DPNERR_HOSTREJECTEDCONNECTION

DPNERR_INVALIDINSTANCE

Remarks

Although multiple enumerations can be run concurrently, and can be run across the
duration of a connection, only one connection is allowed per object. To establish a
connection to more than one application, you must create another object. That is, only
one running application per object is allowed. If DirectPlay8Client.Connect is called
while another connection is in progress, the method raises an error.

DirectPlay8Client.EnumHosts
#Enumerates applications that host Microsoft® DirectPlay® games. When an
application is found meeting the enumeration criteria, the
DirectPlay8Event.EnumHostsResponse method is called in the application's
message handler. This method contains a DPNMSG_ENUM_HOSTS_RESPONSE
message type that contains a DPN_APPLICATION_DESC type that describes the
applications found.

EnumHosts(ApplicationDesc As DPN_APPLICATION_DESC, _
 AddrHost As DirectPlay8Address, _
 DeviceInfo As DirectPlay8Address, _
 lRetryCount As Long, _
 lRetryInterval As Long, _
 lTimeOut As Long, _
 lFlags As CONST_DPNOPERATIONS, _
 UserData As Any, _
 UserDataSize As Long) As Long

Parts

ApplicationDesc
DPN_APPLICATION_DESC structure that specifies which application hosts to
enumerate. You can specify the following fields to reduce the number of
responses to the enumeration.

guidApplication
GUID of the application to find; if not specified, all are searched for.

Password
Password to provide; secure sessions will not respond without a password.

AddrHost

IDH_DirectPlay8Client.EnumHosts_dplay_vb

in.doc – page 378

DirectPlay8Address object that specifies the address of the computer that is
hosting the application.

DeviceInfo
DirectPlay8Address object that specifies the service provider and settings to
enumerate.

lRetryCount
Value that specifies how many times the enumeration data will be sent. You can
set this parameter to zero to specify the default value. If you set this value to
INFINITE, the enumeration will continue until canceled.

lRetryInterval
Value that specifies the time, in milliseconds, between successive enumeration
attempts. Set this parameter to 0 to use the default value.

lTimeOut
Number of milliseconds for the enumeration to run. If 0 is specified, a default
value is used. If INFINITE is specified, the enumeration continues until it is
canceled.

lEnumPeriod
Value specifying how often to re-enumerate. If 0 is specified, a default value is
used.

lFlags
Flag from the CONST_DPNOPERATIONS enumeration that controls how this
method is processed. The following flag can be set for this method.

DPNOP_SYNC
Causes the method to process synchronously.

UserData
Block of data that is sent in the enumeration request to the host. The size of the
data can be limited depending on the network type, but 512 bytes is supported at
a minimum.

UserDataSize
Size of the data in the UserData parameter.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Client.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_TIMEDOUT

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

in.doc – page 379

Remarks

Because of the variety of ways enumeration can happen, it is not recommended that
an application specify lEnumPeriod unless the application has some specific media
knowledge.

DirectPlay8Client.GetApplicationDesc
#Retrieves the full application description for the connected application.

GetApplicationDesc([lFlags As Long]) _
 As DPN_APPLICATION_DESC

Parts

lFlags
Reserved. Must be 0.

Return Values

Returns a DPN_APPLICATION_DESC type describing the application.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_NOCONNECTION

DPNERR_INVALIDFLAGS

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

DirectPlay8Client.GetCaps
#Retrieves the DPN_CAPS type for the current object.

GetCaps([lFlags As Long]) As DPN_CAPS

Parts

lFlags
Reserved. Must be 0.

IDH_DirectPlay8Client.GetApplicationDesc_dplay_vb
IDH_DirectPlay8Client.GetCaps_dplay_vb

in.doc – page 380

Return Values

Returns a DPN_CAPS type filled with session parameters.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Client.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Client.GetConnectionInfo
#Retrieves statistical information about the connection between the local endpoint and
the server.

GetConnectionInfo([lFlags As Long]) As DPN_CONNECTION_INFO

Parts

lFlags
Reserved. Must be 0.

Return Values

Returns a DPN_CONNECTION_INFO type to retrieve information about the
specified connection.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

IDH_DirectPlay8Client.GetConnectionInfo_dplay_vb

in.doc – page 381

Remarks

This method can be called only after a successful Connect call has completed.

DirectPlay8Client.GetCountServiceProvi
ders

#Retrieves the number of registered service providers available to the application.

GetCountServiceProviders([lFlags As Long]) As Long

Parts

lFlags
Reserved. Must be 0.

Return Values

Returns the number of registered service providers available to the application.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDOBJECT

DirectPlay8Client.GetSendQueueInfo
#Used by the application to monitor the size of the send queue. Microsoft®

DirectPlay® does not send messages faster than the receiving computer can process
them. As a result, if the sending computer is sending faster than the receiver can
receive, messages accumulate in the sender’s queue. If the application registers that
the send queue is growing too large, it should decrease the rate at which messages are
sent.

GetSendQueueInfo(lNumMsgs As Long, _
 lNumBytes As Long, _
 [lFlags As CONST_DPNGETSENDQUEUEINFO])

Parts

lNumMsgs
Number of messages currently queued.

IDH_DirectPlay8Client.GetCountServiceProviders_dplay_vb
IDH_DirectPlay8Client.GetSendQueueInfo_dplay_vb

in.doc – page 382

lNumBytes
Amount of data, in bytes, of the messages currently queued.

lFlags
Set this parameter to one of the CONST_DPNGETSENDQUEUEINFO values
to get the send-queue information for a particular priority level. Set this flag to
zero to get the combined send-queue information.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

DirectPlay8Client.GetServerAddress
#Retrieves the address for the server for the session.

GetServerAddress([lFlags As Long]) As DirectPlay8Address

Parts

lFlags
Reserved. Must be 0.

Return Values

Returns a DirectPlay8Address object specifying the address of the server.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

DirectPlay8Client.GetServerInfo
#Retrieves the data set for the server set by the call to the
DirectPlay8Server.SetServerInfo method.

GetServerInfo([lFlags As Long]) As DPN_PLAYER_INFO

IDH_DirectPlay8Client.GetServerAddress_dplay_vb
IDH_DirectPlay8Client.GetServerInfo_dplay_vb

in.doc – page 383

Parts

lFlags
Set this parameter to one of the CONST_DPNINFO flags to indicate whether
the method should return the name or the data set.

Return Values

Returns a DPN_PLAYER_INFO type containing the name or the data set for the
server.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_UNINITIALIZED

DirectPlay8Client.GetServiceProvider
#Retrieves information for the specified service provider. Before calling this method,
call the DirectPlay8Client.GetCountServiceProviders method to obtain the number
of registered service providers available to the application.

GetServiceProvider(lIndex As Long) As DPN_SERVICE_PROVIDER_INFO

Parts

lIndex
Index value specifying the specific server provider.

Return Values

Returns a DPN_SERVICE_PROVIDER_INFO type that describes the service
provider.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

DirectPlay8Client.GetSPCaps
#Retrieves the DPN_SP_CAPS structure for the specified service provider.

GetSPCaps(guidSP As String, _

IDH_DirectPlay8Client.GetServiceProvider_dplay_vb
IDH_DirectPlay8Client.GetSPCaps_dplay_vb

in.doc – page 384

 [lFlags As Long]) As DPN_SP_CAPS

Parts

guidSP
String specifying the GUID of the service provider you want to get information
about.

lFlags
Reserved. Must be 0.

Return Values

Returns a DPN_SP_CAPS type to receive the information about the specified service
provider.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Client.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Client.RegisterLobby
#Registers or unregisters an application with a lobby.

RegisterLobby(dpnHandle As Long, _
 LobbyApp As DirectPlay8LobbiedApplication, _
 [lFlags As Long])

Parts

dpnHandle
Connection handle to be used when making the calls to
DirectPlay8LobbiedApplication.UpdateStatus.

LobbyApp
DirectPlay8LobbiedApplication object that specifies the application.

IDH_DirectPlay8Client.RegisterLobby_dplay_vb

in.doc – page 385

lFlags
Set this parameter to one of the two CONST_DPNLOBBY enumeration values
to indicate whether the application is to be registered or unregistered.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

Remarks

When an application is registered with a lobby, the lobby client automatically
receives notifications of changes in game status.

DirectPlay8Client.RegisterMessageHandl
er

#Registers an entry point in the client's code that receives the messages from the
DirectPlay8Client object and from the server. This method must be called before
calling any other methods of this class.

RegisterMessageHandler(event As DirectPlay8Event)

Parts

event
DirectPlay8Event object that will receive the messages generated by the client
and server.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_ALREADYREGISTERED

Remarks

If you want to register a new message handler, you must first call
DirectPlay8Client.UnRegisterMessageHandler to unregister the current message
handler.

IDH_DirectPlay8Client.RegisterMessageHandler_dplay_vb

in.doc – page 386

DirectPlay8Client.Send
#Transmits data to the server. The message can be sent synchronously or
asynchronously.

Send(buffer() As BYTE, _
 lTimeOut As Long, _
 [lFlags As CONST_DPNSENDFLAGS]) As Long

Parts

buffer()
Array of type BYTE that describes the data to send.

lTimeOut
Number of milliseconds to wait for the message to be sent. If the message has not
been sent by the lTimeOut value, the message is not sent. If you do not want a
time out for message sends, set this parameter to 0.

lFlags
Flags that describe send behavior. You can set one or more of the following flags
defined in the CONST_DPNSENDFLAGS enumeration.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Client.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDFLAGS

DPNERR_TIMEDOUT

Remarks

This method will call the DirectPlay8Event.Receive method in the server's message
handler. When the Send request is completed, the DirectPlay8Event.SendComplete
method is called in the client's message handler. The SendComplete method contains
a DPNMSG_SEND_COMPLETE message type. The success or failure of the
request is contained in the hResultCode member of this message type.

DirectPlay8Client.SetCaps
#Sets the capabilities for the session.

IDH_DirectPlay8Client.Send_dplay_vb
IDH_DirectPlay8Client.SetCaps_dplay_vb

in.doc – page 387

SetCaps(caps As DPN_CAPS, _
 [lFlags As Long])

Parts

caps
DPN_CAPS type used to set the information about the current session.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Client.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Client.SetClientInfo
#Sets the static settings of a client with an application. Call this method before
connecting to relay basic player information with the application. After the client
successfully connects with the application, information obtained through this method
can be retrieved by the server by calling the DirectPlay8Server.GetClientInfo
method.

SetClientInfo(PlayerInfo As DPN_PLAYER_INFO, _
 [lFlags As CONST_DPNOPERATIONS]) As Long

Parts

PlayerInfo
DPN_PLAYER_INFO type that contains the peer information to set.

lFlags
Set the DPNSETCLIENTINFO_SYNC flag from the
CONST_DPNOPERATIONS enumeration to have the method process
synchronously.

IDH_DirectPlay8Client.SetClientInfo_dplay_vb

in.doc – page 388

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Client.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_NOCONNECTION

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

Transmission of nonstatic information should be handled with the
DirectPlay8Client.Send method because of the high cost of using the
DirectPlay8Client.SetClientInfo method.

You can modify the client information with this method after connecting to the
application. Calling this method after connection will call the
DirectPlay8Event.InfoNotify method in the server's message handler.

DirectPlay8Client.SetSPCaps
#Sets the capabilities for the specified service provider.

SetSPCaps(guidSP As String, _
 spCaps As DPN_SP_CAPS, _
 [lFlags As Long])

Parts

guidSP
String specifying the GUID of the service provider you want to set information
about.

spCaps
DPN_SP_CAPS type to set the information about the specified service provider.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

IDH_DirectPlay8Client.SetSPCaps_dplay_vb

in.doc – page 389

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Client.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Client.UnregisterMessageHan
dler

#Unregisters the current DirectPlay8Client message handler.

UnRegisterMessageHandler()

Remarks

You must call this method before registering a new message handler.

DirectPlay8Event
#Applications use the methods of the DirectPlay8Event class to capture Microsoft®
DirectPlay® events generated by the DirectPlay8Peer, DirectPlay8Client, and
DirectPlay8Server classes.

DirectPlay8Event is associated with the DirectPlay8Peer, DirectPlay8Client, and
DirectPlay8Server objects when calling RegisterMessageHandler for each object.

Note
When implementing the DirectPlay8Event object, Microsoft® Visual Basic®
requires that every method of this object is implemented in your form.

The methods of the DirectPlay8Event class are:

DirectPlay8Event Methods AddRemovePlayerGroup

AppDesc

AsyncOpComplete

ConnectComplete

CreateGroup

CreatePlayer

DestroyGroup

IDH_DirectPlay8Client.UnregisterMessageHandler_dplay_vb
IDH_DirectPlay8Event_dplay_vb

in.doc – page 390

DestroyPlayer

EnumHostsQuery

EnumHostsResponse

HostMigrate

IndicateConnect

IndicateConnectAborted

InfoNotify

Receive

SendComplete

TerminateSession

DirectPlay8Event.AddRemovePlayerGrou
p

#Called by the associated DirectPlay8Peer, DirectPlay8Client, or
DirectPlay8Server object when a player or group has been added to or removed from
a group.

AddRemovePlayerGroup(_
 lMsgID As Long, _
 lPlayerID As Long, _
 lGroupID As Long, _
 fRejectMsg As Boolean)

Parts

lMsgID
One of the following flags, which indicate whether a player or group has joined
or has left the session:

DPN_MSGID_ADD_PLAYER_TO_GROUP
A player has joined the group.

DPN_MSGID_REMOVE_PLAYER_FROM_GROUP
A player has left the group.

lPlayerID
Long value set to the ID of the player or group being added or removed.

lGroupID
Long value set to the ID of the group this player or group is being added to or
removed from.

fRejectMsg
Parameter is not supported in this release.

IDH_DirectPlay8Event.AddRemovePlayerGroup_dplay_vb

in.doc – page 391

DirectPlay8Event.AppDesc
#Called when the application description has been changed by a call to the
DirectPlay8Peer.SetApplicationDesc or DirectPlay8Server.SetApplicationDesc
method.

AppDesc(fRejectMsg As Boolean)

Parts

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.AsyncOpComplete
#Called when an asynchronous operation has completed.

AsyncOpComplete(_
 dpnotify As DPNMSG_ASYNC_OP_COMPLETE, _
 fRejectMsg As Boolean)

Parts

dpnotify
DPNMSG_ASYNC_OP_COMPLETE message type containing the handle and
the result of the asynchronous operation.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.ConnectComplete
#Called when the attempt to connect to the host or server has completed.

ConnectComplete(_
 dpnotify As DPNMSG_CONNECT_COMPLETE,
 fRejectMsg As Boolean)

Parts

dpnotify

IDH_DirectPlay8Event.AppDesc_dplay_vb
IDH_DirectPlay8Event.AsyncOpComplete_dplay_vb
IDH_DirectPlay8Event.ConnectComplete_dplay_vb

in.doc – page 392

DPNMSG_CONNECT_COMPLETE message type containing the async
handle and the result of the connection attempt.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.CreateGroup
#Called when a group is created.

CreateGroup (_
 lGroupID As Long, _
 lOwnerID As Long, _
 fRejectMsg As Boolean)

Parts

lGroupID
Long value set to the group's ID.

lOwnerID
Long value set to the owner's ID.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.CreatePlayer
#Called when a player is created.

CreatePlayer (_
 lPlayerID As Long, _
 fRejectMsg As Boolean)

Parts

lPlayerID
Long value set to the player's ID.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.DestroyGroup
#Called when a group is destroyed.

DestroyGroup(_
 lGroupID As Long, _

IDH_DirectPlay8Event.CreateGroup_dplay_vb
IDH_DirectPlay8Event.CreatePlayer_dplay_vb
IDH_DirectPlay8Event.DestroyGroup_dplay_vb

in.doc – page 393

 lReason As Long, _
 fRejectMsg As Boolean)

Parts

lGroupID
Long value set to the group's ID.

lReason
Long value that indicates the reason that the group was destroyed.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.DestroyPlayer
#Called when a player is destroyed.

DestroyPlayer(_
 lPlayerID As Long, _
 lReason As Long, _
 fRejectMsg As Boolean)

Parts

lPlayerID
Long value set to the player's ID.

lReason
Long value that indicates the reason that the group was destroyed.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.EnumHostsQuery
#Called when host enumeration is requested through the
DirectPlay8Peer.EnumHosts or DirectPlay8Client.EnumHosts method.

EnumHostsQuery(_
 dpnotify As DPNMSG_ENUM_HOSTS_QUERY, _
 fRejectMsg As Boolean)

Parts

dpnotify
DPNMSG_ENUM_HOSTS_QUERY message type containing received data.

fRejectMsg

IDH_DirectPlay8Event.DestroyPlayer_dplay_vb
IDH_DirectPlay8Event.EnumHostsQuery_dplay_vb

in.doc – page 394

Boolean value that is set to True to reject the enumeration request. However, if
you reject the query, Microsoft® DirectPlay® will not call the client's
DirectPlay8Event.EnumHostsResponse, so they will not be aware that you are
hosting a session.

DirectPlay8Event.EnumHostsResponse
#Contains the host information resulting from a call to the
DirectPlay8Peer.EnumHosts or DirectPlay8Client.EnumHosts method.

EnumHostsResponse(_
 dpnotify As DPNMSG_ENUM_HOSTS_RESPONSE, _
 fRejectMsg As Boolean)

Parts

dpnotify
DPNMSG_ENUM_HOSTS_RESPONSE message type containing host
information.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.HostMigrate
#Called when the host has changed in a session by a call to the DirectPlay8Peer.Host
or DirectPlay8Server.Host method.

HostMigrate(NewHostID As Long, _
 fRejectMsg As Boolean)

Parts

NewHostID
Long value set to the ID of the new host.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.IndicateConnect
#Called on the host's message handler when a player has requested a connection to the
session.

IDH_DirectPlay8Event.EnumHostsResponse_dplay_vb
IDH_DirectPlay8Event.HostMigrate_dplay_vb
IDH_DirectPlay8Event.IndicateConnect_dplay_vb

in.doc – page 395

IndicateConnect(_
 dpnotify As DPNMSG_INDICATE_CONNECT, _
 fRejectMsg As Boolean)

Parts

dpnotify
DPNMSG_INDICATE_CONNECT message type.

fRejectMsg
Boolean value that is set to False to enable the player to join the session and True
to reject the player’s request.

Remarks

After this method returns, the player's DirectPlay8Event.ConnectComplete method
will be called with the response to their request to join the session. If the connection
request was successful, the hResultCode member of the
DPNMSG_CONNECT_COMPLETE type will be set to 0. If the request was
rejected or failed, hResultCode will be set to an error code.

DirectPlay8Event.IndicateConnectAborte
d

#Called if a player's connection is lost after it was indicated on the host, but prior to
being added to the session.

IndicateConnectAborted(_
 fRejectMsg As Boolean)

Parts

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.InfoNotify
#Called when the information for a client, server, peer, or group has been updated.

InfoNotify(lMsgID As Long, _
 lNotifyID As Long, _
 fRejectMsg As Boolean)

IDH_DirectPlay8Event.IndicateConnectAborted_dplay_vb
IDH_DirectPlay8Event.InfoNotify_dplay_vb

in.doc – page 396

Parts

lMsgID
This will be set to one of the following constants.

DPN_MSGID_CLIENT_INFO
The client information has changed.

DPN_MSGID_GROUP_INFO
The group information has changed.

DPN_MSGID_PEER_INFO
The peer information has changed.

DPN_MSGID_SERVER_INFO
The server information has changed.

lNotifyID
Notification ID.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.Receive
#Called in the receiver's message handler when a message is received from a player or
host.

Receive(_
 dpnotify As DPNMSG_RECEIVE,
 fRejectMsg As Boolean)

Parts

dpnotify
DPNMSG_RECEIVE message type containing the data sent.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.SendComplete
#Called in the sender's message handler when the message is received by the recipient.

SendComplete(_
 dpnotify As DPNMSG_SEND_COMPLETE, _
 fRejectMsg As Boolean)

IDH_DirectPlay8Event.Receive_dplay_vb
IDH_DirectPlay8Event.SendComplete_dplay_vb

in.doc – page 397

Parts

dpnotify
DPNMSG_SEND_COMPLETE message type containing the result of the
message send and the time it took to send the message.

fRejectMsg
Parameter is not supported in this release.

DirectPlay8Event.TerminateSession
#Called in the message handler for each session player after a call to
DirectPlay8Peer.TerminateSession.

TerminateSession(_
dpnotify As DPNMSG_TERMINATE_SESSION, _
fRejectMsg As Boolean)

Parts

dpnotify
DPNMSG_TERMINATE_SESSION message type containing the result of the
message send.

fRejectMsg
Parameter is not supported in this release.

Remarks

In a peer-peer session that permits host-migration, the host migrates if the current host
calls DirectPlay8Peer.Close or stops responding. When this event occurs:

· Microsoft® DirectPlay® notifies all the other players that the host has left the
session by calling their DirectPlay8Event.DestroyPlayer method.

· DirectPlay then notifies the remaining players of the new host by calling their
DirectPlay8Event.HostMigrate method

To prevent host-migration, the current host must terminate the session by calling
DirectPlay8Peer.TerminateSession. When the host terminates a session this way:

· DirectPlay calls each players' DirectPlay8Event.TerminateSession method. The
hResultCode of the associated DPNMSG_TERMINATE_SESSION type will
be set to DPNERR_HOSTTERMINATEDSESSION.

· DirectPlay will then generate DirectPlay8Event.DestroyPlayer calls for each
player.

In a peer-peer game that does not permit host-migration, the session is terminated if
the host calls DirectPlay8Peer.Close, or stops responding. When this event occurs:

IDH_DirectPlay8Event.TerminateSession_dplay_vb

in.doc – page 398

· DirectPlay calls each player's DirectPlay8Event.TerminateSession method. The
hResultCode of the associated DPNMSG_TERMINATE_SESSION type will
be set to set to DPNERR_HOSTTERMINATEDSESSION.

· DirectPlay will then generate DirectPlay8Event.DestroyPlayer calls for each
player.

In a client/server game, the session is terminated if the host calls
DirectPlay8Server.Close or stops responding. When this event occurs:

· DirectPlay calls each player's DirectPlay8Event.TerminateSession method. The
hResultCode of the associated DPNMSG_TERMINATE_SESSION type will
be set to DPNERR_CONNECTIONLOST.

· If the server disconnected itself from the session by calling
DirectPlay8Server.Close, its DirectPlay8Event.DestroyPlayer method will be
called once for each player in the session, including its own player.

· Otherwise, the server's DirectPlay8Event.DestroyPlayer method is called for
each client's player, but not for the server's player.

DirectPlay8LobbiedApplication
#The DirectPlay8LobbiedApplication class is used by an application that supports
lobbying. This class enables the application to register with the system so that it can
be lobby launched. Additionally, it also enables the application to get the connection
information necessary to launch a game without querying the user. Lastly, this class
enables the lobbied application to send messages and notifications to the lobby client
that launched the application.

The methods of the DirectPlay8LobbiedApplication class are:

DirectPlay8LobbiedApplication
Methods

Close

GetConnectionSettings

RegisterMessageHandler

RegisterProgram

Send

SetAppAvailable

SetConnectionSettings

UnRegisterMessageHandler

UnRegisterProgram

UpdateStatus

IDH_DirectPlay8LobbiedApplication_dplay_vb

in.doc – page 399

DirectPlay8LobbiedApplication.Close
#Deletes the lobbied application.

Close()

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDOBJECT

DirectPlay8LobbiedApplication.GetConn
ectionSettings

#Retrieves the settings for the specified connection.

GetConnectionSettings(LobbyClient As Long, lFlags As Long)

Parts

LobbyClient
Handle to the connection to retrieve the settings for.

lFlags
Reserved, must be 0.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDOBJECT

DPNERR_INVALIDFLAGS

DirectPlay8LobbiedApplication.Register
MessageHandler

#Registers a message handler function that receives notifications about changes in the
state of the lobbied application and receives messages from the lobby client.

RegisterMessageHandler(lobbyEvent As DirectPlay8LobbyEvent)

IDH_DirectPlay8LobbiedApplication.Close_dplay_vb
IDH_DirectPlay8LobbiedApplication.GetConnectionSettings_dplay_vb
IDH_DirectPlay8LobbiedApplication.RegisterMessageHandler_dplay_vb

in.doc – page 400

Parts

lobbyEvent
DirectPlay8LobbyEvent object that is used to receive notifications.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_ALREADYREGISTERED

DPNERR_INVALIDPARAM

Remarks

If you want to register a new message handler, you must first call
DirectPlay8LobbiedApplication.UnRegisterMessageHandler to unregister the
current message handler.

DirectPlay8LobbiedApplication.Register
Program

#Registers a lobby-aware application with Microsoft® DirectPlay®. Applications must
be registered to enable lobby launching.

RegisterProgram(_
 ProgramDesc As DPL_PROGRAM_DESC, _
 lFlags As Long)

Parts

ProgramDesc
DPL_PROGRAM_DESC type that describes the lobby-aware application to
register.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

IDH_DirectPlay8LobbiedApplication.RegisterProgram_dplay_vb

in.doc – page 401

Remarks

The application needs to register only once. It should be unregistered with a call to
the DirectPlay8LobbiedApplication.UnRegisterProgram method when it is
uninstalled. If a lobby client tries to launch an application that no longer exists on the
system, DirectPlay automatically unregisters the application.

In DirectX® 8.0, RegisterProgram must be used. You cannot manually place
application information into the registry. Failure to use this class makes your
application nonportable and incompatible with future versions of DirectPlay.

DirectPlay8LobbiedApplication.Send
#Sends a message from the lobbied application to the lobby client.

Send(Target As Long, _
 buffer() As Byte, _
 lBufferSize As Long, _
 lTimeOut As Long, _
 lFlags As Long)

Parts

Target
Long value specifying the handle of the lobby client to receive the message.

buffer()
Variable of type BYTE that contains the message buffer.

lBufferSize
Long value that specifies the size of the message buffer in the buffer() parameter,
in bytes. This value must be at least 1 byte and no more than 64 KB.

lTimeOut
Long value that specifies the number of milliseconds to wait for the Send request
to process.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_SENDTOOLARGE

IDH_DirectPlay8LobbiedApplication.Send_dplay_vb

in.doc – page 402

Remarks

If the buffer size is larger than 64 KB, Err.Number is set to
DPNERR_SENDTOOLARGE. If the buffer size is set to 0, Err.Number is set to
DPNERR_INVALIDPARAM.

DirectPlay8LobbiedApplication.SetAppA
vailable

#Makes an application available or unavailable for a lobby client to connect to. This
method is typically called if a lobbied application is independently launched, that is,
not launched by a lobby client. Additionally, this method should be called if a game
has ended and the lobbied application needs to be available to connect to a lobby
client at the start of another game.

SetAppAvailable(fAvailable As Boolean)

Parts

fAvailable
Boolean value to set to TRUE if the application is available, or FALSE to make
it unavailable.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDOBJECT

DirectPlay8LobbiedApplication.SetConn
ectionSettings

#Specifies the settings for the connection.

SetConnectionSettings(hTarget As Long, _
 lFlags As Long, _
 ConnectionSettings As DPL_CONNECTION_SETTINGS, _
 HostAddress As DirectPlay8Address, _
 Device As DirectPlay8Address)

Parts

hTarget
Long value that is set to the connection handle.

IDH_DirectPlay8LobbiedApplication.SetAppAvailable_dplay_vb
IDH_DirectPlay8LobbiedApplication.SetConnectionSettings_dplay_vb

in.doc – page 403

lFlags
Reserved, must be 0.

ConnectionSettings
DPL_CONNECTION_SETTINGS type with the connection settings.

HostAddress
DirectPlay8Address object with the host address.

Device
DirectPlay8Address object with the device address.

DirectPlay8LobbiedApplication.UnRegist
erMessageHandler

#Unregisters the current DirectPlay8LobbiedApplication message handler.

UnRegisterMessageHandler()

Remarks

You must call this method before registering a new message handler.

DirectPlay8LobbiedApplication.UnRegist
erProgram

#Unregisters a lobby-aware application that was registered through the
DirectPlay8LobbiedApplication.RegisterProgram method.

UnRegisterProgram(guidApplication As String, lFlags As Long)

Parts

guidApplication
GUID of the application to unregister.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

IDH_DirectPlay8LobbiedApplication.UnRegisterMessageHandler_dplay_vb
IDH_DirectPlay8LobbiedApplication.UnRegisterProgram_dplay_vb

in.doc – page 404

DirectPlay8LobbiedApplication.UpdateSt
atus

#Updates the status of a connected lobby client.

UpdateStatus(LobbyClient As Long, _
 lStatus As CONST_DPLSESSION)

Parts

LobbyClient
Long value that specifies the connection handle for the lobby client.

lStatus
One of the constants of the CONST_DPLSESSION enumeration that specifies
the status between the lobby client and the lobbied application.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

Remarks

You define the connection handle when you register the application with the lobby by
calling DirectPlay8Client.RegisterLobby or DirectPlay8Peer.RegisterLobby.

DirectPlay8LobbyClient
#The DirectPlay8LobbyClient class is used by a lobby client application and is
responsible for enumerating and launching lobby-enabled game applications on the
local computer, and communicating with them after they are running. The lobby
client must register a message handler routine to process messages from the lobby and
the lobbied game application.

The methods of the DirectPlay8LobbyClient class are:

DirectPlay8LobbyClient
Methods

Close

ConnectApplication

GetCountLocalPrograms

GetLocalProgram

RegisterMessageHandler

IDH_DirectPlay8LobbiedApplication.UpdateStatus_dplay_vb
IDH_DirectPlay8LobbyClient_dplay_vb

in.doc – page 405

ReleaseApplication

Send

SetConnectionSettings

UnRegisterMessageHandler

DirectPlay8LobbyClient.Close
#Deletes the lobby client.

Close()

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDOBJECT

DirectPlay8LobbyClient.ConnectApplicat
ion

#Connects a lobby-enabled application to the session specified in the
DPL_CONNECT_INFO type. If the application is not running, this method can be
used to launch the application.

When the connection is successfully established, Microsoft® DirectPlay® calls the
message handler's DirectPlay8LobbyEvent.Connect method.

ConnectApplication(_
 ConnectionInfo As DPL_CONNECT_INFO,
 lTimeOut As Long, _
 lFlags As CONST_DPLCONNECT) As Long

Parts

ConnectionInfo
DPL_CONNECT_INFO type that describes the connection parameters,
including the GUID of the application to connect to.

lTimeOut
Long value that specifies the number of milliseconds to wait for the connection
to process.

lFlags
One of the constants of the CONST_DPLCONNECT enumeration that
determines connection behavior.

IDH_DirectPlay8LobbyClient.Close_dplay_vb
IDH_DirectPlay8LobbyClient.ConnectApplication_dplay_vb

in.doc – page 406

Return Values

Returns a Long value that is set to the application connection handle . This handle is
used for further communication with the application. Additionally, this handle is used
in the Application parameter in the DirectPlay8LobbyClient.ReleaseApplication
method.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_CANTLAUNCHAPPLICATION

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_TIMEDOUT

DirectPlay8LobbyClient.GetCountLocalP
rograms

#Retrieves the number of lobbied applications that are registered on the system.

GetCountLocalPrograms(guidApplication As String) As Long

Parts

guidApplication
String value specifying the GUID of the lobbied application to enumerate.

Return Values

Returns the number of lobbied applications that are registered.

DirectPlay8LobbyClient.GetLocalProgra
m

#Enumerates the specified lobbied application that is registered on the system. Before
calling this method, call DirectPlay8LobbyClient.GetCountLocalPrograms to see
how many lobbied applications are registered.

GetLocalProgram(lProgID As Long) As DPL_APPLICATION_INFO

Parts

lProgID
Long value specifying the ID of the lobbied application to enumerate.

IDH_DirectPlay8LobbyClient.GetCountLocalPrograms_dplay_vb
IDH_DirectPlay8LobbyClient.GetLocalProgram_dplay_vb

in.doc – page 407

Return Values

Returns a DPL_APPLICATION_INFO structure that describes the lobbied
application.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

This method is generally called twice—once to obtain the size of the required buffer,
and then with the correct buffer size.

DirectPlay8LobbyClient.RegisterMessag
eHandler

#Registers a message handler function that receives notifications about changes in the
state of the lobby client and receives messages from the lobbied application.

RegisterMessageHandler(lobbyEvent As DirectPlay8LobbyEvent)

Parts

lobbyEvent
DirectPlay8LobbyEvent object that is used to receive notifications.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_ALREADYREGISTERED

DPNERR_INVALIDPARAM

Remarks

If you want to register a new message handler, you must first call
DirectPlay8LobbyClient.UnRegisterMessageHandler to unregister the current
message handler.

IDH_DirectPlay8LobbyClient.RegisterMessageHandler_dplay_vb

in.doc – page 408

DirectPlay8LobbyClient.ReleaseApplicati
on

#Releases a lobbied application and closes the connection between the lobby client
and the application. This method should be called whenever a lobby client has
finished its session with an application.

ReleaseApplication(Application As Long)

Parts

Application
Long value specifying the GUID of the lobbied application to release. This value
is returned by the DirectPlay8LobbyClient.ConnectApplication method.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDHANDLE

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DirectPlay8LobbyClient.Send
#Sends a message to a lobbied application that was launched by this lobby client or
was connected by this lobby client.

Microsoft® DirectPlay® transmits the data to the target by calling the target message
handler's DirectPlay8LobbyEvent.Receive method.

Send(Target As Long, _
 buffer() As Byte, _
 lBufferSize As Long, _
 lFlags As Long)

Parts

Target
Long value that specifies the target for the message transmission.

buffer()
Buffer that contains the message.

lBufferSize

IDH_DirectPlay8LobbyClient.ReleaseApplication_dplay_vb
IDH_DirectPlay8LobbyClient.Send_dplay_vb

in.doc – page 409

Size of the message buffer in the buffer() parameter, in bytes. This value must be
at least 1 byte and no more than 64 KB.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDHANDLE

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

DPNERR_SENDTOOLARGE

Remarks

If the buffer size is larger than 64 KB, Err.Number is set to
DPNERR_SENDTOOLARGE. If the buffer size is set to 0, Err.Number is set to
DPNERR_INVALIDPARAM.

DirectPlay8LobbyClient.SetConnectionS
ettings

#Sets the connection settings to be associated with the specified connection.

SetConnectionSettings(hTarget As Long, _
 lFlags As Long, _
 ConnectionSettings As DPL_CONNECTION_SETTINGS), _
 HostAddress As DirectPlay8Address, _
 Device As DirectPlay8Address)

Parts

hTarget
Long value that is set to the connection handle.

lFlags
Reserved. Set to 0.

ConnectionSettings
DPL_CONNECTION_SETTINGS structure that contains the connections.

HostAddress
DirectPlay8Address object containing the host address.

Device
DirectPlay8Address object containing the device address.

IDH_DirectPlay8LobbyClient.SetConnectionSettings_dplay_vb

in.doc – page 410

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDPARAM

DPNERR_INVALIDOBJECT

DPNERR_INVALIDFLAGS

DirectPlay8LobbyClient.UnRegisterMess
ageHandler

#Unregisters the current DirectPlay8LobbyClient message handler.

UnRegisterMessageHandler()

Remarks

You must call this method before registering a new message handler.

DirectPlay8LobbyEvent
#The DirectPlay8LobbyEvent class is used to capture Microsoft® DirectPlay® events
generated when using the DirectPlay8LobbiedApplication and
DirectPlay8LobbyClient classes.

Note
When implementing the DirectPlay8LobbyEvent object, Microsoft® Visual
Basic® requires that every method of this object is implemented in your form.

The methods of the DirectPlay8LobbyEvent class are:

DirectPlay8LobbyEvent
Methods

Connect

ConnectionSettings

Disconnect

Receive

SessionStatus

IDH_DirectPlay8LobbyClient.UnRegisterMessageHandler_dplay_vb
IDH_DirectPlay8LobbyEvent_dplay_vb

in.doc – page 411

DirectPlay8LobbyEvent.Connect
#Called when the DirectPlay8LobbyClient.ConnectApplication method has been
called by the lobby client.

Connect(_
 dlNotify As DPL_MESSAGE_CONNECT, _
 fRejectMsg As Boolean)

Parts

dlNotify
DPL_MESSAGE_CONNECT message type with the connection information.

fRejectMsg
Boolean value indicating whether to connect the application.

DirectPlay8LobbyEvent.ConnectionSetti
ngs

#Called when the DirectPlay8LobbyClient.SetConnectionSettings or
DirectPlay8LobbiedApplication.SetConnectionSettings method is called.

ConnectionSettings(_ConnectionSettings As
DPL_MESSAGE_CONNECTION_SETTINGS)

Parts

ConnectionSettings
DPL_MESSAGE_CONNECTION_SETTINGS message type with the
connection settings.

DirectPlay8LobbyEvent.Disconnect
#Called when the DirectPlay8LobbyClient.ReleaseApplication method has been
called by the lobby client.

Disconnect(DisconnectID As Long, _
 lReason As Long)

Parts

DisconnectID

IDH_DirectPlay8LobbyEvent.Connect_dplay_vb
IDH_DirectPlay8LobbyEvent.ConnectionSettings_dplay_vb
IDH_DirectPlay8LobbyEvent.Disconnect_dplay_vb

in.doc – page 412

Long value specifying the identifier of the lobby application that requested to
disconnect.

lReason
Long value that is set to the reason for the disconnection.

DirectPlay8LobbyEvent.Receive
#Called when the DirectPlay8LobbyClient.Send or
DirectPlay8LobbiedApplication.Send method has been called.

Receive(dlNotify As DPL_MESSAGE_RECEIVE, _
 fRejectMsg As Boolean)

Parts

dlNotify
DPL_MESSAGE_RECEIVE message type containing the message sent.

fRejectMsg
Boolean value indicating whether to accept or reject the message.

DirectPlay8LobbyEvent.SessionStatus
#Called when the DirectPlay8LobbiedApplication.UpdateStatus method has been
called by the lobbied application.

LobbySessionStatus(status As Long, _
 lHandle As Long)

Parts

status
Long value specifying the updated status of the lobby session. It will be set to
one of the constants of the CONST_DPLSESSION enumeration that specifies
the status between the lobby client and the lobbied application.

lHandle
Long value set to the handle of the application that sent the status update
message.

IDH_DirectPlay8LobbyEvent.Receive_dplay_vb
IDH_DirectPlay8LobbyEvent.SessionStatus_dplay_vb

in.doc – page 413

DirectPlay8Peer
#Applications use the methods of the DirectPlay8Peer class to create a peer-to-peer
Microsoft® DirectPlay® session.

The methods of the DirectPlay8Peer class can be organized into the following
groups.

Session Management Close

Connect

EnumHosts

GetApplicationDesc

GetCaps

GetConnectionInfo

GetCountServiceProviders

GetEnumHostResponseAddress

GetServiceProvider

GetSPCaps

Host

SetApplicationDesc

SetCaps

SetSPCaps

TerminateSession

Message Management GetSendQueueInfo

RegisterMessageHandler

SendTo

UnregisterMessageHandler

Player Management DestroyPeer

GetPlayerOrGroup

GetCountClientsAndGroups

GetPeerAddress

GetPeerInfo

RemovePlayerFromGroup

SetPeerInfo

Group Management AddPlayerToGroup

CreateGroup

DestroyGroup

GetCountGroupMembers

IDH_DirectPlay8Peer_dplay_vb

in.doc – page 414

GetGroupInfo

GetGroupMember

SetGroupInfo

Miscellaneous CancelAsyncOperation

RegisterLobby

DirectPlay8Peer.AddPlayerToGroup
#Adds a peer to a group.

When this method is called, DirectPlay calls each player's
DirectPlay8Event.AddRemovePlayerGroup method to notify him or her of the new
group member.

AddPlayerToGroup(idGroup As Long, _
 idClient As Long,
 lFlags As Long) As Long

Parts

idGroup
Long value that specifies the identifier of the group to add the peer to.

idClient
Long value that specifies the identifier of the peer that is added to the group.

lFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNOP_SYNC
Causes the method to process synchronously.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Peer.CancelAsyncOperation method to
cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDFLAGS

IDH_DirectPlay8Peer.AddPlayerToGroup_dplay_vb

in.doc – page 415

Remarks

Any peer can add itself or another peer to an existing group. After the peer is
successfully added to the group, all messages sent to the group are also sent to the
peer.

For a peer to add itself to the group, pass DPNID_ME in the idClient parameter.

DirectPlay8Peer.CancelAsyncOperation
#Cancels asynchronous requests. Many methods of the DirectPlay8Peer class run
asynchronously by default. Depending on the situation, you might want to cancel
requests before they are processed. All the methods of this class that can be run
asynchronously return an lAsyncHandle parameter.

Specific requests are canceled by passing the lAsyncHandle of the request in this
method's lAsyncHandle parameter. You can cancel all pending asynchronous
operations by calling this method, passing 0 in the lAsyncHandle parameter, and
specifying DPNCANCEL_ALL_OPERATIONS in the lFlags parameter. If a specific
handle is provided to this method, you must pass 0 in the lFlags parameter.

CancelAsyncOperation(lAsyncHandle As Long, _
 lFlags As CONST_DPNCANCELFLAGS)

Parts

lAsyncHandle
Handle of the asynchronous operation to stop. This value can be 0 to stop all
requests or a particular type of asynchronous request. If a specific handle for the
request to cancel is specified, the lFlags parameter must be 0.

lFlags
Flag that specifies which asynchronous request to canceled. You can set this
parameter to one of the flags of the CONST_DPNCANCELFLAGS
enumeration.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_PENDING

DPNERR_INVALIDFLAGS

DPNERR_CANNOTCANCEL

DPNERR_INVALIDHANDLE

IDH_DirectPlay8Peer.CancelAsyncOperation_dplay_vb

in.doc – page 416

Remarks

You can cancel a send by providing the handle returned from
DirectPlay8Peer.SendTo method. The DirectPlay8Event.SendComplete method
will still be called unless the message was sent with the DPNSEND_NOCOMPLETE
flag set. If you cancel a send operation by calling
DirectPlay8Peer.CancelAsyncOperation the hResultCode member of the
DPNMSG_SEND_COMPLETE type that is passed to the
DirectPlay8Event.SendComplete method will be set to DPNERR_CANCELLED.

DirectPlay8Peer.Close
#Closes the open connection with a session.

Close();

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_UNINITIALIZED

DirectPlay8Peer.Connect
#Establishes the connection to the server. After a connection is established, the
communication channel on the object is open and active and the application should
expect messages to arrive immediately. No messages can be sent by means of the
DirectPlay8Peer.SendTo method until the connection has completed.

Before this method is called, it must obtain an application description by calling
DirectPlay8Peer.EnumHosts. The EnumHosts method returns a
DPN_APPLICATION_DESC type for each hosted application. The type describes
the application, including the GUID of the application.

Although the application GUID is not required, Microsoft® DirectPlay® performs
verification if one is specified.

When the connection to the host is requested, the
DirectPlay8Event.IndicateConnect method is called in the host's message handler.
The host may either accept or reject the connection. In either case, after the host has
acted, the client message handler's DirectPlay8Event.ConnectComplete method will
be called to convey the response.

Connect(AppDesc As DPN_APPLICATION_DESC, _
 Address As DirectPlay8Address, _
 DeviceInfo As DirectPlay8Address, _
 lFlags As Long, _
 UserData As Any, _

IDH_DirectPlay8Peer.Close_dplay_vb
IDH_DirectPlay8Peer.Connect_dplay_vb

in.doc – page 417

 UserDataSize As Long) As Long

Parts

AppDesc
DPN_APPLICATION_DESC type that describes the application. Only some of
the members of this type are used by this method. The only member of this type
that you must set is the guidApplication member. You can also set guidInstance,
Password, and lFlags.

Address
Optional DirectPlay8Address object that specifies the addressing information to
use to connect to the computer that is hosting.

DeviceInfo
DirectPlay8Address object that specifies what service provider to enumerate
and what settings to use.

lFlags
Flag that describes the connection mode. You can set the following flag.

DPNOP_SYNC
Process the connection request synchronously. If this flag is set, DirectPlay
will not call the DirectPlay8Event.ConnectComplete method.

UserData
Application-specific user data.

UserDataSize
Size of the data contained in the UserData parameter.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Peer.CancelAsyncOperation method to
cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_NOCONNECTION

DPNERR_INVALIDPASSWORD

DPNERR_INVALIDFLAGS

DPNERR_INVALIDINTERFACE

DPNERR_INVALIDAPPLICATION

DPNERR_NOTHOST

DPNERR_SESSIONFULL

DPNERR_HOSTREJECTEDCONNECTION

in.doc – page 418

DPNERR_INVALIDINSTANCE

Remarks

Although multiple enumerations can be run concurrently, and can be run across the
duration of a connection, only one connection is allowed per object. To establish a
connection to more than one application, you must create another object. That is, only
one running application per object is allowed. If DirectPlay8Peer.Connect is called
while another connection is in progress, the function raises an error.

DirectPlay8Peer.CreateGroup
#Creates a group in the current session. A group is a logical collection of players.

When this method is called, DirectPlay calls each player's
DirectPlay8Event.CreateGroup method to notify him or her of the new group.

CreateGroup(GroupInfo As DPN_GROUP_INFO, _
 lFlags As Long) As Long

Parts

GroupInfo
DPN_GROUP_INFO structure that contains the group description.

lFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNOP_SYNC
Causes the method to process synchronously.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Peer.CancelAsyncOperation method to
cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDFLAGS

Remarks

Microsoft® DirectPlay® does not maintain hierarchical groups because they can easily
be implemented with flat groups and expeditious use of the group data.

IDH_DirectPlay8Peer.CreateGroup_dplay_vb

in.doc – page 419

DirectPlay8Peer.DestroyPeer
#Deletes a peer from the session.

DestroyPeer(idClient As Long, _
 lFlags As Long, _
 UserData As Any, _
 UserDataSize As Long)

Parts

idClient
Long value that specifies the identifier of the peer to delete.

lFlags
Reserved. Must be 0.

UserData
Pointer that describes additional delete data information that is sent to the peer.

UserDataSize
Long value that specifies the size of the data contained in the UserData
parameter.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_NOTHOST

DPNERR_INVALIDPLAYER

DPNERR_INVALIDPARAM

Remarks

This method calls the DirectPlay8Event.DestroyPlayer method in the destroyed
player's message handler.

DirectPlay8Peer.DestroyGroup
#Deletes a group created by the DirectPlay8Peer.CreateGroup method. This method
can be called by any peer in the group.

This method will call the DirectPlay8Event.AddRemovePlayerGroup method for
each peer in the group.

DestroyGroup(idGroup As Long, lFlags As Long) As Long

IDH_DirectPlay8Peer.DestroyPeer_dplay_vb
IDH_DirectPlay8Peer.DestroyGroup_dplay_vb

in.doc – page 420

Parts

idGroup
Long value that specifies of the identifier of the group to delete.

lFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNOP_SYNC
Causes the method to process synchronously.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Peer.CancelAsyncOperation method to
cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

DirectPlay8Peer.EnumHosts
#Enumerates applications that host Microsoft® DirectPlay® games. When an
application is found meeting the enumeration criteria, the
DirectPlay8Event.EnumHostsResponse method is called in the application's
message handler. This method contains a DPNMSG_ENUM_HOSTS_RESPONSE
message type that contains a DPN_APPLICATION_DESC type that describes the
applications found.

EnumHosts(ApplicationDesc As DPN_APPLICATION_DESC, _
 AddrHost As DirectPlay8Address, _
 DeviceInfo As DirectPlay8Address, _
 lRetryCount As Long, _
 lRetryInterval As Long, _
 lTimeOut As Long, _
 lFlags As Long, _
 lFlags As CONST_DPNOPERATIONS, _
 UserData As Any, _
 UserDataSize As Long) As Long

IDH_DirectPlay8Peer.EnumHosts_dplay_vb

in.doc – page 421

Parts

ApplicationDesc
DPN_APPLICATION_DESC structure that specifies which application hosts to
enumerate. You can specify the following fields to reduce the number of
responses to the enumeration.

guidApplication
GUID of the application to find; if not specified, all are searched for.

Password
Password to provide; secure sessions will not respond without a password.

AddrHost
DirectPlay8Address object that specifies the address of the computer that is
hosting the application.

DeviceInfo
DirectPlay8Address object that specifies the service provider and settings to
enumerate.

lRetryCount
Value that specifies how many times the enumeration data will be sent. You can
set this parameter to zero to specify the default value. If you set this value to
INFINITE, the enumeration will continue until canceled.

lRetryInterval
Value that specifies the time, in milliseconds, between successive enumeration
attempts. Set this parameter to 0 to use the default value.

lTimeOut
Number of milliseconds for the enumeration to run. If 0 is specified, a default
value is used. If INFINITE is specified, the enumeration continues until it is
canceled.

lFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNOP_SYNC
Causes the method to process synchronously.

UserData
Block of data that is sent in the enumeration request to the host. The size of the
data can be limited depending on the network type, but 512 bytes is supported at
a minimum.

UserDataSize
Size of the data in the UserData parameter.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Peer.CancelAsyncOperation method to
cancel the request, if the request is processed asynchronously.

in.doc – page 422

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_TIMEDOUT

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

Because of the variety of ways enumeration can happen, it is not recommended that
an application specify lRetryInterval, lRetryCount , orlTimeOut unless the application
has some specific media knowledge.

DirectPlay8Peer.GetApplicationDesc
#Retrieves the full application description for the connected application.

GetApplicationDesc(lFlags As Long) _
 As DPN_APPLICATION_DESC

Parts

lFlags
Reserved. Must be 0.

Return Values

Returns a DPN_APPLICATION_DESC type describing the application.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_NOCONNECTION

DPNERR_INVALIDFLAGS

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

DirectPlay8Peer.GetCaps
#Retrieves the DPN_CAPS type for the current object.

GetCaps() As DPN_CAPS

IDH_DirectPlay8Peer.GetApplicationDesc_dplay_vb
IDH_DirectPlay8Peer.GetCaps_dplay_vb

in.doc – page 423

Return Values

Returns a DPN_SP_CAPS type to receive the information about the specified service
provider.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Peer.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Peer.GetPlayerOrGroup
#Retrieves the client or group identifier for the specified client or group. The number
of clients or groups for the application can be determined by calling
DirectPlay8Peer.GetCountClientsAndGroups.

GetPlayerOrGroup(lIndex As Long) As Long

Parts

lIndex
Index of the client or group.

Return Values

Returns the identification of the client or group.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

IDH_DirectPlay8Peer.GetPlayerOrGroup_dplay_vb

in.doc – page 424

DirectPlay8Peer.GetConnectionInfo
#Retrieves statistical information about the connection between the local endpoint and
the host.

GetConnectionInfo() As DPN_CONNECTION_INFO

Return Values

Returns a DPN_CONNECTION_INFO type to retrieve information about the
specified connection.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

This method can be called only after a successful Connect call has completed.

DirectPlay8Peer.GetCountClientsAndGro
ups

#Retrieves the number of peers or groups for the session.

GetCountClientsAndGroups(_
 lFlags As CONST_DPNENUMCLIENTGROUPFLAGS) As Long

Parts

lFlags
Flag that describes enumeration behavior. You can set one of the following flags
of the CONST_DPNENUMCLIENTGROUPFLAGS enumeration.

Error Codes

If the method fails, Err.Number can be set to the following value.

IDH_DirectPlay8Peer.GetConnectionInfo_dplay_vb
IDH_DirectPlay8Peer.GetCountClientsAndGroups_dplay_vb

in.doc – page 425

DPNERR_INVALIDFLAGS

DirectPlay8Peer.GetCountGroupMember
s

#Retrieves the number of players in a group.

GetCountGroupMembers(dpid As Long) As Long

Parts

dpid
Long value that specifies the identification of the group.

Return Values

Returns the number of players in the group.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDFLAGS

Remarks

Because player information changes frequently, the required buffer size returned may
change between subsequent calls. Check and reallocate the buffer until the method
succeeds.

DirectPlay8Peer.GetCountServiceProvide
rs

#Retrieves the number of registered service providers available to the application.

GetCountServiceProviders() As Long

Return Values

Returns the number of registered service providers available to the application.

IDH_DirectPlay8Peer.GetCountGroupMembers_dplay_vb
IDH_DirectPlay8Peer.GetCountServiceProviders_dplay_vb

in.doc – page 426

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDOBJECT

DirectPlay8Peer.GetEnumHostResponse
Address

#Retrieves the address of the host.

GetEnumHostResponseAddress(_
 AppDesc As DPN_APPLICATION_DESC) _
 As DirectPlay8Address

Parts

AppDesc
DPN_APPLICATION_DESC type describing the application.

Return Values

Returns a DirectPlay8Address object specifying the address of the host.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

DirectPlay8Peer.GetGroupInfo
#Retrieves a block of data associated with a group, including the group name.

This method is typically called after DirectPlay calls the
DirectPlay8Event.InfoNotify method, indicating that the group data has been
modified.

GetGroupInfo(idGroup As Long) As DPN_GROUP_INFO

Parts

idGroup

IDH_DirectPlay8Peer.GetEnumHostResponseAddress_dplay_vb
IDH_DirectPlay8Peer.GetGroupInfo_dplay_vb

in.doc – page 427

Long value that specifies the identifier of the group whose data block will be
retrieved.

Return Values

Returns a DPN_GROUP_INFO type that describes the group data.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDFLAGS

DirectPlay8Peer.GetGroupMember
#Retrieves the identifier of the specified member of a group. The number of players in
a group is determined by calling DirectPlay8Peer.GetCountGroupMembers.

GetGroupMember(lIndex As Long, dpid As Long) As Long

Parts

lIndex
Index value of the player in a group.

dpid
Long value that specifies the identification of the group.

Return Values

Returns a Long value that specifies the identification of the player.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDPARAM

DirectPlay8Peer.GetPeerAddress
#Retrieves the address for the specified player in the session.

GetPeerAddress(idPlayer As Long) As DirectPlay8Address

IDH_DirectPlay8Peer.GetGroupMember_dplay_vb
IDH_DirectPlay8Peer.GetPeerAddress_dplay_vb

in.doc – page 428

Parts

idPlayer
Long value specifying the identification of the player.

Return Values

Returns a DirectPlay8Address object that specifies the address of the player.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_UNINITIALIZED

DirectPlay8Peer.GetPeerInfo
#Retrieves player information set for the specified peer.

GetPeerInfo(idPeer As Long) As DPN_PLAYER_INFO

Parts

idPeer
Long value that specifies the identifier of the peer whose information will be
retrieved.

Return Values

Returns a DPN_PLAYER_INFO type describing player information.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDPLAYER

DPNERR_INVALIDPARAM

Remarks

Call this method after DirectPlay calls the DirectPlay8Event.InfoNotify method,
indicating that the group data has been modified.

IDH_DirectPlay8Peer.GetPeerInfo_dplay_vb

in.doc – page 429

DirectPlay8Peer.GetSendQueueInfo
#Used by the application to monitor the size of the send queue. Microsoft®

DirectPlay® does not send messages faster than the receiving computer can process
them. As a result, if the sending computer is sending faster than the receiver can
receive, messages accumulate in the sender’s queue. If the application registers that
the send queue is growing too large, it should decrease the rate that messages are sent.

GetSendQueueInfo(lNumMsgs As Long, lNumBytes As Long)

Parts

lNumMsgs
Number of messages currently queued.

lNumBytes
Amount of data, in bytes, of the messages currently queued.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

DirectPlay8Peer.GetServiceProvider
#Retrieves information for the specified service provider. Before calling this method,
call the DirectPlay8Peer.GetCountServiceProviders method to obtain the number
of registered service providers available to the application.

GetServiceProvider(lIndex As Long) As DPN_SERVICE_PROVIDER_INFO

Parts

lIndex
Index value specifying the specific server provider.

Return Values

Returns a DPN_SERVICE_PROVIDER_INFO type that describes the service
provider.

Error Codes

If the method fails, Err.Number can be set to the following value.

IDH_DirectPlay8Peer.GetSendQueueInfo_dplay_vb
IDH_DirectPlay8Peer.GetServiceProvider_dplay_vb

in.doc – page 430

DPNERR_INVALIDPARAM

DirectPlay8Peer.GetSPCaps
#Retrieves the DPN_SP_CAPS structure for the specified service provider.

GetSPCaps(guidSP As String) As DPN_SP_CAPS

Parts

guidSP
String specifying the GUID of the service provider you want to get information
about.

Return Values

Returns a DPN_SP_CAPS type to receive the information about the specified service
provider.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Peer.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Peer.Host
#Specifies the host for the peer-to-peer session.

Host(AppDesc As DPN_APPLICATION_DESC, _
 Address As DirectPlay8Address)

Parts

AppDesc
DPN_APPLICATION_DESC type that describes the application.

Address

IDH_DirectPlay8Peer.GetSPCaps_dplay_vb
IDH_DirectPlay8Peer.Host_dplay_vb

in.doc – page 431

DirectPlay8Address object that specifies an addresses of a service-provider
device or a service provider to host the application on.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

DirectPlay8Peer.RegisterLobby
#Registers or unregisters an application with a lobby.

RegisterLobby(dpnHandle As Long, _
 LobbyApp As DirectPlay8LobbiedApplication, _
 lFlags As Long)

Parts

dpnHandle
Connection handle to be used when making the calls to
DirectPlay8LobbiedApplication.UpdateStatus.

LobbyApp
DirectPlay8LobbiedApplication object that specifies the application.

lFlags
Set this parameter to one of the two CONST_DPNLOBBY enumeration values
to indicate whether the application is to be registered or unregistered.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

Remarks

When an application is registered with a lobby, the lobby client automatically
receives notifications of changes in game status.

DirectPlay8Peer.RegisterMessageHandle
r

IDH_DirectPlay8Peer.RegisterLobby_dplay_vb

in.doc – page 432

#Registers an entry point in the client's code that receives the messages from the
DirectPlay8Peer class. Call this method before calling any other methods of this
class.

RegisterMessageHandler(event As DirectPlay8Event)

Parts

event
DirectPlay8Event object that will receive the messages generated by the client
and server.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_ALREADYREGISTERED

Remarks

If you want to register a new message handler, you must first call
DirectPlay8Peer.UnRegisterMessageHandler to unregister the current message
handler.

DirectPlay8Peer.RemovePlayerFromGrou
p

#Removes a peer from a group.

When this method is called, DirectPlay calls each player's
DirectPlay8Event.AddRemovePlayerGroup method to notify him or her that a
member has been removed from the group.

RemovePlayerFromGroup(idGroup As Long, _
 idClient As Long, _
 lFlags As Long) As Long

Parts

idGroup
Long value that specifies the identifier of the group that the peer will be removed
from.

idClient
Long value that specifies the identifier of the peer that will be removed from the
group.

lFlags

IDH_DirectPlay8Peer.RegisterMessageHandler_dplay_vb
IDH_DirectPlay8Peer.RemovePlayerFromGroup_dplay_vb

in.doc – page 433

Flag that controls how this method is processed. The following flag can be set for
this method.

DPNOP_SYNC
Causes the method to process synchronously.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Peer.CancelAsyncOperation method to
cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPLAYER

DirectPlay8Peer.SendTo
#Transmits data to the specified player. The message can be sent synchronously or
asynchronously.

SendTo(idSend As Long, _
 buffer() As BYTE, _
 lPriority As Long, _
 lTimeOut As Long, _
 lFlags As CONST_DPNSENDFLAGS) As Long

Parts

idSend
Long value specifying the identifier of the player to receive data. Set this
parameter to DPNID_ALL_PLAYERS_GROUP value from the
CONST_DPNPLAYERGROUPFLAGS enumeration to send a message to all
players in the session.

buffer()
Array of type BYTE that describes the data to send.

lPriority
Priority of the message.

lTimeOut
Number of milliseconds to wait for the message to be sent. If the message has not
been sent by the lTimeOut value, the message is not sent. If you do not want a
time-out for message sends, set this parameter to 0.

IDH_DirectPlay8Peer.SendTo_dplay_vb

in.doc – page 434

lFlags
Flags that describe send behavior. You can set one or more of the following flags
defined in the CONST_DPNSENDFLAGS enumeration.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Peer.CancelAsyncOperation method to
cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDFLAGS

DPNERR_TIMEDOUT

Remarks

This method will call the DirectPlay8Event.Receive method in the recipient's
message handler. When the SendTo request is completed, the
DirectPlay8Event.SendComplete method is called in the sender's message handler.
The SendComplete method contains a DPNMSG_SEND_COMPLETE message
type. The success or failure of the request is contained in the hResultCode member
of this message type.

DirectPlay8Peer.SetApplicationDesc
#Changes the settings for the application that is being hosted. Only some settings can
be changed.

SetApplicationDesc(AppDesc As DPN_APPLICATION_DESC, _
 lFlags As Long)

Parts

AppDesc
DPN_APPLICATION_DESC type that describes the application settings to
modify.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDFLAGS

IDH_DirectPlay8Peer.SetApplicationDesc_dplay_vb

in.doc – page 435

Remarks

You can use this method to modify only the following members of the
DPN_APPLICATION_DESC type.

· lMaxPlayers

· SessionName

· Password

DirectPlay8Peer.SetCaps
#Sets the capabilities for the session.

SetCaps(caps As DPN_CAPS, lFlags As Long)

Parts

caps
DPN_CAPS type used to set the information about the current session.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Peer.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Peer.SetGroupInfo
#Sets a block of data associated with a group, including the name of the group.

DirectPlay calls each player's DirectPlay8Event.InfoNotify method to notify him or
her that the group information has changed.

IDH_DirectPlay8Peer.SetCaps_dplay_vb
IDH_DirectPlay8Peer.SetGroupInfo_dplay_vb

in.doc – page 436

SetGroupInfo(idGroup As Long, _
 PlayerInfo As DPN_GROUP_INFO, _
 lFlags As Long) As Long

Parts

idGroup
Long value that specifies the identifier of the group whose data block will be
modified.

PlayerInfo
DPN_GROUP_INFO type that describes the group data to set.

lFlags
Flag that controls how this method is processed. The following flag can be set for
this method:

DPNOP_SYNC
Causes the method to process synchronously.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Peer.CancelAsyncOperation method to
cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDFLAGS

DirectPlay8Peer.SetPeerInfo
#Sets the static settings of a peer with an application. Call this method before
connecting to relay basic player information with the application. After the peer
successfully connects with the application, information obtained through this method
can be retrieved by other players by calling the DirectPlay8Peer.GetPeerInfo
method.

SetPeerInfo(PlayerInfo As DPN_PLAYER_INFO) As Long

Parts

PlayerInfo
DPN_PLAYER_INFO type that contains the player information to set.

IDH_DirectPlay8Peer.SetPeerInfo_dplay_vb

in.doc – page 437

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
the lAsyncHandle parameter of the DirectPlay8Peer.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_NOCONNECTION

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

Transmission of nonstatic information should be handled with the
DirectPlay8Peer.SendTo method because of the high cost of using the
DirectPlay8Peer.SetPeerInfo method.

You can modify the peer information with this method after connecting to the
application. If this method is called after a connection, DirectPlay will call each
player's DirectPlay8Event.InfoNotify method to notify him or her that the data has
been updated.

DirectPlay8Peer.SetSPCaps
#Sets the capabilities for the specified service provider.

SetSPCaps(guidSP As String, spCaps As DPN_SP_CAPS)

Parts

guidSP
String specifying the GUID of the service provider you want to set information
about.

spCaps
DPN_SP_CAPS type to set the information about the specified service provider.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

IDH_DirectPlay8Peer.SetSPCaps_dplay_vb

in.doc – page 438

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Peer.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Peer.TerminateSession
#Terminates the current Microsoft® DirectPlay® session.

TerminateSession(lFlags As Long, _
 UserData As Any, _
 UserDataSize As Long)

Parts

lFlags
Reserved. Must be 0.

UserData
Pointer to termination data.

UserDataSize
Size of data contained in the UserData parameter.

Remarks

This method may be called only by the host player.

When this method is called, the DirectPlay8Event.TerminateSession method is
called in the message handler of all players connected to the session.

DirectPlay8Peer.UnregisterMessageHand
ler

Unregisters the current message handler.

UnRegisterMessageHandler()

Remarks

You must call this method before registering a new message handler.

IDH_DirectPlay8Peer.TerminateSession_dplay_vb

in.doc – page 439

DirectPlay8Server
#Applications use the methods of the DirectPlay8Server class to create and manage
the server for a Microsoft® DirectPlay® client/server transport session

The methods of the DirectPlay8Server class can be organized into the following
groups.

Session Management Close

GetApplicationDesc

GetCaps

GetConnectionInfo

GetCountServiceProviders

GetServiceProvider

GetSPCaps

Host

SetApplicationDesc

SetCaps

SetSPCaps

Message Management GetSendQueueInfo

RegisterMessageHandler

SendTo

UnregisterMessageHandler

Player Management DestroyClient

GetClientAddress

GetClientInfo

GetClientOrGroup

GetCountClientsAndGroups

RemoveClientFromGroup

SetServerInfo

Group Management AddClientToGroup

CreateGroup

DestroyGroup

GetCountGroupMembers

GetGroupInfo

GetGroupMember

SetGroupInfo

Miscellaneous CancelAsyncOperation

IDH_DirectPlay8Server_dplay_vb

in.doc – page 440

RegisterLobby

DirectPlay8Server.AddClientToGroup
#Adds a client to a group.

AddClientToGroup(idGroup As Long, _
 idClient As Long,
 lFlags As Long) As Long

Parts

idGroup
Long value that specifies the identifier of the group to add the client to.

idClient
Long value that specifies the identifier of the client that is added to the group.

lFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNOP_SYNC
Causes the method to process synchronously.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Server.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDFLAGS

Remarks

Any client can add itself or another client to an existing group. After the client is
successfully added to the group, all messages sent to the group are also sent to the
client.

For a client to add itself to the group, pass DPNID_ME in the idClient parameter.

IDH_DirectPlay8Server.AddClientToGroup_dplay_vb

in.doc – page 441

DirectPlay8Server.CancelAsyncOperatio
n

#Cancels asynchronous requests. Many methods of the DirectPlay8Server class run
asynchronously by default. Depending on the situation, you might want to cancel
requests before they are processed. All the methods of this class that can be run
asynchronously return a lAsyncHandle parameter.

Specific requests are canceled by passing the lAsyncHandle of the request in this
method's lAsyncHandle parameter. You can cancel all pending asynchronous
operations by calling this method, passing 0 in the lAsyncHandle parameter, and
specifying DPNCANCEL_ALL_OPERATIONS in the lFlags parameter. If a specific
handle is provided to this method, you must pass 0 in the lFlags parameter.

CancelAsyncOperation(lAsyncHandle As Long, _
 lFlags As CONST_DPNCANCELFLAGS)

Parts

lAsyncHandle
Handle of the asynchronous operation to stop. This value can be 0 to stop all
requests or a particular type of asynchronous request. If a specific handle for the
request to cancel is specified, the lFlags parameter must be 0.

lFlags
Flag that specifies which asynchronous request to canceled. You can set this
parameter to one of the flags of the CONST_DPNCANCELFLAGS
enumeration.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_PENDING

DPNERR_INVALIDFLAGS

DPNERR_CANNOTCANCEL

DPNERR_INVALIDHANDLE

Remarks

You can cancel a send by providing the handle returned from
DirectPlay8Server.SendTo method.. The DirectPlay8Event.SendComplete method
will still be called unless the message was sent with the DPNSEND_NOCOMPLETE
flag set. If you cancel a send operation by calling
DirectPlay8Peer.CancelAsyncOperation the hResultCode member of the

IDH_DirectPlay8Server.CancelAsyncOperation_dplay_vb

in.doc – page 442

DPNMSG_SEND_COMPLETE type that is passed to the
DirectPlay8Event.SendComplete method will be set to DPNERR_CANCELLED.

DirectPlay8Server.Close
#Closes the open connection with a session.

Close();

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_UNINITIALIZED

DirectPlay8Server.CreateGroup
#Creates a group in the current session. A group is a logical collection of players.

CreateGroup(GroupInfo As DPN_GROUP_INFO, _
 lFlags As Long) As Long

Parts

GroupInfo
DPN_GROUP_INFO structure that contains the group description.

lFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNOP_SYNC
Causes the method to process synchronously.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Server.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDFLAGS

IDH_DirectPlay8Server.Close_dplay_vb
IDH_DirectPlay8Server.CreateGroup_dplay_vb

in.doc – page 443

Remarks

Microsoft® DirectPlay® does not maintain hierarchical groups because they can easily
be implemented with flat groups and expeditious use of the group data.

DirectPlay8Server.DestroyClient
#Deletes a client from the session.

DestroyClient(idClient As Long, _
 lFlags As Long, _
 UserData As Any, _
 UserDataSize As Long)

Parts

idClient
Long value that specifies the identifier of the client to delete.

lFlags
Reserved. Must be 0.

UserData
Application-specific user data.

UserDataSize
Long value that specifies the size of the data contained in the UserData
parameter.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_NOTHOST

DPNERR_INVALIDPLAYER

DPNERR_INVALIDPARAM

Remarks

This method calls the DirectPlay8Event.DestroyPlayer method in the destroyed
player's message handler.

DirectPlay8Server.DestroyGroup
#Deletes a group created by the DirectPlay8Server.CreateGroup method.

DestroyGroup(idGroup As Long, lFlags As Long) As Long

IDH_DirectPlay8Server.DestroyClient_dplay_vb
IDH_DirectPlay8Server.DestroyGroup_dplay_vb

in.doc – page 444

Parts

idGroup
Long value that specifies the identifier of the group to delete.

lFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNOP_SYNC
Causes the method to process synchronously.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
the lAsyncHandle parameter of the DirectPlay8Server.CancelAsyncOperation
method to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDFLAGS

DPNERR_INVALIDGROUP

DirectPlay8Server.GetApplicationDesc
#Retrieves the full application description for the connected application.

GetApplicationDesc(lFlags As Long) _
 As DPN_APPLICATION_DESC

Parts

lFlags
Reserved. Must be 0.

Return Values

Returns a DPN_APPLICATION_DESC type describing the application.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_NOCONNECTION

IDH_DirectPlay8Server.GetApplicationDesc_dplay_vb

in.doc – page 445

DPNERR_INVALIDFLAGS

DPNERR_BUFFERTOOSMALL

DPNERR_INVALIDPARAM

DirectPlay8Server.GetCaps
#Retrieves the DPN_CAPS type for the current object.

GetCaps() As DPN_CAPS

Return Values

Returns a DPN_CAPS type filled with caps information.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Server.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Server.GetClientAddress
#Retrieves the address for the specified player in the session.

GetClientAddress(idPlayer As Long) As DirectPlay8Address

Parts

idPlayer
Long value specifying the identification of the player.

Return Values

Returns a DirectPlay8Address object that specifies the address of the player.

IDH_DirectPlay8Server.GetCaps_dplay_vb
IDH_DirectPlay8Server.GetClientAddress_dplay_vb

in.doc – page 446

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_UNINITIALIZED

DirectPlay8Server.GetClientInfo
#Retrieves player information set for the specified client.

GetClientInfo(idClient As Long) As DPN_PLAYER_INFO

Parts

idClient
Long value that specifies the identifier of the client whose information will be
retrieved.

Return Values

Returns a DPN_PLAYER_INFO type describing player information.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDPLAYER

DPNERR_INVALIDPARAM

Remarks

Call this method after DirectPlay calls the DirectPlay8Event.InfoNotify method,
indicating that the player data has been modified.

DirectPlay8Server.GetClientOrGroup
#Retrieves the client or group identifier for the specified client or group. The number
of clients or groups for the application can be determined by calling
DirectPlay8Server.GetCountClientsAndGroups.

GetClientOrGroup(lIndex As Long) As Long

IDH_DirectPlay8Server.GetClientInfo_dplay_vb
IDH_DirectPlay8Server.GetClientOrGroup_dplay_vb

in.doc – page 447

Parts

lIndex
Index of the client or group.

Return Values

Returns the identification of the client or group.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPARAM

DirectPlay8Server.GetConnectionInfo
#Retrieves statistical information about the connection between the specified player
and the server.

GetConnectionInfo(idPlayer As Long) As DPN_CONNECTION_INFO

Parameter

idPlayer
Long value specifying the identifier of the player.

Return Values

Returns a DPN_CONNECTION_INFO type to retrieve information about the
specified connection.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

This method can be called only after a successful Connect call has completed.

IDH_DirectPlay8Server.GetConnectionInfo_dplay_vb

in.doc – page 448

DirectPlay8Server.GetCountClientsAndG
roups

#Retrieves the number of clients or groups for the session.

GetCountClientsAndGroups(_
 lFlags As CONST_DPNENUMCLIENTGROUPFLAGS) As Long

Parts

lFlags
Flag that describes enumeration behavior. You can set one of the flags from the
CONST_DPNENUMCLIENTGROUPFLAGS enumeration.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDFLAGS

DirectPlay8Server.GetCountGroupMemb
ers

#Retrieves the number of players in a group.

GetCountGroupMembers(dpid As Long) As Long

Parts

dpid
Long value that specifies the identification of the group.

Return Values

Returns the number of players in the group.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDFLAGS

IDH_DirectPlay8Server.GetCountClientsAndGroups_dplay_vb
IDH_DirectPlay8Server.GetCountGroupMembers_dplay_vb

in.doc – page 449

Remarks

Because player information changes frequently, the required buffer size returned may
change between subsequent calls. Check and reallocate the buffer until the method
succeeds.

DirectPlay8Server.GetCountServiceProvi
ders

#Retrieves the number of registered service providers available to the application.

GetCountServiceProviders() As Long

Return Values

Returns the number of registered service providers available to the application.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDOBJECT

DirectPlay8Server.GetGroupInfo
#Retrieves a block of data associated with a group, including the group name.

Call this method after DirectPlay calls the DirectPlay8Event.InfoNotify method,
indicating that the group data has been modified.

GetGroupInfo(idGroup As Long) As DPN_GROUP_INFO

Parts

idGroup
Long value that specifies the identifier of the group whose data block will be
retrieved.

Return Values

Returns a DPN_GROUP_INFO type that describes the group data.

IDH_DirectPlay8Server.GetCountServiceProviders_dplay_vb
IDH_DirectPlay8Server.GetGroupInfo_dplay_vb

in.doc – page 450

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDFLAGS

DirectPlay8Server.GetGroupMember
#Retrieves the identifier of the specified member of a group. The number of players in
a group is determined by calling DirectPlay8Server.GetCountGroupMembers.

GetGroupMember(lIndex As Long, dpid As Long) As Long

Parts

lIndex
Index value of the player in a group.

dpid
Long value that specifies the identification of the group.

Return Values

Long value that specifies the identification of the player.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDPARAM

DirectPlay8Server.GetSendQueueInfo
#Used by the application to monitor the size of the send queue. Microsoft®

DirectPlay® does not send messages faster than the receiving computer can process
them. As a result, if the sending computer is sending faster than the receiver can
receive, messages accumulate in the sender’s queue. If the application registers that
the send queue is growing too large, it should decrease the rate at which messages are
sent.

GetSendQueueInfo(idPlayer As Long, _
 lNumMsgs As Long, _
 lNumBytes As Long)

IDH_DirectPlay8Server.GetGroupMember_dplay_vb
IDH_DirectPlay8Server.GetSendQueueInfo_dplay_vb

in.doc – page 451

Parts

idPlayer
Long value specifying the identifier of the player.

lNumMsgs
Number of messages currently queued.

lNumBytes
Amount of data, in bytes, of the messages currently queued.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

DirectPlay8Server.GetServiceProvider
#Retrieves information for the specified service provider. Before you call this method,
call the DirectPlay8Server.GetCountServiceProviders method to obtain the
number of registered service providers available to the application.

GetServiceProvider(lIndex As Long) As DPN_SERVICE_PROVIDER_INFO

Parts

lIndex
Index value specifying the specific server provider.

Return Values

Returns a DPN_SERVICE_PROVIDER_INFO type that describes the service
provider.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

DirectPlay8Server.GetSPCaps
#Retrieves the DPN_SP_CAPS structure for the specified service provider.

IDH_DirectPlay8Server.GetServiceProvider_dplay_vb
IDH_DirectPlay8Server.GetSPCaps_dplay_vb

in.doc – page 452

GetSPCaps(guidSP As String) As DPN_SP_CAPS

Parts

guidSP
String specifying the GUID of the service provider you want to get information
about.

Return Values

Returns a DPN_SP_CAPS type to receive the information about the specified service
provider.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Server.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Server.Host
#Specifies the host for the client/server session.

Host(AppDesc As DPN_APPLICATION_DESC, _
 Address As DirectPlay8Address)

Parts

AppDesc
DPN_APPLICATION_DESC type that describes the application.

Address
DirectPlay8Address object that specifies the address of a service-provider
device or a service provider on which to host the application.

Error Codes

If the method fails, Err.Number can be set to the following value.

IDH_DirectPlay8Server.Host_dplay_vb

in.doc – page 453

DPNERR_INVALIDPARAM

DirectPlay8Server.RegisterLobby
#Enables launched applications to automatically propagate game status to the lobby.

RegisterLobby(LobbyApp As DirectPlay8LobbiedApplication)

Parts

LobbyApp
DirectPlay8LobbiedApplication object that specifies the application.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDPARAM

DirectPlay8Server.RegisterMessageHand
ler

#Registers an entry point in the server's code that receives the messages from the
DirectPlay8Server class and from connected clients.

RegisterMessageHandler(event As DirectPlay8Event)

Parts

event
DirectPlay8Event object that will receive the messages generated by the client
and server.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_ALREADYREGISTERED

Remarks

If you want to register a new message handler, you must first call
DirectPlay8Server.UnRegisterMessageHandler to unregister the current message
handler.

IDH_DirectPlay8Server.RegisterLobby_dplay_vb
IDH_DirectPlay8Server.RegisterMessageHandler_dplay_vb

in.doc – page 454

DirectPlay8Server.RemoveClientFromGr
oup

#Removes a client from a group.

RemoveClientFromGroup(idGroup As Long, _
 idClient As Long, _
 lFlags As Long) As Long

Parts

idGroup
Long value that specifies the identifier of the group from which the client will be
removed.

idClient
Long value that specifies the identifier of the client that will be removed from the
group.

lFlags
Flag that controls how this method is processed. The following flag can be set for
this method.

DPNOP_SYNC
Causes the method to process synchronously.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Server.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPLAYER

DirectPlay8Server.SendTo
#Transmits data to the specified player. The message can be sent synchronously or
asynchronously.

SendTo(idSend As Long, _
 buffer() As BYTE, _

IDH_DirectPlay8Server.RemoveClientFromGroup_dplay_vb
IDH_DirectPlay8Server.SendTo_dplay_vb

in.doc – page 455

 lPriority As Long, _
 lTimeOut As Long, _
 lFlags As CONST_DPNSENDFLAGS) As Long

Parts

idSend
Long value specifying the identifier of the player to receive data.

buffer()
Array of type BYTE that describes the data to send.

lPriority
Priority of the message.

lTimeOut
Number of milliseconds to wait for the message to be sent. If the message has not
been sent by the lTimeOut value, the message is not sent. If you do not want a
time-out for message sends, set this parameter to 0.

lFlags
Flags that describe send behavior. You can set one or more of the flags defined in
the CONST_DPNSENDFLAGS enumeration.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Server.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDFLAGS

DPNERR_TIMEDOUT

Remarks

This method will call the DirectPlay8Event.Receive method in the recipient's
message handler. When the SendTo request is completed, the
DirectPlay8Event.SendComplete method is called in the sender's message handler.
The SendComplete method contains a DPNMSG_SEND_COMPLETE message
type. The success or failure of the request is contained in the hResultCode member
of this message type.

in.doc – page 456

DirectPlay8Server.SetApplicationDesc
#Changes the settings for the application that is being hosted. Only some settings can
be changed.

SetApplicationDesc(AppDesc As DPN_APPLICATION_DESC, _
 lFlags As Long)

Parts

AppDesc
DPN_APPLICATION_DESC type that describes the application settings to
modify.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to the following value.

DPNERR_INVALIDFLAGS

Remarks

You can use this method to modify only the following members of the
DPN_APPLICATION_DESC type:

· lMaxPlayers

· SessionName

· Password

DirectPlay8Server.SetCaps
#Sets the capabilities for the session.

SetCaps(caps As DPN_CAPS, lFlags As Long)

Parts

caps
DPN_CAPS type used to set the information about the current session.

lFlags
Reserved. Must be 0.

IDH_DirectPlay8Server.SetApplicationDesc_dplay_vb
IDH_DirectPlay8Server.SetCaps_dplay_vb

in.doc – page 457

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Server.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Server.SetGroupInfo
#Sets a block of data associated with a group, including the name of the group.

SetGroupInfo(idGroup As Long, _
 PlayerInfo As DPN_GROUP_INFO, _
 lFlags As Long) As Long

Parts

idGroup
Long value that specifies the identifier of the group whose data block will be
modified.

PlayerInfo
DPN_GROUP_INFO type that describes the group data to set.

lFlags
Flag that controls how this method is processed. The following flag can be set for
this method:

DPNOP_SYNC
Causes the method to process synchronously.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Server.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDGROUP

IDH_DirectPlay8Server.SetGroupInfo_dplay_vb

in.doc – page 458

DPNERR_INVALIDFLAGS

DirectPlay8Server.SetServerInfo
#Sets the static settings of a client with an application. Call this method before
connecting to relay basic player information with the application. After the client
successfully connects with the application, other players can retrieve information
obtained through this method by calling the DirectPlay8Client.GetServerInfo
method.

SetServerInfo(PlayerInfo As DPN_PLAYER_INFO) As Long

Parts

PlayerInfo
DPN_PLAYER_INFO type that contains the player information to set.

Return Values

Returns the asynchronous handle for this operation. This is the handle that is used in
lAsyncHandle parameter of the DirectPlay8Server.CancelAsyncOperation method
to cancel the request, if the request is processed asynchronously.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_NOCONNECTION

DPNERR_INVALIDFLAGS

DPNERR_INVALIDPARAM

Remarks

Transmission of nonstatic information should be handled with the
DirectPlay8Server.SendTo method because of the high cost of using the
DirectPlay8Server.SetClientInfo method.

You can modify the client information with this method after connecting to the
application. If this method is called after a connection, DirectPlay will call each
player's DirectPlay8Event.InfoNotify method to notify him or her that the data has
been updated.

IDH_DirectPlay8Server.SetServerInfo_dplay_vb

in.doc – page 459

DirectPlay8Server.SetSPCaps
#Sets the capabilities for the specified service provider.

SetSPCaps(guidSP As String, spCaps As DPN_SP_CAPS)

Parts

guidSP
String specifying the GUID of the service provider you want to set information
about.

spCaps
DPN_SP_CAPS type to set the information about the specified service provider.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DPNERR_INVALIDOBJECT

DPNERR_INVALIDPOINTER

DPNERR_INVALIDPARAM

DPNERR_UNINITIALIZED

Remarks

A successful call to DirectPlay8Server.RegisterMessageHandler must be made
before this method can be called.

DirectPlay8Server.UnregisterMessageHa
ndler

Unregisters the current message handler.

UnRegisterMessageHandler()

Remarks

You must call this method before registering a new message handler.

DirectPlayVoiceClient8
#Applications use the methods of the DirectPlayVoiceClient8 class to manage clients
in a voice session.

IDH_DirectPlay8Server.SetSPCaps_dplay_vb
IDH_DirectPlayVoiceClient8_dplay_vb

in.doc – page 460

The methods of the DirectPlayVoiceClient8 class can be organized into the
following groups.

Buffer management Create3DSoundBuffer

Delete3DSoundBuffer

Miscellaneous GetCaps

GetCompressionType

GetCompressionTypeCount

GetSoundDeviceConfig

GetSoundDevices

StartClientNotification

Session management Connect

Disconnect

GetClientConfig

GetSessionDesc

GetTransmitTargets

Initialize

SetClientConfig

SetCurrentSoundDevices

SetTransmitTargets

UnRegisterMessageHandler

DirectPlayVoiceClient8.Connect
#Connects the client to a Microsoft® DirectPlay® Voice session.

Connect(_
 SoundDeviceConfig As DVSOUNDDEVICECONFIG, _
 ClientConfig As DVCLIENTCONFIG, _
 lFlags As Long)

Parts

SoundDeviceConfig
DVSOUNDDEVICECONFIG type that describes the sound device
configuration.

ClientConfig
DVCLIENTCONFIG type that describes the general configuration of the client.

lFlags
You can specify the following flag.

IDH_DirectPlayVoiceClient8.Connect_dplay_vb

in.doc – page 461

DVFLAGS_SYNC
The method does not return until the operation is completed.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_ALREADYPENDING

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_INVALIDOBJECT

DVERR_SOUNDINITFAILURE

DVERR_INVALIDFLAGS

DVERR_OUTOFMEMORY

DVERR_NOTINITIALIZED

DVERR_COMPRESSIONNOTSUPPORTED

DVERR_TIMEOUT

DVERR_INVALIDDEVICE

DVERR_SENDERROR

DVERR_INCOMPATIBLEVERSION

DVERR_TRANSPORTNOPLAYER

DVERR_TRANSPORTNOSESSION

DVERR_RUNSETUP

Remarks

You must test the sound devices selected for playback and capture by invoking the
Setup Wizard before connecting the client to the DirectPlay Voice session. On
application startup, check the audio configuration by using
DirectPlayVoiceTest8.CheckAudioSetup. If this method returns
DVERR_RUNSETUP, the sound configuration specified has not been tested. The
Setup Wizard needs to be run only once for any configuration.

Any calls to DirectPlayVoiceClient8.Connect while a connection is pending return
DVERR_ALREADYPENDING. Additionally, only one connection can be pending at
a time.

A transport session must be started on the specified DirectPlay object before calling
this method. A successful call to DirectPlayVoiceClient8.Initialize must be made
before calling the Connect method.

in.doc – page 462

DirectPlayVoiceClient8.Create3DSoundB
uffer

#Retrieves a 3-D sound buffer for a player or group. You can use the methods of the
3-D sound buffer object to change the virtual 3-D position of incoming voice
transmissions from the specified group or player.

Create3DSoundBuffer(playerID As Long) _
 As DirectSound3dBuffer8

Parts

playerID
Long value that specifies the identification of the player or group for which the
user wants to reserve a buffer. You can also specify DVID_REMAINING to
create a 3-D user buffer for all players or groups that do not have a user buffer.

Return Values

Returns a DirectSound3dBuffer8 type used for the Microsoft® DirectPlay® Voice
main buffer.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_NOTCONNECTED

DVERR_SESSIONLOST

DVERR_ALREADYBUFFERED

DVERR_INVALIDPOINTER

DVERR_INVALIDOBJECT

DVERR_NOTINITIALIZED

DVERR_OUTOFMEMORY

DVERR_NOTALLOWED

Remarks

If the DirectPlay Voice session is a mixing server session, this method fails and
returns DVERR_NOTALLOWED.

Because the DirectPlay Voice client uses the buffer to stream incoming audio, you
can access all the member functions of the 3-D sound buffer object. However, you

IDH_DirectPlayVoiceClient8.Create3DSoundBuffer_dplay_vb

in.doc – page 463

should not use the Lock, UnLock, or Play methods of the DirectSound3DBuffer
object.

When the buffer for the individual user is no longer required or when a player leaves
the voice session, it is important to call
DirectPlayVoiceClient8.Delete3DSoundBuffer to free up resources.

DirectPlayVoiceClient8.Delete3DSoundB
uffer

#Returns exclusive control of the 3-D sound buffer object back to the Microsoft®

DirectPlay® Voice client object.

Delete3DSoundBuffer(playerID As Long, _
 UserBuffer As DirectSound3dBuffer8)

Parts

playerID
Long value specifying the DVID of the player or group that the user wants to
delete a buffer for.

UserBuffer
User buffer to delete. This must be a user buffer obtained through the
DirectPlayVoiceClient8.Create3DSoundBuffer method.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_NOTCONNECTED

DVERR_SESSIONLOST

DVERR_ALREADYBUFFERED

DVERR_INVALIDPOINTER

DVERR_NOTBUFFERED

DVERR_INVALIDOBJECT

DVERR_NOTINITIALIZED

DVERR_NOTALLOWED

Remarks

If the DirectPlay Voice session is a mixing server session, this method fails and
returns DVERR_NOTALLOWED.

IDH_DirectPlayVoiceClient8.Delete3DSoundBuffer_dplay_vb

in.doc – page 464

DirectPlayVoiceClient8.Disconnect
#Disconnects the Microsoft® DirectPlay® Voice client from the existing DirectPlay
Voice session.

Disconnect(lFlags As Long)

Parts

lFlags
You can specify the following flag.

DVFLAGS_SYNC
Do not return until the operation is completed.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_PENDING

DVERR_ALREADYPENDING

DVERR_INVALIDPARAM

DVERR_NOTCONNECTED

DVERR_INVALIDFLAGS

DVERR_CONNECTABORTING

DVERR_NOTINITIALIZED

DVERR_TIMEOUT

DVERR_SESSIONLOST

Remarks

On calling this method, all recording and playback is stopped. If a connection is being
processed, it is canceled by this call.

If this method is called synchronously by setting the DVFLAGS_SYNC flag, the
method does not return until the Disconnect completes.

DirectPlayVoiceClient8.GetCaps
#Retrieves the Microsoft® DirectPlay® Voice capabilities.

GetCaps() As DVCAPS

IDH_DirectPlayVoiceClient8.Disconnect_dplay_vb
IDH_DirectPlayVoiceClient8.GetCaps_dplay_vb

in.doc – page 465

Return Values

Returns a DVCAPS type that contains the capabilities of the
DirectPlayVoiceClient8 object.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DirectPlayVoiceClient8.GetClientConfig
#Retrieves the client configuration.

GetClientConfig() As DVCLIENTCONFIG

Return Values

Returns a DVCLIENTCONFIG type that contains the configuration of the local
client.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_NOTCONNECTED

DVERR_SESSIONLOST

DVERR_INVALIDPOINTER

DVERR_NOTINITIALIZED

Remarks

You can call this method only after a connection is successfully established with a
Microsoft® DirectPlay® Voice session.

DirectPlayVoiceClient8.GetCompression
Type

#Retrieves the compression type.

IDH_DirectPlayVoiceClient8.GetClientConfig_dplay_vb
IDH_DirectPlayVoiceClient8.GetCompressionType_dplay_vb

in.doc – page 466

GetCompressionType(lIndex As Long, _
 Data As DVCOMPRESSIONINFO, _
 lFlags As Long)

Parts

lIndex
Specific compression type. The number of supported compression types can be
determined with a call to DirectPlayVoiceClient8.GetCompressionTypeCount.

Data
DVCOMPRESSIONINFO type describing compression information.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_BUFFERTOOSMALL

DVERR_INVALIDPOINTER

DVERR_INVALIDFLAGS

DirectPlayVoiceClient8.GetCompression
TypeCount

#Retrieves the number of supported compression types.

GetCompressionTypeCount() As Long

Return Values

Returns the number of supported compression types.

Error Codes

If the method fails, Err.Number can be set to the following value.

DVERR_INVALIDOBJECT

IDH_DirectPlayVoiceClient8.GetCompressionTypeCount_dplay_vb

in.doc – page 467

DirectPlayVoiceClient8.GetSessionDesc
#Retrieves the session properties.

GetSessionDesc() As DVSESSIONDESC

Return Values

Returns a DVSESSIONDESC type to receive the session description.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTCONNECTED

DVERR_SESSIONLOST

DVERR_NOTINITIALIZED

Remarks

This method may be called only after a connection is successfully established with a
Microsoft® DirectPlay® Voice session.

DirectPlayVoiceClient8.GetSoundDevice
Config

#Retrieves the sound device configuration of the session.

GetSoundDeviceConfig() As DVSOUNDDEVICECONFIG

Return Values

Returns a DVSOUNDDEVICECONFIG type that is filled with the configuration of
the sound device.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_NOTCONNECTED

IDH_DirectPlayVoiceClient8.GetSessionDesc_dplay_vb
IDH_DirectPlayVoiceClient8.GetSoundDeviceConfig_dplay_vb

in.doc – page 468

DVERR_SESSIONLOST

DVERR_INVALIDPOINTER

DVERR_NOTINITIALIZED

Remarks

You can call this method only after a connection is successfully established with a
Microsoft® DirectPlay® Voice session.

DirectPlayVoiceClient8.GetSoundDevice
s

#Retrieves the current Microsoft® DirectSound® capture and playback objects.

GetSoundDevices(_
 DirectSoundObj As DirectSound8, _
 DirectCaptureObj As DirectSoundCapture8)

Parts

DirectSoundObj
Current DirectSound8 object being used for playback.

DirectCaptureObj
Current DirectSoundCapture8 object being using for capture.

Error Codes

If the method fails, Err.Number can be set to the following value.

DVERR_INVALIDPARAM

DirectPlayVoiceClient8.GetTransmitTarg
ets

#Retrieves the transmit targets, if any, of the voice stream from this client.

GetTransmitTargets(lFlags As Long) As Long()

Parts

lFlags

IDH_DirectPlayVoiceClient8.GetSoundDevices_dplay_vb
IDH_DirectPlayVoiceClient8.GetTransmitTargets_dplay_vb

in.doc – page 469

Reserved. Must be 0.

Return Values

Returns an array of Long values containing the DVIDs of the of the transmit targets,
if any, of the client's voice stream.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_NOTALLOWED

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_BUFfERTOOSMALL

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

DVERR_INVALIDFLAGS

Remarks

The DVIDs returned can be player or group DVIDs.

DirectPlayVoiceClient8.Initialize
#Initializes the DirectPlayVoiceClient8 object by associating the
DirectPlayVoiceClient8 object with a DirectPlay object.

This method must be called successfully before DirectPlayVoiceClient8.Connect
method is called.

Initialize(DplayObj As Unknown, lFlags As Long)

Parts

DplayObj
Pointer to the IUnknown interface for the DirectPlay object that this
DirectPlayVoiceClient8 object should use.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

IDH_DirectPlayVoiceClient8.Initialize_dplay_vb

in.doc – page 470

DVERR_INVALIDPARAM

DVERR_ALREADYINITIALIZED

DVERR_INVALIDPOINTER

DVERR_TRANSPORTNOTINIT

DVERR_NOCALLBACK

DVERR_GENERIC

DirectPlayVoiceClient8.SetClientConfig
#Sets the client configuration.

SetClientConfig(ClientConfig As DVCLIENTCONFIG)

Parts

ClientConfig
DVCLIENTCONFIG type that contains the configuration description to set.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_INVALIDFLAGS

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

DVERR_SESSIONLOST

Remarks

You can call this method only after a connection is successfully established with a
Microsoft® DirectPlay® Voice session.

Calling this method sets all the parameters in the DVCLIENTCONFIG type.
Therefore, to leave a setting unmodified, you must retrieve the current configuration
with DirectPlayVoiceClient8.GetClientConfig. Then, modify the parameters to
change and call DirectPlayVoiceClient8.SetClientConfig.

If the session is running in half duplex, the members of the GetClientConfig method
related to recording are ignored.

IDH_DirectPlayVoiceClient8.SetClientConfig_dplay_vb

in.doc – page 471

DirectPlayVoiceClient8.SetCurrentSound
Devices

#Sets the current Microsoft® DirectSound® capture and playback objects.

SetCurrentSoundDevices(_
 DirectSoundObj As DirectSound8, _
 DirectCaptureObj As DirectSoundCapture8)

Parts

DirectSoundObj
DirectSound8 object to be used for playback.

DirectCaptureObj
DirectSoundCapture8 object to be used for capture.

Error Codes

If the method fails, Err.Number can be set to the following value.

DVERR_INVALIDPARAM

DirectPlayVoiceClient8.SetTransmitTarge
ts

#Specifies which players or groups receive audio transmissions from the local client.

SetTransmitTargets(playerIDs() As Long, lFlags As Long)

Parts

playerIDs()
Array of Long values specifying the DVIDs of the players or groups that are to
receive the voice transmission.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_INVALIDFLAGS

IDH_DirectPlayVoiceClient8.SetCurrentSoundDevices_dplay_vb
IDH_DirectPlayVoiceClient8.SetTransmitTargets_dplay_vb

in.doc – page 472

DVERR_INVALIDPOINTER

DVERR_NOTINITIALIZED

DVERR_INVALIDTARGET

Remarks

If the session was created with the DVSESSION_SERVERCONTROLTARGET flag,
only the server can set the target for this local client. A call to this method returns
DVERR_NOTALLOWED.

DirectPlayVoiceClient8.StartClientNotific
ation

#Registers a DirectPlayVoiceEvent8 object with the client to receive all messages
generated by the client and server.

StartClientNotification(event As DirectPlayVoiceEvent8)

Parts

event
DirectPlayVoiceEvent8 object that will receive messages from this client and
from the server.

Error Codes

If the method fails, Err.Number can be set to the following value.

DVERR_INVALIDPARAM

DirectPlayVoiceClient8.UnregisterMessa
geHandler

#Unregisters the current DirectPlayVoiceClient8 message handler.

UnRegisterMessageHandler()

Remarks

You must call this method before registering a new message handler.

IDH_DirectPlayVoiceClient8.StartClientNotification_dplay_vb
IDH_DirectPlayVoiceClient8.UnregisterMessageHandler_dplay_vb

in.doc – page 473

DirectPlayVoiceEvent8
#Applications use the methods of the DirectPlayVoiceEvent8 class to capture
Microsoft® DirectPlay® events generated by the DirectPlayVoiceClient8 and
DirectPlayVoiceServer8 classes.

Note
When implementing the DirectPlayVoiceEvent8 object, Microsoft® Visual
Basic® requires that every method of this object is implemented in your form.

The methods of the DirectPlayVoiceEvent8 class are:

DirectPlayVoiceEvent8
Methods

ConnectResult

CreateVoicePlayer

DeleteVoicePlayer

DisconnectResult

HostMigrated

InputLevel

OutputLevel

PlayerOutputLevel

PlayerVoiceStart

PlayerVoiceStop

RecordStart

RecordStop

SessionLost

DirectPlayVoiceEvent8.ConnectResult
#Called when the connect request generated through a call to the
DirectPlayVoiceClient8.Connect method has completed.

ConnectResult(ResultCode As Long)

Parts

ResultCode
Long value set to the result code.

IDH_DirectPlayVoiceEvent8_dplay_vb
IDH_DirectPlayVoiceEvent8.ConnectResult_dplay_vb

in.doc – page 474

DirectPlayVoiceEvent8.CreateVoicePlaye
r

#Called when a new player joins the voice session.

CreateVoicePlayer(playerID As Long, _
 flags As Long)

Parts

playerID
Long value set to the player's ID.

flags
Flags with information about the player.

DirectPlayVoiceEvent8.DeleteVoicePlaye
r

#Called when a player quits the voice session.

DeleteVoicePlayer(playerID As Long)

Parts

playerID
Long value set to the player's ID.

DirectPlayVoiceEvent8.DisconnectResult
#Called when the disconnect request generated through a call to the
DirectPlayVoiceClient8.Disconnect method has completed.

DisconnectResult(ResultCode As Long)

Parts

ResultCode
Long value set to the result code.

IDH_DirectPlayVoiceEvent8.CreateVoicePlayer_dplay_vb
IDH_DirectPlayVoiceEvent8.DeleteVoicePlayer_dplay_vb
IDH_DirectPlayVoiceEvent8.DisconnectResult_dplay_vb

in.doc – page 475

DirectPlayVoiceEvent8.HostMigrated
#Called when the voice host has changed.

HostMigrated(NewHostID As Long, _
 NewServer As DirectPlayVoiceServer8)

Parts

NewHostID
Long value set to the ID of the new voice host.

NewServer
If the local client has become the new voice session host, this member will point
to a newly created DirectPlayVoiceServer8 object that can be used by the local
client for providing host services. If the local client is not the new host, then this
member will be NULL.

DirectPlayVoiceEvent8.InputLevel
#Called periodically to notify the user of the input level from the microphone.

InputLevel(PeakLevel As Long, _
 RecordVolume As Long)

Parts

PeakLevel
Long value representing peak level across the current frame, which corresponds
to approximately 1/10 second of audio stream. The current frame typically lags
50-200 milliseconds (ms) behind real-time. This value can range from 0 through
99, with 0 being completely silent and 99 being the highest possible input level.

RecordVolume
Current recording volume for the client. The value can range from -10,000
through 0. This member is available even when automatic gain control is active.

DirectPlayVoiceEvent8.OutputLevel
#Called periodically to notify the user of the output level from the microphone.

OutputLevel(PeakLevel As Long, _
 OutputVolume As Long)

IDH_DirectPlayVoiceEvent8.HostMigrated_dplay_vb
IDH_DirectPlayVoiceEvent8.InputLevel_dplay_vb
IDH_DirectPlayVoiceEvent8.OutputLevel_dplay_vb

in.doc – page 476

Parts

PeakLevel
Long value representing peak level across the current frame, that corresponds to
approximately 1/10 second of audio stream. The current frame typically lags 50-
200 ms behind real-time. This value can range from 0 through 99, with 0 being
completely silent and 99 being the highest possible output level.

OutputVolume
Current playback volume for the client.

DirectPlayVoiceEvent8.PlayerOutputLeve
l

#Called periodically to notify the user of the output level of an individual player’s
voice stream. It is generated while voice is being played back for an individual player.
If multiple player voices are being played, one message for each player speaking will
be sent each notification period.

PlayerOutputLevel(SourcePlayerID As Long, _
 PeakLevel As Long)

Parts

SourcePlayerID
Long value set to the ID of the player whose voice is being played back.

PeakLevel
Integer representing the peak output level of the player’s voice stream. This value
is in the range from 0 through 99, with 0 being completely silent and 99 being the
highest possible output level

DirectPlayVoiceEvent8.PlayerVoiceStart
#Called when an incoming audio stream begins playing back.

PlayerVoiceStart(SourcePlayerID As Long)

Parts

SourcePlayerID
Long value set to the ID of the player where the voice transmission originated.

IDH_DirectPlayVoiceEvent8.PlayerOutputLevel_dplay_vb
IDH_DirectPlayVoiceEvent8.PlayerVoiceStart_dplay_vb

in.doc – page 477

DirectPlayVoiceEvent8.PlayerVoiceStop
#Called when an incoming audio stream stops.

PlayerVoiceStop(SourcePlayerID As Long)

Parts

SourcePlayerID
Long value set to the ID of the player where the voice transmission stopped.

DirectPlayVoiceEvent8.RecordStart
#Called when audio input on the local client begins. This can be caused by the voice
activation sensitivity level being exceeded or when a valid target is specified in push-
to-talk mode.

RecordStart(PeakVolume As Long)

Parts

PeakVolume
Long value set to the voice activation level that caused the transmission to begin.
In push-to-talk mode, this value is 0.

DirectPlayVoiceEvent8.RecordStop
#Called when audio input on the local client stops. This can be caused by the voice
activation sensitivity level not being reached or when a target is deselected in push-to-
talk mode.

RecordStop(PeakVolume As Long)

Parts

PeakVolume
Long value set to the voice activation level that caused the transmission to stop.
In push-to-talk mode, this value is 0.

DirectPlayVoiceEvent8.SessionLost
#Called when the voice session terminates.

IDH_DirectPlayVoiceEvent8.PlayerVoiceStop_dplay_vb
IDH_DirectPlayVoiceEvent8.RecordStart_dplay_vb
IDH_DirectPlayVoiceEvent8.RecordStop_dplay_vb
IDH_DirectPlayVoiceEvent8.SessionLost_dplay_vb

in.doc – page 478

SessionLost(ResultCode As Long)

Parts

ResultCode
Long value set to a result code that indicates why the session terminated.

DirectPlayVoiceServer8
#Applications use the methods of the DirectPlayVoiceServer8 class to manage the
host of the voice session.

The methods of the DirectPlayVoiceServer8 class can be organized into the
following groups.

Miscellaneous GetCaps

GetCompressionType

GetCompressionTypeCount

Session Management GetSessionDesc

GetTransmitTargets

Initialize

SetSessionDesc

SetTransmitTargets

StartServerNotification

StartSession

 StopSession

UnregisterMessageHandler

DirectPlayVoiceServer8.GetCaps
#Retrieves the Microsoft® DirectPlay® Voice capabilities.

GetCaps() As DVCAPS

Return Values

Returns a DVCAPS type that contains the capabilities of the
DirectPlayVoiceClient8 object.

IDH_DirectPlayVoiceServer8_dplay_vb
IDH_DirectPlayVoiceServer8.GetCaps_dplay_vb

in.doc – page 479

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DirectPlayVoiceServer8.GetCompression
Type

#Retrieves the compression type.

GetCompressionType(lIndex As Long, _
 Data As DVCOMPRESSIONINFO, _
 lFlags As Long)

Parts

lIndex
Specific compression type. The number of supported compression types can be
determined with a call to
DirectPlayVoiceServer8.GetCompressionTypeCount.

Data
DVCOMPRESSIONINFO type describing compression information.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_BUFFERTOOSMALL

DVERR_INVALIDPOINTER

DVERR_INVALIDFLAGS

DirectPlayVoiceServer8.GetCompression
TypeCount

#Retrieves the number of supported compression types.

GetCompressionTypeCount() As Long

IDH_DirectPlayVoiceServer8.GetCompressionType_dplay_vb
IDH_DirectPlayVoiceServer8.GetCompressionTypeCount_dplay_vb

in.doc – page 480

Return Values

Returns the number of supported compression types.

Error Codes

If the method fails, Err.Number can be set to the following value.

DVERR_INVALIDOBJECT

DirectPlayVoiceServer8.GetSessionDesc
#Retrieves the session properties.

GetSessionDesc() As DVSESSIONDESC

Return Values

Returns a DVSESSIONDESC type to receive the session description.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_NOTCONNECTED

DVERR_SESSIONLOST

DVERR_NOTINITIALIZED

Remarks

This method may be called only after a connection is successfully established with a
Microsoft® DirectPlay® Voice session.

DirectPlayVoiceServer8.GetTransmitTarg
ets

#Retrieves the transmit targets, if any, of the voice stream for a player in a session.

GetTransmitTargets(playerSourceID As Long, _
 lFlags As Long) As Long()

IDH_DirectPlayVoiceServer8.GetSessionDesc_dplay_vb
IDH_DirectPlayVoiceServer8.GetTransmitTargets_dplay_vb

in.doc – page 481

Parts

playerSourceID
Long value specifying the DVID of the user or group whose target is returned.

lFlags
Reserved. Must be 0.

Return Values

Returns an array of Long values containing the DVIDs of the of the transmit targets,
if any, of the server's voice stream. When you call this method, this should be the
same value as the number of targets set in the
DirectPlayVoiceServer8.SetTransmitTargets method.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_NOTALLOWED

DVERR_INVALIDPARAM

DVERR_INVALIDPOINTER

DVERR_BUFFERTOOSMALL

DVERR_NOTCONNECTED

DVERR_NOTINITIALIZED

DVERR_INVALIDFLAGS

Remarks

This method can be used only if the DVSESSION_SERVERCONTROLTARGET
flag is specified on creation of the DirectPlay Voice session. If the flag is not
specified, this method returns DVERR_NOTALLOWED.

DirectPlayVoiceServer8.Initialize
#Initializes the DirectPlayVoiceClient8 object by associating the
DirectPlayVoiceServer8 object with a Microsoft® DirectPlay® object.

Initialize(DplayObj As Unknown, lFlags As Long)

Parts

DplayObj
Pointer to the IUnknown interface for the DirectPlay object that this
DirectPlayVoiceServer8 object should use.

IDH_DirectPlayVoiceServer8.Initialize_dplay_vb

in.doc – page 482

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_ALREADYINITIALIZED

DVERR_INVALIDPOINTER

DVERR_TRANSPORTNOTINIT

DVERR_NOCALLBACK

DVERR_GENERIC

DirectPlayVoiceServer8.SetSessionDesc
#Sets the session settings.

SetSessionDesc(ClientConfig As DVSESSIONDESC)

Parts

ClientConfig
DVSESSIONDESC type that contains the session description.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_NOTHOSTING

DVERR_NOTINITIALIZED

DVERR_INVALIDPOINTER

DVERR_SESSIONLOST

DVERR_INVALIDOBJECT

Remarks

After the Microsoft® DirectPlay® Voice session has started, not all the session
properties of the DVSESSIONDESC structure can be changed. For more
information, see DVSESSIONDESC.

IDH_DirectPlayVoiceServer8.SetSessionDesc_dplay_vb

in.doc – page 483

DirectPlayVoiceServer8.SetTransmitTarg
ets

#Controls the transmission of audio from the client to the specified members of the
session.

SetTransmitTargets(playerSourceID As Long, _
 playerTargetIDs As Long(), _
 lFlags As Long)

Parts

playerSourceID
DVID of the user whose targets are set.

playerTargetIDs
Array of long values specifying the DVIDs of the players or groups that are to
receive the voice transmission. To specify no targets, pass an empty array for this
parameter. To specify all players, create a single-item array containing
DVID_ALLPLAYERS.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_NOTALLOWED

DVERR_INVALIDFLAGS

DVERR_INVALIDPOINTER

DVERR_NOTINITIALIZED

DVERR_INVALIDTARGET

Remarks

This method can be used only if the DVSESSION_SERVERCONTROLTARGET
flag is specified on creation of the DirectPlay Voice session. If the flag is not
specified, this method returns DVERR_NOTALLOWED.

IDH_DirectPlayVoiceServer8.SetTransmitTargets_dplay_vb

in.doc – page 484

DirectPlayVoiceServer8.StartServerNotifi
cation

#Registers a DirectPlayVoiceEvent8 object that is used to capture messages
generated by this Microsoft® DirectPlay® Voice session.

StartServerNotification(event As DirectPlayVoiceEvent8)

Parts

event
DirectPlayVoiceEvent8 object that will receive messages from this client and
from the server.

Error Codes

If the method fails, Err.Number can be set to the following value.

DVERR_INVALIDPARAM

DirectPlayVoiceServer8.StartSession
#Starts an initialized Microsoft® DirectPlay® Voice session within a running
DirectPlay transport session. This method must be successfully called before the
clients can complete a connection to the voice session.

StartSession(SessionDesc As DVSESSIONDESC, lFlags As Long)

Parts

SessionDesc
DVSESSIONDESC type that contains the session description.

lFlags
Reserved. Must be 0.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_ALREADYPENDING

DVERR_NOTINITIALIZED

DVERR_INVALIDOBJECT

DVERR_INVALIDPOINTER

IDH_DirectPlayVoiceServer8.StartServerNotification_dplay_vb
IDH_DirectPlayVoiceServer8.StartSession_dplay_vb

in.doc – page 485

DVERR_INVALIDFLAGS

DVERR_HOSTING

Remarks

The DirectPlayVoiceServer8.Initialize method must be called before this method is
called. The voice session can be hosted on any client in the session if the voice
session is peer-to-peer. If the voice session is not peer-to-peer, it must be hosted on
the transport client, which is the host of an active transport session.

The DVSESSIONDESC structure contains the type of voice session to start. The
type of voice session can have a dramatic effect on the CPU and bandwidth usage for
both the client and the server.

DirectPlayVoiceServer8.StopSession
#Stops the Microsoft® DirectPlay® Voice session.

StopSession(lFlags As Long)

Parts

lFlags
The following flag can be set.

DVFLAGS_NOHOSTMIGRATE
The host will not migrate regardless of session and transport settings. Use this
flag to shut down the voice session completely.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_ALREADYPENDING

DVERR_SESSIONLOST

DVERR_NOTINITIALIZED

DVERR_NOTHOSTING

DVERR_INVALIDFLAGS

DVERR_INVALIDOBJECT

Remarks

This method returns the DVERR_ALREADYPENDING error value if it is called
while another thread is processing a StopSession request.

IDH_DirectPlayVoiceServer8.StopSession_dplay_vb

in.doc – page 486

DirectPlayVoiceServer8.UnregisterMessa
geHandler

#Unregisters the current DirectPlayVoiceServer8 message handler.

UnRegisterMessageHandler()

Remarks

You must call this method before registering a new message handler.

DirectPlayVoiceTest8
#Applications use the method of the DirectPlayVoiceTest8 class to test the
Microsoft® DirectPlay® Voice audio configuration.

The CheckAudioSetup method of the DirectPlayVoiceTest8 class is used to check
the audio configuration.

DirectPlayVoiceTest8.CheckAudioSetup
#Runs the Audio Setup Wizard on the specified devices. This wizard runs a series of
tests on the devices to determine if they are capable of full duplex audio and to ensure
that the microphone is plugged in and working correctly on the capture device.

CheckAudioSetup(_
 guidPlaybackDevice As String, _
 guidCaptureDevice As String, _
 hwndOwner As Long, _
 lFlags As Long) As Long

Parts

guidPlaybackDevice
GUID that identifies the playback device to test. If an empty string is passed for
this parameter, Microsoft® DirectPlay® Voice tests the default voice playback
device defined by Microsoft® DirectSound®.

guidCaptureDevice
GUID that identifies the capture device to test. If an empty string is passed for
this parameter, DirectPlay Voice tests the default voice capture device defined by
DirectSound.

hwndOwner
The test wizard invoked by this method is modal. If the calling application has a
window that should be the parent window of the wizard, it should pass a handle

IDH_DirectPlayVoiceServer8.UnregisterMessageHandler_dplay_vb
IDH_DirectPlayVoiceTest8_dplay_vb
IDH_DirectPlayVoiceTest8.CheckAudioSetup_dplay_vb

in.doc – page 487

to that window in this parameter. If the calling application does not have a
window, it can pass 0. If the DVFLAGS_QUERYONLY flag is specified, this
parameter is not used and the application can pass 0.

lFlags
Flags. The following flags can be set.

DVFLAGS_QUERYONLY
Audio setup is not run. Instead, the method checks the registry to see if the
devices have been tested. If the devices have not been tested, the method
returns DVERR_RUNSETUP. If the devices have been tested, the method
returns DV_FULLDUPLEX if the devices support full duplex audio, or
DV_HALFDUPLEX if the devices do not support full duplex audio.

DVFLAGS_ALLOWBACK
Enable the Back button on the Welcome page of the wizard. If the user clicks
the Back button on the Welcome page, the wizard exits, and
CheckAudioSetup returns DVERR_USERBACK.

Error Codes

If the method fails, Err.Number can be set to one of the following values.

DVERR_INVALIDPARAM

DVERR_RUNSETUP

Remarks

This method contains user interface (UI) elements and raises dialog boxes. If the
DVFLAGS_QUERYONLY flag is specified, the tests are not actually run and no UI
is raised. Instead the registry is checked to determine the results of a previous test of
these devices.

Functions
This section contains references for the following Microsoft® DirectPlay® functions.
They are designed to simplify the process of handling byte arrays.

· AddDataToBuffer

· AddStringToBuffer

· GetDataFromBuffer

· GetStringFromBuffer

· NewBuffer

in.doc – page 488

AddDataToBuffer
#Adds nonstring data to a byte array.

AddDataToBuffer(_
 Buffer() As Byte, _
 lData As Any, _
 lSize As Long, _
 lOffset As Long)

Parameters

Buffer
Byte array to which the data is to be added.

lData
Data that is to be added to Buffer.

lSize
Size, in bytes, of the data in lData. The simplest way to determine this value is to
use the Microsoft® Visual Basic® LenB function. You can also use one of the
values from the CONST_DPLAYBUFSIZE enumeration.

lOffset
Long value containing the offset, in bytes, to the location in the byte array where
the data is to be added. When the function returns, this parameter will be set to
the offset of the first byte following the data that has just been added.

Remarks

If the byte array passed to Buffer is not large enough to hold the added data, the array
will be enlarged without data loss to a sufficient size.

AddStringToBuffer
#Adds a string to a byte array.

AddStringToBuffer(_
 Buffer() As Byte, _
 StringData As String, _
 lOffset As Long)

Parameters

Buffer
Byte array that the data is to be added to.

StringData
String value that is to be added to Buffer.

IDH_AddDataToBuffer_dplay_vb
IDH_AddStringToBuffer_dplay_vb

in.doc – page 489

lOffset
Long value containing the offset, in bytes, to the location in the byte array where
the data is to be added. When the function returns, this parameter will be set to
the offset of the first byte following the data that has just been added.

Remarks

If the byte array passed to Buffer is not large enough to hold the added string, the
array will be enlarged without data loss to a sufficient size.

GetDataFromBuffer
#Retrieves nonstring data from a byte array.

GetDataFromBuffer(_
 Buffer() As Byte, _
 lData As Any, _
 lSize As Long, _
 lOffset As Long)

Parameters

Buffer
Byte array from which the data is to be retrieved.

lData
Variable to receive the data that is retrieved from Buffer.

lSize
Size of the data in lData, in bytes. The simplest way to determine this value is to
use the Visual Basic LenB function. You can also use one of the values from the
CONST_DPLAYBUFSIZE enumeration.

lOffset
Offset, in bytes, to the location in the byte array from which the data is to be
retrieved. When the function returns, this parameter will be set to the offset of the
first byte following the data that has just been retrieved.

GetStringFromBuffer
#Retrieves string data from a byte array.

GetStringFromBuffer(_
 Buffer() As Byte, _
 lOffset As Long) As String

Parameters

Buffer

IDH_GetDataFromBuffer_dplay_vb
IDH_GetStringFromBuffer_dplay_vb

in.doc – page 490

Byte array that the data is to be retrieved from.

lOffset
Long value containing the offset, in bytes, to the location in the byte array from
which the data is to retrieved. When the function returns, this parameter will be
set to the offset of the first byte following the data that has just been retrieved.

Return Values

Returns a String value containing the retrieved string.

NewBuffer
#Creates a byte array.

NewBuffer(Buffer() As Byte) As Long

Parameters

Buffer
Byte array that will be initialized to a default number of members.

Return Values

Returns a Long value containing the offset to the start of the array. This value will
always be zero.

Remarks

The default number of members in the returned array is 20.

Types
This section contains information on the following types used with Microsoft®
DirectPlay®.

· DPL_APPLICATION_INFO

IDH_NewBuffer_dplay_vb

in.doc – page 491

· DPL_CONNECT_INFO

· DPL_CONNECTION_SETTINGS

· DPL_MESSAGE_CONNECT

· DPL_MESSAGE_CONNECTION_SETTINGS

· DPL_MESSAGE_RECEIVE

· DPL_PROGRAM_DESC

· DPN_APPLICATION_DESC

· DPN_CAPS

· DPN_CONNECTION_INFO

· DPN_GROUP_INFO

· DPN_PLAYER_INFO

· DPN_SERVICE_PROVIDER_INFO

· DPN_SP_CAPS

· DPNMSG_ASYNC_OP_COMPLETE

· DPNMSG_CONNECT_COMPLETE

· DPNMSG_ENUM_HOSTS_QUERY

· DPNMSG_ENUM_HOSTS_RESPONSE

· DPNMSG_INDICATE_CONNECT

· DPNMSG_RECEIVE

· DPNMSG_SEND_COMPLETE

· DVCAPS

· DVCLIENTCONFIG

· DVCOMPRESSIONINFO

· DVSESSIONDESC

· DVSOUNDDEVICECONFIG

DPL_APPLICATION_INFO
#Returned in the DirectPlay8LobbyClient.GetLocalProgram method to describe the
lobbied application.

Type DPL_APPLICATION_INFO
 ApplicationName As String
 guidApplication As String
 lFlags As CONST_DPLSESSION
 lNumRunning As Long
 lNumWaiting As Long
End Type

IDH_DPL_APPLICATION_INFO_dplay_vb

in.doc – page 492

Members

ApplicationName
Name of the lobbied application.

guidApplication
String that specifies the GUID of the lobbied application.

lFlags
One of the constants of CONST_DPLSESSION enumeration that describes the
current status of the lobbied application.

lNumRunning
Number of instances of the application.

lNumWaiting
Number of clients waiting to connect to the lobbied application.

DPL_CONNECT_INFO
#Used to specify connection information for a lobby client when connecting to the
lobby application in the DirectPlay8LobbyClient.ConnectApplication method.

Type DPL_CONNECT_INFO
 ConnectionSettings As DPL_CONNECTION_SETTINGS
 guidApplication As String
 lFlags As CONST_DPLCONNECT
End Type

Members

ConnectionSettings
DPL_CONNECTION_SETTINGS type with the settings for this connection.

guidApplication
String that specifies the GUID of the application.

lFlags
One of the constants of the CONST_DPLCONNECT enumeration that
determine connection behavior.

DPL_CONNECTION_SETTINGS
#Holds connection information for lobbied connections.

Type DPL_CONNECTION_SETTINGS
 AddressDeviceUrl As String
 AddressSenderUrl As String
 ApplicationDescription As DPN_APPLICATION_DESC
 lFlags As CONST_DPLCONNECTSETTINGS

IDH_DPL_CONNECT_INFO_dplay_vb
IDH_DPL_CONNECTION_SETTINGS_dplay_vb

in.doc – page 493

 PlayerName As String
End Type

Members

AddressDeviceUrl
String set to the device URL.

AddressSenderUrl
String set to the sender URL.

ApplicationDescription
DPN_APPLICATION_DESC type containing the application description.

lFlags
Value from the CONST_CONNECTSETTINGS enumeration. This member is
set to DPLCONNECTSETTINGS_HOST if your player is the session host, and 0
otherwise.

PlayerName
String value set to the player's name.

DPL_MESSAGE_CONNECT
#This type is generated by Microsoft® DirectPlay® when a lobby client connects to the
lobbied application through the DirectPlay8LobbyClient.ConnectApplication
method.

Type DPL_MESSAGE_CONNECT
 ConnectId As Long
 dplMsgCon As DPL_CONNECTION_SETTINGS
 LobbyConnectData() As Byte
End Type

Members

ConnectId
Handle used to identify the connection. This handle is used to in subsequent calls
to DirectPlay8LobbyClient.Send and
DirectPlay8LobbyClient.ReleaseApplication.

dplMsgCon
DPL_CONNECTION_SETTINGS type with the connection settings.

LobbyConnectData
Lobby connection data.

IDH_DPL_MESSAGE_CONNECT_dplay_vb

in.doc – page 494

DPL_MESSAGE_CONNECTION_SE
TTINGS

#Used with the DirectPlay8LobbyEvent.ConnectionSettings method.

Type DPL_MESSAGE_CONNECTION_SETTINGS
 dplConnectionSettings
 hSender As Long
End Type

Members

dplConnectionSettings
DPL_CONNECTION_SETTINGS type that describes the connection settings.

hSender
Long value that contains the handle for the connection that sent this message.

DPL_MESSAGE_RECEIVE
#Microsoft® DirectPlay® generates this type when the target receives a message sent
by the DirectPlay8LobbyClient.Send or DirectPlay8LobbiedApplication.Send
method.

Type DPL_MESSAGE_RECEIVE
 buffer() As Byte
 lBufferSize As Long
 Sender As Long
End Type

Members

buffer
BYTE array with the message data.

lBufferSize
Size of the message data contained in the buffer member.

Sender
Handle of the client that sent the message.

DPL_PROGRAM_DESC
#Describes a Microsoft® DirectPlay® lobby-aware application.

Type DPL_PROGRAM_DESC

IDH_DPL_MESSAGE_CONNECTION_SETTINGS_dplay_vb
IDH_DPL_MESSAGE_RECEIVE_dplay_vb
IDH_DPL_PROGRAM_DESC_dplay_vb

in.doc – page 495

 ApplicationName As String
 CommandLine As String
 CurrentDirectory As String
 Description As String
 ExecutableFilename As String
 ExecutablePath As String
 guidApplication As String
 LauncherFilename As String
 LauncherPath As String
 lFlags As Long
End Type

Members

ApplicationName
Application name.

CommandLine
Command line arguments.

CurrentDirectory
Current directory.

Description
Application description.

ExecutableFilename
File name of the application executable.

ExecutablePath
Path of the application executable.

guidApplication
String that specifies the GUID of the application.

LauncherFilename
File name of the launcher executable.

LauncherPath
Path of the launcher executable.

lFlags
Reserved. Must be 0.

DPN_APPLICATION_DESC
#Describes the settings for a Microsoft® DirectPlay® application.

Type DPN_APPLICATION_DESC
 guidApplication As String
 guidInstance As String
 lCurrentPlayers As Long
 lFlags As Long

IDH_DPN_APPLICATION_DESC_dplay_vb

in.doc – page 496

 lMaxPlayers As Long
 Password As String
 SessionName As String
End Type

Members

guidApplication
Application GUID.

guidInstance
Globally unique identifier (GUID) that is generated at startup representing the
instance of this application. This member is an [out] parameter when calling the
GetApplicationDesc method exposed by the DirectPlay8Peer,
DirectPlay8Client, and DirectPlay8Server objects. It is an optional [in]
parameter when calling the Connect method exposed by the DirectPlay8Peer
and DirectPlay8Client objects. It must be set to NULL when you call the
SetApplicationDesc method exposed by the DirectPlay8Server and
DirectPlay8Peer objects. You can not obtain this GUID by calling the
DirectPlay8Server.Host or DirectPlay8Peer.Host methods. You must obtain
the GUID by calling a GetApplicationDesc method.

lCurrentPlayers
Number of clients currently connected to the session.

lFlags
One of the following flags describing application behavior.

DPNSESSION_CLIENT_SERVER
Specifies that this type of session is client/server. This flag cannot be
combined with DPNSESSION_MIGRATE_HOST.

DPNSESSION_NODPNSVR
Specifies that you do not want enumerations forwarded to your host from
DPNSVR. See Using the DirectPlay DPNSVR Application for a further
discussion of DPNSVR.

DPNSESSION_REQUIREPASSWORD
Specifies that the session is password protected. If this flag is set, Password
must be a valid string.

DPNSESSION_MIGRATE_HOST
Used in peer-to-peer sessions, setting this flag will enable host migration. This
flag cannot be combined with DPNSESSION_CLIENT_SERVER.

lMaxPlayers
Maximum number of clients allowed in the session. Set this member to 0 to
indicate an unlimited number of players.

Password
String specifying the Unicode™ password that is required to connect to the
session. This must be an empty string if the
DPNSESSION_REQUIREPASSWORD is not set in the lFlags member.

SessionName

in.doc – page 497

String specifying the Unicode name of the session.

Remarks

The lMaxPlayers, Password, and SessionName members can be set when calling the
Host or SetApplicationDesc methods exposed by the DirectPlay8Server and
DirectPlay8Peer objects.

DPN_CAPS
#Used to set and retrieve general parameters for Microsoft® DirectPlay® sessions.

Type DPN_CAPS
 lConnectRetries As Long
 lConnectTimeout As Long
 lFlags As Long
 lTimeoutUntilKeepAlive As Long
End Type

Members

lConnectRetries
Number of connection retries DirectPlay should make during the connection
process.

lConnectTimeout
Number of milliseconds DirectPlay should wait before it retries a connection
request.

lFlags
Reserved, must be 0.

lTimeoutUntilKeepAlive
Number of milliseconds DirectPlay should wait, since the last time it received a
packet from an endpoint, before it sends a keep-alive message.

DPN_CONNECTION_INFO
#Used to retrieve statistics for the connection between you and a particular endpoint.

Type DPN_CONNECTION_INFO
 lSize As Long
 lRoundTripLatencyMS As Long
 lThroughPutBPS As Long
 lPeakThroughPutBPS As Long
 lBytesSentGuaranteed As Long
 lPacketsSentGuaranteed As Long
 lBytesSentNonGuaranteed As Long

IDH_DPN_CAPS_dplay_vb
IDH_DPN_CONNECTION_INFO_dplay_vb

in.doc – page 498

 lPacketsSentNonGuaranteed As Long
 lBytesRetried As Long
 lPacketsRetried As Long
 lBytesDropped As Long
 lPacketsDropped As Long
 lBandwidthBPS As Long
 lMessagesTransmittedHighPriority As Long
 lMessagesTimedOutHighPriority As Long
 lMessagesTransmittedNormalPriority As Long
 lMessagesTimedOutNormalPriority As Long
 lMessagesTransmittedLowPriority As Long
 lMessagesTimedOutLowPriority As Long
 lBytesReceivedGuaranteed As Long
 lPacketsReceivedGuaranteed As Long
 lBytesReceivedNonGuaranteed As Long
 lPacketsReceivedNonGuaranteed As Long
 lMessagesReceived As Long
End Type

Members

lSize
Long value set to the size of the type.

lRoundTripLatencyMS
Long value set to the approximate time, in milliseconds, for a packet to reach the
endpoint and return to the local computer. This number will fluctuate throughout
the session, as network conditions change.

lThroughPutBPS
Long value set to the approximate throughput, in bytes per second (BPS). This
number will fluctuate throughout the session, as link conditions change.

lPeakThroughPutBPS
Long value set to the peak throughput, in bytes per second. This number will
fluctuate throughout the session, as link conditions change.

lBytesSentGuaranteed
Long value set to the amount, in bytes, of guaranteed messages that have been
sent.

lPacketsSentGuaranteed
Long value set to the number of guaranteed packets that have been sent.

lBytesSentNonGuaranteed
Long value set to the amount, in bytes, of nonguaranteed messages that have
been sent.

lPacketsSentNonGuaranteed
Long value set to the number of nonguaranteed packets that have been sent.

lBytesRetried
Long value set to the amount, in bytes, of messages that have been retried.

in.doc – page 499

lPacketsRetried
Long value set to the number of packets that have been retried.

lBytesDropped
Long value set to the amount, in bytes, of messages that have been dropped.

lPacketsDropped
Long value set to the number of packets that have been dropped.

lBandwidthBPS
Long value set to the bandwidth, in bytes per second.

lMessagesTransmittedHighPriority
Long value set to the number of high-priority messages that have been
transmitted.

lMessagesTimedOutHighPriority
Long value set to the number of high-priority messages that have timed out.

lMessagesTransmittedNormalPriority
Long value set to the number of normal-priority messages that have been
transmitted.

lMessagesTimedOutNormalPriority
Long value set to the number of normal-priority messages that have timed out.

lMessagesTransmittedLowPriority
Long value set to the number of low-priority messages that have been
transmitted.

lMessagesTimedOutLowPriority
Long value set to the number of low-priority messages that have timed out.

lBytesReceivedGuaranteed
Long value set to the amount, in bytes, of guaranteed messages that have been
received.

lPacketsReceivedGuaranteed
Long value set to the number of guaranteed packets that have been received.

lBytesReceivedNonGuaranteed
Long value set to the amount, in bytes, of nonguaranteed messages that have
been received.

lPacketsReceivedNonGuaranteed
Long value set to the number of nonguaranteed packets that have been received.

lMessagesReceived
Long value set to the number of messages that have been received.

DPN_GROUP_INFO
#Describes static group information.

Type DPN_GROUP_INFO
 lGroupFlags As CONST_DPNGROUPINFOFLAGS

IDH_DPN_GROUP_INFO_dplay_vb

in.doc – page 500

 lInfoFlags As CONST_DPNINFO
 name As String
End Type

Members

lGroupFlags
One of the constants of the CONST_DPNGROUPINFOFLAGS enumeration
that describe the flags set for the player.

lInfoFlags
One of the constants of the CONST_DPNINFO enumeration that describe the
type of data contained in this type.

Name
Name of the group.

Remarks

When using this type in the DirectPlay8Peer.GetGroupInfo and
DirectPlay8Server.GetGroupInfo methods, lInfoFlags must be set to 0.

DPN_PLAYER_INFO
#Describes static player information.

Type DPN_PLAYER_INFO
 lInfoFlags As CONST_DPNINFO
 lPlayerFlags As CONST_DPNPLAYINFOFLAGS
 name As String
End Type

Members

lInfoFlags
One of the constants in the CONST_DPNINFO enumeration that specify the
type of information contained in this type.

lPlayerFlags
One of the constants in the CONST_DPNPLAYINFOFLAGS enumeration
describing the flags set for the player.

name
Name of the player.

Remarks

When using this type in the DirectPlay8Peer.GetPeerInfo and
DirectPlay8Server.GetClientInfo methods, lInfoFlags must be set to 0.

IDH_DPN_PLAYER_INFO_dplay_vb

in.doc – page 501

DPN_SERVICE_PROVIDER_INFO
#Used when enumerating information for a specific service provider.

Type DPN_SERVICE_PROVIDER_INFO
 GUID As String
 lFlags As Long
 name As String
End Type

Members

GUID
GUID for the service provider.

lFlags
Reserved. Must be 0.

name
Name of the service provider.

DPN_SP_CAPS
#Used to set and retrieve parameters for service providers.

Type DPN_SP_CAPS
 lBuffersPerThread As Long
 lDefaultEnumCount As Long
 lDefaultEnumRetryInterval As Long
 lDefaultEnumTimeout As Long
 lFlags As Long
 lMaxEnumPayloadSize As Long
 lNumThreads As Long
 lSystemBufferSizeAs Long
End Type

Members

lBuffersPerThread
The number of outstanding receive buffers allocated for each DirectPlay thread.
If you increase the number of receive buffers, DirectPlay can pull more data out
of the operating system buffers. However, you may also increase latency if data
is arriving faster than your application can process it.

lDefaultEnumCount
Long value that specifies the default enumeration count.

lDefaultEnumRetryInterval
Long value that specifies the default retry interval, in milliseconds.

IDH_DPN_SERVICE_PROVIDER_INFO_dplay_vb
IDH_DPN_SP_CAPS_dplay_vb

in.doc – page 502

lDefaultEnumTimeout
Long value that specifies the default enumeration timeout value, in milliseconds.

lFlags
Long value that can be a combination of the following flags.

DPNSPCAPS_SUPPORTSALLADAPTERS
The service provider is supported on all the adapters that are present on the
system.

DPNSPCAPS_SUPPORTSBROADCAST
For IP and IPX applications, the service provider has the ability to find games
by broadcasting, if sufficient addressing information is not provided.

DPNSPCAPS_SUPPORTSDPNSRV
Dpnsvr.exe will provide port sharing for the given SP. Currently, this flag is
available on IP and IPX only. See Using the DirectPlay DPNSVR Application
for a further discussion of DPNSVR.

lMaxEnumPayloadSize
Long that specifies the maximum size of the payload information that can be sent
in the ResponseData member of the types that accompany the
DirectPlay8Event.EnumHostQuery and DirectPlay8Event.EnumHostQuery
methods.

lNumThreads
Number of threads the service provider will use for servicing network requests.
The default value is based on an algorithm that takes into account the number of
processors on the system. Most applications will not need to modify this value.

After a service provider is active in your process you may only increase this
value. Decreasing the value will have no effect. The setting is process wide,
meaning it will effect your current Microsoft® DirectPlay® object and any other
DirectPlay objects in your process.

lSystemBufferSizeAs
The size of the operating system buffer. This buffer holds data from the
communications device when your application cannot process data as fast as it
arrives. The purpose of this buffer is to prevent data loss if you receive a sudden
burst of data, or if the receive threads are momentarily stalled. Increasing
lSystemBufferSize may increase latency if your application cannot process the
received data fast enough. You can eliminate the operating system buffer by
setting lSystemBufferSize to 0. However, if you do so, you run the risk of losing
data if you cannot process the received data as fast as it arrives.

DPNMSG_ASYNC_OP_COMPLETE
#Used in the dpnotify parameter of the DirectPlay8Event.AsyncOpComplete
method. This type is generated by Microsoft® DirectPlay® when an asynchronous
operation has completed.

IDH_DPNMSG_ASYNC_OP_COMPLETE_dplay_vb

in.doc – page 503

Type DPNMSG_ASYNC_OP_COMPLETE
 AsyncOpHandle As Long
 hResultCode As Long
End Type

Members

AsyncOpHandle
Long value specifying the handle of the asynchronous operation.

hResultCode
Long value specifying the result of the asynchronous operation.

DPNMSG_CONNECT_COMPLETE
#Used in the dpnotify parameter of the DirectPlay8Event.ConnectComplete method.
This type is generated by Microsoft® DirectPlay® when a connection request has been
completed.

Type DPNMSG_CONNECT_COMPLETE
 AsyncOpHandle As Long
 hResultCode As Long
 ReplyData() as Byte
End Type

Members

AsyncOpHandle
Long value specifying the handle of the asynchronous operation.

hResultCode
Long value specifying result of the connection request.

ReplyData
Byte array containing the connection data returned by the host or server.

DPNMSG_ENUM_HOSTS_QUERY
#Used in the dpnotify parameter of the DirectPlay8Event.EnumHostsQuery method.
This type is generated by Microsoft® DirectPlay® when a player has requested a host
enumeration.

Type DPNMSG_ENUM_HOSTS_QUERY
 AddressDeviceUrl As String
 AddressSenderUrl As String
 lMaxResponseDataSize As Long
 ReceivedData() As Byte
 ResponseData() As Byte

IDH_DPNMSG_CONNECT_COMPLETE_dplay_vb
IDH_DPNMSG_ENUM_HOSTS_QUERY_dplay_vb

in.doc – page 504

End Type

Members

AddressDeviceUrl
String value containing the device’s URL.

AddressSenderUrl
String value containing the sender's URL.

lMaxResponseDataSize
Long value specifying the size of the response data block.

ReceivedData
Data received from the enumeration.

ResponseData
Data block containing the response to the enumeration request.

DPNMSG_ENUM_HOSTS_RESPON
SE

#Used in the dpnotify parameter of the DirectPlay8Event.EnumHostsResponse
method. This type is generated by Microsoft® DirectPlay® when the host responds
with information to an enumeration request.

Type DPNMSG_ENUM_HOSTS_RESPONSE
 AddressDeviceUrl As String
 AddressSenderUrl As String
 ApplicationDescription As DPN_APPLICATION_DESC
 lRoundTripLatencyMS As Long
 ResponseData As Byte
End Type

Members

AddressDeviceUrl
String specifying the device's address URL

AddressSenderUrl
String specifying the sender's address URL.

ApplicationDescription
DPN_APPLICATION_DESC type that describes the application.

lRoundTripLatencyMS
Round-trip latency, in milliseconds.

ResponseData
Response data from the enumeration.

IDH_DPNMSG_ENUM_HOSTS_RESPONSE_dplay_vb

in.doc – page 505

DPNMSG_INDICATE_CONNECT
#Used in the dpnotify parameter of the DirectPlay8Event.IndicateConnect method.
This type is generated by Microsoft® DirectPlay® when a player has requested a
connection to the session.

Type DPNMSG_INDICATE_CONNECT
 AddressDeviceUrl As String
 AddressPlayerUrl As String
 UserData() As Byte
End Type

Members

AddressDeviceUrl
String specifying the device's address URL

AddressSenderUrl
String specifying the sender's address URL.

UserData
Data of the connecting player.

DPNMSG_RECEIVE
#Used in the dpnotify parameter of the DirectPlay8Event.Receive method. This type
is generated by Microsoft® DirectPlay® when a message has been received.

Type DPNMSG_RECEIVE
 idSender As Long
 iDataSize As Long
 ReceivedData() As Byte
End Type

Members

idSender
Long value specifying the identifier of the message sender.

iDataSize
Long value specifying the number of bytes in the ReceivedData member.
Because the byte array is zero-based, the upper limit of the array will be
IDataSize-1.

ReceivedData
Byte array containing the message data that was sent.

IDH_DPNMSG_INDICATE_CONNECT_dplay_vb
IDH_DPNMSG_RECEIVE_dplay_vb

in.doc – page 506

DPNMSG_SEND_COMPLETE
#Used in the dpnotify parameter of the DirectPlay8Event.SendComplete method.
This type is generated by Microsoft® DirectPlay® when a message has been received
by the recipient.

Type DPNMSG_SEND_COMPLETE
 AsyncOpHandle As Long
 hResultCode As Long
 lSendTime As Long
End Type

Members

AsyncOpHandle
Long value specifying the handle of the asynchronous operation.

hResultCode
Long value specifying the success or failure of the message send.

lSendTime
Time, in milliseconds, between send call and completion.

DPNMSG_TERMINATE_SESSION
#Used in the DirectPlay8Event.TerminateSession method.

Type DPNMSG_TERMINATE_SESSION
 hResultCode As Long
 TerminateData() As Byte
End Type

Members

hResultCode
Long value specifying why the session was terminated. This member is set to
DPNERR_HOSTTERMINATEDSESSION if the session was peer-to-peer, and
the host called DirectPlay8Peer.TerminateSession. If the session was ended by
the host calling Close, or if the host stops responding, hResultCode is set to
DPNERR_CONNECTIONLOST.

TerminateData
Termination data. If hResultCode is set to
DPNERR_HOSTTERMINATEDSESSION, TerminateData points to the data
block that the host passed through the UserData parameter of
DirectPlay8Peer.TerminateSession. If hResultCode is set to
DPNERR_CONNECTIONLOST, TerminateData will be empty

IDH_DPNMSG_SEND_COMPLETE_dplay_vb
IDH_DPNMSG_TERMINATE_SESSION_dplay_vb

in.doc – page 507

DVCAPS
#Describes the capabilities of the Microsoft® DirectPlay® Voice client object.

Type DVCAPS
 lFlags As Long
End Type

Members

lFlags
Reserved. Must be 0.

DVCLIENTCONFIG
#Controls the run-time parameters for the client. This type is first used in the call to
DirectPlayVoiceClient8.Connect, where it sets the initial state of these parameters.
The type can be retrieved after a connection has been made by calling
DirectPlayVoiceClient8.GetClientConfig, and set using
DirectPlayVoiceClient8.SetClientConfig.

Type DVCLIENTCONFIG
 lBufferAggressiveness As CONST_DVBUFFERAGGRESSIVENESS
 lBufferQuality As CONST_DVBUFFERQUALITY
 lFlags As CONST_DVCLIENTCONFIGENUM
 lNotifyPeriod As Long
 lPlaybackVolume As Long
 lRecordVolume As Long
 lThreshold As CONST_DVTHRESHOLD
End Type

Members

lBufferAggressiveness
One of the constants of the CONST_DVBUFFERAGGRESSIVENESS
enumeration that specifies the buffer aggressiveness setting for the adaptive
buffer algorithm.

lBufferQuality
One of the constants of the CONST_DVBUFFERQUALITY enumeration that
specifies the buffer quality setting for the adaptive buffering algorithm. For most
applications, this should be set to DVBUFFERQUALITY_DEFAULT. It can be
set to anything in the range of DVBUFFERQUALITY_MIN to
DVBUFFERQUALITY_MAX. In general, the higher the value, the higher the
quality of the voice but the higher the latency. The lower the value, the lower the
latency but the lower the quality.

IDH_DVCAPS_dplay_vb
IDH_DVCLIENTCONFIG_dplay_vb

in.doc – page 508

lFlags
Combination of flags from the CONST_DVCLIENTCONFIGENUM
enumeration.

lNotifyPeriod
Specifies how often you want to receive DVMSGID_OUTPUTLEVEL and
DVMSGID_INPUTLEVEL (if session is full duplex) messages. If this value is
set to 0, these messages are disabled. The value specifies the number of
milliseconds between these messages. DVNOTIFYPERIOD_MINPERIOD
specifies the minimum period between messages that is allowed.

lPlaybackVolume
Specifies what the volume of the playback should be set to. Adjusting this
volume adjusts both the main buffer and all 3-D sound buffers. See the
DirectSoundPrimaryBuffer8.SetVolume method for the valid values for this
member. You can specify DVPLAYBACKVOLUME_DEFAULT to use a
default value that is appropriate for most situations (full volume).

lRecordVolume
Specifies what the volume of the recording should be set to. See the
DirectSoundPrimaryBuffer8.SetVolume method for the valid values for this
member.

If automatic gain control is enabled, this value can be set to
DVRECORDVOLUME_LAST, which tells the system to use the current volume
as determined by the automatic gain control algorithm. If a value other then
DVRECORDVOLUME_LAST is specified in combination with automatic gain
control, this value will be used to restart the algorithm at the specified value.

On return from a call to DirectPlayVoiceClient8.GetClientConfig, this value
will contain the current recording volume. When adjusting the recording volume,
Microsoft® DirectPlay® Voice will adjust the volume for the microphone (if a
microphone volume is present for the card) and the master recording volume (if
one is present on the card). If neither a microphone volume nor a master record
volume is present, DirectPlay Voice will be unable to adjust the recording
volume.

lThreshold
One of the constants of the CONST_DVTHRESHOLD enumeration that
specifies the input level used to trigger voice transmission if the
DVCLIENTCONFIG_MANUALVOICEACTIVATED flag is specified in the
lFlags member. When the flag is specified, this value can be set to anywhere in
the range of DVTHRESHOLD_MIN to DVTHRESHOLD_MAX. Additionally,
DVTHRESHOLD_DEFAULT can be set to use a default value.

If DVCLIENTCONFIG_MANUALVOICEACTIVATED or
DVCLIENTCONFIG_AUTOVOICEACTIVATED is not specified in the lFlags
member of this type (indicating push-to-talk mode) this value must be set to
DVTHRESHOLD_UNUSED.

in.doc – page 509

DVCOMPRESSIONINFO
#Describes the attributes of a specific Microsoft® DirectPlay® Voice compression
type.

Type DVCOMPRESSIONINFO
 guidType As String
 lFlags As Long
 lMaxBitsPerSecond As Long
 strDescription As String
 strName As String
End Type

Members

guidType
String value specifying the GUID used to identify this compression type by
DirectPlay Voice.

lFlags
Reserved; must be 0.

lMaxBitsPerSecond
Maximum number of bits per second claimed by the codec.

strDescription
Description of the codec.

strName
Name describing the codec.

DVSESSIONDESC
#Describes the desired or current session settings for the Microsoft® DirectPlay®
Voice server. This structure is used by the voice session host to configure the session,
and by the session host and the clients to retrieve information about the current
session. The lFlags, lSessionType, and guidCT members can only be set when the
host starts the voice session. The host can change the buffer settings at any time.

Type DVSESSIONDESC
 guidCT As String
 lBufferAggressiveness As CONST_DVBUFFERAGGRESSIVENESS
 lBufferQuality As CONST_DVBUFFERQUALITY
 lFlags As CONST_DVSESSION
 lSessionType As CONST_DVSESSIONTYPE
End Type

IDH_DVCOMPRESSIONINFO_dplay_vb
IDH_DVSESSIONDESC_dplay_vb

in.doc – page 510

Members

guidCT
String value specifying the GUID of the compression type of the session.

lBufferAggressiveness
One of the constants of the CONST_DVBUFFERAGGRESSIVENESS
enumeration that specifies the buffer aggressiveness setting. This member is
unused for all session types except mixing sessions. For all sessions except
mixing sessions, set this member to
DVBUFFERAGGRESIVENESS_DEFAULT.

Allowable values are between DVBUFFERAGGRESIVENESS _MIN and
DVBUFFERAGGRESIVENESS _MAX. Additionally, this member can be set to
the following value.

DVBUFFERAGGRESIVENESS_DEFAULT
Specifying this value tells DirectPlay Voice to use the system default for this
value, which is adjustable through a registry entry that can also be set through
Control Panel.

lBufferQuality
One of the constants of the CONST_DVBUFFERQUALITY enumeration that
specifies the buffer quality setting. This member is unused for all session types
except mixing sessions. For all sessions except mixing sessions, set this member
to DVBUFFERQUALITY_DEFAULT.

Allowable values are between DVBUFFERQUALITY_MIN and
DVBUFFERQUALITY_MAX. Additionally, this member can be set to the
following value.

DVBUFFERQUALITY_DEFAULT
Specifying this value tells DirectPlay Voice to use the system default for this
value, which is adjustable through a registry entry that can also be set through
Sounds and Multimedia in Control Panel.

lFlags
Combination of the flags of the CONST_DVSESSION enumeration.

lSessionType
One of the flags of the CONST_DVSESSIONTYPE enumeration to specify the
type of DirectPlay Voice session to run. The DVSESSIONTYPE_PEER flag is
not available in client/server sessions; all other flags are valid for all session
types.

DVSOUNDDEVICECONFIG
#Used to set and retrieve information about the sound device configuration and cannot
be changed once a connection has been made. After a connection is made, you can
retrieve the current sound device configuration by calling
DirectPlayVoiceClient8.GetSoundDeviceConfig.

IDH_DVSOUNDDEVICECONFIG_dplay_vb

in.doc – page 511

Type DVSOUNDDEVICECONFIG
 guidCaptureDevice As String
 guidPlaybackDevice As String
 hwndAppWindow As Long
 lFlags As CONST_DVSOUNDEFFECT
 lMainBufferFlags As CONST_DSBPLAYFLAGS
 lMainBufferPriority As Long
 MainSoundBuffer As DirectSoundSecondaryBuffer8
End Type

Members

guidCaptureDevice
When this type is used in DirectPlayVoiceClient8.Connect method, this
member specifies the GUID of the device used for capture.

When this type is used in the DirectPlayVoiceClient8.GetSoundDeviceConfig
method, this member will contain the actual device GUID used for capture.

guidPlaybackDevice
When this type is used in the DirectPlayVoiceClient8.Connect method, this
member specifies the GUID of the device used for playback.

When this type is used in the DirectPlayVoiceClient8.GetSoundDeviceConfig
method, this member contains the actual device GUID used for playback.

hwndAppWindow
Must be set to the handle of the window that will be used to determine focus for
sound playback. See DirectSound8.SetCooperativeLevel for information on
Microsoft® DirectSound® focus. If you do not have a window to use for focus,
use GetDesktopWindowHandle to use the desktop window.

lFlags
Combination of the flags from the CONST_DVSOUNDEFFECT enumeration.

lMainBufferFlags
Flags values taken from the CONST_DSBPLAYFLAGS enumeration that
specify how to play the buffer.

lMainBufferPriority
Passed directly to the dwPriority parameter of the
DirectSoundSecondaryBuffer8.Play method when Play is called on the main
buffer.

MainSoundBuffer
DirectSoundSecondaryBuffer8 object, which is used to create the Microsoft
DirectPlay® Voice main buffer. This parameter can be either NULL or a user-
created DirectSound buffer. If this member is set to NULL, DirectPlay Voice will
create a buffer for the main voice buffer. If users specify a buffer here,
DirectPlay Voice will use their buffer for the main voice buffer.

· The buffer must be 22 kilohertz, 16-bit, Mono format.

· The buffer must be at least 1 second in length.

in.doc – page 512

· The buffer must have been created with the
DSBCAPS_GETCURRENTPOSITION2 and DSBCAPS_CTRL3D flags.

· The buffer must not be a primary buffer.

· The buffer must not be playing when it is passed to DirectPlay.

· The buffer must not be locked when it is passed to DirectPlay.

Enumerations
Microsoft® DirectPlay® uses enumerations to group constants in order to take
advantage of the statement completion feature of Microsoft® Visual Basic®. The
enumerations used in DirectPlay are:

· CONST_DPLAYBUFSIZE

· CONST_DPLCONNECT

· CONST_DPLSESSION

· CONST_DPNCANCELFLAGS

· CONST_DPNENUMCLIENTGROUPFLAGS

· CONST_DPNERR

· CONST_DPNGROUPINFOFLAGS

· CONST_DPNINFO

· CONST_DPNLOBBY

· CONST_DPNMESSAGEID

· CONST_DPNOPERATIONS

· CONST_DPNPLAYERGROUPFLAGS

· CONST_DPNPLAYINFOFLAGS

· CONST_DPNSENDFLAGS

· CONST_DPNSESSIONFLAGS

· CONST_DPNSPCAPS

· CONST_DPNWAITTIME

· CONST_DVBUFFERAGGRESSIVENESS

· CONST_DVBUFFERQUALITY

· CONST_DVCLIENTCONFIGENUM

· CONST_DVERR

· CONST_DVFLAGS

· CONST_DVMESSAGE

· CONST_DVNOTIFY

· CONST_DVPLAYBACKVOLUME

in.doc – page 513

· CONST_DVSESSION

· CONST_DVSESSIONTYPE

· CONST_DVSOUNDEFFECT

· CONST_DVTHRESHOLD

CONST_DPLAYBUFSIZE
#Used to specify the data type used in buffers.

Enum CONST_DPLAYBUFSIZE
 SIZE_BOOLEAN = 2
 SIZE_BYTE = 1
 SIZE_CURRENCY = 8
 SIZE_DATE = 8
 SIZE_DECIMAL = 14
 SIZE_DOUBLE = 8
 SIZE_INTEGER = 2
 SIZE_LONG = 4
 SIZE_SINGLE = 4
End Enum

Constants

SIZE_BOOLEAN
Size of a BOOLEAN variable, in bytes.

SIZE_BYTE
Size of a BYTE variable, in bytes.

SIZE_CURRENCY
Size of a CURRENCY variable, in bytes.

SIZE_DATE
Size of a DATE variable, in bytes.

SIZE_DECIMAL
Size of a DECIMAL variable, in bytes.

SIZE_DOUBLE
Size of a DOUBLE variable, in bytes.

SIZE_INTEGER
Size of an INTEGER variable, in bytes.

SIZE_LONG
Size of a LONG variable, in bytes.

SIZE_SINGLE
Size of a SINGLE variable, in bytes.

IDH_CONST_DPLAYBUFSIZE_dplay_vb

in.doc – page 514

CONST_DPLCONNECT
#Used in the lFlags parameter of the DirectPlay8LobbyClient.ConnectApplication
method to determine connection behavior.

Enum CONST_DPLCONNECT
 DPLCONNECT_LAUNCHNEW = 1
 DPLCONNECT_LAUNCHNOTFOUND = 2
End Enum

Constants

DPLCONNECT_LAUNCHNEW
Launch a new instance of the application.

DPLCONNECT_LAUNCHNOTFOUND
Launch a new instance of the application if there is no application running that
can supply launch settings.

CONST_CONNECTSETTINGS
#Used in the DPL_CONNECTION_SETTINGS type.

Enum CONST_CONNECTSETTINGS
 DPLCONNECTSETTINGS_HOST = 1
End Enum

Constants

DPLCONNECTSETTINGS_HOST
Your player is the session host.

CONST_DPLSESSION
#Used in the lStatus parameter of the DirectPlay8LobbiedApplication.UpdateStatus
method to set the current state of the connection between the lobby client and the
lobbied application.

Enum CONST_DPLSESSION
 DPLSESSION_CONNECTED = 1
 DPLSESSION_COULDNOTCONNECT = 2
 DPLSESSION_DISCONNECTED = 3
 DPLSESSION_HOSTMIGRATED = 5
 DPLSESSION_HOSTMIGRATEDHERE = 6
 DPLSESSION_TERMINATED = 4
End Enum

IDH_CONST_DPLCONNECT_dplay_vb
IDH_CONST_CONNECTSETTINGS_dplay_vb
IDH_CONST_DPLSESSION_dplay_vb

in.doc – page 515

Constants

DPLSESSION_CONNECTED
The lobbied application is currently connected to a session.

DPLSESSION_COULDNOTCONNECT
The lobbied application could not connect to the session.

DPLSESSION_DISCONNECTED
The lobbied application is currently disconnected from the session.

DPLSESSION_HOSTMIGRATED
The host of a peer-to-peer session has migrated. The local client is not the new
host.

DPLSESSION_HOSTMIGRATEDHERE
The host of a peer-to-peer session has migrated. The local client is the new
host.

DPLSESSION_TERMINATED
The connection between session host and the lobbied application has been
terminated.

CONST_DPNCANCELFLAGS
#Used in the lFlags parameter of the DirectPlay8Client.CancelAsyncOperation,
DirectPlay8Server.CancelAsyncOperation and
DirectPlay8Peer.CancelAsyncOperation methods to specify which type of
asynchronous operation to cancel.

Enum CONST_DPNCANCELFLAGS
 DPNCANCEL_ALL_OPERATIONS = 32768 (&H8000)
 DPNCANCEL_CONNECT = 1
 DPNCANCEL_ENUM = 2
 DPNCANCEL_SEND = 4
End Enum

Constants

DPNCANCEL_ALL_OPERATIONS
Cancel all asynchronous requests.

DPNCANCEL_CONNECT
Cancel an asynchronous Connect request.

DPNCANCEL_ENUM
Cancel all asynchronous EnumHosts requests. A single EnumHosts request can
be canceled by specifying the handle returned from the EnumHosts method.

DPNCANCEL_SEND
Cancel an asynchronous Send request.

IDH_CONST_DPNCANCELFLAGS_dplay_vb

in.doc – page 516

CONST_DPNENUMCLIENTGROUP
FLAGS

#Used in the lFlags parameter of the DirectPlay8Peer.GetCountClientsAndGroups
and the DirectPlay8Server.GetCountClientsAndGroups methods to determine
which type of enumeration to return.

Enum CONST_DPNENUMCLIENTGROUPFLAGS
 DPNENUM_ALL = 17 (&H11)
 DPNENUM_GROUP_MULTICAST = 32 (&H20)
 DPNENUM_GROUPS = 16 (&H10)
 DPNENUM_PLAYERS = 1
End Enum

Constants

DPNENUM_ALL
Return the number of all groups and players.

DPNENUM_GROUP_MULTICAST
Return the number of multicast groups.

DPNENUM_GROUPS
Return the number of groups.

DPNENUM_PLAYERS
Return the number of players.

CONST_DPNERR
#Contains the error values for Microsoft® DirectPlay®. For more information, see
Error Codes.

CONST_DPNGROUPINFOFLAGS
#Describes the settings for a group. This enumeration is used in the lGroupFlags
member or the DPN_GROUP_INFO type.

Enum CONST_DPNGROUPINFOFLAGS
 DPNGROUP_AUTODESTRUCT = 1
End Enum

Constants

DPNGROUP_AUTODESTRUCT
Automatically destroy the group when the group creator leaves the group.

IDH_CONST_DPNENUMCLIENTGROUPFLAGS_dplay_vb
IDH_CONST_DPNERR_dplay_vb
IDH_CONST_DPNGROUPINFOFLAGS_dplay_vb

in.doc – page 517

CONST_DPNINFO
#Used to specify the type of information you set or retrieve from group and player
information methods. This enumeration is used in the lInfoFlags member of both the
DPN_GROUP_INFO and DPN_PLAYER_INFO types.

Enum CONST_DPNINFO
 DPNINFO_DATA = 2
 DPNINFO_NAME = 1
End Enum

Constants

DPNINFO_DATA
The information is data set for the player or group.

DPNINFO_NAME
The information is the name of the player or group.

CONST_DPNLOBBY
#Used with the lFlags parameter of the DirectPlay8Client.RegisterLobby method.
Set one of the two values to indicate whether the application is to be registered or
unregistered.

Enum CONST_DPNLOBBY
 DPNLOBBY_REGISTER = 1
 DPNLOBBY_UNREGISTER = 2
End Enum

Constants

DPNLOBBY_REGISTER
Register the application with the lobby.

DPNLOBBY_UNREGISTER
Unregister the application with the lobby.

CONST_DPNMESSAGEID
#Contains message identification flags that are used by some of the methods of the
DirectPlay8Event class. For more information, see the
DirectPlay8Event.AddRemovePlayerGroup, and DirectPlay8Event.InfoNotify
methods.

Enum CONST_DPNMESSAGEID
 DPN_MSGID_ADD_PLAYER_TO_GROUP = -65528 (&HFFFF0008)

IDH_CONST_DPNINFO_dplay_vb
IDH_CONST_DPNLOBBY_dplay_vb
IDH_CONST_DPNMESSAGEID_dplay_vb

in.doc – page 518

 DPN_MSGID_APPLICATION_DESC = -65526 (&HFFFF000A)
 DPN_MSGID_ASYNC_OP_COMPLETE = -65533 (&HFFFF0003)
 DPN_MSGID_CLIENT_INFO = -65524 (&HFFFF000C)
 DPN_MSGID_CONNECT_COMPLETE = -65520 (&HFFFF0010)
 DPN_MSGID_CREATE_GROUP = -65530 (&HFFFF0006)
 DPN_MSGID_CREATE_PLAYER = -65529 (&HFFFF0007)
 DPN_MSGID_DESTROY_GROUP = -65528 (&HFFFF0007)
 DPN_MSGID_DESTROY_PLAYER = -65527 (&HFFFF0005)
 DPN_MSGID_ENUM_HOSTS_QUERY = -65516 (&HFFFF0014)
 DPN_MSGID_ENUM_HOSTS_RESPONSE = -65515 (&HFFFF0015)
 DPN_MSGID_GROUP_INFO = -65522 (&HFFFF000E)
 DPN_MSGID_HOST_MIGRATE = -65523 (&HFFFF000D)
 DPN_MSGID_INDICATE_CONNECT = -65521 (&HFFFF000F)
 DPN_MSGID_INDICATED_CONNECT_ABORTED = -65521
(&HFFFF000F)
 DPN_MSGID_PEER_INFO = -65525 (&HFFFF000B)
 DPN_MSGID_RECEIVE = -65535 (&HFFFF0001)
 DPN_MSGID_REMOVE_PLAYER_FROM_GROUP = -65518
(&HFFFF0012)
 DPN_MSGID_RETURN_BUFFER = -65517 (&HFFFF0013)
 DPN_MSGID_SEND_COMPLETE = -65534 (&HFFFF0002)
 DPN_MSGID_SERVER_INFO = -65523 (&HFFFF000D)
 DPN_MSGID_TERMINATE_SESSION = -65514 (&HFFFF0016)
End Enum

CONST_DPNOPERATIONS
#Contains a set of flags that are used by the methods of the DirectPlay8Client class.
See the individual method references for details.

Enum CONST_DPNOPERATIONS
 DPNADDPLAYERTOGROUP_SYNC = -2147483648 (&H80000000)
 DPNCONNECT_SYNC = -2147483648 (&H80000000)
 DPNCREATEGROUP_SYNC = -2147483648 (&H80000000)
 DPNDESTROYGROUP_SYNC = -2147483648 (&H80000000)
 DPNENUMHOSTS_SYNC = -2147483648 (&H80000000)
 DPNHOST_OKTOQUERYFORADDRESSING = 1
 DPNOP_SYNC = -2147483648 (&H80000000)
 DPNREMOVEPLAYERFROMGROUP_SYNC = -2147483648
(&H80000000)
 DPNSETCLIENTINFO_SYNC = -2147483648 (&H80000000)
 DPNSETGROUPINFO_SYNC = -2147483648 (&H80000000)
 DPNSETPEERINFO_SYNC = -2147483648 (&H80000000)
 DPNSETSERVERINFO_SYNC = -2147483648 (&H80000000)

IDH_CONST_DPNOPERATIONS_dplay_vb

in.doc – page 519

End Enum

CONST_DPNPLAYERGROUPFLAG
S

#Used by the DirectPlay8Server.SendTo and DirectPlay8Peer.SendTo methods.

Enum CONST_DPNPLAYERGROUPFLAGS
 DPNID_ALL_PLAYERS_GROUP = 0
End Enum

Constants

DPNID_ALL_PLAYERS_GROUP
Send a message to all players in the session.

CONST_DPNPLAYINFOFLAGS
#Used in the lPlayerFlags member of the DPN_PLAYER_INFO structure to
determine whether the player is a host player or local player.

Enum CONST_DPNPLAYINFOFLAGS
 DPNPLAYER_HOST = 4
 DPNPLAYER_LOCAL = 2
End Enum

Constants

DPNPLAYER_HOST
This information is for the local player.

DPNPLAYER_LOCAL
This player is the host for the application.

CONST_DPNSENDFLAGS
#Contains flags that can be set in the DirectPlay8Client.Send,
DirectPlay8Server.SendTo, and DirectPlay8Peer.SendTo methods to control how
messages are sent.

Enum CONST_DPNSENDFLAGS
 DPNSEND_COMPLETEONPROCESS = 4
 DPNSEND_GUARANTEED = 8
 DPNSEND_NOCOMPLETE = 1
 DPNSEND_NOCOPY = 2

IDH_CONST_DPNPLAYERGROUPFLAGS_dplay_vb
IDH_CONST_DPNPLAYINFOFLAGS_dplay_vb
IDH_CONST_DPNSENDFLAGS_dplay_vb

in.doc – page 520

 DPNSEND_NOLOOPBACK = 32 (&H20)
 DPNSEND_NONSEQUENTIAL = 16 (&H10)
 DPNSEND_PRIORITY_HIGH = 128 (&H80)
 DPNSEND_PRIORITY_LOW = 64 (&H40)
 DPNSEND_SYNC = -2147483648 (&H80000000)
End Enum

Constants

DPNSEND_COMPLETEONPROCESS
Call the DirectPlay8Event.SendComplete method in the message handler when
this message has been delivered to the target and the target's message handler
returns from indicating its reception. There is additional internal message
overhead when this flag is set, and the message transmission process may
become significantly slower. If you set this flag, DPNSEND_GUARANTEED
must also be set.

DPNSEND_GUARANTEED
Send the message by a guaranteed method of delivery.

DPNSEND_NOCOMPLETE
Do not call the DirectPlay8Event.SendComplete method in the sender's
message handler. There is additional internal message overhead when this flag is
set, and the message sends process is significantly slower. This flag cannot be
combined with DPNSEND_NOCOPY.

DPNSEND_NOCOPY
Use the data in the buffer() parameter type and do not make an internal copy.
This might be a more efficient method of sending data. However, it is less robust
because the sender might be able to modify the message before the receiver has
processed it. This flag cannot be combined with DPNSEND_NOCOMPLETE or
DPNSEND_GUARANTEED.

DPNSEND_NOLOOPBACK
Do not call the DirectPlay8Event.Receive method in your message handler
when you are sending to yourself. This flag is useful if you are broadcasting to
the entire session, or you are sending a message to a group that you are a member
of.

DPNSEND_NONSEQUENTIAL
Messages are delivered to the target application in the order that they are
received. If the flag is not set, messages are delivered to the target application in
the order that they are sent, which may necessitate buffering out-of-sequence
messages until the missing messages arrive.

DPNSEND_PRIORITY_HIGH
Sets the priority of the message to high.

DPNSEND_PRIORITY_LOW
Sets the priority of the message to low.

DPNSEND_SYNC
Process the SendTo request synchronously.

in.doc – page 521

CONST_DPNGETSENDQUEUEINF
O

#Used with the lFlags parameter of DirectPlay8Client.GetSendQueueInfo. Setting
one of these flags instructs the method to only return send-queue information on the
associated send queue instead of the total for all queues.

Enum CONST_DPNGETSENDQUEUEINFO
 DPNGETSENDQUEUEINFO_PRIORITY_HIGH = 2
 DPNGETSENDQUEUEINFO_PRIORITY_LOW = 4
 DPNGETSENDQUEUEINFO_PRIORITY_NORMAL = 1
End Enum

Constants

DPNGETSENDQUEUEINFO_PRIORITY_HIGH
Return information for the high-priority queue.

DPNGETSENDQUEUEINFO_PRIORITY_LOW
Return information for the low-priority queue.

DPNGETSENDQUEUEINFO_PRIORITY_NORMAL
Return information for the normal-priority queue.

CONST_DPNSESSIONFLAGS
#Used in the lFlags member of the DPN_APPLICATION_DESC type to specify the
type of session.

Enum CONST_DPNSESSIONFLAGS
 DPNSESSION_CLIENT_SERVER = 1
 DPNSESSION_MIGRATE_HOST = 4
 DPNSESSION_NODPNSVR = 64 (&H40)
 DPNSESSION_REQUIREPASSWORD = 128 (&H80)
End Enum

Constants

DPNSESSION_CLIENT_SERVER
Specify that this type of session is client/server. This flag cannot be combined
with DPNSESSION_MIGRATE_HOST.

DPNSESSION_MIGRATE_HOST
Enable host migration. This flag is used in peer-to-peer sessions. This flag cannot
be combined with DPNSESSION_CLIENT_SERVER.

DPNSESSION_NODPNSVR

IDH_CONST_DPNGETSENDQUEUEINFO_dplay_vb
IDH_CONST_DPNSESSIONFLAGS_dplay_vb

in.doc – page 522

Specify that you do not want enumerations forwarded to your host from
DPNSVR.

DPNSESSION_REQUIREPASSWORD
Specify that the session is password protected. If this flag is set, the Password
member of the DPN_APPLICATION_DESC type must be a valid string.

CONST_DPNSPCAPS
#Used by the DPN_SP_CAPS type.

Enum CONST_DPNSPCAPS
 DPNSPCAPS_SUPPORTSALLADAPTERS = 4
 DPNSPCAPS_SUPPORTSBROADCAST = 2
 DPNSPCAPS_SUPPORTSDPNSRV = 1
End Enum

Constants

DPNSPCAPS_SUPPORTSALLADAPTERS
The service provider is supported on all the adapters present on the system.

DPNSPCAPS_SUPPORTSBROADCAST
On IP and IPX applications, the service provider has the ability to broadcast to
find games if not enough addressing information is passed.

DPNSPCAPS_SUPPORTSDPNSRV
DPNSVR.EXE will provide port sharing for the given SP. Currently this flag is
available on IP and IPX only.

CONST_DPNWAITTIME
#Used by the DirectPlay8Client.EnumHosts, and DirectPlay8Peer.EnumHosts
methods.

Enum CONST_DPNWAITTIME
 INFINITE = -1 (&HFFFFFFFF)
End Enum

Constants

INFINITE
Wait until the enumeration is canceled.

IDH_CONST_DPNSPCAPS_dplay_vb
IDH_CONST_DPNWAITTIME_dplay_vb

in.doc – page 523

CONST_DVBUFFERAGGRESSIVEN
ESS

#Contains flags used in the lBufferAggressiveness member of the
DVCLIENTCONFIG type. For most applications, this can be set to
DVBUFFERAGGRESSIVENESS_DEFAULT. It can also be set to anything in the
range of DVBUFFERAGGRESSIVENESS_MIN and
DVBUFFERAGGRESSIVENESS_MAX. In general, the higher the value, the
quicker the adaptive buffering adjusts to changing conditions. The lower the value,
the slower the adaptive buffering adjusts to changing conditions.

Enum CONST_DVBUFFERAGGRESSIVENESS
 DVBUFFERAGGRESSIVENESS_DEFAULT = 0
 DVBUFFERAGGRESSIVENESS_MAX = 100 (&H64)
 DVBUFFERAGGRESSIVENESS_MIN = 1
End Enum

Constants

DVBUFFERAGGRESSIVENESS_DEFAULT
The default buffer aggressiveness value.

DVBUFFERAGGRESSIVENESS_MAX
The maximum buffer aggressiveness value.

DVBUFFERAGGRESSIVENESS_MIN
The minimum buffer aggressiveness value.

CONST_DVBUFFERQUALITY
#Contains flags used in the lBufferQuality member of the DVCLIENTCONFIG
type. For most applications, this should be set to
DVBUFFERQUALITY_DEFAULT. It can be set to anything in the range of
DVBUFFERQUALITY_MIN to DVBUFFERQUALITY_MAX. In general, the
higher the value, the higher the quality of the voice but the also higher the latency.
The lower the value, the lower the latency but also the lower the quality.

Enum CONST_DVBUFFERQUALITY
 DVBUFFERQUALITY_DEFAULT = 0
 DVBUFFERQUALITY_MAX = 100 (&H64)
 DVBUFFERQUALITY_MIN = 1
End Enum

Constants

DVBUFFERQUALITY_DEFAULT
The default buffer quality value.

IDH_CONST_DVBUFFERAGGRESSIVENESS_dplay_vb
IDH_CONST_DVBUFFERQUALITY_dplay_vb

in.doc – page 524

DVBUFFERQUALITY_MAX
The maximum buffer quality value.

DVBUFFERQUALITY_MIN
The minimum buffer quality value.

CONST_DVCLIENTCONFIGENUM
#Used in the lFlags member of the DVCLIENTCONFIG type to control voice
transmission behavior.

Enum CONST_DVCLIENTCONFIGENUM
 DVCLIENTCONFIG_AUTORECORDVOLUME = 8
 DVCLIENTCONFIG_AUTOVOICEACTIVATED = 32 (&H20)
 DVCLIENTCONFIG_ECHOSUPPRESSION = 134217728 (&H8000000)
 DVCLIENTCONFIG_MANUALVOICEACTIVATED = 4
 DVCLIENTCONFIG_MUTEGLOBAL = 16 (&H10)
 DVCLIENTCONFIG_PLAYBACKMUTE = 2
 DVCLIENTCONFIG_RECORDMUTE = 1
End Enum

Constants

DVCLIENTCONFIG_AUTORECORDVOLUME
Activate automatic gain control. With automatic gain control, Microsoft®
DirectPlay® Voice adjusts the hardware input volume on your sound card
automatically to get the best input level possible. You can determine the
current input volume by looking at the lRecordVolume member after a call to
DirectPlayVoiceClient8.GetClientConfig.

DVCLIENTCONFIG_AUTOVOICEACTIVATED
Place the transmission control system into automatic voice activation mode. In
this mode, the sensitivity of voice activation is determined automatically by
the system. The input level is adaptive, adjusting itself automatically to the
input signal. For most applications this should be the setting used. This flag
and the DVCLIENTCONFIG_MANUALVOICEACTIVATED flag are
mutually exclusive.

DVCLIENTCONFIG_ECHOSUPPRESSION
Activate the echo suppression mode. This mode reduces echo introduced by
configurations with external speakers and extremely sensitive microphones.
While remote player's voices are being played back on the local speaker, the
microphone is automatically muted. If the local player is transmitting, then the
playback of remote player voices is buffered until local input stops. After local
input stops, playback resumes.

DVCLIENTCONFIG_MANUALVOICEACTIVATED
Place the transmission control system into manual voice activation mode. In
this mode, transmission of voice begins when the input level passes the level

IDH_CONST_DVCLIENTCONFIGENUM_dplay_vb

in.doc – page 525

specified by the lThreshold member of the DVCLIENTCONFIG type.
When input levels drop below the specified level, transmission stops. This flag
is mutually exclusive with the
DVCLIENTCONFIG_AUTOVOICEACTIVATED flag.

DVCLIENTCONFIG_MUTEGLOBAL
Mute playback of the main sound buffer. Only sound buffers created through
calls to DirectPlayVoiceClient8.Create3DSoundBuffer will be heard.

DVCLIENTCONFIG_PLAYBACKMUTE
Mute the playback of all DirectPlay Voice output and stop playback. This also
stops decompression of incoming packets so CPU usage is reduced. Packets
are effectively discarded while this flag is specified.

DVCLIENTCONFIG_RECORDMUTE
Mute the input from the microphone and stop recording. This also stops
compression so CPU usage is reduced.

In addition to the preceding flags, the method of transmission is controlled by setting
only one of the following flags or by not specifying either flag.

If you do not specify either DVCLIENTCONFIG_MANUALVOICEACTIVATED
or DVCLIENTCONFIG_AUTOVOICEACTIVATED, the system will operate in
push-to-talk mode. In push-to-talk mode, as long as there is a valid target specified
the input from the microphone will be transmitted. Voice transmission stops when a
NULL target is set or the current target leaves the session or is destroyed.

CONST_DVERR
#Contains the error values for Microsoft® DirectPlay® Voice. For more information,
see Error Codes.

CONST_DVFLAGS
#Used by various Microsoft® DirectPlay® voice methods.

Enum CONST_DVFLAGS
 DVFLAGS_ALLOWBACK = 16 (&H10)
 DVFLAGS_NOHOSTMIGRATE = 8
 DVFLAGS_QUERYONLY = 2
 DVFLAGS_SYNC = 1
End Enum

Constants

DVFLAGS_ALLOWBACK

IDH_CONST_DVERR_dplay_vb
IDH_CONST_DVFLAGS_dplay_vb

in.doc – page 526

Enable the Back button on the wizard's Welcome page. If the user clicks the
Back button on the Welcome page, the wizard exits, and CheckAudioSetup
returns DVERR_USERBACK.

DVFLAGS_NOHOSTMIGRATE
The voice host will not migrate regardless of session and transport settings.
Use this flag when you want to shut down the voice session completely.

DVFLAGS_QUERYONLY
Audio setup is not run. Instead, the method checks the registry to see if the
devices have been tested. If the devices have not been tested, the method
returns DVERR_RUNSETUP. If the devices have been tested, the method
returns DV_FULLDUPLEX if the devices support full duplex audio, or
DV_HALFDUPLEX if the devices do not support full duplex audio.

DVFLAGS_SYNC
Do not return until the operation is completed.

CONST_DVMESSAGE
#Not used.

Enum CONST_DVMESSAGE
 DVID_ALLPLAYERS = 0
 DVID_NOTARGET = -1 (&HFFFFFFFF)
 DVID_REMAINING = -1 (&HFFFFFFFF)
 DVID_SERVERPLAYER = 1
 DVID_SYS = 0
 DVMSGID_BASE = 0
 DVMSGID_CONNECTRESULT = 8
 DVMSGID_CREATEVOICEPLAYER = 1
 DVMSGID_DELETEVOICEPLAYER = 2
 DVMSGID_DISCONNECTRESULT = 9
 DVMSGID_HOSTMIGRATED = 14
 DVMSGID_INPUTLEVEL = 12
 DVMSGID_MAXBASE = 16 (&H10)
 DVMSGID_MINBASE = 1
 DVMSGID_OUTPUTLEVEL = 13
 DVMSGID_PLAYEROUTPUTLEVEL = 16 (&H10)
 DVMSGID_PLAYERVOICESTART = 4
 DVMSGID_PLAYERVOICESTOP = 5
 DVMSGID_RECORDSTART = 6
 DVMSGID_RECORDSTOP = 7
 DVMSGID_SESSIONLOST = 3
 DVMSGID_SETTARGET = 15
 DVMSGID_STARTSESSIONRESULT = 10
 DVMSGID_STOPSESSIONRESULT = 11

IDH_CONST_DVMESSAGE_dplay_vb

in.doc – page 527

End Enum

CONST_DVNOTIFY
#Used by the DVCLIENTCONFIG type.

Enum CONST_DVNOTIFY
 DVNOTIFYPERIOD_MINPERIOD = 20 (&H14)
End Enum

Constants

DVNOTIFYPERIOD_MINPERIOD
Specifies the minimum period between messages that is allowed.

CONST_DVPLAYBACKVOLUME
#Used by the DVCLIENTCONFIG type.

Enum CONST_DVPLAYBACKVOLUME
 DVPLAYBACKVOLUME_DEFAULT = 0
End Enum

Constants

CONST_DVPLAYBACKVOLUME
Use a default value that is appropriate for most situations.

CONST_DVSESSION
#Used in the lFlags member of the DVSESSIONDESC type to control session
behavior.

Enum CONST_DVSESSION
 DVSESSION_NOHOSTMIGRATION = 1
 DVSESSION_SERVERCONTROLTARGET = 2
End Enum

Constants

DVSESSION_NOHOSTMIGRATION
The voice host will not migrate regardless of the transport settings. If this flag is
not specified, the voice host will migrate if the transport supports it.

DVSESSION_SERVERCONTROLTARGET

IDH_CONST_DVNOTIFY_dplay_vb
IDH_CONST_DVPLAYBACKVOLUME_dplay_vb
IDH_CONST_DVSESSION_dplay_vb

in.doc – page 528

Only the server player can control the clients' speech target. If the server player
does not specify this flag, only the clients can control their speech target. This
flag can be specified only in multicast and mixing sessions.

CONST_DVSESSIONTYPE
#Used in the lSessionType member of the DVSESSIONDESC type to specify the
type of Microsoft® DirectPlay® Voice session to run. The DVSESSIONTYPE_PEER
flag is not available in client/server sessions; all other flags are valid for all session
types.

Type CONST_DVSESSIONTYPE
 DVSESSIONTYPE_ECHO = 4
 DVSESSIONTYPE_MIXING = 2
 DVSESSIONTYPE_MULTICAST = 3
 DVSESSIONTYPE_PEER = 1
End Type

Constants

DVSESSIONTYPE_ECHO
Voice messages will be echoed back to the player.

DVSESSIONTYPE_MIXING
The voice session will use a mixing server. In this mode of operation, all voice
messages are sent to the server, which mixes them and then forwards a single,
premixed stream to each client. This reduces the bandwidth and CPU usage on
clients significantly at the cost of increased bandwidth and CPU usage on the
server.

DVSESSIONTYPE_MULTICAST
Voice messages will be routed through the session host. This will save bandwidth
on the clients at the expense of bandwidth usage on the server. This option is
useful only if the session host has a high-speed connection.

DVSESSIONTYPE_PEER
Voice messages will be sent directly between players.

CONST_DVSOUNDEFFECT
#Used in the lFlags member of the DVSOUNDDEVICECONFIG type to control
sound behavior.

Enum CONST_DVSOUNDEFFECT
 DVSOUNDCONFIG_AUTOSELECT = 2
 DVSOUNDCONFIG_HALFDUPLEX = 4
 DVSOUNDCONFIG_NOFOCUS = 536870912 (&H20000000)
 DVSOUNDCONFIG_NORECVOLAVAILABLE = 16 (&H10)

IDH_CONST_DVSESSIONTYPE_dplay_vb
IDH_CONST_DVSOUNDEFFECT_dplay_vb

in.doc – page 529

 DVSOUNDCONFIG_NORMALMODE = 1
 DVSOUNDCONFIG_SETCONVERSIONQUALITY = 8
 DVSOUNDCONFIG_STRICTFOCUS = 1073741824 (&H40000000)
End Enum

Constants

DVSOUNDCONFIG_AUTOSELECT
Tell Microsoft® DirectPlay® Voice to attempt to automatically select (or unmute)
the microphone line in the mixer for the specified recording device.

DVSOUNDCONFIG_HALFDUPLEX
Tell DirectPlay Voice to initialize itself in half-duplex mode. In half-duplex
mode no recording takes place. If the initialization of the sound system fails in
full-duplex mode, this flag will be set by the system.

DVSOUNDCONFIG_NOFOCUS
Not enabled for this release.

DVSOUNDCONFIG_NORECVOLAVAILABLE
Indicate that the recording volume cannot be modified.

DVSOUNDCONFIG_NORMALMODE
Tell DirectPlay Voice to use Microsoft DirectSound® Normal Mode when
initializing the DirectSound object. If this flag is not specified the DirectSound
object is initialized with DirectSound Priority Mode. See documentation for
DirectSound8.SetCooperativeLevel for more information.

DVSOUNDCONFIG_SETCONVERSIONQUALITY
Enable better quality audio at the expense of higher CPU usage.

DVSOUNDCONFIG_STRICTFOCUS
Not enabled for this release.

CONST_DVTHRESHOLD
#Used in the lThreshold member of the DVCLIENTCONFIG type to specify the
input level used to trigger voice transmission if the
DVCLIENTCONFIG_MANUALVOICEACTIVATED flag is specified in the lFlags
member. When the flag is specified, this value can be set to anywhere in the range of
DVTHRESHOLD_MIN to DVTHRESHOLD_MAX. Additionally,
DVTHRESHOLD_DEFAULT can be set to use a default value.

If DVCLIENTCONFIG_MANUALVOICEACTIVATED or
DVCLIENTCONFIG_AUTOVOICEACTIVATED is not specified in the lFlags
member of this structure (indicating push-to-talk mode), this value must be set to
DVTHRESHOLD_UNUSED.

Enum CONST_DVTHRESHOLD
 DVTHRESHOLD_DEFAULT = -1 (&HFFFFFFFF)
 DVTHRESHOLD_MAX = 99 (&H63)

IDH_CONST_DVTHRESHOLD_dplay_vb

in.doc – page 530

 DVTHRESHOLD_MIN = 0
 DVTHRESHOLD_UNUSED = -2 (&HFFFFFFFE)
End Enum

Constants

DVTHRESHOLD_DEFAULT
Default threshold value.

DVTHRESHOLD_MAX
Maximum threshold value.

DVTHRESHOLD_MIN
Minimum threshold value.

DVTHRESHOLD_UNUSED
Must be set for push-to-talk mode.

Error Codes
This table lists the error codes that can be returned by Microsoft® DirectPlay®
methods and functions. Errors are represented by negative values and cannot be
combined.

For a list of the errors each method or function can raise, see the individual
descriptions. Lists of error codes in the documentation are necessarily incomplete. For
example, any DirectPlay method can return DPERR_OUTOFMEMORY even though
the error code is not explicitly listed as a possible return value in the documentation
for that method.

DPNERR_ABORTED
The operation was canceled before it could be completed.

DPNERR_ADDRESSING
The address specified is invalid.

DPNERR_ALREADYCONNECTED
The object is already connected to the session.

DPNERR_ALREADYCLOSING
An attempt to call Close on a session has been made more than once.

DPNERR_ALREADYDISCONNECTING
The client is already disconnecting from the session.

DPNERR_ALREADYINITIALIZED
The object has already been initialized.

DPNERR_ALREADYREGISTERED
A message handler has already been registered. You must unregister the current
handler before registering a new one.

DPNERR_BUFFERTOOSMALL

in.doc – page 531

The supplied buffer is not large enough to contain the requested data.

DPNERR_CANNOTCANCEL
The operation could not be canceled.

DPNERR_CANTCREATEGROUP
A new group cannot be created.

DPNERR_CANTCREATEPLAYER
A new player cannot be created.

DPNERR_CANTLAUNCHAPPLICATION
The lobby cannot launch the specified application.

DPNERR_CONNECTING
The method is in the process of connecting to the network.

DPNERR_CONNECTIONLOST
The service provider connection was reset while data was being sent.

DPNERR_DOESNOTEXIST
Requested element is not part of the address.

DPNERR_EXCEPTION
An exception occurred when processing the request.

DPNERR_GENERIC
An undefined error condition occurred.

DPNERR_GROUPNOTEMPTY
The specified group is not empty.

DPNERR_HOSTING

DPNERR_HOSTREJECTEDCONNECTION
The connection request was rejected. Check the ReplyData member of the
DPNMSG_CONNECT_COMPLETE type for details.

DPNERR_HOSTTERMINATEDSESSION
The host terminated the session.

DPNERR_INCOMPLETEADDRESS
The address specified is not complete.

DPNERR_INVALIDADDRESSFORMAT
The address format is invalid.

DPNERR_INVALIDAPPLICATION
The GUID supplied for the application is invalid.

DPNERR_INVALIDCOMMAND
The command specified is invalid.

DPNERR_INVALIDFLAGS
The flags passed to this method are invalid.

DPNERR_INVALIDGROUP
The group ID is not recognized as a valid group ID for this game session.

DPNERR_INVALIDHANDLE
The handle specified is invalid.

in.doc – page 532

DPNERR_INVALIDINSTANCE
The GUID for the application instance is invalid.

DPNERR_INVALIDINTERFACE
The interface parameter is invalid. This value will be returned in a connect
request if the connecting player was not a client in a client/server game or a peer
in a peer-to-peer game.

DPNERR_INVALIDLOCALADDRESS
The address for the local computer or adapter is invalid.

DPNERR_INVALIDOBJECT
The DirectPlay object pointer is invalid.

DPNERR_INVALIDPARAM
One or more of the parameters passed to the method are invalid.

DPNERR_INVALIDPASSWORD
An invalid password was supplied when attempting to join a session that requires
a password.

DPNERR_INVALIDPLAYER
The player ID is not recognized as a valid player ID for this game session.

DPNERR_INVALIDPOINTER
Pointer specified as a parameter is invalid.

DPNERR_INVALIDPRIORITY
The specified priority is not within the range of allowed priorities, which is
inclusively from 0 through 65535.

DPNERR_INVALIDSTRING
String specified as a parameter is invalid.

DPNERR_INVALIDREMOTEADDRESS
The specified remote address is invalid.

DPNERR_INVALIDURL
Specified string is not a valid DirectPlay URL.

DPNERR_INVALIDVERSION
There was an attempt to connect to an invalid version of DirectPlay.

DPNERR_NOCAPS
The communication link that DirectPlay is attempting to use is not capable of this
function.

DPNERR_NOCONNECTION
No communication link was established.

DPNERR_NOHOSTPLAYER
There is currently no player acting as the host of the session.

DPNERR_NOINTERFACE
The interface is not supported.

DPNERR_NORESPONSE
There was no response from the specified target.

DPNERR_NOTALLOWED
The object is read-only; this function is not allowed on this object.

in.doc – page 533

DPNERR_NOTHOST
The client attempted to connect to a nonhost computer. Additionally, this error
value may be returned by a nonhost that tried to set the application description.

DPNERR_OUTOFMEMORY
There is insufficient memory to perform the requested operation.

DPNERR_PENDING
Not an error, this return indicates that an asynchronous operation has reached the
point where it is successfully queued.

DPNERR_PLAYERLOST
A player has lost the connection to the session.

DPNERR_SENDTOOLARGE
The buffer was too large.

DPNERR_SESSIONFULL
The request to connect to the host or server failed because the maximum number
of players allotted for the session has been reached.

DPNERR_TIMEDOUT
The operation could not complete because it has timed out.

DPNERR_UNINITIALIZED
The requested object has not been initialized.

DPNERR_UNSUPPORTED
The function or feature is not available in this implementation or on this service
provider.

DPNERR_USERCANCEL
The user canceled the operation.

DV_OK
The request completed successfully.

DV_FULLDUPLEX
The sound card is capable of full-duplex operation.

DV_HALFDUPLEX
The sound card can be run only in half-duplex mode.

DVERR_BUFFERTOOSMALL
The supplied buffer is not large enough to contain the requested data.

DVERR_EXCEPTION
An exception occurred when processing the request.

DVERR_GENERIC
An undefined error condition occurred.

DVERR_INVALIDFLAGS
The flags passed to this method are invalid.

DVERR_INVALIDOBJECT
The DirectPlay object pointer is invalid.

DVERR_INVALIDPARAM
One or more of the parameters passed to the method are invalid.

in.doc – page 534

DVERR_INVALIDPLAYER
The player ID is not recognized as a valid player ID for this game session.

DVERR_INVALIDGROUP
The group ID is not recognized as a valid group ID for this game session.

DVERR_INVALIDHANDLE
The handle specified is invalid.

DVERR_OUTOFMEMORY
There is insufficient memory to perform the requested operation.

DVERR_PENDING
Not an error, this return indicates that an asynchronous operation has reached the
point where it is successfully queued.

DVERR_NOTSUPPORTED
The operation is not supported.

DVERR_NOINTERFACE
The specified interface is not supported. This error could indicate that you are
using an earlier version of DirectX that does not expose the interface.

DVERR_SESSIONLOST
The transport has lost the connection to the session.

DVERR_NOVOICESESSION
The session specified is not a voice session.

DVERR_CONNECTIONLOST
The connection to the voice session has been lost.

DVERR_NOTINITIALIZED
The DirectPlayVoiceClient8.Initialize or DirectPlayVoiceServer8.Initialize
method must be called before calling this method.

DVERR_CONNECTED
The DirectPlay Voice object is connected.

DVERR_NOTCONNECTED
The DirectPlay Voice object is not connected.

DVERR_CONNECTABORTING
The connection is being disconnected.

DVERR_NOTALLOWED
The object does not have the permission to perform this operation.

DVERR_INVALIDTARGET
The specified target is not a valid player ID or group ID for this voice session.

DVERR_TRANSPORTNOTHOST
The object is not the host of the voice session.

DVERR_COMPRESSIONNOTSUPPORTED
The specified compression type is not supported on the local computer.

DVERR_ALREADYPENDING
An asynchronous call of this type is already pending.

DVERR_ALREADYINITIALIZED
The object has already been initialized.

in.doc – page 535

DVERR_SOUNDINITFAILURE
A failure was encountered initializing the sound card.

DVERR_TIMEOUT
The operation could not be performed in the specified time.

DVERR_CONNECTABORTED
The connect operation was canceled before it could be completed.

DVERR_NO3DSOUND
The local computer does not support 3-D sound.

DVERR_ALREADYBUFFERED
There is already a user buffer for the specified ID.

DVERR_NOTBUFFERED
There is no user buffer for the specified ID.

DVERR_HOSTING
The object is the host of the session.

DVERR_NOTHOSTING
The object is not the host of the session.

DVERR_INVALIDDEVICE
The specified device is invalid.

DVERR_RECORDSYSTEMERROR
An error in the recording system occurred.

DVERR_PLAYBACKSYSTEMERROR
An error in the playback system occurred.

DVERR_SENDERROR
An error occurred while sending data.

DVERR_USERCANCEL
The user canceled the operation.

DVERR_UNKNOWN
An unknown error occurred.

DVERR_RUNSETUP
The specified audio configuration has not been tested. Call the
DirectPlayVoiceTest8.CheckAudioSetup method.

DVERR_INCOMPATIBLEVERSION
The client connected to a voice session that is incompatible with the host.

DVERR_INITIALIZED
The Initialize method failed because the object has already been initialized.

DVERR_INVALIDPOINTER
The pointer specified is invalid.

DVERR_NOTRANSPORT
The specified object is not a valid transport.

DVERR_NOCALLBACK
This operation cannot be performed because no callback function was specified.

DVERR_TRANSPORTNOTINIT

in.doc – page 536

The specified transport is not yet initialized.

DVERR_TRANSPORTNOSESSION
The specified transport is valid but is not connected/hosting.

DVERR_TRANSPORTNOPLAYER
The specified transport is connected/hosting but no local player exists.

	Roadmap
	What's New in DirectPlay
	Introduction To DirectPlay
	Creating and Managing Sessions
	Peer-to-Peer Topology
	Client/Server Topology

	DirectPlay Network Communication
	Notes
	DirectPlay Transport Protocol
	DirectPlay Addresses

	Communicating with DirectPlay Objects
	DirectPlay Lobby Support
	DirectPlay Voice Communication

	Understanding DirectPlay
	Peer-to-Peer Sessions
	Initiating a Peer-to-Peer Session
	Selecting a Service Provider for a Peer-to-Peer Session
	Selecting a Host for a Peer-to-Peer Session
	Connecting to a Peer-to-Peer Session
	Managing a Peer-to-Peer Session
	Host Migration
	Normal Peer-to-Peer Game Play
	Using Groups

	Leaving a Peer-to-Peer Session
	Terminating a Peer-to-Peer Session

	Client/Server Sessions
	Initiating a Client/Server Session
	The Server Application
	The Client Application

	Selecting a Service Provider for a Client
	Selecting a Client/Server Host
	Connecting to a Client/Server Session
	The Server Application
	The Client Application

	Managing a Client/Server Session
	Normal Client/Server Game Play
	The Server Application
	The Client Application
	Using Groups

	Leaving a Client/Server Session
	Terminating a Client/Server Session

	DirectPlay Lobbies
	DirectPlay Lobby Architecture
	Lobby Servers
	Lobby Clients
	Communicating with a Lobbyable Game
	Launching an Application
	After Launching an Application

	Lobbyable Applications
	Launching a Lobbyable Application

	Basic Networking
	DirectPlay Service Providers
	DirectPlay Addressing
	DirectPlay URLs
	Data Strings
	Data Values
	Application Instance
	Baud
	Device
	Flow Control
	Host Name
	Parity
	Phone Number
	Port
	Program
	Provider
	Stop Bits

	Data Value Summary
	Host Addresses
	Device Addresses

	Sample URLs
	Local IP Address
	Local IPX Address
	Local Serial Address
	Remote Modem Address

	Handling Addresses
	DirectPlay Address Objects

	DirectPlay Protocol
	Basic Message Handling
	Message Categories
	Reliable and Unreliable Messaging
	Sequential and Non-Sequential Messaging
	Choosing the Best Message Category

	Congestion Control
	Message Throttling
	Connection Checking

	Send Prioritization
	Send Timeouts
	Disconnection

	Monitoring Messaging Statistics
	Monitoring the Pending Message Queues

	Optimizing Network Usage
	Using the DirectX Protocol in an Application

	DirectPlay Callback Functions and Multithreading Issues
	DirectPlay Networking Callbacks
	Synchronization Issues
	Worker Threads
	Multithreading Performance Issues and Asynchronous Operations

	Understanding DirectPlay Voice
	DirectPlay Voice Networking
	DirectPlay Voice Topologies
	Peer-to-Peer Voice Topology
	Forwarding Server Voice Topology
	Mixing Server Sessions

	Voice Host Migration
	Audio Device Testing
	Voice Codecs
	Automatic Gain Control
	Transmission Control
	Voice Activation
	Push to Talk

	Capture Focus
	Jitter Buffers
	Working Set Guidelines

	Using DirectPlay
	Using DirectPlay Enumerations
	Implementing a DirectPlay Enumeration
	Enumerating Hosts

	Using Player Context Values
	Defining a Player Context Value
	Managing Player Context Data

	Implementing a Lobby Client
	Initializing a Lobby Client
	Launching a Lobbied Application
	Implementing a Lobby Client Message Handler
	DPL_MSGID_CONNECT
	DPL_MSGID_CONNECTION_SETTINGS
	DPL_MSGID_DISCONNECT
	DPL_MSGID_RECEIVE
	DPL_MSGID_SESSION_STATUS
	DirectPlay8LobbyEvent.Connect
	DirectPlay8LobbyEvent.ConnectionSettings
	DirectPlay8LobbyEvent.Disconnect
	DirectPlay8LobbyEvent.Receive
	DirectPlay8LobbyEvent.SessionStatus
	A Sample Lobby Client Message Handler

	Communicating with a Lobbied Application
	Closing Down a Lobby Client

	Implementing a Lobbyable Application
	Registering a Lobbyable Application
	Handling Lobby Launching
	Implementing a Lobbied Application Callback Message Handler
	DPL_MSGID_CONNECT
	DPL_MSGID_CONNECTION_SETTINGS
	DPL_MSGID_DISCONNECT
	DPL_MSGID_RECEIVE
	DirectPlay8LobbyEvent.Connect
	DirectPlay8LobbyEvent.ConnectionSettings
	DirectPlay8LobbyEvent.Disconnect
	DirectPlay8LobbyEvent.Receive
	DirectPlay8LobbyEvent.SessionStatus
	A Sample Lobbied Application Message Handler

	Communicating with a Lobby Client
	Closing Down a Lobbied Application

	Monitoring DirectPlay Network Traffic with Netmon
	How Netmon Works With DirectPlay
	Configuring Netmon for DirectPlay
	Capturing DirectPlay Network Traffic
	Tips for Using Netmon with DirectPlay

	Implementing a Callback Function in DirectPlay and DirectPlay Voice
	Callback Function Structure
	Registering Your Callback

	Implementing a DirectPlay Networking Callback Using Critical Section Objects
	Using the DirectPlay DPNSVR Application
	How to Use DPNSVR

	Implementing Capture Focus

	DirectPlay C++ Samples
	AddressOverride
	ChatPeer
	DataRelay
	LobbyClient
	Maze
	SimpleClientServer
	SimplePeer
	StagedPeer
	VoiceClientServer
	VoiceConnect
	VoiceGroup
	VoicePosition

	DirectPlay Visual Basic Samples
	Chat
	Conferencer
	DataRelay
	DXVB Messenger
	Memory
	SimpleClient
	SimplePeer
	SimpleServer
	SimpleVoice
	StagedPeer
	VoiceGroup

	DirectPlay C/C++ Reference
	Interfaces
	Functions
	Callback Functions
	System Messages
	DirectPlay Server Messages
	DirectPlay Client Messages
	DirectPlay Lobby Messages
	DirectPlay Voice Messages

	Structures
	Return Values
	Success Codes
	Error Codes

	DirectPlay Visual Basic Reference
	Classes
	Functions
	Types
	Enumerations
	Error Codes

