ClassAction

Gasmi Salim

ClassAction

] COLLABORATORS
TITLE :
ClassAction
ACTION NAME DATE SIGNATURE
WRITTEN BY Gasmi Salim August 22, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

ClassAction iii

Contents

1 ClassAction 1
1.1 ClassAction 2.8 Guide e 1
1.2 Whatis ClassACtion 7. i e e e e |
1.3 moreabout ClasSACHION o e e 2
1.4 System Requirements e e 2
1.5 Configuration of ClassSACtion e e 3
1.6 ClassAction Prefs o . e 7
1.7 Usingthelearn function. L L 7
1.8 WhatisaClass e e 8
1.9 Creatinganew Class e e 9
1.10 Defining anew action ottt it e e e e e e e e e e 11
I.11 CLImode o o e e 12
1.12 WBmode e 13
LI3 NOCLImMOde ot e e e e e e e e e e e e e 13
.14 ARexxmode e e 13
115 Arguments e e 13
1.16 Commands L e e 14
1.17 Future IMprovements ot it e e e e e e e e e e e e e e 16
118 AbOUt 16
1.19 The Author 17
1.20 Using ClassACHON o v vttt e e e e e e e e e e e 17
1.21 Technicals Infos L 18
1.22 Installation e e e 19
1.23 REQISIET . . . o o o o o e e e e e e e e 19
1.24 Legal words L e e 20
125 HIStOTY . . o o o o e e e e e e e 20
1.26 The Arexx Commands e e e e e 25
1.27 What should you do afterinstall 27
1.28 Message for Philippe THOMAS e e e e e e e e 27
1.29 Known Bugs e 28

ClassAction

1/28

Chapter 1

ClassAction

1.1 ClassAction 2.8 Guide

ClassAction

Version 2.8

What is ClassAction
System Requirements

Installation
After Install

Using ClassAction

Configuration
ClassAction Prefs

The Arexx commands
Future Improvements

History & Features
Registration

Licence The Author

Read this first
What you need

How to install ClassAction
Installation Part II

How to use this tool

Changing the ToolTypes
Configuring classes and actions

The ARexx port and commands
What should be added in the future
Since the beginning...

Why and how to register

Greetings Known Bugs

1.2 What is ClassAction ?

ClassAction is a little tool which will simplify the life of

all hard disk users.

When you own a hard disk, you have always a bunch of files

executables, modules,

pictures, sources, animations, sounds...

ClassAction determine for you the kind of a selected file and
displays a list of actions to perform on the file.

For example, when you select a GIF picture, it will be recognized

ClassAction 2/28

1.3

1.4

by ClassAction as a GIF Class file, and a list of actions
will be shown with Actions like ’'Display’ or ’'Edit’.

ClassAction is highly configurable, you can add your own classes
and actions.
Actions use external programs, so you can use your prefered

Gif viewer to show your Gif Files (or anything else).

ClassAction has an AppIcon, an Arexx port, is localized and is
a commodity.

ClassAction uses xfdmaster.library to auto decrunch crunched files.
With this feature, even a crunched class can be detected.

ClassAction uses very few memory and CPU time.

If you take time to configure ClassAction, you can do everything
with it !!! It’s an easy way to handle files.

Before deciding to erase it, just try it !!tti!

If you want to know more about ClassAction use More

more about ClassAction

ClassAction and ClassActionPrefs are (C) 1994-95 by Gasmi Salim

This package is placed as ShareWare. Feel free to use it !!!

and to spread it as long as you don’t modify any file of the archive.
BUT if you use it regulary you must register !!!

PD Distributors are allowed to include the ClassAction Package

into their collection as long as they let me know that they have

included it.

This is release 2.8 of ClassAction.
If you like and use it you MUST Register

I Hope you will find this tool useful.
(at least, I find it useful :])

For Technicals infos about ClassAction use Technicals Infos

System Requirements

To use ClassAction, you need the following stuff

o Amiga 0OS 3.0 or greater
(May be an 0S 2.0 version will be released)

ClassAction

3/28

1.5

o a Hard Disk
(ClassAction is useless without a hard disk)

That’s all folks !!!

Configuration of ClassAction

ClassAction interface and features are configurables via ToolTypes.

To change a ToolType value, Jjust select the icon of ClassAction
and select the item ’"Information’ in the menu ’Icons’ from the
Workbench.

This is the list of all ToolTypes

Nota : The default Value of each ToolType described is used when the

associated ToolType is not found.

DONOTWAIT

DON’T remove this ToolType, it is needed if ClassAction is
loaded from the WBStartup.

CX_PRIORITY
This is the Commodity priority for ClassAction.

Default Value is : O

CX_HOTKEY
This the the Hotkey to Show/Hide ClassAction.
if you use it while ClassAction is hidden or AppIconifyed
the window will popup, if you use it while window is poped

ClassAction will be hidden.

Default Value is : LALT C (LeftAlt + Shift + c¢)

ClassAction 4/28

When you use some programs such MagicMenu (or others) they
can badly interfere with REQs command while in the AppIcon
mode , in fact the system crashes...

if you set this tooltype to YES (i.e REQBUG=YES)
ClassAction will transforme the REQV,REQF,REQD commands
into a REQT one if the action is lanched from the AppIcon.

Default value is : NO

APPSTART
Set this ToolType to YES,NO or HIDE
NO : ClassAction will start with a window
YES : ClassAction will start AppIconifyed

HIDE : ClassAction will start hidden

Default Value is : NO

STARTDIR

This ToolType is the directory you want to be displayed the
first time you run ClassAction.

Default Value is : Current directory

WBEONT

Set this ToolType to YES (i.e. WBFONT=YES) if you want
ClassAction use the current Workbench Font.

If you set it to YES, the real Font Width must be lower than 15,
if not ClassAction will use the topaz 8 font.

If you set this ToolType to NO, ClassAction will use topaz 8.

Default Value is : YES

DECRUNCH

If you set this ToolType to yes (i.e. DECRUNCH=YES), ClassAction
will try to decrunch crunched files using xfdmaster library.

It is needed if you want to recognize crunched files.

Of course if you do so, the file will be pre-loaded in memory
and a buffer will be allocated to the decrunched data.

Thus, it consommes memory (around 2.5 x the file size).

So, i1f you don’t have a lot of memory you should disable this
feature.

ClassAction

5/28

Default Value is : NO

HEIGHT

This ToolType is the required window height of ClassAction.

The minimum height depends of your WB font. If you supply a too
small height, ClassAction will use the smallest height possible.

Default Value is : 0 (Force to use the smallest window possible)

WINX and WINY

Those toolTypes are the default coordinates of the window.

Default Values are : 10

ICONX and ICONY
Those ToolTypes are the coordinates of the AppIcon.
But note that it’s only a request, if the selected coordinates
are already used by a another icon the workbench will ignore

them and place the AppIcon as close as possible from these
coordinates.

Default Values are : No icon position

PUBSCREEN

If you set this ToolType to YES (PUBSCREEN=YES)
Then ClassAction window will be poped on the frontmost
public screen

Default Value is : NO

ICONNAME

This ToolType is the AppIcon Text.
For example, if you specify ICONNAME=Drop, the text displayed

below the AppIcon will be : ’'Drop’.
The text can be empty (i.e. ICONNAME=), so no text appears under

the AppIcon.

ClassAction 6/28

Default Value is : ClassAction

ICONFILE

This ToolType is the AppIcon file.

Thus you can select your own ApplIcon for ClassAction.

If you set this ToolType to an icon file, ClassAction will use
it as the AppIcon image.

Nota : Don’t supply the .info extension for the file name.
Example : ICONFILE=Sys:icons/head
will use the icon head.info from directiry Sys:Icons/

as AppIcon.

If ClassAction fail to load your Icon file, it will use the
default one (ClassAction.info).

Default Value is : "" (Use the Default AppIcon)

CLISIZE
It is the size of the CLI output window, when using SystemTags() .
The syntax is : DEVICE:TopX/TopY/Width/Height/Title
Thus you can select another device than CON: for the CLI’s
or define a new window position and dimension.
WARNING
If you set this ToolType to a weird value, ClassAction will not
launch CLI.

DON’T modify it unless you know what you are doing.

+* NEVER x+* add device commands such AUTO, CLOSE, WAIT
to this string, ClassAction will do it for you.

«% NEVER %% put spaces into the title.

In Version 2.0, a similar ToolType OUTPUT was defined
it is no more needed nor used.

Default Value is
CON:0/0/640/100/ClassAction_Output_Window

DRIVE1l to DRIVELl1l

ClassAction 7/28

Set those ToolTypes to a valid path so they will be shown
in the buttons of the Requester.

It is useful to quickly go to a directory.

The syntax is

DRIVEx=<Button Text>,<Path>

i.e. DRIVE9=Jpeg,dhO:gfx/pictures/jpeg

This way the button text #9 will be ’Jpeg’, but the path is set
to dhO:gfx/pictures/jpeg.

You can also only provide the <Button Text> without the <Path>
i.e. DRIVE3=dh0:1ibs

In this case, the button text will be set to the same text than

the path. But don’t use too long texts, they will not be
shown in the small buttons.

Default Value is : "" (none)

1.6 ClassAction Prefs

Defining new classes and actions is the heart of the program.
To do so, you must use ClassActionPrefs program.

Using ClassActionPrefs should be easy... so let’s go !!

The window is divided into two parts : Classes & Actions.

First select a class, the associated actions will be displayed
on the actions part.

To add a class or delete a class, simply click on the associated
buttons.

It’s the same concept for the actions...

1. What is a Class
2. Creating a new Class
3. Defining a new action

4. The learn function

1.7 Using the learn function

ClassAction 8/28

1.8

The learn function is provided to help you defining new classes.
When you define a new class, you may have to define offsets for it,
and it may be long and boring to edit files to guess which offsets
could define this new class.

This is why the marvellous function learn has been made !

To use it, just follow this procedure

1 : define your class as normal, fill name and classname
2 : click on the ’learn’ button.
3 : Select with the provided requester as many files you want

as long as they belong to the class you want to define.
More you select files, better will be the result.
ClassAction will try to find out the offsets definition.
(to select multiple files, use the shitt key.)
4: After analysis, you have a window with found offsets.
5: modify them by hand if needed.
6: click on ’'Accept’ to use the offsets for your class.
or on ’'Cancel’ to cancel.
WARNING
If you want the learn function works you must be sure that

* ALL CHOOSEN FILES BELONG TO THE SAME CLASS.

* ALL CHOOSEN FILES ARE NOT CRUNCHED.

That’s all !!! Easy no ?

What is a Class

A class is a familly of files. For example C files can be
considered as a Class, let’s call it C Class.

With ClassActionPrefs you can define as many classes as you
want, as long as you explain how to recognize it.

To explain how to recognize a Class, there are two methods
the match name and the file contents.

Matchname attribute is used to recognize a file regarding
it’s name.
Offsets attributes are used to recognize a file with it’s contents.

ClassAction

9/28

1.9

There are two Built-in Classes that you cannot remove, they are
displayed in white in the Classes ListView.

The first is called "Unknown Class" but you can rename it.

This Class contains all the files that ClassAction cannot recognize.

The second one is called "Generic Actions" and you can’t rename

it,

this class contains Actions that will be displayed in ALL

other classes...

Interest : if you want to have an action ’'Copy’ for all the

classes, you can create it for each class you define, but it’s
looooong and boring.

A better way to do that is to create this action in the
"Generic Action" Class, so ’'Copy’ will be displayed for all the
classes.

The generic actions are displayed in white in the ClassAction
action listview and are only visible in the ClassAction Window.
They will not be displayed when ClassAction is an AppIcon,

or via Arexx command Load.

Creating a new Class

Just Click on the "add’ button on the classes part to add a class.

A class has 3 properties

- a name
- a matchname
- offsets

The name is simply the class name, it’s up to you to choose it.

WARNING : a class name must be unique.

The matchname is any regular AmigaDos expression, like
#?2.c , mod.#? , #?2.c|#?.h , #?blalc] , #?toto?

(read the AmigaDOS manual for all wildcards)
WARNING : Don’t use wilcard x but use #? instead.

The matchname is not case sensitive, thus toto.C match with #7?2.

If you define a class using a matchname, you must be sure that

the definition is always good.

Example : if you define the GIF class with the matchname #7?.gif
all files with .gif will be recognized as GIF files.

But are you sure that ALL .gif files are GIFs, or

ClassAction

10/28

that all your GIFs have the .gif extension ?
So, you should use matchname only in two situations

— the matchname is a bijection of the class
(ex: #?.info is a good enough matchname for Icon class)

— you don’t have the choice
(ex: how to recognize a C source, excepted with #?.c)

o Otherwise, you should use Offsets.

An offset is a place in a file where we should find something
to recognize it.

For example, GIF pictures always begin with string ’'GIF’ at the
offset 0.

There are three syntaxes for defining offsets

Syntax #1 : Offset,HexString

Offset is a DECIMAL number holding the Offset.
HexString is an HEX string that should be found at that offset.

Example 1 : 0,4f4da means that the file must begin with bytes
$4f and $4a at the position 0

Example 2 : 9,448b3c means that at byte #9, we should find
$44 $8b $3c

Syntax #2 : Offset,’String’

Offset is a DECIMAL number holding the Offset.
String is an ASCII string that should be found at that offset.

Example 1 : 0,’GIF’ means that the file must begins with
string ’GIF'

Example 2 : 9,’FuBar’ means that at byte #9, we should find
string ’FuBar’

Syntax #3 : Offset, "String"

Offset is a DECIMAL number holding the Offset.
String is an ASCII string that should be found at that offset.

ClassAction 11/28

Note the difference with the previous syntax, here we use "
to define the string, and in syntax #2 we used '.

It’s the same concept than in Syntax #2 but here, the string
comparison is NOT CASE SENSITIVE.

For example : an AmigaGuide file always begin with string
@database in lower or upper case.

If you use method #2 to recognize an amigaguide file, with
0,’@database’, ClassAction will not declare a file beginning

with @DATABASE as an AmigaGuide file.

It works if offset is defined with syntax #3 : 0, "Q@database"

You can define up to 5 Offsets to define a class.
A file is recognized as a class if all the Offsets matches.

Ex : if the class X is defined like

Offset #1 : 0,4a8bé6c
Offset #2 : 58,14

All the files beginning with 4a8b6c AND having $14 at byte #58
will be declared as X.

To define several offets just click on cycle gadget ’'Offset #’
to activate the next offset.

Remark : The ASCII Class
There is a built-in Offset command named : ASCII[]

If you put this Command into Offset #1 (i.e Offset#1=ASCII[]),
it will match with ASCII Files.

But ClassAction will try this after everything has failed.
Thank to this, Amigaguide files (that are ascii) will not be
recognized as ascii if you have already defined an Amigaguide
Class.

Normally you shoudn’t use it as I have provided a standard

Prefs file where the Class ’"ASCII’ is defined using this
command.

1.10 Defining a new action

Once the class is defined you should define actions for it.
Each Class can have as many Actions as you want.

ClassAction 12/28

Simply click on the ’"Add’ button on the action part to add
an action.

An action has 5 properties:

name

run mode

stack size (only if run mode is Cli)
delay (only if run mode is Cli)

— an exec command

a
a
a
a

o Name is the name of the action.
o Run mode can be : Cli , WB , No Cli or ARexx
o Exec command is an AmigaDOS wvalid command line and can

contain parameters.
YOU SHOULD always use the full path for the executables.

Example : use C:Copy instead of Copy in exec line.

You can put in exec lines, Arguments and Commands Dbuilt into
ClassAction.

Buttons
o The ’'U’ Up and "D’ Down buttons permit to sort the actions.
o The ’"Load’ button asks you to select an executable in exec line.

o The ’'Comm’ button pops up a requester which lists all the possible
arguments and commands for an exec line.

o With the button ’'Copy’ you can copy all the actions from another
class to the current one.
Just click on Copy and select the source class from where the actions
will be copied.
It’s usefull when there are same actions on differents classes.

1.11 CLI mode

xxx% CLI mode **x%*x*
If 'Cli’” is choosen, then when selecting the action, the action
will be launched from a cli and the stack size of the cli will be

determined by the stack value (default is 4096).

The run mode Cli will only open a Cli if it’s needed (if the
executable displays something).

You can define the delay property for CLI:

ClassAction 13/28

If Delay 1is negative (i.e. Delay = -1), the Cli will wait until
you close it by hand with the close gadget in the top left
of the window.

If Delay is zero (i.e. Delay = 0), the Cli will close itself as
soon as the task is terminated.

If Delay is positive (i.e. Delay = n with n>0), the Cli will
wait n seconds before closing itself, but you can force the Cli

to close by clicking the close gadget.

The dimension of the used Cli can be found in the ToolType CLISIZE.
(the old ToolType OUTPUT is now obsolete).

1.12 WB mode

*%%x WB mode *xx%
If "WB’ is choosen, then no cli will be opened, and ClassAction
will simulate a Workbench launching of the action.

The exec tool will be run with arguments specified in it’s icon.

WARNING : this mode is only valid with files that have icons.

1.13 NO CLI mode

*%x NO CLI mode x*x*
If 'No Cli’ is choosen, no cli will be opened even if the

program displays something, but the task is still running
from a CLI.

1.14 ARexx mode

*%% AREXX mode *xx*
If ’"Arexx’ 1is choosen, it will launch rx with the given exec
command. Exec command MUST be an arexx script.

Of course RexxMaster should be Active and Rx in the directory
Sys:rexxc/ to work.

1.15 Arguments

Currently, 8 argument commands are possible

the first 4 commands are in lower case : [f] [s] [b] [x]
and they include the result between quotes

14 /28

ClassAction
[f] : full path of selected file
[s] : full path of selected file
[b] filename of selected file
[x] filename of selected file

the last 4 commands does the same as

with quotes
without sufix with quotes
with quotes
without suffix with quotes

before but without quotes

[F] full path of selected file

[S] full path of selected file without suffix

[B] filename of selected file

[X] filename of selected file without suffix
Example : let say you select the file ram:env/sys.prefs

[f] = "ram:env/sys.prefs"

[s] = "ram:env/sys"

[b] = "sys.prefs"

[X] — "sys"

[F] = ram:env/sys.prefs

[S] = ram:env/sys

[B] = sys.prefs

[X] = sys

Example : let imagine you’ve selected the file ram:main.c

* The exec line
c:copy [f] [F].bak
will be replaced by
c:copy "ram:main.c"

* The exec line
c:copy [f] [S].bak

will be replaced by
c:copy "ram:main.c"

1.16 Commands

Currently, five request commands

ram:main.c.bak

ram:main.bak

are possible

REQD [text] Requests for a Directory.
REQF [text] : Requests for a File.
REQV[text] : Requests for a Volume.
REQT [text] Requests for a text.

[1

SURE [text

Asks the user to confirm.

ClassAction 15/28

REQs Commands
REQs commands popup a Regtools requester with the title [text].
This is useful when you need interactive command lines.

Example
bin:lha x [f] to REQD[Choose a Directory to unarchive]

This will popup a directory requester letting the user to choose
the target directory, and the selected file [f] will be unarchived
to the selected directory.
REQF[] is the same except than it asks for a file.
Example

c:dir [f] > REQF[Choose a file]

REQV[] asks the user to choose for a volume.

REQT[] asks for a text, it’s usefull to asks args for example:

c:cpu REQT [Enter arguments for CPU]

WARNING

REQD, REQF and REQV commands may be incompatibles with the
ApplIcon mode when you use some programs such MagicMenu.

If you have regulars ’gurus’ with actions using REQF, REQD, REQV
commands while using the AppIcon, just try to check the
program interfering with, or set the tooltype REQBUG to YES.

If you set this tooltype to YES, the REQD,REQF and REQV
commands when used from AppIcon will be automatically
switched into a REQT command (safe command) .

SURE Command:

SURE [text] command will popup a requester with text [text]

and with 2 buttons : yes / no.

If the user choose no, the exec line is aborted.

If the user choose yes, ClassAction will execute the exec line
on the RIGHT part of the Sure command.

Example
SURE [Really delete this file ?]C:delete [f]

ClassAction 16/28

This will popup a requester asking the user to reply yes or no
to the question "Really delete this file ?".

If the user reply no, nothing is done ; if the user reply yes,
then C:delete [f] is executed.

Of course you can combine any number of arguments / commands in an exec
line.

Example
SURE [Really rename this file]c:rename [f] REQF[Give me a new name]

1.17 Future Improvements

What I’'d like to add to this program in the next version

o Concept of Familly of Classes
For example, icture Familly contains GIF, IFF, TARGA, JPEG...
and possibility to choose a familly filter in the directory
requester. By this, you can filter pictures, sounds...

o Unlimited number of path buttons.

o Make ClassActionPrefs use WB Fonts.

o And of course everything you’ll ask me :)

1.18 About

I would like to thank the following people
o Mireille (for her patience...)

o) Philippe Thomas (for suggestions, help, beta testing,
The French guide and UTT used for the install)

Hey Phil, if you read this, click here
o Richier Pierre (for the MagicWB icons of ClassAction)
o Jean Michel and Georges (for beta testing on a A4000/40)
o Obvious Implementations Corp (for Dice C Pro)
o Nico Francois for the ReqTools library

o Georg HOrmann for the »GREAT* xfdmaster library

ClassAction 17 /28

e} All users contacted me to report bugs or for suggestions

o All registered users

1.19 The Author

You can contact me at the following address
Gasmi Salim

4b rue des petits champs

67300 Shiltigheim

France

Irc: Dr_Unix (#amigafr, #amiga)

Web: http://www.gasmi.net

E-Mail: salim@gasmi.net or salim@sdv.fr

1.20 Using ClassAction

Using ClassAction is REALLY simple.

Just Select a file with the provided requester.

You can go to the Parent Directory whith the button ’'Parent’
or the line <Parent> in the requester

Right Mouse Button displays volumes and assigns.

After the selection, you will see in the right listview, the
file class and the corresponding defined actions.
Just Select the action you want...

If you double-click on a file, the first defined action
will be launched.

You can Zoom the window with the small zoom gadget in the
right top window bar.

To quit, Jjust select the ’'Quit’ button.

To transform the window into an AppIcon just close the window.
Double click on the AppIcon for the window popup.

When ClassAction is AppIconified, you can throw icons on it so the
file type will be recognised.

If the class only have one defined action, it will be executed.
Else, a window pops up with the list of all possible actions, you

ClassAction

18/28

1.21

just have to choose one.

That’s all, Easy eh 2?2727

Technicals Infos

ClassAction is 100 % coded with DICE C 3.0

Misceleaneous info

The prefs file is an ASCII file named : ENVARC:ClassAction.prefs
The generic actions are saved in ENVARC:ClassAction_Gen.prefs
ClassAction create an executable called ClassAction_RunTask
stored in T:

This executable is used to run WB tasks.

The speed of the File requester is due to the sorting algorithm used
(recursive tree sorting called 'Tri du Chat’)

Libraries Information

ROM libraries used

exec.library V3T7+
dos.library V37+
intuition.library V37+
graphics.library V3T7+
gadtools.library V39+
workbench.library V3T7+
utility.library V39+

DISK libraries needed

rexxsyslib.library V39+
commodities.library V37+
asl.library V39+
icon.library V37+
reqgtools.library V38+

DISK libraries used if found

locale.library V38+
datatypes.library V39+
xfdmaster.library V30+

ClassAction 19/28

How ClassAction determine a class
1- test if the filename matches matchnames of defined classes.
2— test if the file matches offsets of defined classes.
3— Decrunch the file using xfdmaster.library.
4—- test if the decrunched buffer matches offsets of defined classes.

5- test if the file is ASCII (if ASCII Offset Command exists)

If everything fails, the file is declared as ’Unknown Class’.

1.22 Installation

To Install this stuff

Normally you should use the installer script supplied in
the archive and then Jjust follow the instructions.

But if you don’t have it, here is how to install ClassAction
— Copy ClassAction, ClassActionPrefs and the icons where you want.
— Copy the supplied .prefs files into ENVARC:

— Copy the ClassAction.guide where you want.

That’s all...

1.23 Register

If you are reading those lines, you are wondering to become
a registered user of ClassAction.

Let me explain you why you should register

First of all to support the best computer ever made,

because the future of the Amiga depends on the future software
available ; then when you support a coder for his work, you support
your computer and his future !!!!

Also because I spent all my free time to try to make sharewares.
If you use them why not sending me your registration ?
This will make me continue to make proggys.

The MailWare Version is 100% usable, nothing has been disabled,
just some "annoying" requesters added: if you really like it, REGISTER !!

The registration is FREE !!! ALL you have to do is to
run the program called CA_register !!

ClassAction 20/28

and then:

- Enter your name and Email (if any)
— This will create a file in S: called CA-Code-request.txt
- Send this file via Email to classaction@sdv.fr

or by standard mail to my address
(in this case include $2 for the stamps fee and don’t)
forget to give me your full address)

— When you receive my answer with the licence code

just re-run Ca_register and enter the licence code I sent you
This will create your keyfile

Thank you in advance for your support !

Yours,

Salim

1.24 Legal words

Copyright

ClassAction and ClassActionPrefs are Copyright © 1994-1995
by Gasmi Salim.

ClassAction is a shareware program. The package may not be altered
in any way and cannot be used for commercial purposes without the
prior written permission of the author. The copyright message should
be preserved.

Warranty

No responsibility or liability will be accepted for any damage that
may appear to have resulted from use of this program. All use is at
your own risk. The software is provided "as is" without any warranty
implied or otherwise to the fitness or accuracy of the software and
documentation. The documentation is believed to be correct but the
author reserves the right to update the software and/or documentation
without notice.

1.25 History

ClassAction History V 2.8 (c) Salim Gasmi

ClassAction 21/28

25/09/95 : v2.8

— ClassAction have now a FULL commodtity support
and a HotKey to show/hide ClassAction.

— Tooltype APPSTART can be set to HIDE (APPSTART=HIDE)
if you want that ClassAction start hidden.

- Tooltype CX_HOTKEY added
— Tooltype PUBSCREEN added to allow using Public Screens
— The Internal File Selector of ClassAction was not freeing all
the memory allocated, fixed now
11/09/95 : v2.75
- The REQD,REQF,REQV commands were not really incompatibles
with the appicon mode, but incompatibles with some programs

such MagicMenu (Bad luck I use MagicMenu...)

A lot of users complained about the automatic swith into
a REQT command even if they don’t use an incompatible program.

I have added a tooltype (REQBUG) to let the user choose to
auto-switch into REQT or not.
03/09/95 : v2.7
- Added commands [b], [x], [B], [X], [F],[S]
— Added the Action arexx command.
— removed some bugs in rendering routines
— removed a bug with multiple icons throwed on the AppIcon.
— The REQD, REQF,REQV commands are now swapped into REQT
when using them from the AppIcon or Arexx , they are only
compatible with the Window mode.
28/08/95 : V2.6
— ClassAction window is now resizable.
— ClassAction and ClassActionPrefs are now using ReqTools.library.
- Added REQV command to request a volume.
— Added REQT command to request a text.
— Added WINX and WINY tooltypes.

- Learn requester has now an ALL button.

ClassAction

22/28

Selected File is now in all the REQs requesters.

ClassAction use now a Key file for the registerd versions,
this key file is placed in S:

17/07/95 : V2.5

ClassAction and ClassActionPrefs are now localised.
and a French catalog is provided with the archive.

Learn function added to ClassActionPrefs.

To select the first action of a file, you must now Double Click
on it instead of reselecting the file.

Generic Actions are now Synchro and rescans the current directory.

AUTOSELECT ToolType is no more used.
REQs requesters opens now in current directory.

minor improvements made.

12/06/95 : v2.1

Added the ’'Generic Actions’ Built-in Class.

Added SURE[] exec command.

Added ASCII[] Offset Command to recognize ASCII files.
Added Arexx commands: AppIconify, Show, Status, GetClass.

Changed running tasks system, now I use Systemtags().
We do not need tmp files anymore.

you can now define a delay for CLI run mode.
Added ’string’ and "string" for offsets definition.

ToolType OUTPUT is obsolete now and not used anymore,
we use the new ToolType CLISIZE in replacement.

Actions requester is now well sized, appear below the
mouse pointer and uses to frontmost public screen.

Swapped the buttons ’'Use’ and ’Save" and added ’Cancel’
in ClassActionPrefs to follow the Amiga prefs look,
moved the button ’about’ in top right corner as ’"?’.

ClassActionPrefs Cycle gadgets routines weren’t
100 % system friendly and some patches like Cycle2Menu
makes bugs with ClassActionPrefs; It’s fixed now.

ClassAction 23/28

— Improved the recognizer code and the Info routine:
they are up to 400% faster.

— Listview hilight color error removed.

— ClassAction does not anymore lock the Workbench
screen when AppIconified.

- A nasty bug found and removed in ClassActionPrefs.
- Right Mouse button shows Assigns only if mouse
is in the requester and Right Mouse again brings

back to the Directory.

— ClassAction remember now the window position.

23/05/95 : v2.00 (Major Update)
— ClassAction has now an AppIcon.
— ClassAction is now a commodity.
— ClassAction has now an Arexx port.
— ClassAction use now the default WB Font.
- Exec mode ’Arexx’ added.
— Different color for Directories/Files.
- Up/Down gadgets added to ClassActionPrefs.
- ’Use’ gadget added to ClassActionPrefs.
— Classes are now sorted into ClassActionPrefs Listview.

- APPSTART, ICONNAME, ICONX, ICONY, CX_PRIORITY,
WBEFONT, OUTPUT, ICONFILE ToolTypes added.

— When the window is iconnified it have now the right height
regarding the screen default font.

— New Save Format (CASF20).

- Suffix/Prefix Button removed. Replaced by MatchName Gadget
who accept any Wildcard.

— Config file moved into ENVARC:
- an installer is now provided with the archive.

- some Code optimization done.

05/05/95 : V1.43

ClassAction

24 /28

— Cleaned up the requester code, now 5% faster.
— ClassAction now look for his name using WBstartup structure
and then can be renamed
02/05/95 : Vv1.42
- 'No Cli’ Exec mode added to ClassActionPrefs.
- "" are always added to filenames even if not needed
it’s easier for AREXX scripts.
06/04/95 : VvV 1.4
— ToolType HEIGHT added.

— Some code optimization added.

22/02/95 : v 1.31
— If you click twice on the same file the first action
will be lanched (it’s faster than selected the first action
by hand) .
— this version is now ShareWare and you must register to get

the registered version.

15/01/95 : v 1.3

Added REQD[] and REQF[] interactive commands.
- Copy gadget added to ClassActionPrefs.
— minor improvments made.

- Beta testers reported this version is really stable.

25/11/94 : v 1.22

First Public Release.
- Button ’"Info’ Added.

— ClassAction was Locking() the directories it read without
UnLocking () them xFIXED=*

- Code Optimization.

— Minor other Bugs removed.

08/11/94 : v 1.21

ClassAction 25/28

- Program was crashing with empty floppy units .. *FIXED%
- Volume/Name Bug Fixed

- <..> Item removed when root of a volume.

07/11/94 : v 1.2
- New interface, I have included my own fast file requester.

— STARTDIR & DRIVEl to DRIVE1ll ToolTypes added.

01/11/94 : v 1.1
- Now using xfdmaster library to recognize and decrunch files.
— Configuration with ToolTypes added (DECRUNCH,AUTOSELECT).
— ’Unknown Class’ is now a built in class with unlimited actions.

- New save format (CASF11).

16/10/94 : VvV 1.0
- New Save Format (CASF10).
— Window has now a zoom gadget.

- a lot of classes definitions added.

10/10/94 : Beta Version
— tmp file bug removed.
- Offset increment error removed.

- using asl library for the file requester.

01/10/94 : Alpha Version

1.26 The Arexx Commands

ClassAction has an Arexx port called : ClassAction.01l

This is the list of all the Arexx commands

ClassAction

26/28

Quit

Just quit ClassAction...

Return the version of ClassAction.

Status

Return the current status of ClassAction.

Return 0 : ClassAction is Applconnified.
Return 1 : ClassAction is in Window mode.
Applconify

Force ClassAction to AppIconify.

If ClassAction is already an AppIcon, this command does
nothing.

Show

Force ClassAction to show the main window.

If ClassAction is already a window, this command does nothing.

Load <filename>

ClassAction try to load the file <filename>, and pop up
the actions requester, letting the user choose one of them.

If the file does not exist, this command does nothing.

GetClass <filename>

ClassAction try to load the file <filename> and return the

ClassAction 27 /28

class of the loaded file.

If the file does not exist, this command does nothing.

Action <filename> <Action Pattern>
ClassAction will execute the first matching action for the
file <filename>.
exemple : Action ram:toto.lha extr

will run the first action with the name containing
string ’"extr’ on the file ram:toto.lha

The pattern is useful , you dont have to give the exact name
of the action, just giving a part of it is enough.

1.27 What should you do after install

After the installation, you should have a working ClassAction,
with a lot of classes definitions, but with very few Actions
defined for them (most of the defined classes does not have any
actions defined) .

It’s up to you to define actions regarding to your system
configuration and your prefered programs to use.

Then just load ClassActionPrefs and configure it for your
convenience...

If you don’t know how to configure actions and classes, just read
this guide :)).

After having configured the classes and actions, just try to
configure ClassAction behavior with his ToolTypes.

It may take a long time to perform a ’"nice’ config.
But once it’s done, it’s really GREAT !!!

Okay, now read the guide and Good Luck.

1.28 Message for Philippe THOMAS

Salut Philippe !!!

Je voulais simplement te remercier pour toute 1’aide que
tu m’as apporté a la création de ce programme.

Quasiment toutes les améliorations de la version 2.0, c’est

ClassAction 28 /28

toi qgui me les a proposées, parfois méme avec insistance,
style le resize de la fenétre que je n’ai toujours pas fait.. :(

Encore merc¢i pour tous les appels téléphoniques ; parfois plus
d’une heure a discuter des Hooks, SystemTagList, de bugs etc...
et ce, méme en periode d’exams.

Franchement si ClassAction commence a étre cool, c’est beaucoup
grace a toi, je crois que j’aurais eu la flemme de le paufinner

autant si tu n’étais pas la.

Bref, ce programme est aussi un peu le tien.
Okay Phil, a la prochaine.
Salim.

PS : Non, non ton processeur il est bien, il est pas buggé... :)).

1.29 Known Bugs

A lot of users asked me a resizable GUI, I have done my best to
provide this V2.6+ version with a resizable window, but it’s quite
a tricky task with GadTools.

Very rarely when you resize the Window, the refresh ’"hung’ and you
have to close the window to ’"unhung’ it

I really don’t know why, since I never noticed the problem myself.
The Beta Testers reported this problem to me and they noticed it
only 2 times in a month of tests.

Well, I'm doing my best to find and remove this bug but I would
not deprive many users of a resizable GUI for a bug that appears
2 times a month.

Some programs such MagicMenu makes the REQS commands crashes when
used from the AppIcon.
You can use the tooltype REQBUG to disable the REQS commands.

	ClassAction
	ClassAction 2.8 Guide
	What is ClassAction ?
	more about ClassAction
	System Requirements
	Configuration of ClassAction
	ClassAction Prefs
	Using the learn function
	What is a Class
	Creating a new Class
	Defining a new action
	CLI mode
	WB mode
	NO CLI mode
	ARexx mode
	Arguments
	Commands
	Future Improvements
	About
	The Author
	Using ClassAction
	Technicals Infos
	Installation
	Register
	Legal words
	History
	The Arexx Commands
	What should you do after install
	Message for Philippe THOMAS
	Known Bugs

