BlitzGUIGen

BlitzGUIGen

] COLLABORATORS
TITLE :
BlitzGUIGen
ACTION NAME DATE SIGNATURE
WRITTEN BY August 22, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

BlitzGUIGen iii

Contents

1 BlitzGUIGen 1
1.1 BlitzGUIGen.Manual e 1
1.2 Legal Notices and Copyrights e 1
1.3 Legal stuff about BlitzGUIGen e |
1.4 Legal stuff about GadToolsBox e 2
1.5 Legal stuff about IntuTools e 2
1.6 Legal Stuff about PowerPacker and Decrunch 2
1.7 Whatis that BlitzGUIGen thing? e e e e 3
1.8 Whatrequirements do Ineed? e 3
1.9 Anoverview onusing BlitzGUIGen e 4
1.10 AnInDepthlook at BlitzGUIGen e 8
1.11 Using tooltypes from Workbench e 10
1.12 Using parameters fromthe CLI e 13
1.13 Contacting the Author 15
1.14 Re@istration o oo e e e e e e e 16
1.15 History of Releases e e e 16
1.16 Oh Dear, I've Found A BUG!!! 23
1.17 My little helpers! o e e 23
1.18 Things That Still Need ToBe Done e e e e e e e 23

BlitzGUIGen 1/24

Chapter 1

BlitzGUIGen

1.1 BlitzGUIGen.Manual

Welcome to BlitzGUIGen
Version 1.8 : Creation June 1997

GadToolsBox .gui file conversion utility.

Legal Notices and Copyrights
What Is...
Requirements

An Overview
Tooltypes

CLI Parameters
Installing Key File
In Depth

Contacting the Author
Registration Details
History of Releases
Reporting Bugs

People to Thank
Things Still To Do

1.2 Legal Notices and Copyrights

The following sections contain legal information about
specific programs mentioned in this file. Please refer
to the relevant section:

BlitzGUIGen
GadToolsBox
IntuTools
PowerPacker

Decrunch

1.3 Legal stuff about BlitzGUIGen

BlitzGUIGen 2/24

1.4

1.5

1.6

BlitzGUIGen is copyright Creative Software ©@1993-1997.

This software is supplied as is, and has no warranty attached to it. No
warranty 1is expressed or implied in operation or fitness for use. Usage
of this software is at the users own risk. Loss of data due to the use

of this software is by no means the responsibility of Creative Software.

You use this software at your own risk!

Having made that clear, please do not be put off, many hours have gone
into development of this product and every effort has been made to
ensure long lasting and error free execution of this software. I use
this software regularly and to the best of my knowledge it works
faultlessly.

If you redistribute this archive, then it must be in it’s entirety,

and you may not cut out or include any other files than are in it now.
No reverse engineering of this software, adding BBS ad’s or any other
tampering with the archive is permitted.

This distribution may be passed along electronic media, BBS systems and,
of course, special permission is granted to Urban Mueller to include
this archive on the Aminet mirror.

If this archive is to be included on any disks, ie: magazine coverdisks,
or shareware compilations, then a copy of said disk should be sent direct

to me prior to release to verify suitability. In the case of magazines, the
entire mag with disk should be sent as fee for inclusion on disk :-).

Legal stuff about GadToolsBox

GadToolsBox V2.0b is (C) Copyright 1991 - 93 Jaba Development.
GadToolsBox V2.0b is written by Jan van den Baard and the software is

GIFTWARE. Please read and understand the documents that accompany the
GadToolsBox distribution.

Legal stuff about IntuTools

Intutools and Blitz Basic 2 are (C) Copyright Mark Sibly and
Acid Software.

Legal Stuff about PowerPacker and Decrunch

The crunching function available in GadToolsBox uses the
PowerPacker algorythmn, and is copyright Nico Francois.
The Decrunch executable is copyright Nico Francois.

BlitzGUIGen

3/24

1.7

1.8

What is that BlitzGUIGen thing?

B1litzGUIGen is the program you’ve been looking for all this time!.

If, like me, you’re a serious user of Blitz Basic 2 and you do a lot
of Intuition programming, then, up till now, you’ve been doing it the
hard way. I have spent many hours programming Graphic User Interfaces
manually, compiling the source, moving gadgets one pixel left,
re—-compiling, moving, re-compiling. Get the message!

Now I do it the easy way, BlitzGUIGen!

If you’ve ever used GadToolsBox, you’ll know how easy it can be to
generate professional looking front ends for your programs. To be
fair, IntuTools does try to come to some sort of a compromise, but
just doesn’t make it into the ’'big league’.

Having noticed that GadToolsBox generates source for you, I needed
to do something that will generate source for me in Blitz Basic.
That’s where BlitzGUIGen comes into its own. Everything that is
supported in GadToolsBox and Blitz Basic has been included,

even nm_BarLabel menu separators (using the RIGTMenusLib.obj),

and backfill patterns.

See the Overview section for details on using BlitzGUIGen.

What requirements do | need?

I suppose the main requirement for BlitzGUIGen to be of any
use to you, is Blitz Basic 2. You will require at least version 1.9
as this is the version I am currently using and some updated
commands included in version 1.9 are used. Versions less than 1.9
may still be used with BlitzGUIGen but some source may be incomplete.

Secondly, you will need Version 2.0 of GadToolsBox. Lesser
versions of GadToolsBox will not work with BlitzGUIGen, as files are
checked for GadToolsBox version number before being converted. Later
versions may be supported in the future once I upgrade my GadToolsBox
version.

You will also need the Decrunch executable that
accompanies the PowerPacker distribution, if you want to access any
crunched .gui files made with GadToolsBox.
Of course, it should go without saying, that GadTools gadgets are only
available in Kickstarts 2.x and higher. You will need to have at least
KS2.x up in order to use this software.
You will also need a copy of Regtools.library in you’re Libs: assign.

Once these requirements are met, you are then equipped to use BlitzGUIGen.

One thing that you must make sure is that the directory ’Blitz2’ is
assigned to ’"Blitz2:’, otherwise BlitzGUIGen will not be able to

BlitzGUIGen

4/24

1.9

launch Blitz Basic’s editor to load in source.

That’s about it for ’'what do I need’. See the Overview section
for details on using BlitzGUIGen.

An overview on using BlitzGUIGen

B1litzGUIGen is extremely easy to use, and has been designed to be
as simple as possible to operate. A few subjects may need to be
covered and are explained below:-

Installation

If you wanted to do this the easy way, then you could use the
installation software included in this archive. Alternatively,
you can install it by hand if you don’t trust me!.

Start by selecting somewhere to put the software, or create a new
drawer for it.

Next, copy the executable file B1litzGUIGen, and its icon
BlitzGUIGen.info into your selected destination.

I have a sub-drawer where I keep all my GUI files called ’'GUI-Gen’,
something similar would be a good way of keeping things tidy.

Should you need it, the ’'Decrunch’ executable should be placed
into your C: assign.

Set Up

Now you have the option to set up the tooltypes for BlitzGUIGen.

I would suggest reading the Using ToolTypes section for more
information and descriptions on achieving this, or the

CLI Parameter Passing section if you intend to run it via a shell.

Installing Key File

Once you have registered your copy, you will receive a Key File,

which should be installed in the same directory as BlitzGUIGen itself.
The Key File will now unlock your version, and will enable

the following functions:

Personalize your copy by showing your name and number in title
Personalize your copy by showing your details in ’'About’ requester
Enable the keyboard shortcuts

Enable the ’'Load New Blitz’ button

Enable the use of crunched gui’s

Remove the automatic ’'About’ requester on open and close

Put your name and number in source

Enable the generation of custom screens

Enable the creation of menu lists

Enable the creation of a .xtra file

Enable the use of MAKETOGGLE tooltype

Enable the use of ACTIVATESTRING tooltype

BlitzGUIGen 5/24

Enable the use of FUNCTIONS tooltype
Enable the use of BACKFILL tooltype

Executing

Firstly, after loading up the program by double-clicking its icon,

or entering BlitzGUIGen (params) from the command line of the CLI,
you will be presented with a simple GUI.

For information on CLI parameters, refer to the section

Parameter passing from the CLI for details of these,

or Using ToolTypes for info on these.

(By the way, this GUI was created with BlitzGUIGen and GadToolsBox!).
If you need to alter any program parameters, you should do so now,
before converting any .gui files.

The set of five checkboxes at the top left side of the window are
to allow you over-ride the default settings.

Starting from the top, is the ’Screen Code’ gadget.

This will allow you to decide, at this point, whether or not to
create screen data within your source.

If this is not selected, then the source will not compile straight
away from the Blitz 2 editor, but is intended, instead, to be used
as an include file that creates your designed GUI.

To the right is ’Backfill’. This checkbox will enable/disable the
ability to give your gui a backfill pattern. This is much like the
grey background pattern you see in system requesters.

Next, working down, is the ’'Menu Code’ gadget. This, being
similar to the above, will, if you have created menus, allow you to
create them within your Blitz source.

Next is the ’'FillColour’ gadget. This specifies the primary colour
that any backfill pattern will appear in. It defaults to 2, but can
be changed more permanently by using tooltypes.

The ’"Make Source Use WB Screen’ gadget comes next, and this will
force your source to use the Workbench screen as the default screen
that your window will appear on. De-selecting this will use the front
most screen instead.

As of version 1.3 +, this selection will over-ride any screens that
have been created from within GadToolsBox, and force your window onto
the Workbench screen.

Lastly, 1is the ’Create Event Handler’ gadget. This will create an IDCMP
event handler for you to handle things like gadget hits and menu hits
etc. The handy thing here, is that if you have made some meaningful
labels for each of your gadgets, then these labels will be used in

this loop, which makes it a lot easier to work out which ID number

goes with which gadget.

The default DetailPen and BlockPen can be altered from the string
gadgets over on the top right side.

Once these are as you want them, you are ready to continue.

Conversion is a simple button press. The ’'Select Source GUI...'

BlitzGUIGen 6/24

button allows you to select a GadToolsBox file from a file
requester for conversion from the selected path. The file requester
will only show .gui files, which is the format for conversion.

Once the selected file has been parsed by BlitzGUIGen for correct
version, the GUI will show what is happening. The software will

tell you once the source has been created, and you can elect to

either quit, using the gquit gadget or the close gadget, or load

a new Blitz editor screen with the source ready to view and/or
compile.

If the file already exists upon trying to save the source, you will

be presented with a Save requester which will give you the opportunity
to rename the saved source’s name. Should you try and save a file with
the same name as an existing one, you will be warned by the file requester
reappearing and giving you the opportunity to change the name.

Understanding created source

The created source should be straight forward enough to understand
without too many complications.

BlitzGUIGen will define some variables in your source that may appear
confusing to start with.

First, let us assume you created a project in GadToolsBox with

the name ’'MyGui’. This is the label you give to the project from the
"Edit Data’ item from the ’'Window’ menu of GadToolsBox. This

label will be used in creating your Blitz 2 source.

Working from the top of the source, you will see the copyright message
and version number created by BlitzGUIGen.

Next, if you have elected to create screen code, will come the sub
section of code that will define the screen.

Then a label ’'InitialiseVars’ will start a block of variable
declarations.

MyGuiWnd = 2?77, will be the first variable you see. This variable
will normally have a value of zero, but may be changed later.

See the 'WINDOWLABEL=’' tooltype for info on changing this wvalue.
This will be the number of your window in your source, which gadgets
etc. will be attached to.

Next will be ’'MyGuiGList = 0’ which is the gadgetlist number in your
source. You can manually change this value in your source, or refer
to the "GLISTLABEL=’' tooltype to change permantly.

Lastly, ’'MyGuiScr = 0’ will be the number of your current screen. This,
also could be changed manually, if desired, or permantly with the

" SCREENLABEL=' tooltype.

If you have created any menus, ’'MyGuiMList = 0’ will be next. This
defines the number for the menulist. Again this can be changed manually
later on, or permantly with the ’'MENULABEL=’ tooltype. Then a

"Gosub xxxMenu’ or ’'xxxMenu{}’ will follow which will jump to a
subroutine in you’re source which will define your menus.

Next comes your list of gadgets, which are all standard Blitz commands,
and are described in detail in the Reference Manual that comes with
Blitz Basic 2. Some gadgets may have attached tags, using the GTTags

BlitzGUIGen 7124

command. This will affect your gadget in a way not directly supported
in Blitz 2.

Your window is defined next, as again, a standard Blitz command.

Should you have elected to create a backfill pattern, the code for
this will be either above or below here. This should be reasonably
straight forward and easy to understand. The window’s structure is
grabbed first as this is used in building and creating the backfill.
The ’pens’ are specified next and the primary pens is the one that is
changable from the main gui.

You could change the value of the secondary pen as well. Try out
different combinations of values for these, you can get some nice

MUI style backfills.

Then the backfill pattern is blitted into the window.

You may have created bevel boxes in your window. If so, there will be
one line of code for each bevelbox next. Each line will draw a box at
the same position as the bevelbox in order to clear it to background
colour. This way anything inside the bevelbox is not disturbed by the
backfill pattern, and helps to give the window a more system like look.

The bevelbox’s, if any, will be drawn into the window next.

If gadgets have been defined then the ’'AttachGTList xxx,yyy’
command is next, to attach them to your window.

Again, if you have created menus, then these will be attached next
using the standard SetMenu command.

A RastPort command may be next, depending on the presence

of "IntuiTexts’, then, if present, will be rendered.

The main event handler will be next, and this aims to make it as easy
as possible to test your GUI. You may notice that the only way to
exit from your GUI once compiled, is to hit the close gadget, if you
have one. If not, a panic feature is included and pressing ’"ESC’ will
break you out immediately. At least this way, you will be able to
test the action of all the gadgets without exiting back to Blitz 2
straight away.

As mentioned elsewhere, meaningful gadget labels should be used from
within GadToolsBox as these are used from within the event

handler loop. This makes it easier to check for specific response to
a gadget rather than referring to only the ID number.

A similar loop will follow that for the menu event handler, and then
another similar one for keyboard shortcuts.

Another subroutine will follow, which forms how you gquit. Currently,
it just quits, but you can expand on this to create custom exits,
like quit requesters etc.

If menus are present then these will be defined in the following
subroutine, which, are again, all standard Blitz commands. One

note here, is that BarLabel menu separators are not created here,

even i1if they are present in the GUI file, because the standard

Blitz menu commands do not, as far as I know, support this function.

As of Version 1.6+, GadTools Menu’s can be created via the library
"RIGTMenuLib.obj, and as a result, now supports nm_BarLabel separators.

BlitzGUIGen 8/24

One final note is that you may notice a small graphics routine right
at the end of your source. This will be to create a ’'GetFile’ gadgets
images, if they have been used. Although this is freely usable by you
in your source, I wouldn’t recommend altering any of the values in it,
it could lead to unpredictable results, and you are advised to leave
well alone. I will apologize for this rather ’'messy’ way of creating
"GetFile’ gadgets, but it seemed an easy way for the time being. Look
at it as Blitz’s way of implementing BOOPSI! ;0)

As of version 1.7, the ability to create Statements rather than
subroutines has been implemented, and if this has been selected, these
routines will be first in the listing rather than after the main loop.
The FUNCTIONS tooltype outlines this further.

1.10 An In Depth look at BlitzGUIGen

This version of BlitzGUIGen will generate the following types of
GUI components to V37 (2.04) standards:

GetFile These are the gadgets that you may see in a GUI
that includes choosing a disk path or volume. They are
actually GTShape gadgets with a little bit of trickery
involved.

GTButton These are the buttons you see all over the place.
A typical example is the buttons you see on system
requesters. GadTools buttons allow you to underscore a
certain character on the face of the gadget to act as
a keyboard shortcut

GTCheckBox These enable the user to switch some item on or off.
a small box appears that when clicked on, a small tick
will show that it has been switched on.

GTInteger These are similar to GTString gadgets but accept
only whole number inputs instead of alpha characters.

GTListView These are the gadgets you see that allow you to
read or enter an amount of different items. A typical
example here would be the selection of printer you want
to use in the printer.prefs window.

GTMX These are a set of radio buttons of which only
one can be on at any one time (Mutually eXclusive). They
allow the user to make a selection from a choice of a few.
This is just a different way to display a GICycle gadget.

GTNumber This is a read only number gadget, which is used to
inform the user of some numeric value.

GTCycle These are the button gadgets you see that change
their faces as you click on them. This allows for a selection
to be made from the gadget.

BlitzGUIGen

9/24

GTPalette

GTScroller

GTSlider

GTString

GTText

Screen

Window

Menus

GTMenus

BevelBox

IntuiText

Backfill

This is the colour palette editing gadget that
you see every where in preferences sections. Its use
should be fairly obvious.

These allow the user to scroll through a list
of items etc. Similar to the slider attached to a
GTListView gadget.

This allows your user to set a level of some sort.
Normally used for volume or intensity of colour etc.

These are gadgets that allow you to enter a string

of characters into the machine. A typical application for
these is in a database program to enter in details. The
beauty of these is that an optional label can be assigned
to the gadget, which can also be underscored.

These are similar to the GTString gadgets but are read
only. You cannot enter text from here. A status display
would be an ideal example for using these.

This will be the screen that your window will open on.
This could be Public, Custom or even the Workbench screen.

This one doesn’t really need explaining, I hope. All your
gadgets will be rendered into this window once it has been
opened.

These also shouldn’t require explaining. The menus

that have been created will be attached the window once
opened. nm_BarLabel menu separators are not supported by
these ’'standard’ menus.

As of Version 1.6, you now have the option to create
GadTools Menu’s. This requires that your ’'Deflibs’ file
contains the commands within the RIGTMenuLib.obj. This
is included in the distribution, and you should refer
to the '"Install RIGTMenulib.readme file. Thanks to
Steve McNamara of Leading Edge Software for his great
library.

These box’s are actually borders, similar to the borders
around button gadgets. They can be used to split up the

window into certain parts, so that the gadget layout makes
more sense to the user. The option to recess or dropbox

these box’s is very handy indeed. Should you have elected

to create a backfill for the window containing bevelboxes, the
areas inside the boxes will be cleared giving the impression
of depth.

This is text that is rendered into the window once
it has been opened. Different colours are allowed and
are supported by BlitzGUIGen.

A backfill pattern is a coloured background that
appears in a window apparently behind everything else. It

BlitzGUIGen 10/24

makes the window stand out and be noticed more easily, and
is good to use for important information or requests.

Please Note: Custom screens created by GadToolsBox are currently
not supported by BlitzGUIGen prior to version 1.3, and
the structure is ignored.

1.11 Using tooltypes from Workbench

So far the supported ToolTypes are:

NOMAIN

This is a switch that allows you to turn off the generation of
the main loop that handles IDCMP events. Please note that with
this switch set, the code that is generated will not compile
directly from the Blitz Basic 2 editor, and is now meant to be
included as a sub-routine.

This is the same as the CLI parameter ’'-e’.

NOSCREEN

This switch allows you to turn off the generation of code that
assigns a screen for your window to open on. Please note that
with this switch set, the code that is generated will not
compile directly from the Blitz Basic 2 editor, and is now
meant to be included as a sub-routine.

This is the same as the CLI parameter ’-s’.

PATH= path

This tooltype will allow you to specify a path for BlitzGUIGen to
look at when searching for .gui files. path may be any

legal AmigaDOS path:

eg. sys:GUI/blitzgui

When the filerequester opens, it will now be looking into this
directory for .gui files. Path will also affect the

path to save source files to. If SAVEPATH= hasn’t been defined
but PATH= has, then source will be saved to the path contained
in the string following PATH=.

This is the same as the CLI parameter ’'-p’.

SCREEN=Workbench

This will allow you to select which screen the source code will
use once compiled. Leaving this tooltype out will default the
source to finding the front most screen and using that. This
option can also be set in the GUI, before you convert any .gui
files.

As of V1.3 the ommision of this tooltype will default your source
to recreating the screen defined in the .gui file.

This is the same as the CLI parameter '-w’.

WINDOWLABEL=String ; new in 1.7
I have included this really for myself, but somebody else may
find it useful. Once you have created the source, your window

BlitzGUIGen 11/24

will have the value contained in String:

i.e. WINDOWLABEL=MyWindow
will have the effect of the source creating the line:

Window MyWindow,0,0.............
when you include this source into another program, your window
will have the value MyWindow instead of 0. If you omit this
tooltype then the source will give your window a value of zero.
This is the same as the CLI parameter '-wl’.

SCREENLABEL=String ; new in 1.7

This tooltype will act very similar to WINDOWLABEL accept that
it will substitute the screen number for the string.

This is the same as the CLI parameter ’'-sl’.

GLISTLABEL=String ; new in 1.7

This tooltype will act very similar to WINDOWLABEL accept that
it will substitute the gadgetlist number for the string.

This is the same as the CLI parameter ’'—-gl’.

MENULABEL=String ; new in 1.7

This tooltype will act very similar to WINDOWLABEL accept that
it will substitute the menulist number for the string.

This is the same as the CLI parameter '-ml’.

TOGGLEGAD ; new in 1.7

This tooltype will add some code to the event handler that will
highlight the gadget selected by a keyboard shortcut as if it
was clicked on with the mouse.

This is the same as the CLI parameter ’'-t’.

ACTIVATESTRING ; new in 1.7

This tooltype works very similar to the above one, but will

place code into the keyboard reader so that presing the highlighted
letter of a ’"String’ or ’Integer’ gadget will automatically activate
that gadget.

This is the same as the CLI parameter ’'-a’.

HIGHLIGHTLABEL ; new in 1.7

This tooltype will allow you to control how the program labels
appear in the source. By default, the labels are not highlighted,
but by using this tooltype will place a .’ in front of the labels
used in the source so that they will appear in the right hand
column of the Blitz editor.

This is the same as the CLI parameter ’-h’.

DPEN=0 to 16

This will change the default DetailPen colour for your source window.
The number that follows the tooltype should be in the range that
corresponds with the amount of colours you are currently using.

The number is a palette reference not a ’"DriPen’ number. Colour

zero usually being the background colour (usually grey), working

up to the amount of colours in your current palette.

This is the same as the CLI parameter ’-d’.

BPEN=0 to 16
This is the same as the DPEN tooltype, with the exception that it
sets the current BlockPen for your source window. See above for more

BlitzGUIGen 12/24

details on palette colours.
This is the same as the CLI parameter ’'-b’.

EXTENSION=String

This tooltype will allow you to change the default appended suffix.
Normally, BlitzGUIGen will save source files with the extension of
.BBGui, but the String following EXTENSION= will change this.

This is the same as the CLI parameter ’'-x’.

SAVEPATH=Path

This will now allow a different path to save the source files to. By
default, source files are saved to the same directory that the .gui
file was found in. By including a valid AmigaDOS path string after
SAVEPATH= you can override this setting.

This is the same as the CLI parameter ’'-v’.

MAKEXTRA

This switch will allow your source to have an associated .xtra
file. The main benefit of this is that when GTTags are

created for gadgets, the constant will be used instead of

the actual hex value. In the ’'Compiler Options’ menu, you will
see that ’'Blitzlibs:Amigalibs.res’ is already displayed in the
window. Also, ’'Make Smallest Code’ and ’'Runtime Debugger’ will
be switched on.

This is the same as the CLI parameter ’-X'.

GTMENUS

This switch will allow you to create GadTools Menu’s. This will need
the Deflibs file to have been re-created with the RIGTMenuLib.ob]
file present in your userlibs drawer at the time of creation.

If you don’t have this library, I suggest you contact Steve McNamara
of Leading Edge Software and enquire about collecting it. Enter
"GTMenus’ as a tooltype into the Information window of the

icon and you’re all set.

This is the same as the CLI parameter ’'-g’

NOKEYS

This switch will turn off creation of a loop to check for your

key presses. This is created automatically according to the defined
key shortcuts in your gadget text. The key immediately after the ’'_’

will be used as your key to check for. Case sense is switched to all

lowercase shortcuts. If you require upper case shortcuts, you’ll have
to change them manually.

This is the same as the CLI parameter ’-k’

NOMENUS

This switch will turn off creation of menu code. Any menus that have
been defined in the .gui file, will NOT be created. Useful, I

suppose, 1f you were composing an ’include’ file where you only needed
some of the gui instead of all of it.

This is the same as the CLI parameter ’'-m’.

SELECT

This tooltype will turn on the creation of Select/Case loops

for gadgethit and key trapping. The main reason for including this is
because I have had problems with Gosub’s from inside

Select/Case loops. When the return is executed, Blitz throws

BlitzGUIGen 13/24

up the ’'Return Without Gosub’ error. Using If/EndIf loops

cures this. Now you have the choice of which one you want to use. I
since found that the use of 'POP SELECT’ before the Gosub cures this.
This is the same as the CLI parameter ’-c’.

FUNCTIONS

This tooltype will now organise the source so that any sub-routines
will now appear at the top of the outputted code in the form of
’Statements’ or 'Functions’. The calls to these sub-routines has also
been changed to reflect this. the default option here if this tooltype
is omitted is that sub-routines are created at the bottom of the source.
This is the same as the CLI parameter ’'-£f’.

COMMENTS

This tooltype, if present, will cause somewhat detailed commenting of
the created source code. This can greatly simplify the understanding
of the code structure to the newcomer. For the more experienced
B1itzGUIGen user, leaving this tooltype out will supress the

embedded comments.

This is the same as the CLI parameter ’-1'.

BACKFILL ; new in 1.8

This tooltype, if present, will cause BlitzGUIGen to create source

that contains code to create a backfill pattern. This pattern is the same
as seen in system requesters etc, and can be used for custom requesters
etc that you may create. This can be over-ridden by clicking the check-box
off in the main window.

This is the same as the CLI parameter ’'-B’.

FILLCOLOUR ; new in 1.8

This tooltype allows you to set the default colour for any backfill’s you
may create. One colour will always be 0 (background) as the pattern created
is chequer-board style. The colour specified here will give a halftone
effect mixed with the default grey (0). eg: 'FILLCOLOUR=3’ will make the
primary colour Blue.

This is the same as the CLI parameter ’-C’.

1.12 Using parameters from the CLI

The following parameters are supported at the current time. These are:

-a This switch will place string activation code into
the keyboard reader loop. See the ACTIVATESTRING
tooltype for more information.

-b This key will allow you to change the default
BlockPen. See the BPEN= tooltype for more info.

-B This switch will enable the creation of backfill code.
See the BACKFILL tooltype for more information.

-c This switch will turn on the creation of Select/
Case loops for gadgethit and key trapping. See SELECT

BlitzGUIGen 14 /24

tooltype for more information on this.

-C This parameter will allow you to set the default colour
for the backfill pattern. If not present, it will default to 2
(white). eg: '-C 3’ will make the primary colour 3 (Blue). See

the FILLCOLOUR tooltype for more info.

-d This key will allow you to change the default
DetailPen. See the DPEN= tooltype for more info.

-e This switch will turn off generating the main loop
that handles IDCMP events. See the NOMAIN tooltype for
more information.

-f This switch allows for the creation of Functions instead
of sub-routines. See the FUNCTIONS tooltype for more
information.

-g This switch will allow you to create GadTools

menu’s including nm_BarLabel. See the GTMENUS tooltype
for more info.

-gl This key will allow you to change the ’'GadgetList Label’.
See the GLISTLABEL tooltype for more information.

-h This switch will enable label highlighting. See the
HIGHLIGHTLABEL tooltype for more information.

-k This switch will suppress the creation of key press
detection loop. See the NOKEYS tooltype for more info.

-1 This switch will turn on the creation of embedded
comments within the created code. By omitting this parameter,
it will default to OFF (NO comments). See the COMMENTS
tooltype for more info.

-m This switch will turn off generating the menu code
that defines the menus. See the NOMENUS tooltype for
more information.

-ml This key will allow you to change the ’'Menu Label’.
See the MENULABEL tooltype for more information.

-p This key allows you to enter the search path that
BlitzGUIGen will look at for .gui files. The actual path
must be a valid AmigaDOS path following the -p key.
Refer to PATH= tooltype for more detailed info.

-s This switch will turn off generating the screen
assignment for your window. See the NOSCREEN tooltype for
more information.

-sl This key will allow you to change the ’Screen Label’.
See the SCREENLABEL tooltype for more information.

-t This switch will provide gadget toggling code.
See the TOGGLEGAD tooltype for more information.

BlitzGUIGen 15/24

-V This key allows you to set the default path to
save source files to. See the SAVEPATH= tooltype for
more info.

-w This switch will select the screen for your source
to use. See the SCREEN= tooltype for more info.

-wl This key will allow you to change the ’Window Label’.
See the WINDOWLABEL tooltype for more information.

-X This key will allow you to change the extension
that is appended to the end of the source file. See the
EXTENSION= tooltype for more info.

-X This switch will allow you to create an ?7?7?.xtra

file to accompany your source. See the Using ToolTypes

section for more detailed info on this.

Anything else typed as a parameter will be ignored and will invoke

the CLI template.

Refer to ToolTypes

1.13 Contacting the Author

Should you feel it necessary to contact us for any reason,
the following addresses should be used, but it is advisable
to contact via EMail first to confirm address:

Creative Software
186 Shepcot House
Cowper Gardens
Southgate

London

England

N14 4NT

or you can E-Mail if you prefer, to:

simon@darkside.demon.co.uk
or bml@thenet.co.uk
or FidoNet Netmail at 2:254/524.28
or AmigaNet Netmail at 39.139/1.28
or the BLITZ_AMY echo on AmigaNet
or on the usenet BLITZ_LIST list.

Either method, none is preferred, although electronic mail will

probably gain a response quicker than Royal Mail.

Should you be unlucky enough to find any bugs in either the

executable or the created source, you should mail a copy of

the created GadToolsBox gui to the above address, in order
to remedy the problem.

BlitzGUIGen 16/24

Updates will be released to all Aminet mirrors once they
are finished, and new registrations will receive the latest complete
version in exchange for their fee.

1.14 Registration

Registration fees are as follows:

The cost of a keyfile is now 10 UKP. This can be sent to me as cash

or in the form of a cheque. Overseas users can opt to send a Euro-Cheque,
but however the method, the payment should be in Pounds Sterling. If any
other currency is used, it MUST include a further balance to allow me to
convert it into English Pounds. If it is found that there are insufficent
funds to cover the price of the keyfile, you will be notified by you’re
preferred means, and the balance should be forwarded to me as soon as
possible. In the event that the balance is not recovered, you’re keyfile
will NOT be sent to you, and the money will cover the incurred expenses.

Any subsequent updates and bug fixes will be released via the Aminet
archive, usually in dev/basic.

In all correspondence, please quote your full name and address,

and your current version and revision number. Also specify how you
would like to receive your keyfile, ie: by Snail Mail, EMail or by
Netmail. Electronic mail is probably the quickest way to get it, but
may not be the safest.

1.15 History of Releases

Below is an up to date list of releases and version
numbers, and some comments pertaining to each:

Version 1.0

Compile date: March 1995

First official release. Put out to Beta-testers
and messages posted to AmigaNet Blitz area to
check out feedback. Uploaded to Waltons

Mountain BBS, but not complete version. Minor bug
found in #GTST_String and #GTTX_Text routines, not
reading the default string properly. Hopefully
fixed now!.

Also added the owner routine for release. A crypted
string embedded in executable, to allow for tracing

BlitzGUIGen 17 /24

purposes. This allows me to track the coverage of
different sources of distribution.

Currently, version 1.0 does not support the creation
of custom screens, even though you may have created
one from inside GadToolsBox. This maybe

something to include in later releases, depending on
demand and support.

Also added the BlitzGUIGen.doc. This included for
people who don’t like HyperGuide documents.

Version 1.01

Compile date: 14/4/1995

Added 2 more tooltypes:

EXTENSION= to allow the changing of default save suffix.
SAVEPATH= to redirect saving of source files.

Updated AmigaGuide + doc (again!).

Version 1.1

Compile date: 23/4/1995

After degrading back to 2.04, it was found after continuous
use, that there were still crashes just waiting to appear.
Small code rewrites and a re-compile later, and it seems stable
again.

Version 1.2

Compile date: 18/5/1995

Owing to a few complaints about supporting old software, I have
hopefully, allowed BlitzGUIGen to support GadToolsBox V2.0 Db or
V2.0c. V2.0c still hasn’t come into my possession due to the fact
that the ’"VvV2.0c’ distribution is actually V2.0b repacked!!!!
Unfortunately, this means it is, as yet, untested with V2.0c.

Version 1.2a

Compile date: 21/5/1995

This is an interim release as a minor (but inconvenient) bug
was found in the file verify routine. All fixed in this
version.

Version 1.3

Compile date: 22/5/1995

Finally, I’ve supported screens created within GadToolsBox
The type of screen is sensed and created appropriately.

The following screen types are:

Workbench - Blitz source uses Workbench Screen....Never! :-)

Public — Blitz source uses FindScreen to use front most
Public Screen.

Custom — Blitz source creates screen as defined from GadToolsBox.
Yet to support palettes, currently clones workbench
palette.

Version 1.4
Compile Date: 28/5/1995
Well this version now supports palettes for custom screens.

BlitzGUIGen 18/24

The palette information stored in the .gui file will be converted
into a set of RGB statements setting the screen colours
to clone that as described in the GadToolsBox .gui file.

Version 1.4a

Compile Date: 12/6/1995

This upgrade thanks to Dave Dexter (tester). Font sensitivity
now upgraded to set font in IntuiText. Any IntuiText printed
into the window will now use the chosen font, instead of using
the system’s default.

The screen size reading routine also has a problem getting the
width and height on some gui’s, but I am unable to recreate this.

When no SAVEPATH= tooltype was specified, the source was being
saved to launched path. Now corrected.

The routine for checking gui file version was rewritten, and
now there should be no problems with un-supported GadToolsBox
versions. Although, B1litzGUIGen is still to be tested

with Version 2.0c.

Version 1.5

Compile Date: Under Development

The biggest feature of this release is the fact that it is now
a key file upgrade. This version is freely distributable, but
certain functions are unavailable without the key file. More on
this later. Improvements and enhancements are:

Screen reading routine now corrected and reads sizes correctly.

The generated ’'Main Event Handler’ source now uses ’Select /
End Select block, instead of If Then block. This makes
the output easier to read.

A new tooltype has been added, ’"MakeXTRA’, and if present, this
will create an ??.xtra file to accompany your source. See the
Using ToolTypes section for more detailed info.

The tooltype reading code has been updated and cleaned, as there
seemed to be problems, which were found during rewrite.

The version number and owner details are shown in the screen title
when BlitzGUIGen is running.

The output source has been updated to include a GTArrowSize
command to accompany the GTScroller gadgets. The arrow size
wasn’t being converted correctly, but this fixed it.

Also, support for PowerPacked .gui files has been added
by request. This needs the DeCrunch executable in your C: drawer.
An error requester will appear if it can not be found, but it will
only look for it when needed IE: unpacking crunched gui’s.

Unfortunately, the following functions are disabled without the

BlitzGUIGen 19/24

key file:
Keyboard Shortcuts
Loading Blitz From BlitzGUIGen
Crunched gui support
Creation of Custom Screens in source
Creation of Menu Lists in source
Creation of .xtra file
Creation of Backfill code (1.8)

Version 1.6
Compile Date: 27/6/1995

Well here we go again.....

The most relevant update to this release is the support for
GadTools Menu’s. This come courtesy of Steve McNamara of

Leading Edge Software. You will need a ’'Deflibs’ file created
with the RIGTMenulLib.obj file in your ’userlibs’ drawer. This
will allow the use of the commands, added by this library, to
create GadTools Menu’s. This option can be suppressed, and source
made to create standard Blitz menu’s, by removing the ’GTMenus’
tooltype from the icon file.

Also, another tooltype has been added in order to suppress the
following function. The source can now create a loop to check for
key presses corresponding to your gadget shortcut’s. This is done
completely automatically, but can be suppressed by adding the
tooltype "NOKEYS’. See the Using ToolTypes section

for more details on these additions.

You may notice, or not as the case may be, that the tags supplied
for normal bevelbox’s has been changed. This was because of 2
Enforcer hits during compiling. Strange error, but filling the
tags out completely fixed it.

Also the DetailPen and BlockPen defaults have been changed, as
GadTools menu’s were corrupted by incorrect colours. A DPen
value of 0 and a BPen value of 1 looks correct, so I suggest
sticking with this. It also matches the DriPens settings set up
thro’ Intuition.

Also I'm afraid I’ve junked the document file as well, to try
to keep the distribution size down. If you really need it, then
contact me and I’1l pass it up.

One small note here is that a typing error was found in the CLI
parameter parser :(and rendered most parameters useless. Needless
to say, this has now been corrected.

Version 1.7a
Compile Date: 3/5/1996

This release now will handle multiple projects in one .gui file,
and will output a complete source for each window found in the file.
The filenames are differed by renaming each source file by inserting

BlitzGUIGen 20/ 24

the number of the window into the source filename.

If you elect to launch a new Blitz editor, BlitzGUIGen will inform
you that multiple sources have been created and will show you the
names of the source filenames. There will be a separate Blitz
editor window opened for each source, and you can manipulate them
as you need.

Also, the font sensitivity has been updated to supply the font

to the screen as well. Therefore, if you are creating GadTools menus
the font will be used for them as well. I am yet to work out an
"easy’ way to get the screen title and window title to use the new
font as well yet, but I’'1ll keep trying. Otherwise it’s starting to
get more like a ’C’ source creator :)

I have also added a few new tooltypes.

The first one is called ’SELECT’, and this will allow us

to specify using Select/Case loops for checking, instead of
If/EndIf loops. The ’Select’ loops seemed like a good idea to
start off with, but I have run into a few problems with these
loops. Mainly, executing a ’'Gosub’ from within the loop will
throw up a ’Return Without Gosub’ when trying to return. For
this reason, I decided to go back to If/EndIf loops, but it’s
entirely up to you what you use.

Next is 'WINDOWLABEL’. All the xxxLABEL parameters have been
included really for my personal use, but I thought that someone

else may be able to make use of them as well. I find them invaluable,
as they make my life considerably easier, but that’s my programming
style. "WINDOWLABEL=windonum’ will force the source to use

"windonum’ as the value assigned to the window. All references to
the window are now called via ’'windonum’ .

The same goes for ’SCREENLABEL’,’GLISTLABEL’ and ’'MENULABEL’ which
all apply the same as above.

The tooltype ’'ACTIVATESTRING’ has been added as well which will
cause a small piece of code to be wedged into the keyboard reader
so that key presses pertaining to ’String’ or ’'Integer’ gadgets
will be automatically activated.

Added ’"HIGHLIGHTLABEL’ for personal use really. This will force the
source labels to be preceeded by a ’.’ making them appear in the
right hand column of the Blitz editor.

The piece-de-resistance in this release is the tooltype ’'TOGGLEGAD’.
This will force the source to include a short routine at the bottom
which will make the button react to a keyboard shortcut as though
it had been clicked on with the mouse. By pressing the underscored
letter on the button, the button will highlight, wait, and then
unhighlight. This has been seen in program’s such as Reqgtools

and SPOT, to name just a few. Now you can add this ’'professional’
look to your own code automatically.

Added yet another tooltype. 'FUNCTIONS’ now allows you to have
B1litzGUIGen to create ’Statements’ out of the subroutines

instead of having ’Gosub xxx’. This has been suggested by those of
you that are heavily into structured (??) programs ;)

The default setting for this is OFF or to create sub-routines.

BlitzGUIGen 21/24

While on the subject of tooltypes, ’'COMMENTS’ now allows to you
turn on the creation of embedded comments in the created source.
By omitting it, this turns the option off.

Another bug squashed! :) It seems that GadToolsBox doesn’t

save a palette for the custom screen if you haven’t editted it.
Therefore the screen copies the WB palette, but this info is not in
the .gui file. Consequently, BlitzGUIGen was trying to convert a
palette that wasn’t there :(That problem is sorted out as well now,
and BlitzGUIGen will now sense if the palette is present, and if not,
will clone the WB screen’s palette.

Many rewrites of various code sections, formatting of output, and
optimisation have taken the bulk of the time on this release. The
main source improvement being the presence of proper menu checking
loops in source now. Instead of just checking for any menu event and
then quitting, we now have a full set of ’"ItemHit’ statements to
build onto. Comments and labels are, of course, included.

Yet another improvement has taken place. I have now included the
code to ’"Jjoin’ a listview to a string. If this option has been
selected from within GadToolsBox, the source code generated

will enable your code to be able to highlight the selected item from
the listview in the string gadget placed underneath it without any
coding on your behalf.

Finally ironed out an annoying bug that caused loads of 'hits’ and
a crash when exitting. Strangely enough, while rewriting some
apparently unrelated code, it righted itself. Wierd!

Fixed another bug. My fault this one! BlitzGUIGen will look at the
font used in the .gui file and see if it exists on the system. What
I did was to scan the Fonts: dir to check, but the default font of
"topaz.font’ size 8 isn’t there, it’s in the ROM. BlitzGUIGen threw
up an error saying it couldn’t find the font, and was changing the
font to ’"topaz.font 8’ ;) Silly I know, but fixed now!

Also added the ability to assign the gadget ID’s to a set of
constants. This facility, according to my main feature suggester,
makes the code more easily modified! Thanks Tony!

Crashing on exit returns <grrrr>. After labouring for ages to find
it, Paul Juhasz steps in and saves the day. Hurrah!

Versions up to 37.143 contain small bug fixes and tidy-ups. Nothing major.

Version 1.8 Rev 37.145
Compile Date: 28/1/1997

The ouput source has been modified slightly to accommodate this
versions improvements.

Mainly, this comprises of the ability to automatically create code

to put a backfill pattern into the window. This pattern can be any

one of the current screens palette by changing the first colour number.

BlitzGUIGen 22 /24

(See commented code at this point...). The backfill will fill the
entire window unless a bevelbox has been created, in which case, a
rectfill on the boxes co-ordinates will clear the inside portion.

Also added a tooltype, ’'BACKFILL’, which will enable this feature
permanently, although this setting is over-ridable by toggling the
new checkbox in the main window. This facility is only available to
registered users.

On reflection, the tooltype ’'FILLCOLOUR’ was added as well. This sets

the colour for the backfill more permanantly. The default setting is 2
which will give a nice light grey effect, but you can change it on the
fly by using the entry gadget located on the main gui.

Also added the code to make BlitzGUIGen open in the center of the
screen. This is something that has been bugging me for a while, so I
decided to add it now. And before you ask, 'No it’s still not font
sensitive!’ ;)

Version 1.8 Rev 37.146
Compile Date: 5/2/1997

This release includes the expansion to the ’"MAKETOGGLE’ tooltype.
If this option is specified, then any checkboxes that may have been
created will now have toggle code automatically added to the key
reading routine. This allows the checkbox to be alternated between
it’s states by pressing the corresponding key if a shortcut was
created.

Version 1.8 Rev 37.148
Compile Date: 14/3/1997

Generaly messed around with the created source trying to organise

it better, and make it clearer to understand.

Also moved the Backfill code into a Function/Subroutine, and replaced
the BltPattern with Rectfill. This seems to be faster, but I'm sure
you’ll moan if I'm wrong. ;)

(This is a nice little routine that’ll go well in anybody’s library!)

Version 1.8 Rev 37.149
Compile Date: 29/5/1997

Cured a niggling little fault where some gadgets where being generated
one pixel less on the height and a small fix for the default number

in the ’'GTInteger’ gadget.

Also fixed border corruption in the DoBackFillMethod{} function.

Version 1.8 Rev 37.150
Compile Date: 6/6/1997

Decided it would be a good idea to create a GUI that used a Picasso

screen mode. BlitzGUIGen fell over trying to create a 256 colour palette.
This has now been fixed. Due to my nearsightedness, I only set the maximum
colours to 32. Now you can handle up to 256 colours. Just in case, I have
included a check, and if more colours have been defined, BlitzGUIGen will
now knock it down to 256.

BlitzGUIGen

23/24

Nevertheless, it appears that Blitz doesn’t like the screenmode anyway,
but

at least you should be safe with 256 colour native screen modes.

1.16 Oh Dear, I've Found A BUG!!!

In the unlikely event you find a bug, you should mail me a copy

of the saved .GUI file to one of the contact addresses given above.
You should, also, never receive any error messages while creating
source, but you may get an ’Unsupported Tag’ error. If you do, please
send me the .gui file and we can try and sort it out.

1.17 My little helpers!

I would like to thank the following people for their assistance
in testing and contributing to BlitzGUIGen. This list
is by no means in any order.

Paul Shandi Tester and Feature suggester

Dave Dexter Tester and Error spotter

Jaime Burns Tester and Bug finder

Perry Mowbray Tester and Document formatting
Phillip Eastham Tester

Anthony Brice Tester (V1.7a) and Feature suggester

Mark Sibly and
Simon Armstrong for Blitz Basic (of course!)

Steve McNamara of Leading Edge Software for his RIGTMenuLib.obj
library, and the support for GadTools menu’s it provides.

The UK support center for finally getting my BUM8 to me,
although I’'d like to know what the hell happened to BUM 9!
<later> Where’s my BUM 107? ;)

But most importantly, Paul Juhasz, without who’s help 1.7a would
never have got this far.

Thanks chaps.......ccoiieeeen..

1.18 Things That Still Need To Be Done

Well there isn’t much really left to implement, but you might
have some ideas on improvements.

If you want to see it, hassle me and send in your registrations,
that way I mat get some motivation!

Thanks to all of you in advance who will use BlitzGUIGen, and to
all who will register, thanks for your support.

BlitzGUIGen 24 /24

See you all in a key file coming to you soon (I hope!).........

	BlitzGUIGen
	BlitzGUIGen.Manual
	Legal Notices and Copyrights
	Legal stuff about BlitzGUIGen
	Legal stuff about GadToolsBox
	Legal stuff about IntuTools
	Legal Stuff about PowerPacker and Decrunch
	What is that BlitzGUIGen thing?
	What requirements do I need?
	An overview on using BlitzGUIGen
	An In Depth look at BlitzGUIGen
	Using tooltypes from Workbench
	Using parameters from the CLI
	Contacting the Author
	Registration
	History of Releases
	Oh Dear, I've Found A BUG!!!
	My little helpers!
	Things That Still Need To Be Done

