PGP-INTRO(7) Guide version

Chris Page

PGP-INTRO(7) Guide version

COLLABORATORS

TITLE :

PGP-INTRO(7) Guide version

ACTION

NAME DATE

SIGNATURE

WRITTEN BY

Chris Page August 22, 2024

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

PGP-INTRO(7) Guide version iii

Contents

1 PGP-INTRO(7) Guide version 1
L1 Welcome e 1
1.2 WhyIwrote PGP e 1
1.3 Encryption Basics L e e 5
1.4 How Public Key Cryptography Works e 5
1.5 How Your Files and Messages are Encrypted Lo o 5
1.6 The PGP Symmetric Algorithms e 6
1.7 Data Compression o v v v v v i e 7
1.8 About the Random Numbers used as Session Keys L o 7
1.9 How Decryption Works e 8
1.10 How Digital Signatures Work L 8
1.11 About the Message Digest 0 e e e e 8
1.12 How to Protect Public Keys from Tampering o 9
1.13 How Does PGP Keep Track of Which Keys are Valid? 12
1.14 How to Protect Private Keys from Disclosure 13
1.15 What If You Lose Your Private Key? e 14
1.16 Beware of Snake Oil oL e 15
1.17 Vulnerabilities o L e e 18
1.18 Recommended Introductory & Other readings i e 24

1.19

PGP-INTRO(7) Guide version 1/24

Chapter 1

PGP-INTRO(7) Guide version

1.1 Welcome

PGP-INTRO User Manual PGP-INTRO

SECURITY FEATURES AND VULNERABILITIES
By Phil Zimmermann

Converted to AmigaGuide format by Chris Page

"Whatever you do will be insignificant, but it is very
important that you do it." -Mahatma Gandhi.

Why I wrote PGP
Encryption Basics
How Public Key Cryptography Works
How Your Files and Messages are Encrypted
The PGP Symmetric Algorithms
Data Compression
About the Random Numbers used as Session Keys
How Decryption Works
How Digital Signatures Work
About the Message Digest
How to Protect Public Keys from Tampering
How Does PGP Keep Track of Which Keys are Valid?
How to Protect Private Keys from Disclosure
What If You Lose Your Private Key?
Beware of Snake 0Oil
Vulnerabilities
Recommended Introductory & Other readings

About The AmigaGuide version

1.2 Why | wrote PGP

Why I wrote PGP

PGP-INTRO(7) Guide version

2/24

It’s personal. It’s private. And it’s no one’s business but yours. You
may be planning a political campaign, discussing your taxes, or having a secret
romance. Or you may be communicating with a political dissident in a repressive
country. Whatever it is, you don’t want your private electronic mail (e-mail)
or confidential documents read by anyone else. There’s nothing wrong with
asserting your privacy. Privacy is as apple-pie as the Constitution.

The right to privacy is spread implicitly throughout the Bill of Rights.
But when the US Constitution was framed, the Founding Fathers saw no need to
explicitly spell out the right to a private conversation. That would have been
silly. Two hundred years ago, all conversations were private. If someone else
was within earshot, you could just go out behind the barn and have your
conversation there. No one could listen in without your knowledge. The right
to a private conversation was a natural right, not Jjust in a philosophical
sense, but in a law-of-physics sense, given the technology of the time. But
with the coming of the information age, starting with the invention of the
telephone, all that has changed. Now most of our conversations are conducted
electronically. This allows our most intimate conversations to be exposed
without our knowledge. Cellular phone calls may be monitored by anyone with a
radio. Electronic mail, sent across the Internet, is no more secure than
cellular phone calls. E-mail is rapidly replacing postal mail, becoming the
norm for everyone, not the novelty it was in the past. And e-mail can be
routinely and automatically scanned for interesting keywords, on a large scale,
without detection. This is like driftnet fishing.

Perhaps you think your e-mail is legitimate enough that encryption is
unwarranted. If you really are a law-abiding citizen with nothing to hide, then
why don’t you always send your paper mail on postcards? Why not submit to drug
testing on demand? Why require a warrant for police searches of your house?

Are you trying to hide something? If you hide your mail inside envelopes, does
that mean you must be a subversive or a drug dealer, or maybe a paranoid nut?
Do law-abiding citizens have any need to encrypt their e-mail?

What if everyone believed that law-abiding citizens should use postcards for
their mail? If a nonconformist tried to assert his privacy by using an envelope
for his mail, it would draw suspicion. Perhaps the authorities would open his

mail to see what he’s hiding. Fortunately, we don’t live in that kind of world,
because everyone protects most of their mail with envelopes. So no one draws
suspicion by asserting their privacy with an envelope. There’s safety in

numbers. Analogously, it would be nice if everyone routinely used encryption
for all their e-mail, innocent or not, so that no one drew suspicion by

asserting their e-mail privacy with encryption. Think of it as a form of
solidarity. Until now, if the government wanted to violate the privacy of
ordinary citizens, they had to expend a certain amount of expense and labor to
intercept and steam open and read paper mail. Or they had to listen to and
possibly transcribe spoken telephone conversation, at least before automatic
volce recognition technology became available. This kind of labor-intensive
monitoring was not practical on a large scale. This was only done in important

cases when it seemed worthwhile.

Senate Bill 266, a 1991 omnibus anti-crime bill, had an unsettling measure
buried in it. If this non-binding resolution had become real law, it would have
forced manufacturers of secure communications equipment to insert special "trap
doors" in their products, so that the government can read anyone’s encrypted
messages. It reads:

PGP-INTRO(7) Guide version

3/24

"It is the sense of Congress that providers of electronic communications
services and manufacturers of electronic communications service equipment
shall ensure that communications systems permit the government to obtain
the plain text contents of voice, data, and other communications when
appropriately authorized by law."

It was this bill that led me to publish PGP electronically for free that year,
shortly before the measure was defeated after rigorous protest from civil
libertarians and industry groups. The 1994 Digital Telephony bill mandated that
phone companies install remote wiretapping ports into their central office
digital switches, creating a new technology infrastructure for "point-and-click"
wiretapping, so that federal agents no longer have to go out and attach
alligator clips to phone lines. Now they’ll be able to sit in their
headquarters in Washington and listen in on your phone calls. Of course, the
law still requires a court order for a wiretap. But while technology
infrastructures can persist for generations, laws and policies can change
overnight. Once a communications infrastructure optimized for surveillance
becomes entrenched, a shift in political conditions may lead to abuse of this
new—found power. Political conditions may shift with the election of a new
government, or perhaps more abruptly from the bombing of a Federal building.

A year after the 1994 Digital Telephony bill passed, the FBI disclosed plans to
require the phone companies to build into their infrastructure the capacity to
simultaneously wiretap one percent of all phone calls in all major US cities.
This would represent more than a thousandfold increase over previous levels in
the number of phones that could be wiretapped. In previous years, there were
only about 1000 court-ordered wiretaps in the US per year, at the federal,
state, and local levels combined. It’s hard to see how the government could
even employ enough judges to sign enough wiretap orders to wiretap 1% of all our
phone calls, much less hire enough federal agents to sit and listen to all that
traffic in real time. The only plausible way of processing that amount of
traffic is a massive Orwellian application of automated voice recognition
technology to sift through it all, searching for interesting keywords or
searching for a particular speaker’s voice. If the government doesn’t find the
target in the first 1% sample, the wiretaps can be shifted over to a different
1% until the target is found, or until everyone’s phone line has been checked
for subversive traffic. The FBI says they need this capacity to plan for the
future. This plan sparked such outrage that it was defeated in Congress, at
least this time around, in 1995. But the mere fact that the FBI even asked for
these broad powers is revealing of their agenda. And the defeat of this plan
isn’t so reassuring when you consider that the 1994 Digital Telephony bill was
also defeated the first time it was introduced, in 1993.

Advances in technology will not permit the maintenance of the status quo, as
far as privacy is concerned. The status quo is unstable. If we do nothing, new
technologies will give the government new automatic surveillance capabilities
that Stalin could never have dreamed of. The only way to hold the line on
privacy in the information age is strong cryptography.

You don’t have to distrust the government to want to use cryptography. Your
business can be wiretapped by business rivals, organized crime, or foreign
governments. The French government, for example, is notorious for using its
signals intelligence apparatus against US companies to help French corporations
get a competitive edge. Ironically, US government restrictions on cryptography
have weakened US corporate defenses against foreign intelligence and organized
crime.

PGP-INTRO(7) Guide version

4/24

The government knows what a pivotal role cryptography is destined to play in
the power relationship with its people. In April 1993, the Clinton
administration unveiled a bold new encryption policy initiative, which was under
development at National Security Agency (NSA) since the start of the Bush
administration. The centerpiece of this initiative is a government-built
encryption device, called the "Clipper" chip, containing a new classified NSA
encryption algorithm. The government has been trying to encourage private
industry to design it into all their secure communication products, like secure
phones, secure FAX, etc. AT&T has put Clipper into their secure voice products.
The catch: At the time of manufacture, each Clipper chip will be loaded with
its own unique key, and the government gets to keep a copy, placed in escrow.
Not to worry, though-the government promises that they will use these keys to
read your traffic only "when duly authorized by law." Of course, to make Clipper
completely effective, the next logical step would be to outlaw other forms of
cryptography.

The government initially claimed that using Clipper would be voluntary, that
no one would be forced to use it instead of other types of cryptography. But
the public reaction against the Clipper chip has been strong, stronger than the
government anticipated. The computer industry has monolithically proclaimed its
opposition to using Clipper. FBI director Louis Freeh responded to a question
in a press conference in 1994 by saying that if Clipper failed to gain public
support, and FBI wiretaps were shut out by non-government- controlled
cryptography, his office would have no choice but to seek legislative relief.
Later, in the aftermath of the Oklahoma City tragedy, Mr. Freeh testified
before the Senate Judiciary Committee that public availability of strong
cryptography must be curtailed by the government (although no one had suggested
that cryptography was used by the bombers).

The Electronic Privacy Information Center (EPIC) obtained some revealing
documents under the Freedom of Information Act. 1In a "briefing document" titled
"Encryption: The Threat, Applications and Potential Solutions," and sent to the
National Security Council in February 1993, the FBI, NSA and Department of
Justice (DOJ) concluded that:

"Technical solutions, such as they are, will only work if they are
incorporated into all encryption products. To ensure that this occurs,
legislation mandating the use of Government-approved encryption products
or adherence to Government encryption criteria is required."

The government has a track record that does not inspire confidence that they
will never abuse our civil liberties. The FBI’'s COINTELPRO program targeted
groups that opposed government policies. They spied on the anti-war movement
and the civil rights movement. They wiretapped the phone of Martin Luther King
Jr. Nixon had his enemies list. And then there was the Watergate mess.
Congress now seems intent on passing laws curtailing our civil liberties on the
Internet. At no time in the past century has public distrust of the government
been so broadly distributed across the political spectrum, as it is today. If
we want to resist this unsettling trend in the government to outlaw
cryptography, one measure we can apply 1s to use cryptography as much as we can
now while it is still legal.

When use of strong cryptography becomes popular, it’s harder for the
government to criminalize it. Thus, using PGP is good for preserving democracy.

If privacy is outlawed, only outlaws will have privacy. Intelligence

PGP-INTRO(7) Guide version

5/24

agencies have access to good cryptographic technology. So do the big arms and
drug traffickers. But ordinary people and grassroots political organizations
mostly have not had access to affordable "military grade" public-key
cryptographic technology. Until now.

PGP empowers people to take their privacy into their own hands. There’s a
growing social need for it. That’s why I created it.

1.3 Encryption Basics

First, some elementary terminology. Suppose you want to send a message to a
colleague, whom we’ll call Alice, and you don’t want anyone but Alice to be able
to read it. You can encrypt, or encipher the message, which means scrambling it
up in a hopelessly complicated way, rendering it unreadable to anyone except you
and Alice. You supply a cryptographic key to encrypt the message, and Alice
must use the same key to decipher or decrypt it. At least that’s how it works
in conventional "secret-key" encryption.

A single key is used for both encryption and decryption. This means that
this key must be initially transmitted via secure channels so that both parties
can know it before encrypted messages can be sent over insecure channels. This
may be inconvenient. If you have a secure channel for exchanging keys, then why
do you need cryptography in the first place?

1.4 How Public Key Cryptography Works

In public key cryptography, everyone has two related complementary keys, a
public key and a private key. Each key unlocks the code that the other key
makes. Knowing the public key does not help you deduce the corresponding
private key. The public key can be published and widely disseminated across a
communications network.

This protocol provides privacy without the need for the same kind of secure
channels that conventional secret key encryption requires. Anyone can use a
recipient’s public key to encrypt a message to that person, and that recipient
uses her own corresponding private key to decrypt that message. No one but the
recipient can decrypt it, because no one else has access to that private key.
Not even the person who encrypted the message with the recipient’s public key
can decrypt it.

1.5 How Your Files and Messages are Encrypted

Because the public key encryption algorithm is much slower than conventional
single—-key encryption, encryption is better accomplished by using the process
described below.

A high-quality fast conventional secret-key encryption algorithm is used to
encipher the message. This original unenciphered message is called "plaintext."
In a process invisible to the user, a temporary random key, created just for

PGP-INTRO(7) Guide version 6/24

this one "session," is used to conventionally encipher the plaintext file. Then
the recipient’s public key is used to encipher this temporary random
conventional key. This public-key-enciphered conventional "session" key is sent
along with the enciphered text (called "ciphertext") to the recipient.

1.6 The PGP Symmetric Algorithms

PGP offers a selection of different secret-key algorithms to encrypt the
actual message. By secret key algorithm, we mean a conventional, or symmetric,
block cipher that uses the same key to both encrypt and decrypt. The three
symmetric block ciphers offered by PGP are CAST, Triple-DES, and IDEA. They are
not "home-grown" algorithms. They were all developed by teams of cryptographers
with distinguished reputations.

For the cryptographically curious, all three ciphers operate on 64-bit
blocks of plaintext and ciphertext. CAST and IDEA have key sizes of 128 Dbits,
while triple-DES uses a 168-bit key. Like Data Encryption Standard (DES), any
of these ciphers can be used in cipher feedback (CFB) and cipher block chaining
(CBC) modes. PGP uses them in 64-bit CFB mode. I included the CAST encryption
algorithm in PGP because it shows promise as a good block cipher with a 128-bit

key size, it’s very fast, and it’s free. 1Its name is derived from the initials
of its designers, Carlisle Adams and Stafford Tavares of Northern Telecom
(Nortel). Nortel has applied for a patent for CAST, but they have made a

commitment in writing to make CAST available to anyone on a royalty-free basis.
CAST appears to exceptionally well-designed, by people with good reputations in
the field. The design is based on a very formal approach, with a number of
formally provable assertions that give good reasons to believe that it probably
requires key exhaustion to break its 128-bit key. CAST has no weak or semi-weak
keys. There are strong arguments that CAST is completely immune to both linear
and differential cryptanalysis, the two most powerful forms of cryptanalysis in
the published literature, both of which have been effective in cracking DES.
While CAST is too new to have developed a long track record, its formal design
and the good reputations of its designers will undoubtedly attract the
attentions and attempted cryptanalytic attacks of the rest of the academic
cryptographic community. I’m getting nearly the same preliminary gut feeling of
confidence from CAST that I got years ago from IDEA, the cipher I selected for
use in earlier versions of PGP. At that time, IDEA was also too new to have a
track record, but it has held up well.

The IDEA (International Data Encryption Algorithm) block cipher is based on
the design concept of "mixing operations from different algebraic groups." It
was developed at ETH in Zurich by James L. Massey and Xuejia Lai, and published
in 1990. Early published papers on the algorithm called it IPES (Improved
Proposed Encryption Standard), but they later changed the name to IDEA. So far,
IDEA has resisted attack much better than other ciphers such as FEAL, REDOC-ITI,
LOKI, Snefru and Khafre. And IDEA is more resistant than DES to Biham and
Shamir’s highly successful differential cryptanalysis attack, as well as attacks
from linear cryptanalysis. As this cipher continues to attract attack efforts
from the most formidable quarters of the cryptanalytic world, confidence in IDEA
is growing with the passage of time. Sadly, the biggest obstacle to IDEA’s
acceptance as a standard has been the fact that Ascom Systec holds a patent on
its design, and unlike DES and CAST, IDEA has not been made available to
everyone on a royalty-free basis.

As a hedge, PGP includes three-key triple-DES in its repertoire of available

PGP-INTRO(7) Guide version

7/24

block ciphers. The DES was developed by IBM in the mid-1970s. While it has a
good design, its 56-bit key size is too small by today’s standards. Triple-DES
is very strong, and has been well studied for many years, so it might be a safer
bet than the newer ciphers such as CAST and IDEA. Triple-DES is the DES applied
three times to the same block of data, using three different keys, except that
the second DES operation is run backwards, in decrypt mode. Although triple-DES
is much slower than either CAST or IDEA, speed is usually not critical for
e-mail applications. While triple-DES uses a key size of 168 bits, it appears
to have an effective key strength of at least 112 bits against an attacker with
impossibly immense data storage capacity to use in the attack. According to a
paper presented by Michael Weiner at Crypto96, any remotely plausible amount of
data storage available to the attacker would enable an attack that would require
about as much work as breaking a 129-bit key. Triple-DES is not encumbered by
any patents.

PGP public keys that were generated by PGP Version 5.0 or later have
information embedded in them that tells a sender what block ciphers are
understood by the recipient’s software, so that the sender’s software knows
which ciphers can be used to encrypt. DSS/Diffie-Hellman public keys will
accept CAST, IDEA, or triple-DES as the block cipher, with CAST as the default
selection. At present, for compatibility reasons, RSA keys do not provide this
feature. Only the IDEA cipher is used by PGP to send messages to RSA keys,
because older versions of PGP only supported RSA and IDEA.

1.7 Data Compression

PGP normally compresses the plaintext before encrypting it, because it’s too
late to compress the plaintext after it has been encrypted; encrypted data is
incompressible. Data compression saves modem transmission time and disk space
and, more importantly, strengthens cryptographic security. Most cryptanalysis
techniques exploit redundancies found in the plaintext to crack the cipher.

Data compression reduces this redundancy in the plaintext, thereby greatly
enhancing resistance to cryptanalysis. It takes extra time to compress the
plaintext, but from a security point of view it’s worth it.

Files that are too short to compress, or that just don’t compress well, are
not compressed by PGP. In addition, the program recognizes files produced by
most popular compression programs, such as PKZIP, and does not try to compress a
file that has already been compressed.

For the technically curious, the program uses the freeware ZIP compression
routines written by Jean-Loup Gailly, Mark Adler, and Richard B. Wales. This
ZIP software uses compression algorithms that are functionally equivalent to
those used by PKWare’s PKZIP 2.x. This ZIP compression software was selected
for PGP mainly because it has a really good compression ratio and because it’s
fast.

1.8 About the Random Numbers used as Session Keys

PGP uses a cryptographically strong pseudo-random number generator for
creating temporary session keys. If this random seed file does not exist, it is

PGP-INTRO(7) Guide version 8/24

automatically created and seeded with truly random numbers derived from your
random events gathered by the PGP program from the timing of your keystroke and
mouse movements.

This generator reseeds the seed file each time it is used, by mixing in new
material partially derived from the time of day and other truly random sources.
It uses the conventional encryption algorithm as an engine for the random number
generator. The seed file contains both random seed material and random key
material used to key the conventional encryption engine for the random
generator.

This random seed file should be protected from disclosure, to reduce the risk of
an attacker deriving your next or previous session keys. The attacker would
have a very hard time getting anything useful from capturing this random seed
file, because the file is cryptographically laundered before and after each use.
Nonetheless, it seems prudent to try to keep it from falling into the wrong
hands. If possible, make the file readable only by you. If this is not
possible, do not let other people indiscriminately copy disks from your
computer.

1.9 How Decryption Works

The decryption process is Jjust the reverse of encryption. The recipient’s
private key is used to recover the temporary session key, and then that session
key is used to run the fast conventional secret-key algorithm to decipher the
large ciphertext message.

1.10 How Digital Signatures Work

PGP uses digital signatures to provide message authentication. The sender’s
own private key can be used to encrypt a message digest, thereby "signing" the
message. A message digest is a 160-bit or a 128-bit cryptographically strong
one-way hash function. It is somewhat analogous to a "checksum" or CRC error
checking code, in that it compactly represents the message and is used to detect
changes in the message. Unlike a CRC, however, it is believed to be
computationally infeasible for an attacker to devise a substitute message that
would produce an identical message digest. The message digest gets encrypted by
the sender’s private key, creating a digital signature of the message.

The recipient (or anyone else) can verify the digital signature by using the
sender’s public key to decrypt it. This proves that the sender was the true
originator of the message, and that the message has not been subsequently
altered by anyone else, because the sender alone possesses the private key that
made that signature. Forgery of a signed message is not feasible, and the
sender cannot later disavow his signature.

1.11 About the Message Digest

PGP-INTRO(7) Guide version 9/24

The message digest is a compact (160-bit, or 128-bit) "distillate" of your
message or file checksum. You can also think of it as a "fingerprint" of the
message or file. The message digest "represents" your message, such that if the
message were altered in any way, a different message digest would be computed
from it. This makes it possible to detect any changes made to the message by a
forger. A message digest is computed using a cryptographically strong one-way
hash function of the message. It should be computationally infeasible for an
attacker to devise a substitute message that would produce an identical message
digest. In that respect, a message digest is much better than a checksum,
because it 1s easy to devise a different message that would produce the same
checksum. But like a checksum, you can’t derive the original message from its
message digest.

The message digest algorithm now used in PGP (Version 5.0 and later) is
called SHA, which stands for Secure Hash Algorithm, designed by the NSA for
National Institute of Standards and Technology (NIST). SHA is a 160-bit hash
algorithm. Some people might regard anything from the NSA with suspicion,
because the NSA is in charge of intercepting communications and breaking codes.
But keep in mind that the NSA has no interest in forging signatures, and the
government would benefit from a good unforgeable digital signature standard that
would preclude anyone from repudiating their signatures. That has distinct
benefits for law enforcement and intelligence gathering. Also, SHA has been
published in the open literature and has been extensively peer reviewed by most
of the best cryptographers in the world who specialize in hash functions, and
the unanimous opinion is that SHA is extremely well designed. It has some
design innovations that overcome all the observed weaknesses in message digest
algorithms previously published by academic cryptographers. All new versions of
PGP use SHA as the message digest algorithm for creating signatures with the new
DSS keys that comply with the NIST Digital Signature Standard. For
compatibility reasons, new versions of PGP still use MD5 for RSA signatures,
because older versions of PGP used MD5 for RSA signatures.

The message digest algorithm used by older versions of PGP is the MD5
Message Digest Algorithm, placed in the public domain by RSA Data Security, Inc.
MD5 is a 128-bit hash algorithm. In 1996, MD5 was all but broken by Hans
Dobbertin, a German cryptographer. While MD5 was not completely broken at that
time, it was discovered to have such serious weaknesses that no one should keep
using it to generate signatures. Further work in this area might completely
break it, thus allowing signatures to be forged. 1If you don’t want to someday
find your PGP digital signature on a forged confession, you might be well
advised to migrate to the new PGP DSS keys as your preferred method for making
digital signatures, because DSS uses SHA as its secure hash algorithm.

1.12 How to Protect Public Keys from Tampering

In a public key cryptosystem, you don’t have to protect public keys from
exposure. In fact, it’s better if they are widely disseminated. But it’s
important to protect public keys from tampering, to make sure that a public key
really belongs to whom it appears to belong to. This may be the most important
vulnerability of a public key cryptosystem. Let’s first look at a potential
disaster, then describe how to safely avoid it with PGP. Suppose you want to
send a private message to Alice. You download Alice’s public key certificate
from an electronic bulletin board system (BBS). You encrypt your letter to

PGP-INTRO(7) Guide version 10/ 24

Alice with this public key and send it to her through the BBS’s e-mail facility.

Unfortunately, unbeknownst to you or Alice, another user named Charlie has
infiltrated the BBS and generated a public key of his own with Alice’s user ID
attached to it. He covertly substitutes his bogus key in place of Alice’s real
public key. You unwittingly use this bogus key belonging to Charlie instead of
Alice’s public key. All looks normal because this bogus key has Alice’s user
ID. ©Now Charlie can decipher the message intended for Alice because he has the
matching private key. He may even re-encrypt the deciphered message with
Alice’s real public key and send it on to her so that no one suspects any
wrongdoing. Furthermore, he can even make apparently good signatures from Alice
with this private key because everyone will use the bogus public key to check
Alice’s signatures.

The only way to prevent this disaster is to prevent anyone from tampering
with public keys. If you got Alice’s public key directly from Alice, this is no
problem. But that may be difficult if Alice is a thousand miles away, or is
currently unreachable.

Perhaps you could get Alice’s public key from a mutually trusted friend
David, who knows he has a good copy of Alice’s public key. David could sign
Alice’s public key, vouching for the integrity of Alice’s public key. David
would create this signature with his own private key.

This would create a signed public key certificate, and would show that Alice’s
key had not been tampered with. This requires that you have a known good copy
of David’s public key to check his signature. Perhaps David could provide Alice
with a signed copy of your public key also. David is thus serving as an
"Introducer" between you and Alice.

This signed public key certificate for Alice could be uploaded by David or
Alice to the BBS, and you could download it later. You could then check the
signature via David’s public key and thus be assured that this is really Alice’s
public key. No impostor can fool you into accepting his own bogus key as
Alice’s because no one else can forge signatures made by David.

A widely trusted person could even specialize in providing this service of
"introducing" users to each other by providing signatures for their public key
certificates. This trusted person could be regarded as a "Certifying
Authority." Any public key certificates bearing the Certifying Authority’s
signature could be trusted as truly belonging to whom they appear to belong to.
All users who wanted to participate would need a known good copy of just the
Certifying Authority’s public key, so that the Certifying Authority’s signatures
could be verified. 1In some cases, the Certifying Authority may also act as a
key server, allowing users on a network to look up public keys by asking the key
server, but there is no reason why a key server must also certify keys.

A trusted centralized Certifying Authority is especially appropriate for
large impersonal centrally controlled corporate or government institutions.
Some institutional environments use hierarchies of Certifying Authorities. For
more decentralized environments, allowing all users to act as trusted
introducers for their friends would probably work better than a centralized key
certification authority.

One of the attractive features of PGP is that it can operate equally well in
a centralized environment with a Certifying Authority or a more decentralized
environment where individuals exchange personal keys. This whole business of

PGP-INTRO(7) Guide version 11/24

protecting public keys from tampering is the single most difficult problem in
practical public key applications. It is the "Achilles heel" of public key
cryptography, and a lot of software complexity is tied up in solving this one
problem. You should use a public key only after you are sure that it is a good
public key that has not been tampered with, and that it actually belongs to the
person with whom it purports to be associated. You can be sure of this if you
got this public key certificate directly from its owner, or if it bears the
signature of someone else that you trust, from whom you already have a good
public key. Also, the user ID should have the full name of the key’s owner, not
just her first name. No matter how tempted you are, you should never give in to
expediency and trust a public key you downloaded from a bulletin board, unless
it is signed by someone you trust. That uncertified public key could have been
tampered with by anyone, maybe even by the system administrator of the bulletin
board.

If you are asked to sign someone else’s public key certificate, make certain
that it really belongs to that person named in the user ID of that public key
certificate. This is because your signature on her public key certificate is a
promise by you that this public key really belongs to her. Other people who
trust you will accept her public key because it bears your signature. It may be
ill-advised to rely on hearsay - don’t sign her public key unless you have
independent first hand knowledge that it really belongs to her. Preferably, you
should sign it only if you got it directly from her.

In order to sign a public key, you must be far more certain of that key’s
ownership than if you merely want to use that key to encrypt a message. To be
convinced of a key’s validity enough to use it, certifying signatures from
trusted introducers should suffice. But to sign a key yourself, you should
require your own independent first-hand knowledge of who owns that key. Perhaps
you could call the key’s owner on the phone and read the key fingerprint to her,
to confirm that the key you have is really her key - and make sure you really
are talking to the right person.

Bear in mind that your signature on a public key certificate does not wvouch
for the integrity of that person, but only vouches for the integrity (the
ownership) of that person’s public key. You aren’t risking your credibility by
signing the public key of a sociopath, if you are completely confident that the
key really belongs to him. Other people would accept that key as belonging to
him because you signed it (assuming they trust you), but they wouldn’t trust
that key’s owner. Trusting a key is not the same as trusting the key’s owner.

It would be a good idea to keep your own public key on hand with a
collection of certifying signatures attached from a variety of "introducers," in
the hopes that most people will trust at least one of the introducers who vouch
for the validity of your public key. You could post your key with its attached
collection of certifying signatures on various electronic bulletin boards. If
you sign someone else’s public key, return it to them with your signature so
that they can add it to their own collection of credentials for their own public
key.

PGP keeps track of which keys on your public keyring are properly certified
with signatures from introducers that you trust. All you have to do is tell PGP
which people you trust as introducers, and certify their keys yourself with your
own ultimately trusted key. PGP can take it from there, automatically
validating any other keys that have been signed by your designated introducers.
And of course you can directly sign more keys yourself.

PGP-INTRO(7) Guide version 12/24

Make sure that no one else can tamper with your own public keyring.
Checking a newly signed public key certificate must ultimately depend on the
integrity of the trusted public keys that are already on your own public
keyring. Maintain physical control of your public keyring, preferably on your
own personal computer rather than on a remote timesharing system, just as you
would do for your private key. This is to protect it from tampering, not from
disclosure. Keep a trusted backup copy of your public keyring and your private
key on write-protected media.

Since your own trusted public key is used as a final authority to directly
or indirectly certify all the other keys on your keyring, it is the most
important key to protect from tampering. You may wish to keep a backup copy on
a write-protected floppy disk.

PGP generally assumes that you will maintain physical security over your
system and your keyrings, as well as your copy of PGP itself. 1If an intruder
can tamper with your disk, then in theory he can tamper with the program itself,
rendering moot the safeguards the program may have to detect tampering with
keys.

One somewhat complicated way to protect your own whole public keyring from
tampering is to sign the whole ring with your own private key. You could do
this by making a detached signature certificate of the public keyring.

1.13 How Does PGP Keep Track of Which Keys are Valid?

Before you read this section, you should read the previous section on
How to Protect Public Keys from Tampering.

PGP keeps track of which keys on your public keyring are properly certified
with signatures from introducers that you trust. All you have to do is tell PGP
which people you trust as introducers, and certify their keys yourself with your
own ultimately trusted key. PGP can take it from there, automatically
validating any other keys that have been signed by your designated introducers.
And of course you may directly sign more keys yourself.

There are two entirely separate criteria PGP uses to judge a public key’s
usefulness — don’t get them confused:

1. Does the key actually belong to whom it appears to belong? In other
words, has it been certified with a trusted signature?

2. Does it belong to someone you can trust to certify other keys? PGP can
calculate the answer to the first question. To answer the second
question, you must tell PGP explicitly. When you supply the answer to
question 2, PGP can then calculate the answer to question 1 for other
keys signed by the introducer you designated as trusted.

Keys that have been certified by a trusted introducer are deemed valid by
PGP. The keys belonging to trusted introducers must themselves be certified
either by you or by other trusted introducers. PGP also allows for the
possibility of you having several shades of trust for people to act as
introducers. Your trust for a key’s owner to act as an introducer does not just
reflect your estimation of their personal integrity - it should also reflect how
competent you think they are at understanding key management and using good

PGP-INTRO(7) Guide version 13/24

judgment in signing keys. You can designate a person as untrusted, marginally
trusted, or completely trusted to certify other public keys. This trust
information is stored on your keyring with their key, but when you tell PGP to
copy a key off your keyring, PGP will not copy the trust information along with
the key, because your private opinions on trust are regarded as confidential.
When PGP is calculating the validity of a public key, it examines the trust

level of all the attached certifying signatures. It computes a weighted score
of validity e.g. two marginally trusted signatures are deemed as credible as
one fully trusted signature. The program’s skepticism is adjustable - for

example, you may tune PGP to require two fully trusted signatures or three
marginally trusted signatures to judge a key as valid.

Your own key is "axiomatically" wvalid to PGP, needing no introducers
signature to prove its validity. PGP knows which public keys are yours, by
looking for the corresponding private keys on the private key. PGP also assumes
you ultimately trust yourself to certify other keys.

As time goes on, you will accumulate keys from other people whom you may
want to designate as trusted introducers. Everyone else will choose their own
trusted introducers. And everyone will gradually accumulate and distribute with
their key a collection of certifying signatures from other people, with the
expectation that anyone receiving it will trust at least one or two of the
signatures. This will cause the emergence of a decentralized fault tolerant web
of confidence for all public keys.

This unique grass-roots approach contrasts sharply with standard public key
management schemes developed by government or other monolithic institutions,
such as Internet Privacy Enhanced Mail (PEM), which are based on centralized
control and mandatory centralized trust. The standard schemes rely on a
hierarchy of Certifying Authorities who dictate who you must trust. The
program’s decentralized probabilistic method for determining public key
legitimacy is the centerpiece of its key management architecture. PGP lets you
alone choose who you trust, putting you at the top of your own private
certification pyramid. PGP is for people who prefer to pack their own
parachutes.

Note that while this decentralized, grass—-roots approach is emphasized here,
it does not mean that PGP does not perform equally as well in the more
hierarchical, centralized public key management schemes. Large corporate users,
for example, will probably want a central figure or person who signs all the
employees’ keys. PGP handles that centralized scenario as a special degenerate
case of PGP’'s more generalized trust model.

1.14 How to Protect Private Keys from Disclosure

Protect your own private key and your passphrase very carefully. If your
private key is ever compromised, you’d better get the word out quickly to all
interested parties before someone else uses it to make signatures in your name.
For example, they could use it to sign bogus public key certificates, which
could create problems for many people, especially if your signature is widely
trusted. And of course, a compromise of your own private key could expose all
messages sent to you.

To protect your private key, you can start by always keeping physical
control of your private key. Keeping it on your personal computer at home is

PGP-INTRO(7) Guide version 14 /24

OK, or keep it in your notebook computer that you can carry with you. If you
must use an office computer that you don’t always have physical control of, then
keep your public and private keyrings on a write-protected removable floppy
disk, and don’t leave it behind when you leave the office. It wouldn’t be a
good idea to allow your private key to reside on a remote time-sharing computer,
such as a remote dial-in UNIX system. Someone could eavesdrop on your modem
line and capture your passphrase and then obtain your actual private key from
the remote system. You should only use your private key on a machine that is
under your physical control.

Don’t store your passphrase anywhere on the computer that has your private
key file. Storing both the private key and the passphrase on the same computer
is as dangerous as keeping your PIN in the same wallet as your Automatic Teller
Machine bank card. You don’t want somebody to get their hands on your disk
containing both the passphrase and the private key file. It would be most
secure if you just memorize your passphrase and don’t store it anywhere but your
brain. If you feel you must write down your passphrase, keep it well protected,
perhaps even more well protected than the private key file.

And keep backup copies of your private key-remember, you have the only copy
of your private key, and losing it will render useless all the copies of your
public key that you have spread throughout the world.

The decentralized non-institutional approach PGP supports for management of
public keys has its benefits, but unfor tunately this also means we can’t rely
on a single centralized list of which keys have been compromised. This makes it
a bit harder to contain the damage of a private key compromise. You Jjust have
to spread the word and hope everyone hears about it.

If the worst case happens - your private key and passphrase are both
compromised (hopefully you will find this out somehow) - you will have to issue
a "key compromise" certificate. This kind of certificate is used to warn other
people to stop using your public key. You can use PGP to create such a
certificate by using the Revoke command from the PGPkeys menu. Then you must
somehow send this compromise certificate to everyone else on the planet, or at
least to all your friends and their friends, et cetera. Their own PGP software
will install this key compromise certificate on their public keyrings and will
automatically prevent them from accidentally using your public key ever again.
You can then generate a new private/public key pair and publish the new public
key. You could send out one package containing both your new public key and the
key compromise certificate for your old key.

1.15 What If You Lose Your Private Key?

Normally, if you want to revoke your own private key, you can use the Revoke
command from the PGPkeys menu to issue a revocation certificate, signed with
your own private key.

But what can you do if you lose your private key, or if your private key is
destroyed? You can’t revoke it yourself, because you must use your own private
key to revoke it, and you don’t have it anymore. You ask each person you signed
your key to retire his/her certification. Then anyone attempting to use your
key based upon the trust of one of your introducers will know not to trust your
public key.

PGP-INTRO(7) Guide version 15/24

1.16 Beware of Snake Oil

When examining a cryptographic software package, the question always
remains, why should you trust this product? Even if you examined the source
code yourself, not everyone has the cryptographic experience to judge the
security. Even if you are an experienced cryptographer, subtle weaknesses in
the algorithms could still elude you.

When I was in college in the early seventies, I devised what I believed was
a brilliant encryption scheme. A simple pseudorandom number stream was added to
the plaintext stream to create ciphertext. This would seemingly thwart any
frequency analysis of the ciphertext, and would be uncrackable even to the most
resourceful government intelligence agencies. I felt so smug about my
achievement.

Years later, I discovered this same scheme in several introductory
cryptography texts and tutorial papers. How nice. Other cryptographers had
thought of the same scheme. Unfortunately, the scheme was presented as a simple
homework assignment on how to use elementary cryptanalytic techniques to
trivially crack it. So much for my brilliant scheme.

From this humbling experience I learned how easy it is to fall into a false
sense of security when devising an encryption algorithm. Most people don’t
realize how fiendishly difficult it is to devise an encryption algorithm that
can withstand a prolonged and determined attack by a resourceful opponent. Many
mainstream software engineers have developed equally naive encryption schemes
(often even the very same encryption scheme), and some of them have been
incorporated into commercial encryption software packages and sold for good
money to thousands of unsuspecting users.

This is like selling automotive seat belts that look good and feel good, but
snap open in even the slowest crash test. Depending on them may be worse than
not wearing seat belts at all. ©No one suspects they are bad until a real crash.
Depending on weak cryptographic software may cause you to unknowingly place
sensitive information at risk. You might not otherwise have done so if you had
no cryptographic software at all. Perhaps you may never even discover your data
has been compromised.

Sometimes commercial packages use the Federal Data Encryption Standard
(DES), a fairly good conventional algorithm recommended by the government for
commercial use (but not for classified information, oddly enough-Hmmm). There
are several "modes of operation" DES can use, some of them better than others.
The government specifically recommends not using the weakest simplest mode for
messages, the Electronic Codebook (ECB) mode. But they do recommend the
stronger and more complex Cipher Feedback (CFB) or Cipher Block Chaining (CBC)
modes .

Unfortunately, most of the commercial encryption packages I’ve looked at use
ECB mode. When I’ve talked to the authors of a number of these implementations,
they say they’ve never heard of CBC or CFB modes, and didn’t know anything about
the weaknesses of ECB mode. The very fact that they haven’t even learned enough
cryptography to know these elementary concepts is not reassuring. And they
sometimes manage their DES keys in inappropriate or insecure ways. Also, these
same software packages often include a second faster encryption algorithm that
can be used instead of the slower DES. The author of the package often thinks
his proprietary faster algorithm is as secure as DES, but after questioning him

PGP-INTRO(7) Guide version 16 /24

I usually discover that it’s just a variation of my own brilliant scheme from
college days. Or maybe he won’t even reveal how his proprietary encryption
scheme works, but assures me it’s a brilliant scheme and I should trust it. I'm
sure he believes that his algorithm is brilliant, but how can I know that
without seeing it?

In all fairness I must point out that in most cases these terribly weak
products do not come from companies that specialize in cryptographic technology.

Even the really good software packages, that use DES in the correct modes of
operation, still have problems. Standard DES uses a 56-bit key, which is too
small by today’s standards, and may now be easily broken by exhaustive key
searches on special high-speed machines. The DES has reached the end of its
useful life, and so has any software package that relies on it.

There is a company called AccessData (87 East 600 South, Orem, Utah 84058,
phone 1-800-658-5199) that sells a package for $185 that cracks the built-in
encryption schemes used by WordPerfect, Lotus 1-2-3, MS Excel, Symphony, Quattro
Pro, Paradox, MS Word, and PKZIP. It doesn’t simply guess passwords — it does
real cryptanalysis. Some people buy it when they forget their password for
their own files. Law enforcement agencies buy it too, so they can read files
they seize. I talked to Eric Thompson, the author, and he said his program only
takes a split second to crack them, but he put in some delay loops to slow it
down so it doesn’t look so easy to the customer.

In the secure telephone arena, your choices look bleak. The leading
contender is the STU-III (Secure Telephone Unit), made by Motorola and AT&T for
$2000-$3000, and used by the government for classified applications. It has
strong cryptography, but requires some sort of special license from the
government to buy this strong version. A commercial version of the STU-III is
available that is watered down for NSA’s convenience, and an export version is
available that is even more severely weakened. Then there is the $1200 AT&T
Surity 3600, which uses the government’s famous Clipper chip for encryption,
with keys escrowed with the government for the convenience of wiretappers. Then
of course, there are the analog (non-digital) voice scramblers that you can buy
from the spywannabe catalogs, that are really useless toys as far as
cryptography is concerned, but are sold as "secure" communications products to
customers who just don’t know any better.

In some ways, cryptography is like pharmaceuticals. Its integrity may be
absolutely crucial. Bad penicillin looks the same as good penicillin. You can
tell if your spreadsheet software is wrong, but how do you tell if your
cryptography package is weak? The ciphertext produced by a weak encryption
algorithm looks as good as ciphertext produced by a strong encryption algorithm.

There’s a lot of snake oil out there. A lot of quack cures. Unlike the patent
medicine hucksters of old, these software implementors usually don’t even know
their stuff is snake o0il. They may be good software engineers, but they usually

haven’t even read any of the academic literature in cryptography. But they
think they can write good cryptographic software. And why not? After all, it
seems intuitively easy to do so. And their software seems to work okay.

Anyone who thinks they have devised an unbreakable encryption scheme either
is an incredibly rare genius or is naive and inexperienced. Unfortunately, I
sometimes have to deal with would-be cryptographers who want to make
"improvements" to PGP by adding encryption algorithms of their own design.

I remember a conversation with Brian Snow, a highly placed senior

PGP-INTRO(7) Guide version 17 /24

cryptographer with the NSA. He said he would never trust an encryption
algorithm designed by someone who had not "earned their bones" by first spending
a lot of time cracking codes. That did make a lot of sense. I observed that
practically no one in the commercial world of cryptography qualified under this
criterion. "Yes," he said with a self assured smile, "And that makes our job at
NSA so much easier." A chilling thought. I didn’t qualify either.

The government has peddled snake o0il too. After World War II, the US sold
German Enigma ciphering machines to third world governments. But they didn’t
tell them that the Allies cracked the Enigma code during the war, a fact that
remained classified for many years. Even today many UNIX systems worldwide use
the Enigma cipher for file encryption, in part because the government has
created legal obstacles against using better algorithms. They even tried to
prevent the initial publication of the RSA algorithm in 1977. And they have for
many years squashed essentially all commercial efforts to develop effective
secure telephones for the general public.

The principal Jjob of the US government’s National Security Agency is to
gather intelligence, principally by covertly tapping into people’s private
communications (see James Bamford’s book, The Puzzle Palace). The NSA has
amassed considerable skill and resources for cracking codes. When people can’t
get good cryptography to protect themselves, it makes NSA’s Jjob much easier.
NSA also has the responsibility of approving and recommending encryption
algorithms. Some critics charge that this is a conflict of interest, like
putting the fox in charge of guarding the hen house. In the 1980s, NSA had been
pushing a conventional encryption algorithm that they designed (the COMSEC
Endorsement Program), and they won’t tell anybody how it works because that’s
classified. They wanted others to trust it and use it. But any cryptographer
can tell you that a well-designed encryption algorithm does not have to be
classified to remain secure. Only the keys should need protection. How does
anyone else really know if NSA’s classified algorithm is secure? It’s not that
hard for NSA to design an encryption algorithm that only they can crack, if no
one else can review the algorithm. And now with the Clipper chip, the NSA is
pushing SKIPJACK, another classified cipher they designed. Are they
deliberately selling snake o0il?

There are three main factors that have undermined the quality of commercial
cryptographic software in the US.

— The first is the virtually universal lack of competence of implementors
of commercial encryption software (although this is starting to change

since the publication of PGP). Every software engineer fancies himself
a cryptographer, which has led to the proliferation of really bad crypto
software.

— The second is the NSA deliberately and systematically suppressing all
the good commercial encryption technology, by legal intimidation and
economic pressure. Part of this pressure is brought to bear by stringent
export controls on encryption software which, by the economics of
software marketing, has the net effect of suppressing domestic
encryption software.

— The other principle method of suppression comes from the granting all the
software patents for all the public key encryption algorithms to a single
company, affording a single choke point to suppress the spread of this
technology (although this crypto patent cartel broke up in the fall of
1995).

PGP-INTRO(7) Guide version 18/24

The net effect of all this is that before PGP was published, there was
almost no highly secure general purpose encryption software available in the US.

I’'m not as certain about the security of PGP as I once was about my

brilliant encryption software from college. If I were, that would be a bad
sign. But I don’t think PGP contains any glaring weaknesses (although I’'m
pretty sure it contains bugs). I have selected the best algorithms from the

published literature of civilian cryptologic academia. For the most part, they
have been individually subject to extensive peer review. I know many of the
world’s leading cryptographers, and have discussed with some of them many of the
cryptographic algorithms and protocols used in PGP. 1It’s well researched, and
has been years in the making. And I don’t work for the NSA. But you don’t have
to trust my word on the cryptographic integrity of PGP, because source code is
available to facilitate peer review.

And one more point about my commitment to cryptographic quality in PGP:
Since I first developed and released PGP for free in 1991, I spent three years
under criminal investigation by US Customs for PGP’s spread overseas, with risk
of criminal prosecution and years of imprisonment (by the way, you didn’t see
the government getting upset about other cryptographic software - it’s PGP that
really set them off - what does that tell you about the strength of PGP?). I
have earned my reputation on the cryptographic integrity of my products. I will
not betray my commitment to our right to privacy, for which I have risked my
freedom. I’m not about to allow a product with my name on it to have any secret
back doors.

1.17 Vulnerabilities

No data security system is impenetrable. PGP can be circumvented in a
variety of ways. In any data security system, you have to ask yourself if the
information you are trying to protect is more valuable to your attacker than the
cost of the attack. This should lead you to protecting yourself from the
cheapest attacks, while not worrying about the more expensive attacks.

Some of the discussion that follows may seem unduly paranoid, but such an
attitude is appropriate for a reasonable discussion of vulnerability issues.

"If all the personal computers in the world - 260 million - were put to
work on a single PGP-encrypted message, it would still take an estimated
12 million times the age of the universe, on average, to break a single
message."
- William Crowell, Deputy Director,

National Security Agency, March 20, 1997.

Compromised passphrase and Private Key
Probably the simplest attack is if you leave your passphrase for your
private key written down somewhere. If someone gets it and also gets your
private key file, they can read your messages and make signatures in your name.

Here are some recommendations for protecting your passphrase:

1. Don’t use obvious passphrases that can be easily guessed, such as

PGP-INTRO(7) Guide version 19/24

the names of your kids or spouse.

2. Use spaces and a combination of numbers and letters in your passphrase.
If you make your passphrase a single word, it can be easily guessed by
having a computer try all the words in the dictionary until it finds
your password. That’s why a passphrase is so much better than a
password. A more sophisticated attacker may have his computer scan a
book of famous quotations to find your passphrase.

3. Be creative. Use an easy to remember but hard to guess passphrase; you
can easily construct one by using some creatively nonsensical sayings
or very obscure literary quotes.

Public Key Tampering

A major vulnerability exists if public keys are tampered with. This may be
the most crucially important vulnerability of a public key cryptosystem, in part
because most novices don’t immediately recognize it. The importance of this
vulnerability, and appropriate hygienic countermeasures, are detailed in the
section How to Protect Public Keys from Tampering earlier in this document.

To summarize: When you use someone’s public key, make certain it has not
been tampered with. A new public key from someone else should be trusted only
if you got it directly from its owner, or if it has been signed by someone you
trust. Make sure no one else can tamper with your own public keyring. Maintain
physical control of both your public keyring and your private key, preferably on
your own personal computer rather than on a remote timesharing system. Keep a
backup copy of both keyrings.

Not Quite Deleted Files

Another potential security problem is caused by how most operating systems
delete files. When you encrypt a file and then delete the original plaintext
file, the operating system doesn’t actually physically erase the data. It
merely marks those disk blocks as deleted, allowing the space to be reused
later. 1It’s sort of like discarding sensitive paper documents in the paper
recycling bin instead of the paper shredder. The disk blocks still contain the
original sensitive data you wanted to erase, and will probably eventually be
overwritten by new data at some point in the future. If an attacker reads these
deleted disk blocks soon after they have been deallocated, he could recover your
plaintext. In fact this could even happen accidentally, if for some reason
something went wrong with the disk and some files were accidentally deleted or
corrupted. A disk recovery program may be run to recover the damaged files, but
this often means some previously deleted files are resurrected along with
everything else. Your confidential files that you thought were gone forever
could then reappear and be inspected by whomever is attempting to recover your
damaged disk. Even while you are creating the original message with a word
processor or text editor, the editor may be creating multiple temporary copies
of your text on the disk, Jjust because of its internal workings. These
temporary copies of your text are deleted by the word processor when it’s done,
but these sensitive fragments are still on your disk somewhere.

The only way to prevent the plaintext from reappearing is to somehow cause
the deleted plaintext files to be overwritten. Unless you know for sure that
all the deleted disk blocks will soon be reused, you must take positive steps to

PGP-INTRO(7) Guide version 20/24

overwrite the plaintext file, and also any fragments of it on the disk left by
your word processor. You can take care of any fragments of the plaintext left
on the disk by using any of the disk utilities available that can overwrite all
of the unused blocks on a disk. For example, the Norton Utilities for MS-DOS
can do this.

Viruses and Trojan Horses

Another attack could involve a specially-tailored hostile computer virus or
worm that might infect PGP or your operating system. This hypothetical virus
could be designed to capture your Passphrase or private key or deciphered
messages, and covertly write the captured information to a file or send it
through a network to the virus’s owner. Or it might alter PGP’s behavior so
that signatures are not properly checked. This attack is cheaper than
cryptanalytic attacks.

Defending against this falls under the category of defending against viral
infection generally. There are some moderately capable anti-viral products
commercially available, and there are hygienic procedures to follow that can
greatly reduce the chances of viral infection. A complete treatment of
anti-viral and anti-worm countermeasures is beyond the scope of this document.
PGP has no defenses against viruses, and assumes your own personal computer is a
trustworthy execution environment. If such a virus or worm actually appeared,
hopefully word would soon get around warning everyone.

Another similar attack involves someone creating a clever imitation of PGP
that behaves like PGP in most respects, but doesn’t work the way it’s supposed
to. For example, it might be deliberately crippled to not check signatures
properly, allowing bogus key certificates to be accepted. You should make an
effort to get your copy of PGP directly from Pretty Good Privacy.

There are other ways to check PGP for tampering, using digital signatures.
You could use another trusted version of PGP to check the signature on a suspect
version of PGP. But this will not help at all if your operating system is
infected, nor will it detect if your original copy of pgp.exe has been
maliciously altered in such a way as to compromise its own ability to check
signatures. This test also assumes that you have a good trusted copy of the
public key that you use to check the signature on the PGP executable.

Swap Files or Virtual Memory PGP was originally developed for MS-DOS, a
primitive operating system by today’s standards. But as it was ported to other
more complex operating systems, such as Microsoft Windows or the Macintosh 0S, a
new vulnerability emerged. This vulnerability stems from the fact that these
fancier operating systems use a technique called virtual memory.

Virtual memory allows you to run huge programs on your computer that are
bigger than the space available in your computer’s semiconductor memory chips.
This is handy because software has become more and more bloated since graphical
user interfaces became the norm, and users started running several large
applications at the same time. The operating system uses the hard disk to store
portions of your software that aren’t being used at the moment. This means that
the operating system might, without your knowledge, write out to disk some
things that you thought were kept only in main memory. Things like keys,
passphrases, or decrypted plaintext. PGP does not keep that kind of sensitive
data lying around in memory for longer than necessary, but these is some chance
that the operating system could write it out to disk anyway.

PGP-INTRO(7) Guide version 21/24

The data is written out to some scratchpad area of the disk, known as a swap
file. Data is read back in from the swap file as needed, so that only part of
your program or data is in physical memory at any one time. All this activity
is invisible to the user, who just sees the disk chattering away. Microsoft
Windows swaps chunks of memory, called pages, using a Least Recently Used (LRU)
page replacement algorithm. This means pages that have not been accessed for
the longest period of time are the first ones to be swapped to the disk. This
approach suggest that in most cases the risk is fairly low that sensitive data
will be swapped out to disk, because PGP doesn’t leave it in memory for very
long. But we don’t make any guarantees.

This swap file may be accessed by anyone who can get physical access to your
computer. If you are concerned about this problem, you may be able to solve it
by obtaining special software that overwrites your swap file. Another possible
cure is to turn off your operating system’s virtual memory feature. Microsoft
Windows allows for this, and so does the Mac 0S. Turning off virtual memory
means you might need to have more physical RAM chips installed in order to fit
everything in RAM.

Physical Security Breach

A physical security breach may allow someone to physically acquire your
plaintext files or printed messages. A determined opponent might accomplish
this through burglary, trash-picking, unreasonable search and seizure, or
bribery, blackmail or infiltration of your staff. Some of these attacks may be
especially feasible against grass-roots political organizations that depend on a
largely volunteer staff.

Don’t be lulled into a false sense of security just because you have a
cryptographic tool. Cryptographic techniques protect data only while it’s
encrypted - direct physical security violations can still compromise plaintext
data or written or spoken information.

This kind of attack is cheaper than cryptanalytic attacks on PGP.

Tempest Attacks

Another kind of attack that has been used by well-equipped opponents
involves the remote detection of the electromagnetic signals from your computer.
This expensive and somewhat labor-intensive attack is probably still cheaper
than direct cryptanalytic attacks. An appropriately instrumented van can park
near your office and remotely pick up all of your keystrokes and messages
displayed on your computer video screen. This would compromise all of your
passwords, messages, etc. This attack can be thwarted by properly shielding all
of your computer equipment and network cabling so that it does not emit these
signals. This shielding technology is known as "Tempest," and is used by some
government agencies and defense contractors. There are hardware vendors who
supply Tempest shielding commercially.

Protecting Against Bogus Timestamps

A somewhat obscure vulnerability of PGP involves dishonest users creating
bogus timestamps on their own public key certificates and signatures. You can

PGP-INTRO(7) Guide version

22/24

skip over this section if you are a casual user and aren’t deeply into obscure
public-key protocols.

There’s nothing to stop a dishonest user from altering the date and time
setting of his own system’s clock, and generating his own public-key
certificates and signatures that appear to have been created at a different
time. He can make it appear that he signed something earlier or later than he
actually did, or that his public/private key pair was created earlier or later.
This may have some legal or financial benefit to him, for example by creating
some kind of loophole that might allow him to repudiate a signature.

I think this problem of falsified timestamps in digital signatures is no
worse than it is already in handwritten signatures. Anyone may write a date
next to their handwritten signature on a contract with any date they choose, yet
no one seems to be alarmed over this state of affairs. In some cases, an
"incorrect" date on a handwritten signature might not be associated with actual
fraud. The timestamp might be when the signator asserts that he signed a
document, or maybe when he wants the signature to go into effect.

In situations where it is critical that a signature be trusted to have the
actual correct date, people can simply use notaries to witness and date a

handwritten signature. The analog to this in digital signatures is to get a
trusted third party to sign a signature certificate, applying a trusted
timestamp. No exotic or overly formal protocols are needed for this. Witnessed

signatures have long been recognized as a legitimate way of determining when a
document was signed.

A trustworthy Certifying Authority or notary could create notarized
signatures with a trustworthy timestamp. This would not necessarily require a
centralized authority. Perhaps any trusted introducer or disinterested party
could serve this function, the same way real notary publics do now. When a
notary signs other people’s signatures, it creates a signature certificate of a
signature certificate. This would serve as a witness to the signature the same
way real notaries now witness handwritten signatures. The notary could enter
the detached signature certificate (without the actual whole document that was
signed) into a special log controlled by the notary. Anyone can read this log.
The notary’s signature would have a trusted timestamp, which might have greater
credibility or more legal significance than the timestamp in the original
signature.

There is a good treatment of this topic in Denning’s 1983 article in IEEE
Computer (see the Recommended Introductory Readings section, below). Future
enhancements to PGP might have features to easily manage notarized signatures
of signatures, with trusted timestamps.

Exposure on Multi-user Systems

PGP was originally designed for a single-user PC under your direct physical
control. If you run PGP at home on your own PC your encrypted files are
generally safe, unless someone breaks into your house, steals your PC and
convinces you to give them your passphrase (or your passphrase is simple enough
to guess) .

PGP is not designed to protect your data while it is in plaintext form on a
compromised system. Nor can it prevent an intruder from using sophisticated
measures to read your private key while it is being used. You will just have to

PGP-INTRO(7) Guide version 23/24

recognize these risks on multi-user systems, and adjust your expectations and

behavior accordingly. Perhaps your situation is such that you should consider
only running PGP on an isolated single-user system under your direct physical

control.

Traffic Analysis

Even if the attacker cannot read the contents of your encrypted messages, he
may be able to infer at least some useful information by observing where the
messages come from and where they are going, the size of the messages, and the
time of day the messages are sent. This is analogous to the attacker looking at
your long distance phone bill to see who you called and when and for how long,
even though the actual content of your calls is unknown to the attacker. This
is called traffic analysis. PGP alone does not protect against traffic
analysis. Solving this problem would require specialized communication
protocols designed to reduce exposure to traffic analysis in your communication
environment, possibly with some cryptographic assistance.

Cryptanalysis

An expensive and formidable cryptanalytic attack could possibly be mounted
by someone with vast supercomputer resources, such as a government intelligence
agency. They might crack your RSA key by using some new secret factoring
breakthrough. But civilian academia has been intensively attacking it without
success since 1978.

Perhaps the government has some classified methods of cracking the IDEA
conventional encryption algorithm used in PGP. This is every cryptographer’s
worst nightmare. There can be no absolute security guarantees in practical
cryptographic implementations.

Still, some optimism seems justified. The IDEA algorithm’s designers are
among the best cryptographers in Europe. It has had extensive security analysis
and peer review from some of the best cryptanalysts in the unclassified world.
It appears to have some design advantages over DES in withstanding differential
cryptanalysis.

Besides, even if this algorithm has some subtle unknown weaknesses, PGP
compresses the plaintext before encryption, which should greatly reduce those
weaknesses. The computational workload to crack it is likely to be much more
expensive than the value of the message.

If your situation justifies worrying about very formidable attacks of this
caliber, then perhaps you should contact a data security consultant for some
customized data security approaches tailored to your special needs.

In summary, without good cryptographic protection of your data
communications, it may have been practically effortless and perhaps even routine
for an opponent to intercept your messages, especially those sent through a
modem or e-mail system. If you use PGP and follow reasonable precautions, the
attacker will have to expend far more effort and expense to violate your
privacy.

If you protect yourself against the simplest attacks, and you feel confident
that your privacy is not going to be violated by a determined and highly

PGP-INTRO(7) Guide version

24 /24

resourceful attacker, then you’ll probably be safe using PGP. PGP gives you
Pretty Good Privacy.

1.18 Recommended Introductory & Other readings

Recommended Introductory Readings
o Bacard Andre, "Computer Privacy Handbook," Peachpit Press, 1995

o Garfinkel Simson, "Pretty Good Privacy," O’Reilly & Associates, 1995

o Schneier Bruce, "Applied Cryptography: Protocols, Algorithms, and Source
Code in C, Second Edition," John Wiley & Sons, 1996

o Schneier Bruce, "E-mail Security," John Wiley & Sons, 1995

o Stallings William, "Protect Your Privacy," Prentice Hall, 1994

Other Readings:
o Lai Xuejia, "On the Design and Security of Block Ciphers," Institute for
Signal and Information Processing, ETH-Zentrum, Zurich, Switzerland, 1992

o Lai Xuejia, Massey James L., Murphy Sean" Markov Ciphers and Differential
Cryptanalysis," Advances in Cryptology - EUROCRYPT’91

o Rivest Ronald, "The MD5 Message Digest Algorithm," MIT Laboratory for
Computer Science, 1991

o Wallich Paul, "Electronic Envelopes," Scientific American, Feb. 1993,
page 30.

o Zimmermann Philip, "A Proposed Standard Format for RSA Cryptosystems,"
Advances in Computer Security, Vol. III, edited by Rein Turn,
Artech House, 1988 Chapter 6.

1.19 About

This document was converted from ansi format man pages, provided by
Stefan Zakarias <stef@amitar.com.au> as part of the amiga-pgp5li-bin.lha
archive, to Amigaguide format by Chris Page <dasoft@zetnet.co.uk> using
GoldED 4.7.2.

While every effort has been taken to ensure that the contents of this
document have remained unchanged beyond that necessary to reformat the
text, the converter may not be held responsible for errors, ommisions or
additions (whether of context, meaning or content) in this version of the
document. All character formatting (Bold/ Italic etc) is for presentation
alone and is not intended to alter the meaning of the text formatted.

Please do not contact Chris Page with questions concerning the content
of this document - I only converted it, not wrote it :)

	PGP-INTRO(7) Guide version
	Welcome
	Why I wrote PGP
	Encryption Basics
	How Public Key Cryptography Works
	How Your Files and Messages are Encrypted
	The PGP Symmetric Algorithms
	Data Compression
	About the Random Numbers used as Session Keys
	How Decryption Works
	How Digital Signatures Work
	About the Message Digest
	How to Protect Public Keys from Tampering
	How Does PGP Keep Track of Which Keys are Valid?
	How to Protect Private Keys from Disclosure
	What If You Lose Your Private Key?
	Beware of Snake Oil
	Vulnerabilities
	Recommended Introductory & Other readings
	About

