
002d9ce8-0

002d9ce8-0 ii

COLLABORATORS

TITLE :

002d9ce8-0

ACTION NAME DATE SIGNATURE

WRITTEN BY August 22, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

002d9ce8-0 iii

Contents

1 002d9ce8-0 1

1.1 AMIPX Manual . 1

1.2 Disclaimer . 1

1.3 Introduction . 2

1.4 Requirements . 2

1.5 Installing AMIPX . 4

1.6 Preferences . 4

1.7 When to use it . 7

1.8 AMIPX Applications Programming Interface . 7

1.9 AMIPX_GetLocalAddr . 7

1.10 AMIPX_OpenSocket . 8

1.11 AMIPX_CloseSocket . 8

1.12 AMIPX_SendPacket . 9

1.13 AMIPX_ListenForPacket . 9

1.14 AMIPX_RelinquishControl . 10

1.15 AMIPX_GetLocalTarget . 11

1.16 ECB Description . 11

1.17 Event Service Routine . 13

1.18 IPX Header Description . 14

1.19 Additional Requirements . 14

1.20 Past . 15

1.21 Present . 16

1.22 Future . 17

1.23 Credits . 17

002d9ce8-0 1 / 17

Chapter 1

002d9ce8-0

1.1 AMIPX Manual

AMIPX v1.23

IPX compatibility library
by G.J. Peltenburg

~Disclaimer~~~ Who’s involved and who’s not.
Introduction What is it?

~Requirements~ What you need.

~Installation~ It’s so easy...
Preferences For the end user/games player.

When to use it to write networked apps.
API For developers.

Past In case you care...
Present Current functionality.

~Future ~ Planned improvements.

~Credits~ ~~

1.2 Disclaimer

Disclaimer.

AMIPX is freeware; it may be freely distributed for the greater glory of
the Amiga, as long as no files are altered.

Freeware in the case of AMIPX, also includes the right to develop software
that uses it - just in case you were not sure of that.

AMIPX is not in any way related to Novell, neither in support, nor in source
code; this means that any support requests or hate mail involving AMIPX should
be addressed to the author, G.J. Peltenburg, and NOT to Novell.

002d9ce8-0 2 / 17

We make no warranties, either expressed or implied, with respect to the
software described in this document, its quality, performance, or
fitness for any particular purpose. Any risk concerning it’s quality or
performance is solely the user’s. Should the program prove defective, the
user assumes the entire cost of all necessary servicing, repair, or
correction and any incidental or consequential damages. In no event will we
be liable for direct, indirect or consequential damages resulting from
any defect in the software.

1.3 Introduction

Introduction.

AMIPX is designed to make porting PC games to the Amiga a little easier,
and thus make it a bit more interesting to publish games for the Amiga again.

To achieve this, AMIPX uses a Programming Interface that is very similar to
the PC’s IPX API, and uses the same structures to exchange information between
the application and the library. Some differences remain, though.

1.4 Requirements

AMIPX requires AmigaOS3.0. It may run on 2.04, but that has not been tested.

In addition, it requires a Sana-II network driver. It no longer needs, nor
uses packet filtering.

Also, AMIPX currently only supports Ethernet frame types, and therefore it
does NOT yet work with Arcnet hardware, or point-to-point Amiga to PC networks.

amipx.library will not work without a valid amipx.prefs file in ENV:. That
file can be created with the prefs editor included in this distribution.

AMIPX should run on all current 68k processors, although the use of
non-aligned WORDs may rule out the use of the 68000.

No PPC version is planned yet.

Memory usage

Memory usage has been measured by running keepopen and writing down avaliable
memory figures from WB.

One LAN interface, with routing enabled:

LAN Memory used
Ariadne.device 85k
Liana.device 138k (MTU set to 8192)

002d9ce8-0 3 / 17

One LAN interface, routing disabled:

LAN Memory used
Ariadne.device 69.5k
Liana.device 95.6k (same MTU as before)

Two LAN interfaces (routing always enabled)

LAN Memory used
Ariadne.device & Liana.device 160k (Liana: same MTU as before)

AMIPX coexists with...

AmiTCP/IP - even on the same network adapter. Should be the case with Envoy and

any TCP/IP stack, since the packet types used by IPX differ from
those of TCP/IP.

Tested Sana-II device drivers...

Ethernet

Ariadne.device v1.44 - works fine (my own Ethernet card)
A2065.device - works (with actual a2065 card). Does not seem to work

with a ConneXion card.

Parallel point-to-point

Liana.device v1.4 - works but performance depends on processor. Set frame

type to Ethernet-II and choose two different node
addresses.

plip.device - should work. Set frame type to Ethernet-II and choose
two different node addresses. Performance should be

about equal to that of Liana.device .
parnet.device - Does NOT work: it is not a Sana-II driver but a

protocol stack with its own parallel support.

Serial point-to-point

slip.device - may work between two Amigas. NOT compatible with

any other type of system.
ppp.device - may work between two Amigas. NOT compatible with

any other type of system.
amippp.device - ditto

I’d like to extend the list, but I need your comments for that. I’m especially
interested in Ethernet driver compatibility - after all, AMIPX was designed
for Amiga to PC networking.

002d9ce8-0 4 / 17

1.5 Installing AMIPX

Told you it was easy:

Step 1: copy amipx.library to your LIBS: drawer.

Step 2: copy amipx_prefs to your Preferences drawer.

Step 3: use amipx_prefs to set up AMIPX for your network.

You may wish to install AMIPX in more than one bootable partition on your
hard drive. If you do, be sure to copy the file amipx.prefs file from ENV:
as well, or to set up AMIPX using the preferences editor after booting from
that other partition.

Additionally, if you have a router (i.e. if you’re a company or filthy rich, or
if you want to use one amiga to act as a router for another one), you may
want to put the ’keepopen’ program in your startup-sequence. This way, your
programs don’t have to wait as long until AMIPX knows which other networks can
be reached.

1.6 Preferences

Basics

AMIPX requires you to set it up with specific information on how to access
the network card, and information on your network, before it can do its
stuff.

Fields

Interfaces tab

The list on the left can be used to select a network interface. The number in
the list corresponds to the network number. By clicking on Add, a new network
is inserted before the selected network. To add a network to the end of the
list, simply select <end> and then click on Add.
Click on Del to remove a network from the list.

The internetwork-address of the first network in the list is reported to IPX
applications.

For every LAN interface you want to use with AMIPX, you will have to enter the
following fields:

Network number:
Should be set to the IPX network number of your LAN - which is usually 0
in a LAN consisting of a single segment.

002d9ce8-0 5 / 17

Node:
Used only for network drivers that do not have a default network address.
It must be unique within the segment you are connected to.
Ethernet network cards have their own default addresses, so you will not need
to set this up for those.

Device:
The location and name of the Sana-II network driver to use. Use the ’?’ button
to pick the driver.

Unit:
The unit number of the network interface to be used with the Sana-II driver -
0 if only one network interface of its type is installed in your computer.

Frame Type:
This determines the makeup of the data part of the packets, and must be set
to the same type as the other computers are using. For non-ethernet networks,
Ethernet-II MAY work.

Some notes on using multiple LAN interfaces

In order to support the use of the local network address by applications,
and just about every application needs it, routing is always enabled if more
than one network interface is specified. This is preferable over some kind of
virtual network, because applications tend to broadcast for servers, and those
broadcasts need to be able to get out onto the real network.

If you use AMIPX with the Liana device, and the other computer is turned off,
the computer seems to lock up for several seconds periodically. This is
probably the case with other software-only networking solutions as well. To
avoid this, you may want to set your primary network to your Ethernet card, if
you have one, and disable routing. This way, only the primary network is used
by AMIPX.

Notes on network number 0

Network number 0 corresponds to all directly connected networks. Networks
accessible only through routers will not be reached, unless the routers are
configured to route network number 0.

To successfully play a game like DOOM over such a concatenated network, you need
to configure all network segments to network number 0, and set the ’Max. Hops
Net 0’ parameter to 1 or higher (if three networks are daisy-chained, ther are
two hops involved).

Don’t do this if you’re connected to a corporate network! You might keep the
PC’s from communicating correctly with the server or with ’real’ routers.

You do of course, pay a price when you do this: all packets are copied to all
network segments, increasing latency (delay between sending and receiving at the
other end), and degrading performance on the Amiga acting as the router.

002d9ce8-0 6 / 17

Routing tab

Disable routing:
This is for those who don’t have a router, and only one LAN interface, or
those with small memories. It saves some memory, and saves some CPU time
by not looking for routers and not routing any packets.
If you disable routing, only the first LAN interface will be used by AMIPX.

Max. Routes:
This is the maximum number of additional networks you want AMIPX to support,
besides the directly connected networks. This affects both send performance
and memory usage.
If you don’t have any routers, you can set this to 0.

Max. Hops Net 0:
This enables concatenating networks transparently. This is the maximum number
of routers that packets destined for network 0 (local network) can cross.

Note that setting this above 0 (the default) increases network traffic,
and decreases performance. It may be useful if you want to play 3- or 4-player
games over ’daisy-chained’ links. However, this is not recommended with
software-only networking solutions, since these rely heavily on the CPU.

Also note that setting this value higher than 16, has no effect. IPX routing
supports just 16 hops.

Search Interval:
This is only effective if routing support is enabled. It determines how
frequently the networks are scanned for routers. You’ll want this to be long
enough so as not to influence overall performance too much, but also short
enough to get the routes quickly on startup, although this can be shortened by
running the ’keepopen program’. I suggest a value of about 45 seconds.

Misc. tab

Maximum # of sockets

The socket table is used to get messages to the correct applications. Every
IPX application uses at least one socket. DOOM uses one socket. Quake may use
multiple sockets.
The default is 64 sockets, which should be enough for anything you use at
home. However, possible future applications (server software) may require this
to be increased.
The maximum number of sockets does not influence performance. Performance is
influenced only by the actual number of sockets.

Saving or Using the modified preferences
--
Since AMIPX is a shared library, it is set up when the first application
opens it. At that time, the Sana-II device drivers are opened, and the
preferences are read. When the last application closes the library, the

002d9ce8-0 7 / 17

devices are closed.
Because of this, depending on the applications running, you may need to
quit them or tell them not to use AMIPX, so that they close the library,
before the new settings take effect.
Don’t forget keepopen! Keepopen opens the library, and keeps it open until you
send it a Ctrl-C.

If an IPX application has crashed (and therefore has not closed the library),
rebooting the Amiga is necessary.

1.7 When to use it

When to use AMIPX.

AMIPX is best used for porting PC IPX networking code to the Amiga. It is
NOT the protocol of choice for new games. You should use TCP/IP for those,
since that makes it possible to use the Internet as well as a LAN for playing
head-to-head.

AMIPX does not currently support IPX checksumming, SPX, SAP, or NCP and
is therefore of little use for serious software (such as Netware clients).

1.8 AMIPX Applications Programming Interface

AMIPX API

TABLE OF CONTENTS

AMIPX_GetLocalAddr
AMIPX_OpenSocket
AMIPX_CloseSocket
AMIPX_SendPacket
AMIPX_ListenForPacket
AMIPX_RelinquishControl
AMIPX_GetLocalTarget

ECB Description
IPX Header Description
ESR
Additional Requirements

1.9 AMIPX_GetLocalAddr

NAME
AMIPX_GetLocalAddr -- obtain own network address from IPX driver.

SYNOPSIS
AMIPX_GetLocalAddr(addressspace);

002d9ce8-0 8 / 17

a0

VOID AMIPX_GetLocalAddr(BYTE addressspace[10]);

FUNCTION
This function copies the full internetwork address into the supplied
array, in transmission order.

INPUTS
addressspace - address buffer of at least 10 bytes.

RESULTS
none - it is a simple copy operation

EXAMPLE

NOTES

1.10 AMIPX_OpenSocket

NAME
AMIPX_OpenSocket -- open an IPX socket.

SYNOPSIS
actualsocket = AMIPX_OpenSocket(requestedsocket);

d0 d0

WORD AMIPX_OpenSocket(WORD);

FUNCTION
This attempts to open a socket with the requested socket number, or
assigns a free socket number if requestedsocket == 0.

INPUTS
requestedsocket - socket number

RESULTS
actualsocket will be 0 if the socket table is full, or if the requested
socket is already in use.

EXAMPLE
mysock=AMIPX_OpenSocket(0x869c); // official DOOM socket number
if(mysock==0)
panic(); // socket already in use

1.11 AMIPX_CloseSocket

NAME
AMIPX_CloseSocket -- close an IPX socket.

SYNOPSIS
AMIPX_CloseSocket(socketnumber);

002d9ce8-0 9 / 17

d0

VOID AMIPX_CloseSocket(WORD);

FUNCTION
This closes the socket and cancels any outstanding read requests.

INPUTS

RESULTS
none - socket will be closed if open

EXAMPLE
AMIPX_CloseSocket(mysocknum);

NOTES
To cancel outstanding Listen ECBs (read requests), you should close

the socket with this function. Manually changing the ECB’s status
does not work.

1.12 AMIPX_SendPacket

NAME
AMIPX_SendPacket -- send an IPX packet.

SYNOPSIS
error = AMIPX_SendPacket(ECB);
d0 a0

WORD AMIPX_SendPacket(struct AMIPX_ECB *);

FUNCTION
This submits a send request to the network card. The call returns

immediately; by checking the ECB’s InUse flag (0 means ready), the
IPX user can see if the packet has been transmitted yet.

INPITS
ECB - pointer to Event Control Block.

RESULTS
error - 0 if all went well.

NOTES
Currently, the only two reasons why AMIPX_SendPacket might fail are:
1) the socket has not been opened.

2) there is no route to the destination.

1.13 AMIPX_ListenForPacket

NAME
AMIPX_ListenForPacket -- Insert ECB in IPX read queue.

002d9ce8-0 10 / 17

SYNOPSIS
error = AMIPX_ListenForPacket(ECB);
d0 a0

WORD AMIPX_ListenForPacket(struct AMIPX_ECB *);

FUNCTION
Inserts ECB in listen queue.

You should initialise the InUse flag of the ECB to 0x1d, then call
this function.

The InUse flag can be checked to see if a packet has been received.
InUse will be 0 once a packet has been received.

INPUTS
ECB - pointer to Event Control Block

RESULTS
error - 0 if successful.

EXAMPLES

... // initialise ECB
myECB.InUse=0x1d;
if(AMIPX_ListenForPacket(&myECB)) // insert in queue
panic(); // socket not open or something

...
if(myECB.InUse==0) {
... // process packet

AMIPX_ListenForPacket(&myECB); // insert again
}

NOTES
You must NEVER change any fields in the ECB while it is in the queue.
This call will fail if the socket has not been opened.

1.14 AMIPX_RelinquishControl

NAME
AMIPX_RelinquishControl -- allow for some IPX housekeeping

SYNOPSIS
AMIPX_RelinquishControl();

VOID AMIPX_RelinquishControl(VOID);

FUNCTION
This will allow the IPX library to do some clean up.

INPUTS

RESULTS

002d9ce8-0 11 / 17

EXAMPLES
AMIPX_RelinquishControl();

NOTES
This cleanup is also performed when any other AMIPX function is
called.

1.15 AMIPX_GetLocalTarget

NAME
AMIPX_GetLocalTarget -- find network address to send a packet to

SYNOPSIS
error = AMIPX_GetLocalTarget(internetworkaddress,localtarget);
d0 a0 a1

WORD AMIPX_GetLocalTarget(BYTE internetwaddr[12],BYTE localtarg[6]);

FUNCTION
This function attempts to find the node number on the local network,
to which a packet has to be sent, in order to have it end up
at the requested internetworkaddress. This can be used to find the
router/bridge on the local network, that leads to the target network.
The ImmedAddr field of the ECB can then be filled with the local target.

INPUTS
internetworkaddress - an array of 12 bytes, consisting of network

number (4 bytes), node number (6 bytes) and
socket number (2 bytes). This is the end address
where you would want your packet to arrive.

RESULTS
error - 0 if successful, nonzero if not found for some reason.

localtarget - an array of 6 bytes, filled in with the node
number of the device on the local network to
which you should send the packet.

EXAMPLES

NOTES
Currently, not really operational, but succeeds if target network

number is equal to that of the amiga, and fails if not.

1.16 ECB Description

ECB - Event Control Block

The ECB contains all the information on a Send or Receive request, that is
needed by the IPX library, and it is the ECB, that is the real interface.

002d9ce8-0 12 / 17

FIELDS
ESR - Event Service Routine, see below. Make NULL unless you

provide an ESR.
InUse - will be zero once the ECB has been processed.
CompletionCode - nonzero if an error occurred while processing.
Socket - the number of the socket the request should be queued in.
IPXWork - reserved for internal use, subject to change and sensitive.
DWork - ditto
ImmedAddr - Node address to send the packet to, ffffffffffff for

broadcast.
Note that this field is automatically filled in by AMIPX

since version 1.20 - this is done to facilitate the use of
multiple network interfaces.

FragCount - Number of memory fragments that follow.
Fragment[n] - record:

FragData - pointer to buffer
FragSize - size of buffer

Note that in a Send, all fragments are concatenated to form the actual
IPX packet. To keep packet sizes low, from v1.20 AMIPX only transmits
the amount of bytes specified in the IPX header.

In a Listen, the fragments are filled starting at the first fragment,
and when that is full, the second, and so on. The total packet size

figure is only available in the IPX header, since FragCount and
the fragment definitions are not modified by ListenForPacket.

Also note that the ECB is an internal structure, and you must therefore
simply assign all fields without resorting to ’swap’ functions.

Why use multiple fragments?

With multiple fragments, sending and receiving packets will be only a
fraction slower.
The advantage of multiple fragments is: you can split the header
from your own data, by assigning a pointer to a header as fragment 0,
and assigning a pointer to your ’user buffer’ to fragment 1. You can
then access header and user data separately.
You might even make a table of initialised headers, and send the same
data to all of those targets, without modifying a lot of data - all
you need to do is set up the ECBs.

Initialisation

The following fields in the ECB must be initialised before calling
AMIPX_ListenForPacket:

ESR must be set to NULL, or to the address of a function
to be called once the packet has been processed.

InUse Should be set to 0x1d on the first call to
AMIPX_ListenForPacket. On subsequent calls, this field
is kept up to date. However, if you use the same ECB for
both listening and sending, you MUST set it to 0x1d again

after the send has been processed.

002d9ce8-0 13 / 17

FragCount must be set to the number of memory fragments.

Fragment[n] must contain a pointer to a buffer, and the size of that
buffer.

The following fields in the ECB must be initialised before calling
AMIPX_SendPacket:

ESR must be set to NULL, or to the address of a function
to be called once the packet has been processed.

ImmedAddr must be set to the node address to which the packet is
to be transmitted. In a single segment network, this
is the node-part of the destination address.
(This is not an AMIPX requirement)

FragCount must be set to the number of memory fragments.

Fragment[n] must contain a pointer to a buffer, and the size of that
buffer.

1.17 Event Service Routine

Event Service Routine

The ESR is an optional pointer to a procedure (i.e. no return value)
that is called when the ecb has been processed.

void (*ESR)(BYTE caller,struct AMIPX_ECB *ecb)
D0 A0

The procedure when called, will have two arguments:
caller - indicates which software calls it - currently only IPX

is supported, indicated by a value of 0xff.
ecb - the address of the ecb. The s

NOTES
Because all ESRs are handled by one task, an ESR must be a simple

routine, that takes up very little time. Typically, an ESR would be
something like:

void ESR(BYTE caller,struct AMIPX_ECB *ecb)
{

geta4();
Signal(MainTask,MainTaskSigmask);

}

As of version 1.20, it is allowed to call AMIPX_SendPacket and
AMIPX_ListenForPacket from an ESR.

002d9ce8-0 14 / 17

1.18 IPX Header Description

IPX header
The IPX header, which consists of 30 bytes, is filled by the IPX user, and
contains information such as destination address and source address.

FIELDS
Checksum can contain a checksum for corrupt packet detection,

but does not seem to be used by most software.
This should be set to 0xffff.

Length holds the total length of the packet, including the
30 bytes of the header.

Tc holds the number of hops (transfers from one network
segment to another) it took to get here.

Type This is the IPX packet type - don’t confuse with frame
type. The packet type should be set to 4 (packet exchange)
although PC DOOM sets it to 0 (unknown packet).

Dst This is the complete internetwork address (network,node,
socket) of the destination.

network network number, MSB first, 4 bytes.
node network card number, MSB first, 6 bytes.
socket socket number, MSB first, 2 bytes.

Src This is the complete internetwork address (network,node,
socket) of the sender.

Note that all fields in the IPX header should be defined as bytes or
byte arrays, or that system dependent ’swap’ functions should be used
to assign or read these values. Although IPX uses the same byte ordering
as the amiga, source code would not be portable to other processors
if you didn’t.

Also note that, although not required, most games use the same socket
for the source as the target. The reason is of course, that

broadcasting separately to obtain the socket number to send to, then
sending to that socket, is a lot more unnecessary work.

Initialisation
Before AMIPX_ListenForPacket, NO FIELDS need to be initialised in the
IPX header.

Before AMIPX_SendPacket, all fields should be initialised (see above).

1.19 Additional Requirements

Additional requirements

OpenLibrary only by processes

002d9ce8-0 15 / 17

The first task calling OpenLibrary for amipx.library, MUST be a DOS or CLI
process. This is because the first opener, also reads the communications
preferences. Additional tasks may call OpenLibrary later, and as long as the
library is open, it will work fine.

First opener and last ’closer’ must have free signalbit
The initial communications between the library and the subtasks is done through
Exec Signals. One is needed at opening time and at closing time. Again, if
your task is NOT the first to open the library, and it is NOT the last to close
the library, this is of no concern. Especially beware of not freeing a signal
if you aren’t sure if your program will be called repeatedly from one CLI.

1.20 Past

Late november, 1997:
I decided to write IPX support for the Amiga, after

failing to find existing software say from Novell.

Sending and receiving IPX packets is quite simple on an Amiga, all it
requires is a Sana-II device driver, and some knowledge of the way IPX data
is organised. I wrote a program that monitored and sent IPX packets, in less
than two weeks, starting from scratch, and without prior experience with
Sana-II.

Making the API almost the same as that of the PC, and putting all that into
a shared library is a lot more work, and it took me some 6 weeks to complete
it.

18th of january,1998: First Aminet release. Actually took another week due to
Aminet trouble.

29th of january,1998:
Started work on version 1.1. Purpose: to remove AMIPX’ dependency on the

packet filtering function, that seems to be lacking in many Sana-II drivers,
and to make it easier to make future modifications such as multiple network
adapters and internal bridging by AMIPX.

1st of february,1998:
Version 1.1 now sends and receives packets.

2nd of february,1998:
SendTask failed to free its IORequest. Fixed.
Tested with liana.device. Works in this version of amipx.

4th of february,1998:
Added ESR support. Now a program can have AMIPX call a -small- routine to, for
example, wake up the main task.

5th of february,1998:
Modified amipx.h, amipx_pragmas.h (SAS C pragmas inserted). Modified this
document. (API now indexed as well)

6th of februari,1998:
Uploaded version 1.1 on Aminet. Works with ADoom.

002d9ce8-0 16 / 17

7th of februari,1998:
Changed behaviour of AMIPX_SendPacket: it will now fill in the source
address of the packet header, because some PC IPX sources assume that IPX
does that.

2nd half of februari, 1st half of march:
Added multi-network card support and routing support. Moved the ESR
processing into a separate task; ESRs may now take a bit longer. Updated prefs
editor to support multiple network cards.

15th of march,1998:
Release 1.20 on Aminet

17th of march,1998:
v1.20 - found out new functionality was inactive due to last minute changes.
Fixed.

24th-31st of march,1998:
Changed behaviour of broadcasts on network 0 - network 0 is no longer an
ordinary network number, but stands for all directly connected networks.
Added capability to route broadcasts on network 0 - means a lot more traffic,
but may be the only way to get a game like DOOM, to cross into a different
network.
Packets received with network number 0, have the network number automatically
filled in now.
Amipx now also enforces the rule that a packet cannot pass more than 16
routers.
Modified fool_doom2: it no longer busy-waits and can be killed using Ctrl-C.
Program is more complex though.

April, 1998:
Reintroduced packet filtering for network drivers that support it. Filtering
was _required_ in AMIPX 1.0 . Unfortunately ariadne.device seemed to be the
only device supporting packet filtering. Filtering is now used properly,
i.e. to reduce overhead by rejecting non-IPX packets.
Modified routing to route any NETBIOS packet (type 20) to all networks as if
it were a global broadcast.
Started research on SPX.
Modified static socket table to be user-configurable.
New layout for amipx_prefs. It now uses tabs. Mainly done for NTSC hires
users. (assuming that any are actually out there)

1.21 Present

What AMIPX currently does:

1) It sends and receives IPX packets and distributes the received packets
to the correct application.

2) It offers almost the same basic API as PC IPX.

3) It uses routers to access other network segments, and can act as one.

What it does not do:

002d9ce8-0 17 / 17

1) Support SPX. Perhaps this should be layered on top of IPX in a separate
library.

3) IPX checksumming.

4) Support other frame types than Ethernet.

1.22 Future

I’m looking into PPP support (for WAN routing by the Amiga).

Of lesser importance is the reported version number of the library: when
loaded, the correct version number is reported, but the standard ’version’
command reports a version of 1.-1 . This may cause problems with the install
script, if it too cannot read the correct revision number, and if it refuses
to replace a library with the same version. It seems to have something to do
with the size of the file.

1.23 Credits

Thanks to:

Máximo Piva for his comments.

ClickBoom for their positive response.

Peter McGavin for his comments, and testing with ADoom and a2065.device.

The late Commodore-Amiga, Inc., for their near-perfect Sana-II standard.

AMIPX was written with Manx Aztec C 5.0, and incorporates its resident
library startup code. Only a single assembly instruction was needed (jumping
to the user-supplied ESR).

How to Contact the author

Email: gpeltenburg@wxs.nl

	002d9ce8-0
	AMIPX Manual
	Disclaimer
	Introduction
	Requirements
	Installing AMIPX
	Preferences
	When to use it
	AMIPX Applications Programming Interface
	AMIPX_GetLocalAddr
	AMIPX_OpenSocket
	AMIPX_CloseSocket
	AMIPX_SendPacket
	AMIPX_ListenForPacket
	AMIPX_RelinquishControl
	AMIPX_GetLocalTarget
	ECB Description
	Event Service Routine
	IPX Header Description
	Additional Requirements
	Past
	Present
	Future
	Credits

