
FUDGIT
A Multi-Purpose

Data-Processing

and

Fitting Program

User’s Manual

Version 2.33
May 1993

Martin-Daniel Lacasse
Center for the Physics of Materials

and
Department of Physics

McGill University
Montréal, Québec, Canada
<isaac@physics.mcgill.ca>

c© Martin-Daniel Lacasse, 1993

Contents

1 Introduction 1
1.1 What is fudgit ? . 1
1.2 Future . 2
1.3 Supported Architectures . 2
1.4 Bugs . 2
1.5 Credits . 2

2 Tutorial 5
2.1 Prerequisite Knowledge . 5
2.2 The Different Modes . 5

2.2.1 The Fitting Mode . 6
2.2.2 The C-calculator Mode . 6
2.2.3 The Plotting Mode . 6

2.3 Changing from one Mode to Another . 6
2.4 Vectors, Parameters, Variables, Strings, and Constants . 6

2.4.1 Scope of Variables . 7
2.4.2 Vectors . 7
2.4.3 Parameters . 8
2.4.4 Scalar Variables . 8
2.4.5 String Variables . 8
2.4.6 Constants and String Constants . 9

2.5 C-calculator Mode Essentials . 9
2.5.1 Computational Errors . 9
2.5.2 Flow Control . 10
2.5.3 Functions and Procedures . 10
2.5.4 Printing from C-calculator Mode . 10
2.5.5 Implicit Loops . 11

2.6 Plotting Mode Essentials . 11
2.7 Fitting Mode Essentials . 11

2.7.1 Environment Variables . 11
2.7.2 Script Files . 11
2.7.3 Signals . 11
2.7.4 Input/Output . 12
2.7.5 Variable Expansion . 13
2.7.6 Macros and Aliases . 13
2.7.7 Flow Control . 13
2.7.8 Fourier Transforms . 13
2.7.9 Cubic Spline Interpolation . 14
2.7.10 Basic Statistics and Integration . 14
2.7.11 Fitting Commands . 15

2.8 Interactive Command Line Shell . 17

i

ii CONTENTS

2.9 Dynamic Loading . 18

3 Reference Manual 19
3.1 & . 19
3.2 \ . 19
3.3 ! . 19
3.4 ? . 20
3.5 $. 20
3.6 dumplot . 21
3.7 killplot . 21
3.8 adjust . 21
3.9 alias . 22
3.10 append and save . 22

3.10.1 append history . 22
3.10.2 append macros . 23
3.10.3 append parameters . 23
3.10.4 append variables . 24
3.10.5 append vectors . 24

3.11 auto . 24
3.12 break . 25
3.13 C . 25
3.14 cd . 26
3.15 cmode . 27
3.16 comments . 30
3.17 continue . 30
3.18 data files . 30
3.19 echo . 30
3.20 else . 31
3.21 end . 31
3.22 endif . 31
3.23 environment . 31
3.24 exec . 31
3.25 exit . 32
3.26 fft . 32
3.27 fit . 33
3.28 fmode . 33
3.29 for . 33
3.30 foreach . 34
3.31 free . 35
3.32 func . 35
3.33 help . 36
3.34 history . 36
3.35 if . 36

3.35.1 C-calculator mode if . 37
3.35.2 Fitting mode if . 37

3.36 in . 38
3.37 install . 38
3.38 invfft . 41
3.39 let . 41
3.40 line editing and history . 41
3.41 load . 42
3.42 lock . 42
3.43 ls . 43

CONTENTS iii

3.44 macro . 43
3.45 math functions . 44

3.45.1 math function abs . 44
3.45.2 math function acos . 44
3.45.3 math function acosh . 44
3.45.4 math function asin . 44
3.45.5 math function asinh . 44
3.45.6 math function atan . 44
3.45.7 math function atan2 . 44
3.45.8 math function atanh . 44
3.45.9 math function besj0 . 44
3.45.10 math function besj1 . 45
3.45.11 math function besjn . 45
3.45.12 math function besy0 . 45
3.45.13 math function besy1 . 45
3.45.14 math function besyn . 45
3.45.15 math function cbrt . 45
3.45.16 math function ceil . 45
3.45.17 math function cos . 45
3.45.18 math function cosh . 45
3.45.19 math function cot . 45
3.45.20 math function coth . 45
3.45.21 math function csc . 45
3.45.22 math function csch . 46
3.45.23 math function erf . 46
3.45.24 math function erfc . 46
3.45.25 math function exp . 46
3.45.26 math function floor . 46
3.45.27 math function hypot . 46
3.45.28 math function int . 46
3.45.29 math function interp . 46
3.45.30 math function lgamma . 46
3.45.31 math function ln . 46
3.45.32 math function log . 47
3.45.33 math function max . 47
3.45.34 math function min . 47
3.45.35 math function rand . 47
3.45.36 math function rint . 47
3.45.37 math function scan . 47
3.45.38 math function sec . 47
3.45.39 math function sech . 47
3.45.40 math function sin . 48
3.45.41 math function sinh . 48
3.45.42 math function sqrt . 48
3.45.43 math function srand . 48
3.45.44 math function sum . 48
3.45.45 math function tan . 48
3.45.46 math function tanh . 48
3.45.47 math function trunc . 48

3.46 pause . 48
3.47 plot . 49
3.48 pmode . 49

iv CONTENTS

3.49 print . 49
3.50 proc . 50
3.51 pwd . 51
3.52 quit . 51
3.53 quotes . 52
3.54 read . 52
3.55 reinstall . 53
3.56 return . 53
3.57 save . 53
3.58 set . 53

3.58.1 set comment . 53
3.58.2 set data . 53
3.58.3 set debug . 54
3.58.4 set error . 54
3.58.5 set expand . 55
3.58.6 set format . 55
3.58.7 set function . 55
3.58.8 set input . 57
3.58.9 set iteration . 57
3.58.10 set method . 57
3.58.11 set noexpand . 58
3.58.12 set output . 58
3.58.13 set pager . 58
3.58.14 set parameters . 58
3.58.15 set plotting . 59
3.58.16 set prompts . 59
3.58.17 set samples . 59
3.58.18 set vformat . 60

3.59 shell . 60
3.60 show . 60

3.60.1 show comment . 60
3.60.2 show data . 60
3.60.3 show debug . 61
3.60.4 show error . 61
3.60.5 show input . 61
3.60.6 show iteration . 61
3.60.7 show fit . 61
3.60.8 show format . 62
3.60.9 show function . 62
3.60.10 show macros . 62
3.60.11 show memory . 62
3.60.12 show method . 62
3.60.13 show output . 63
3.60.14 show pager . 63
3.60.15 show parameters . 63
3.60.16 show plotting . 63
3.60.17 show prompts . 63
3.60.18 show samples . 64
3.60.19 show setup . 64
3.60.20 show table . 64
3.60.21 show variables . 64
3.60.22 show vectors . 65

CONTENTS v

3.60.23 show vformat . 65
3.61 smooth . 65
3.62 special . 65
3.63 spline . 66
3.64 startup . 66
3.65 stop . 67
3.66 string functions . 67

3.66.1 string function DirName . 67
3.66.2 string function FileName . 67
3.66.3 string function Read . 68
3.66.4 string function Scan . 69

3.67 system . 69
3.68 then . 69
3.69 unalias . 69
3.70 unlock . 70
3.71 unmacro . 70
3.72 version . 70
3.73 vi . 70
3.74 while . 70

3.74.1 C-calculator while . 71
3.74.2 Fitting mode while . 71

4 More Examples 72
4.1 Example 1 . 72
4.2 Example 2 . 72
4.3 Example 3 . 72
4.4 Example 4 . 73
4.5 Example 5 . 74

A Using History Interactively 78
A.1 History Interaction . 78

A.1.1 Event Designators . 78
A.1.2 Word Designators . 78
A.1.3 Modifiers . 79

B Command Line Editing 80
B.1 Introduction to Line Editing . 80
B.2 Readline Interaction . 80

B.2.1 Readline Bare Essentials . 80
B.2.2 Readline Movement Commands . 81
B.2.3 Readline Killing Commands . 81
B.2.4 Readline Arguments . 82

B.3 Readline Init File . 82
B.3.1 Readline Init Syntax . 82
B.3.2 Readline Vi Mode . 84

vi CONTENTS

Chapter 1

Introduction

1.1 What is fudgit ?

No more fudging! Despite its name, fudgit is a double-precision multi-purpose fitting program. It can
manipulate complete columns of numbers using vector arithmetic. fudgit is also an expression language
interpreter understanding most of C grammar. It supports most functions from the C math library. Finally,
fudgit is a front end for any plotting program supporting commands from stdin. It is a nice mathematical
complement to gnuplot, for example.

The main features of fudgit are:
• Command shell including history;
• Possible abbreviation of all the fitting mode commands;
• Possible plural when it makes sense too;
• User-definable macros;
• Aliases;
• Shell flow control statements such as if, else, while, foreach;
• On-line help;
• On-line selectable plotting program;
• Fourier transforms;
• Cubic spline interpolation;
• Double-precision built-in calculator;
• Built-in interpreter supporting most of C language including flow control (if, else, while, for, break,
continue);
• User-definable functions and procedures;
• User-defined objects dynamically linkable as functions or procedures;
• Double-precision vector arithmetic;
• Access to the complete C math library;
• Built-in fitting series such as:
+ power series (polynomial);
+ sine series;
+ cosine series;
+ Legendre polynomials;
+ series of Gaussians;
+ series of exponentials;
• User-definable fitting functions;
• Totally dynamical allocation of variables and parameters;
• Possible selection of fitting ranges.

fudgit has a collection of fitting routines including:
• straight line (linear) least squares;

1

2 CHAPTER 1. INTRODUCTION

• straight line (linear) least absolute deviation;
• general linear least squares using QR decomposition;
• general linear least squares using singular value decomposition;
• nonlinear Marquardt-Levenberg method.

1.2 Future

fudgit can be easily enlarged to include other built-in univariable manipulations such as fancy integration,
derivative, statistics, etc. However, dynamical linking allows the user a lot of flexibility. Dynamical linking
should be ported to other vendors.

If anyone is interested in going in this direction then be my guest, or send me the routines you want to
see included! The interpreter is built so that the inclusion of extra modules is fairly straightforward.

On the other hand, the dynamical loader should allow fudgit to become a nice interface between the
user, the data files, and mathematical routines. An implementation of matrix arithmetic would however be
required. This might happen one day, if time permits. . .Users would then only have to build (by constructing
and/or gathering routines) a tool box that would be totally configurable and reusable. fudgit would then be
stripped from spline/fitting/fft/etc. routines which would come in a separate tool box. Anyone interested?

1.3 Supported Architectures

As it stands now, fudgit can be compiled on AIX, DATA GENERAL, HPUX, linux, IRIX, NeXT, OSF,
SUNOS, and ULTRIX. Ports can be easily made to other vendors. As it stands, the dynamic loading feature
only compiles on IRIX, ULTRIX (vax only), and SUNOS. Ports of dynamic loading to HPUX and AIX
are not foreseen in a near future unless someone indicates me how to implement dynamic loading on these
operating systems. If you know something about this let me know. Dynamic loading should be part of new
operating systems in a near future: stay tuned.

1.4 Bugs

There are probably too many to enumerate. However, the program was fairly stable on a lot of testing and
routine applications. Be careful with possible circular aliases; busting a vector by unlocking data. Also,
some malloc() libraries are not always happy when they work a lot. As with most interpreters (e.g. csh),
if, else, endif statements can be difficult to debug and are not much flexible. However, fudgit’s flow
control error messages are more indicative than the one from csh and sh.

The program has been written with robustness in mind and not optimization. Some parts of the code
could therefore be improved for speed, but a deliberate choice has been made on robustness. (As an example,
the default behavior is to have all divisions checked for a null quotient.)

Character by character terminal mode (cbreak) is not available through the plotting program pipe. A
(less portable) pseudo terminal could be used for the plotting program.

The stack and machine could probably be allocated dynamically. However, recursive loops would make
the program to be killed by init for envading the swap space.

Redefined functions do not free the part they were previously occupying on the machine space, but this
memory leak is not significant over a normal session.

1.5 Credits

Parts of fudgit were built from some existing facilities. I would like to give full credits for ideas or even
segments of code that have been taken from the following sources.

• For parts of the user interface:

1.5. CREDITS 3

The help facility and the line editor were taken and adapted respectively from gnuplot, and readline.
readline was written by Brian Fox. The help facility is originally from John D. Johnson.

• For the C-calculator:
The calculator is inspired from HOC calculator which was debugged and largely augmented to support

vector algebra, memory management and extra operators. The source of the basic program is reproduced
for educational purposes in The Unix Programming Environment by Brian W. Kernighan and Rob Pike,
Prentice-Hall (1984).

• For the fitting functions:

Some of the included fitting routines are based on the algorithms found in chapter 14 of Numerical
Recipes in C by W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vettering, Cambridge University
Press (1988), of which some were in turn adapted from LINPACK. I had to adapt all the algorithms to
include elegant error recovery and to perform all calculations on vectors outside the fitting loops, since their
implementation would not permit the use of run-time user selectable functions. fudgit would not have
been possible without the valuable help of that book. Since I strongly recommand that you have a copy of a
fitting book, I strongly suggest you have a copy of this one. Not only this book will describe all the methods
used in fudgit but it will also give you unvaluable insights to get to the state of the art of fitting. These
routines are copyrighted and cannot be separated from fudgit.

Copyright (C) 1987, 1988 Numerical Recipes Software. Reproduced by permission from the book Nu-
merical Recipes: The Art of Scientific Computing published by Cambridge University Press.

• For the fft routine:
The fft routine was first derived from an original Pascal version written in Simple Calculations with

Complex Numbers by David Clark in DDJ 10/84 and then translated to C by R. Hellman (02/21/86). I
rewrote the C version to use vectors of alternated double real and imaginary instead of the original (slow)
vector of pointers to complex structures. I also merged all functions in one to prevent unnecessary function
calls. I was astonished to see that the resulting version was almost identical to the one found in Numerical
Recipes with the exception of a trigonometric recursion. In conclusion, given an algorithm, I think that is
is a hard task to try to write a code much better than the one found there. This is normal since the space
of code possibilities gets narrower as the constraints (optimization) acting on an implementation in a given
language are increased. The one included is from N.R. which was adapted from N. Brenner.

Copyright (C) 1987, 1988 Numerical Recipes Software. Reproduced by permission from the book Nu-
merical Recipes: The Art of Scientific Computing published by Cambridge University Press.

• For the help file:
I would like to thank Ross Thompson for proofreading part of the documentation and also for giving me

constructive feedback in course of the program development.
• For the IRIX supported dynamic loading package:
The dl Dynamic Loading package is from Jack Jansen <Jack.Jansen@cwi.nl> from the Centrum voor

Wiskunde en Informatica. This package only works on IRIX for now.
• For the SUNOS, ULTRIX supported dynamic loading package:

The implementation of dl for SUNOS and ULTRIX is from Guido van Rossum <guido@cwi.nl> from
the Centrum voor Wiskunde en Informatica. I modified part of it to allow multiple routine loading from the
same object. The other part of the puzzle is the dld loader from Wilson Ho <how@cs.ucdavis.edu> which
is based on GNU ld(1) and is under GNU license.

• For compilers not having alloca():
The included public domain version of alloca is from D. A. Gwyn.

• For systems not having putenv():
The version of putenv was adapted from Dave Taylor’s elm who adapted it from cnews.

• For a lot of ideas:
Many thanks to Steve Hornes for stimulating e-mail discussions. Steve is responsible for the idea of

implementing dynamic loading in the final development of fudgit.
• For the port to linux:
The port to linux was made by Thomas Koenig <ig25@rz.uni-karlsruhe.de>. Thanks a lot Thomas!

• For the rest of the code:

4 CHAPTER 1. INTRODUCTION

Copyright (C) 1993 Martin-D. Lacasse
See the Copyrights file for more detail, or the ‘README’ help topic.
Permission to use, copy, and distribute this software and its documentation for any peaceful purpose

and without fee is hereby granted, provided that the above notices appear in all copies and that both those
notices and this permission notice appear in supporting documentation. No part of this can be used for
commercial purposes.

Send bugs, comments or suggestions to
<isaac@physics.mcgill.ca>.
Disclaimer:
This software is provided as is without express or implied warranty.

Chapter 2

Tutorial

The following sections will deal with several applications of fudgit. The main strength of fudgit resides in
its capacity of fitting and splitting multiple files. This kind of applications cannot be done by a mouse driven
program since commands can rarely be automated in such programs. fudgit allows the user to build scripts
which can automate a process that performs the available functions or user-defined functions or macros over
several data files. The syntax is very close to C-shell and most of C-shell users will only have to intuitively
apply their knowledge to the current fitting mode shell. Parallel to this shell is a built-in calculator which
in fact is a basic C interpreter supporting most of the C math library, plus some additional features. The
particularity of fudgit comes from the fact that global variables are common to both the C-calculator and
the command shell. Once again, a minimum knowledge of C will suffice to write short programs using the
C-calculator.

To make a rough picture, one can say that fudgit uses C-shell syntax to deal with files, C syntax to
deal with vectors, numbers and strings, and the language of your favorite plotting program for plotting.

2.1 Prerequisite Knowledge

To read this manual, the reader should have a minimal knowledge of C programming. Specifically, the user
should understand the basics of if, else, while and for constructions. A basic knowledge of C operators
would also be preferable.

A familiarity with unix csh command would be helpful, particularly if you know the C-shell if, while
and foreach constructions, as well as aliases, and string variable substitutions. Users already familiar with
(and perhaps addicted to) tcsh- or bash-emacs- style line editing will feel at home.

However, the novice reader should only refer to a C book to understand operators specific to C. All the
rest of what should be known is fully covered by this manual.

It is also understood that you already know the plotting program you are going to link to fudgit.

2.2 The Different Modes

fudgit is composed of three different modes. These modes can be thought of as (1) a C-shell like interpreter
linked with (2) a C-calculator, sharing the same variables in memory, and with (3) a plotting program of
your choice.

Most of the time, commands of different modes will be interlaced as they are given on the command line.
However, the present manual starts by giving a separate description of the different modes. In the reference
manual, we assume that the different modes are well understood so that the commands are described without
distinction, as they would be used, and independently of their originating mode.

5

6 CHAPTER 2. TUTORIAL

2.2.1 The Fitting Mode

The C-shell like interpreter is called the fitting mode. It is the central mode and is the one from which all
accesses to disk are done. This mode has a range of commands allowing the user to read vectors from or
save vectors to a data file, to read a command script, save the command history, do the Fourier transform of
a vector, make a linear or nonlinear least square fit, etc. . .This mode also allows the user to define macros
and aliases and to perform basic flow control over the statements. All the commands in the fitting mode
can be abbreviated. It is worth mentioning that in the fitting mode, the command line parsing is done by
analyzing words separated by blanks (spaces or tabs), as in an interactive csh.

2.2.2 The C-calculator Mode

The C mode or C-calculator mode is a language interpreter supporting most of C grammar except pointers. It
also supports most of the double-precision C math library. Thus, recognized keywords cannot be abbreviated,
and the different tokens need not be separated. Most of the C operators and keywords are understood and
a few extra operators have been added. This mode does essentially all the possible calculations on scalar
variables and vectors. Recursive functions and procedures can be defined as well. Since all numeric variables
are double precision numbers, C switch constructions were not implemented.

2.2.3 The Plotting Mode

The plotting mode is a channel talking directly to the plotting program of your choice. Therefore, fudgit
can serve as a front end to any plotting program able to accept input from stdin. This way, vectors can be
built from the C-calculator and then plotted by your favorite plotting program (e.g. super mongo, irisplot,
sgiplot, plot, gnuplot, etc. . .). The default plotting program is gnuplot.

2.3 Changing from one Mode to Another

The fitting mode is the central mode from which the two other modes are accessed. Thus, one cannot
change from the C-calculator mode to the plotting mode without going through the fitting mode. The mode
changing commands are mnemonically called cmode for changing to the C-calculator mode, pmode for going
to the plotting mode and fmode to go back to the fitting mode from any of the two previous modes. In
interactive use, typing ˆD is equivalent to fmode and the program will return to the fitting mode.

Each mode has a different type of parsing. The fitting mode analyzes the input line by breaking it in
blank separated words, as the standard C shell. Commands can thus be abbreviated in this mode. On the
other hand, the C-calculator mode parses the input line by breaking it into tokens and keywords of different
types as does a C or FORTRAN compiler. Nothing can be abbreviated, but the different tokens need not
be separated by white spaces. Finally, the plotting mode does no parsing at all, since the plotting program
is responsible for analyzing the input line.

The commands cmode and pmode can be followed by a list of commands on the same line, in which case
the rest of the line will be parsed according to the mode the command refers to, and then processed in the
mode specified. To make life easier, the let command is equivalent to cmode and anything following it will
be passed to the C-calculator mode parser and then processed.

2.4 Vectors, Parameters, Variables, Strings, and Constants

This section describes the different types of variables supported by fudgit. They are vectors, variables,
constants, string variables and string constants. To this list, we should add the last class of objects
consisting of only one member: parameters. Vector and parameter names consist of upper case letters
uniquely. Variable and constant names consist of lower case letters uniquely. String variable and string
constant names consist of a mixture of upper case and lower case letters. Any number of digits or underscores

2.4. VECTORS, PARAMETERS, VARIABLES, STRINGS, AND CONSTANTS 7

can be part of a name: the remaining characters will then decide on the class of object the name describes.
Vectors, parameters, variables and constants are all double precision numbers.

2.4.1 Scope of Variables

All variables are allocated as they are introduced on the C-calculator mode command line. All such variables
have a global scope so that they can be accessed from anywhere outside or inside functions or procedures.
Automatic variables can be defined with the auto keyword. The scope of such variables is delimited by
braces as in standard C. The auto definition has to be immediately after an opened brace. When defined
inside functions or procedures, automatic variables cannot have a name already used by an argument or the
function or procedure. Automatic variables are located on the stack and are freed when the brace matching
the end of the scope is encountered.

2.4.2 Vectors

fudgit supports full vector arithmetic. This means that once a vector has been read, it can be modified
using any of the supported math functions. A vector can also be created by a simple assignment or a while

or for loop over its elements. Any vector part of an assignment will be created and allocated if it does not
already exist. The allocation size is specified by the set samples command. The default size is 4000. A
constant called data will be set to the number of elements that have been read. Obviously, data will always
be smaller than the sample size. Operations relating vectors are possible. In this case, a loop over the vector
elements will be done from the first element to the datath element. The value of this constant is therefore
crucial to all vector operations. We should go over an example.

Suppose that vectors X,Y, Z and ENERGY have been read from a file using a read statement (described
below). Now consider the following assignments:

let X=ln(X)

let Y=sin(X+Z)

let TIME=ENERGY^2

let CONST=3

let GAME=rand()

let K/=GAME

which all are examples of a single equation relating data equations, since each vector element will be assigned
individually. Although all the elements of vector CONST will be equal to 3, the elements of vector GAME will
be random numbers independently generated by the function rand().

Vector elements can also be referenced individually using the usual C syntax. Thus, A[2] refers to the
second element of vector A. Vector operation can thus be done using for loops or while loop constructions.
Note that unlike C, the first element of any vector is 1.

Be careful with assignments involving a vector element and the same whole vector as in:

let VEC *= VEC[3]

which would multiply the vector VEC by its third element. However, the value VEC[3] will not be constant
over the implied loop and the result will not be the one expected. Therefore, such assignments should be
written using temporary variables as in:

let tmp = VEC[3]

let VEC *= tmp

so that variable tmp carries the value that VEC[3] had before the assignment through the whole loop.

Vectors can be saved, appended to a file, with the append vectors and save vectors command. They
can be displayed at any time using the show vectors command.

8 CHAPTER 2. TUTORIAL

2.4.3 Parameters

The short vector containing the fitting parameters is isolated in a class by itself. Parameters can be assigned
globally or element by element. Clearly, parameters cannot be mixed with vectors but elements of it can.
Therefore, statements like

set parameters FITPAR 2

let FITPAR = 3

let VECTOR = 3

let FITPAR[2] = 3*sin(pi) * VECTOR[4]

all are examples of the possible declaration and usage of parameters.
As with vectors, parameters can be displayed, saved, appended using the same range of commands

append, save, show parameters.

2.4.4 Scalar Variables

Scalar variables have lower case names and are allocated as they are introduced on the command line. For
example,

let x++

let y=Y[4]

let z=x*y

are all legal commands. Note that the first example increments variable x only if it already exists. In terms
of assignment, a vector or parameter element is considered as a variable. Variables can also be mixed with
vectors such as in

let X=3^x

let Y=x+Z

let N=n++

let Z=cos(X/a + Z[x])

but statements as

let x=X+Z

are clearly not legal.
Variables can be saved, appended to a file, with the append variables and save variables commands.

They can be displayed at any time with the show variables command.

2.4.5 String Variables

String variables can also be created as needed. Any name consisting of both lower case and upper case letters
will be considered as a string variable. Statements like

let String = "Hello"

let Other String = String

let String1 = "Good"

let String2 = " Bye!"

let String3 = String1 + String2

let String4 = String1 - "od"

let Input = Read()

let y = scan(Read(), "%lf")

let x = (Other string == String)

let y = (Other string != "What is going on? \n")

are thus permitted. The only operations permitted on string variables are the equality operators, the addition
operator, the subtraction operator, and to be arguments of string functions such as scan function. In the
previous example, x and y will both be set to 1. Note that the Read function returns a string.

2.5. C-CALCULATOR MODE ESSENTIALS 9

2.4.6 Constants and String Constants

A constant is a variable that is locked to its value. It can be used at the same place a variable can be except
that changing its value will result in a parsing error. fudgit contains 4 built-in scalar constants: pi = π, e
= Neperian number e, and chi2 which contains the value of χ2 as obtained from the last fit. Finally, data
contains the effective size of all vectors.

There are also 3 built-in string constants: ReadFile holding the name of the last file read by the read

command, Tmp holding a temporary filename consisting of /tmp/fudgitPID, where PID holds for a unique
number describing the current process, and finally Cwd containing the name of the current working directory.
Constants and variables (either scalars or strings) can be transformed in one another using lock and unlock

commands so that the user can build his own constants at any time.

The linked list of all vectors, parameters, variables, constants, functions and procedures can be displayed
by the show table command.

2.5 C-calculator Mode Essentials

The C-calculator mode is the mode dealing with the mathematical transformations of the variables. It has
access to the C functions of the mathematical library such as sin(x), cos(x), tan(x), ln(x), log(x), exp(x) and
more fancy functions such as random number generators, Bessel functions of the first and second kind, error
function, Gamma function and so on. . .

All operators of C are supported with the exception of pointer and bitwise operators. An extra ˆ
exponentiation operator has been implemented.

2.5.1 Computational Errors

All mathematical functions, exponentiation operator and divisions are checked for error. Computational
errors involve infinity values, not a number, out of range, and out of domain. The user can select what kind
of checks she or he wants to have. The first two are values whereas the last two are error numbers set by
the various mathematical functions. This is done using the set error command. The user has the choice
among the following checks:

Infinity A value of that kind results from a division by zero or if the value resulting from a mathematical
function cannot be represented by the computer. The number representation limit is 1.0e+308 for
most 64 bits double machines. To give an idea, the exponential e710 cannot be represented. Note that
the infinity value is signed on some machines, e.g, log(0) = −∞.

Not a Number This value is returned by a function called with an argument out of the domain, such as
a negative number to a log() of a number smaller that 1 for acosh(). This value is also returned when
trying to divide 0 by itself, or the Infinity by itself.

Out of Range This is a flag (error number) that is raised by the mathematical functions returning a value
that cannot be represented by a double C type (double precision FORTRAN).

Out of Domain This flag is raised whenever the argument is unacceptable for a given mathematical func-
tion. Typical examples are x < 0 for log(x), ln(x), xr for any r, x 6∈ [−1, 1] for acos(x), asin(x),
etc.

By setting the error to some of these, the user keeps control over the whole calculation. If a computational
error occurs in a loop, the element number will be indicated along with the error message. The default is to
have all error checks active.

10 CHAPTER 2. TUTORIAL

2.5.2 Flow Control

The C-calculator mode supports the if-else, while, and for constructions. The syntax is very similar to
the one in C. They can be embedded one in another, with no other limit that the compiled code does not
blow fudgit’s internal machine capacity.

The basic C-calculator mode if syntax is

if (conditions) {
cmode-statements
} else if (conditions) {
cmode-statements
} else {
cmode-statements
}

or, for single line statements, or semicolon separated list of statements typed on the same line, the following
syntax

if (conditions)
cmode-line-statement
else

cmode-line-statement

is perfectly legal. The same C type of construction is valid for both for and while. Note that semicolons are
separators and not terminators as they are in C. Therefore, empty statements are defined by empty braces
{ }.

2.5.3 Functions and Procedures

fudgit’s C-calculator supports recursive functions and procedures. Therefore, more complex functions can
be defined using the mathematical functions provided by the C library. I refer the reader to the func and
proc items of the reference manual where some examples are given. These commands are only accessible in
the C-calculator mode. Programming in fudgit’s C-calculator mode is very close to programming a simple
mathematical application in standard C. All variable types can be passed as arguments. Scalar variables are
passed by value whereas vectors and string variables are passed by pointer.

2.5.4 Printing from C-calculator Mode

Variables and constants (either scalars or strings) can be displayed by typing their name on the command
line. A printing list is a coma separated list of variables. Thus

cmode

"values", x, y, X[3]

will display the values of string ”values”, x, y, and X[3], tab separated and appended with a newline, to
the standard output. The print command is a bit different. It will print the given printing list without
an appended newline to a file selected by the fitting mode set output command. The value of output is
stdout by default. It can be set to any filename or to either of the strings stdout and stderr. The following
fragment of code will give an output similar to the ones obtained above:

fmode

set output stdout

cmode

print "values", x, y, z, "\n"

fmode

2.6. PLOTTING MODE ESSENTIALS 11

2.5.5 Implicit Loops

All vector or parameter assignments imply a loop over the vector or parameter elements (the loop is from
1 to data). In such case, a vector name can be used in place of an expression, and the relation will run
over all elements, from one to data, the latter representing the effective size of vectors. This is also valid for
user-defined functions (see func).

2.6 Plotting Mode Essentials

The plotting mode has no real command as such. It is a pipe connected to the stdin of a plotting program
of your choice. Note that all $var-name construction are still recognized and expanded as you talk to
the plotting program. Moreover, all the interactive features of fudgit, such as filename completion and
command line history are still active. Even if you don’t need all the features of fudgit, it can still be used
as a front end to your plotting program, especially if you get addicted to interactive command shells having
filename completion and variable substitution mechanism.

2.7 Fitting Mode Essentials

We shall now describe the central mode of fudgit: the fitting mode. The fitting mode allows the user to
define macros, to alias commands, and to have flow control statements as while, foreach loops and if,

else similar to those in C-shell. These features allow the user to deal with several files and collect information
from fitting successive files and putting the results in a unique output file. This feature is essential when one
has to do a fit on the results obtained from several other fits. This is what fudgit was written for. All the
fitting routines, FFT routines, and I/O accesses are done from the fitting mode.

This section gives a brief description of the range of commands and operations accessible to the fitting
mode.

2.7.1 Environment Variables

The fitting mode is sensitive to the following environment variables:

PAGER This variable refers to the pager to use when displaying vectors of size larger than 24 of while
interactively displaying long output.

SHELL The value of this environment variable is used whenever the user opens a shell from fudgit.

HOME Your home variable is used to translate the ‘~’ symbol and when cd command is called without
argument.

fudgit also loads a file called ∼/.fudgitrc every time it starts. This is useful to configure the program
according to your needs.

2.7.2 Script Files

The load command is one of the most handy command. All the commands are generally put in a file with the
editor and then loaded in fudgit using the load command. Thus, complicated commands can be recalled
and modified at will. In order to avoid confusion between your data files and the script files you write, we
recommand that you use the .ft extension for your script files.

2.7.3 Signals

fudgit responds to signals in a context sensitive way. This discussion will be restricted to signals sent from
the keyboard in interactive mode since fudgit will behave normally when in non-interactive mode, i.e.,
when it has been called with some input file names on the shell command line input.

12 CHAPTER 2. TUTORIAL

An Interrupt signal will be sent by the key combination Control and C what we will denote ^C. An
Interrupt will abort any calculation or loop while in the fitting mode or the C-calculator mode. When in
the plotting mode, the Interrupt signal will be sent to the plotting program and ignored by fudgit. The
behavior of the plotting program will depend from one program to another. In gnuplot, the current action
is interrupted and the program waits for new input.

The key combination ^Z will suspend the program in its current state. Even if this is done in the middle
of an input line, fudgit will remember where you were and redisplay the line when the program will be
called back in foreground. This is done (only available in csh job control) by typing fg at your csh command
line input.

In any mode, a Quit signal will force fudgit to exit gracefully. This signal is generated by the key
combination ^\. This way of exiting is left for situations where nothing else works.

2.7.4 Input/Output

The Input/Output is done exclusively from the fitting mode. The commands read and exec read respectively
from a file and a program and assign a given column to a vector. For example, the command

read file3 X:1 Y:3

will assign the first column of file file3 to a vector named X and the third column to a vector named Y .
As we have seen before, the size of vectors is stored in a constant named data. The only requirement on
the data file is to have a constant number of columns separated by any number of blanks (space or tab). By
default, anything following a ‘#’ will be ignored. Each call to read or exec will set the constant data to the
number of elements read in the specified vectors. The usage of exec is quite similar to read. For example,
the following line will run program shortrun 32 which generates output to stdout in different columns:

exec "shortrun 32" TIME:1 ENERGY:2

The first column is read in vector TIME and the second in a vector named ENERGY. Note that quotes are
necessary to link shortrun 32 as one argument. A range of input can be specified using a range specifier
after the column number. A range specifier is built with the syntax [lower-bound:upper-bound]. Any bound
can be replaced by the ‘*’ wild card which means no bound. A range specifier can be put on any column
while reading. Thus,

read fort.8 A:2[0:*] B:1[*:10]

will read all line elements from file fort.8 such that the second column is ≥ 0 and that the first column is
≤ 10. The resulting elements will be put in vectors A and B respectively only if both conditions are satisfied.
Note from the previous example that the column ordering is not important. As we have seen above, vector
names must uniquely consist of capital letters (‘ ’ is also legal) and digits in order to be recognized as such.
A line range can also be specified using the syntax. {lower-bound:upper-bound}. For example,

read file2 VALUE:1{100:243}
will read any valid line between line 100 and line 243 of file file2. The line range can be given to any variable,
but the last range given will be the only one active. Line range can be mixed with value range like in what
follows:

read fort.8 A:2[0:*] B:1[*:10]{*:1024}
which will do the same thing as before except that reading is now restricted to the first 1024 lines of the file.

Vectors can be saved or appended to files with the save and append commands. The syntax is straight-
forward:

save vectors X Y Z newfile

or

append vectors TIME ENERGY file.2

will save or append the specified vectors to the files specified.

2.7. FITTING MODE ESSENTIALS 13

2.7.5 Variable Expansion

All the variables and constants (either scalars or strings) defined in C-calculator mode are available to the
interactive fitting mode shell. The $ operator will fully expand a string variable or string constant, i.e, by
using the $var-name or ${var-name} syntax.

Quite similarly, if the variable or constant is a scalar, then the value of the variable will be expanded on
the command line (as a string) according to a pre-selected format. The default format is “%.3g” which is
reasonable for including in filenames. This format can be changed using the set format command.

In the fitting mode, expansion will not take place if the ‘$’ operator is following a ‘\’ or if is located
between single quotes.

Note that this variable expansion feature is available in all modes. To avoid the variable expansion in
other modes, a ‘\’ has to protect the ‘$’.

2.7.6 Macros and Aliases

The user can design his own environment by defining macros and aliases. An alias is a command (first
word of the line) that gets expanded and is interpreted along with the other words of the line. A macro is
a user-defined procedure that requires a certain number of arguments to be used in a series of commands.
The number of argument is specified in order to avoid run-time errors. Arguments are referred to using the
$arg-number syntax. Macros and aliases are only definable in and recognized by the fitting mode.

Aliases follow the C-shell syntax. Defining macros is a bit different and I refer the user to the reference
manual found in the next chapter, where some examples are given along with the details. Keep in mind that
macros and aliases are argument manipulation devices: arguments are all processed as strings whatever they
represent (numbers, variable names, filename, etc.).

2.7.7 Flow Control

The fitting mode supports the three following flow control constructions:

foreach Var-name in Unix-commands
fmode-statements
end

if (conditions) then

fmode-statements
else if (conditions) then

fmode-statements
else

fmode-statements
endif

while (conditions)
fmode-statements
end

Their grammar is identical to the one in C-shell apart from the fact that foreach only expands unix

commands, and that the conditions of if and while are C-calculator mode expressions. Thus the ‘$’
operator is not required and the whole set of functions of the C mathematical library is available to the user.

2.7.8 Fourier Transforms

One dimensional Fourier transforms can be done directly from the fitting mode command line. Although
fast Fourier transforms require a number of data points equal to a power of 2, the user can still write scripts

14 CHAPTER 2. TUTORIAL

that will pad the vectors with zeros, up to the nearest power of 2. Note that this process involves an
approximation in the resulting vectors. Fourier transforms require the real and the imaginary part. Real
Fourier transforms can be done simply by supplying a null imaginary part. The user can use the full power
of the C-calculator mode to implement her preferred windowing functions. Full details of indexing can be
found in the reference manual under items fft and invfft.

fudgit also includes a smoothing command based on a loop of Fourier transforms using a cut-off fre-
quency. For more detail, read the description of smooth command in the reference manual.

2.7.9 Cubic Spline Interpolation

fudgit allows the user to interpolate a value given a set of relations yi = f(xi). This can be useful to get an
estimate of the integral of a relation for which only a few points were obtained. Interpolation consists in two
steps: an initialization process spline called with the two vectors characterizing the relation (e.g., spline
X Y), and one or successive calls to C-calculator mode function interp(x) returning the interpolated value.

An example is presented to make it clearer.

Read functional relation

Say file "relfile" contains 24 data points

ranging from x=2 to x=12

read relfile X:1 Y:2

Initialize spline routine

spline X Y

Build a curve having 120 data points from this set

set data 120

Build new X vector ranging [0, 1]

let x=0; X=x++; tmp=data-1; X/=tmp

Map to X ranging [2, 12]

let X = 10*X + 2

Build new Y vector including original set of 24 data points

let Y = interp(X)

The previous example shows a natural cubic spline for which the second derivative of the interpolating
curve is such that it vanishes at the first and the last data points of the original set. The spline command
accepts optional third and fourth arguments specifying the value of the first derivative of the interpolating
curve at, respectively, the first and last data points of the original set.

See the reference manual for more details.

2.7.10 Basic Statistics and Integration

As it stands now, fudgit does not support fancy statistics. However, the user can write his own scripts,
procedures and functions to deal with basic statistics. The sum built-in math function provides a handy way
of calculating the mean, and the standard deviation (and variance). Thus, given a vector X ,

let X2 = X*X # define a vector containing the square of X

let mean = sum(X)/data # get the average

let VAR = (X-mean)^2 # VAR contains the square of the difference

let var = sum(VAR)/(data-1) # the variance as such

let sigma = sqrt(var) # the standard deviation

When used in conjunction with spline and interp, the sum command can also be used to perform
basic numerical integration. Given a data set X representing sample points of a smooth function, basic
numerical integration can be performed by applying a spline-interp procedure to build a denser vector
NEWX . The interpolation should be made such that increasing data would not change the value of
sum(NEWX)/data. Other basic integration techniques can also be computed directly using the C-calculator

2.7. FITTING MODE ESSENTIALS 15

programming language. See the reference manual for a more detailed description of each of the commands
mentioned above.

2.7.11 Fitting Commands

We are now ready to perform a fit. We shall go over some examples, slowly introducing features of fudgit.
In the following example, we shall fit y = axb by using the log-log representation and fitting a straight line
by a least-square method. Refer to the reference manual in the next chapter to understand the commands
as they as introduced.

We fit a straight line

set function straight

using least square linear regression

set method ls_reg

with 2 parameters called, say, B[1] and B[2]

set parameters B 2

Read elements having positive X and Y values from file fort.32

read fort.32 X:1[0.00001:*] Y:2[0.00001:*] DY:4

Take the ln()

let DY /= Y

let Y = ln(Y)

let X = ln(X)

do the fit

fit X Y DY

Save the result in file myfit

save parameters myfit

All these commands could be typed interactively (without the comments) or put into a file (with the com-
ments) and then loaded. The file could also be given as an argument to fudgit by typing

% fudgit scriptfile.ft

from your C-shell. Note that the extension .ft is not necessary but is strongly recommanded.
In the following example, we shall fit two Gaussians using a nonlinear Marquardt-Levenberg method.

Nonlinear fitting is generally done interactively since the parameter space is explored so as to minimize the
value of χ2. Some local minima can be reached in which case the values of the parameters will not be
representative. Nonlinear fitting is an art!

set function gauss # We fit two Gaussians

set method ml_fit # using Marquardt-Levenberg

set parameters VAL 6 # We need 6 parameters called, say, VAL

read out2 T:1 E:2 ERROR:3 # Read elements from file out2

Nonlinear fits is an art!

adjust 1 2 3 4 5 6 # Adjust all 6 parameters

Initialize some parameters,

since ’set parameters’ created vector VAL = 0 by default

let VAL[1] = 1

let VAL[2] = -10

let VAL[3] = 3

let VAL[4] = 8

let VAL[5] = -2

let VAL[6] = 0

fit X Y DY # do the fit

You might need to use less variables in your fit

16 CHAPTER 2. TUTORIAL

adjust 1 5

Initialize again

let VAL[1] = 2

.

.

.

fit X Y DY

Are you satisfied of CHI^2?

show parameters to see curvature matrix and correlations

show parameters

save parameters in a file along with respective errors

save parameters myfit

Finally, we shall see an example involving a user-defined function. This example shows how multiple fits
can be appended in a file. It also shows the use of macros.

Make a series of fits from different directories

Each directory bears a name representing a temperature value

Tell GNUPLOT to not put a key

pmode set nokey

The 2-d Ising critical temperature is tc

let tc = -1.0/(0.5*ln(sqrt(2)-1))

Define the central macro

Call this macro fitscript and it takes one argument

macro fitscript 1

Save the temperature value as a variable

let temp=$1

Convert it since it was in units of tc

let tempc = temp*tc

Compute the Onsager surface tension for this temperature

let s = 2 *(1+(tempc/2)*ln(tanh(1/tempc)))

Read the data from this specific directory

read $1/landm.0 T:1[20:*] U:2

Convert vector time

let SQT = 1/sqrt(T)

Fit, the function and method are defined below.

Don’t worry: we are defining a macro first.

fit T U DU

Save the transformed and fitted vectors in the same directory

for subsequent plotting

save vec SQT U UFIT $1/landm.0.newfit

Append the fitted parameters in file common to all fits

as well as the temperature value in the first column

append var temp A[1] DA[1] A[2] DA[2] A[3] DA[3] newpar.0

Go in plotting mode to talk to GNUPLOT directly.

pmode

plot ’$1/landm.0.newfit’ using 1:2,\

’$1/landm.0.newfit’ using 1:3 with lines

fmode

This is it!

stop

#

2.8. INTERACTIVE COMMAND LINE SHELL 17

The real work starts here

We shall use a three parameter fit

set parameter A 3

Marquardt-Levenberg

set method ml_fit

Adjust them all

adjust 1 2 3

Initialize

let A[1] = -2

let A[2] = 1

let A[3] = 2

This is the function fitting vector U: Therefore, it must be called UFIT.

One can use any temporary variable (e.g. TMP) to accelerate computation

Note how to build names of parameter partial derivatives

set function user

UFIT = A[1] + s* (A[2]^2 + A[3]^2* T)^(-0.5)

DUFITD1 = 1 # derivative wrt A[1]

TMP = s*(A[2]^2 + A[3]^2*T)^(-1.5) # Temp var speeds up!!!

DUFITD2 = -A[2]*TMP # derivative wrt A[2]

DUFITD3 = -A[3]* T * TMP # derivative wrt A[3]

stop

Do all directories and append to the parameter file

0.0001 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.97 1.00

foreach Dir in echo 0.0001 0.[1-9]? 1.00

echo Doing $Dir

fitscript $Dir

end

Some more examples are given in a subsequent chapter. You should now be able to write your own fitting
scripts. I suggest that you read the following items in the reference manual:

adjust, fit, set/show function, set/show iteration, set/show method,

set/show parameters, show fit, show/save parameters

and other related topics as found in the description of these commands.

2.8 Interactive Command Line Shell

When used interactively, the shell keeps a complete history of previous commands, independently of the
mode.

The shell also supports command completion and filename completion. In the fitting mode, if the tab
key is pressed while the cursor is in the first argument, fudgit will try to expand to a known command,
alias or macro. Therefore, pressing tab twice on an empty line will list all the currently active commands,
macros and aliases. If the cursor is not located in the first argument of the line, then fudgit will try to
expand the argument to an existing filename or to an existing printable variable if a $ is found before the
alphanumeric string to expand. Filename expansion supports the ‘~’ HOME designator.

While in C-calculator mode, the expansion reduces to all what is found in the math lookup table, including
variables, constants, vectors, functions, procedures and keywords.

In the plotting mode, expansion reduces to filename completion or to printable variable completion if the
alphanumeric string to expand starts with a ‘$’.

Lines can be continued on the next one by using a ‘\’ at the end of the line as in csh. Usually expanded
characters can be put as is by escaping them with a leading ‘\’.

18 CHAPTER 2. TUTORIAL

2.9 Dynamic Loading

Some operating systems1 allow to load an object (a file.o) at run-time.2 To do so, a dynamic loading (dl
or dld) library, as well as some features of the loader ld(1) on IRIX are required. The present version
of fudgit supports dynamic loading on IRIX, ULTRIX, and SUNOS only. However, fudgit needs to be
linked (at compilation time) by the GNU ld(1) link editor when built on SUNOS.

Thus, the user can load any module of his own and momentarily install it in the internals of fudgit
as a procedure (not returning a value) or a function (returning a value). Be sure external routines are of
type void for procedures and of type double for functions, although a cast is internally done.

The install command allows the user to choose a different name for the internal installation, with the
only restriction that the name be composed of lowercase letters only (as proc and func do). Once the
external functions and/or procedures are installed, they can be used like any internal function or procedure.

Arguments are all passed by pointers to the external routine. Thus, the user have direct access to vectors,
parameters, and strings passed as arguments. The case of variables is different however. Even if the value
of an expression-variable is passed by pointer, the address is pointing to a temporary location storing the
value of the expression. This is done so that calls like

let y = myfunc(X, sqrt(sin(x)), data)

be possible. A full example is presented in the section of the reference manual describing the install

command. Also read the file fudgit.h located in the tools directory of this distribution. This file should be
included in your modules.

Note that although vector indices run from 1 to data in the C-calculator mode, they run from 0 to data-1
when manipulating the same vectors from your own C modules and from 1 to data when in FORTRAN.
The pointers passed are always the address of the first element.

FORTRAN functions and procedures can be loaded provided an underscore is appended to the function
or procedure name. This means that if you have a subroutine called mysub in a compiled object called
fortran mod.o, you must called install with

install fortran mod.o mysub :myname(X, n)

to install procedure myname() which accepts one vector and one expression as arguments. All functions and
procedures are strongly typed in fudgit. This means that all arguments are checked for number and type
consistency. Note that the colon (:) means to install mysub as a procedure called myname. Using an equal
sign (=) would have installed it as a function. The user can install several functions and procedures from
the same object: they would only need to be listed at the end of the preceding example line.

Future versions of fudgit should provide support for string arguments in FORTRAN modules.
The command reinstall is equivalent to install but it is used when a module has already been loaded

once in the course of a fudgit session. reinstall will first unload the module so that symbols do not get
defined twice in the program.

More details and a full example will be found under the install item of the next chapter.

1It will become a standard for the next generation of UNiX.
2While the program is running, and without recompiling it.

Chapter 3

Reference Manual

This chapter describes all the supported commands. As a convention, any name printed in italics is a generic
name. Any name printed in typewriter style is a command name that has to be typed as such. Optional
arguments are given a subscriptoptional at the end of the optional string. All commands are assumed to be
fitting mode commands except when specified otherwise.

3.1 &

The ‘&’ operator forces fudgit to use the built-in following fitting mode command and to ignore any existing
macro or alias with the same name. This can be useful in constructions like:

macro cd 1

pmode cd "$1"

&cd $1 # The built-in cd

stop

See also:

macro, cd

3.2 \
If anywhere in the middle of a line, a ‘\’ will indicate fudgit to take the following character as is. If at
the end of a line, a ‘\’ indicates that the present line continues on the following one, and thus to ignore the
following carriage return.

See also:

line editing

3.3 !

Any line beginning with the so-called bang operator ‘!’ will execute the system command line with a Bourne
shell. Aliased commands as found in your interactive C-shell do not hold any more. For example, commands
like !rm will not be interactive (i.e. /bin/rm -i) even if you have such an alias in your .cshrc file. Be careful!
A nice turnaround is to alias rm to ‘! rm -i’ in your .fudgitrc file and to use the rm command directly
from fudgit’s shell.

When used in a macro name or an alias name, the ‘!’ character has still another meaning. This tells the
parser that characters following the ‘!’ are optional. Therefore, if one types the following, interactively, (see
NOTE)

19

20 CHAPTER 3. REFERENCE MANUAL

set noexpand

alias da!te !date

set expand

then the parser will recognize da, dat and date as all synonymous to the system command ! date run
through a Bourne shell.

NOTE: In interactive mode, the history functions will try to interpret a history substitution if the ‘!’ is
not followed by a space. See the appendices. To avoid that the line be scanned for a history event designator,
use the set noexpand command. In some cases, it might be simpler to use the system command.

Syntax:

!command

Example:

! mail

See also:

alias, ls, vi, foreach, system, set expand

3.4 ?

A question mark will indicate fudgit to try to get the possible options available to the command presently
typed. This kind of help is context sensitive and works when an insufficient number of arguments is supplied.
The question mark also serves as a wild character in string subtraction.

Syntax:

command ?

Examples:

?

show ?

set function ?

See also:

help, strings

3.5 $

The ‘$’ operator expands scalar variables or constants (double precision numbers from C-calculator mode
lookup table) as well as string variables or constants. Existing scalar variables can thus be expanded as a
string in order to serve as a file name or directory name, for example. The expansion is done according to
the value given to the set vformat command which initially defaults to “%.3g”. Using the scalar variable
expansion operator in C-calculator mode is not recommanded since a lot of precision might be lost (actually
it is a waste!). Scalar variable expansion is essentially provided to allow alternative procedures in certain
cases, such as generating filenames from numbers. Math function scan can be considered as the complement
of scalar variable expansion.

The ‘$’ character also expands string variables. Expansion is done by replacing the $String-Variable-
Name by the value of the string variable. This can be used to replace scan in cases where the string variable
or constant represents a number. For example

3.6. DUMPLOT 21

foreach File in echo 2.2 4.4 6.7 8.32

let x = $File

.

.

.

end

In both cases, if the variable name has to be followed by alphanumeric characters, then the variable name
can be delimited by braces as in standard csh.

Followed by an integer number, the ‘$’ character serves to designate the arguments of a macro. Refer to
the description of macro, concerning this point.

Syntax:

$name

or

${name}

See also:

C, cmode, macro, echo, exit

3.6 dumplot

Command dumplot is generally used in a macro to dump vectors in the plotting pipe. It is described in
more detail under special item.

3.7 killplot

Command killplot is rarely used. It sends a KILL signal to the plotting program. It is described in more
detail under special item.

3.8 adjust

The adjust command is used to specify the parameters to be adjusted in the “least square linear” and the
“Marquardt-Levenberg nonlinear” fitting methods. Parameters not being adjusted will have their standard
deviation set to zero.

Syntax:

adjust index-list

Example:

adjust 1 2 4

See also:

set parameters, set method, set function, fit, show fit

22 CHAPTER 3. REFERENCE MANUAL

3.9 alias

The alias command is used to alias a multiple word command to a single word. Although macros and
aliases are different objects, it is not allowed to define a macro and an alias with the same name since aliases
are always expanded first. Recall that the bang operator (‘!’), at the beginning of a line is recognized from
a macro, an alias or a script file so that an alias like

alias date !date

is perfectly legal. However, this would have to be typed

alias date ! date

at the interactive command line, to avoid that the ‘!’ be interpreted by the history functions.

When called without arguments, alias will list all the current aliases. For obvious reasons, it is not
allowed to alias unalias. alias also supports the command abbreviation character ‘!’. To enter a ‘!’ without
having it interpreted by the history functions, just set noexpand for the time entering the command. When
a ‘!’ is part of the alias name this indicates that the alias command name can be abbreviated down to that
point. Since the & operator is used to refer to the native commands, it is therefore forbidden to start an
alias name by character ’&’.

Syntax:

alias command command-list

Examples:

alias mv !mv

alias . quit

alias da!te !date

See also:

!, &, macro, unalias, set expand

3.10 append and save

The append command can be used to append various things to an existing file. If the file does not already
exists, it will be automatically created.

The save command can be used to save various things to a file. If a file with the same name already
exists, it will be overwritten without any warning.

3.10.1 append history

History can be saved or appended to a file. Any file saved this way can later be executed by the load

command. Note that append history will silently fail if the file does not exist.

Syntax:

append history filename
save history filename

See also:

load, line editing, fmode

3.10. APPEND AND SAVE 23

3.10.2 append macros

All the current macros and aliases can be saved or appended to a file. Any file saved this way can be
subsequently loaded at any time. To avoid confusion between data files and script files we recommand that
you use the .ft extension for your script files.

Syntax:

append macros filename
save macros filename

See also:

alias, unalias, load, show, macro, unmacro

3.10.3 append parameters

Parameters can be saved into a file at any time. The number output format will be the one chosen by the set
format command. The column order will be a parameter followed by its standard deviation. All columns
are separated by a tab. Therefore, if one has previously set parameters, i.e.

set parameters MYPAR 3

.

.

.

save parameters myfile

then there will be 6 columns as follows:

MYPAR[1] DMYPAR[1] . . . MYPAR[3] DMYPAR[3]

in file myfile. Most of the time, the user will desire to save parameters along with some variables or constants.
This can be done by giving the variable or constant (either string or scalar) names on the command line.
For example,

let t = 0.23

set parameters A 2

.

.

.

save parameters t parfile

will create a file parfile containing the value of scalar variable t, followed by the 2 values of parameters A,
alternated with the value of their standard deviations DA. Note that the given list of variables will be printed
first.

Syntax:

append parameters variable-listoptional filename
save parameters variable-listoptional filename

See also:

set format, set parameters, show parameters

24 CHAPTER 3. REFERENCE MANUAL

3.10.4 append variables

Any variable or number of variables can be saved to a file at any time. Vector elements referenced by an
explicit index are considered as variables. String variables and constants are recognized as well.

Syntax:

append variables variable-list filename
save variables variable-list filename

Examples:

append variables x Y[3] a VECTOR[78] datafile1

save variables t PARAM[2] DPARAM[2] datafile2

See also:

load, cmode, let, C, show, auto

3.10.5 append vectors

Any vector or number of vectors can be saved to a file. All the values are written in columns separated by
a tab. The number format will be the one chosen by the set format command.

Syntax:

append vectors VECTOR-list filename
save vectors VECTOR-list filename

Examples:

append vectors X Y ERROR1 TEST2 datafile1

save vectors TIME TEMP DT datafile2

See also:

set format, set data, read, fit, fft, show, auto

3.11 auto

The auto keyword is used to define automatic variables. The type of variable can be a scalar variable, a
VECTOR or a String, depending on the upper-lower case letters in the variable name. The scope of auto
variables is delimited by braces as in C. All auto variables are stored on the stack and are freed when the
scope of the variable is left. Definition of variables can only be done right after a brace has been opened.
Only scalar variables can be assigned as the are defined, while vectors are assigned to zero, and strings are
empty. Contrarily to C, automatic scalar variables are set to zero if not assigned. auto is a C-calculator
mode keyword.

Syntax:

auto var-list

Examples:

Some dummy examples

set data 100

cmode

x = y = 1 # These (x, y) are global

X = y++ # As well as vector X

{ auto x=2, X, Y # All these variables are local...

3.12. BREAK 25

X=3; Y=sin(x)

.

.

.

} # ...and stop existing here

x # This x still contains 1

An example with a procedure

proc test(x) {

auto y=2

z = x + y++ # This z is global

}

fmode

See also:

C, cmode, func, proc

3.12 break

The break keyword is used as in C to break C-calculator mode for or while loops. break is a C-calculator
mode command.

Syntax:

break

See also:

C, continue, cmode, for, while

3.13 C

The following gives a brief description of the supported C-calculator syntax and differences with standard
C.

The following operators are recognized, in order of precedence:

++, -- (post and pre) increment-decrement

-, ! unary minus and logical NOT

^ exponentiation, right associative

/, *, % division, multiplication, modulo

+, - addition, subtraction

>, >=, <, <=, ==, != relational operators

&& logical AND

|| logical OR

=, +=, -=, /=, *= assignments, right associative

All operators are left associatives except those specified. They are all common to C except for the
exponentiation operator.

The following keywords are reserved tokens: auto, if, else, while, for, break, continue, and
return, plus two extra keywords proc, func. They roughly obey the same syntax as in C so that statements
like:

if (conditions)
cmode-line-statement

or

26 CHAPTER 3. REFERENCE MANUAL

if (conditions) cmode-line-statement

or

if (conditions) {
cmode-statements
}

The same thing is true for the else constructions else of which some examples follow:

if (conditions)
cmode-line-statement
else

cmode-line-statement

or

if (conditions) {
cmode-statements
} else {
cmode-statements
}

Here cmode-line-statement means any semicolon separated list of C-calculator mode statements typed on
the same line. Since semicolons are separators and not terminators, empty statements are defined by empty
braces { }.

The return keyword must have parentheses when returning a value from a function as in return(x *

sin(y)). A single return will only be recognized from within a procedure.
To avoid potential confusion with variables, keywords cannot be abbreviated.
As opposed to C, there exists no integer in the C-calculator mode. All scalar variables and numbers are

double precision. This means that logical true is 1.0 and false is 0.0. As in C, one must be careful with
comparison operators. The C switch syntax is not supported (would require integers).

As an extension, string comparison is possible with the equality operators ‘==’ and ‘!=’. This will
return true or false if the string variables (or constants) are identical or not. Assignments of string variables
actually copies all characters of the string on the RHS to the string variable on the LHS. String additions
and subtractions are also possible.

Function and procedure definitions are defined with prototypes, i.e., a list of variables representing the
proper kind of variable. At run-time, the arguments of the function are checked for type compatibility and
for their number.

All variables are global except automatic variables defined using the auto keyword.
See also:

cmode, let, math, scan, strings, auto

3.14 cd

The cd command changes the working directory. Called with no argument, cd will bring you to your
$HOME directory. Note that cd changes the current working directory of fudgit only. Therefore, your
plotting program will still be in the previous directory. To get around this difficulty, you only have to define
a macro as follows, if your plotting program supports cd:

macro Cd 1

pmode cd "$1"

&cd $1

stop

alias cd Cd

3.15. CMODE 27

Syntax:

cd filenameoptional

Examples:

cd

cd /nazgul/users/fulano

See also:

&, pwd, alias

3.15 cmode

The cmode command allows you to go in the C-calculator mode. The only way to come back to the main
fitting mode is by using the fmode command or to type ˆD in interactive mode. Commands cannot be
abbreviated in cmode. Parallel to the cmode command, the let command can be used to pass one single
command, or command line to mathematical parser. To be consistent with pmode command, cmode also
accepts arguments in which case it is equivalent to the let command. It is not an error to call cmode from
the C-calculator mode. A warning message will be given though.

Syntax:

cmode command-listoptional

The C-calculator mode supports most of C syntax (see item C), and most of the C math library. Thus,
the following functions are supported:

trigo: hyperbolic: expo: special: conversion: random:

cos() cosh() ln() besy0() trunc() srand()

cot() coth() log() besy1() floor() rand()

csc() csch() exp() besj0() ceil()

sec() sech() sqrt() besj1() rint()

sin() sinh() cbrt() besjn() abs()

tan() tanh() besyn() int()

acos() acosh() erf() scan()

asin() asinh() erfc() min()

atan() atanh() lgamma() max()

atan2() interp() sum()

vread()

Any upper case variable (possibly including ‘ ’) possibly mixed with digits will be recognized as a vector,
e.g., TEMP 2, TEST, D, etc. Any lower case name will be taken as a scalar variable, e.g., x, t4, etc. There
are two predefined constants, pi = π and e= e, which should not be unlocked and modified. As well, the
built-in constant data contains the current size of the vectors and can be modified through the set data

command, by the read/exec commands, or by unlocking the constant and modifying it directly. The built-
in constant chi2 contains the value of χ2 as obtained from the latest fit. And finally, the built-in scalar
constant param contains the number of parameters as defined by set parameters.

A mix of upper case and lower case letters will serve to indicate a string variable. Strings values are
indicated by double quotes as in C. Unlike C, fudgit considers strings as self-contained objects that can be
added, subtracted, and checked for (in)equality. Thus, string objects (i.e. string variables, string constants
and string values) can: serve as argument to scan function; be part of string assignment statements or of
a truth statement involving (in)equality operator; be added (concatenated using the ‘+’ operator) one with
another; be subtracted (remove string termination using the ‘-’ operator) one with another; and finally be
argument of string functions.

28 CHAPTER 3. REFERENCE MANUAL

A predefined string constant called Tmp contains the string ”/tmp/fudgitPID” where PID is the process
id number of the current process. This file, and any file belonging to you, whose name starts with the
same string, will be erased automatically by the exit or quit commands. This string is typically used by
the gnuplot macro in order to pass data to the gnuplot plotting program which cannot read data from
standard input. Another predefined string constant is ReadFile which contains the last data filename that
has been loaded. Finally, the string constant Cwd is made available in order to get the current working
directory.

The following table contains all the built-in constants.

chi2 Value of chi^2 from the last fit;

data Length of all vectors (< samples) as set by set data;

e Neperian number;

param Number of parameters as set by set parameters;

pi Guess this one;

Cwd Current working directory;

ReadFile The last file (program) read by read (exec);

Tmp A temporary filename "/tmp/fudgitPID";

Constants (either strings and scalars) can also be created by locking a variable. In the same manner, a
constant can be modified directly if it has been unlocked.

The algebraic operations applicable to scalar variables can be applied to vectors. Vector algebra can be
mixed with scalar variable algebra in which case the user has to take the implied loop into account. For
example, although the following operation is not standard C programming: 1

cmode

x = 0

X = x++

will define a vector X of size data (see set data) ranging from X [1] to X [data] and taking values from 0
to data − 1. Multiple commands can be given with the separator ‘;’, for example, another version of the
previous command could be written

cmode

x=0;X=++x

in which case a vector X taking values from 1 to data will be created. (Note that the latter uses a pre-
increment whereas the former uses a post-increment operator on x: results are thus different). Vector
elements can be referenced by elements using standard C grammar. Therefore, the same vector could be
created by using a while construction as in:

fmode

set data 1000

let X=0;i=0

cmode

while (i++ <= data)

X[i] = i

fmode

or, using a for loop,

cmode

for (x=0;x<=data;x++) {

1NOTE: In order to show that some commands can be typed from both C-calculator mode and the fitting fmode, the
following examples shows the typing mode from the first line. However, one can always type the same C-calculator mode
command from the fitting mode by using the let command (or cmode command).

3.15. CMODE 29

X[x] = x

}

fmode

Noninteger variables will be truncated to the nearest lower integer to form a vector index.

cmode

y= 2.01

x=2.23; X[2]=Z[y]+5^x

Assigning a vector to a constant will assign all the elements to that constant.

fmode

let X = pi

let Z2 = 0

The C-calculator checks for undefined variables on the RHS of any assignment. From C-calculator mode,
variables values can be seen by typing the variable name by itself or by using the print command, if the
output is selected to be stdout. From the fitting mode, contents of constants and variables (either strings
or scalars) is displayed using show variables command, or by using the ‘$’ expansion operator. However,
vectors can be only be seen from the fitting mode by using the show vector command.

Each unknown vector name given on the command line allocates a vector of sample size.
To be a calculator as such, the C-calculator prints the value of the expression given on the command

line. Thus, the statement

cmode

x + 2

will print the value of x+ 2.0. The contents of many variables can be displayed at the same time by giving
a coma separated list such as in

cmode

x,"temperature", t

where the string temperature will be printed between the values of variables x and t. Note that the C-
calculator mode recognizes strings by double quotes. Special characters such as ’\n’ are also legal in a
string.

We conclude by giving some examples involving string variables:

fmode

let String = "new.file"

let x = (String == "new.file")

let y = ("file1" == "file2")

let Bing = "\a\a\a"

let Here = Cwd # Store the value of the current working directory

let Input = Read() # Read from stdin

let Test = FileName(ReadFile) - ".data"

let Dir = DirName(InputFile)

let y = scan(Read(), "%lf")

let File = "STRING_23.4"

let number = scan("%*[_A-Z]%lf", File)

let Message = "A tab \t and a newline\n"

where the truth statement could be legally used as a condition for an if, a while, or a for.
See also:

let, C, data, func, proc, print, fmode, math, while, for, return,

auto, if, break, samples, quotes, strings

30 CHAPTER 3. REFERENCE MANUAL

3.16 comments

By default, anything following a ‘#’ will be treated as a comment and ignored. This holds for data files as
well as for command script files loaded with the load command. This default can be changed with the set

comment command. Sometimes a comment character needs to be taken literally in a script file. The comment
character will be accepted as data if it follows the ‘\’ escape operator, i.e. ‘\#’, or, in the fitting mode only,
whenever the comment character is somewhere inside quotes or parentheses. The comment character is
always accepted literally when typed on the interactive command line.

See also:

set comment, read, load, show comment, exec

3.17 continue

The continue keyword has the same usage it has in C for sending the control to the next iteration of a for

or while loop. continue is a C-calculator mode command.
Syntax:

continue

See also:

for, while, cmode, C

3.18 data files

Files containing data are loaded by specifying the name of the data file to the read command. Data files
should contain one data point per line. A data point can be a 256 dimensional object. By default, anything
following character ‘#’ will be treated as comment and ignored. In all cases, the numbers on each line of
a data file must be separated by any number of blank spaces or tabs. These blanks divide each line into
columns. Thus, fudgit can handle up to 256 columns per line. Warning will be given if a line has a different
number of columns. Strings such as NaN or Infinity are recognized and refused. The default compilation
gives a maximum line size of 1024 characters.

See also:

read, exec, set comment

3.19 echo

The echo command allows the user to print a string to the standard output. If no argument is given echo

will only print a newline. This command can be used to display a message or, when coupled with the
variable expansion operator ‘$’, to see the value of a printable (either string or scalar) variable defined in
the C-calculator.

Syntax:

echo string-list

Examples:

echo Starting the fit

echo $Mydir

See also:

cmode, $

3.20. ELSE 31

3.20 else

The else keyword is used in if constructions, both in C-calculator anf fitting modes. Refer to the if entries
for a complete description.

3.21 end

The end command is used to complete a foreach loop or a while loop. Keyword end is also used to tell
read that we are finished writing data to stdin. This command should always be found on a line by itself
(comments are allowed though).

See also:

foreach, while, read, stop

3.22 endif

The endif command is used to complete an if construction in fitting mode. Keyword endif must always be
used on a line by itself (comments are allowed though). Refer to the if entries for a the complete description.

3.23 environment

fudgit is sensitive to the following environment variables:

• PAGER for the program called to format long listings.

• HOME for the directory to which cd defaults.

• SHELL for the shell called by system when this latter is called without arguments.

If not defined, the default pager is /usr/?/more (path depends on system) and the default shell /bin/csh.

See also:

cd, system, show vectors, help

3.24 exec

The command exec executes a program and reads data from it. It supports the same syntax read does
except that the program name replaces the file name. A program is a program name or anything that can
be typed in a shell. If the command line has more than one string, it must be glued with quotes. On a
successful call, exec will set the string constant ReadFile to the name of the program which generated the
data.

Syntax:

exec commands assignment[range]optional . . .

Examples:

exec simulate X:1 Y:2[0:200]

exec "cat data | myfilter -g" X1:1[0:*] X2:2 X3:4

See also:

read, comments

32 CHAPTER 3. REFERENCE MANUAL

3.25 exit

The commands exit and quit will exit fudgit. See details under item quit.

Syntax:

exit

See also:

quit, cmode

3.26 fft

The fft command will take the Fourier transform of the specified vectors and put the real part in a vector
specified by the third argument. The imaginary part will be put in a vector specified by the fourth argument.
Input vectors can be used for output. The resulting vectors will contain frequencies ranging from 0 to N/2
followed by −(N/2 − 1) to −1 in units of 1/(N ∗ ∆) where ∆ is the sampling rate. If a real vector is
transformed h(t)− > H(f), we should have H(−f) = H∗(f). Therefore, with H = R+ iI and H∗ = R− iI
be the transformed vectors, we should have R(−f) = R(f) and I(−f) = −I(f), where f is discrete and
ranges as mentioned above. In terms of vector indices, these relations become R[i] = R[N − i + 2] and
I[i] = −I[N − i+2] for 1 < i < N/2 in addition to the fact that I[1] = I[(N/2)+ 1] = 0. Therefore, because
the negative frequency part is the mirror image of the positive one, it is common to plot only the positive
frequencies of the Fourier transform of a real vector. This can be done by reducing data to half its value.

Because of the use of a FFT algorithm, the number of data points must be an integer power of 2. If
not, the user should pad the vector with zeros up to the next largest power of two. Each transform is
normalized by the factor

√

(N) so that fft RE IM T RE T IM followed by invfft T RE T IMA RE2 IMA2

will not introduce a factor N in vectors RE2 and IMA2 (i.e., RE = RE2 and IM = IM2). At his choice, the user
can use the C-calculator functionality in order to implement windowing.

The power spectrum can be obtained from:

fft RE IMA T_RE T_IMA

let POW = T_RE^2 + T_IMA^2

where POW [i] will contain the power value associated with frequency f , which goes from 0 to N/2 followed
by −(N/2− 1) to −1 (in units of 1/(N ∗∆)) as i goes from 1 to N .

Syntax:

fft real-VECTOR ima-VECTOR real-VECTOR ima-VECTOR

Examples:

real vector X

let IM=0

re-use IM vector for output

fft X IM Z IM

complex vectors X+iY where i = sqrt(-1) transformed in V+iW

fft X Y V W

See also:

invfft, smooth, cmode, let, read, math, data

3.27. FIT 33

3.27 fit

The fit command is used to fit a function, chosen by set function, to a pair of vectors containing the
independent and dependent variables. Depending on the type of fit, selected by the set method command,
a third vector containing the standard deviation might be required. fit allocates a vector having the name
of the dependent variable appended with the string FIT. This vector contains the computed values of the
function for the given independent vector. Depending on the method, the built-in constant chi2 will contain
the value of the mean square deviation weighted by vector σ-VECTOR or the mean absolute deviation.

Syntax:

fit independent-VECTOR dependent-VECTOR σ-VECTOR

Example:

fit X Y DY

will create a vector YFIT containing the value of the fitted function for each of the values of the independent
vector X. Note that the standard deviation is required for most fitting routines since it is used to weigh the
value of local square deviation from the fit (in fact, this is the definition of χ2). If σ-VECTOR is unavailable
just use

let DY=1

using the previous example. This simply gives the same weight to all data points.
See also:

set method, set function, show fit, show parameters, append

3.28 fmode

The fmode command allows you to return to the fitting mode, when the program is in one of the C-calculator
or plotting modes. The fitting mode, is the main mode of the program. The two other modes are the C-
calculator mode, accessed by the cmode command, and the plotting mode, accessed by the pmode command.
When used interactively, ˆD returns to the fitting mode from either of the C-calculator mode or from the
plotting mode. It is not an error to call fmode from the fitting mode. A warning message will be given
though.

Syntax:

fmode

See also:

cmode, pmode, let

3.29 for

The for command is a C-calculator mode command. It behaves roughly like a standard C for construction.
In interactive mode, any new input line will be prompted with a “n{. . .n\t” where ‘n’ stands for the nesting
level and ‘\t’ for a tab. Keyword for is a C-calculator mode command.

Syntax:

for (init-expressions; cond-expressions; loop-expressions)
cmode-line-statement

or

34 CHAPTER 3. REFERENCE MANUAL

for (init-expressions; cond-expressions; loop-expressions) {
cmode-statements
}

Examples:

cmode

for (i=1,j=2;i+j <= data; i+=2,j+=3) A[i] = X[j]

fmode

Another example:

A macro to remove point x in a vector. Syntax: delete "vector" "index"

macro delete 2

cmode

for(i=$2;i<data;i++) {

$1[i] = $1[i+1]

}

fmode

unlock data

let data--

lock data

stop

See also:

C, break, continue, cmode, if, set data, func, proc, if, lock, math

3.30 foreach

The foreach command loops through the strings obtained from a given unix command. Wild card characters
are allowed since everything following the in keyword is passed to a Bourne shell for execution. Strings can
be obtained from any program including the easiest cases echo, ls and cat. The variable name must be of
string type, i.e., consisting of both upper case and lower case letters (and possibly ’s and digits).

Syntax:

foreach StringVarName in unix-command
body of the loop
end

Example:

#convert columns 2 and 3 of the following files in log-log format

foreach Fname in ls data*.7[0-9] datatest.42 data*.8[4-7]

echo $Fname ...

read $Fname X:2[0.001:*] Y:3[0.001:*]

let X = log(X)

let Y = log(Y)

save vectors X Y $Fname.log

end

See also:

for, math function scan, while, macro

3.31. FREE 35

3.31 free

The command free is made available for memory management. It is used to free vectors, variables, functions,
procedures, and numbers that were allocated in the C-calculator mode.

When called with the special argument “@all”, free will erase all the user vectors, numbers and variables,
as well as all active functions and procedures (not macros and aliases). Otherwise, free will free the specified
vector(s) or variable(s). Constants (either scalar or string) cannot be removed without first unlocking them.

Syntax:

free VECTOR- or variable-list
free @all

Examples:

free @all

free X y TEMP

See also:

unlock, C, cmode, show table, show memory, samples, let

3.32 func

The func command defines a function. A function is distinct from a procedure from the fact that a function
must return a value whereas a procedure must not. Arguments are given in the definition with any name
prototype representative of the data type. As in C, the argument list must be comma separated when calling
the function (after having defined it). An example follows. func is a C-calculator mode command.

The prototype list defines the type of variable to be used. Although all global variables are accessible
from within the function, variables are always searched for from the prototype list first, then from the local
list (auto variables), and finally from the global list. All scalar variables are passed by value: thus any scalar
expression is legal as scalar argument. String arguments and vector arguments are passed by pointer: thus
string and vector arguments must refer to a variable explicitly. The show table can be used to list all the
installed objects at a given time.

Syntax:

func functionname(proto-listoptional) cmode-line-statement; return(value)

or

func functionname(proto-listoptional) {
cmode-statements
return(value)
}

Examples:

The following example will print the factorial of all integers up to 120.

cmode

func fac(x) { # This ‘x’ is a prototype: it does not exist.

if (x <= 0) {

return(1)

} else {

return(x * fac(--x))

}

}

x=1 # This ‘x’ is a global scalar variable

36 CHAPTER 3. REFERENCE MANUAL

while (x<120) {

fac(x++)

}

fmode

The following calculates the average of a vector

cmode

func avg(X) {

auto i,x

for (x=0,i=1;i<=data;i++) {

x += X[i]

}

return(x/data)

}

fmode

See also:

C, return, for, while, cmode, math, free, proc, show table, install

3.33 help

The help command displays on-line help. To specify information on a particular topic use the syntax:

help topic

If topic is not specified, a short message is displayed about fudgit. Topic names can be abbreviated
down to the shortest unambiguous string. In case of doubt, help will print out all possible completions.
Thus, help f will print all help topics starting with the letter ‘f’. After help for the requested topic has been
given, help for a subtopic may be requested by typing the subtopic name, extending the help request. After
that subtopic help has been displayed, the request may be extended again, or pressing return will return one
level back to the previous topic. Eventually, the fitting mode prompt will return.

See also:

help?

3.34 history

The history command lists all the previous command lines, along with a number. History lines can be called
using the !string construction or the !number. History is only available in interactive mode. See Appendix
A for more details.

Syntax:

history

See also:

append history, line editing

3.35 if

There are two kinds of if constructions available in fudgit, one in the fitting mode and the other in the
C-calculator mode.

3.35. IF 37

3.35.1 C-calculator mode if

In C-calculator mode, if and else are reserved keywords. C-calculator mode if construction is similar to
the one in standard C. Note that cmode-statements refers to any sequence of C-calculator mode commands
and that cmode-line-statement refers to a semicolon separated list of C-calculator mode commands typed on
the same line.

Syntax:

if (conditions) cmode-line-statement

or

if (conditions)
cmode-line-statement

or

if (conditions) {
cmode-statements
}

or, using the else constructions,

if (conditions)
cmode-line-statement
else

cmode-line-statement

or, for statements on more than one line,

if (conditions) {
cmode-statements
} else if (conditions) {
cmode-statements
} else {
cmode-statements
}

See also:

C, cmode

3.35.2 Fitting mode if

Fitting mode if has a syntax very similar to the one in C-shell. It requires the keywords then and endif

and supports else constructions. The difference resides in the fact that the conditional statement has to
follow C-calculator mode grammar and syntax and thus has a richer set of operators. The ‘$’ expansion
operator is therefore not needed in the conditional statement, as it is in C-shell conditional statements. All
active variables, constants, and their string counterparts, are directly available to the conditional statement.
Note that the fmode-statements can also contain C-calculator mode commands (even possibly including
C-calculator mode if’s!).

Syntax:

if (conditions) then

fmode-statements
endif

or, using the else constructions,

38 CHAPTER 3. REFERENCE MANUAL

if (conditions) then

fmode-statements
else if (conditions) then

fmode-statements
else

fmode-statements
endif

See also:

while, foreach, macro

3.36 in

The in keyword is required in foreach constructions in fitting mode. Refer to the latter for details.

3.37 install

The install command dynamically loads defined routines from an object file. The user decides on the
internal name of the routine but the internal name must consist of lower case letters only. The object file is
an object compiled by the C or FORTRAN compiler. On IRIX, the object must be compiled with the option
-G 0 given to either the C or FORTRAN compiler. The rtn-name is the name of one of the procedure(s)
or function(s) the user wants to install from the object file. The routine will be installed as name and as a
procedure (not returning value) or as a function (returning value) depending on the name separator being a
: (colon) or a = (equal sign) respectively. (See example below).

NOTE: This option is only available on IRIX and SUNOS for the moment.
The external routine must expect pointers to double for all its arguments. Thus, all arguments are passed

by pointers except that pointers to variables do not point to the variables as such but to a temporary copy
of them. This allows us to have expressions like

f = mycall(X, sin(x) + 1, data)

for which the value sin(x) + 1 must necessarily be a temporary copy. In this example, the prototype is a
function mycall(VEC, expr, expr). We shall consider an example in more detail below. All arguments are
strongly typed as vector, parameter, expression or string. Prototyping is done using the uppercase-lowercase
convention. Parameters are prototyped using the word PARAM or less (e.g. PAR).

On IRIX, the linker will create a binary file built from the module name and with the extension file.ld.
This binary is the one that will be loaded in memory. Time stamps are included so that ld(1) will not be
called if not necessary. These files are not erased at exit, since they are reusable and prevent the linker to
be called if nothing changed between two sessions of fudgit.

Successive calls of install with the same module should not be done unless the same functions and
procedures are reinstalled. If this is the case, the user should then reinstall the same modules (that could have
been modified and recompiled in the mean time) using the reinstall command. If a module is reinstalled
with different routines or function or procedure names, the previously defined functions or procedures might
not be properly installed anymore and calling them might result in an undefined behavior.

The file fudgit.h describes the functions user-defined programs can linked with. Among other things,
these functions allow the user to have elegant error handling and exit.

The show table command can be used to list all the installed objects at a given time.
A file having the same base name of the module but with the extension libs can be put in the same

directory in order to include extra libraries while loading the module. On IRIX, these extra libraries must
all contain objects compiled with the flag -G 0 (see cc(1)). (For example, some IRIX systems have a -lm G0
math library.) User-defined libraries can be specified along with system libraries. A typical example could
be a line like:

/home/myname/myproject/libmyG0.a /usr/lib/libmG0.a

3.37. INSTALL 39

for linking with user’s library /home/myname/myproject/libmyG0.a. Equivalently, for non-IRIX systems,
loading a FORTRAN object might require something like this:

/usr/lib/libF77.a /usr/lib/libm.a

Library names can be on multiple lines. However, the file cannot have more than 1024 bytes. A ‘#’ found
anywhere in this file will make the rest of the file to be ignored.

Note that when loading FORTRAN code, the user must append an underscore to the routine name so
that install or reinstall can find it.

The IRIX version does not fully support incremental linking, i.e., to use, in an object to be installed,
symbols that were defined in previously installed objects. However, all the symbols contained in the
original fudgit executable remain at all time available to all linked routines. Therefore, IRIX users should
make sure that external objects are self-contained and only reference to external routines that are intrinsic
to fudgit or come directly (and once) from linked libraries at installation time.

Syntax:

install object-file rtn-name[:|=]name(arg-list). . .

Example:

hostname: cat mymodule.c

#include <math.h>

#include "fudgit.h"

/* An example of a user-defined routine inversing the order of an even

* vector. Typical call would be:

* myproc(A_VEC, data)

* from C-calculator mode. NOTE that both VEC and expr are pointers.

* To make things explicit, fudgit.h contains a few typedef’s.

*/

void myproc(X, dn)

VEC X;

expr dn;

{

int i, half_n;

int n = (int)*dn; /* note that dn is a pointer to a double */

double tmp;

if (n%2 == 1) /* report error if odd number (Why not?)*/

Ft_matherror("%s: Called with an odd number %d.", "myproc", n);

/* You have full use of math and stdio libraries too!!! */

fprintf(stderr,

"BTW, Did you know that %lf is the sqrt(pi)?\n", sqrt(M_PI));

half_n = n >>1; /* half of n */

for (i=0;i<half_n;i++) { /* Standard C: indices from 0 to data-1 */

tmp = X[i];

X[i] = X[n-i];

X[n-i] = tmp;

}

}

40 CHAPTER 3. REFERENCE MANUAL

/*

* Another example involving a function. The following calculates the

* non-normalized correlation between vectors A and B as defined by

* corr(A, B) = <A*B> - <A> *

*

*/

double myfunc(A, B, dn)

VEC A, B;

expr dn;

{

int i, n = (int)*dn; /* Again, dn is a pointer to a double */

double sumA, sumB, sumAB;

sumA = sumB = sumAB = 0.0;

/* sum up the values of interest */

for (i=0;i<n; i++) { /* indices go from 0 to data-1 */

sumA += A[i];

sumB += B[i];

sumAB += A[i] * B[i];

}

/* leave it simple */

sumA /= *dn;

sumB /= *dn;

sumAB /= *dn;

return (sumAB - sumA*sumB);

}

hostname: cc -G 0 -O -c mymodule.c

hostname: cat loadex.ft

This is an example for loading

Install function myfunc as corr() and procedure myproc as inverse()

Prototypes are made from any name representing the proper type:

install mymodule.o myproc:inverse(V, n) myfunc=corr(V, V, n)

set data 24

let x=1;X=x++

let Y=sin(X)

cmode

Inverse order of vector X

inverse(X, data)

Calculate correlation between X and Y

y=corr(X, Y, data)

Print its value

"correlation:", y

fmode

hostname: fudgit loadex.ft

install: myproc installed as procedure inverse.

install: myfunc installed as function corr.

BTW, Did you know that 1.772454 is the sqrt(pi)?

correlation: 9.20717026e-01

When linking FORTRAN functions or subroutines, the user must append an underscore after every
function or subroutine name. All argument variables and vectors have to be defined double precision as

3.38. INVFFT 41

well as returning functions. Typical examples are included in the distribution in the tools directory.
See also:

C, cmode, show table, func, proc

3.38 invfft

Command invfft performs the inverse Fourier transform of the given vectors. It assumes that the frequencies
are ordered from 0 toN/2 followed by negative frequencies ranging from−(N−1)/2 to −1 in units of 1/(N∗∆)
where ∆ is the sampling interval. The results are normalized by a factor 1/

√

(N) so that a transform followed
by an inverse transform should give the original vector. The resulting vectors are stored in the third and
fourth arguments. Thus, invfft X Y V W inverse transforms X+iY into V+iW. Input vectors can be used
as output vectors. See fft for more details.

Syntax:

invfft real-VECTOR ima-VECTOR real-VECTOR ima-VECTOR

See also:

fft, smooth, cmode, let, read, math, data

3.39 let

The let command opens the door to the C-calculator mode from the fitting mode, but leaves the program
in fitting mode. All the let commands can always be typed directly from the C-calculator mode without
having to prepend with the let keyword. The converse is also true; all the commands given in C-calculator
mode could be typed from the fitting mode by prepending them with the let command. Although let is
typed from the fitting mode, the remainder of the line is parsed according to C-calculator mode rules, and
thus quotes are no longer swallowed. Variable expansion operator ‘$’ is still recognized, but its use is not
recommanded for C-calculator statements. See ‘$’ for more details on this point.

Syntax:

let C-calculator-mode-commands

Examples:

generate the zero order first kind bessel

function between (0, 2*pi]

fmode

set data 2000

let x=1; X=x++

let tmp = 2*pi/data # compute sequence only once

let X *= tmp

let Y = besj0(X)

See also:

cmode, C, math

3.40 line editing and history

The command shell supports line editing and history. The editing commands are based on the basic emacs

commands. A short summary follows but a more complete description can be found in Appendix B.
Line editing:

42 CHAPTER 3. REFERENCE MANUAL

• ˆB moves back a single character.
• ˆF moves forward a single character.
• ˆA moves to the beginning of the line.
• ˆE moves to the end of the line.
• ˆH and DEL delete the previous character.
• ˆD deletes the current character.
• ˆK deletes from current position to the end of line.
• ˆL,ˆR redraws line in case it gets trashed.
• ˆU deletes the entire line.
• ˆW deletes the last word.
History:
• ˆP moves back through history.
• ˆN moves forward through history.
• !! previous command.
• !$ previous command last argument.
• !string last command starting with string.
Completion:
• tab complete command if first arg, filename otherwise.
• esc-? or double tab list possible completions.
Each line of input must be smaller than 1024 bytes which is more than sufficient for most applications.

Lines can be continued on several lines provided carriage returns follow a ‘\’ (as in standard shells).
See also:

append history, $, history

3.41 load

The load command executes each line of the specified input file as if it had been typed in interactively.
Files created by the save history command can be loaded directly. Text files containing valid commands
can be created and then executed by the load command. Files being loaded may themselves contain load

commands. See comment for information about comments in command scripts. The load command is
recursive so it can be nested. The only limitation is the I/O stack which has a default capacity of 32. This
value can be easily changed at compilation time of the program.

The current working directory always returns to the value in effect before the loaded script was called.
This is valid for nested load commands too.

In order to avoid confusion between data files and script files we strongly recommand you to stick to the
conventional .ft extension for your script files.

Syntax:

load filename.ft

A load command is also performed implicitly on any filenames given as arguments to fudgit, when
called from your unix session. These are loaded and executed in the order specified, and then fudgit exits.

See also:

set comment, exec, startup, append history, append macros

3.42 lock

Variables can be turned into constants using the lock command. Once a variable is locked, any assignment
trying to change its value will result in a parsing error. This is valid for both scalar and string variables. It
is not an error to try to lock a constant. A warning message will be given though. However, trying to lock
an unexisting variable or something else than a constant or variable will result in an error.

Syntax:

3.43. LS 43

lock var-list

See also:

C, cmode, unlock

3.43 ls

The command ls calls “/bin/ls -FC”. If any arguments are given, those are passed to “/bin/ls -FC”. Wild
card characters are possible since expansion is done by a Bourne shell.

Syntax:

ls ls-argument-list

Examples:

ls p* test?

ls -l datafile

ls -l *.data

See also:

system, alias

3.44 macro

The macro command allows the user to define macros. Macros can be embedded, but another macro cannot
be defined from within a macro, mainly because of their common way to refer to arguments. The name of the
macro followed by the number of arguments required must be given. The maximum number of arguments a
macro can have is 16. An exclamation mark in the macro name will indicate that the macro name can be
abbreviated and that the characters following the exclamation point are optional. Macros are only recognized
in the fitting mode. The total length of each macro is limited to 2048 bytes in size. Macros can be nested
to a maximum of 32. Macros are only recognized from the fitting mode.

Syntax:

macro macroname argument-number
body of the macro
stop

Example:

define a macro named fpl!ot (o, t, are optional)

requiring 3 arguments . Uses the plotting program gnuplot.

Syntax: fplot X Y YFIT

plot X Y with data points and X YFIT with solid line

macro fpl!ot 3

save vectors in temp file (will be automatically removed on exit)

save vec $1 $2 $3 $Tmp.fplot

plot second column with points and third with line

pmode plot ’$Tmp.fplot’ us 1:2 wi point, \

’$Tmp.fplot’ us 1:3 wi line

stop

See also:

append macros, show macros, load, startup, unmacro, alias, unalias

44 CHAPTER 3. REFERENCE MANUAL

3.45 math functions

The C-calculator mode math functions found in fudgit are very close to the corresponding functions found
in the unix math library. Some other functions, not found in the math library, are also part of fudgit. Most
of the numerically unstable functions (i.e. ln, log, exp,. . .) check for both an argument out of range and a
value out of domain at each call. All math functions are double precision and can only be called from the
C-calculator mode, or by using the let command from the fitting mode. These functions are also available
in the conditional statements of the fitting mode if and while, since these statements are C-calculator mode
statements, although part of fitting mode constructions.

3.45.1 math function abs

The abs() function returns the absolute value of its argument.

3.45.2 math function acos

The acos() function returns the arc cosine (inverse cosine) of its argument. acos() returns its argument in
radians.

3.45.3 math function acosh

The acosh() function returns the positive (principal) hyperbolic arc cosine (inverse cosine) of its argument.

3.45.4 math function asin

The asin() function returns the arc sine (inverse sine) of its argument. asin() returns its argument in
radians.

3.45.5 math function asinh

The asinh() function returns the hyperbolic arc sine (inverse sine) of its argument.

3.45.6 math function atan

The atan() function returns the arc tangent (inverse tangent) of its argument. atan() returns its argument
in radians.

3.45.7 math function atan2

The atan2(y, x) function returns the arc tangent (inverse tangent) of the ratio of its arguments (y/x).
atan2() returns its argument in radians. The signs of y and x are used to determine the quadrant.

3.45.8 math function atanh

The atanh() function returns the hyperbolic arc tangent (inverse tangent) of its argument.

3.45.9 math function besj0

The besj0() function returns the j0th Bessel function of its argument, i.e it returns the zeroth order Bessel
function of the first kind. besj0() expects its argument to be in radians.

3.45. MATH FUNCTIONS 45

3.45.10 math function besj1

The besj1() function returns the j1st Bessel function of its argument, i.e it returns the first order Bessel
function of the first kind. besj1() expects its argument to be in radians.

3.45.11 math function besjn

The besjn(n, x) function returns the jnst Bessel function of its argument, i.e it returns the nth order Bessel
function of the first kind. besjn() expects its second argument to be in radians.

3.45.12 math function besy0

The besy0() function returns the y0th Bessel function of its argument, i.e it returns the zeroth order Bessel
function of the second kind. besy0() expects its argument to be in radians.

3.45.13 math function besy1

The besy1() function returns the y1st Bessel function of its argument, i.e it returns the first order Bessel
function of the second kind. besy1() expects its argument to be in radians.

3.45.14 math function besyn

The besyn(n, x) function returns the ynst Bessel function of its argument, i.e it returns the nth order
Bessel function of the second kind. besyn() expects its second argument to be in radians.

3.45.15 math function cbrt

The cbrt() function returns the cubic root of its argument.

3.45.16 math function ceil

The ceil() function returns the smallest integer that is not less than its argument.

3.45.17 math function cos

The cos() function returns the cosine of its argument. cos() expects its argument to be in radians.

3.45.18 math function cosh

The cosh() function returns the hyperbolic cosine of its argument.

3.45.19 math function cot

The cot() function returns the cotangent of its argument. cot() expects its argument to be in radians.

3.45.20 math function coth

The coth() function returns the hyperbolic cotangent of its argument.

3.45.21 math function csc

The csc() function returns the cosecant of its argument. csc() expects its argument to be in radians.

46 CHAPTER 3. REFERENCE MANUAL

3.45.22 math function csch

The csch() function returns the hyperbolic cosecant of its argument.

3.45.23 math function erf

The erf() function returns the error function of its argument. The error function is defined as

2√
π

∫ x

0

e−t2dt

3.45.24 math function erfc

The erfc() function returns 1 - erf() where erf() is the error function of its argument. It is provided
because of the extreme loss of relative accuracy if erf(x) is called for large x and the result subtracted from
1.0 (e.g., for x = 10, 12 places are lost).

3.45.25 math function exp

The exp() function returns the exponential function of its argument (e raised to the power of its argument).
Overflow is checked on all exp() operations.

3.45.26 math function floor

The floor() function returns the largest integer not greater than its argument.

3.45.27 math function hypot

The hypot(x, y) function returns sqrt(x*x+y*y) computed in such a way that underflow will not happen,
and overflow occurs only if the final result deserves it.

3.45.28 math function int

The int() function returns the integer part of its argument, truncated toward zero. The returned value is
still a double. This function is equivalent to trunc() is is kept for compatibility.

3.45.29 math function interp

The interp() function returns an interpolated value of the function at the value of its argument. The
functional relation is previously initialized using the fitting mode command spline. The interpolation is
obtained from cubic splines. Natural (i.e., the second derivative of the interpolating function at either or
both the first and last point of the original data equal zero) cubic spline or specific first derivatives at the
extreme points of the original data set are specified while initializing the process using spline command.

See also:

spline

3.45.30 math function lgamma

The lgamma() function returns the natural logarithm of the gamma function of its argument. For an integer
n, lgamma(n+1) = ln(fac(n)) where fac is a factorial function.

3.45.31 math function ln

The ln() function returns the natural logarithm (base e) of its argument. Illegal argument is checked for.

3.45. MATH FUNCTIONS 47

3.45.32 math function log

The log() function returns the logarithm (base 10) of its argument.

3.45.33 math function max

The built-in function max(x, y) returns the maximum value of x and y. max(x, max(y, z)) obviously
returns the largest value of x, y, and z.

3.45.34 math function min

The built-in function min(x, y) returns the minimum value of x and y. min(x, min(y, z)) obviously
returns the smallest value of x, y, and z.

3.45.35 math function rand

The rand() function returns a random number between [0,1). Depending on the machine on which it is
compiled, it might use the extended 48 bits random number generator or less.

3.45.36 math function rint

The rint() function returns the value of its argument rounded to the nearest integer.

3.45.37 math function scan

This math function is a bit different from others in the fact that it handles strings and returns a number. In
fact, the scan(String, Format) function returns a double precision number as extracted from string String
and according to string format Format. The format is built with the same rules sscanf uses. See man
pages on scanf(3). Note that the format must contain one active ”%lf”. An example might be of some
help here, especially to show how to use scan in conjunction with C-calculator mode defined strings. scan
is particularly helpful to extract numbers from filenames. Recall that strings are defined by double quotes
as in standard C.

At this point, it might be useful for you to know the ”%[]” scanf construction. Let’s go through some
examples: "%*[a-zA-Z]" means to ignore the longest string matched so that it is composed of any letter;
"%*[^0-9]"means to ignore the longest string matched so that it is NOT composed of any digit; "%*[^ .]"

means to ignore the longest string matched so that it is not composed of characters ‘ ’ or ‘.’.
Examples:

define a string called Testname

let Testname = "dummy25.dat"

let y be the Neperian log of the number contained in that string

let y = ln(scan(Testname, "%*[^0-9]%lf.dat"))

The following reads a number from stdin

let input = scan(Read(), "%lf")

See also:

$, strings, C, cmode, quotes

3.45.38 math function sec

The sec() function returns the secant of its argument. sec() expects its argument to be in radians.

3.45.39 math function sech

The sech() function returns the hyperbolic secant of its argument.

48 CHAPTER 3. REFERENCE MANUAL

3.45.40 math function sin

The sin() function returns the sine of its argument. sin() expects its argument to be in radians.

3.45.41 math function sinh

The sinh() function returns the hyperbolic sine of its argument. sinh() expects its argument to be in
radians.

3.45.42 math function sqrt

The sqrt() function returns the square root of its argument.

3.45.43 math function srand

The srand() function sets the seed of the random number generator. Its argument will always be truncated
to an integer towards zero. srand() returns the truncated value.

3.45.44 math function sum

The sum function returns the sum of the elements of the vector passed as an argument. Recall that vector
are passed by pointers so that y = sum(X2) is not legal. Instead, on must explicitly calculate

Given vector X, the following calculates the sum of X^2

let X2 = X^2

let y = sum(X2)

in order to evaluate the sum. The sum function can be used to calculate basic statistics (mean, standard
deviation, correlation, ...) and to do basic integration together with a spline-interp algorithm if the points
are distant and the function smooth enough.

See also:

interp, spline

3.45.45 math function tan

The tan() function returns the tangent of its argument. tan() expects its argument to be in radians.

3.45.46 math function tanh

The tanh() function returns the hyperbolic tangent of its argument. tanh() expects its argument to be in
radians.

3.45.47 math function trunc

The trunc() function returns the value of the argument when truncated towards zero.

3.46 pause

The pause command displays any text associated with the command and then waits a specified amount of
time or until a carriage return is pressed if the given time value is a negative integer. The pause command
is especially useful in conjunction with loaded files.

Syntax:

pause value stringoptional

3.47. PLOT 49

Examples:

pause -1

pause 3

pause -1 Hit return to continue

pause 10 This fits equation 4 to file $ReadFile.

See also:

echo, load

3.47 plot

There exists no plot command as such. However two macros are predefined. One is gnu!plot to use with
gnuplot and sgi!plot to use with sgiplot. As they currently are, only two vectors can be passed to
these macros. They serve like examples for building your own macros as well. See show macros to see the
contents of the predefined macros of your site.

See also:

set plotting, special, macro, show macros

3.48 pmode

The pmode command talks directly to the plotting program chosen with the set plotting command. Any
command usually typed to the plotting routine is now valid. Furthermore, all the current variables, constants
and their string counterparts can be expanded in the plotting mode. The fitting macros and aliases are not
recognized in this mode. The command fmode permits the user to return from the plotting mode as does ˆD
when typed interactively. If pmode is called with trailing arguments, the remainder of the line will be passed
to the plotting program while remaining in fitting mode. It is not an error to call pmode from the plotting
mode. An warning message will be given though.

If the plotting program is defined as a null string (set plotting "") then all command lines given in
pmode will be ignored and warning messages will be given accordingly.

Syntax:

pmode commandoptional

Examples:

pmode

pmode set nokey

pmode plot "fudgfile" with lines

See also:

set plotting, set prompt-pm, special

3.49 print

The print command is a C-calculator mode command that writes the value of a valid mathematical ex-
pression to a file selected by set output. The default is stdout. If there is more than one variable, a coma
separated list must be given in which case each expression value will printed on the same line and separated
by a tab. As with other number output commands, the output format is the one selected by the set format

command. The default is ”The print command differs from show variables as follows:
• print accepts any expression for indexing vector elements;

50 CHAPTER 3. REFERENCE MANUAL

• print requires a comma separated list;
• print can be part of a function or procedure;
• print can print strings provided they are in double quotes. This includes characters ’\n’, ’\t’, ’\a’,

. . . ;
• print does not append a newline.
• print can print any mathemetical expression.
• print is a C-calculator mode command.
A simpler way to print variables to stdout from the C-calculator mode is to use the feature that any

variable or coma separated list of variables given on the command line will be displayed, separated by tabs
and appended with a newline character. Thus the construction @ifhelp

set output stdout

cmode

print x, y, "\n"

is equivalent to

cmode

x, y

typed in C-calculator mode (it becomes let x,y in fitting mode). The only difference between print and
the automatic printing feature of C-calculator mode is that (1) set output only affects print command,
and that (2) print does not automatically append a new line character.

Syntax:

print coma-separated-var-list

Examples:

cmode

print x+2

print String, x, y, z

print "Warning \a\a\a", "x = ", x, "\n"

See also:

cmode, func, C, show table, show variable, math functions, quotes,

set format, set output

3.50 proc

The proc command is a C-calculator command used to define procedures. Procedures differs from functions
in the fact that they do not return any value. The procedure arguments are passed and referred to the same
way they are in functions. Keyword proc is a C-calculator mode command. The show table command can
be used to list all the installed objects at a given time.

Syntax:

proc procedurename(proto-listoptional) cmode-line-statement

or

proc procedurename(proto-listoptional) {
cmode-statements
}

Examples:

3.51. PWD 51

The following example will print the Fibonacci numbers lower than 1000

cmode

proc fib(x) {

a = 0

b = 1

while (b < x) {

print b

c = b

b += a

a = c

}

print "\n"

}

The following ’for’ loop is equivalent to the preceding fib()

proc fib2(x) {

auto a,b,c # This proc creates no global variable

for(a=0,b=1;b<x;c=b,b+=a,a=c) {

print b

}

print "\n"

}

fib(1000) # A procedure as called from C-calculator mode.

fmode

let fib2(1000) # A procedure as called from fitting mode.

A short example involving a vector

set data 10

let proc init(X, x) X=x

let b=3

let init(Y, 2/4 + b) # Shows that scalar can also be expressions.

See also:

return, cmode, C, func, auto, math, show table, install

3.51 pwd

The pwd command prints the name of the working directory on the screen.
Syntax:

pwd

See also:

cd, ls

3.52 quit

The commands exit and quit are equivalent and both will exit fudgit. On exit, all temporary files
/tmp/fudgitPID* (note the wild card) will be erased. Here PID is the current process number. Moreover, if
a plotting process is active, it will be sent a KILL signal. It is therefore a good habit to use the $Tmp string
variable to build your temporary files.

Syntax:

52 CHAPTER 3. REFERENCE MANUAL

quit

See also:

cmode, exit

3.53 quotes

In the fitting mode, single and double quotes serve to indicate that all the characters between quotes should
be taken as only one word, even if there are some blanks (tab or space) among them. The difference between
single and double quotes is that within the former variable expansion (using ‘$’) does not take place whereas
it does in the latter. Quotes are not recognized between parentheses.

In C-calculator mode, double quotes serve to indicate a string and parsing is done accordingly. As in C,
double quotes can be included in a string using the ‘\’ operator. Note that C special characters as ’\n’ for
a newline, ’\a’ for a bell, ’\t’ for a tab, and so on, are recognized in a string. Single quotes have no special
meanings. The only way to pass a ‘$’ without expanding the following name is to escape the ‘$’ with a ‘\’.

Thus, a null string is given by ’’ or "" in the fitting mode and by "" only in C-calculator mode.
In pmode, both single and double quotes are freely passed to the plotting program. This is valid when

trailing commands are are passed to pmode, although fudgit implicitly stays in the fitting mode. Once
again, expansion of a ‘$’ followed by a string can be avoided using the escape character, i.e., by typing ‘\$’.

See also:

exec, set plotting, math function scan, print

3.54 read

The read command is used to read data points from a file or from standard input. Each column is assigned
to a given vector. Vectors not already allocated will automatically be. Range of values can be specified on
any variable using the [low:high] syntax. A ‘*’ replacing a value will be taken as unexistent. Range of lines
can be specified on any variable using the {low:high} syntax. The last line range given will be the only one
in effect. If the file name specified is ‘–’ data will be read from the current standard input until the keyword
end is found on a line by itself. The read –and the load commands are recursive functions so they can
be nested insofar as you can understand what is going on. An assignment consists in a vector name and a
column number separated by a colon. After a file has been successfully read, read will put the name of the
data file in string constant ReadFile.

Syntax:

read filename assignment[range]optional{linerange}optional . . .

Examples:

read file1 X:1[0:*] Y:2

read file2 TIME:2{100:400}

read - T:1 VALUE:2

1 2.3

2 4.7

. .

. .

. .

end

The first form will read positive values of the first column in vectorX and corresponding values of the second
in vector Y . The second will read the second column of file file2 from line 100 to line 400. The third will
read T and VALUE from stdin. The assignment does not need to be in increasing order of column. Also
note that the first column is 1.

See also:

3.55. REINSTALL 53

exec, data

3.55 reinstall

The reinstall command is used to perform the dynamical loading of a module that was already loaded.
Typically, this is done after a module has been modified and recompiled. Refer to install for more detail.

3.56 return

The C-calculator return keyword is used as in standard C to return from a function or a procedure. Contrary
to C, return requires parentheses when returning a value from a function. It is an error to return a value
from a procedure or to not return anything from a function. return is a C-calculator mode command.

Syntax:

return(expression)
return

See also:

C, cmode, func, proc, auto

3.57 save

Look under append command description.

3.58 set

The set command sets a lot of options, as follows.

3.58.1 set comment

The set comment command selects the character which will cause the rest of the line to be ignored. The
default value is ‘#’. Note that the effect of a comment character will be void if: (1) found somewhere between
single quotes in fitting mode or (2) escaped with a ‘\’.

Syntax:

set comment character

Example:

set comment ?

See also:

show comment, comments

3.58.2 set data

The set data command changes the effective size of vectors. All the vector arithmetic checks for index
boundaries. The data constant is the higher bound of the check and necessarily the size of all vectors.
Changing the data value does not change the values nor the capacity of vectors. It only changes the upper
bound on the value the index can take. The data constant is also changed by the commands read and exec,
which set it to the number of valid data points read. Because the upper bound can never be higher than the

54 CHAPTER 3. REFERENCE MANUAL

effective capacity of vectors, a data value higher than the current samples value will be refused. See set

samples. Typically, set data is used when one wants the C-calculator to generate (and plot) vectors. The
read and exec commands take care of adjusting it. data constant can also be changed from the C-calculator
mode if the constant is unlocked. However, no check is made to ensure the given value is not higher than
sample size, in which case a segmentation fault will crash the whole program. It is always safer to use set

data.
Syntax:

set data number

Example:

set data 300

See also:

lock, unlock, read, exec, cmode

3.58.3 set debug

The set debug command puts the reading of loaded files in verbose mode, so that debugging is more easily
done. All the commands, expanded macros and/or string variables are echoed as they are executed. There
are some different debug levels at the present time:

• 0 clear all the debugging states.
• 1 echo the expanded lines as they are read. The command is parsed and comments are stripped out.

This is most useful for debugging script files. History substitutions are shown.
• 2 display all command lines as they are read from the script.
• 3 display the line numbers of the ignored lines as they are read from datafiles.
• 4 echo command lines as they are passed to the math parser.
• 5 turn the math parser debugger on. To use this, the program must have been compiled with the

YYDEBUG preprocessor variable on.
• 6 trace the flow of fitting mode if constructions.
Debugging values are not exclusive so that more than one level can be turned on. Levels are subject to

change.
Syntax:

set debug value-list

Example:

set debug 0 1 3

See also:

load

3.58.4 set error

fudgit allows the user to select among different possible error checks to be made on each single mathematical
operations. The set error command will set computational error checks as follows:

• 0: clear all computational error check bits.
• 1: check for ‘infinity’ values.
• 2: check for ‘not a number’ values.
• 3: check for ‘out of domain’ math function errors.
• 4: check for ‘out of range’ math function errors.
Error checks are not exclusive and more than one can be specified on the command line. The default

status has all error check levels activated (1 2 3 4).

3.58. SET 55

It is sometimes desirable to disable one of the checks. For example, the operation y = 1/sinh(x) will give
a ‘out of range’ error for large x (> 709 on most machines), although y is in fact 0. If one uses set error

0 1 2 3, then no error will be reported and y will be set to zero accordingly.
Syntax:

set debug value-list

Example:

set error 0 2 3

See also:

C, cmode

3.58.5 set expand

In interactive mode, history expansion and substitution will occur only if the expand variable is set. It is
disabled using set noexpand. The default is on.

Syntax:

set expand

See also:

set noexpand, history, line editing

3.58.6 set format

The command set format will set the printf format for variables. Use only if you are sure of what you are
doing. It defaults to “% 10.8e”. See man printf(3) if in doubt.

Syntax:

set format string

Examples:

set format %6.2lf

set format "% .8g"

See also:

show, append

3.58.7 set function

The set function command is perhaps the most crucial command in data fitting. It is used to select a
built-in fitting function or to enter a user-defined function. The following fitting functions are available:

NAME DESCRIPTION PARAMETERS REQUIRED

---- ----------- -------------------

straight Straight line (2 parameters)

sine Sine series (N parameters)

cosine Cosine series (N parameters)

legendre Legendre series (N parameters)

polynomial Power series (N parameters)

gauss Gaussian series (3N parameters)

expo Exponential series (2N parameters)

user User-defined function (N parameters)

56 CHAPTER 3. REFERENCE MANUAL

Assume a variable vector X and a parameter vector A then, the nonlinear gauss fitting function is a
series of gaussians where

f(X,A) =
∑

i=1,4,7,...,N

A[i]× e
−

(

(X−A[i+1])
A[i+2]

)2

.

The nonlinear expo function is a series of exponentials where

f(X,A) =
∑

1=1,3,...,N

A[i]× eX∗A[i+1].

For a user-defined function, the set function user will prompt for more input. The following input is
related to the variable to fit. For purposes of clarity, let’s say that we have to fit vectors X Y DY. This requires
a fit function YFIT (the name is made from the dependent variable appended with FIT) and all the partial
derivatives DYFITD1, DYFITD2, . . . , DYFITDN taken with respect to the parameters n = 1, . . . N . All these
functions are defined one per line as in the case of a macro until a stop is entered. Temporary variables are
permitted. set function user actually defines a C-calculator mode macro that will be executed before each
iteration of the fit. Therefore the complete C-calculator mode grammar is fully supported here. Temporary
vectors can thus be used to speed up the calculation.

The C-calculator macro can be a simple call to a predefined procedure. When defined so, the parsing
does not have to be done at each iteration, and a slightly faster process should result.

Example:

read column 1, 2 and 3 of file "file"

read file T:1 R:2 DR:3

make a three parameter fit

set parameter K 3

this is a linear fit; use singular value decomposition

set method svd_fit

enter my function

set function user

RFIT = K[1] + K[2]*T^0.5 + K[3]*T^1.5

DRFITD1 = 1

DRFITD2 = T^0.5

DRFITD3 = T^1.5

stop

fit T R DR

The vector RFIT will contain the fitted function. The difference between the fit and real data can be
obtained right away by defining a vector

let RDIFF = R - RFIT

that can be plotted with respect to T.

The same thing is done for nonlinear fit with the exception that the partial derivatives of the function
with respect to the parameters will contain reference to some parameter(s). (This is precisely the meaning
of nonlinear here).

There is virtually no restriction on the number of parameters (memory is the sole limitation: set

parameter command allocates a matrix of parameters X samples). The only conditions are that a linear
regression must have 2 parameters defined (this is obvious) and the built-in nonlinear functions must be
modulo 3 for the series of gaussians and modulo 2 for the series of exponentials.

See also:

fit, set method, adjust, proc, auto

3.58. SET 57

3.58.8 set input

The set input command selects the file for the input of the C-calculator mode Read and vread command.
The string stdin is valid as a filename. If the selected file does not exist or cannot be read, an error message
will be given and the value will go back to the default value, which is stdin.

Syntax:

set input filename

See also:

Read, vread

3.58.9 set iteration

The set iteration command permits the user to change the iteration number for the Marquardt-Levenberg
nonlinear fitting method. See set function. The default value is 10. However, the fitting process will stop
if there is no difference in χ2 for two consecutive iterations. However, a negative value will force to iterate
up to the absolute value of that number, without checking for convergence.

Syntax:

set iteration value

Example:

set iteration 3

See also:

fit, set method, set function

3.58.10 set method

The set method command allows the user to select the fitting method to be used when calling the fit

command. The following methods are available:

NAME DESCRIPTION

---- -----------

ls_reg least square linear regression (2 parameters)

lad_reg least absolute deviation linear regression (2 parameters)

ls_fit general least square linear fit using QR decomposition

svd_fit general least square linear fit using singular value

decomposition

ml_fit general least square nonlinear fit using

Marquardt-Levenberg method

Among them, only ml fit and ls fit depends on iteration and adjust.
For all methods except lad reg, the value of χ2 will be put in the scalar constant chi2. In the case of

lad reg, will contain the average absolute deviation.
Syntax:

set method method

Example:

set method svd

See also:

fit, set iteration, set function

58 CHAPTER 3. REFERENCE MANUAL

3.58.11 set noexpand

The set noexpand command disallows history expansion on the interactive command line.
Syntax:

set noexpand

See also:

set expand

3.58.12 set output

The set output command selects the file for the output of the C-calculator mode print command. The
strings stdout and stderr are both valid as a filename. If the selected file already exists, it will be overwritten
with no warning. The default value is stdout.

Syntax:

set output filename

See also:

print

3.58.13 set pager

The set pager command allows the user to select a pager. A pager is the program that is called when
the structure to be displayed has more than 24 elements. The default pager is (1) the environment variable
PAGER if it exists or (2) /usr/?/more (path depends on system) if not. If pager is defined to a null string
(""), then no pager will be used.

Syntax:

set pager string

Example:

set pager "more -c"

See also:

show, show pager

3.58.14 set parameters

The command set parameters will fix the parameter name and size. Since the set of parameters is a kind
of vector, parameter name cannot contain lower case letters. Parameters are initialized to zero. A built-in
scalar constant called param contains the number of parameters at all time.

Syntax:

set parameters parameter-name size

Example:

set the vector D of size 3 to be determined by the fit.

set parameters D 3

See also:

show parameters, show setup

3.58. SET 59

3.58.15 set plotting

The set plotting command changes the default plotting program used by the plotting mode. The default
is gnuplot but this can be changed to any plotting program that can be driven from stdin. A maximum
of 16 arguments can be passed when the program is first called. Changing the plotting program will send
a KILL signal to the existing plotting program (if any). If the plotting program is set to a null string (""),
fudgit will ignore all the plotting commands and warning messages will be given. Setting the plotting
program to a file that cannot be found or executed will result in an error at the first pmode call.

Syntax:

set plotting command

Examples:

set plotting "/usr/local/bin/sgiplot -p"

set plotting /usr/local/bin/gnuplot

See also:

show plotting

3.58.16 set prompts

All three fudgit prompts can be changed by the set command. The name of the prompts are:

• prompt-cm for the C-calculator mode prompt (default: ”cmode> ”;

• prompt-fm for the fitting mode prompt (default: ”fudgit> ”;

• prompt-pm for the plotting mode prompt (default: ”pmode> ”.

A null string "" (i.e., two consecutive quotes) can be given to any of these.

Syntax:

set prompt-cm string
set prompt-fm string
set prompt-pm string

See also:

show prompts

3.58.17 set samples

The command set samples changes the current capacity of the fitting program. Typically, samples is set
at the beginning of a session since all the existing vectors and variables are erased on this call. The default
setting is 4000 points.

Syntax:

set samples value

Example:

set samples 6000

See also:

set data, cmode, let, lock

60 CHAPTER 3. REFERENCE MANUAL

3.58.18 set vformat

The command set vformat will set the sprintf format used for the expansion of scalar variables by the
expansion operator ‘$’. Use only if you are sure of what you are doing. It defaults to “%.3lg”. See man

printf(3) if in doubt.

Syntax:

set vformat string

Examples:

set vformat %6.2lf

set vformat "%.4lg"

See also:

$, cmode, C

3.59 shell

The shell command starts a shell according to your SHELL environment variable. It is equivalent to system
command. Refer to the latter for details.

3.60 show

The show command is used to see the chosen options or to look at any defined vectors, parameters or
variables.

See also:

set, echo

3.60.1 show comment

The show comment command echoes the current comment escape character.

Syntax:

show comment

See also:

set comment, comments

3.60.2 show data

The show data command displays the current value of data constant. Left for compatibility.

Syntax:

show data

See also:

set data, lock, unlock, set samples

3.60. SHOW 61

3.60.3 show debug

The show debug command displays the current value of the debug variable. The value is displayed in octal
since the set debug n command turns on the nth bit of this number.

Syntax:

show debug

See also:

set debug

3.60.4 show error

The show error command displays the current value of the error computational check variable. The value
is displayed in octal since the set error n command turns on the nth bit of this number.

Syntax:

show error

See also:

set error

3.60.5 show input

The show input command shows the filename selected for the input of the C-calculator mode Read and
vread command. The default value is stdin

Syntax:

show input

See also:

set input, Read, vread

3.60.6 show iteration

The show iteration command displays the current value of iteration variable.
Syntax:

show iteration

See also:

set iteration, set method

3.60.7 show fit

The show fit command displays the different quantities relevant to the current fitting method. Typical
examples are χ2, the covariance matrix, the curvature matrix, correlation factor, etc. . .

Syntax:

show fit

See also:

fit, set parameters, set function, set method

62 CHAPTER 3. REFERENCE MANUAL

3.60.8 show format

The show format command displays the current value of format variable. The format string is used when
displaying any number on the screen. Refer to printf(3) of the unix manual.

Syntax:

show format

See also:

set format, show

3.60.9 show function

The command show function displays the current function type. If the function type is user, then the
user-defined function will be displayed.

Syntax:

show function

See also:

set function, show setup, fit, math

3.60.10 show macros

If called with an argument, the show macros command will display the specified macro. Otherwise, all
currently defined macros will be displayed. The selected pager is called if the command is given in interactive
mode (at the command line prompt).

Syntax:

show macros macronameoptional

See also:

set pager, save macros, alias

3.60.11 show memory

The show memory function will display the current state of memory consumption of the program. All sizes
are given in bytes. It uses a direct call to mallinfo(3). The arena is the size of memory requested by the
process to the kernel. It is then split in different blocks shared among the internal matrices and user’s
vectors, macros, functions, procedures, variables and history.

Syntax:

show memory

See also:

free, show table

3.60.12 show method

The show method command displays the current value of the fitting method. It contains none by default.
Syntax:

show method

See also:

set method, fit, set function

3.60. SHOW 63

3.60.13 show output

The show output command shows the filename selected for the output of the C-calculator mode print

command. The default value is stdout
Syntax:

show output

See also:

set output, print

3.60.14 show pager

The show pager command displays the current value of the pager program.
Syntax:

show pager

See also:

set pager, environment, show

3.60.15 show parameters

The command show parameterswill display the parameter values on the screen. If the number of parameters
is larger than 24, then the selected pager will be called if the command is given in interactive mode (at
the command line prompt). As with append and save parameters, show parameter can accept optional
variable or constant (either string or scalar) list of names, in which case the value of the given variables will
be displayed along with the parameter values.

Syntax:

show parameters variable-listoptional

See also:

set pager, set parameters, save parameters, show fit

3.60.16 show plotting

The show plotting command displays the current value of the plotting program.
Syntax:

show plotting

See also:

set plotting, startup, pmode

3.60.17 show prompts

The show prompts command displays the current values of the different mode prompts.
Syntax:

show prompt-cm

show prompt-fm

show prompt-pm

See also:

set prompt, startup

64 CHAPTER 3. REFERENCE MANUAL

3.60.18 show samples

The show samples command displays the current value of the samples variable. Recall that although data

is responsible for the visible part of all vectors, vectors all have a fixed allocated length of samples long.
Any change to samples through set samples frees all the existing vectors.

Syntax:

show samples

See also:

set samples, set data, cmode

3.60.19 show setup

The command show setup will show some values of the program, such as the last data filename read,
the number of data points, current capacity, current comment character, current iteration number, current
plotting program, etc. Left for compatibility.

Syntax:

show setup

See also:

set comments

3.60.20 show table

The command show table displays the current lookup table of the C-calculator mode parser. It shows all
current variables, numbers, vectors and functions included in the internal table. It also shows the state
of the internal machine (C interpreter), stack and frame used in the C-calculator. This is used mainly for
debugging or to prevent stack or machine code overflow.

Syntax:

show table

See also:

free, show memory, cmode

3.60.21 show variables

Any constants or variables can be displayed on the screen. The show variable command differs from print

as follows:
• show variables only accepts integers for indexing vector elements;
• show variables requires a blank separated list;
• show variables cannot be part of a function or procedure.
As it has been mentioned previously, this is due to the different types of parsing between the C-calculator

and fitting modes. As with all other number displaying commands, the printing format is always the one
selected by the set format command.

Syntax:

show variables variable-list

Example:

show variables x X[2] Y[2] DY[2] time

See also:

print, save variables, show table, show vectors, cmode

3.61. SMOOTH 65

3.60.22 show vectors

Any vector or number of vectors can be seen on the screen. If the size of vectors is larger than 24, the
selected pager will be called if the command is given in interactive mode (at the command line prompt).

Syntax:

show vectors VECTOR-list

Example:

show vectors X Y DY

See also:

set pager, append vectors, read, cmode, let

3.60.23 show vformat

The command show vformat will display the printf format used for the expansion of scalar variables by the
expansion operator ‘$’. Refer to the printf(3) description in the unix manual for more details.

Syntax:

show vformat

See also:

$, cmode, C, set vformat

3.61 smooth

The smooth command uses a gaussian windowing function (low-pass filter) on a Fourier transform loop in
order to smooth the given vector. The windowing function is exp(−(f/(σ× fmax))

2) where fmax is equal to
half of the smallest power of 2 larger than the number of data points data. Variable f is the frequency that
ranges from 0 to fmax. More likely, the smoothing factor is a non null positive real number from the (0, 1]
interval. A smoothing factor σ >= 1 leaves the vector unchanged.

The number of data points data needs not to be a power of 2.
To be used with discernment!
Syntax:

smooth σ in-VECTOR out-VECTOR

See also:

fft, invfft, cmode, C

3.62 special

The following special commands are left for debugging or macro purposes. They start with an underscore
to avoid mistakes and remind of their special character.

killplot will kill the current plotting program.
Syntax:

killplot

dumplot will send the following vectors in the plotting program pipe. This is only useful if the current
plotting program accept data from its stdin. dumplot can accept up to 16 arguments.

Syntax:

66 CHAPTER 3. REFERENCE MANUAL

dumplot VECTOR-list

Example:

dumplot X Y DY

See also:

macro, show macros, plot

3.63 spline

The spline function initializes the internal table for the calculation of interpolated values using cubic spline
method. Interpolated values are obtained from calls to the C-calculator math function interp(). The value
of the first derivative at the first and last data points can be specified by optional arguments. If not specified,
or if one of the optional arguments is an asterisk *, then a natural cubic spline is assumed in which case the
interpolated curve is such that the second derivative at the extreme points (or one of them) is null. The
asterisk is more likely to be used in cases where the user would like to specify the first derivative at the last
point only. The independent vector must be such that its value increases monotonically.

Syntax:

spline indep-VECTOR dep-VECTOR y1optional ynoptional

Example:

Read vectors having a functional relation Y = F(X) from file "datafile"

read datafile X:1 Y:2

Initialize the spline (as being natural)

spline X Y

Save extreme values

let from = X[1]; to = X[data]

Say there were data=10 points and you want 100

set data 100

Rebuild X vector

First build X ranging [0, 1]

let x=0; X=x++; tmp=data-1; X/=tmp

Then from ’from’ to ’to’: from + (to - from)*X

let tmp=(to-from); X = from + X*tmp

Rebuild Y vector possibly containing original values as a subset

let Y = interp(X)

Note that any value can be asked for

let interp(2.34*pi)

See also:

math interp

3.64 startup

If a file .fudgitrc exists in your home directory, it will be automatically loaded at startup time of the program.
This is useful if one wants to include his own macros or have his own preferences loaded to fudgit. This
file is loaded for both interactive use (fudgit) and batch use (fudgit script1 script2. . .).

Examples:

3.65. STOP 67

set plotting /usr/local/bin/sgiplot

set prompt-pm ""

set comment ?

set samples 10000

A file called .hist fudgit is will be created in your home directory in order to keep history between calls
of fudgit. The number of events is determined at compilation time and defaults to 52.

See also:

environment, alias, set plotting, set prompt

3.65 stop

The command stop is used to terminate a macro or a fitting function defined by the user. However, it can
also be used in a script file in order to stop execution at a certain point. In this case, an warning message
will report that stop is being used outside a macro or function and the file from which the command was
found will be considered as at the end of file (EOF).

See also:

macro, set function

3.66 string functions

fudgit has a set of functions returning string objects. These are made available to deal with filename
construction, or to read from standard input. To be consistent with string type, string functions are named
with both lower case and upper case letters.

Strings can be added or subtracted in the C-calculator mode. String addition s1 + s2 simply concatenates
strings s2 to string s1. String subtraction s1 - s2 removes s2 from the end of s1. Note that the wild card ‘?’
is supported in string subtractions.

3.66.1 string function DirName

The string function DirName returns the directory name as extracted from the filename given as an argument.
Syntax:

Dirname(String)

See also:

string functions FileName, Scan, Read

3.66.2 string function FileName

The string function FileName strips the leading directory names of the filename given as an argument. Note
that the unix command:

basename File Extension

is equivalent to the fudgit command:

FileName(File) - Extension

so that filename constructions can be made in foreach loop for example.
Syntax:

FileName(String)

68 CHAPTER 3. REFERENCE MANUAL

Examples:

foreach File in ls /usr/machin/data/*.32

read $File X:1 Y:2{2:23}

Some commands

.

.

let File be the filename only, less the ".32" extension

let File = FileName(File) - ".32"

And let Dir be the directory name

let Dir = DirName(File)

end

See also:

foreach, string functions, cmode, $

3.66.3 string function Read

The Read function read a line from the file chosen by the set input function, strips the newline character
and returns the resulting string. If the input is stdin, the user will be prompted by a ? and the program will
stop until a non-null string is entered. This is most likely to be used in macros requiring some input during
run time. The Read() function can be used to read numbers with the help of scan(). See the example
below.

Read can also be used to build vectors by taking one every n points. This can be done by two imbedded
for loops.

Note: The newline character is not passed to the string.

Examples:

Read a string from stdin (the default)

set input stdin

let String = Read()

How to get a value out of a string: equivalent to vread()

let value = scan(Read(), "\%lf") \eq

How to skip lines in a file

Read say file project/numbers.data

set input project/numbers.data

cmode

for (i=1; i<=top; i++) {

Line = Read() # Read one line

X[i] = scan(Line, "%lf"); # get first column

Y[i] = scan(Line, "%*lf %*lf %lf"); # get third column

for (j=1; j<n; j++) {

Line = Read() # Read n-1 lines

}

}

fmode

set input stdin

See also:

set input, math function scan, string functions, $

3.67. SYSTEM 69

3.66.4 string function Scan

Scan(String, Format) function returns a string as extracted from string String and according to string
format Format. The format is built with the same rules sscanf uses. See man pages on scanf(3). Note
that the format must contain one active ”%s” or ”%[]” construction. An example might be of some help
here, especially to show how to use Scan in conjunction with C-calculator mode defined strings. Scan is
particularly helpful to extract parts of filenames. Recall that strings are defined by double quotes as in
standard C.

Knowing about the ”%[]” scanf(3) construction might be useful at this point. Consider the following
few examples: "%[a-zA-Z]" means to read the longest string matched so that it is composed of any letter;
"%[^0-9]" means to read the longest string matched so that it is NOT composed of any digit; "%[^ .]"

means to read the longest string matched so that it is not composed of characters ‘ ’ or ‘.’.
Examples:

define a string called Testname

let Testname = "dummy25.dat"

Read until a point is encountered

let Base = Scan(Testname, "%[^.]"))

See also:

$, scan, string functions Read, DirName, FileName, C, cmode, quotes

3.67 system

When called with arguments, the system command is equivalent to the ‘!’ bang operator, so the remainder
of the line will be given to a Bourne shell for execution. If system has no argument, a shell (depending on
environment variable SHELL) will be started.

Syntax:

system shell-commandsoptional

See also:

environment, !, shell

3.68 then

The then keyword is required in the fitting mode if constructions. Refer to the latter for details.

3.69 unalias

The unalias command unaliases any alias previously assigned by the alias command.
Syntax:

unalias alias name

Examples:

unalias date

unalias gnuplot

See also:

&, alias, macro, unmacro, append, show

70 CHAPTER 3. REFERENCE MANUAL

3.70 unlock

The unlock command changes a constant into a variable and thus allows the user to change its value. This is
particularly useful in functions and procedures needing to change the value of the data constant. Unlocking
data gives the user complete freedom on the effective size of vectors. No check is done on data assignments,
and therefore assigning a value to data that is superior to samples will result in a program crash. For
this reason, it is always safer to change data using the set data command. It is not an error to unlock a
variable. A warning message will be given though. However, trying to unlock something else than a constant
or variable will result in an error.

See also:

lock, set data, set samples, cmode

3.71 unmacro

The unmacro command is the counterpart of macro. It is used to undefine macros. As does free, unmacro
accepts the “@all” string in which case all the macros will be erased and freed from memory.

Syntax:

unmacro macro-list
unmacro @all

Examples:

unmacro myplot

unmacro @all

See also:

alias, unalias, append, show

3.72 version

The version command displays the version number and the welcoming message of fudgit.

3.73 vi

The command vi calls the editor. It is equivalent to !vi filename. Note that wild cards are also recognized
and expanded.

Syntax:

vi argument-list

Examples:

vi file

vi test.*

See also:

!, system, alias, shell

3.74 while

The while command allows the user to construct controlled loops on a series of operations. However, fudgit
supports two kinds of while constructions, one in the fitting mode and the other in the C-calculator mode.

3.74. WHILE 71

3.74.1 C-calculator while

The C-calculator mode while construction has a syntax similar to that of standard C. In interactive mode,
any new input line will be prompted with a “n{. . .n\t” where ‘n’ stands for the nesting level and ‘\t’ for a
tab. Recall that cmode-line-statement means a string of semicolon separated C-calculator mode commands.

Syntax:

while (conditions) cmode-line-statement

or

while (conditions)
cmode-line-statement

or

3.74.2 Fitting mode while

The fitting mode while is very similar to the C-shell while. As for the if construction, the difference
remains in a broader range of operators available to the conditional statement and the fact that the variable
expansion operator ‘$’ is not required.

As for the foreach construction, a end keyword is required to indicate the end of the loop. Note that
fmode-statements can also contain C-calculator mode commands (including cmode while loops!). Recall
that the conditional statement is a C-calculator mode expression.

Syntax:

while(conditions)
fmode-statements
end

See also:

foreach, if, cmode

Chapter 4

More Examples

Here follows a few more examples that can help writing your own scripts. The following scripts also show
how commands can be abbreviated.

4.1 Example 1

Example 1

read a file and transform the first column to 1/sqrt(x) and plot

set plotting /usr/local/bin/gnuplot

pmode set term X11

macro plot 2

save vec $1 $2 $Tmp

pmode plot "$Tmp" with lines

stop

read landm.0 X:1 Y:2

this line is ignored

a line can be blanked too

let X = 1/sqrt(X)

plot X Y

EOF

4.2 Example 2

Example 2

fit a straight line using singular value decomposition

set function poly

set parameters A 2

set method svd

read landm.0 X:1 Y:2

let X=1/sqrt(X)

let DY = 1

fit X Y DY

save vec X Y YFIT DY

4.3 Example 3

72

4.4. EXAMPLE 4 73

Example 3

fit a straight line using the nonlinear method (why not?)

set fun us

YFIT = A[1] + A[2]*X

DYFITD1 = 1

DYFITD2 = X

stop

set met ml

set par A 2

adjust 1 2

read landm.0 X:1 Y:2

let X=1/sqrt(X)

We have to use a weight of 1 for chi^2 if unknown...

let DY=1

let A[1] = -2

let A[2] = 1

fit X Y DY

sav par myfile

set plo /usr/local/bin/sgiplot -p

sgip X YFIT

EOF

4.4 Example 4

Example 4

Make the Fourier transform of a sine distribution.

Shows how padding can be done.

Windowing can be done by multiplying your vector by a chosen

distribution weight factor.

Uses GNUPLOT.

macro dofft 2

fft $1 $2 $1_FT $2_FT

let POW$1 = $1_FT^2 + $2_FT^2

stop

macro doinvfft 2

invfft $1 $2 $1_IFT $2_IFT

let POW$1 = $1_IFT^2 + $2_IFT^2

stop

pmode clear; set data style line

Use 800 points padded to 1024

set data 1024

let n=0

let N=n++

The null imaginary part

let IM=0

let x=0

let X=x++

let X*=(2*pi/data)

Initialize A to zero on 1024 points

let A=0

But only fill 800 with the function

set data 800

74 CHAPTER 4. MORE EXAMPLES

let A=cos(2*X) + sin(2*X) + cos(20*X) + sin(20*X)

set data 1024

Plot the function

gnu N A

pause -1 The function: Hit return

Fourier transform

dofft A IM

Plot first half of transform since real

unlock data

let data/=2

gnu N POWA

pause -1 The Fourier transform: Hit return

let data*=2

lock data

Do the inverse Fourier transform

doinvfft A_FT IM_FT

Plot the real part which should be the original vector.

gnu N A_FT_IFT

echo The function transformed back

EOF

4.5 Example 5

Example 5

A bunch of utilities to use with GNUPLOT.

All plot commands are written and then loaded by gnuplot

Written by Ross Thomson.

#

Initialize or Reset plot number

alias reset!Plot let plot_num = 0

A macro to do a single plot in gnuplot

macro ipl!ot 2

resetPlot

plot $1 $2

stop

Plot for gnuplot with repeated plots

macro pl!ot 2

save vector $1 $2 $Tmp.$plot_num

if (plot_num) then

pmode replot "$Tmp.$plot_num"

else

pmode plot "$Tmp.$plot_num"

endif

let plot_num++

stop

Plot for gnuplot with repeated plots and titles

macro tpl!ot 3

save vector $1 $2 $Tmp.$plot_num

if (plot_num) then

4.5. EXAMPLE 5 75

pmode replot "$Tmp.$plot_num" title "$3"

else

pmode plot "$Tmp.$plot_num" title "$3"

endif

let plot_num++

stop

Initialize variables before a batch plot

macro tbip!lot 0

!rm -f $Tmp.gnuscript

set output $Tmp.gnuscript

resetPlot

stop

Plot for gnuplot batch plots (handled by gnuplot) and titles

Plotting instructions are only put in file and then given to gnuplot

macro tbpl!ot 3

save vector $1 $2 $Tmp.$plot_num

if (plot_num) then

let print ", ’$Tmp.$plot_num’ title ’$3’\\"

else

let print "plot ’$Tmp.$plot_num’ title ’$3’\\"

endif

let plot_num++

stop

To be called after a tbplot

macro bat!chplot 0

let print "\n"

set output stdout

pmode load "$Tmp.gnuscript"

pmode pause 0 "Batch plotted"

stop

Some plotting macros

Save the current graph in a square printable postcript file

Usage: sqpost filename.ps

macro sqpost 1

pmode

set size 0.7,0.92

set term post port ’Helvetica-Bold’

set output ’$1’

replot

set term X11

replot

fmode

stop

Save the current graph in a rectangular printable postcript file

macro post 1

pmode

set size 0.7,1.0

76 CHAPTER 4. MORE EXAMPLES

set term post port ’Helvetica-Bold’

set output ’$1’

replot

set term X11

replot

fmode

stop

GNU Readline and History Library

The followings are the user’s guides as extracted from the manuals of GNU readline 1.1 which can be
found integrally in the readline directory, along with the copyrights. They are reproduced here for the sake
of completeness of fudgit user’s guide.

77

Appendix A

Using History Interactively

This chapter describes how to use the GNU History Library interactively, from the user’s standpoint. For
information on using the GNU History Library in your own programs, see the section entitled Programming
with GNU History in the complete manual.

A.1 History Interaction

The History library provides a history expansion feature that is similar to the history expansion in Csh. The
following text describes the syntax that you use to manipulate the history information.

History expansion takes place in two parts. The first is to determine which line from the previous history
should be used during substitution. The second is to select portions of that line for inclusion into the current
one. The line selected from the previous history is called the event, and the portions of that line that are
acted upon are called words. The line is broken into words in the same fashion that the Bash shell does, so
that several English (or Unix) words surrounded by quotes are considered as one word.

A.1.1 Event Designators

An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when followed by a space, tab, or the end of the line... = or (.

!! Refer to the previous command. This is a synonym for !-1.

!n Refer to command line n.

!-n Refer to the command line n lines back.

!string Refer to the most recent command starting with string.

!?string[?] Refer to the most recent command containing string.

A.1.2 Word Designators

A : separates the event specification from the word designator. It can be omitted if the word designator
begins with a ^, $, * or %. Words are numbered from the beginning of the line, with the first word being
denoted by a 0 (zero).

0 (zero) The zero’th word. For many applications, this is the command word.

n The n’th word.

^ The first argument. that is, word 1.

78

A.1. HISTORY INTERACTION 79

$ The last argument.

% The word matched by the most recent ?string? search.

x-y A range of words; -y Abbreviates 0-y.

* All of the words, excepting the zero’th. This is a synonym for 1-$. It is not an error to use * if there is
just one word in the event. The empty string is returned in that case.

A.1.3 Modifiers

After the optional word designator, you can add a sequence of one or more of the following modifiers, each
preceded by a :.

The entire command line typed so far. This means the current command, not the previous command, so
it really isn’t a word designator, and doesn’t belong in this section.

h Remove a trailing pathname component, leaving only the head.

r Remove a trailing suffix of the form ‘.’suffix, leaving the basename.

e Remove all but the suffix.

t Remove all leading pathname components, leaving the tail.

p Print the new command but do not execute it.

Appendix B

Command Line Editing

This text describes GNU’s command line editing interface.

B.1 Introduction to Line Editing

In this tex a the following notation is used to describe keystrokes.

The text C-k is read as ‘Control-K’ and describes the character produced when the Control key is
depressed and the k key is struck.

The text M-k is read as ‘Meta-K’ and describes the character produced when the meta key (if you have
one) is depressed, and the k key is struck. If you do not have a meta key, the identical keystroke can be
generated by typing ESC first, and then typing k. Either process is known as metafying the k key.

The text M-C-k is read as ‘Meta-Control-k’ and describes the character produced by metafying C-k.
In addition, several keys have their own names. Specifically, DEL, ESC, LFD, SPC, RET, and TAB all stand

for themselves when seen in this text, or in an init file (see section Readline Init File, for more info).

B.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the first word on the
line is misspelled. The Readline library gives you a set of commands for manipulating the text as you type
it in, allowing you to just fix your typo, and not forcing you to retype the majority of the line. Using these
editing commands, you move the cursor to the place that needs correction, and delete or insert the text of
the corrections. Then, when you are satisfied with the line, you simply press RETURN. You do not have to
be at the end of the line to press RETURN; the entire line is accepted regardless of the location of the cursor
within the line.

B.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears where the cursor
was, and then the cursor moves one space to the right. If you mistype a character, you can use DEL to back
up, and delete the mistyped character.

Sometimes you may miss typing a character that you wanted to type, and not notice your error until you
have typed several other characters. In that case, you can type C-b to move the cursor to the left, and then
correct your mistake. Afterwards, you can move the cursor to the right with C-f.

When you add text in the middle of a line, you will notice that characters to the right of the cursor get
‘pushed over’ to make room for the text that you have inserted. Likewise, when you delete text behind the
cursor, characters to the right of the cursor get ‘pulled back’ to fill in the blank space created by the removal
of the text. A list of the basic bare essentials for editing the text of an input line follows.

80

B.2. READLINE INTERACTION 81

C-b Move back one character.

C-f Move forward one character.

DEL Delete the character to the left of the cursor.

C-d Delete the character underneath the cursor.

Printing characters Insert itself into the line at the cursor.

C- Undo the last thing that you did. You can undo all the way back to an empty line.

B.2.2 Readline Movement Commands

The above table describes the most basic possible keystrokes that you need in order to do editing of the
input line. For your convenience, many other commands have been added in addition to C-b, C-f, C-d, and
DEL. Here are some commands for moving more rapidly about the line.

C-a Move to the start of the line.

C-e Move to the end of the line.

M-f Move forward a word.

M-b Move backward a word.

C-l Clear the screen, reprinting the current line at the top.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose convention
that control keystrokes operate on characters while meta keystrokes operate on words.

B.2.3 Readline Killing Commands

The act of cutting text means to delete the text from the line, and to save away the deleted text for later
use, just as if you had cut the text out of the line with a pair of scissors.

Killing text means to delete the text from the line, but to save it away for later use, usually by yanking
it back into the line. If the description for a command says that it ‘kills’ text, then you can be sure that you
can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.

C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the end of the next word.

M-DEL Kill from the cursor the start ofthe previous word, or if between words, to the start of the previous
word.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL because the word boundaries
differ.

And, here is how to yank the text back into the line. Yanking is

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive kills save all
of the killed text together, so that when you yank it back, you get it in one clean sweep. The kill ring is not
line specific; the text that you killed on a previously typed line is available to be yanked back later, when
you are typing another line.

82 APPENDIX B. COMMAND LINE EDITING

B.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts as a repeat count,
other times it is the sign of the argument that is significant. If you pass a negative argument to a command
which normally acts in a forward direction, that command will act in a backward direction. For example, to
kill text back to the start of the line, you might type M-- C-k.

The general way to pass numeric arguments to a command is to type meta digits before the command.
If the first ‘digit’ you type is a minus sign (-), then the sign of the argument will be negative. Once you
have typed one meta digit to get the argument started, you can type the remainder of the digits, and then
the command. For example, to give the C-d command an argument of 10, you could type M-1 0 C-d.

B.3 Readline Init File

Although the Readline library comes with a set of Emacs-like keybindings, it is possible that you would like
to use a different set of keybindings. You can customize programs that use Readline by putting commands
in an init file in your home directory. The name of this file is ‘ /.inputrc’.

When a program which uses the Readline library starts up, the ‘ /.inputrc’ file is read, and the keybindings
are set.

B.3.1 Readline Init Syntax

You can start up with a vi-like editing mode by placing

set editing-mode vi

in your ‘ /.inputrc’ file.
You can have Readline use a single line for display, scrolling the input between the two edges of the screen

by placing

set horizontal-scroll-mode On

in your ‘ /.inputrc’ file.
The syntax for controlling keybindings in the ‘ /.inputrc’ file is simple. First you have to know the name

of the command that you want to change. The following pages contain tables of the command name, the
default keybinding, and a short description of what the command does.

Once you know the name of the command, simply place the name of the key you wish to bind the
command to, a colon, and then the name of the command on a line in the ‘ /.inputrc’ file. Here is an
example:

This is a comment line.

Meta-Rubout: backward-kill-word

Control-u: universal-argument

Commands For Moving

beginning-of-line (C-a) Move to the start of the current line.

end-of-line (C-e) Move to the end of the line.

forward-char (C-f) Move forward a character.

backward-char (C-b) Move back a character.

forward-word (M-f) Move forward to the end of the next word.

backward-word (M-b) Move back to the start of this, or the previous, word.

clear-screen (C-l) Clear the screen leaving the current line at the top of the screen.

B.3. READLINE INIT FILE 83

Commands For Manipulating The History

accept-line (Newline, Return) Accept the line regardless of where the cursor is. If this line is non-
empty, add it too the history list. If this line was a history line, then restore the history line to its
original state.

previous-history (C-p) Move ‘up’ through the history list.

next-history (C-n) Move ‘down’ through the history list.

beginning-of-history (M-<) Move to the first line in the history.

end-of-history (M->) Move to the end of the input history, i.e., the line you are entering!

reverse-search-history (C-r) Search backward starting at the current line and moving ‘up’ through the
history as necessary. This is an incremental search.

forward-search-history (C-s) Search forward starting at the current line and moving ‘down’ through
the the history as necessary.

Commands For Changing Text

delete-char (C-d) Delete the character under the cursor. If the cursor is at the beginning of the line, and
there are no characters in the line, and the last character typed was not C-d, then return EOF.

backward-delete-char (Rubout) Delete the character behind the cursor. A numeric arg says to kill the
characters instead of deleting them.

quoted-insert (C-q, C-v) Add the next character that you type to the line verbatim. This is how to
insert things like C-q for example.

tab-insert (M-TAB) Insert a tab character.

self-insert (a, b, A, 1, !, ...) Insert yourself.

transpose-chars (C-t) Drag the character before point forward over the character at point. Point moves
forward as well. If point is at the end of the line, then transpose the two characters before point.
Negative args don’t work.

transpose-words (M-t) Drag the word behind the cursor past the word in front of the cursor moving the
cursor over that word as well.

upcase-word (M-u) Uppercase the current (or following) word. With a negative argument, do the previous
word, but do not move point.

downcase-word (M-l) Lowercase the current (or following) word. With a negative argument, do the previ-
ous word, but do not move point.

capitalize-word (M-c) Uppercase the current (or following) word. With a negative argument, do the
previous word, but do not move point.

Killing And Yanking

kill-line (C-k) Kill the text from the current cursor position to the end of the line.

backward-kill-line () Kill backward to the beginning of the line. This is normally unbound.

kill-word (M-d) Kill from the cursor to the end of the current word, or if between words, to the end of
the next word.

84 APPENDIX B. COMMAND LINE EDITING

backward-kill-word (M-DEL) Kill the word behind the cursor.

unix-line-discard (C-u) Do what C-u used to do in Unix line input. We save the killed text on the
kill-ring, though.

unix-word-rubout (C-w) Do what C-w used to do in Unix line input. The killed text is saved on the
kill-ring. This is different than backward-kill-word because the word boundaries differ.

yank (C-y) Yank the top of the kill ring into the buffer at point.

yank-pop (M-y) Rotate the kill-ring, and yank the new top. You can only do this if the prior command is
yank or yank-pop.

Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--) Add this digit to the argument already accumulating, or start a
new argument. M– starts a negative argument.

universal-argument () Do what C-u does in emacs. By default, this is not bound.

Letting Readline Type For You

complete (TAB) Attempt to do completion on the text before point. This is implementation defined.
Generally, if you are typing a filename argument, you can do filename completion; if you are typing a
command, you can do command completion, if you are typing in a symbol to GDB, you can do symbol
name completion, if you are typing in a variable to Bash, you can do variable name completion...

possible-completions (M-?) List the possible completions of the text before point.

Some Miscellaneous Commands

abort (C-g) Ding! Stops things.

do-uppercase-version (M-a, M-b, ...) Run the command that is bound to your uppercase brother.

prefix-meta (ESC) Make the next character that you type be metafied. This is for people without a meta
key. ESC-f is equivalent to M-f.

undo (C-) Incremental undo, separately remembered for each line.

revert-line (M-r) Undo all changes made to this line. This is like typing the ‘undo’ command enough
times to get back to the beginning.

B.3.2 Readline Vi Mode

While the Readline library does not have a full set of Vi editing functions, it does contain enough to allow
simple editing of the line.

In order to switch interactively between Emacs and Vi editing modes, use the command M-C-j (toggle-
editing-mode).

When you enter a line in Vi mode, you are already placed in ‘insertion’ mode, as if you had typed an
‘i’. Pressing ESC switches you into ‘edit’ mode, where you can edit the text of the line with the standard Vi
movement keys, move to previous history lines with ‘k’, and following lines with ‘j’, and so forth.

