beginner

beginner

] COLLABORATORS
TITLE :
beginner
ACTION NAME DATE SIGNATURE
WRITTEN BY February 24, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

beginner iii

Contents

1 beginner 1
L1 TYPes o . o o e e e e e e 1
1.2 LONGTYPE . . o o o o o e 1
1.3 Defaulttype o e e 2
1.4 Memory addresses oL e e e e e e e e e e e e 2
1.5 PTRTYPE . . . o o e e e e e e 2
1.6 AdAresses o ot e e e 3
1.7 PoOINters o o e e e e e e e 4
1.8 IndireCttypes o v o ot e e e e e e e e e e e 4
1.9 Finding addresses (making PoInters) o v v v v it e e e e e e e e e e 5
1.10 Extracting data (dereferencing pointers) e e e 6
1.11 Procedure parameters v v v v i e e e e e e e e e e e e e e e e e e e 8
1.12 ARRAY Type o o 8
1.13 Tablesofdata e 8
1.14 Accessing array datao e e e e 9
115 Array pOInters o vt i e e e e e e e e e 10
1.16 Pointtootherelements L e 12
1.17 Array procedure parameters o . i e 12
118 OBIECT TYPE . .« o o e 14
1.19 Example Object o e e e e e e e e 14
1.20 Element selection and element types oL e e 15
1.21 Amigasystem objects e e e e 16
1.22 LIST and STRING TYPes o o o i e 17
1.23 Normal strings and E-strings e 17
1.24 String functions L. e 18
1.25 Listsand E-lists e 23
1.26 Listfunctions L 24
1.27 Complex types e e e 25
1.28 Typed lists o o o o e e e e e 25
1.29 Staticdata 26
1.30 Linked Lists o e e e 28

beginner

1/29

Chapter 1

beginner

1.1 Types

Types

* ok Kk x Kk

We’ve already met the LONG type and found that this was the normal type
for variables (see Variable types). The types INT and LIST were also
mentioned. Learning how to use types in an effective and readable way is
very important. The type of a variable (as well as its name) can give
clues to the reader about how or for what it is used. There are also more
fundamental reasons for needing types, e.g., to logically group data using
objects (see OBJECT Type) .

This is a very large chapter and you might like to take it slowly. One
of the most important things to get to grips with is pointers.
Concentrate on trying to understand these as they play a large part in any
kind of system programming.

LONG Type

PTR Type

ARRAY Type

OBJECT Type

LIST and STRING Types
Linked Lists

1.2 LONG Type

LONG Type

The LONG type is the most important type because it is the default type
and by far the most common type. It can be used to store a variety of
data, including memory addresses, as we shall see.

beginner

2/29

Default type
Memory addresses

1.3 Default type

Default type

LONG is the default type of variables. It is a 32-bit type, meaning
that 32-bits of memory (RAM) are used to store the data for each variable
of this type and the data can take (integer) wvalues in the range
-2,147,483,648 to 2,147,483,647. Variables default to being LONG typed,
but they can also be explicitly declared as LONG:

DEF x:LONG, vy

PROC fred(p:LONG, g, r:LONG)
DEF zed:LONG
statements

ENDPROC

The global variable x, procedure parameters p and r, and local variable
zed have all been declared to be LONG values. The declarations are

very similar to the kinds we’ve seen before, except that the variables
have :LONG after their name in the declaration. This is the way the type
of a variable is given. ©Note that the global variable y and the procedure
parameter g are also LONG, since they do not have a type specified and
LONG is the default type for variables.

1.4 Memory addresses

Memory addresses

There’s a very good reason why LONG is the normal type. A 32-bit
(integer) value can be used as a memory address. Therefore we can store
the address (or location) of data in a variable (the wvariable is then
called a pointer). The variable would then not contain the value of the
data but a way of finding the data. Once the data location is known the
data can be read or even altered! The next section covers pointers and
addresses in more detail. See PTR Type.

1.5 PTR Type

PTR Type

beginner

3/29

The PTR type is used to hold memory addresses. Variables which have a
PTR type are called pointers (since they store memory addresses, as
mentioned in the previous section). This section describes, in detail,
addresses, pointers and the PTR type.

Addresses

Pointers

Indirect types

Finding addresses (making pointers)
Extracting data (dereferencing pointers)
Procedure parameters

1.6 Addresses

Addresses

Every piece of data a program uses is stored somewhere in the
computer’s memory,and this includes the data contained in variables. So,
when you assign one to the variable x you are actually storing one in the
location reserved for x in the computer’s memory. A location in memory is
known as a memory address, and this is just a 32-bit number (so can be
stored in a LONG variable). If you know the location of a variable’s data
then you can read the value and you can also change it.

To understand memory addresses, a good analogy is to think of memory as
a road or street, each memory location as a post-box on a house, and each
piece of data as a letter. If you were a postman you would need to know
where to put your letters, and this information is given by the address of
the post-box. As time goes by, each post-box is filled with different

letters. This is like the value in a memory location (or variable)
changing. To change the letters stored in your post-box, you tell your
friends your address and they can send letters in and fill it. This is

like letting some part of a program change your data by giving it the
address of the data.

The next two diagrams illustrate this analogy. A letter contains an
address which points to a particular house (or lot of mail) on a street.

- +
| Letter|
| == |
| Address+————x%
+——— + \
\
\
F—————— + ===\t + Fm— +
| House | | House | | House | | House |
Street: [+—————— +| [+ +| [+ + ... A + |
[] Mail || || Mail || || Mail || [] Mail ||
t+========4 {========4 f========4} +========4

A pointer contains an address which points to a variable (or data) in

beginner 4/29

memory.
fom +
|Pointer]|
| === |
| Address+————x%
+———— + \
\
\
Fo———— - i e R + e +
|[Variable| |Variable| |Variable| |[Variable|
Memory: [+—————— +| [+ +| [+ + ... A + |
|| Data || || Data || || Data || || Data |
{========} f========4 t========4 t========4

1.7 Pointers

Pointers

Variables which contain memory addresses are called pointers. As we
saw in the previous section, we can store memory addresses in LONG
variables. However, we then don’t know the type of the data stored at
those addresses. If it is important (or useful) to know this then the PTR
type (or, more accurately, one of the many PTR types) should be used.

DEF p:PTR TO LONG, i:PTR TO INT,
cptr:PTR TO CHAR, gptr:PTR TO gadget

The values stored in each of p, cptr, i and gptr are LONG since they are
memory addresses. However, the data at the address stored in p is taken
to be LONG (a 32-bit value), that at cptr is CHAR (an 8-bit wvalue), that
at 1 is INT (a 16-bit value), and that at gptr is gadget, which is an
object (see OBJECT Type).

Since pointers are just data like any other LONG variable, the wvalue of
the pointer is somewhere in memory. This means it has an address, so you
can have a pointer which is actually pointing to another pointer! This is
one of the reasons pointers can be gquite difficult to think about, and
misunderstanding them is often the cause of big problems with programs.

1.8 Indirect types

Indirect types

In the previous example we saw INT and CHAR used as the destination
types of pointers, and these are the 16- and 8-bit equivalents
(respectively) of the LONG type. However, unlike LONG these types cannot
be used directly to declare global or local variables, or procedure

beginner

5/29

parameters. They can only be used in constructing types (for instance
with PTR TO). The following declarations are therefore illegal, and it
might be nice to try compiling a little program with such a declaration,
just to see the error message the E compiler gives.

/* This program fragment contains illegal declarations =/
DEF c:CHAR, 1i:INT

/+ This program fragment contains illegal declarations =*/
PROC fred(a:INT, b:CHAR)

DEF x:INT

statements
ENDPROC

This is not much of a limitation because you can store INT or CHAR
values in LONG variables if you really need to. However, it does mean
there’s a nice, simple rule: every direct value in E is a 32-bit quantity,
either a LONG or a pointer. 1In fact, LONG is actually short-hand for PTR
TO CHAR, so you can use LONG values like they were actually PTR TO CHAR
values.

1.9 Finding addresses (making pointers)

Finding addresses (making pointers)

If a program knows the address of a variable it can directly read or
alter the value stored in the variable. To obtain the address of a simple
variable you use { and } around the variable name. The address of
non-simple variables (e.g., objects and arrays) can be found much more
easily (see the appropriate section), and in fact you will very rarely
need to use {var }. However, if you understand how to explicitly
make pointers with {var |} and use the pointers to get to data, then
you’1ll understand the way pointers are used for the non-simple types much
more quickly.

Addresses can be stored in a variable, passed to a procedure or
whatever (they’re just 32-bit values). Try out the following program:

DEF x
PROC main ()
fred(2)

ENDPROC

PROC fred(y)

DEF z

WriteF ('x is at address \d\n’, {x})

WriteF (‘y is at address \d\n’, {y})

WriteF (‘z is at address \d\n’, {z})

WriteF (' fred is at address \d\n’, {fred})
ENDPROC

Notice that you can also find the address of a procedure using { and }.

beginner 6/29

This is the memory location of the code the procedure represents, although
it is not something we need concern ourselves with any further in this
Guide. Here’s the output from one execution of this program (don’t expect
your output to be exactly the same, though):

x 1is at address 3758280
y 1s at address 3758264
z is at address 3758252
fred is at address 3732878

This is an interesting program to run several times under different
circumstances. You should see that sometimes the numbers for the
addresses change. Running the program when another is multi-tasking (and
eating memory) should produce the best changes, whereas running it
consecutively (in one CLI) should produce the smallest (if any) changes.
This gives you a glimpse at the complex memory handling of the Amiga and
the E compiler.

1.10 Extracting data (dereferencing pointers)

Extracting data (dereferencing pointers)

If you have an address stored in a variable (i.e., a pointer) you can
extract the data using the * operator. This is called dereferencing the
pointer. The ~ operator should only really be used when {var } has
been used to obtain an address. To this end, LONG values are read and
written when dereferencing pointers in this way. For pointers to
non-simple types (e.g., objects and arrays), dereferencing is achieved in
much more readable ways (see the appropriate section for details), and
this operator is not used. 1In fact, “var is seldom used in programs,
but is useful for explaining how pointers work, especially in conjunction
with {var }.

Using pointers can remove the scope restriction on local variables,
i.e., they can be altered from outside the procedure for which they are
local. Whilst this kind of use is not generally advised, it makes for a
good example which shows the power of pointers. For example, the
following program changes the value of the local variable x for the
procedure fred from within the procedure barney. It can do this only
because fred passes a pointer to x as a parameter to barney.

PROC main ()
fred()
ENDPROC

PROC fred()
DEF x, p:PTR TO LONG
x:=33
p:={x}
barney (p)
WriteF ('x 1s now \d\n’, x)
ENDPROC

beginner

7/29

PROC barney (ptr:PTR TO LONG)
DEF val
val:="ptr
“ptr:=val-6

ENDPROC

Here’s what you can expect it to generate as output:
X is now 27
Notice that the ~ operator (i.e., dereferencing) is quite versatile. 1In

the first assignment of the procedure barney it is used (with the pointer
ptr) to get the value stored in the local variable x, and in the second it

is used to change this wvariable’s value. 1In either case, dereferencing
makes the pointer behave exactly as if you’d written the variable to which
it points. To emphasise this, we can remove the barney procedure, like we

did above (see Style Reuse and Readability):

PROC main ()
fred()
ENDPROC

PROC fred()

DEF x, p:PTR TO LONG, val

x:=33

p:={x}

val:=x

x:=val-6

WriteF(’x 1s now \d\n’, Xx)
ENDPROC

Everywhere the barney procedure used "“ptr we’ve written x (because we are
now in the procedure for which x is local). We’ve also eliminated the ptr
variable (the parameter to the barney procedure), since it was only used
with the ~ operator.

To make things clear the fred and barney example is deliberately
‘wordy’ . The val and p variables are unnecessary, and the pointer types
could be abbreviated to LONG or even omitted, for the reasons outlined
above (see LONG Type). This is the compact form of the example:

PROC main ()
fred()
ENDPROC

PROC fred()

DEF x

x:=33

barney ({x})

WriteF ('x is now \d\n’, x)
ENDPROC

PROC barney (ptr)
“ptr:="ptr-6
ENDPROC

By far the most common use of pointers is to address (or reference)

beginner 8/29

large structures of data. It would be extremely expensive (in terms of
CPU time) to pass large amounts of data from procedure to procedure, so
addresses to such data are passed instead (and, as we know, these are just
32-bit values). The Amiga system functions (such as ones for creating
windows) require a lot of structured data, so if you plan to do any real
programming you are going to have to understand and use pointers.

As we have seen, i1if you have a pointer to some data you can easily read
the data, but you can just as easily alter it. If you want to write code
that is clear and understandable, you have an implicit responsibility to
not use pointers to alter data that you didn’t ought to. For instance, if
a procedure is passed a pointer which it then uses to change the data
being pointed to, then it ought to be well documented (using comments)
exactly what changes it makes.

1.11 Procedure parameters

Procedure parameters

Only local and global variables have the luxury of a large choice of
types. Procedure parameters can only be LONG or PTR TO type. This is
not really a big limitation as we shall see in the later sections.

1.12 ARRAY Type

ARRAY Type

Quite often, the data used by a program needs to be ordered in some
way, primarily so that it can be accessed easily. E provides a way to
achieve such simple ordering: the ARRAY type. This type (in its various
forms) is common to most computer languages.

Tables of data

Accessing array data
Array pointers

Point to other elements
Array procedure parameters

1.13 Tables of data

Tables of data

Data can be grouped together in many different ways, but probably the

beginner

9/29

most common and straight-forward way is to make a table. In a table the
data is ordered either vertically or horizontally, but the important thing
is the relative positioning of the elements. The E view of this kind of
ordered data is the ARRAY type. An array 1is just a fixed sized

collection of data in order. The size of an array is important and this
is fixed when it is declared. The following illustrates array
declarations:

DEF a[132]:ARRAY,
table[21] :ARRAY OF LONG,
ints[3] :ARRAY OF INT,
objs[54] :ARRAY OF myobject

The size of the array is given in the square brackets ([and]). The type
of the elements in the array defaults to CHAR, but this can be given
explicitly using the OF keyword and the type name. However, only LONG,
INT, CHAR and object types are allowed (LONG can hold pointer values

so this isn’t much of a limitation). Object types are described below
(see OBJECT Type) .

As mentioned above, procedure parameters cannot be arrays (see

Procedure parameters). We will overcome this apparent limitation soon
(see Array procedure parameters).

1.14 Accessing array data

Accessing array data

To access a particular element in an array you use square brackets
again, this time specifying the index (or position) of the element you

want. Indices start at zero for the first element of the array, one for
the second element and, in general, (n-1) for the n-th element. This may
seem strange at first, but it’s the way most computer languages do it! We

will see a reason why this makes sense soon (see Array pointers).

DEF a[l0]:ARRAY

PROC main ()
DEF i
FOR 1:=0 TO 9
afi] :=ixi
ENDFOR
WriteF (' The 7th element of the array a is \d\n’, al[6])
ala[2]]:=10

WriteF (' The array is now:\n’)
FOR i:=0 TO 9
WriteF (/' a[\d] = \d\n’, i, alil)
ENDFOR
ENDPROC

This should all seem very straight-forward although one of the lines looks
a bit complicated. Try to work out what happens to the array after the
assignment immediately following the first WriteF. 1In this assignment the

beginner 10/29

index comes from a value stored in the array itself! Be careful when
doing complicated things like this, though: make sure you don’t try to
read data from or write data to elements beyond the end of the array. In
our example there are only ten elements in the array a, so it wouldn’t be
sensible to talk about the eleventh element. The program could have
checked that the value stored at a[2] was a number between zero and nine
before trying to access that array element, but it wasn’t necessary in
this case. Here’s the output this example should generate:

The 7th element of the array a is 36
The array is now:

al[0] =0
all] =1
afz2] = 4
al3] =9
al4] = 10
al5] = 25
al[6] = 36
al7] = 49
al[8] = 64
al9] = 81

If you do try to write to a non-existent array element strange things
can happen. This may be practically unnoticeable (like corrupting some
other data), but if you’re really unlucky you might crash your computer.
The moral is: stay within the bounds of the array.

A short-hand for the first element of an array (i.e., the one with an
index of zero) is to omit the index and write only the square brackets.
Therefore, a[] is the same as a[0].

1.15 Array pointers

Array pointers

When you declare an array, the address of the (beginning of the) array
is given by the variable name without square brackets. Consider the
following program:

DEF a[l10]:ARRAY OF INT
PROC main ()

DEF ptr:PTR TO INT, i
FOR i:=0 TO 9

ali]l:=1
ENDFOR
ptr:=a
ptr++
ptr[]:=22

FOR i:=0 TO 9
WriteF ("a[\d] 1is \d\n’, 1, al[il])
ENDFOR
ENDPROC

beginner

11/29

Here’s the output from it:

is

N

is
is
is
is
is
is
is
is

OW 00 J o Ul WDNEFE O
O 00 J o U b W NN O

Q0 9 0 Y e Y e 9 W

is

You should notice that the second element of the array has been changed
using the pointer. The assignment to ptr initialises it to point to the
start of the array a, and then the ptr++ statement increments ptr to point
to the next element of the array. It is vital that ptr is declared as PTR
TO INT since the array is an ARRAY OF INT. The [] is used to dereference
ptr and therefore 22 is stored in the second element of the array. 1In
fact, the ptr can be used in exactly the same way as an array, so ptr[l]
would be the next (or third element) of the array a. Also, since ptr
points to the second element of a, negative values may legitimately be
used as the index, and ptr[-1] is the first element of a.

In fact, the following declarations are identical except the first
reserves an appropriate amount of memory for the array whereas the second
relies on you having done this somewhere else in the program.

DEF a[20] :ARRAY OF INT
DEF a:PTR TO INT
The following diagram is similar to the diagrams given earlier (see

Addresses). It is an illustration of an array, a, which was declared to
be an array of twenty INTs.

o +
|[Variable|
| ra’ |
| |
| Address+————x%
Fo—————— + \
\
\
e I N + Fom————— + +
|Unknown| | al[0] | | al[l] | | a[1l9] | |Unknown|
Memory: |[+-————- +] [+ +] [+ L T s ittt + [+ + |
[XXX || || INT || || INT || [1 INT [| || XXX []|
t=======4 J=======4 f=======4 t=======4 f=======41

As you can see, the variable a is a pointer to the reserved chunk of
memory which contains the array elements. Parts of memory that aren’t
between a[0] and al[l9] are marked as ‘Unknown’ because they are not part
of the array. This memory should therefore not be accessed using the
array a.

beginner

12/29

1.16 Point to other elements

Point to other elements

We saw in the previous section how to increment a pointer so that it

points to the next element in the array. Decrementing a pointer p (i.e.,
making it point to the previous element) is done in a similar way, using
the p-- statement. Actually, p++ and p—- are really expressions which

denote pointer values. p++ denotes the address stored in p before it is
incremented, and p—-- denotes the address after p is decremented.
Therefore,

addr:=p
p++

does the same as

addr:=p++
And

p——

addr:=p

does the same as
addr:=p—--

The reason why ++ and —-- should be used to increment and decrement a
pointer is that values from different types occupy different numbers of
memory locations. In fact, a single memory location is a byte, and this
is eight bits. Therefore, CHAR values occupy a single byte, whereas LONG
values take up four bytes (32 bits). If p were a pointer to CHAR and it
was pointing to an array (of CHAR) the p+l memory location would contain
the second element of the array (and p+2 the third, etc.). But if p were
a pointer to an array of LONG the second element in the array would be at
pt4 (and the third at p+8). The locations p, pt+l, p+2 and p+3 all make up
the LONG value at address p. Having to remember things like this is a
pain, and it’s a lot less readable than using ++ or --. However, you must
remember to declare your pointer with the correct type in order for ++ and
—-— to work correctly.

1.17 Array procedure parameters

Array procedure parameters

Since we now know how to get the address of an array we can simulate

beginner 13/29

passing an array as a procedure parameter by passing the address of the
array. For example, the following program uses a procedure to fill in the
first x elements of an array with their index numbers.

DEF a[l10]:ARRAY OF INT

PROC main ()
DEF i
fillin(a, 10)
FOR 1:=0 TO 9
WriteF ("a[\d] is \d\n’, i, alil)
ENDFOR
ENDPROC

PROC fillin(ptr:PTR TO INT, x)
DEF 1
FOR 1:=0 TO x-1
ptr[]:=1
ptr++
ENDFOR
ENDPROC

Here’s the output it should generate:

is
is
is
is
is
is
is
is
is
is

O 00 J o Ul s WDNBE O
O 00 J o U WDN B O

Q0 9 0 Y e v Y W

The array a only has ten elements so we shouldn’t fill in any more than
the first ten elements. Therefore, in the example, the call to the
procedure fillin should not have a bigger number than ten as the second
parameter. Also, we could treat ptr more like an array (and not use ++),
but in this case using ++ is slightly better since we are assigning to
each element in turn. The alternative definition of fillin (without using
++) is:

PROC fillin2 (ptr:PTR TO INT, x)

DEF 1
FOR 1:=0 TO x-1
ptr[i]:=1i
ENDFOR
ENDPROC

Also, yet another version of fillin uses the expression form of ++ in the
assignment (see Assignments) and the horizontal form of the FOR loop to
give a really compact definition.

PROC fillin3 (ptr:PTR TO INT, x)
DEF i
FOR 1:=0 TO x-1 DO ptr[]++:=1

beginner 14/29

ENDPROC

1.18 OBJECT Type

OBJECT Type

Objects are the E equivalent of C and Assembly structures, or Pascal

records. They are like arrays except the elements are named not numbered,
and they can be of different types. So, to find a particular element in
an object you use a name instead of an index (number). Objects are also

the basis of the OOP features of E (see Object Oriented E).

Example object
Element selection and element types
Amiga system objects

1.19 Example object

Example object

We’1ll dive straight in with this first example, and define an object
and use it. Object definitions are global and must be made before any
procedure definitions.

OBJECT rec
tag, check
table[8] :ARRAY
data:LONG
ENDOBJECT

PROC main ()
DEF a:rec
a.tag:=1
a.check:=a
a.data:=a.tag+(10000*a.taqg)
ENDPROC

This program doesn’t visibly do anything so there isn’t much point in
compiling it. What it does do, however, is show how a typical object is
defined and how elements of an object are selected.

The object being defined in the example is rec, and its elements are
defined just like variable declarations (but without a DEF). There can be
as many lines of element definitions as you like between the OBJECT and
ENDOBJECT lines, and each line can contain any number of elements
separated by commas. The elements of the rec object are tag and check
(which are LONG), table (which is an array of CHAR with eight elements)

beginner

15/29

and data (which is also LONG). Every variable of rec object type will
have space reserved for each of these elements. The declaration of the
(local) variable a therefore reserves enough memory for one rec object.

1.20 Element selection and element types

Element selection and element types

To select elements in an object obj you use obj.name, where name is one
of the element names. In the example, the tag element of the rec object a
is selected by writing a.tag. The other elements are selected in a
similar way.

Just like an array declaration the address of an object obj is stored
in the wvariable obj, and any pointer of type PTR TO objectname can be
used just like an object of type objectname. Therefore, in the previous
example a is a PTR TO rec.

As the example object shows, the elements of an object can have several
different types. 1In fact, the elements can have any type, including
object, pointer to object and array of object. The following example
shows how to access some different typed elements.

OBJECT rec
tag, check
table[8] :ARRAY
data:LONG
ENDOBJECT

OBJECT bigrec
data:PTR TO LONG
subrec:PTR TO rec
rectable[22] :ARRAY OF rec

ENDOBJECT

PROC main ()
DEF r:rec, b:bigrec, rt:PTR TO rec
r.table[] :="H"
b.subrec:=r
b.subrec.tag:=1
b.subrec.data:=r.tag+(10000+b.subrec.taq)
b.subrec.table[1l]:="1"
b.rectable[0] .data:=r.tag
b.rectable[0] .table[0] :="A"

rt:=b.rectable
rt[].datat++:=0

rt[].table[]-—:="B"
ENDPROC
The ++ and —-—- operators apply to first thing in the selection (i.e., rt in
both the last two assignments in the example above), and may occur only

after all the selections. Notice that object selection and array indexing
can be repeated as much as necessary (but only as the types of the

beginner 16 /29

elements allow). As a simple example, consider the third assignment:
b.subrec.tag:=1

This selects the subrec element from the bigrec object b, and then sets
the tag element of this rec object to 1. Now, consider one of the later
assignments:

b.rectable[0] .table[0] :="A"

This selects the rectable element from b, which is an array of rec objects.
The first element of this array is selected, and then the table element of
the rec object is selected. Finally, the first character of the table is
set to the character A.

As you can probably tell, it is important to give the elements of
objects appropriate types if you want to do multiple selection in this way.
However, this is not always possible or the best way of doing some things,
so there is a way of giving a different type to pointers (this is called
explicit pointer typing--see the ‘Reference Manual’ for more details).

Here’s a quite simple example which uses an array of objects:

OBJECT rec
tag, check
table[8] :ARRAY
data:LONG
ENDOBJECT

PROC main ()
DEF a[l1l0] :ARRAY OF rec, p:PTR TO rec, 1
p:=a
FOR i:=0 TO 9
ali].tag:=1
p.check++:=1
ENDFOR
FOR 1:=0 TO 9
IF a[i].tag<>a[i].check
WriteF (' Whoops, al[\d] went wrong...\n’, 1)
ENDIF
ENDFOR
ENDPROC

If you think about it for long enough you’ll see that a[0].tag is the same
as a.tag. That’s because a is a pointer to the first element of the

array, and the elements of the array are objects. Therefore, a is a
pointer to an object (the first object in the array).

1.21 Amiga system objects

Amiga system objects

There are many different Amiga system objects. For instance, there’s

beginner 17 /29

one which contains the information needed to make a gadget (like the
‘close’ gadget on most windows), and one which contains all the
information about a process or task. These objects are vitally important
and so are supplied with E in the form of ‘modules’. Each module is
specific to a certain area of the Amiga system and contains object and
other definitions. Modules are discussed in more detail later (see
Modules) .

1.22 LIST and STRING Types

LIST and STRING Types

Arrays are common to many computer languages. However, they can be a
bit of a pain because you always need to make sure you haven’t run off the
end of the array when you’re writing to it. This is where the STRING and
LIST types come in. STRING is very much like ARRAY OF CHAR and LIST 1is
like ARRAY OF LONG. However, each has a set of E (built-in) functions
which safely manipulate variables of these types without exceeding their
bounds.

Normal strings and E-strings
String functions

Lists and E-lists

List functions

Complex types

Typed lists

Static data

1.23 Normal strings and E-strings

Normal strings and E-strings

Normal strings are common to most programming languages. They are
simply an array of characters, with the end of the string marked by a null
character (ASCII zero). We’ve already met normal strings (see Strings).
The ones we used were constant strings contained in ’ characters, and they
denote pointers to the memory where the string data is stored. Therefore,
you can assign a string constant to a pointer (to CHAR), and you’ve got a
ready—-filled array with the elements you want (an initialised array.).

DEF s:PTR TO CHAR
s:="This is a string constant’
/* Now s[] 1s T and s[2] 1is 1 =*/

Remember that LONG is actually PTR TO CHAR so this code is precisely the
same as:

beginner 18/29

DEF s
s:='This is a string constant’

The following diagram illustrates the above assignment to s. The first
two characters s[0] and s[1l]) are T and h, and the last character (before
the terminating null) is t. Memory marked as ‘Unknown’ is not part of the
string constant.

fom +
|[Variable|
| s’ |
| = |
|Address +-————%
fom + \
\
\
Fm———— + =\t + Fm———— + + - +
|Unknown| | s[0] |] s[1] | | s[24] | | s[25] | |Unknown|
Memory: |+-———— +] | +———— +] | +———— I +] | +———— TR +]
XXX L "T" [["h" | LE"e™ 1r 0 I 1 XXX]
t=======4 t=======+ f=======+1 t=======4 + ==+ + ==+

E-strings are very similar to normal strings and, in fact, an
E-string can be used wherever a normal string can. However, the reverse
is not true, so if something requires an E-string you cannot use a normal
string instead. The difference between a normal string and an E-string
was hinted at in the introduction to this section: E-strings can be safely
altered without exceeding their bounds. A normal string is Jjust an array
so you need to be careful not to exceed its bounds. However, an E-string
knows what its bounds are, and so any of the string manipulation functions
can alter them safely.

An E-string (STRING type) variable is declared as in the following
example, with the maximum size of the E-string given just like an array
declaration.

DEF s[30]:STRING

As with an array declaration, the variable s is actually a pointer to the
string data. To initialise an E-string you need to use the function
StrCopy as we shall see.

There are some worked examples in Part Three (see
String Handling and I-0O) which show how to use normal strings and
E-strings.

1.24 String functions

String functions

There are a number of useful built-in functions which manipulate
strings. Remember that an E-string can be used wherever a normal string
can, but normal strings cannot be used where an E-string is required. TIf

beginner 19/29

a parameter is marked as string then a normal or E-string can be passed
as that parameter, but if it is marked as e-string then only an E-string
may be used. Some of these functions have default arguments, which means
you don’t need to specify some parameters to get the default values (see
Default Arguments). (You can, of course, ignore the defaults and always
give all parameters.)

String (maxsize)
Allocates memory for an E-string of maximum size maxsize and
returns a pointer to the string data. It is used to make space for a
new E-string, like a STRING declaration does. The following code
fragments are practically equivalent:

DEF s[37]:STRING

DEF s:PTR TO CHAR
s:=String(37)

The slight difference is that there may not be enough memory left to
hold the E-string when the String function is used. In that case the
special value NIL (a constant) is returned. Your program must check
that the value returned is not NIL before you use it as an E-string
(or dereference it).

The memory for the declaration version, STRING, is allocated when the
program is run, so your program won’t run if there isn’t enough
memory. The String version is often called dynamic allocation
because it happens only when the program is running; the declaration
version has allocation done by the E compiler.

The memory allocated using String can be deallocated using
DisposelLink (see System support functions).

StrCmp (stringl, string2, length=ALL)
Compares stringl with string2 (they can both be normal or
E-strings). Returns TRUE if the first length characters of the
strings match, and FALSE otherwise. The length defaults to the
special constant ALL which means that the strings must agree on every

character. For example, the following comparisons all return TRUE:
StrCmp (" ABC’, '"ABC’)
StrCmp (' ABC’, 'ABC’, ALL)
StrCmp (ABCd’, "ABC’, 3)
StrCmp (' ABCde’ , " ABCxxjs’, 3)

And the following return FALSE (notice the case of the letters):

StrCmp ('ABC’, ’ABc’)
StrCmp (ABC’, ’ABc’, ALL)
StrCmp (' ABCd’, ’ABC’, ALL)

StrCopy (e-string, string, length=ALL)
Copies the contents of string to e-string, and also returns a
pointer to the resulting E-string (for convenience). Only length
characters are copied from the source string, but the special
constant ALL can be used to indicate that the whole of the source
string is to be copied (and this is the default wvalue for length).

beginner 20/29

Remember that E-strings are safely manipulated, so the following code
fragment results in s becoming More th, since its maximum size is
(from its declaration) seven characters.

DEF s[7]:STRING
StrCopy (s, ’'"More than seven characters’, ALL)

A declaration using STRING (or ARRAY) reserves a small part of
memory, and stores a pointer to this memory in the variable being
declared. So to get data into this memory you need to copy it there,
using StrCopy. If you’re familiar with very high-level languages
like BASIC you should take care, because you might think you can
assign a string to an array or an E-string variable. In E (and
languages like C and Assembly) you must explicitly copy data into
arrays and E-strings. You should not do the following:

/* You don’t want to do things like this! x/
DEF s[80]:STRING
s:="This is a string constant’

This is fairly disastrous: it throws away the pointer to reserved
memory that was stored in s and replaces it by a pointer to the
string constant. s is then no longer an E-string, and cannot be
repaired using SetStr. If you want s to contain the above string you
must use StrCopy:

DEF s[80]:STRING
StrCopy(s,’This is a string constant’)

The moral is: remember when you are using pointers to data and when
you need to copy data. Also, remember that assignment does not copy
large arrays of data, it copies only pointers to data, so if you want
to store some data in an ARRAY or STRING type variable you need to
copy it there.

StrAdd (e-string, string, length=ALL)
This does the same as StrCopy but the source string is copied onto
the end of the destination E-string. The following code fragment
results in s becoming This is a string and a half.

DEF s[30]:STRING
StrCopy (s, 'This is a string’, ALL)
StrAdd (s, " and a half’)

StrLen(string)
Returns the length of string. This assumes that the string is
terminated by a null character (i.e., ASCII zero), which is true for

any strings made from E-strings and string constants. However, you
can make a string constant look short if you use the null character
(the special sequence \0) in it. For instance, these calls all

return three:

StrLen ("abc’)
StrLen (" abc\Odef’)

In fact, most of the string functions assume strings are
null-terminated, so you shouldn’t use null characters in your strings

beginner 21/29

unless you really know what you’re doing.
For E-strings StrLen is less efficient than the EstrLen function.

EstrlLen (e-string)
Returns the length of e-string (remember this can be only an

E-string). This is much more efficient than StrlLen since E-strings
know their length and it doesn’t need to search the string for a null
character.

StrMax (e-string)
Returns the maximum length of e-string. This is not necessarily
the current length of the E-string, rather it is the size used in the
declaration with STRING or the call to String.

RightStr(e-stringl,e-string2, length)
This is like StrCopy but it copies the right-most characters from
e-string2 to e-stringl and both strings must be E-strings. At
most length characters are copied, and the special constant ALL
cannot be used (to copy all the string you should, of course, use
StrCopy). For instance, a value of one for length means the last
character of e-string2 is copied to e-stringl.

MidStr (e-string, string, index, length=ALL)
Copies the contents of string starting at index (which is an
index just like an array index) to e-string. At most length
characters are copied, and the special constant ALL can be used if
all the remaining characters in string should be copied (this is
the default value for length). For example, the following two
calls to MidStr result in s becoming four:

DEF s[30]:STRING
MidStr (s, ’Just four’, 5)
MidStr (s, ’Just four apples’, 5, 4)

InStr(stringl, string?2, startindex=0)
Returns the index of the first occurrence of string2 in stringl
starting at startindex (in stringl). startindex defaults to
zero. If string2 could not be found then -1 is returned.

TrimStr (string)
Returns the address of (i.e., a pointer to) the first non-whitespace
character in string. For instance, the following code fragment
results in s becoming 12345.

DEF s:PTR TO CHAR
s:=TrimStr ('’ \n \t 123457

LowerStr (string)

Converts all uppercase letters in string to lowercase. This change
is made in-place, i.e., the contents of the string are directly
affected. The string is returned for convenience.

UpperStr (string)
Converts all lowercase letters in string to uppercase. Again, this
change is made in-place and the string is returned for convenience.

beginner 22/29

SetStr (e-string, length)
Sets the length of e-string to length. E-strings know how long
they are, so if you alter an E-string (without using an E-string
function) and change its size you need to set its length using this
function before you can use it as an E-string again. For instance,
if you’ve used an E-string like an array (which you can do) and
written characters to it directly you must set its length before you
can treat it as anything other than an array:

DEF s[10]:STRING

s[0]:="a" /+* Remember that "a" is a character value. =/
s[1]:="b"

s[2]:="c"

s[3]:="d" /* At this point s is just an array of CHAR. «*/
SetStr (s, 4) /* Now, s can be used as an E-string again. =/

SetStr (s, 2) /+x s is a bit shorter, but still an E-string.=x/

Notice that this function can be used to shorten an E-string, but
this change is destructive (it cannot easily be reversed to give
the original, longer E-string).

Val (string, address=NIL)
What this function does is straight-forward but how you use it is a
bit complicated. Basically, it converts string to a LONG integer.
Leading whitespace is ignored, and a leading % or $ means that the
string denotes a binary or hexadecimal integer (in the same way they
do for numeric constants). The decoded integer is returned as the
regular return value (see Multiple Return Values). The number of
characters of string that were read to make the integer is stored
at address, which is usually a variable address (from using
{var }), and is also returned as the
first optional return value. If address is the special constant
NIL (i.e., zero) then this number is not stored (this is the
default value for address). You can use this number to calculate
the position in the string which was not part of the integer. If an
integer could not be decoded from the string then zero is returned as
both return values and stored at address.

Follow the comments in this example, and pay special attention to the
use of the pointer p.

DEF s[30]:STRING, value, chars, p:PTR TO CHAR
StrCopy (s, ’ \t \n 10 \t $3F -%0101010’)

value, chars:=Val (’abcde 10 20") -> Two return values...
/+ After the above line, value and chars will both be zero x/
value:=Val (s, {chars}) —> Use address of chars

/* Now value will be 10, chars will be 7 x/
p:=s+chars
/* p now points to the space after the 10 in s x/
value, chars:=Val (p)
/* Now value will be $3F (63), chars will be 6 */
p:=pt+chars
/* p now points to the space after the $3F in s x/
value, chars:=Val (p)
/* Now value will be -%0101010 (-42), chars will be 10 =*/

Notice the two different ways of finding the number of characters

beginner 23/29

read: a multiple—-assignment and using the address of a variable.

There’s a couple of other string functions (ReadStr and StringF) which
will be discussed later (see Input and output functions).

1.25 Lists and E-lists

Lists and E-lists

Lists are just like strings with LONG elements rather than CHAR
elements (so they are very much like ARRAY OF LONG). The list equivalent
of an E-string is something called an E-list. It has the same
properties as an E-string, except the elements are LONG (so could be
pointers). ©Normal lists are most like string constants, except that the
elements can be built from variables and so do not have to be constants.
Just as strings are not true E-strings, (normal) lists are not true
E-lists.

Lists are written using [and] to delimit comma separated elements.
Like string constants a list returns the address of the memory which
contains the elements.

For example the following code fragment:

DEF 1list:PTR TO LONG, number
number:=22
list:=[1,2, 3, number]

is equivalent to:

DEF list[4]:ARRAY OF LONG, number
number:=22

list[0]:=1
list[1]:=2
list[2]:=3
1list [3] :=number

Now, which of these two versions would you rather write? As you can see,
lists are pretty useful for making your program easier to write and much
easier to read.

E-1list variables are like E-string variables and are declared in much
the same way. The following code fragment declares 1t to be an E-list of
maximum size 30. As ever, lt is then a pointer (to LONG), and it points
to the memory allocated by the declaration.

DEF 1t[30]:LIST

Lists are most useful for writing tag lists, which are increasingly
used in important Amiga system functions. A tag list is a list where the
elements are thought of in pairs. The first element of a pair is the tag,
and the second is some data for that tag. See the ‘Rom Kernel Reference
Manual (Libraries)’ for more details.

beginner 24 /29

1.26 List functions

List functions

There are a number of list functions which are very similar to the
string functions (see String functions). Remember that E-lists are the
list equivalents of E-strings, i.e., they can be altered and extended
safely without exceeding their bounds. As with E-strings, E-lists are
downwardly compatible with lists. Therefore, if a function requires a
list as a parameter you can supply a list or an E-list. But if a function
requires an E-list you cannot use a list in its place.

List (maxsize)
Allocates memory for an E-list of maximum size maxsize and returns
a pointer to the list data. It is used to make space for a new
E-1list, like a LIST declaration does. The following code fragments
are (as with String) practically equivalent:

DEF 1t [46]:LIST

DEF 1t:PTR TO LONG
lt:=List (46)

You need to check that the return value from List is not NIL before
you use it as an E-list. Like String, the memory allocated using
List is deallocated using Disposelink (see

System support functions).

ListCmp(listl,list2,length=ALL)
Compares listl with list2 (they can both be normal or E-lists).
Works Jjust like StrCmp does for E-strings, so, for example, the
following comparisons all return TRUE:

ListCmp([1,2,3,4], [1,2,3,4])
ListCmp([1,2,3,41, [1,2,3,71, 3)
ListCmp([1,2,3,4,5]1, [1,2,3 3)

ListCopy (e-1list,list, length=ALL)
Works Jjust like StrCopy, and the following example shows how to
initialise an E-list:

DEF 1t[7]:LIST, x
x:=4
ListCopy (1t, [1,2,3,x])
As with StrCopy, an E-list cannot be over-filled using ListCopy.
ListAdd(e-1list,list, length=ALL)
Works just like StrAdd, so this next code fragment results in the
E-1list 1t becoming the E-list version of [1,2,3,4,5,6,7,8].

DEF 1t [30]:LIST

beginner 25/29

ListCopy (1lt, [1,2,3,41)
ListAdd (1t, [5,6,7,8])

ListLen(list)
Works Jjust like StrLen, returning the length of list. There is no
E-1list specific length function.

ListMax (e-1list)
Works Jjust like StrMax, returning the maximum length of the e-list.

SetList (e-1list, length)
Works Jjust like SetStr, setting the length of e-list to length.

ListItem(list, index)
Returns the element of list at index. For example, if 1t is an
E-1list (so a PTR TO LONG) then ListItem(lt,n) is the same as lt[n].
This function is most useful when the list is not an E-list; for
example, the following two code fragments are equivalent:

WriteF (ListItem([’Fred’,’Barney’,’Wilma’,’Betty’], name))

DEF 1t:PTR TO LONG
lt:=['Fred’,’Barney’,’'Wilma’, ' Betty’]
WriteF (1t [name])

1.27 Complex types

Complex types

In E the STRING and LIST types are called complex types.
Complex-typed variables can also be created using the String and List
functions as we’ve seen in the previous sections.

1.28 Typed lists

Typed lists

Normal lists contain LONG elements, so you can write initialised arrays
of LONG elements. What about other kinds of array? Well, that’s what
typed lists are for. You specify the type of the elements of a list
using :type after the closing]. The allowable types are CHAR, INT,

LONG and any object type. There is a subtle difference between a normal,
LONG list and a typed list (even a LONG typed list): only normal lists can
be used with the list functions (see List functions). For this reason,
the term ‘list’ tends to refer only to normal lists.

The following code fragment uses the object rec defined earlier (see
Example object) and gives a couple of examples of typed lists:

beginner 26/29

DEF ints:PTR TO INT, objects:PTR TO rec, p:PTR TO CHAR
ints:=[1,2,3,4]:INT
p:="fred’
objects:=[1,2,p,4,
300,301, "barney’,303] :rec

It is equivalent to:

DEF ints[4]:ARRAY OF INT, objects[2]:ARRAY OF rec, p:PTR TO CHAR
ints[0]:=1
ints[1l]:=2
ints[2]:=3
ints[3] :=4

p:='fred’
objects[0].tag:=1
objects[0].check:=2
objects[0] .table:=p
objects[0] .data:=4
objects[l] .table:='"barney’
objects[1l].tag:=300
objects[l].data:=303
objects[1l] .check:=301

The last group of assignments to objects[l] have deliberately been
shuffled in order to emphasise that the order of the elements in the
definition of the object rec is significant. Each of the elements of the
list corresponds to an element in the object, and the order of elements in
the list corresponds to the order in the object definition. 1In the
example, the (object) list assignment line was broken after the end of the
first object (the fourth element) to make it a bit more readable.

The last object in the list need not be completely defined, so, for
instance, the second line of the assignment could have contained only
three elements. This makes an object-typed list slightly different from
the corresponding array of objects, since an array always defines a whole
number of objects. With an object-typed list you must be careful not to
access the undefined elements of a partially defined, trailing object.

1.29 Static data

Static data

String constants (e.g., fred), lists (e.g., [1,2,3]) and typed lists
(e.g., [1,2,3]:INT) are static data. This means that the address of the
(initialised) data is fixed when the program is run. Normally you don’t
need to worry about this, but, for instance, if you want to have a series
of lists as initialised arrays you might be tempted to use some kind of
loop:

PROC main ()
DEF i, a[l0]:ARRAY OF LONG, p:PTR TO LONG
FOR i:=0 TO 9

beginner 27129

alil:=[1, i, i*i]
/+ This assignment is probably not what you want! */

ENDFOR
FOR 1:=0 TO 9

p:=ali]

WriteF (“a[\d] is an array at address \d\n’, i, p)

WriteF (’ and the second element is \d\n’, p[1l])
ENDFOR

ENDPROC

The array a 1is an array of pointers to initialised arrays (which are all
three elements long). But, as the comment suggests and the program shows,
this probably doesn’t do what was intended, since the list is static.

That means the address of the list is fixed, so each element of a gets the
same address (i.e., the same array). Since i is used in the 1list, the
contents of that part of memory varies slightly as the first FOR loop is
processed. But after this loop the contents remain fixed, and the second

element of each of the ten arrays is always nine. This is an example of
the output that will be generated (the ... represents a number of similar
lines):

al[0] is an array at address 4021144
and the second element is 9

all] is an array at address 4021144
and the second element is 9

al[9] is an array at address 4021144
and the second element is 9

One solution is to use the dynamic typed-allocation operator NEW (see
NEW and END Operators). Another solution is to use the function List and
copy the normal list into the new E-list using ListCopy:

PROC main ()
DEF i, a[l10]:ARRAY OF LONG, p:PTR TO LONG
FOR 1:=0 TO 9
ali]:=List (3)
/+ Must check that the allocation succeeded before copying x/
IF a[i]<>NIL THEN ListCopy(aflil, [1, i, i=xi], ALL)

ENDFOR
FOR 1:=0 TO 9
p:=ali]
IF p=NIL
WriteF (' Could not allocate memory for a[\d]\n’, i)
ELSE

WriteF (’a[\d] is an array at address \d\n’, i, p)
WriteF (! and the second element is \d\n’, p[l])
ENDIF
ENDFOR
ENDPROC

The problem is not so bad with string constants, since the contents are
fixed. However, if you alter the contents explicitly, you will need to
take care not to run into the same problem, as this next example shows.

PROC main ()
DEF i, strings[10]:ARRAY OF LONG, s:PTR TO CHAR

beginner 28/29

FOR i:=0 TO 9

strings[i] :="Hello World\n’
/+ This assignment is probably not what you want! x/

ENDFOR

s:=strings[4]

s[5]:="X"

FOR i:=0 TO 9
WriteF (’strings[\d] is ’, 1i)
WriteF (strings[i])

ENDFOR

ENDPROC

This is an example of the output that will be generated (again, the
represents a number of similar lines) ::

strings[0] is HelloXWorld
strings([l] is HelloXWorld

strings([9] is HelloXWorld

The solution, once more, is to use dynamic allocation. The functions
String and StrCopy should be used in the same way that List and ListCopy
were used above.

1.30 Linked Lists

Linked Lists

E-lists and E-strings have a useful extension: they can be used to make
linked lists. These are like the lists we’ve seen already, except the
list elements do not occupy a contiguous block of memory. Instead, each
element has an extra piece of data: a pointer to the next element in the
list. This means that each element can be anywhere in memory. (Normally,
the next element of a list is in the next position in memory.) The end of
a linked list has been reached when the pointer to the next element is the
special value NIL (a constant representing zero). You need to be very
careful to check that the pointer is not NIL, or else strange things will
happen to your program.. .

The elements of a linked list are E-lists or E-strings (i.e., the
elements are complex typed). So, you can link E-lists to get a ‘linked
list of E-lists’ (or, more simply, a ‘list of lists’). Similarly, linking
E-strings gives ‘linked list of E-strings’, or a ‘list of strings’. You
don’t have to stick to these two kinds of linked lists, though: you can
use a mixture of E-lists and E-strings in the same linked list. To link
one complex typed element to another you use the Link function and to find
subsequent elements in a linked list you use the Next or Forward functions.

Link (complexl, complex?2)
Links complexl to complex2. Both must be an E-list or an
E-string, with the exception that complex2 can be the special
constant NIL to indicate that complexl is the end of the linked
list. The value complexl is returned by the function, which isn’t

beginner

29/29

always useful so, usually, calls to Link will be used as statements
rather than functions.

The effect of Link is that complexl will point to complex2 as the
next element in the linked list (so complexl is the head of the
list, and complex2 is the tail). For both E-lists and E-strings

the pointer to the next element is initially NIL, so you will only
need to use Link with a NIL parameter when you want to make a linked
list shorter (by losing the tail).

Next (complex)
Returns the pointer to the next element in the linked list. This may
be the special constant NIL if complex is the last element in the
linked list. Be careful to check that the value isn’t NIL before you
dereference it! Follow the comments in the example below:

DEF s[23]:STRING, t[7]:STRING, 1t[41]:LIST, 1lnk

/+ The next two lines set up the linked list "1nk" =/
Ink:=Link (lt,t) /* 1lnk list starts at 1lt and is lt->t */
Ink:=Link (s, 1lt) /=* Now it starts at s and is s-—>1lt->t =*/
/+* The next three lines follow the links in "1lnk" «*/

1nk:=Next (1lnk) / x Now it starts at 1t and is 1lt->t */
Ink:=Next (1nk) / * Now it starts at t and is t */
Ink:=Next (1nk) /* Now lnk is NIL so the list has ended =/

You may safely call Next with a NIL parameter, and in this case it
will return NIL.

Forward (complex, expression)
Returns a pointer to the element which is expression number of
links down the linked list complex. If expression is one, then a
pointer to the next element is returned (just like using Next). If
it’s two a pointer to the element after that is returned, and so on.

If expression is greater than the number of links in the list the
special value NIL is returned.

Since the link in a linked list is a pointer to the next element you
can look through the list only from beginning to end. Technically this is
a singly linked list (a doubly linked list would also have a pointer
to the previous element in the list, enabling backwards searching through
the list).

Linked lists are useful for building lists that can grow quite large.
This is because it’s much better to have lots of small bits of memory than
a large lump. However, you need only worry about these things when you’re
playing with quite big lists (as a rough guide, ones with over 100,000
elements are big!).

	beginner
	Types
	LONG Type
	Default type
	Memory addresses
	PTR Type
	Addresses
	Pointers
	Indirect types
	Finding addresses (making pointers)
	Extracting data (dereferencing pointers)
	Procedure parameters
	ARRAY Type
	Tables of data
	Accessing array data
	Array pointers
	Point to other elements
	Array procedure parameters
	OBJECT Type
	Example object
	Element selection and element types
	Amiga system objects
	LIST and STRING Types
	Normal strings and E-strings
	String functions
	Lists and E-lists
	List functions
	Complex types
	Typed lists
	Static data
	Linked Lists

