beginner

beginner

] COLLABORATORS
TITLE :
beginner
ACTION NAME DATE SIGNATURE
WRITTEN BY February 24, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

beginner

iii

Contents
1 beginner 1
1.1 Formatand Layout e e e 1
1.2 Identifiers e e e e e e e e e e 1
1.3 Statements e e e e e e e e e 2
1.4 Spacing and Separators L. e e e e e e e e e e 3

1.5 Comments

beginner

Chapter 1

beginner

1.1 Format and Layout

Format and Layout

*hkhkhkkhkhkhkhkkhkkkhkxKhk*x*

In this chapter we’ll look at the rules which govern the format and
layout of E code. 1In the previous Part we saw examples of E code that
were quite nicely indented and the structure of the program was easily
visible. This was Jjust a convention and the E language does not constrain
you to write code in this way. However, there are certain rules that must
be followed. (This chapter refers to some concepts and parts of the E
language which were not covered in Part One. Don’t let this put you
off--those things will be dealt with in later chapters, and it’s maybe a
good idea to read this chapter again when they have been.)

Identifiers

Statements

Spacing and Separators
Comments

1.2 Identifiers

Identifiers

An identifier is a word which the compiler must interpret rather than
treating literally. For instance, a variable is an identifier, as is a
keyword (e.g., IF), but anything in a string is not (e.g., fred in ’fred
and wilma’ is not an identifier). Identifiers can be made up of upper- or
lower—-case letters, numbers and underscores (the _ character). There are
only two constraints:

1. The first character cannot be a number (this would cause confusion
with numeric constants).

beginner 2/4

2. The case of the first few characters of identifiers is significant.

For keywords (e.g., ENDPROC), constants (e.g., TRUE) and assembly
mnemonics (e.g., MOVE.L) the first two characters must both be uppercase.
For E built-in or Amiga system procedures/functions the first character
must be uppercase and the second must be lowercase. For all other
identifiers (i.e., local, global and procedure parameter variables, object
names and element names, procedure names and code labels) the first
character must be lowercase.

Apart from these constraints you are free to write identifiers how you
like, although it’s arguably more tasteful to use all lowercase for
variables and all uppercase for keywords and constants.

1.3 Statements

Statements

A statement is normally a single instruction to the computer, and
each statement normally occupies a single line. If you think of a
procedure as a paragraph then a statement is a sentence. Using the same
analogy, variables, expressions and keywords are the words which make up
the sentence.

So far in our examples we have met only two kinds of statement: the
single line statement and the multi-line statement. The assignments we
have seen were single line statements, and the vertical form of the IF
block is a multi-line statement. The horizontal form of the IF block was
actually the single line statement form of the IF block. Notice that
statements can be built up from other statements, as is the case for IF
blocks. The code parts between the IF, ELSEIF, ELSE and ENDIF lines are
sequences of statements.

Single line statements can often be very short, and you may be able to
fit several of them onto an single line without the line getting too long.
To do this in E you use a semi-colon (the ; character) to separate each
statement on the line. For example, the following code fragments are
equivalent:

fred(y, z)
yi=Xx
X:=z+1

fred(y,z); v:=x; x:=z+1

On the other hand you may want to split a long statement over several
lines. This is a bit more tricky because the compiler needs to see that
you haven’t finished the statement when it gets to the end of a line.
Therefore you can only break a statement at certain places. The most
common place is after a comma that is part of the statement (like in a
procedure call with more than one parameter), but you can also split a
line after binary operators and anywhere between opening and closing
brackets. The following examples are rather silly but show some allowable

beginner

3/4

line breaking places.

fred(a, b, c,

d, e, £f) /* After a comma =/
X=X+
v+
zZ /+ After a binary operator =/
X:=(1+2
+3) /* Between open...close brackets =/
list:= [1,2,
[3,4]
] /* Between open...close brackets =/

The simple rule is this: if a complete line can be interpreted as a
statement then it will be, otherwise it will be interpreted as part of a
statement which continues on the following lines.

Strings may also get a bit long. You can split them over several lines
by breaking them into several separate strings and using + between them.
If a line ends with a + and the previous thing on the line was a string
then the E compiler takes the next string to be a continuation. The
following calls to WriteF print the same thing:

WriteF (' This long string can be broken over several lines.\n’)

WriteF (' This long string ' +
"can be broken over several lines.\n’)

WriteF (' This long’ +
! string can be ' +

"broken over several ' +
"lines.\n’)

1.4 Spacing and Separators

Spacing and Separators

The examples we’ve seen so far used a rigid indentation convention
which was intended to illuminate the structure of the program. This was
just a convention, and the E language places no constraints on the amount
of whitespace (spaces, tabs and linefeeds) you place between statements.
However, within statements you must supply enough spacing to make the
statement readable. This generally means that you must put whitespace
between adjacent identifiers which start or end with a letter, number or
underscore (so that the compiler does not think it’s one big identifier!).
So, in practice, you should put a space after a keyword if it might run
into a variable or procedure name. Most other times (like in expressions)
identifiers are separated by non-identifier characters (a comma,
parenthesis or other symbol).

beginner

4/4

1.5 Comments

Comments

A comment is something that the E compiler ignores and is only there
to help the reader. Remember that one day in the future you may be the
reader, and it may be quite hard to decipher your own code without a few
decent comments! Comments are therefore pretty important.

You can write comments anywhere you can write whitespace that isn’t
part of a string. There are two kinds of comment: one uses /* to mark the
start of the comment text and %/ to mark the end, and the other uses -> to
mark the start, with the comment text continuing to the end of the line.
You must be careful not to write /x, %/ or —-> as part of the comment text,
unless part of a nested comment. In practice a comment is best put on a
line by itself or after the end of the code on a line.

/+ This line is a comment =*/
x:=1 /+ This line contains an assignment then a comment =/
/* y:=2 /x This whole line is a comment with a nested comment =*/x%/

x:=1 -> Assignment then a comment
-> y:=2 /* A nested comment comment */

	beginner
	Format and Layout
	Identifiers
	Statements
	Spacing and Separators
	Comments

