
ghostrider

ghostrider ii

COLLABORATORS

TITLE :

ghostrider

ACTION NAME DATE SIGNATURE

WRITTEN BY November 28, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ghostrider iii

Contents

1 ghostrider 1

1.1 ghostrider.doc . 1

1.2 ghostrider.library/grClearBreakPoint . 1

1.3 ghostrider.library/grEnterGR . 2

1.4 ghostrider.library/grSetBreakPoint . 4

1.5 ghostrider.library/grSetEntryQualifier . 5

ghostrider 1 / 7

Chapter 1

ghostrider

1.1 ghostrider.doc

grClearBreakPoint()
grEnterGR()
grSetBreakPoint()
grSetEntryQualifier()

1.2 ghostrider.library/grClearBreakPoint

NAME
grClearBreakPoint -- Remove breakpoint from address or clear table.

SYNOPSIS
error = grClearBreakPoint(Address)
D0 A0

BYTE grClearBreakPoint(APTR)

FUNCTION
This function removes a breakpoint set with grSetBreakPoint() or
clears the breakpoint table if called with the value -1.

INPUTS
Address - Address to be removed from the breakpoint table or -1 for

clearing the breakpoint table.

RESULT
error - Result of operation. If not NULL it is identifying one of

the situations below:

gr_grnotfound - The library could not find GhostRider in
the system. (Re)load GhostRider using the
DeckRunner.

gr_sbp_notset - Address did not have a breakpoint.

NOTES
If a breakpoint is executed (i.e. GhostRider is invoked) the

ghostrider 2 / 7

breakpoint will be removed from the list. Because of this you should
be able to ignore the gr_sbp_notset error in normal situations.

SEE ALSO
grSetBreakPoint(), libraries/ghostrider.i

1.3 ghostrider.library/grEnterGR

NAME
grEnterGR -- Enter GhostRider by system call.

SYNOPSIS
error = grEnterGR(OrgPC, OrgStack)
D0 D0, D1

BYTE grEnterGR(APTR, APTR);

FUNCTION
If your program’s error handler call this function you might have a
better chance of finding bugs in your software.
This function also gives you the possibility of having a look at
structures/tables/registers etc., on the fly.
With the two parameters, OrgPC and OrgStack, you may pass "fake"
stack and PC values to GhostRider. Now, why would you do this?
Here is an example; You are working on an application which have a
handler in the input stream. The function of this handler is to
notify the main program of a specific hot-key activation (quit,
iconify or whatever). This can be done with standard signal
notification (via Exec), and since you have the handler ready, you
decide to use it for debugging purpose as well. By using the
tc_ExceptCode field of your task, an extra signal and the Exec
function SetExcept you get a _very_ powerfull debugging facility.
Now, the task exception is a lovely thing because it will break
your task’s execution and enter the exception code. Let this code
retrieve the task’s PC and the correct stack position and pass this
in the call to GhostRider. When GR is invoked it’s current address
will be positioned at the location on which the task execution was
halted. Also, the stackpointer will be correct. Unfortunately the
contents of the other registers will not be correct. However, you
will be able to find their correct contents at the negative side
of the stackpointer.
If OrgPC or OrgStack is NULL, the PC/Stack addresses will be
derived from the stack (this will be the actual caller and
stack addresses).

EXAMPLES
This example show how to use the grEnterGR call in a task. With the
setup below, it is possible to break the task execution even from
another task or an interrupt (or an input event handler). If you
use an interrupt/event handler you will be able to invoke GR
asynchronously much like with a NMI-button. This entry method has
the added feature of being more system friendly, though.

;---- This code initializes the exception

ghostrider 3 / 7

SetupSignalExceptions
move.l $4.w,a6
sub.l a1,a1 ;Find task
jsr _LVOFindTask(a6)
move.l d0,MyTask

move.l d0,a0 ;Set exception ptr
move.l #TaskExceptionCode,TC_EXCEPTCODE(a0)

moveq #-1,d0
jsr _LVOAllocSignal(a6) ;Allocate signal
move.w d0,GhostRiderSignal ;and store

moveq #0,d0 ;Mark signal for
move.w GhostRiderSignal(pc),d1 ;exception
bset d1,d0
move.l d0,d1
jsr _LVOSetExcept(a6)
rts

;---- This code frees the signal
move.l $4.w,a6
moveq #0,d0
move.w GhostRiderSignal(pc),d0
jsr _LVOFreeSignal(a6) ;Free signal
rts

;---- This is the exception code
TaskExceptCode movem.l d0-a6,-(a7)

move.w GhostRiderSignal(pc),d1 ;Does causing
btst d1,d0 ;signal match?
beq.b .DontInvokeGR

move.l 8+15*4(a7),d0 ;Get task PC
move.l a7,d1 ;Calculate
add.l #8+4+2+15*4+15*4,d1 ;task SP
move.l _GRBase(pc),a6
jsr _LVOgrEnterGR(a6) ;and call GR

.DontInvokeGR movem.l (a7)+,d0-a6
rts

;---- Use the code below to invoke GhostRider
...
move.l $4.w,a6
moveq #0,d0 ;Build signal
move.w GhostRiderSignal(pc),d1
bset d1,d0
move.l MyTask(pc),a1 ;Get task ptr
jsr _LVOSignal(a6) ;and signal
... (I guess this is the PC you will get if

this code is put in the task execution
flow.)

ghostrider 4 / 7

INPUTS
OrgPC - The value GhostRider should use to when you refer to the

PC register.
OrgStack- The value GhostRider should use to when you refer to the

stack register (see bugs note below).

BUGS
Since this function use the system to startup GhostRider, some of
the register information will be destroyed. If you want a "clean"
entry you should use the grSetBreakPoint() function.

This function assumes that it has been called from user mode. If
it is called from supervisor mode the stackpointer and SR will not
reflect this - the OrgStack will always be copied to USP.

When GhostRider is invoked with fake PC/SP it is not possible to
change the exit address (well, it is, but you will have to do it
on the stack yourself).

SEE ALSO
grSetBreakPoint()

1.4 ghostrider.library/grSetBreakPoint

NAME
grSetBreakPoint -- Add breakpoint to address.

SYNOPSIS
error = grSetBreakPoint(Address)
D0 A0

BYTE grSetBreakPoint(APTR)

FUNCTION
This function makes it possible to use GhostRider as a debugger
while you are developing a new program. By calling this function
in the start of the program the breakpoint(s) will always be
correctly positioned.
Also, by using this function you can keep all GhostRider interfacing
in one part of your program (as opposed to using grEnterGR()), making
it easier to remove later.

INPUTS
Address - Address to be added to the breakpoint table.

RESULT
error - Result of operation. If not NULL it is identifying one of

the situations below:

gr_grnotfound - The library could not find GhostRider in
the system. (Re)load GhostRider using the
DeckRunner.

gr_sbp_fail - Address could not be accessed (actually a
verify error)

gr_sbp_full - Breakpoint table is full.

ghostrider 5 / 7

gr_sbp_isset - Address already have a breakpoint.

EXAMPLES
This example shows how to have a quick look at the result of a
function call by invoking GhostRider immediately after the call
returns:

...
lea LetsSeeWhatWeHaveGot(pc),a0 ;This could be in the
Call grSetBreakPoint ;very beginning of the code.
...
Call SomethingUtterlyBoringAndVeryConfuzing

LetsSeeWhatWeHaveGot: ;When the CPU reach this
... ;point, GhostRider will be

;invoked.

This example show how to deal with TRAP command conflicts (see the
BUGS section):

...
lea -1,a0 ;This will clear the
Call grClearBreakPoint ;breakpoint table, thus
move.l #MyTRAPHandler,$80+VBR ;forcing GhostRider to fetch
lea SomeBreakPoint(pc),a0 ;the pointer to MyTRAPHandler
Call grSetBreakPoint ;when the first breakpoint is
... ;set.

NOTES
Remember: GhostRider is not system dependant, so you are able to use

this function to set breakpoints in parts of your code
which suffer from... er, attitude problems :^)

BUGS
Since GhostRider use one of the TRAP commands for breakpoint setting
you might get a conflict if your program also uses TRAP commands.
You can circumvent this problem in two ways:
- By not using the same TRAP command used by GhostRider (defaults

to TRAP #0, but may be changed from within GhostRider)
- By clearing all breakpoints, set your TRAP vector and then set the

needed breakpoints. GhostRider will only act upon TRAPs that match
a breakpoint. Others are parsed through to the original TRAP
vector. The "original TRAP vector" is fetched whenever a "first"
breakpoint is set. That is why you must clear the breakpoint table
before setting your own vector.

SEE ALSO
grEnterGR(), grClearBreakPoint(), libraries/ghostrider.i

1.5 ghostrider.library/grSetEntryQualifier

NAME
grSetEntryQualifier -- Set qualifier for hot start.

SYNOPSIS
error = grSetEntryQualifier(Type, Code, Qualifier)
D0 D0, D1, D2

ghostrider 6 / 7

BYTE grSetEntryQualifier(ULONG, UBYTE, UWORD)

FUNCTION
This function will initialize a "hot starter", patched into the
input event stream, which will activate GhostRider if the specified
qualifiers occur.

INPUTS
Type - Type of entry qualifier:

- NULL : This will remove the handler.
- GRETB_mbutton : The middle mouse button must be pressed

for activation.
- GRETB_rbutton : The right mouse button must be pressed

for activation.
- GRETB_lbutton : The left mouse button must be pressed

for activation.
; The three mouse button flags function as a mask.
; [GRETF_rbutton!GRETF_lbutton] will invoke GhostRider if
; left AND right, but NOT the middle mouse button is pressed.
; These qualifiers may not be mixed with the RAWKEY qualifier.

- GRETB_rawkey : ie_Code and ie_Qualifier of a RAWKEY event
must match the Code and Qualifier codes
specified for activation.
The CapsLock flag is ignored.

Code - RAWKEY code for RAWKEY hot start.
Qualifier - Qualifier settings for RAWKEY hot start.

RESULT
error - Result of operation. Not used.

EXAMPLES
moveq #%0001,d0 ;Invoke with middle mouse button.
Call grSetEntryQualifier

moveq #%1000,d0 ;Type = RAWKEY event
moveq #$5F,d1 ;Invoke with Ctrl+HELP
moveq #$08,d2
Call grSetEntryQualifier

NOTES
The RAWKEY codes may be found in various litterature. The qualifier
bits are described in the system includes (IEQUALIFIERB_XXXXXXXXX).

BUGS
Since a GhostRider entry by hot key would cause the system to miss
the key releases, I have included a highly illegal fix to this
problem in the GhostRider. This fix will find the keyboard.device
in the system’s device list and clear the keyboard matrix at exit.
Since the base of keyboard.device is not public, I have had to do
some research myself. The problem is that the fix may not work on
all KICKSTART versions, but I have checked it to do on versions
37.12 - 40.xx.
Oh, almost forgot; you can disable this fix in the preferences
(default is clearing the keyboard matrix)

ghostrider 7 / 7

SEE ALSO
libraries/ghostrider.i

	ghostrider
	ghostrider.doc
	ghostrider.library/grClearBreakPoint
	ghostrider.library/grEnterGR
	ghostrider.library/grSetBreakPoint
	ghostrider.library/grSetEntryQualifier

