Default

AmigaGuide version Ponzio

Default

COLLABORATORS
TITLE :
Default
ACTION NAME DATE SIGNATURE
WRITTEN BY AmigaGuide version November 28, 2024
Ponzio
REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Default

Contents

1 Default 1
1.1 AmigaDOS Shared Libraries e e e 1
1.2 AmigaDOS Shared Libraries - Index 1
1.3 AmigaDOS Shared Libraries - Shared Library Overview 3
1.4 AmigaDOS Shared Libraries - Calling Shared Library Functions 4
1.5 AmigaDOS Shared Libraries - Parts of an AmigaDOS Shared Library Image 10
1.6 AmigaDOS Shared Libraries - Librares in the System 13
1.7 AmigaDOS Shared Libraries - Programming e e e 17
1.8 AmigaDOS Shared Libraries - Support library calls from ARexx 23
1.9 AmigaDOS Shared Libraries - Appendix e 23

Default

1/33

Chapter 1

Default

1.1 AmigaDOS Shared Libraries

(Version 1.0 "Mon Aug 1 16:33:46 1994")

Guide to AmigaDOS Shared Libraries

This article is Copyright (C) by Daniel Stenberg (dast@sth.frontec.se) 1994.
FidoNet 2:201/328, IRC: ’Bagder’.

An early version of this article was published by the american Amiga
technical magazine called "AC’s Tech", issue #2 1994. This version is updated,
revised and reformatted for ASCII. Major updates to this document will be found
in various places, but most like on AmiNet sites.

NOTE:

The examples of this article are written in assembler and C and
require some knowledge of the languages to fully understand what they are
all about. They are written only to illustrate the explanations and are
only parts of larger source codes. They may not be accurate and I take no
responsibility for the correctness or function of the examples.

1.2 AmigaDOS Shared Libraries - Index

Table of contents:

1 Shared Library Overview
1.1 Shared Library
1.2 Link Library
1.3 ROM Based/Disk Based Libraries
1.4 Memory Usage
1.5 Other Operating Systems
1.6 Advantages

2 Calling Shared Library Functions

Default 2/33

Address Library Functions
Library Base

Index

Parameters

Access Libraries

.5.1 OpenLibrary ()

.5.2 CloseLibrary ()

.5.3 RemLibrary ()

Return Code

Glue Code

C and Register Parameters
.8.1 SAS/Dice pragmas

.8.2 Aztec/Maxon pragmas
.8.3 How to create pragma files
Near Data Effects

0 Registers

DN NN

N

N
O DNDDNDDNDOWwW-JIJOANDDNDDND U wDN -

3 Parts of an AmigaDOS Shared Library Image
Prevent Execution

ROMTag Structure

Init Table

Function Pointer Table

Data Table

Init Routine

Functions

W wwwwww
~N o Ok W N

4 Libraries in the System
Library Opening Details

Library List

4.3 Patching Libraries

ESNTAN
NN -

5 Programming
Functions

.1.1 Open()

.1.2 Close()

.1.3 Expunge ()

.1.4 Extfunc()

Function Descriptor File
Glue Code

Compiling

Linking

Debugging

Hints

~N o 0O W DN OO o

[S2BNC INC, BNC BN BN,

6 Support library calls from ARexx
How ARexx access the library

o O
N =

ARexx calls a library function
6.3 ARexx function

Appendix
A. Version numbers and shared libraries
Further reading
Library source examples

Q w

Default

3/33

1.3 AmigaDOS Shared Libraries - Shared Library Overview

1. Shared Library Overview

To be able to learn how to make a shared library, it’s important to
have the knowledge about what it is all about. In this article I’1ll take
you through all steps, from the most basic ones down to the ones dealing
with low level library programming.

1.1 Shared Library

First, an answer to the question: what is a shared library? As the
name says, it is a function library shared by several simultaneous tasks
and processes. The shared library code is not present in the executable
image on disk, but is a separate file. The shared code is not loaded
together with the executable. It is loaded into memory only when a program
requires it.

On Amiga, the naming convention says that a shared library should be
in lowercase letters with a ".library" ending, and the directory to put
public libraries in is "LIBS:".

1.2 Link Library

A link library is not to be mixed up with a shared library. A link
library is a function library that is linked into the executable at compile
time. A link library becomes a part of an executable image.

1.3 ROM Based/Disk Based Libraries

The AmigaDOS system consists of several shared libraries, whose names
you recognize: dos.library, exec.library, graphics.library, only to mention
a few. These libraries won’t be found in the LIBS: directory, they reside
in ROM. Whether in ROM or on disk, shared libraries work and are used the
same way.

1.4 Memory Usage

As mentioned, shared libraries are loaded when a program requests,
i.e. opens, it. When the program has finished using the library, it closes
the library. The library remains in memory even though no process is using
it, until the operating system requires the memory it occupies (or is
forced to remove itself by a program, such as "avail FLUSH" on the shell
prompt in AmigaDOS 2.0 or later).

1.5 Other Operating Systems

Shared libraries are not AmigaDOS specific. Such are also found under
different UNIXes, 0S/2, Microsoft Windows, 0S-9, 0S-9000 and others. They
are though not always called "shared libraries", but their concepts are
very similar.

1.6 Advantages
The reasons why so many systems are using shared libraries are among
others: less disk space is used because the shared library code is not

Default 4/33

included in the executable programs, less memory is used because the shared
library code is only loaded once, load time may be reduced because the
shared library code may already be in memory when a program wants it, and
that programs using shared libraries are very easily updated.

1.4 AmigaDOS Shared Libraries - Calling Shared Library Functions

2. Calling Shared Library Functions

We’ve been looking at what a shared library is, a little about how it
works and some of its advantages. Now it’s time to see how a library is
used and accessed.

2.1 Address Library Functions

To be able to handle library calls, we must know how to call shared
library functions. I’11 describe it with a small comparsion to standard
non-shared functions.

The most significant difference is in the way the functions are
addressed. A standard function within a program is more or less an address
to which the program counter is set when we want to jump to it. A shared
library function is on the other hand addressed by adding a number to the
address of the library’s base.

When using standard function calls, the compiler or assembler arrange
so that e.g. the function "getname" is associated with the particular
static address in memory where the "getname" function starts. If the same
"getname" function would be a shared library function, the compiler
wouldn’t know the actual address of it, but dynamically add a certain
number (index) to the library’s base address to access it.

As you see, we must know the index of the function and the library’s
base address to be able to call a shared library function.

2.2 Library Base

To find out the library base of a shared library, you must call
OpenLibrary () which will return the library base of the specified library in
register DO. All library bases are found like that except exec.library’s,
which is found by reading the pointer stored at the absolute address 4.

Whenever you want to call a function in a shared library you (or the
compiler) have to know the index to add to the library’s base address. That
"index’ 1is sometimes reffered to as ’vector’ or ’'offset’.

E.g., to call Openlibrary() you must know the index of the function
and the library base itself (OpenlLibrary () is an exec.library function and
we know that exec.library’s base address is found at address 4). A call to
OpenLibrary ()} could look like this in assembler:

move.l SysBase,ab ; SysBase is the name of
; exec.library’s base pointer
; >>> Parameters left out in this example <<<

Default 5/33

jsr -552 (a6) ; We’ll jump straight into the jump
; table at the certain index. The index
; 1s =552 in this case

2.4 Parameters

Ok, we know how to call a library function and we know that we must
call Openlibrary () to get a library’s base address. To inform e.g
OpenlLibrary () which library we want to open, we must send it some
parameters. The documentation tells us that OpenlLibrary () wants the library
name in Al and the lowest acceptable version in DO. Parameters to the
library functions are always stored in registers. See the library reference
documentation for closer information exactly which registers.

This example opens a library with the name at libName with
version 33 or higher:

Include "exec/funcdef.i" ; _LVO macro constructs
Include "exec/exec_lib.i" ; exec function index
VERSION equ 33

move.l SysBase, a6 ; exec library base
lea.l libName, al ; library name

move.l #VERSION, dO ; lowest usable version
jsr _LVOOpenLibrary(a6) ; OpenLibrary ()

2.5 Access Libraries

The operating system provides facilities for the creation, use and
access of shared libraries. The functions that let the programmer construct
and access libraries are of different levels to give different
possibilities. Low level function where you can change every single
parameter and more high level functions that do a lot without the
programmers exact specification.

I’11 describe the functions of the highest level that also are the
most frequently used:

2.5.1 OpenLibrary ()
Gains access to a named library of a given version number. The library
will be search for in ROM, in LIBS: and at last in current directory.
You can also specify a library with an absolute path.
Always open libraries with the lowest version which includes the
functions you need. To open intuition.library for 2.0+ (version 36)
only, try something like:

#include <proto/exec.h>
#define LIB_VERSION 36
struct ExecBase xSysBase;
struct IntuitionBase *IntuitionBase;
void main (void)
{
/%
* The SysBase should be in order to perform this.
* (Using any C startup module will do this for you.)
x/

Default 6/33

Openlibrary ("intuition.library", LIB_VERSION);
if (!IntuitionBase) {
printf ("Couldn’t open intuition version %d+\n", LIB_VERSION) ;
exit (10);
}
/%
* The program using intuition.library V36+ follows here!

*/

AmigaDOS file names are not case sensitive, but Exec lists are.
If the library name is specified in a different case than it exists on
disk, unexpected results may occur.

The library base returned from OpenLibrary() is not sharable between
tasks! The only library base allowed to share is Exec’s. If your
program starts more tasks or processes, they all have to open their

own libraries. This is subject to a lot of discussions where people
state that all libraries, =*except* those that are especially documented
as non-shareable, are shareable. Although, this is what the library
bible says about it:

"Sharing Library Pointers: Although in most cases it is possible

for a parent task to pass a library base to a child task so the child
can use that library, for some libraries, this is not possible.

For this reason, the only library base shareable between tasks is
Exec’s library base." (from RKRM Libraries 3rd ed., p. 467)

2.5.2 CloselLibrary ()
Concludes access to a library. Whenever your program has
finished using the functions of a shared library, there should be a
call to Closelibrary () for every call to Openlibrary(). Simply like
this:

Closelibrary ((struct Library =) IntuitionBase);

2.5.3 RemLibrary ()
Calls the Expunge () function of the specified library. If the library
isn’t open, it will delete itself from memory. This is not typically
called by user code.

/+ Attempts to flush the named library out of memory. =*/
#include <exec/types.h>
#include <exec/execbase.h>

void FlushLibrary (STRPTR name)
{

struct Library xresult;

Forbid () ;

if (result=(struct Library =*)FindName (&SysBase->LibList,name))
RemLibrary (result);

Permit () ;

With these three functions in mind, we’ll continue.

Default 7/33

2.6 Return Code

The return code of a shared library function call is always received
in a register. (Today, I don’t think there is a single function not using
DO for that purpose.)

2.7 Glue Code

The parameter storage in registers is not that comfortable in all
occasions and many compilers (in all kinds of programming languages) don’t
even have the ability to store parameters in (pre-decided) registers. Then,
glue code is required. Glue code (also known as "stub functions" or simply
"stubs") is simply a set of functions that you can call instead of the
shared library functions. The stub function reads the parameters from the
stack and stores them in registers and then calls the shared library
function. That makes the use of the glue code functions identical to other
functions. Glue code is compiled into a kind of object file, using the
suffix ".1ib", and is stored in LIB: (not to be mixed up with LIBS: where
the shared libraries are stored). All stub functions for the standard
AmigaDOS libraries are found in the "amiga.lib" file that comes with most
compilers or can be bought straight from Commodore.

2.8 C and Register Parameters

C language compilers are in general using the stack to pass parameters
between functions, but to be able to use shared libraries smoothly, several
compilers offer ways to force parameters in registers and automatically use
the right library base and function index.

The SAS, Dice, Aztec C and Maxon compilers, all provide such solutions
by special pragma instructions. A pragma instruction is a line starting
with "#pragma", which is a compiler instruction keyword, followed by the
compiler specific text. Such a pragma defines the function, which library
base it needs and in which registers the parameters must be stored. By
using such pragmas you don’t have to call or link any glue code within your
program.

The GNU C compiler, which is a freely distributable C and C++
compiler, has a very complicated way to solve this problem. It declares and
uses inlined functions that use the GNU compiler’s own __asm() instruction
to set the proper registers to the right values.

When using this information, a compiled result uses SysBase, the index
and the parameters in registers just as we did in the assembler examples
above. C language usage:

#include <pragmas/exec_pragmas.h>
#define libName "foobar.library"
#define VERSION 33

Openlibrary (libName, VERSION) ;

2.8.1 SAS/Dice pragmas

The library call pragmas available in the SAS compiler are built-up
ike this (Dice supports most of this too):

#pragma <kind of call> <lib base> <name> <index> <registers>

which means:

Default

8/33

<kind of call>
Which kind of library call this pragma should generate. There are
three different ones:
‘libcall’ makes a standard library call
‘tagcall’ makes a standard library call where the last parameter
points to a taglist
‘syscall’ makes a call to exec.library

<lib base>
The library base name to use. Not specified for ‘syscall’ calls.

Example: "DiskfontBase" (The name of diskfont.library’s library
base.)

<name>
Function name identifier. Example: "MyFunction".

<index>

Function index of the library. A hexadecimal, positive number
(which is turned negative by the compiler when it generates the
indexed library call). Example: "1A" (The first library function
index of all normal libraries.)

<registers>
Register/parameter information in a special format, a sequence of
hexadecimal numbers. Reading from the *rightx, each digit has the
following meaning:
1. Number of parameters.
2. Result code register (0-6 means register DO-D6 and 8-9, A-E
means register A0-A6)
3+. The parameter registers, read from the left (!). The numbers
are associated with the same registers as in paragraph 2 above.

Example:
#pragma libcall SysBase OpenlLibrary 228 0902

2.8.2 Aztec/Maxon pragmas

The library call pragmas available in the Aztec and Maxon compilers

are built-up ike this:
#pragma amicall (<lib base>, <index>, <name> (<parameters>))
which means:

<lib base>
The library base name to use.

<index>
Function index of the library. A hexadecimal, positive number
(which is turned negative by the compiler when it generates the

indexed library call) with a "Ox" prefix. Example: "Oxla" (The first

library function index of all normal libraries.)

<name>
Function name identifier. Example: "MyFunction".

Default

9/33

<parameters>
Register/parameter information. It should be written as ’register,
register,register’. Example: "al,d0O"
Example:

#pragma amicall (SysBase, 0x228,0penlLibrary (al,d0))

2.8.3 How to create pragma files

Most compilers have the pragma files included, and then there’s no
problem. But if you want to produce them for yourself, for your own library
or for new versions of other libraries, most compilers have a utility
called ’fd2pragma’. That utility uses function descriptor files (more
details about those follow) as sources and generates pragma files. There is
also a freely distributable program that can generate pragmas for Aztec,
SAS, Dice and Maxon.

2.9 Near Data Effects

Compilers of different programming languages often create machine
language instructions that address data indexed by a 16-bit register,
instead of straight 32-bit addressing, to increase execution speed and
decrease the code size.

Some libraries might request or offer a "callback function", a
function supplied by you in the form of a function pointer that might get
called from inside the library. A call from within a library may not have
that index register set properly and therefore you must set it before you
can access any data that requires that register!

In SAS/C, this is simply done by defining the function like:
void __saveds callback(void);
if using DICE, __saveds must be replaced with __ getad.

(In the SAS and Aztec compilers, it can also be done by calling
getad () first in the callback function.)

From version 36 some of the AmigaDOS system library functions feature
hook abilities, which is a kind of callback function. They are also called
from inside a library and then of course also demand loading of the index
register the same way.

2.10 Registers

Library functions should preserve the a2-a’7 and d2-d7 registers. The
rest must be stored in a safe place and then brought back after the library
call if you want to be sure of their contents.

Default 10/33

1.5 AmigaDOS Shared Libraries - Parts of an AmigaDOS Shared Library Image

3. Parts of an AmigaDOS Shared Library Image

If we were content with only using shared libraries, we would have
enough information by now to use all kinds of library calls.

Only scratching the surface isn’t enough if we want to create someting
by ourselves. We must instead start digging into detailed information. How
is a shared library constructed? Of which parts? How do you combine those
parts to make your own shared library?

A shared library image is built up by a few different parts:
— Code preventing execution

— ROMTag structure with sub data

- Init table

- Function pointer table

— Data table

- Init routine

— Functions

3.1 Prevent Execution

The first thing the disk image contains is a piece of code that
prevent users from trying to execute the library as an executable file.
That piece of code should preferably return an error code to the calling
environment (that most possibly is a shell).

Example:

moveq #-1,d0
rts

3.2 ROMTag Structure
Coming up next is a ROMTag structure. ROMTags are used to link system
resident modules together. The ROMTag looks like:

(found in <exec/resident.h>)

struct Resident {
UWORD rt_MatchWord;
struct Resident xrt_MatchTag;
APTR rt_EndSkip;
UBYTE rt_Flags;
UBYTE rt_Version;
UBYTE rt_Type;
BYTE «rt_Pri;
char *rt_Name;
char +rt_IdString;
APTR rt_Init;

bi

rt_MatchWord - Used by exec to find this structure when it is about
to link us into the ROMTag list. This must contain
RTC_MATCHWORD (the hexadecimal number 4AFC, which is

Default 11/33

a MC68000 "ILLEGAL" instruction).

rt_MatchTag - This must contain a pointer to this struct.

rt_EndSkip - Pointer to end of library init code.

rt_Flags - RTF_AUTOINIT informs exec that this structure’s
"rt_Init’ member points to an init table.

rt_Version - Library version number

rt_Type - Should contain NT_LIBRARY (found in <exec/nodes.h>),

which informs exec about the fact that this is a
shared library image.

rt_Pri - Initialization priority. 0 (zero) is perfectly ok.
rt_Name - Pointer to the zero terminated library name.
rt_IdString - Standard name/version/date ID string. Example:
"myown.library 1.0 (21.11.93)"
rt_Init - This data points to an init table if
RTF_AUTOINIT is set in structure member
rt_Flags.

As you can see, this structure requires some more information stored.
You must have the library name and a standard ID string stored, and the
last structure member should point to a "init table".

3.3 Init Table
The init table is a table of four longwords. I try to visualize them
in a structure like this:

(A struct of this kind is not found in any standard include file, this
is written by me.)

struct InitTable {
ULONG it_LibBaseSize;
APTR it_FuncTable;
ULONG *it_DataTable;
APTR it_InitRoutine;
bi

it_LibBaseSize - Size of your library base structure. In common
situations it is no point in using anything else but
a straight struct Library as library base. It must not
be smaller than that!

it_FuncTable - This should contain a pointer to an array of
function pointers.
it_DataTable - Pointer to a data table in exec/InitStruct format for

initialization of the Library base structure.
in_InitRoutine - Pointer to a library initialization routine or NULL.

Once again we have a structure that needs more data. The function
pointer table, the data table and the init routine is left.

3.4 Function Pointer Table
This should be a table of function pointers to the different functions
in the library. It can be specified in two ways:

1) By setting the first word (16 bits) in the list to -1, you specify that
the table is a list with 16-bit addresses relative to the start of the
list. End the table with a -1 word.

Default

12/33

2) By storing absolute 32-bit pointers to the functions and ending
with a -1 longword (32 bits).

My examples will use the second way.
The pointers should point to the functions of the library. All
libraries should still have a few standard functions used by exec and must

not be left out. The first four entries are dedicated to such functions.

The list must look like:

- Open () — Open library routine.

- Close() — Close library routine.

- Expunge () - Delete library from memory routine.
- Extfunc() Reserved for future expansion.

- ownl () — Our first function

- own2 () — Our second function

- ... — The rest of our functions
- -1 - End of table

How to program such functions is discussed further on. Let’s continue,
we have the data table and the init routine left to look at.

3.5 Data Table

The data table is used to initialize the library base structure when
it’s linked into the system list of shared libraries. The table is in the
so called "exec/InitStruct" format. A data table is controlling a number of
different initializing methods. In our case we just use a number of offsets
(relative to the library base) and their initialization values.

finclude <exec/libraries.i>
#include <exec/initializers.i>
#include <exec/nodes.i>

INITBYTE LN_TYPE,NT_LIBRARY
; Init type: Library.
INITLONG LN_NAME, LibName
; Init name of the library
INITBYTE LIB_FLAGS, LIBF_SUMUSED!LIBF_CHANGED
; Set the flags that tells exec we have changed
the library and that we allow checksumming.

INITWORD LIB_VERSION, VERSION
; Init version
INITWORD LIB_REVISION, REVISION
; Init revision
INITLONG LIB_IDSTRING, IDString
; Init IDString
DC.L O ; End of InitStruct () command table

If you have a larger library base than a Library struct, you might
want to add more initialize entries to this table. The only thing left now
to complete our ROMTag structure is the init routine.

3.6 Init Routine

Default 13/33

This routine gets called after the library has been allocated by
exec. The library base pointer is in DO, the segment list is in AQ and
SysBase in A6. This function must return the library base in DO to be
linked into the library list. If this initialization function fails, the
library memory must be manually deallocated, then NULL returned in DO.

Deallocate library memory by using something like:

move.l d0, a5

moveq #0,d0

move.l ab,al

move.w LIB_NEGSIZE (a5),do0
sub.1 d0, al

add.w LIB_POSSIZE (a5),do0
jsr _LVOFreeMem (ab6)

The segment list, that we receive in A0, should be stored somewhere
for later access. We’ll need it when the library is to be removed from
memory. Note that this routine will be called only once for every time the
library is being loaded into memory. That makes it perfectly ok to store
the segment list simply like:

lea anywhere (pc),al
move.l a0, (al)
rts

anywhere: DC.L 0

A nice way to store this data is to extend the library base structure
to hold the segment list pointer too.

This was the last of the initialization part. The ROMTag structure is
complete. Left in the library are the functions that it should contain.

3.7 Functions

As mentioned before, there are four required functions that should be
in all shared libraries. The rest of the functions are up to you to decide,
design and make sure they receive proper data. How to code the functions
and what to think of when doing so, is discussed in a chapter below.

1.6 AmigaDOS Shared Libraries - Librares in the System

4. Libraries in the System

We know what shared libraries are and we are familiar with all data
stored in the library image. We know what functions to use when we want to
access libraries and we know how to call library functions. What about low
level information? What is done in the system when we call OpenLibrary()?
How can I check if library already is loaded and which version number that
library has? How can I patch a function of an already loaded library?

Default 14 /33

4.1 Library Opening Details

When a single Openlibrary() is called, a lot of things happen:

1. Exec checks the already loaded libraries to see if the requested
library is there. If it is, go to step 6.

2. If the library name is specified without path, it is searched for in
ROM, LIBS: and then current directory, otherwise simply in the
specified path. The first directory that holds a library with the
name it searches for, will be the one it loads from. If the library
wasn’t found, return NULL. If the library was found anywhere
else but in ROM, it’s LoadSeg()’ed into memory. ROM libraries
are already accessible.

3. Exec scans the library for the 4AFC word with a following 32-bit
pointer back to it. That word is the beginning of a ROMTag
structure!

4., InitResident () is called, which hopefully finds the
RTF_AUTOINIT flag set in the rt_Init member of the ROMTag
structure and therefore calls MakeLibrary () which performs:

Memory is allocated to fit a Jjump table and the library base

structure. The size of the library base structure is found in the first
longword of the data table. The jump table is created by a call to
MakeFunctions () and is placed just before the library base in

memory. The size of the allocation can be read in the library base
structure (lib_NegSize + lib_PosSize).

The library base structure is initialized using the data table list and
an InitStruct () call.

The init routine is called with the library base pointer in DO,
SysBase in A6 and the segment list pointer in AO0. If NULL is
returned, the entire OpenlLibrary () fails and returns NULL.

Notice that any kind of failure in InitResident () means that the
library is never added to the system.

5. AddLibrary () adds the library to the system list, making it
available to programs. The checksum of the library entries will be

calculated.
6. The OpenLibrary () call’s version number parameter is checked
against the version number of the library base (lib_Version). If the

requested number is higher than the library version, OpenLibrary ()
fails and returns NULL.

7. The open function of the library is called. If that fails NULL is
returned, otherwise the library base is returned in DO.

If the same library exists in LIBS: with one version and in current
directory with a later version, OpenLibrary () will always go for the one
that it finds first. In this case that is the library in LIBS:. If that
library has a too low version number, OpenLibrary () fails.

Default 15/33

As you can see, Openlibrary () is a rather high level function. By
using the other mentioned functions you can add a library to the system
without going the way I describe in this article. But that wouldn’t make it
a standard shared library.

4.2 Library List

Exec keeps track of all libraries that are opened. We can take part of
exec’s library list information by studying the linked list starting at
SysBase->LibList. That pointer points to a ‘struct List’, whose ‘struct
Node’ pointers point to the ‘struct Library’ of all libraries that are
currently in memory. This sounds more difficult than it is. Take a look at
this small example.

To find a certain library name in the library list, we can write:
struct Library xfindlib (char xname)

{

struct Library =1lib;

Forbid () ;

1lib = (struct Library x)FindName (SysBase->LibList, name);
Permit () ;

return(lib);

4.3 Patching Libraries

All libraries that are opened get a jump table created. That means
that even ROM based libraries get a jump table in RAM. When using functions
in any library, we always go through that jump table which consists of
nothing but a number of JMP #ADDRESS instructions. As you understand, these
jumps are supposed to jump into the library to perform whatever they are to
perform. By changing an entry in that Jjump table, we can make a certain
library call to call our own function instead of the original! But to
change an entry is more than just storing in the list (since there are
checksums and things that have to be correct). The correct way to do it, is
to use SetFunction (), which can make one of those JMPs jump to our own
code.

To replace Openlibrary () with our own function, we can do it like:

#include <exec/types.h>
#include <exec/protos.h>

#ifdef SAS
/ *

x Things to set for the SAS/C compiler:
*/
#define ASM __ asm
#define DREG(x) register __ d ## x
#define AREG(x) register __a ## x

#else
/ *
* Defines for the Dice compiler:

*/

Default

16 /33

#define ASM /* not used x/

#define DREG(x) __ D ## x
#define AREG(x) __ A ## x
#endif

int ASM OurOpenLibrary (AREG (1) char =, DREG(0) int);
void patch (void)
{

APTR oldfunc;

oldfunc = SetFunction((struct Library =) SysBase,
-552,
(APTR) OurOpenLibrary);

/ *
* Now, all following calls to OpenLibrary () will
* call our own function instead.

*/

To swap back, we simply use SetFunction|()
again. We really should be careful before
doing so, because someone else might have
patched the function after us, and if we

simply restore our original we would ruin
that patch!

X o ok ok X X X X

SetFunction(SysBase, -552, oldfunc);

int ASM OurOpenLibrary (AREG (1) char xlibName,
DREG(0) int wversion)

N~

b S S

Code our own library opener. Do remember that
our index register is not initialized now, and
if you want it, make sure you can restore the
previous value before returning from this
function. We don’t want to crash any programs,
do we?

/+ Preserve used registers! =/

Patching libraries are often used when creating debugging tools (such
as the well-known ‘Mungwall’ which patches AllocMem and FreeMem, ‘Snoopdos’
which hangs on to most of dos.library’s functions and others) and for
programs that enhances or somehow changes the functionality of a function
system wide (such as ‘Explodewindows’ which patches OpenWindow () and
beautifies window openings, ‘RTpatch’ and ‘reqchange’ which patches
different requester calls to bring up reqgqtools.library requesters
instead) .

Default 17 /33

NOTE: SetFunction () cannot be used on non-standard libraries like pre-V36
dos.library! If you want to patch such a library, you must manually Forbid(),
preserve all 6 original bytes of the jump table entry, SumLibrary () (to
evaluate the new checksum) and then Permit ().

1.7 AmigaDOS Shared Libraries - Programming

5. Programming

Shared libraries must be programmed by someone. Until now, you’ve
learned how to control, play around and change already existing libraries.
Now, we’ll check out more of what there is to know to be able to program a
library. The ROMTag initializing is of course required when programming a
library, but the biggest part and the part that really makes the library,
is still the functions.

You’ re not restricted to anything when it comes to the function of the
routines you want to put in a shared library. What must be thought of when
creating functions for a shared library using a compiler, is that there is
no main function and no startup modules, and therefore no one of the
symbols declared in those modules will be declared if you don’t do it
yourself.

There are always four functions required that have to be in every
library. They are Open(), Close (), Expunge() and Extfunc() and are called
by exec when the library is to be opened, closed and removed from memory
(the fourth is reserved for future use). Exec turns off task switching
while executing these routines (via Forbid), so we should make them not
take too long. (When using SAS/C these functions won’t be necessary to
code, see the "Compiling" and "Linking" chapters.)

5.1.1 Open{() - (Library base:a6, version:d0)
This routine is called by exec when OpenLibrary () (or more
correct InitResident()) is called. Open should return the library

pointer in DO if the open was successful. If the open fails, NULL
should be returned. It might fail in cases where we allocate
memory on each open, or if the library only can be open once at

a time...

Example:

; Increase the library’s open counter
addg.w #1, LIB_OPENCNT (a6)

; Switch off delayed expunge
bclr #LIBB_DELEXP, LIB_FLAGS (ab6)

; Return library base
move.l a6,do

rts

5.1.2 Close() - (Library base:a6)

Default

18 /33

5.1.3

This routine is called by exec when CloselLibrary () is called. If the

library is no longer open and there is a delayed expunge, then
Expunge! Otherwise Close should return NULL.
Example:

; Decrease the library’s open counter
subg.w #1, LIB_OPENCNT (a6)

; If there is anyone still open, return
bne.s retlabel

; Is there a delayed expunge waiting?
btst #LIBB_DELEXP, LIB_FLAGS (a6)
beqg.s retlabel

; Do the expunge!

bsr Expunge

retlabel:

; set the return value
moveq #0,d0

rts

Expunge () - (Library base:ab6)

This routine is called by exec when RemLibrary () is called, or
from Close when there was a delayed expunge. If the library is no
longer open then Expunge should Remove () itself from the library
list, FreeMem() the InitResident()’s allocation and return the

segment list (which was given to the Init routine). Otherwise
Expunge should set the delayed expunge flag and return NULL.

Because Expunge might be called from the memory allocator, it
may NEVER Wait () or otherwise take long time to complete.

Example:
; Is the library still open?
tst.w LIB_OPENCNT (a6)

beq notopen

; It is still open. set the delayed expunge flag
; and return zero

bset #LIBB_DELEXP, LIB_FLAGS (a6)
moveq #0,d0
rts

notopen: ; Get rid of us!

movem. 1 d2/a5/a6, - (sp) ; save some registers
move.l a6, ab

; Store our segment list in d2
lea anywhere (pc), a6

move.l (ab) ,d2

move.l 4,a6 ; get SysBase

Default 19/33

; Unlink from library list
move.l ab5,al
jsr _LVORemove (ab6) ; This removes our node from the list

; Free our memory

moveq #0,d0

move.l ab5,al

move.w LIB_NEGSIZE (a5),d0 ; jump table size

sub.1 do, al

add.w LIB_POSSIZE (a5),d0 ; the size of the rest of the library.
jsr _LVOFreeMem (ab6)

; Return the segment list

move.l d2,do
movem. 1 (sp)+,d2/a5/a6 ; Get back the registers
rts

5.1.4 Extfunc() - (we don’t know about any registers!)

This routine is reserved for future use and should return 0 in
register DO.

Example:

moveq #0,d0
rts

5.2 Function Descriptor File

To easily use the SAS/C options for creating a shared library or using
the pragma construction utilities, a standard AmigaDOS function descriptor
file is required. It describes the functions in a library like:

##base _OwnBase

##bias 30

##public

* ———— Here follows the public functions —----
OwnFunction (name, age) (A0/D2)

OwnFoobar (daynumber, dayname) (D1/A3)

##private

* ———— Private! Hands off

OwnPrivate (things) (al)

##end

Where:

##base - The library base identifier

##bias - Index base position. The first function specified

will use this index, which should be positive
(turned negative later by the compiler) and in all
normal cases starts on the first free jump table
entry: 30.

Default 20/33

##public - The functions following are public functions that
everybody is allowed to use.

##private - Private functions follow. Such functions should
not be messed with and we won’t get any information
on those.

* = All lines starting with an asterisc '’ are treated
as comments.

functionname (namel, name2) (registerl/register2) -
Describes the parameters and in which registers the function
received the parameters in. The entire line should be written
without whitespaces as in the example above. The registers
should be written like: dO0/al/d2. The parameter names are only
for documentation use.

##end - end of function descriptor file

5.3 Glue Code

Glue code is written to be called with the parameters on the stack
instead of the registers as it should. The glue functions should pick
parameters from the stack and assign to the proper registers.

Example:

move.l al,-(sp) ; Store register Al on stack

move.l a6, —(sp) ; Store register A6 on stack

move.l 12 (sp),al ; Get first argument from stack to al
move.l 16(sp),d0 ; Get second argument from stack to dO
move.l 4,a6 ; Get SysBase in A6.

jsr _LVOOpenLibrary (a6) ; Call OpenLibrary ()

; Now dO contains the result code from the
; library call

move.l (sp)+,a6 ; Restore A6 from stack
move.l (sp)+,al ; Restore Al from stack
rts

5.4 Compiling

Things to think of when compiling library code:

* Always make the function called from another process (the
outside) a "__saveds" function as the index register has to be
properly initialized before continuing. ___saveds should be replaced

with _ _geta4 when using Dice and an initial ‘geta4 ()’ call when
using Aztec C.

* Whether to use global symbols unique or shared by every task.
SAS/C features easy changing between these two, but other
compilers might have trouble creating unique global variables for
each library open.

* Options when compiling a library may include some of the
following. (These are the SAS/C options, but all compilers of

Default

21/33

today offer simlar functionalities.):

LIBCODE Forces all index addressing to use
the library base pointer (a6) instead
of the standard a4.

NOSTANDARDIO Do not use any of the C standard io
functions such as printf () or
fprintf (stderr, ...) since they rely on
global symbols declared and
initialized in the startup module.

OPTIMIZE Optimize the output code.

5.5 Linking

Linking a library often causes many problems, at least it has done so
for me. You must remember that no compiler startup symbols will exist
unless you declare them (or use a compiler that enables such things, like

SAS/C v6.50 and later)! Things like stack expansions can’t be made to work,

and routines like fopen() and others are using startup module symbols
(which can be declared by us though).

With the symbols in mind, we continue! All the talk about the library
initializer structures is no problem of a SAS/C programmer’s mind. By
including the following flags in your ‘slink’ line, all such problems are
solved:

* LIBPREFIX <prefix>
Default is ‘_’ (underscore). This is the prefix added to the
functions specified in the function descriptor file to match the
symbols of the object file(s).

* LIBFD <function desc file>
Tells where the function descriptor file is.

* FROM lib:libent.o lib:libinit.o
Two nice object files holding code that we would have to code by
ourselves otherwise. If you are using global variables in your
code, "libinit.o" will make all currently open sessions of the
library access the same, shared, variable. By using "libinitr.o" all
globals will be copied at the library open, thus each open library
has its own global variables.

* LIBID
Sets the IdString of the library

* LIBVERSION <number>
Sets the version number of the library

* LIBREVISION <number>
Sets the revision number of the library

5.6 Debugging
Using SAS/C, shared libraries can be run time debugged (including
variable checking, break-pointing and so on) just like any other program

Default

22/33

using the "step into reslib" option in ‘cpr’. Break any library function by
writing "b myown.library:foobar" (where foobar is the name of the function

we want cpr to stop in when we enter) on the command prompt of ‘cpr’. When

creating debug code, remember to debug the library that exists in the same

directory as the code does, or specify the compiler flag SOURCEIS= and the

name of your source file.

5.7 Hints
I have been programming and developing shared libraries for some time

by now, and there are a few things to pay certain attention to when dealing
with this stuff.

— Flush before retry
Libraries don’t go away simply because you close them, you
know that. If you run your library once, close it and recompile it
with a few changes, there will still be the older version remaining
in memory that will be opened. When debugging libraries, always
make sure that your library isn’t already in memory before
debugging a new version!

I made a small program that resets the open counter and then
RemLibrary () a named library. It is not at all a nice thing to do,
but there really is a problem when you open your library and
something crashes before you have had the chance to close it.
There is no "nice" way of removing such a library from memory!

- Globals
By using the SAS/C object files libinit.o or libinitr.o you can
make your global variables to be shared by all processes or unique
for each Openlibrary() call. If you want to mix the two versions
or create something different, I advise you to code the library
initial code by yourself.

- Stack usage
When your library is called and runs, it uses the same stack as the
caller. If the caller has a very small stack, so do you. Built-in
stack check routines are not available since they need irreplaceable
symbols. For advanced users, allocating and using an own stack
while the library is running could be the only and best way to
solve a problem like this.

- Symbols
I’ve written it earlier and I do it again: high level language
functions often use symbols initialized and declared in the startup
modules. Declare them by yourself if possible or avoid using such
functions!

- Register preservation
I think it’s a good habit to always preserve all registers (except
for DO that holds the return code) when your library routines are
called. Remember that your library code index register is
un—-initialized when called from the library opener.

Default 23/33

1.8 AmigaDOS Shared Libraries - Support library calls from ARexx

6 Support library calls from ARexx
ARexx 1s since the introduction of AmigaDOS 2.0 a part of the operating
system, and is for earlier releases available as a separate product.

ARexx can access and call functions in shared libraries, if the shared
libraries support it. This section will describe the actions that have to
be taken to make your library support function invokes from ARexx.

6.1 How ARexx access the library

To access a custom shared library from ARexx, the ARexx program must
call "addlib’ specifying library, version and "ARexx entry index". That
third parameter is the index relative the librarybase to the function that
is used for ARexx communication.

6.2 ARexx calls a library function

When a function is used within an ARexx program which the ARexx
interpreter does not recognize, ARexx will call all libraries, one at a
time, to see if the library recognizes the function. The first library that
recognizes the function runs it!

6.3 ARexx function

The function that gets called from ARexx will receive a RexxMsg (1)
pointer in register AO. The ARGO member of the RexxMsg holds the name of
the function that ARexx wants to run (the comparison should be case
independent), and the parameters to the function is put in ARG1-ARG1l5. If
your library doesn’t recognize the function, you should return with 1 set
in register DO, otherwise you should run the function with the specified
parameters and return error in DO (0=0K, 5=WARN etc). When returning OK,
you can return a result string by putting a pointer to an ArgString(2) in
Al, otherwise set Al to 0 (zero).

(1) = See proper ARexx header file for struct RexxMsg definition.
(2) See documentation for rexxsyslib.library/CreateArgstring() .

1.9 AmigaDOS Shared Libraries - Appendix

Appendix

Commodore has introduced a general standard for shared library version
numbering. The libversion number is the number of the library version. The
librevision number is expected to be a counter from 0 and upwards, without
any kind of preceding zero. This makes the first library version 1.0 and
such as 1.9 is followed by 1.10, 1.11 and so on all the way to the maximum,

Default

24 /33

of the same version, 1.65535.

Failing in the version number check of a library opening leaves the
library in memory. For example, when you want to open "myown.library", it’s
loaded into memory. If the version number check fails and you get a NULL in
return, "myown.library" will still remain loaded. The 'FILE’ command line
option does tell ’'version’ to explicitly use the file specified.

There are utilities which automatically updates a source file with the
version number, revision number and the IDstring on every invoke.
‘bumprev’ 1is one.

B. Further reading

* Amiga ROM Kernel Reference Manual: Libraries, 3rd edition.

* Amiga ROM Kernel Reference Manual: Includes & Autodocs, 3rd edition.

C. Library source examples

Here follows a few example source codes. These are put here as simple
examples of how it can be done. It may not be the best or most suitable
solution for your imaginary project, but gives you a hint about how things
can be done. The library created with the sources below is called
"myown.library"

The sources are:

*

Makefile A - A makefile written as a SAS/C v6+ user would have
written it when compiling a library.

* Makefile B - A more general makefile. Change it to fit your
particular compiler and assembler.

* myownass.a - An library entry source code in assembler. This
contains all important initial structures and the
four required functions.

* sasanddice.h - A header file to include in the following C sources
to enable compilings under both SAS/C and Dice.

* myowninit.c - A C source version of the four required functions.
These are included for those not too familiar with
assembler.

* myown.h - Header file for the myown.library functions.

* myown.c -— myown.library function source.

* myown.fd - Function descriptor file for myown.library.

* myown_pragmas.h - SAS/C pragmas for the library functions.

* uselibrary.c - A small program that uses the functions in

myown.library.

Default

25/33

Makefile A

This makefile uses the standard way of making a
shared library with SAS/C. Using the already
created object files SAS supports us with.

ccC = sc

CHEADER = myown.h

CSOURCE = myown.c

OBJ = myown.o

LIBRARY = myown.library

FLAGS = STRINGMERGE NOSTKCHK NOSTANDARDIO\
DATA=NEAR NOVERSION LIBCODE\
OPTIMIZE

S (LIBRARY) : $ (OBJ)
slink with <<
LIBFD myown.fd
to $ (LIBRARY)
FROM lib:libent.o lib:libinit.o $(OBJ)
noicons
SD SC
libid "myown.library 2.1 (18.04.93)"
libversion 2 librevision 1
<
copy $(LIBRARY) LIBS: CLONE # Copy library to LIBS:

$ (OBJ) : $(CSOURCE) $ (CHEADER)
$(CC) $(FLAGS) S$Sx.c

Makefile B

This makefile compiles everything and uses no
pre-compiled files.

Easy changed to fit DICE, Aztec or other

compilers and assemblers.

CccC = scC
CHEADER myown.h
CSOURCE = myown.c

ASOURCE = myownass.a

OBJS = myown.o myownass.o

LIBRARY = myown.library

FLAGS = STRINGMERGE NOSTKCHK NOSTANDARDIO\
DATA=NEAR NOVERSION LIBCODE\
OPTIMIZE

ASM = asm

ASMFLAGS= -1iINCLUDE:

S (LIBRARY) : $(OBJS)
slink to $(LIBRARY) FROM $ (OBJS) noicons SD SC

copy $(LIBRARY) LIBS: CLONE # Copy library to LIBS:

myown.o: $(CSOURCE) $ (CHEADER)

Default

26/33

$(CC) $(FLAGS) $x.c

myownass.o: $ (ASOURCE)
S (ASM) $ (ASMFLAGS) Sx.a

myownass.a

hkAhkhk kA Ak hkkhk A hh A hAhAk A hkhkAhhkAhhhkhkhkdAhhkdrhdrhkdkhrhkdkrhdrhkhxx*
*

* myown.library assembler source code

*

R I b b b b b b b b b Sh Sh S S g i 2 b b b b b b b b Sh Sb dh I 2 b b b b b b b b b Sh dh g g
* Author: Daniel Stenberg (dast@sth.frontec.se)
hkhkhkhkk Ak kA hkh A hkhAk A hkhkAhh A hhhkhkhkdhhkdrkhdrhkhkhrhkkhkrhkhrhkhxx*k

SECTION code

NOLIST

INCLUDE "exec/exec_lib.i"
INCLUDE "exec/types.i"
INCLUDE "exec/initializers.i"
INCLUDE "exec/libraries.i"
INCLUDE "exec/lists.i"
INCLUDE "exec/alerts.i"
INCLUDE "exec/resident.i"
INCLUDE "libraries/dos.i"

LIST

XDEF InitTable
XDEF Open

XDEF Close
XDEF Expunge
XDEF LibName

XREF _SysBase

XREF _LVOOpenLibrary
XREF _LVOCloselLibrary
XREF _LVOAlert

XREF _LVOFreeMem
XREF _LVORemove

XREF _Min

XREF _Abs
; Prevent library execution:
Prevent:

MoveQ #-1,d0
rts

Default

27/33

MYPRI EQU O ; priority zero...
VERSION EQU 2 ; version 2

REVISION EQU 1 ; revision 1

RomTag:
; STRUCTURE RT, 0

dc.w RTC_MATCHWORD ; UWORD RT_MATCHWORD
dc.l RomTag ; APTR RT_MATCHTAG
dc.l EndCode ; APTR RT_ENDSKIP
dc.b RTF_AUTOINIT ; UBYTE RT_FLAGS
dc.b VERSION ; UBYTE RT_VERSION
dc.b NT_LIBRARY ; UBYTE RT_TYPE
dc.b MYPRI ; BYTE RT_PRI
dc.l LibName ; APTR RT_NAME
dc.l IDString ; APTR RT_IDSTRING
dc.l InitTable ; APTR RT_INIT

; the name of our library
LibName:
dc.b 'myown.library’,0

; standard name/version/date ID string
IDString:
dc.b 'myown.library 2.1 (21.11.93)',13,

; force word alignment
ds.w O

; The init table
InitTable:
dc.l LIB_SIZEOF ; size of library base

10,0

data,

sizeof (struct Library)

dc.l funcTable ; pointer function pointer table below
dc.l dataTable ; pointer to the library data initializer table

dc.l initRoutine ; routine to run

funcTable:
;————— standard system routines
dc.l Open
dc.l Close
dc.l Expunge
dc.l Extfunc
;————— our library functions

; The function names get those ‘_’ in the

;jbeginning when compiling in C.

dc.l _Min

dc.1l _Abs

;————— function table end marker
dc.l -1

; The data table initializers static data

structs.

Default 28/33

dataTable:
INITBYTE LN_TYPE,NT_LIBRARY
INITLONG LN_NAME, LibName
INITBYTE LIB_FLAGS, LIBF_SUMUSED!LIBF_CHANGED
INITWORD LIB_VERSION, VERSION
INITWORD LIB_REVISION,REVISION
INITLONG LIB_IDSTRING, IDString
dc.1 O

; The init routine.

initRoutine: ; (segment list:a0)
move.l ab,—(sp) ; save ab
lea seglist (pc),ab ; get address of our seglist storage
move.l a0, (ab) ; store segment list pointer
move.l (sp)+,ab ; restore previous ab
move.l #0,d0 ; return zero
rts
seglist:
dc.1l O

; The four required functions:
; **x*xxAssembler source code versionxxxx

Open: ; (libptr:A6, version:DO)

; Increase the library’s open counter
addg.w #1, LIB_OPENCNT (a6)

; Clear delayed expunges (standard procedure)
bclr #LIBB_DELEXP, LIB_FLAGS (a6)

; Return library base

move.l a6,do
rts
Close: ; (libptr:a6)

; set the return value
moveq #0,d0

; Decrease the library’s open counter
subg.w #1, LIB_OPENCNT (a6)

; If there is anyone still open, return
bne.s retlabel

; Is there a delayed expunge waiting?
btst #LIBB_DELEXP, LIB_FLAGS (a6)
beqg.s retlabel

; Do the expunge!
bsr Expunge ; returns the segment list

retlabel:

Default 29/33

rts

Expunge: ; (libptr:a6)
; Is the library still open?
tst.w LIB_OPENCNT (a6)

beqg notopen

; It is still open. set the delayed expunge flag
; and return zero

bset #LIBB_DELEXP, LIB_FLAGS (ab6)
moveq #0,d0
rts ; return

notopen: ; Get rid of us!

movem.l d2/a5/a6,-(sp) ; save some registers
move.l a6,ab

; Store our segment list in d2

lea seglist (pc),ab
move.l (ab) ,d2
move.l 4,a6 ; get SysBase

; Unlink from library list
move.l ab,al
jsr _LVORemove (a6) ; This removes our node from the list

; Free our memory

moveq #0,d0

move.l a5,al

move.w LIB_NEGSIZE (a5),do0

sub.1l do, al
add.w LIB_POSSIZE (a5),do
jsr _LVOFreeMem(a6) ; This frees the memory we occupied

; Return the segment list
move.l d2,do

movem. 1 (sp)+,d2/a5/a6 ; Get back the registers

rts
Extfunc: ; should return zero
moveq #0,d0
rts

; EndCode is a marker that show the end of our
; code.

EndCode:
END

sasanddice.h

Default 30/33

/**
*

* Set some defines to enable either SAS or Dice
x compilings.

*

********k***********k****************************/

#ifdef SAS
/%
x Things to set for the SAS/C compiler:
*/
#define ASM __asm
#define DREG(x) register __ d ## x
#define AREG(x) register __a ## x

felse

/ *

+ Defines for the Dice compiler:
%/

#define ASM /* not used */
#define DREG(x) _ D ## x

#define AREG(x) __ D ## x

#endif

myowninit.c

/**
*

«+ The four required library functions

* C source code version (SAS and Dice)

*

******************‘k****************************/
#include "sasanddice.h"

long ASM Open (AREG (6) struct Library =xMyBase)
{

/+ Increase the library’s open counter =/
MyBase->1ib_OpenCnt++;

/+ Clear delayed expunges (standard procedure) =/
MyBase->1ib_Flags &= ~LIBF_DELEXP;

return MyBase; /% return library base */

struct Library % ASM Close (AREG(6) struct Library =xMyBase)

{
struct Library xret=NULL;

/+ Decrease the library’s open counter =/
MyBase—->1ib_OpenCnt--;

if (!MyBase->1ib_OpenCnt) {
/* not opened any more x/

Default 31/33

if (MyBase->1ib_Flags & LIBF_DELEXP)
/+ There is a delayed expunge waiting =/
ret = Expunge(MyBase);
}

return ret;

ULONG ASM Expunge (AREG(6) struct Library =MyBase)
{
ULONG ret=NULL;
long size;
if (MyBase—->1ib_OpenCnt == 0) {
/+* we are not opened x/

ret = seglist; /* the ’seglist’ we stored in the assembler init
routine! */

/* remove us from the list «/

Remove ((struct Node =*) MyBase);

/* get size to FreeMem() «/
size = MyBase->1ib_NegSize + MyBase->1ib_PosSize;

/* FreeMem () «/
FreeMem((char) MyBase-MyBase->1ib_NegSize, size);

} else
/* we are opened */
MyBase—->1ib_Flags |= LIBF_DELEXP;

long ExtFunc ()

{
/* reserved for future use, should return 0 =/
return O;

/****‘k‘k***
*

* myown.library header file

*

R i b b b b b b b b b b db ab b b b b b g
/+ Library function prototypes =*/

int Min(int, int); /% return minimum value =/
int Abs (int); /* return absolute value */

/***

*

Default 32/33

* myown.library functions source code
*

R I i b b b b b b b b b b b b b b b b b b I b b b b b b b b b b b b b b b b b b i b b g
#include "sasanddice.h"

int ASM Min (DREG(0) int a,
DREG (1) int b)

int ¢ = a < b ? a : b;

return (c);

int ASM Abs (REG(0) int a)
{

int ¢ = a < 0? -a : a;

return (c);

myown. fd

##base _MyBase
##bias 30

##public

Min (num, num) (DO/D1)
Abs (num) (DO)

##end

myown_pragmas.h

/* pragmas */
#if defined(SAS) || defined(DICE)

#pragma libcall MyBase Min 1E 1002 /* d0 and dl =*/
#pragma libcall MyBase Abs 24 001 /% only d0 */

#elif defined (MAXON) || defined(AZTEC)

#pragma amicall (MyBase,Oxle,Min (d0,dl))
#pragma amicall (MyBase, 0x24,Abs (d0))

#endif

uselibrary.c

#include "myown_pragmas.h" /* if using SAS/C or Aztec C =/
#include "myown.h"
struct Library xMyBase=NULL;

void main (void)

Default 33/33

int min, abs;
MyBase=OpenLibrary ("myown.library", 2);

if (MyBase) {
min = Min(3, 2); /x library Min() function =*/
abs = Abs(-12); /* library Abs() function =/

Closelibrary (MyBase);
} else

printf ("Couldn’t open myown.library!\n");

	Default
	AmigaDOS Shared Libraries
	AmigaDOS Shared Libraries - Index
	AmigaDOS Shared Libraries - Shared Library Overview
	AmigaDOS Shared Libraries - Calling Shared Library Functions
	AmigaDOS Shared Libraries - Parts of an AmigaDOS Shared Library Image
	AmigaDOS Shared Libraries - Librares in the System
	AmigaDOS Shared Libraries - Programming
	AmigaDOS Shared Libraries - Support library calls from ARexx
	AmigaDOS Shared Libraries - Appendix

