
HowToCode7

HowToCode7 ii

COLLABORATORS

TITLE :

HowToCode7

ACTION NAME DATE SIGNATURE

WRITTEN BY November 28, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

HowToCode7 iii

Contents

1 HowToCode7 1

1.1 HowToCode: Using the Blitter . 1

1.2 OwnBlitter()/DisownBlitter() . 1

1.3 graphics.library/OwnBlitter() . 1

1.4 graphics.library/DisownBlitter() . 2

1.5 graphics.library/QBlit() . 2

1.6 graphics.library/QBSBlit . 3

1.7 graphics.library/WaitBlit() . 3

1.8 Blitter Timing . 3

1.9 Calculating LF Bytes . 4

1.10 Blitter Clears . 4

1.11 Blitter Speeds . 5

HowToCode7 1 / 6

Chapter 1

HowToCode7

1.1 HowToCode: Using the Blitter

Using the Blitter

1 OwnBlitter()/DisownBlitter()
2 Blitter Timing Problems
3 Blitter Speed Optimisation
4 Calculating LF Bytes
5 Clearing with the blitter

1.2 OwnBlitter()/DisownBlitter()

If you are using the blitter in your code and you are leaving the
system intact (as you should) always use the graphics.library
functions OwnBlitter() and DisownBlitter() to take control
of the blitter. Remember to free it for system use, many system
functions (including floppy disk data decoding) use the blitter.

OwnBlitter() does not trash any registers. I guess DisownBlitter()
doesn’t either, although Chris may well correct me on this, and
they are fast enough to use around your blitter code, so don’t
just OwnBlitter() at the beginning of your code and DisownBlitter()
at the end, only OwnBlitter() when you need to.

1.3 graphics.library/OwnBlitter()

OwnBlitter -- get the blitter for private usage

OwnBlitter()
-456

void OwnBlitter(void);

If blitter is available return immediately with the blitter

HowToCode7 2 / 6

locked for your exclusive use. If the blitter is not available
put task to sleep. It will be awakened as soon as the blitter
is available. When the task first owns the blitter the blitter
may still be finishing up a blit for the previous owner. You
must do a WaitBlit before actually using the blitter registers.

Calls to OwnBlitter() do not nest. If a task that owns the
blitter calls OwnBlitter() again, a lockup will result.
(Same situation if the task calls a system function
that tries to own the blitter).

1.4 graphics.library/DisownBlitter()

DisownBlitter - return blitter to free state.

DisownBlitter()
-462

void DisownBlitter(void);

Free blitter up for use by other blitter users.

1.5 graphics.library/QBlit()

QBlit -- Queue up a request for blitter usage

QBlit(bp)
-276 a1

void QBlit(struct bltnode *);

Link a request for the use of the blitter to the end of the
current blitter queue. The pointer bp points to a blit structure
containing, among other things, the link information, and the
address of your routine which is to be called when the blitter
queue finally gets around to this specific request. When your
routine is called, you are in control of the blitter ... it is
not busy with anyone else’s requests. This means that you can
directly specify the register contents and start the blitter.
Your code must be written to run either in supervisor or user
mode on the 68000.

IN:
bp - pointer to a blit structure

Your routine is called when the blitter is ready for you.
In general requests for blitter usage through this channel are
put in front of those who use the blitter via OwnBlitter and
DisownBlitter. However for small blits there is more overhead
using the queuer than Own/Disown Blitter.

HowToCode7 3 / 6

1.6 graphics.library/QBSBlit

QBSBlit -- Synchronize the blitter request with the video beam.

QBSBlit(bsp)
-294 a1

void QBSBlit(struct bltnode *);

Call a user routine for use of the blitter, enqueued separately from
the QBlit queue. Calls the user routine contained in the blit
structure when the video beam is located at a specified position
onscreen. Useful when you are trying to blit into a visible part
of the screen and wish to perform the data move while the beam is
not trying to display that same area. (prevents showing part of
an old display and part of a new display simultaneously). Blitter
requests on the QBSBlit queue take precedence over those on the
regular blitter queue. The beam position is specified the blitnode.

IN:
bsp - pointer to a blit structure.

1.7 graphics.library/WaitBlit()

WaitBlit -- Wait for the blitter to finish.

WaitBlit()
-228

1.8 Blitter Timing

Blitter timing

Another common cause for demo crashes is blitter timing.

Assuming that a particular routine will be slow enough that a blitter
wait is not needed is silly. Always check for blitter finished, and
wait if you need to.

Don’t assume the blitter will always run at the same speed too. Think
about how your code would run if the processor or blitter were running
at 100 times the current speed. As long as you keep this in mind,
you’ll be in a better frame of mind for writing code that works
on different Amigas.

Another big source of blitter problems is using the blitter in interrupts.

Many demos do all processing in the interrupt, with only a

.wt btst #6,$bfe001 ; is left mouse button clicked?
bne.s .wt

HowToCode7 4 / 6

loop outside of the interrupt. However, some demos do stuff outside the
interrupt too. Warning. If you use blitter in both your interrupt
and your main code, (or for that matter if you use the blitter via the
copper and also in your main code), you may have big problems....

Take this for example:

lea $dff000,a5
move.l GfxBase,a6
jsr _LVOWaitBlit(a6)
move.l #-1,BLTAFWM(a5) ; set FWM and LWM in one go
move.l #source,BLTAPT(a5)
move.l #dest,BLTDPT(a5)
move.w #%100111110000,BLTCON0(a5)
move.w #0,BLTCON1(a5)
move.w #64*height+width/2,BLTSIZE(a5) ; trigger blitter

There is *nothing* stopping an interrupt, or copper, triggering a
blitter operation between the WaitBlit() call and your final BLTSIZE
blitter trigger. This can lead to total system blowup.

Code that may, by luck, work on standard speed machines may die horribly
on faster processors due to timing differences causing this type of
problem to occurr.

You can prevent this by using OwnBlitter()

The safest way to avoid this is to keep all your blitter calls together,
use the copper exclusively, or write a blitter-interrupt routine to
do your blits for you, which is very good because you avoid getting
stuck in a waitblit-loop.

Always use the graphics.library WaitBlit() routine for your
end of blitter code. It does not change any registers, it takes into
account any revision of blitter chip and any unusual circumstances,
and on an Amiga 1200 will execute faster (because in 32-bit ROM)
than any code that you could write in chipram.

1.9 Calculating LF Bytes

Instead of calculating your LF-bytes all the time you can do this

A EQU %11110000
B EQU %11001100
C EQU %10101010

So when you need an lf-byte you can just type:

move.w #(A!B)&C,d0

1.10 Blitter Clears

HowToCode7 5 / 6

Blitter clears

If you use the blitter to clear large areas, you can generally
improve speed on higher processors (68020+) by replacing it by
a cache-loop that clears with movem.l instead:

moveq #0,d0
moveq #0,d1
moveq #0,d2
moveq #0,d3
moveq #0,d4
moveq #0,d5
moveq #0,d6
sub.l a0,a0
sub.l a1,a1
sub.l a2,a2
sub.l a3,a3
sub.l a4,a4
sub.l a5,a5

lea EndofBitplane,a6
move.w #(bytes in plane/156)-1,d7

.Clear
movem.l d0-d6/a0-a5,-(a6)
movem.l d0-d6/a0-a5,-(a6)
movem.l d0-d6/a0-a5,-(a6)
dbf d7,.Clear

; final couple of movems may be needed to clear last few bytes of screen...

This loop was (on my 1200) almost three times faster than
the blitter.

With 68000-68010 you can gain some time by NOT using blitter-
nasty and the movem-loop.

1.11 Blitter Speeds

BLITTER SPEEDS. (from the Hardware Reference Manual)
--

Some general notes about blitter speeds. These numbers are for the
blitter only, in 16-bit chip ram.

n * H * W
time taken = -----------

7.09 (7.15 for NTSC)

time is in microseconds. H=blitheight,W=blitwidth(#words),n=cycles

n=4+....depends on # DMA-channels used

A: +0 (this one is free!)
B: +2

HowToCode7 6 / 6

C or D: +0 In line-mode, every pixel takes 8 cycles.
C and D: +2

So, use A,D,A&D for the fastest operation.
Use A&C for 2-source operations (e.g. collision check or so).

	HowToCode7
	HowToCode: Using the Blitter
	OwnBlitter()/DisownBlitter()
	graphics.library/OwnBlitter()
	graphics.library/DisownBlitter()
	graphics.library/QBlit()
	graphics.library/QBSBlit
	graphics.library/WaitBlit()
	Blitter Timing
	Calculating LF Bytes
	Blitter Clears
	Blitter Speeds

