
ProDelphi.Net User Guide
(Release 2.3)

Copyr i ght Di pl . I nf or m. Hel mut h J. H. Adol ph 1998 - 2004

The Profiler for Delphi.Net (for Pentium and compatible CPU's)

Profiling

The purpose of ProDelphi.Net is to find out which parts of a program consume the most CPU-time. Because Borland
(Inprise, Corel or who ever) gave up the profiler for 32-bit applications, a new tool had to be created. ProDelphi.Net with
it's comfortable viewer, browser, history and programmers API meanwhile is more than the legendary Tubo Profiler. The
viewer with it's sorted results enables the user to find the bottle necks of his program very fast. The history function
shows the user, if a preceeding optimization was successful or not. ProDelphi.Net's outstanding granularity makes it
possible even to optimize time critical procedures. The built-in calibration routine adapts the measurement routines to
the used processor and memory speed and guaranties results that do not include measurement overhead.

Differences between the freeware mode and the professional mode

In the freeware mode up to 20 procedures can be measured or tracked, in the professional mode 32000.
In the professional mode additionally assembler procedures can be measured and tracked, minimum and maximum
runtimes can be displayed in the viewer and the user part of the library path can be profiled.

Parts displayed in green color are not testet yet.

Date: 5/16/2004

0. Contents of this description

A. Principle of Profiling

A1. How to profile
A1.1 Files created by ProDelphi.Net or the measured program
A1.2 Checking the results with the Built in viewer
A1.3 Emulation of a faster or slower PC
A1.4 Using the caller / called graph (call graph)

A2 Getting exact results
A2.1 Common causes of disturbing influences outside of your program
A2.2 Common causes of disturbing influences inside your program
A2.3 Common cause of disturbing influence is the PC's cache
A2.4 Profiling on mobile computers
A2.5 Summary

A3 Interactive optimization
A3.1 The history function
A3.2 Practical use of the history function

A4 Measuring only parts of the program
A4.1 Exclusion of parts of the program
A4.2 Dynamic activation of measurement
A4.3 Finding points for dynamic activation
A4.4 Measuring specified parts of procedures

A5 Programming API
A5.1 Measuring defined program actions through Activation and Deactivation
A5.2 Preventing to measure idle times
A5.3 Programmed storing of measurement results

A6. Options for profiling
A6.1 Code intrumenting options:
A6.2 Runtime measurement options
A6.3 Measurement activation options
A6.4 General options

A7. Online operation of the profiled program

A8. Dynamic link libraries (DLL) / packages
A8.1 DLL’s
A8.2 Packages

A9 Treatment of special Windows- and Delphi-API-functions
A9.1 Redefined Windows-API functions
A9.2 Redefined Delphi-API functions
A9.3 Replaced Delphi-API functions
A9.4 Not replaced or redefined Delphi functions

A10 Conditional compilation

A11. Limitations of use

A12. Assembler code

A13. Modifying code vaccinated by ProDelphi.Net

A14. Hidden performance losses / Tips for optimization

A15. Error messages

A16 Security aspects

A17 Automatic profiling by start from command line

Appendices:

B. Cleaning the sources

C. Compatibility

D. Installation of ProDelphi.Net

E. Description of the result file (data base export)

F. Updating / Upgrading ProDelphi.Net

G. How to order the registration key for unlocking the Professional mode

H. Author

I. History

J. Literature

BEFORE using ProDelphi.Net practically, please read Chapter 15 carefully !!!

A. Principle of Profiling

The source code of the program to be optimized is vaccinated with calls to a time measuring unit. The insertions are
made at the begin and the end of a procedure or function.

Any time a procedure / function / method (in the following named procedure) is called, the start time of the procedure is
memorized. At the end of the procedure the ellapsed time is calculated. When the program ends, between three and
five files are created that contain the runtime information for each procedure:

The first file (programname.txt) contains the elapsed times in CPU-Cycles. The format is ASCII, separated by semicolon
(;) and can be used either for Data Base import or for the built-in viewer of ProDelphi.Net. The format is described at
the end of this description.

The second file (programname.tx2) contains additional information like a headline and how often measurements have
been appended to the first file. It is relevant in connection with the online operation window or the programmers API.

The third file (programname.tx3) contains information used for opening a file in the editor and positioning the editor
cursor to the measured procedure.

The fourth file (programname.nev) contains the names of all methods which have never been called when measuring
the runtime of your program. It is used be the viewer, it is displayed as a hierarchical tree when you press the button
named ‘Not called methods’. This button is not enabled if all methods have been called or if you display the
measurement results of a former version of ProDelphi.Net.

The fifth file is also optional and only created, if the automatic switching off is activated (see A5).

A1 How to profile

Using ProDelphi.Net is quite simple. It has been used in a project with a large program, which now already contains
more than 370 000 lines of code written by 12 programmers. After more than two years of developping the program has
been optimized with the help of ProDelphi.Net. The programs runtime could be decreased by 50 %.

Use the Setup-program to install ProDelphi.Net. The setup program can only then work correctly when Delphi or
a previous version of ProDelphi.Net is not started. If you want to install ProDelphi.Net manually, you need to
perform the following steps:

Copy the files NProfCal.DLL, NProfMea.DLL and NProfOnF.DLL into the WINNT\SYSTEM32 - directory (for Windows
NT/2000/XP). Copy the files NProfInt.PAS and NProfCalibra.PAS into the Delphi Units-directory. For opening a file in the
editor by clicking on a measured procedure, the IDE-interface files need to be installed and entered in the registry in the
section ‘Known IDE Assemblies’. This file has the name PDIFac20.DLL.

After installation, try to compile your program to create the Delphi project files (the bdsproj-file is needed by
ProDelphi.Net). If no bdsproj-file exists, all files have to be in the same directory (*.PAS, *.INC, *.DPR, *.EXE and
*.DLL).

If you want to measure procedures in a program and in DLL's simultaneously, program and DLL's must have
exactly the same units source path, their DPR-files need to be in the same directory, also the EXE-files and the
DLL-file have to be in the same directory. In that case compile both: program and DLL's. All files to be profiled
must be stored in directories of the units search path except those that have an explicite path in the USES-
statement in the DPR-files of program or DLL. For profiling program and DLL simultaneously, the button
‘Profiling program + DLL’s / Multiple DLL’s’ must be checked (see also chapter 8).

If your files to profile are very large and you have opened them in the IDE, you should close them. It was reported, that
Delphi does not properly actualize it’s window content if a file is very large and the file is changed on disk from outside
the IDE.

If no compilation errors occur, you may profile your program (and/or DLL).

Don't use the original units for profiling, maybe ProDelphi.Net still contains bugs. Just make a security copy of
the program to be measured, e.g. by zipping all PAS-, DPR and INC-files.

For profiling your sources perform the following steps:

- Define the Compiler-Symbol PROFILE (project/options/conditional defines).

- Deactivate the Optimization option.

- Optionally deactivate all runtime checks.

- Use the Delphi 'Save All' command. This assures that the options file (*.DOF) is stored.

- Start ProDelphi.Net from the Delphi tools menu, from the Windows Startmenu or somehow else.

- With ProDelphi.Net select the project to profile (if it is not automatically selected).

- For the first example only those options that are checked in the following example are recommended.

Following options are available in professional mode only:

 - Measuring units in the library path
 - Evaluating minimum and maximum runtimes (in the freeware mode only the much more important average runtimes
 are available).
 - Do not change file dates. Checking this option results in increasing the file date/time by 2 seconds only when profiling,
 just enough to make Delphi realize that a file has changed. The file date/time is set back to the the value that was set
 when doing the first instrumentation by cleaning the sources.

By the way: The most important buttons are ‘First Steps’ and ‘User guide’ !

- Select the kind of activation fo measurement you like (in this example by start).

- Click the Profile-button. After a very short time all units are vaccinated. The vaccinated files are listed in a log window.

- If you want to measure procedures in DLL's profile the necessary DLL's too.

- Recompile the program (or DLL's).

To allow simultaneous measuring of DLL's and programs, all files in the units search path are profiled!!! (unless
they are write protected !!!). The unit search path must be exactly the same for program an DLL, both DPR-files
have to be in the same directory !!!

Files in and below the Delphi LIB and SOURCE directories path will not be profiled.

After that, start the program and let it do its job.

A small window appears that allows you to start and stop the time measurement:

See next page for the Online operation window, please.

Depending on the profiling options the button 'Start' is enabled (No Autostart option) or not (with autostart option). With
autostart option the measurement starts with the start of the testee. Without the autostart option you have to press the
start button in the online operation window when you want to start the measurement, define activating methods or insert
calls into your sources for activation or deactivation. See chapter A7 for the complete description. After the program has
ended, you can

view the results of the measurement with the built-in viewer of ProDelphi.Net,

For the Built-in viewer, just start ProDelphi.Net again, go to the ‘View results’ page. If the name of your project is not
automatically displayed, select it. Then click the ‘Load and view’ view-button.

In principal this is all that has to be done. If you want to let the program run without time measurement, simply delete the
compiler symbol PROFILE in the Delphi options and make a complete compilation.

A1.1 Files created by ProDelphi.Net or the measured program

ProDelphi.Net creates the file ‘proflst.asc’, it contains information about the procedures to be measured for profiling or
traced for post mortem review. The file profile.ini contains options for the time measurement and the last screen
coordinates of the online operation window. The viewer can create a file named ‘*.hst’ if you use the history function (see
A3).

Your compiled program the file with the name ‘progname.txt’ contains the data in the ASCII-semicolon-delimited format
for data base export and viewer and ‘progname.tx2’ for the headlines for the different intermediate results (for the built-in
viewer). A file ‘programname.tx3’ is stored for the interface to the Delphi-IDE. The file ‘progname.swo’ with the list of
procedures that have to be deactivated for time measurement at next program start is stored optionally. Also a file with
the name ‘progname.nev’ is created into which the names of the uncalled methods are stored. This file is also used by
the viewer.

Your compiled program creates a file named ‘progname.pmr’ in case you have selected post mortem review and an
exception occured and was trapped. It contains the call stack.

All files are stored in the output directory for the *.exe (*.dll) file.

To allow simultaneous measuring of DLL's and programs, all files in the units search path (except the Delphi LIB
and SOURCE directories and below them) are profiled if they are not write protected !!! Seach path for program
and DLL need to be identical in that case.

A1.2 Checking the results with the Built-in Viewer

The most comfortable way to view the run times of your procedures, is to use the built-in viewer. Just click view.

The results are stored into the result file either at the end of the tested program or any time the Store-button of
the online-operation window is clicked.

You can choose if you want to view the results in µs, ms ... or in CPU-Cycles.

You can exclude methods with less than 1µs, 10µs,100µs or 1ms.

Also you can emulate (recalculate) the measurements for a faster or slower PC. No need to install the IDE on that PC,
just enter two constants in an edit field and let ProDelphi.Net tell you how fast or how slow your program would perform
on that PC (see chapter 1.3).

On clicking ‘View’, a grid is shown, which gives you the results of the measurement. You can scroll through the results or
e.g. search a specific unit, class or method.

See next page please.

Alphabetically sorted results, first Units, second classes and third methods/procedures

Explanation of this window:

CPU: nnn MHZ giving the CPU - speed
Total RT: ttt giving the runtime of all measured methods (alternatively in CPU-cycles)
Comment: ccccc Text set as comment in the online operation window for intermediate results, ‘At finishing

application’ when the results were automatically stored when the testee ended or date and
time when the online operation window cyclically stored results.

Sorting the table:

The displayed table can be sorted after different criteria by clicking the tabs, just try it! Two extra buttons are supplied to
sort by comparing the measured results with a stored history. The columns are sorted in a way that those methods that
changed the most are displayed on top (see also history). The displayed order can be reversed by clicking a second
time.

Navigating through the results:

Navigating throgh the results can be done by scrolling, using the browser or by searching for unit, class and object. The
search is started by typing in the search text. With the F3-key the search can be repeated, also positioning by paging up
and down is possible.

Navigating from the viewer to the source code:

Right mouse button click in a line of the viewers grid causes Delphi to open the file in the editor and positioning the
cursor on the start of the method. For using this function Delphi has to be started. Available for Delphi 5 and above !!!

The Print - buttons:

They print the actually displayed table or table + graphic. The table is automatically adjusted so that it fits on the paper.
Using the first button, everything is printed in black, only if absolutely nescessary, color is used (color save mode). Using
the second button, everything is printed as displayed on the screen (full color mode).

The Minimum/Maximum checkboxes (Professional Mode only):

Checking these options, minimum and maximum runtimes are displayed if they were collected in the measurement (see
Chapter A 6.2. If these checkboxes are disabled, no minimum and maximum values were evaluated.

The History - button: see chapter A3

Meaning of Run:

Any time the program stores data into the result file, it puts a leading number before the measured times: the number of
the measurement. With the << (Previous)- or >> (Next)- button you can switch between different measurements. At the
next run of the program the counting starts at 1 again.

Meaning of the RED columns:

% Percentage of the total runtime the procedure took without their child procedures

Calls How often the procedure was called

Av. RT Average runtime of the procedure in CPU-cycles or in µs, ms, sec or hour units
(in the professional mode also minimum and maximum runtimes can be displayed)

RT-sum RT * Calls

Meaning of the BLUE columns:

Av. RT Average runtime of the procedure inclusive its child procedures in CPU-cycles or in µs, ms, ...
(in the professional mode also minimum and maximum runtimes can be displayed)

RT-sum RT * Calls

% Percentage of the total runtime the procedure took inclusive her child procedures.

Meaning of the <<-Button and the >>-Button:

If your program has stored intermediate results into the result file (by using the ProDelphi.Net-API or by Online
operation) you can page back or forward in the result file.

Meaning of 'Comment':

It is the headline that was inserted when the measurement was stored. In the example you see the default.

The other availlable pages show:

The 12 sorted methods that consumed the most of the runtime (exclusive child procedures) given in a text- and a
graphical representation

The 12 sorted methods that were called most often displayed in a text- and a graphical representation

The 12 sorted methods that consumed the most of the runtime (inclusive child procedures) given in a text- and a
graphic representation

The 12 sorted classes that consumed the most runtime

The 12 sorted units that consumed the most runtime

Meaning of runtimes inside a red frame:

The runtime is greater as the time stored in the history file. The frame only then appears, if the change is greater than
1% of the total runtime of the application.

Meaning of runtimes inside a green frame:

The runtime is is less as the time stored in the history file. The frame only then appears, if the change is greater than 1%
of the total runtime of the application.

The Not called Methods - button:

At the end of runtime the testee creates a file with the names of all uncalled methods. Using this button, these methods
are displayed in hierarchical order: Unit - Class - Method.

The Browser - button:

It opens a small browser window (similar to the explorer) that shows units, classes and methods in a hierachial order. It
can be used to quickly find the profiling results for a certain method.

See next page please for another viewer window example

Example of: Maximum run time consuming methods (graphical)

A1.3 Emulation of a faster or slower PC

If you want to know, how fast (or slow) your program would perform on another PC, just use the program Getspeed.exe
to get the other PC’s speed index, enter it in ProDelphi.Net, enter the speed in MHz of the other computer and start the
viewer. Automatically all measurements are recalculated for the other PC. Certainly the results are not as accurate as
if measured on the original PC.

Limitation of use: If in your program you have a procedure that executes for a fixed time (e.g. for 1 sec), the emulation
result for that procedure is wrong!

(The speed index and MHz’es of the PC on which ProDelphi.Net is executed, is calculated automatically, so do not
delete Getspeed.exe after installing ProDelphi.Net, it is used for this purpose also on the PC on which ProDelphi.Net is
installed).

See next page for example, please.

A1.4 Using the caller / called graph (call graph)

When clicking with the left mouse button on a measured result in the viewer grid, a new form opens which displays the
runtimes of the selected procedure in a grid in the middle of the form. Above that up to 15 procedures are displayed that
have called this procedure. If more procedures called the selected procedure, this is displayed at the right top of the
form. Always those procedures are displayed, that consumed the most runtime. For each procedure the number of calls
for the selected procedure and the runtime inclusive all child procedures is displayed.

Below the procedure shown in the grid, up to 15 procedures called by the selected procedure are displayed. Again here
those procedures that consumed the most runtime are displayed with the number of calls and the runtime consumed
inclusive child times (Screen shot is not from the example program in this manual):

Left clicking on the symbol for a called or calling procedure makes this procedure appear in the grid with it’s complete
measurement results. Clicking on the procedure in the grid opens the concerned unit in the editor. The editor displays
the procedure on top of the window. A yellow ‘R’ on the left side of the grid in the middle of the window mean that the
shown procedure was called recursively. Also a yellow procedure name in one of the ymbols has this meaning.

A2 Getting exact results

If you measure program runtimes a few times, you will see that the measurement results differ from measurement to
measurement with out that you have changed your sources. Two kind of results will offen differ: the runtime of a method
and the percentage of their runtime of the complete program. The reasons are :

- there are events that disturb the measurement, e.g. programs running in the background.
- you measure methods which are activated by Windows more or less often,
- you measure operations which are started by an event a different number of times each measurement,
- you measure procedures which perform disk transfer, the data can be transferred to disk or to disk cache.

Every profiler has this problems. Because of the highest possible granularity of ProDelphi.Net (1 CPU-cycle), you see
these differences.

There is one influence which can not be omitted: The first time a procedure is called, the runtime is much higher
than for all other calls in the .Net environment. This is not a problem caused by ProDelphi.Net. With the
compilers generating native code (Delphi 2 .. 7) this problem does not occur. To give an example: A procedure
which consumed an average of 65 CPU cycles from the second call on, used 754,000 cyclesfor the first call. It
might be a good idea to look at the minimum runtimes (possible in the professional version only).

To get comparable measurements you need to take care, that the influence of disturbances is kept low. Here some
hints:

A2.1 Common causes of disturbing influences outside of your program

Some disturbers everybody might be aware of:

- activated screen saver,
- Windows power management,
- background schedulers,
- online virus protection,
- automatic recognition of CD changing,
- temporary windows swapfile causes memory transfers of different duration,
- dynamic Windows disk cache size causes a different amount of memory for each measurement.

These disturbing influences are easy to eliminate.

A2.2 Common causes of disturbing influences inside your program

Some disturbances you might have inside your measured program itself, these occure when you measure everything,
e.g. by using the autostart function of ProDelphi.Net:

- defining a Default Handler Procedure (is called for nearly every message your program receives),
- defining a procedure to handle mouse moves (called everytime you are moving the mouse cursor),
- defining a timer routine.

The three influences are also easy to eliminate. You only need to exclude these procedures from measurement. Another
way is not to use the autostart function of ProDelphi.Net but start measurement at the starting point of a certain action.
How to exclude methods is described in Chapter A4, how to measure defined actions only is described in chapter A5.

A2.3 Common cause of disturbing influence is the PC's processor cache

The influence of the cache can't be easyly excluded. The only way is to produce exactly the same sequence of events
two times every measurement and to start measurement with starting the second sequence by the programming API,
switch it off at the end of the second sequence and store the measured data to disk (also by the ProDelphi.Net API). This
guarantees that as much code as possible is stored in the cache and that eyery measurement the same code and data
is in the cache. Only if your program does exactly the same every measurement, you can compare the results and find
out (e.g. by the history function of ProDelphi.Net), if an optimization has decreased the runtime or not.

A2.4 Profiling on mobile computers

Mobile computers have one problem: They change their CPU-speed dynamically. If a mobile computer is connected with
AC power it normally use the full CPU speed, if working with battery power, the CPU speed changes dynamically.
This does not directly affect the measurement: ProDelphi.Net measures CPU cycles. If we look to the CPU - cycles
displayed in the viewer, the measurement is correct. If times are displayed, it could be that too long or too short times are
dispayed. It depends on the CPU speed that was set when the CPU speed was measured. Different processors use
different algorithyms to change the speed. The only way to get 100% correct results is to switch off the power safe mode.

A2.5 Summary

If you eliminate the disturbances mentioned in A2.1 / A2.2 and measure defined actions, you will see the differences
between two measurements is very low, most times only a few CPU-cycles. Larger differences appear only when
neasuring procedures with disk transfers. A good trick is, to use the second measurement for comparison with later
optimizations, specially when the disk transfer is a reading transfer. The first run of the program will get the most data
into disk cache, the second measurement reads the data from cache.

A3 Interactive optimization

Interactive optimization means that you optimize something, check if it has brought you significant decreasement of
runtime or not, make the next step of optimization and so on.

Important is, which method is worth to be optimized: A method, that uses 10 % runtime must be optimized by 50
% to decrease the total program runtime by 5 % !!!

There are different ways of comparing the measurement results:

- to use the viewer and print the measurement results or
- to use ProDelphi.Net's history function.

A3.1 The history function

The history function of the viewer enables you to compare your measurement results with a preceeding run. So you can
see, if an optimization has brought an increasement or a decreasement of runtimes.

Having made a measurement, you can store the results being displayed in the viewers table on disk. You can store
multiple histories on disk for different kind of measurement.

Once you have stored results as history, you can select one of the history files to be compared with the results of the last
measurement. Before loading the results into the viewer select the history to compare with and check the button
‘Compare with history’. The viewer will colour the cells of the viewers table, by this you have a quick overview about all
changes of runtime: Red means method got slower, green means method got faster and white mean that no essential
change occured.

To get the cell colored, the methods change of runtime must be essential. Essential means, it must have changed so
much, that it influenced the programs runtime by 1 % or more.

To display the runtime of a method from the stored history, just right-click the concerned method.

If you succeed in excluding disturbing effects as mentioned before, you can use the history very well. E.g., I had to
optimize the processing of measured values. I simply didn't use the auto start function and used the API to switch
masurement on and off. I switched id on after processing 10 measurement values (all called methods were in the cache
then), measured processing of 100 values, stopped measurement and stored the data on disk. To be sure that no
disturbing actions occure any more, I repeated this and compared the measurement results with the history function.
When there there were nearly no differences between two measurements, I started to optimize and always used the
history to compare, if my optimization was successful or not.

A3.2 Practical use of the history function

- Make a measurement for the defined action you want to optimize.

- Load the results into the viewer.
- Click on the history button to store these results into the history file.
- Optimize a method that is worth to be optimized.
- Repeat your measurement.
- Load the new data into memory.

If you made the function significantly faster, the optimized method should be colored green now.
If your method is slower now, it is colored red.
If there is no significant difference, it is colored white.

- Select a cell in that line, where your changed method is displayed.
- A small window pops up. It shows the average runtime of a procedure stored in the history file. If '---' is displayed, the
method is not present in the history file.

A4 Measuring parts of the program

A4.1 Exclusion of parts of the program

All Windows programs are message driven. So, if you define a function that, for instance, handles mouse moves,
ProDelphi.Net will give you a very big percentage of runtime for this procedure because it will be activated any time you
move the mouse over a window of your program. But you might not be interested in this procedure.

What I described above, is the default setting of ProDelphi.Net: all procedures are measured, the measurement starts
with the start of the program (if option 'Activation of measurement / At program start' is checked).

For normal you would like to measure only certain actions of the program and might want to exclude functions which
cannot be optmized (e.g. because they are very simple).

There are different ways of excluding parts of the program:

1. Files in and below the Delphi Units- and SOURCE- directories are always excluded.

2. Procedures which have the first 'BEGIN' statement and the last 'END' statement in the same line, are NOT
measured. It's not a bug !!! It's a feature !!!

3. Exclusion of directories

Enter the directories in the field ‘Excludedirectories’ of the ProDelphi.Net main window.

4. Exclusion of complete units

- Enable write protection for the units not to compile
 (unless you don't check 'Process write protected files', they are not profiled) or
- insert the following statement before the first line of the unit:

 //PROFILE-NO

5. Exclusion of DLL's but measuring the program

Just compile the DLL without the compiler definition PROFILE and the program with that definition.

6. Exclusion of the whole program but measuring the DLL's

Compile the program without the compiler definition PROFILE and the DLL with that definition.

7. Exclusion of functions

Before profiling insert statements before and after the procedures that
have to be excluded to switch off the vaccination by ProDelphi.Net:

/ / PROFI LE- NO |
Excl uded pr ocedur e(s) | These statements are not removed by ProDelphi.Net.
/ / PROFI LE- YES |

8. Automatic exclusion

You can exclude procedures automatically by checking the option 'Deactivate functions consuming < 1 µs'.
Checking this option means that those procedures, which are at least called 10 times during the measurement
period and consume an average of less then 1 µs will not be measured the next time the program is started. For
that purpose a file is created when the program ends. It contains all the procedures which have to be
deactivated. When you start your program next time the file will be read and all named procedures are
deactivated. It might be that after the next run of your program again some lines will be appended with
procedures to be deactivated.

The procedures that are not to be measured are stored in the file 'ProgramName.swo'.

Caution, the next run of ProDelphi.Net will delete this file. If you want to make the exclusion permanent, put a
//PROFILE-NO statements into your source code.

A4.2 Dynamic activation of measurement

This is the best way of profiling. Normally one optimizes a certain function of a program, mostly that which takes too
long. E.g., if a program processes measured values and paints nice pictures and the number of processed values are
not enough, one only wants to optimize that part of the program and not the painting.

In this example it would be nice to switch on the measurement every time a measured value has to be processed and to
switch off after. The advantage is, that the number of runtimes seen in the viewer is drastically reduced, the other is, that
it is much easier to see, which function should be optimized.

There are three ways for dynamical activation of measurement in ProDelphi.Net (1. and 2. can be used simultaneously):

1. By dialog

In the main window of ProDelphi.Net under the option ‘Activation of measurement’ select:
‘By entering a selected method’. After profiling you can select until 16 methods which should
start the measuring. If you have profiled your program before already, you as well can use
the button ‘Select activating methods only’. So you easily can change between different
activating methods.
Measuring is switched on, when the selected method is entered and stops when the last
statement of the method is processed.

2. By inserting special comments into the source code.

Inserting a comment //PROFILE-ACTIVATE into the source code, the next procedure or
function after that comment automatically starts measurement. Also here you have to check
‘By entering a selected method’ in the main window of ProDelphi.Net. You can optionally select
further activating methods, but it is not necessary.

3. By using API-calls.

This method is described in the next chapter. It is the only way versions of ProDelphi.Net earlier
than 8.0 could handle this problem. In principle, this way can still be used, but it is not very
comfortable. Using that third method you always need to insert two calls, one for activation
and one for deactivation.

A4.3 Finding points for dynamic activation

If you need to profile an application you have not implemented yourself, it is not so easy to find out where an action
starts. Most times there are a lot of events and windows messages, but which are the procedures reacting on these
events or messages?

To make it a little easier to find out this, all procedures thart start an action are entered in a list of starting points. Just
perform a measurement run wich measures all procedures and starts the measurement automatically with the start of
the application. After performing the action to profile, end the application, start the profiler and view the results. Under
the last tab of the viewer all procedures are listed, that were not called by other measured procedures, this means that
they were started by events like mouse clicks, windows messages etc.. Starting with these functions and in connection
with the call graph it should be easy to find out where to set activation points for an action to measure. Just left click on
the procedure to display the call graph for a procedure.

A4.4 Measuring specified parts of procedures

For the case of very large procedures sometimes it might be interesting to know which part of it consumed the most run
time. One way to find this out is to restructure the procedure into neat parts or to devide it up by means of local
procedures. Another idea would be that ProDelphi.Net would measure each block of a structure and not the whole
procedure. The last solution would cost a lot of measurement overhead and would make timecritical applications stop
working.
For the case that both solutions given is too much work or to risky, ProDelphi.Net has the feature of defining blocks to
measure.

With the insertion of two simple statements a block to measure can be defined. These statements are constructed as
comments and can remain in the sources even after cleaning.

Just insert this line before the block to measure:

//PROFILE-BEGIN:comment

and this one behind it:

//PROFILE-END

Profiling the sources after this causes ProDelphi.Net to insert measurement statements right after the comments. The
runtime measured in this so defined block will be found in the viewer because the comment is set behind the procedure
name.

Using this feature is only possible when taking care to insert these statements so, that the block structure of the program
remains unchanged. E.g. it is not possible to insert the statement into an ELSE-part without BEGIN and END, this would
cause compiler errors.

The time measured in this part is not included in the runtime of the procedure but is included in the child time.

Example:

PROCEDURE DoSomething;
BEGIN

part a of instructions using 5 ms
part b of instructions using 10 ms
part c of instructions using 3 ms

END;
The total runtime displayed by the viewer would be 18 ms (displayed in the line for the procedure DoSomething).

The same example with measuring part-b separately:

PROCEDURE DoSomething;
BEGIN

part a of instructions using 5 ms
//PROFILE-BEGIN:part-b

part b of instructions using 10 ms
//PROFILE-END

part c of instructions using 3 ms
END;
In this case the runtime of the procedure would be 8 ms (displayed in the line for procedure DoSomething),
run time inclusive child time would be 18 ms.
In the line for procedure DoSomething-part-b 10 ms would be displayed.

It might be that the results are not exactly the same because the processor cache is used in a different way, especially
processors with a small cache have the problem, that not the whole procedure inclusive measurement parts of
ProDelphi.Net fit into the cache, so additional wait states occure.

Remark:

It is possible to define more than one measurement block in a procedure or to nest these blocks. Nesting might not be a
good idea because the results might be misinterpreted.

Example for nesting:

PROCEDURE DoSomething;
BEGIN
//PROFILE-BEGIN:part-a-b

part a of instructions using 5 ms
//PROFILE-BEGIN:part-b

part b of instructions using 10 ms
//PROFILE-END
//PROFILE-END

part c of instructions using 3 ms
END;

In this examle the runtime for part b is displayed separatly AND also included as child time of part a (and, of course, also
in the child time of DoSomething).

A5 Programming API

A5.1 Measuring defined program actions through Activation and Deactivation

A good way to make different result files comparable, is to measure only those actions of your program you want to
optimize. In that case do not check the button for 'automatic start' of measurement. Do the profiling of your source code
and insert activation statements at the relevant places.

Example1:

You only want to know how much time a sorting algorithym consumes and how much time all called child procedures
consume. You are not interested in any other procedure. The sorting is started by a procedure named button click.

 PROCEDURE TFor m1. But t onCl i ck;
 BEGI N
 { $I FDEF PROFI LE} NPr of i nt . NPr of St op; Tr y; NPr of i nt . NPr of Ent er (x) ; { $ENDI F}
 Sor t Al l ; / / t he pr ocedur e of whi ch you want t o know t he r unt i me
 { $I FDEF PROFI LE} f i nal l y; NPr of i nt . NPr of Exi t (x) ; end; { $ENDI F}
 END;

You can modify the code in three different ways:
 { possi bi l l i t y 1 }
 PROCEDURE TFor m1. But t onCl i ck;
 BEGI N
 { $I FDEF PROFI LE} NPr of i nt . NPr of St op; Tr y; NPr of i nt . NPr of Ent er (x) ; { $ENDI F}
 { $I FDEF PROFI LE} t r y; NPr of I nt . NPr of Act i vat e; { $ENDI F}
 Sor t Al l ; / / t he pr ocedur e whi ch you want t o know t he r unt i me of
 { $I FDEF PROFI LE} f i nal l y; NPr of I nt . NPr of Deact i vat e; end; { $ENDI F}
 { $I FDEF PROFI LE} f i nal l y; NPr of i nt . NPr of Exi t (0) ; end; { $ENDI F}
 END;

 { possi bi l l i t y 2 }
 PROCEDURE TFor m1. But t onCl i ck;
 BEGI N
 { $I FDEF PROFI LE} t r y; NPr of I nt . NPr of Act i vat e; { $ENDI F}
 Sor t Al l ; / / t he pr ocedur e whi ch you want t o know t he r unt i me of
 { $I FDEF PROFI LE} f i nal l y; NPr of I nt . NPr of Deact i vat e; end; { $ENDI F}
 END;

 { possi bi l l i t y 3 }
 / / PROFI LE- NO
 PROCEDURE TFor m1. But t onCl i ck;
 BEGI N
 { $I FDEF PROFI LE} t r y; NPr of I nt . NPr of Act i vat e; { $ENDI F}
 Sor t Al l ; / / t he pr ocedur e whi ch you want t o know t he r unt i me of
 { $I FDEF PROFI LE} f i nal l y; NPr of I nt . NPr of Deact i vat e; end; { $ENDI F}
 END;
 / / PROFI LE- YES

You should use possibillity 1 or 3 because a new profiling does not change your code, Possibillity 2 is changed by the
next profiling into possibility 1.

Be sure that you use more than one space between $IFDEF and PROFILE you inserted, otherwise the statements
will be deleted the next time that the source code is vaccinated by ProDelphi.Net. Alternatively you also can use
lower case letters.

Example 2:

You want to activate the time measurement by a procedure named button1 and deactivate it by a procedure named
button2 use the following construction:

 / / PROFI LE- NO
 PROCEDURE TFor m1. But t on1;
 BEGI N
 { $I FDEF PROFI LE} NPr of I nt . NPr of Act i vat e; { $ENDI F}
 END;

 PROCEDURE TFor m1. But t on2;
 BEGI N
 { $I FDEF PROFI LE} NPr of I nt . NPr of Deact i vat e; { $ENDI F}
 END;
 / / PROFI LE- YES

Deactivation switches off the measurement totally. That means that no procedure call is measured until activation.

A5.2 Preventing to measure idle times

Some Windows-API functions and Delphi functions interrupt the calling procedure and set the program into an idle
mode. A well-known example is the Windows-call MessageBox. This call returns to the calling procedure after the a
button click. Between call and return to the calling procedure, the program consumes CPU cycles. In such a case, it
would be nice, not to measure this idle time.

A lot of Windows-API calls and some Delphi-calls are replaced automatically by the Unit ‘NProfint.pas’. For the above
named example MessageBox, there is a redefiniton. It automatically interrupts the counting of CPU-cycles for the calling
procedure only and reactivates it after returning from windows.

If other procedures are called while waiting for user action, they are measured normally, e.g. if a WM_TIMER messages
is received and you have defined a handler for it.

To make this possible, there are the ProDelphi.Net-API-calls StopCounting and ContinueCounting. In chapter A9 you
can find the list of calls, which are redefined in the unit ‘NProfint.pas’. They automatically call these functions before
using the original Windows- or Delphi calls. Some functions are replaced by the profiler (e.g.
Application.HandleMessage).

Some functions cannot be replaced by ‘NProfint.pas’, specially object-methods. If you use such methods and do not
want to measure their idle times, just exclude these calls by inserting the following lines:

 { $I FDEF PROFI LE} NPr of I nt . NSt opCount i ng; { $ENDI F}

 Obj ect . I dl eModeSet t i ngMet hod;

 { $I FDEF PROFI LE} NPr of I nt . NCont i nueCount i ng; { $ENDI F}

Important:

Use more than one space between $IFDEF and PROFILE, otherwise the statements will be removed with the next
profiling or by cleaning the sources. Alternatively you also can use lower case letters.

A5.3 Programmed storing of measurement results

Normally at the start of the program the file for the measurement results is emptied and only at the end of the program
the measurement results are appended. If you need more detailed information, you can insert statements into your
sources to produce output information where you like to.

Just insert the statement

 { $I FDEF PROFI LE} NPr of I nt . NPr of AppendResul t s(FALSE) ; { $ENDI F }

into your source. In that case a new output will be appended at the end of your file and all counters will be reset.

Normally the headline of the result file will be 'At finishing application' any time new results will be appended to the file.

For this example you might want to use a different headline. If so, you can set the text for the headline by inserting

 { $I FDEF PROFI LE} NPr of I nt . NPr of Set Comment (' your speci al comment ') ; { $ENDI F}

into your source.

Another way to produce intermediate results is to use the online operation window. Any time you click on the 'Append'-
button the actual measurement values are appended to the result file and all result counters are set to zero (see chapter
A5 also).

Important:

Use more than one space between $IFDEF and PROFILE, otherwise the statements will be removed with the next
profiling or by cleaning the sources. Alternatively you also can use lower case letters.

A6 Options for profiling

Profiling options are divided into three groups:

- Code instrumenting options (or vaccination options): How and what to vaccinate.

- Runtime measurement options: How to measure and what to do with the results.

- Activation of measurement: Where or when to start measuring runtimes.

- General options: Which Delphi version / file date.

A6.1 Code instrumenting options:

Changing these options after profiling DO afford a new profiling to take effect !!!

Initialization and finalization

Normally the initialization and finalization parts of the units are not measured. In case you want to do this, check the
appropriate option if you use the keywords INITIALZATION and FINALIZATION in your units.

Profile local procedures

Normally local procedures are not measured, if you activate this option they are.

Process write protected files

checking this option means, that all write protections for your source files are deleted and the files are profiled. Without
this option, write protected files are not processed.

Program + DLL’s / Mult. DLL’s

checking this option means, that you either want to measure a DLL or a program + the used DLL(‘s). See chapter 8 for
details.

A6.2 Runtime measurement options

Changing these options after profiling do NOT afford a new profiling.

Deactivate functions consuming < 1 µS

Any time the measurement results are stored in the result file, those procedures that are called at least ten times and
consume less then 1 µS are deactivated for the future. The deactivated functions are stored in the file
'ProgramName.SWO' for the next run.

Online operation window on top

Normally the online operation window is displayed as a secondary window, that means that it is hidden by the main
window. With this option you can enforce to display it above the main window.

No Online operation window

The online operation window will not be displayed. So no intermediate measurement results can be stored.

Testee contains threads

If this option is checked, the measurement is enhanced for handling threads. It is not useful to check this option if your
program does not create threads, the program only runs slower. But it is absolutely necessary to check this option if you
use threads, otherwise the results of the measurement are completely wrong.

Main thread only

If this option is checked, only the measured times of the main thread are measured. Times of child threads are ignored.

Evaluate minimum and maximum runtimes (Professional Mode only)

If this option is checked, the measurement routines of ProDelphi.Net additionally estimates minimum and maximum
runtimes of every procedure. Normally only average times ar estimated. Minimum an maximum times later can be
displayed on demand by the built-in viewer. For some special purposes this function can be used. Of course using this
function needs more overhead than measuring only average times.

A6.3 Measurement activation options

Changing these options after profiling do NOT afford a new profiling.

At program start (default)

If this option is checked, the time measurement will start as soon as your program is started. In that case the 'Start'-
button in the online operation window is disabled and the stop button is enabled. If the option is not checked the 'Start'-
Button is enabled and the 'Stop'-button is disabled.

By entering a selected method

You’ll be requested to enter methods (or you have already inserted //PROFILE-ACTIVATE statements into your source
code (see also chapter A 4.2). If you use this option, you should not use the Online-operation window.

Example:

see next page, please.

By API-Calls or online operation window

(see chapter A5.1 and A7 for details)

A6.4 General options

Delphi version

You should check the version to that Delphi verion you are going to compile the program with. This assures that
ProDelphi.Net uses the correct compiler switches.

File Date

The check box ‘Do not change file dates’ is available in professional mode only. Checking this option results in
increasing the file date/time by 2 seconds when profiling, enough to make Delphi realize that a file has changed.
Unchecking means that the actual date and time is used.

When cleaning the sources the file date/time is decreased by 2 sec’s for each profiling process resulting in a file date/
time which is identical to that one when starting profiling (unless the file is changed by the editor). This makes possible
that the file date keeps the same between checking out and in from a source code control system.

A7 Online operation window

With the online-operation window

you can start and stop the time measurement. This enables you to measure only certain activities of your program. The
'Start ...'-button enables the measurement, the 'Stop ...'-button disables it. With the 'Delete'-button all counters are set to
zero. The 'Add ...' - button appends the actual counter values to the result file and sets the counters to zero.

You can edit the text which is the headline for the results in the ASCII-File. For the built in viewer, any time, the results
are stored, the 'Run-Id' is incremented and you can switch between different runs with the viewer.

The default value for the headline for intermediate results is:

 'none’.

Also an automatic and cyclic storing of measurment results can be done. Use the slider to set the time cycle between 1
and 60 minutes. After that check the box for cyclic measurement storage. After checking the slider disappears until
unchecked again. The results will automatically get date and time as headline. In the viewer you can scroll through the
results by the buttons ‘<<’ and ‘>>’.

The online operation window is not available for Console applications !

A8 Dynamic Link Librarys (DLL's) and packages

A8.1 DLL’s

DLL's can be profiled the same way as programs. The only difference is, that, if you measure a DLL without the rest of
the program, you won't have the online-operation window.

Some precautions are needed to avoid problems:

DLL’s can only be profiled with a calling program, no matter if you need the measurement results for code in the program
or not. The DLL always expects the profiling information in the EXE-directory of the calling program. Also it stores the
measurement results in that directory.

To ensure a problemless measuring which works in all combinations (EXE only, DLL only, EXE + DLL, EXE + multiple
DLL’s) with a minimum effort of handling, work as described in the following:

1. Check the option: Program + DLL’s / Mult. DLL’s in the profilers main window.

2. Make the units search path of all affected projects (EXE + DLL(‘s) identical. Also the directory for storing EXE- and
DLL-file have to be identical. ProDelphi.Net reads the search path and the compiler switches from the DOF-file of
the selected project. No matter which of the projects is profiled, you always have the profiling information and
the measurement results in the correct directory and all necessary code is profiled.

3. To select measurement results of a DLL or the program or both, just define the compiler switch PROFILE for the
appropriate project and (re)compile the project. For the part you don’t want measurement results for, delete the symbol
and (re)compile. Just by defining or not defining this compiler symbol, you can select the different measurement results.

If you measure the DLL without the program and need the online operation an additional manual step is necessary:

 In the USES-clause of the program you’ll find:
{$IFNDEF PROFILE } Unitxyz, {$ENDIF }
{$IFDEF PROFILE } Unitxyz, NProfInt, {$ENDIF }

 before Application.Run; you’ll find:
{$IFDEF PROFILE } NProfInt.NProfOnlineOperation; {$ENDIF}

 after Application.Run; you’ll find:
{$IFDEF PROFILE} NProfint.NProfCloseOnlineOperation; {$ENDIF}

Just add three lines manually, so that the code looks like this:
{$IFNDEF PROFILE } Unitxyz, NProfInt, {$ENDIF }
{$IFDEF PROFILE } Unitxyz, NProfInt, {$ENDIF }

{$IFDEF PROFILE } NProfInt.NProfOnlineOperation; {$ENDIF}
{$IFNDEF PROFILE } NProfInt.NProfOnlineOperation; {$ENDIF}
Application.Run;
{$IFNDEF PROFILE} NProfint.NProfCloseOnlineOperation; {$ENDIF}

A8.1 Packages

Profiling designtime packages is not recommended. Profiling runtime packages is not supported active. The DOF-file of
a package is not read, ProDelphi.Net reads the compiler switches and compiler symbols from the DOF-file of a program.
So for measuring procedures in a package one needs to profile the program that uses the package. In order to profile
the units belonging to the package, all PAS- and INC-files of the package need to be stored in directories that are named
in the search path of the using program. Until here it is quite similar like profiling a program and DLL’s simultaneously.
The big difference comes into the game whith the DPK-files.

DPK-files are not evaluated. In the CONTAINS section of the DPK-file PAS-files belonging to the package can be
named. If these files are named together with a path, a problem could occur. When these pathes are not in the units
search path of the program, they won’t be profiled. (Units named in DPR-files are profiled even the when they are not
stored in a directory of a search path if their path is explicitly named in the uses section).

The best way to profile a package is:

1. Put the sources of the package to be profiled into a separate directory.
2. Include that directory into the units search path of the program.
3. Profile the program. This then includes to profile the code of the package as well.
4. Recompile the package with the defined compiler symbol PROFILE.
5. Install the package.
6. Compile the program.

If you now run the program you’ll get the results for program + package.

Don’t forget:
Any time now you change the program by inserting or deleting functions and re-profile again, step 4 and 5 also have to
be executed again.
Any time now you change the package by inserting or deleting functions and re-profile again, step 6 also has to be
executed again.

A9 Treatment of special Windows- and Delphi-API-functions

Some functions set the program into an idle mode until an event occurs and the function returns. It's not useful to
measure these idle times. Because of that reason, some functions are redefined in the unit ‘NProfint.pas’ or are replaced
by the profiler in the source code. The result is that the idle time of the calling procedure is not counted, but other
procedures called while waiting are still counted.

Redefinition is always done the same way, this is shown be the example for the Windows Sleep function (defined in
‘NProfint.pas):

PROCEDURE Sl eep(t i me : DWORD) ;
BEGI N
 NSt opCount i ng;
 Wi ndows. Sl eep(t i me) ;
 NCont i nueCount i ng;
END;

Because of this redefinition, the NProfint-unit must be named after the units Windows and Dialogs. This is normally
done. The only exception is, if you name these units in the implementation part of the unit. Delphi itself places them into
the interface part.

If you find functions you want also to exclude from counting, you can make own definitions according to the example.

A9.1 Redefined Windows-API functions

- DispatchMessage, DialogBox, DialogBoxIndirect, MessageBox, MessageBoxEx, SignalObjectAndWait
- WaitForSingleObject, WaitForSingleObjectEx, WaitForMultipleObjects, WaitForMultipleObjectsEx
- MsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx, Sleep, SleepEx, WaitCommEvent
- WaitForInputIdle, WaitMessage and WaitNamedPipe.

A9.2 Redefined Delphi-API functions

- ShowMessage,
- ShowMessageFmt and
- MessageDlg.

A9.3 Replaced Delphi-API functions

- Application.MessageBox,
- Application.ProcessMessage and
- Application.Handle Message.

There are some VCL-functions which can't be replaced or redefined because they are class methods, it would be much
to complicated. If you encounter measurement problems, just include them into StopCounting and ContinueCounting. An
example for such method is TControl.Show.

A10 Conditional compilation

Conditional compilation is, except arithmetic expressions (like comparison with constants) supported.

The directives $IFDEF, $IFNDEF, $ELSE and $ENDIF are fully supported.

The directives $IF, $IF, $ELSEIF, $ELSEIF, DEFINED(switch) and $IFEND are completely evaluated inclusive the
boolean expressions AND and NOT. Arithmetic expressions are always evaluated as TRUE.

These are the limitations:

{$IF const > x } evaluated as TRUE comparison with a constant
{$IF SizeOf(Integer) > 10} evaluated as TRUE Arithmetic expression

This is evaluated correctly:

{$IF NOT DEFINED(switch1) AND (DEFINED(switch2))}

This example causes problems:

CONST
 xxx = 4;
{$IF xxx > 5 }
 PROCEDURE AddIt(VAR first, second, sum : Int64);
 BEGIN
{$ELSE }
 PROCEDURE AddIt(VAR first, second, sum : Comp);
 BEGIN <- first Profiler statement is inserted after this BEGIN instead of after the previous
{$ENDIF }
 sum := first + second; <- second Profiler statement inserted correctly here before END
END;

Omitting the problem is very easy, just write it this way:

CONST
 xxx = 4;
{$IF xxx > 5 }
 PROCEDURE AddIt(VAR first, second, sum : Int64);
{$ELSE }
 PROCEDURE AddIt(VAR first, second, sum : Comp);
{$ENDIF }
 BEGIN <- first Profiler statement is inserted correctly after this BEGIN
 sum := first + second; <- second Profiler statement inserted correctly here before END
END;

A11 Limitations of use

Console applications have no online operation window.

Procedures in a DPR-file can not be measured.

The measured times are always differ about +-5 % (max) from those of an unprofiled program. The reason is that the
program code is not so often replaced in the cache than without measuring.

For the purpose of vaccinating the source code, ProDelphi.Net reads the sources. It is absolutely necessary, that the
program can be compiled without any compiler errors. ProDelphi.Net expects code to be syntactically correct.

While measuring, a user stack is used by the profiler unit. The maximum stack depth is 16000 calls.

In the freeware mode of ProDelphi.Net.Net only 20 procedures can be measured, in the professional mode 32000.

A problem for measurement is Windows itself. Because it is a multitasking system, it may let other tasks run besides the
one you are just measuring. Maybe only for a few microseconds. So your program can be interrupted by a task switch to
another application. I've made tests and let the same routine again and again and each time I've got slightly differing
results.

Don't forget the influence of the processor cache also. You might get different results for each measurement, just
because sometimes the instructions are loaded into the cache already and sometimes not. This might be the reason,
that sometimes an empty procedure needs some CPU-cycles for getting the code into the cache. The larger the cache
size, the better the results ! The profiling procedures use the cache too !

Then there is the CPU itself. The modern CPU's like Intels Pentium or AMD's K6 are able to execute instructions parallel.
When the profiler inserts instruction, the parallelity is different from without these instructions. That's another reason, why
the runtime with measurement differs from that without measuring.

All my tests have shown, that the larger the cache is, the smaller the difference between the real runtime and the
measured runtime is. With an AMD K6, the differences were only a few CPU-cycles.

If your measured program uses threads, the results are less correct. The reason is, that a thread change is not
recognized at the time of change. It is recognized at the next procedure entry.

Be aware that, if you measure procedures that make I/O-calls, you might also get different results each time. The reason
is the disk cache of Windows. Sometimes Windows writes into the cache sometimes directly to the disk.

A12 Assembler Code

Inline Assembler is not supported by Delphi for .Net.

A13 Modifying code vaccinated by ProDelphi.Net

While working on the optimization of your program you can of cause modify your code. The only limitation is, that, if you
define new procedures and want them to be measured, you have to let ProDelphi.Net profile your code again. It is NOT
necessary to delete the old statements inserted by ProDelphi.Net before.

A14 Hidden performance losses / Tips for optimization

ProDelphi.Net measures runtimes of procedure bodies. This means that the entry part of a procedure which e.g. writes
variables to the stack, is measured in the calling procedure! The first possibility to take a time stamp is right behind the
BEGIN-statement. This might be seen as a disadvantage compared to other profilers. But once you know this fact it’s no
disadvantage anymore. Anyway, changing of the number of parameters of a procedure changes always the runtime of
the calling procedure (also for other profilers).

Below three examples for this.

- Passing Parameters:

FUNCTION TestFunction(s : String) : Integer; // Runtime 5 CPU-Cycles + 983 in the calling procedure
BEGIN
 Result := Ord(s[1]);
END;

FUNCTION TestFunction(CONST s : String) : Integer; // Runtime 5 CPU-Cycles + 645 in the calling procedure (-33%)
BEGIN
 Result := Ord(s[1]);
END;

- Local variables:

FUNCTION TestFunction : Integer; // Runtime 159 CPU-cycles + 126 cycles in the calling procedure
VAR
 i : Integer;
BEGIN
 FOR i := 1 TO 10 DO
 Result := LastFunction;
 IF Result > 0 THEN
 Exit
 ELSE
 Result := -1;
END;

FUNCTION TestFunction : Integer; // Runtime 159 CPU-cycles + 6.932.128 cycles in the calling procedure
VAR
 i : Integer;
 yys : array [1..32000] of Integer; // increasement caused by initialization of these local variables !!!
 yyv : array [1..32000] of String;
BEGIN
 FOR i := 1 TO 10 DO
 Result := LastFunction;
 IF Result > 0 THEN
 Exit
 ELSE
 Result := -1;
END;

- GoTo statements

FUNCTION TestFunction : Integer; // Runtime 159 CPU-cycles + 126 cycles in the calling procedure
VAR
 i : Integer;
BEGIN
 FOR i := 1 TO 10 DO
 Result := LastFunction;
 IF Result > 0 THEN
 Exit
 ELSE
 Result := -1;
END;

FUNCTION TestFunction : Integer; // Runtime 159 CPU-cycles + 177 cycles in the calling procedure (+ 40%)
VAR
 i : Integer;
 Label final; // Cause the additional runtime
BEGIN
 FOR i := 1 TO 10 DO
 Result := LastFunction;
 IF Result > 0 THEN
 GoTo final // in connection with this GoTo
 ELSE
 Result := -1;

 Final:

END;

A15 Error messages

In case of errors an error message is displayed by ProDelphi.Net at the bottom line of its window (e.g. file-I/O-errors). If
that occurs, have a look into the profiling directory.

Vaccinating a file is done in this way:

- the original file *.pas is renamed into *.pay (or *.dpr into *.dpy and *.inc into *.iny),

- after that the renamed file is parsed and vaccinated, the output is stored into a *.pas-file (or *.dpr / *.inc),

- the last step to process a file is to delete the saved file, except an error occurs before.

This is done for all files of a directory. In case that an error occurs you can rename the saved file to *.pas / *.dpr / *.inc.

Before doing so, maybe it's worth to have a look into the output file. In case of a parsing error, you can send the original
file + the incomplete output file to the author for the purpose of analysis.

A16 Security aspects

- Save all your sources before profiling (e.g. by zipping them into an archive).

- ProDelphi.Net checks, if you have enough space on disk to store a profiled file before profiling it. ProDelphi.Net
assumes that the output file uses 3 times the space of the original file (normally it uses less). If there is not
sufficient space, it will stop profiling.

A17 Automatic profiling by start from command line

ProDelphi can be started from command line (or batch file). If as arguments a DPR-file and the Delphi version is named,
ProDelphi automatically profiles the named program and terminates after that.

Precautions:

- Profiling should have been done before interactively to be sure that all necessary data (e.g. DOF-file) exists.
- Profiling should not cause any warning in the profile log.

Syntax:

Profiler path /Ddelphi-version

Example:

cd ProDelphi
Profiler F:\AppDir\Testprogram.dpr /D6

B Cleaning the sources

If you want to delete all lines that ProDelphi.Net inserted into your sources, use the 'Clean' command.

It is not necessary to clean the sources if you simply want to let your program run without time measurement for a short
time only. In that case just delete the compiler symbol 'PROFILE' in your projects options.

It is also not necessary to clean the sources if you want to use the 'Profile' command another time. Each profiling
process automatically deletes all old ProDelphi.Net statements in the source code and inserts new statements. For that
purpose it scans the code for statement that start with

 {$IFDEF PROFILE} and with {$IFNDEF PROFILE }

and deletes them completely (except you have more than 1 space between IFDEF and PROFILE.

C Compatibility

ProDelphi.Net was testet under
 - Windows Windows 2000 and Windows XP.
 - AMD AMD K6-2 500 MHz and AMD Athlon 1800 MHz,

D Installation of ProDelphi.Net

ProDelphi.Net is most comfortably installed with the included setup program (Setup.Exe). This program copies all
necessary DLL's into the Windows system directory and all needed units into the Delphi-LIB-directory and the editor
interface is registered. Also it creates an entry in the list of programs (Windows Start menu / Programs) and integrates
ProDelphi.Net into the Delphi tools menu.

E Description of the result file (for data base export and viewer)

The result file can also be used for export to a data base (e.g. Paradox or DBase) or a spreadsheet program like Quattro
Pro.

File content of 'progname.txt' (one line for each procedure):

run; unitname; classname; procedurename; % of RT; calls; minimum RT excl. child; average RT excl. child; maximum RT excl. child;
RT-sum excl. child; minimum RT incl. child; average RT incl. child; maximum RT incl. child; RT-sum incl. child; % incl. child

File content of 'progname.tx2' (one line for each run):

run; CPU-clock-rate; keyword; headline for that run //keyword is either MINIMAXON or MINIMAXOFF

F Updating / Upgrading of ProDelphi.Net

Updates and upgrades can be loaded via authors home page. Every new release will automatically be stored
there. Just click on 'Additional information' to see which version is actual.

G How to order the registration key for unlocking the professional mode

Customers who who want to use the professional mode, can order a registration key to unlock the
Professional mode. Just start the program ProDelphi.Net (Profiler.exe), select the page for registration and
enter the information you have got by e-mail. At the next start of ProDelphi.Net, the Professional mode is
unlocked. This key is also valid for upgrading following versions. If a bugfix is made or an upgrade is done, it
will be stored on my homepage. Just download from there and you can continue to use the new program in
Professional mode. The registration key is stored in the file ‘profiler.rky’.

Customers who ordered the registration key can have a link to their company in my customers reference list,
just send me an e-mail.

The key to unlock the professional mode can be ordered by ShareIt shareware registration service (see the
files REGISTER.ENG and REGISTER.GER).

H Author

Helmuth J.H. Adolph (Dipl. Inform.)
Am Gruener Park 17
90766 Fuerth
Germany

E-Mail / Sales: mikado@prodelphi.de
E-Mail / Technical support: hjh.adolph@prodelphi.de
Home pages: http://www.prodelphi.de

http://www.windkraft.prodelphi.de

I History

ProDelphi Versions:
Version 1.0 : 9/97 First release of ProDelphi
Version 2.0 : 2/98 Successfully used to optimize VICOS P500 for Sixth Railways project (China).
Version 3.0 : 4/98 Enhanced accuracy, brought to the public via Compuserve
Version 14.0: 10/03 Base for ProDelphi.Net

ProDelphi.Net Versions:
Version 1.0: 11/03 Version delivered with Delphi Companion CD
Version 2.0: 02/04 Bugfixed version with missing functions of Version 1.0 implemented
Version 2.2: 04/04 Improvement: Viewer hints + message 'no call graph data' can be disabled now.

Improvement: Viewer window made better readable (color change between odd end even line
numbers).
Improvement: Less overhead when measuring threaded applications.
Improvement: Cursor gets hour glass when profiler is busy.
Bugfix: To profile up to 64000 methods was possible only when not more than 32000 were
in the search path (rest in the library).
Bugfix: Viewer could not display more than 32000 lines.
Bugfix: Threaded applications were not measured properly under very seldom conditions.
Bugfix: Profiling a threaded application without checking 'Testtee contains threads' could cause
that the viewer could not read the measurement results.

Version 2.3 05/16 Security: Excluding directories from profiling enforces cleaning of sources to prevent double
assignment to procedure numbers which would cause wrong measurement results.
Feature: Automatic profiling by start from command line added.
Feature: Check if files in an Exe-file and a DLL/package are instrumented in the same profiling
run to guarantee correct results.
Feature: Better error messages for some I/O-errors.
Bugfix: When ending an application with 'Halt' some measurement results were wrong.
Bugfix: 'Application.Run;' in an IF-statement was not treated properly an so caused compilation
errors.
Bugfix: Some methods were displayed double in the call graph.

J Literature

How to optimize for the Pentium family of microprocessors by Agner Fog / 1998-08-01
C/C++ user journal 'A Testjig Tool for Pentium Optimization' by Steve Durham (December 1996).

