
I n t r o d u c t i o n 1

Visual dBASE® for Windows

Copyright
Agreement

I n t r o d u c t i o n

Visual dBASE combines an intuitive and dynamic 4th generation language with an
extensive set of design tools to create a Rapid Application Development (RAD) that is as
easy to learn as it is to use. Visual dBASE builds on the object-oriented foundation of
dBASE 5.0 by adding the tools most requested by power users, programmers and
professional client/server developers. To create tomorrow's applications quickly you
need a mature object and event model, visual tools that provide inheritance, advanced
client/server features and an easy method to distribute your applications. Visual dBASE
brings you these tools without tying you to a specific table format or breaking the link
between visual tools and source code. In addition to an expanded and refined tool set,
Visual dBASE embraces Windows95 while maintaining full compatibility with
Windows 3.1.

This guide shows you how to upgrade from dBASE 5.0 for Windows to Visual dBASE. It
explains the new features and syntax and helps you migrate applications.

This manual, together with extensive online Help provide the information you'll need
to work productively in dBASE Desktop. Help also contains the complete language
reference. You can also use this manual in conjunction with the dBASE 5.0 manuals to
form a complete hard copy reference library.

Contents of the Upgrade Guide
Chapter 1, “Setting up Visual dBASE.” Start here for an overview of the setup program
and installation options.

Chapter 2, “What’s new in Visual dBASE.”A quick look at all the new features
including the expanded visual tool set, programming enhancements, data
administration features, and Windows95 support. The chapter also contains a brief
description of the add-on Visual dBASE Compiler.

Chapter 3, “Upgrading applications.” Tells you how to migrate your applications from
dBASE 5.0 for Windows to Visual dBASE. Refer to the “Programmer’s Guide” for
information on converting applications from dBASE for DOS.

Chapter 4, “Working with the new visual tools.” This chapter provides in-depth
coverage of the Experts, the new Form Designer, Popup menus and the MenuBar.

Upgrade Guide

Copyright Agreement
Borland may have patents and/or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents.

Copyright © 1984,1995 Borland International. All rights reserved. All Borland products are trademarks or registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks of their respective holders.

Printed in the U.S.A.

2 U p g r a d e G u i d e

Read this chapter to learn about visual inheritance and visual class design. You will also
learn how to take advantage of new control and field palettes.

Chapter 5, “Database administration.” A guide for creating table security schemes and
designing referential integrity rules. This chapter provides information on data
encryption and creating, modifying, and deleting referential integrity rules on Paradox
tables, and tables on remote servers attached via SQL Links and ODBC.

Chapter 6, “Enhancements to the dBASE Language.” Here is an overview of changes
to the dBASE language. It covers new commands and functions used for database
operations and working with encrypted tables. Read this chapter to learn about the
enhanced encapsulation features and see how to use OLE automation. This chapter also
shows you how to use literal arrays and take advantage of Windows95.

Chapter 7, “New commands, functions, classes and properties.” This is a subset of the
Language Reference containing changes since dBASE 5.0. The complete Language Reference
is available in online help.

Chapter 8, “Local SQL.” Learn how to mix and match dBASE commands with SQL.
This chapter is a reference for the SQL syntax supported by BDE (Borland Database
Engine).

Chapter 9, “Learning and extending Visual dBASE.” The final chapter provides you
with resources for learning more about Visual dBASE and what tools can help you
extend the dBASE environment. It describes what types of training materials are
available and some popular add-on products.

C h a p t e r 1 , S e t t i n g u p V i s u a l d B A S E 3

C h a p t e r

1
Chapter 1Setting up Visual dBASE

This chapter describes the differences between the dBASE 5.0 installation program and
the Visual dBASE Setup program. Refer to the dBASE 5.0 Getting Started manual for
details on configuring the Borland Database Engine (BDE). BDE is the new user friendly
name for IDAPI.

The README file
Disk 1 of the dBASE disk set contains a file called README.TXT. This file provides the
latest information on installing and running Visual dBASE.

To view the README file, insert disk 1 and open the file with any text editor or word
processor. You can use the Notepad accessory in Windows 3.1 or the WordPad
accessory in Windows95.

Installing over dBASE 5.0
The Upgrade Edition of Visual dBASE only allows installation on a PC that contains a
copy of dBASE 5.0 for Windows. Keep a dBASE 5.0 disk set on hand to reinstall or move
dBASE to another machine. If you need to install Visual dBASE on a new machine,
install dBASE 5.0 first and then run the Visual dBASE setup program.

CD-ROM setup
The CD-ROM Edition of Visual dBASE includes a special installation guide. The sleeve
contains the CD-ROM installation guide.

4 U p g r a d e G u i d e

Running the Setup program
To run the setup program,

1 Insert Disk 1 into your disk drive

2 The ways to invoke the setup program depend on the version of Windows and shell
you are using. Here is a guide for the most common configurations:
• In the Windows 3.1 Program Manager, select File|Run and enter A:SETUP.EXE
• |In Dashboard, select Dashboard Run and enter A:SETUP.EXE
• In Norton Desktop, press Ctrl-R to open the run dialog and enter A:SETUP.EXE
• In Windows95, select Start|Settings|Control Panel|Add and Remove Programs.

The Setup wizard will locate and run SETUP.EXE for you. Windows95 also allows
you to run Windows applications including the SETUP program from the MS-
DOS window.

3 Select from the following options:
• Complete installs all Visual dBASE files.
• Minimum installs a limited configuration that includes all files required to run

dBASE including the Borland Database Engine. Useful for laptops with limited
hard drive space, the minimum option does not include samples, help, or utilities
and takes under 10 MB of disk space.

• Custom gives you more granular control over what files it installs. From within
custom you can select the following file groups.
- Visual dBASE includes the main dBASE program and the Borland Database

Engine. It includes all required files to work with every dBASE object except
Report files.

- Sample Files includes the samples used in the documentation and online help.
It also contains the Music application that shows you how to combine several
dBASE objects into a larger application. Samples for the dBASE API for C++
programmers are provided in the EXTERN subdirectory of the SAMPLES
directory.

- Custom Controls and Utilities gives you a wide variety of custom controls you
can use when developing forms. It also includes several utility programs
written in dBASE. Custom controls provide reusable components such as OK,
Cancel and Close buttons. The utilities include the Component Builder and
SQL Statement Builder. The Component Builder translates dBASE III PLUS and
dBASE IV files into Visual dBASE equivalents. The SQL Statement Builder is an
interactive query tool that creates and executes SQL commands.

- Interactive Tutors provide computer based training for various parts of the
dBASE environment. They also include lessons on migrating from the Control
Center.

- Crystal Reports includes the report designer, online help for the designer and
the personal trainer. The personal trainer is an interactive tutor that is tailored
to the report designer.

C h a p t e r 1 , S e t t i n g u p V i s u a l d B A S E 5

- Online Help includes the complete language reference and context sensitive
help for the dBASE Desktop, Visual Property Builders, designers and dialogs.
There is also a help file for using SQL and connecting to remote data sources
with SQL-Links and ODBC.

4 The setup program requires that you register your software by entering a name and
company. Setup records both items in the [Install] section of the INI file. After the
setup is complete you may edit the INI file to change the name and company that
appear at startup. The [Install] section will look similar to the following:

[Install] |

Username=Paddy Moloney
Company=Chieftain Industries

5 The setup program completes by creating a program manager group and prompting
you to view the README file. Be sure to view the README file at this time, if you
did not already view it prior to running SETUP.

After installing you may need to modify the BDE (Borland Database Engine)
configuration file (IDAPI.CFG). Please refer to Appendix B of the dBASE 5.0 Getting
Started manual for more information. The utility is now called "BDE Configuration
Utility" but it works the same as the "IDAPI Configuration Utility" described in
Appendix B.

If you plan to use ODBC drivers with dBASE you might need to copy the ODBC.NEW
and ODBCINST.NEW files to your WINDOWS\SYSTEM directory as ODBC.DLL and
ODBCINST.DLL. Setup installs ODBC.NEW and ODBCINST.NEW into the BDE
directory. These files are an update to some of the earlier versions of ODBC.

6 U p g r a d e G u i d e

C h a p t e r 2 , W h a t ’ s n e w i n V i s u a l d B A S E 7

C h a p t e r

2
Chapter 2What’s new in Visual dBASE

Visual dBASE is Borland’s second generation, award winning, object-oriented, event-
driven database manager. Visual dBASE has enhanced usability, more programming
power, and more robust database support. In addition, an EXE compiler is now
available separately. Visual dBASE provides all the tools required for RAD (Rapid
Application Development), while the compiler provides rapid application deployment.

Read this chapter for an overview of the new and enhanced features you will find in
Visual dBASE.

• Robust Database Support allows comprehensive database administration and offers
client/server features including embedded ANSI SQL-92 and access to stored
procedures. Visual dBASE is the only Xbase development tool to include an ANSI
SQL-92 compliant implementation of SQL. The data administration tools help you to
setup table security and design referential integrity rules.

• Expanded Visual Tools includes an overview of each Expert and enhancements to
the Two-Way-Tools. The new Experts allow users to complete comprehensive tasks
by answering a few simple questions. Enhancements to the Two-Way-Tools let you
visually create and inherit from reusable components such as base form sets and
custom controls.

• More Programming Power introduces the new and enhanced stock classes that ship
in Visual dBASE, allowing programmers easy access to a wide range of powerful
capabilities.

• Windows95 Support explains how Visual dBASE can exploit the new interface and
file system of Windows95.

• Application Distribution describes the Visual dBASE compiler, Help compiler and
application deployment technology. These tools integrate into the dBASE
environment to compile your applications files into a single EXE file and create
installation and setup systems for diskette and CD-ROM.

8 U p g r a d e G u i d e

Robust database support
Visual dBASE brings advanced client/server features to a scalable environment. It
provides the tools required for serious client/server and file-based application
development. Visual dBASE lets you leverage the unique strengths of back-end servers
and gives you more control over the DB and DBF table formats. In addition to the pass-
through SQLEXEC() function, you can now embed ANSI SQL-92 commands in any
dBASE program, creating a tight bond between the dBASE data environment and your
server. If your data resides in a server supporting stored procedures you can call them
directly from a dBASE program. You can also take advantage of server specific
transaction isolation levels. Visual dBASE also contains new ANSI language drivers and
interactive tools for administering relational integrity rules, setting up table security,
and inspecting field attributes.

• Embedded ANSI SQL-92 works seamlessly within dBASE programs. There is no
need to SET SQL ON or create separate PRS files. Embedded SQL works with any
data source including DB, DBF, the Local InterBase Server, and remote servers
attached via ODBC or SQL-Link drivers. The result set of an SQL Select statement is a
standard dBASE work area that you can continue to work with using the traditional
Xbase DML. Unlike traditional client/server tools that create temporary tables from
SELECT statements, dBASE can create a full read/write cursor into the source tables.
dBASE allows you to mix and match embedded SQL, pass-through SQL and
traditional Xbase DML.

• Stored Procedures on a server can extend the dBASE language as external functions.
Visual dBASE uses the EXTERN command to declare both stored procedures on a
server and functions in a DLL. If your server can provide information on stored
procedures, an AUTOEXTERN option is available. Servers capable of providing the
necessary AUTOEXTERN information include Oracle 7 and InterBase 4.0.

• Transaction Isolation Levels give developers the option of taking exacting control
over transactions. Depending on your server, you can work with uncommitted
changes, committed changes, or full repeatable reads.

Figure 2.1 Editing referential integrity

C h a p t e r 2 , W h a t ’ s n e w i n V i s u a l d B A S E 9

• Referential Integrity Tools gives database administrators a visual interface to
examine and change the integrity rules occurring between tables. Administrators can
set rules for parent and child tables with options for cascading or restrictive updates.
Rules appear at the database level for database servers and at the directory level for
Paradox tables.

• Table Security protects sensitive tables through encryption and a password system.
Database Administrators can set up to eight privilege levels at both the table and field
level. The security system is compatible with the encryption schemes found in both
dBASE for DOS and Paradox.

• The Field Inspector is a new tool for creating column integrity rules while in the
table designer. Field Inspector provides an interface that is consistent with the Form
Designer's object inspector. You can set field properties such as default value,
maximum, minimum, and if the field is required or not. The properties available
depend on the type of table you are opening and the driver you are using to open the
table.

• True NULL Support is now available for working with Paradox and SQL tables. You
can search for and update tables with NULL values, create NULL variables, and use
NULL in any comparison or expression.

• ODBC Connectivity is now a standard feature of the Borland Database Engine. The
new Borland Database Configuration utility lets you define database alias names for
any standard ODBC driver. You can use this feature to work with other PC table
formats such as Access, Btrieve, and FoxPro as well as database servers such as DB2
and INGRES.

• ODBC Database Administration is supported throughout Visual dBASE. You can
create ODBC tables using the table designer and the Table Expert. You can examine
and update Referential Integrity rules in ODBC databases. If your ODBC driver
supports Stored Procedures, you can work with them just as you can work with
Stored Procedures through SQL-Link drivers.

• ANSI Language Drivers provide international customers with seamless integration
into multi-lingual SQL and ODBC systems. The new drivers also offer a significant

Figure 2.2 Setting up table security

10 U p g r a d e G u i d e

performance boost in applications that previously required OEM/ANSI conversion
routines.

• The Upsizing Expert, sold separately, helps developers migrate tables and integrity
rules between local, network, and database servers. Since the Upsizing Expert works
through the Borland Database Engine, it is fully compliant with all the data sources
that are available to Visual dBASE. Contact Borland at 1-408-431-1000 for information
on availability and pricing.

Expanded visual tools
Visual dBASE has new Experts for creating tables, reports, and labels. There are also
many new options for customizing the Form Expert. Experts present the user with a
logical series of steps for defining a new file and use the same consistent interface that
allow the user to move back and forth through steps to change any option before
creating the new file.

• The Table Expert guides you through the table design and creation process. You can
use the Table Expert to select common table and field definitions. The Table Expert
allows you to mix and match fields from any of the table templates. You can modify
table templates to customize the Table Expert for your organization. In addition to
native DB and DBF support, the Table Expert offers the ability to create tables using
ODBC and SQL-Link drivers.

• The Form Expert is now fully customizable. The Form Expert is capable of creating a
wide range of layouts. It provides four basic layouts: columnar, form, browse, and
one-to-many. Layouts can appear as either single- or multiple-page forms. Control
associations let you change what control appears for each field type. You can also
apply custom color and font schemes. The schemes are similar to the color schemes
found in the Windows control panel.

• The Report Expert guides you through designing the detail, grouping, summary,
and grand total sections of a report. It includes an easy way to get complex statistical
information such as standard deviation by region and distinct count within a
department. The Report Expert runs within the Visual dBASE Desktop and creates
Crystal compatible reports without opening the Crystal designer.

C h a p t e r 2 , W h a t ’ s n e w i n V i s u a l d B A S E 11

• The Label Expert provides advanced features such as Quick Address and Calculated
Fields. The Quick Address feature shown in Figure 2.3, scans your tables for fields
such as 'Name', 'Street', 'Zip' and organizes them into a standard address layout. You
can accept the default address layout or continue customizing it from the Expert
environment. To create calculated fields, enter simple expressions or open the
Expression Builder for assistance with complex calculations. The Label Expert
provides over 45 Avery label definitions.

Visual dBASE includes extensive refinements that make it easier to leverage the
dynamic object model. You will find significant enhancements that allow the Two-Way-
Tools to support completely visual subclassing and inheritance. The designers also
include many improvements based on customer feedback.

• The Custom Form Class Designer is a new Two-Way-Tool for visually creating base
form sets. A base form set is a collection of custom form classes. Custom form classes
work like style sheets when creating new forms. When you use start with a custom
form class, the new form inherits properties, methods, and controls from the custom
form class. The dynamic object model insures that any modifications made to a
custom form class automatically ripple down to derived forms.

• Visual Inheritance lets you use the Form Designer to derive new forms from custom
form classes. For instance, you can set the Form Designer to use a custom form class
containing a group of speed buttons. When you set a custom form class, it's controls,
properties, and events appear in any form you open or create with the Form
Designer. If you later change the custom form class to add a new speed button, it
appears in any derived forms. The Form Designer also allows you to switch the base
form of existing forms to other custom form classes or back to the stock FORM class.

Figure 2.3 Using Quick Address

12 U p g r a d e G u i d e

• Visual Custom Control Design is now possible right from the Form Designer. You
can save any control as a custom control by simply selecting it and picking File | Save
as Custom. You get the option of adding to an existing library or making a new
custom control library. As with forms, saving a control creates source code that you
can modify with any text editor. Since Visual dBASE relies only on source code when
working in the designers, any changes you make to the custom control source code
automatically transfer to the control palette.

• The Control Palette is now fully customizable. You can dynamically dock the palette
on the top or bottom of the form designer or keep it in a resizable window. Controls
can appear in bitmap only mode with SpeedTips (tool tips), with text or as text only.
VBX controls now appear on a separate tab. You can save screen real estate by
removing the tabs. When tabs are off, all controls appear on a single page. The
Control Registration table (CREG0009.DBF) allows you to create your own custom
control groups and specify a bitmap for each custom control.

• The Field Palette gives you an easy way to add controls for each field in the active
view. When you add controls from the field palette, dBASE automatically sets up the
DataLink and DataSource properties. Like the Control Palette, the Field Palette can be
docked or used as a floating window.

• Control and Field Associations determine what controls are used for what data
types. For instance you can associate either an EntryField or a SpinBox with numeric
fields. This association is used by both the Form Expert and the Field Palette. You can
change the associations at any time.

• Font and Color Schemes give you a quick way to try out different font and color
combinations. Visual dBASE provides a wide selection of schemes that you can apply
to existing forms. The colors in a scheme can be specific or relative. Relative colors

Figure 2.4 Saving a group of custom controls

Figure 2.5 The Field Palette

C h a p t e r 2 , W h a t ’ s n e w i n V i s u a l d B A S E 13

correspond to the desktop colors set in the Windows control panel. If you use relative
colors, your application will conform to the desktop colors in use at run time. You can
also create and save new schemes from the scheme dialog.

• New Image support for ICO, EPS, TIF, and WMF files in addition to PCX and BMP
files. You can use any of the supported formats with the IMAGE class, Binary fields,
the Navigator, and the RESTORE IMAGE command.

• More Visual Property Builders for inspecting and setting properties. Throughout
Visual dBASE, many dialogs including the Inspector have the option of entering
values directly or using a Visual Property Builder for guidance. Experienced
developers can enter values directly while new users can use Visual Property
Builders to learn all the options available for a given property or expression. You can
use the new Visual Array Builder to create an array for a ListBox or ComboBox
without leaving the Inspector.

• DesignView is a new form property for setting up design time data environment. It
provides you with the tables and relations you need to design a form that inherits an
existing data environment at run time. You can use DesignView in place of View to
create forms that share a single data environment.

• New Utilities include the SQL Statement Builder and an enhanced Component
Builder. The SQL Statement Builder is an interactive tool for creating and learning
about SQL commands. The Component Builder now supports conversion of both
dBASE III PLUS and dBASE IV files including forms, reports, labels, programs, and
menus.

More programming power
The second generation of the Visual dBASE object and event model adds a wealth of
new stock classes to complement the existing set of user interface, array, DDE and OLE
classes. Existing stock classes also get new properties for multiple page forms and more
control over event processing. Greater encapsulation is now available through protected
properties and member functions.

• Multiple Page Forms are a great way to separate large groups of controls and
options into logical pages. Visual dBASE uses multiple page forms for tools such as
the Inspector, the Controls window, and the Desktop properties dialog. The form
designer allows you to quickly place controls on different pages and navigate
between pages. Any control can appear on any page or on all pages. Visual dBASE
provides a special page zero for controls you want on all pages. Developers have
complete control over page navigation. The most common technique for page
navigation is the TabBox control, however developers can also use any other control
such as PushButtons, Menus, SpinBoxes, and VBX controls.

• TabBox is a user interface class that gives you the same tab controls that Visual
dBASE uses in its desktop. Although the TabBox is normally associated with
multiple page forms, the Visual dBASE implementation does not limit it to any
specific use.

14 U p g r a d e G u i d e

• MenuBar acts as the root object of a completely object-oriented menu tree. It works
with the new Menu Designer to automatically create the Edit and Window menus
found in applications that conform to the MDI model. The Edit menu items (undo,
cut, copy and paste) automatically dim based on the contents of the clipboard and if
any text is selected. The Window menu lists all MDI windows and can switch focus
to any selected window.

• Popup menus appear on-demand. A common use of popup is a menu that appears
when you right-click. The SpeedMenus that appear when you right-click in the
dBASE Desktop are popup menus. The Popup Designer is a new Two-Way-Tool for
visually programming a custom popup class. The Form class has a new PopupMenu
property that makes creating SpeedMenus as easy as attaching a MenuBar to a Form.

• Shape is a simple user interface class that you can use to draw shapes (circles,
ellipses, squares, etc.) on a form. The properties, methods, and behavior are similar to
those of the line class.

• PaintBox is for advanced developers that want to harness the Windows API to create
their own controls. This class provides a generic control that developers can use as a
device context for Windows API functions. The developer controls all actions of a
PaintBox: what is displayed, how keystrokes are handled, etc. Visual dBASE keeps
track of where the control fits in the Z-Order, what page it appears on and provides a
wide array of events such as focus, mouse, keyboard, and paint messages.

• OLEAutoClient complements the OLE field support and the OLE control. You can
now use Visual dBASE’s dynamic object model to control OLE 2 applications that
provide server automation. For example, a dBASE program can create an instance of
the OLEAutoClient class that points to MS Word. After establishing a connection to
MS-Word, the properties of the instance variable are WordBasic commands. The
dBASE program can then start controlling Word by issuing WordBasic commands.

• AssocArray or Associative Array is a new array class that lets you use character
strings as the index to the array. Like the standard array class, AssocArray contains a
complete set of methods and properties for navigating through and manipulating the
array. The AssocArray class dynamically resizes the associative array as you add and
remove elements.

• Expanded Properties for existing classes not only provide for multiple page forms,
but also give you exacting control over the record buffer, key processing, window
handling, colors, and positioning.

• Strong Encapsulation is now available for any subclassed object. You can hide or
protect any member of a class. Only the methods of the same class can read or write
to a protected member.

• Debugging is now easier than ever. The dBASE debugger now lets you inspect and
modify values contained in local and static variables. You can use this feature to
change properties of a form without leaving the debugger.

• Literal Array Declaration lets you create and populate arrays with a single
statement. The following command creates an array with three character elements:

ColorArray = {"Red","White","Blue"}

C h a p t e r 2 , W h a t ’ s n e w i n V i s u a l d B A S E 15

Note To accommodate the new array syntax, code blocks must begin with a semicolon or the
pipe character. dBASE 5.0 allowed code blocks containing values without an initial
delimiter. Visual dBASE treats value-only code blocks without initial delimiters as single
element literal arrays.

Windows95 support
Visual dBASE supports Windows95 specific features such as long file names, extended
attributes, and universal naming conventions.

Figure 2.6 Visual dBASE running under Windows95

• Long File Names are one of the biggest changes in the Windows95 new file system.
When running under Windows95, Visual dBASE automatically supports the new
system's long file names. The Navigator and all other dialogs adjust to fit long file
names and maintain case sensitivity.

• Extended Attributes are another feature new to the Windows95 file system. The
dBASE language has a new set of corresponding methods and functions for working
with the extended file attributes.

• Emerging Interface Standards appear throughout Windows95. These changes
include placing the file name first in the windows caption and support for the
application key found on newer keyboards such as Microsoft's Natural keyboard.
The application key opens the SpeedMenu, while Alt-Application opens a property
sheet for the current object. Shift-F10 substitutes for the Application key on
keyboards without the Windows specific keys.

16 U p g r a d e G u i d e

 Application distribution
The Visual dBASE Compiler includes the compiler technology and utilities you need to
distribute your dBASE applications as easily installable royalty free EXE files. The Visual
dBASE Compiler comes with the compile and build extensions for Visual dBASE, a help
compiler, and an application deployment system.

• The dBASE Compiler gives you an easy way to compile your dBASE applications
into EXE files. The compiler extends Visual dBASE with new commands and dialogs
that can create royalty-free EXE files. The compiler can automatically descend
through an application to find and link all relevant files without the need for a make
or project file. The dBASE compiler also lets you specify an icon and a splash image.
You can dynamically customize your own EXE files using an INI file. In keeping with
dBASE tradition, all the options for creating executables are available from both the
language and visual tools. Like other Visual dBASE dialogs, the compiler dialogs help
you learn the new syntax by displaying the new commands in the Command
window.

• The Help Compiler generates HLP files that can connect your Visual dBASE
applications to the Windows Help system. You can create context-sensitive help
systems for your dBASE applications by setting the HelpID property of any control
to a topic in your HLP file. You can use any editor that saves to RTF (Rich Text
Format) to create your help system. RTF capable editors include Word, WordPerfect,
and the Windows95 WordPad accessory.

• The Application Deployment System completes the last step of the development
process. For the first time, you can use the same install engine that Borland uses to
create your own setup diskettes. The install engine includes a special version of the
famous 'freeway' setup program customized for compiled Visual dBASE
applications. When you deploy an application, the install engine provides data
compression, group creation, database drivers, and options to brand the setup

Figure 2.7 Creating setup diskettes

C h a p t e r 2 , W h a t ’ s n e w i n V i s u a l d B A S E 17

program with an application and company name. The resulting disk set provides a
clean distribution system with no changes to your end-user’s WINDOWS or
WINDOWS\SYSTEM directories other than a program group and optional VBX and
OLE2 support files.

18 U p g r a d e G u i d e

C h a p t e r 3 , U p g r a d i n g a p p l i c a t i o n s 19

C h a p t e r

3
Chapter 3Upgrading applications

Visual dBASE runs most dBASE 5.0 applications without change. However, a few
applications will require some fine tuning to run correctly. Read this chapter to see if
you need to modify any of your applications.

Figure 3.1 Error from invalid code block

By far, the most common modification will be in the area of code blocks. dBASE 5.0
allows value only code blocks without initial vertical bars or a semicolon. These will
appear as arrays in Visual dBASE. Figure 3.1 shows the error that will appear if you run
a program or form that refers to FORM in what was a code block under dBASE 5.0 and
is an array under Visual dBASE.

The following code shows an OnClick that would close a form under dBASE 5.0 and
causes an error in Visual dBASE. The code blocks for the Valid events also cause errors.
The OnClick can be fixed with a single semicolon. The Valid events will need a little
more work.

20 U p g r a d e G u i d e

* Runs with dBASE 5.0 and has errors in Visual dBASE
DEFINE FORM f1
DEFINE PUSHBUTTON done OF f1 ;

PROPERTY ;
OnClick { FORM.CLOSE() }

DEFINE ENTRYFIELD firstname OF f1 ;
PROPERTY ;
top 5, ;
value SPACE(20), ;
valid { .NOT. ISBLANK(this.value) }

DEFINE ENTRYFIELD lastname OF f1 ;
PROPERTY ;
top 7, ;
value SPACE(20), ;
valid { .NOT. ISBLANK(this.value) }

f1.OPEN()

The easiest way to update an application to the new syntax is to place a semicolon at the
beginning of the code block. Using a semicolon is recommended if you do not need a
return value from the code block. Only a few events such as CanClose, Key, Valid, and
When require a return value. If you need a return value you can precede the value with
a semicolon and a return statement or use, ||, vertical bars. The vertical bars delimit
parameters. See the language reference for more information on using parameters with
a code block. Here is the same procedure updated to run in Visual dBASE.

* Updated for Visual dBASE
DEFINE FORM f1
DEFINE PUSHBUTTON done OF f1 ;

PROPERTY ;
OnClick { ; FORM.CLOSE() }

DEFINE ENTRYFIELD firstname OF f1 ;
PROPERTY ;
top 5, ;
value SPACE(20), ;
valid { ; RETURN .NOT. ISBLANK(this.value) }

DEFINE ENTRYFIELD lastname OF f1 ;
PROPERTY ;
top 5, ;
value SPACE(20), ;
valid { || .NOT. ISBLANK(this.value) }

f1.OPEN()

Note The empty parameter delimiters (i.e. vertical bars) are not compatible with dBASE 5.0. If
your application needs to run with both dBASE 5.0 and Visual dBASE, begin the code
block with "; RETURN".

Another unexpected error occurs if you created a custom property with the same name
as a new stock property. For instance, if you are already using a custom property called
SpeedTip, Visual dBASE will overwrite it with the new SpeedTip stock property. You
might glance through the new property list to see if anything looks like one of your
custom properties. If so, simply rename your property to something unique.

There are new options on the CREATE and MODIFY commands to invoke Experts,
prompt for Experts and so on. If you need to create or modify a file that has the same

C h a p t e r 3 , U p g r a d i n g a p p l i c a t i o n s 21

name as a new option, you need to specify the complete name and place it in quotes. For
example to create a new table called Expert, enter the following:

CREATE "expert.dbf"

The new default setting of CONFIRM is ON. The previous default was OFF. When
CONFIRM is OFF, filling up an entry field automatically moves focus to the next
control. Although this is handy for data entry applications, it does not conform to the
standard Windows interface. If you want CONFIRM to be OFF, simply place the
following command at the beginning of your application.

SET CONFIRM OFF

All color properties now default to relative color strings. These strings correspond to the
areas defined in the Windows Control panel. The valid realtive color strings are as
follows:

Scrollbar InActiveBorder

Background AppWorkSpace

ActiveCaption Highlight

InActiveCaption HighlightText

Menu BtnFace

Window BtnShadow

WindowFrame GrayText

MenuText BtnText

WindowText InactiveCaptionText

CaptionText BtnHighLight

ActiveBorder

22 U p g r a d e G u i d e

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 23

C h a p t e r

4
Chapter 4Working with the new visual tools

This chapter explains the new and enhanced tools for creating tables, forms, menus,
popups, reports, and labels. While many of the areas of the dBASE Desktop have been
polished and revamped since version 5.0, you should be aware of the following
changes:

• New Experts for creating tables, forms, reports, and labels. The Experts provide easy
step by step guidance and allow for customization. Development team leaders and
departmental administrators can use the customization features to insure adherence
to company or departmental standards. Along with the Experts themselves, there are
some related language and option changes.

• The Custom Form Class Designer is a new Two-Way-Tool to create and modify base
form sets. Base form sets are collections of custom form classes from which you can
derive new forms.

• The Form Designer has undergone significant changes to improve usability and
customization. Visual inheritance allows you to derive forms from base form sets by
setting a custom form class. You can also save existing forms and controls as reusable
components. The new Field Palette provides automatic DataLinking and control
selection. You can customize the new Control Palette with your own bitmaps and
groups. The new form parameter and the DesignView property make it easy to create
multiple form applications.

• The Popup Menu Designer is a new Two-Way-Tool for visual programming of on-
demand menus. Popup menus that open on a right click are SpeedMenus. The new
POPUP class gives you a root object for your own on-demand menus and
SpeedMenus. You can quickly create a SpeedMenu using a form's PopupMenu
property.

• The MenuBar is the new root menu object. You can use it in the menu designer to
easily create common clipboard functions such as the Edit|Cut, Edit|Copy, Edit|
Paste and Edit|Undo.

24 U p g r a d e G u i d e

• The SQL Statement Builder is a new utility for visually building SQL (Structured
Query Language) commands. You can use it to learn the differences between SQL
and traditional Xbase DML (Data Manipulation Language).

Note This chapter assumes you have a working knowledge of the designers provided with
dBASE 5.0. For detailed information on any of the designers, please refer to the dBASE
5.0 User's Guide.

The Experts
Experts provide step-by-step guidance for creating tables, forms, reports, and labels.
The Experts are similar to the Coaches found in PerfectOffice and the Wizards found in
Microsoft Excel.

Visual dBASE includes Experts for tables, forms, reports, and labels. Unlike traditional
Experts or Wizards, the new Form and Table Experts can be customized to fit your
organization. System administrators and team leaders can setup the Experts to use the
layout schemes and table designs specific to your needs.

Along with the new Experts and enhancements to the Form Expert, there are some new
features common to all the Experts. The menu and SpeedBar options for opening
Experts differ in Visual dBASE. There are also new prompting options in the Experts.

The new menu and SpeedBar streamline the options for opening an Expert. dBASE 5.0
included two menu options and two SpeedBar buttons for opening the Form Expert.
Now all Experts are available exclusively from the File | New menu option and the
corresponding SpeedBar button.

Figure 4.1 Prompting for the label expert

When you create a new file through the Navigator, a Catalog, the Menu, or the
SpeedBar dBASE prompts if you want to use the Expert or not. Figure 4.1 shows an
example of the prompt for the label expert.

The language provides a corresponding PROMPT option for the CREATE commands.
The PROMPT option works with the EXPERT option. Here are a few examples of
creating a new label.

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 25

CREATE LABEL && opens the label designer
CREATE LABEL EXPERT && opens the label expert
CREATE LABEL EXPERT PROMPT && gives option of expert and designer
CREATE LABEL PROMPT && names a new label "PROMPT"

Figure 4.2 Selecting when to prompt for Expert

By default, dBASE always includes the EXPERT PROMPT option when creating new
files. You can selectively turn off prompting through the Desktop Properties as shown
in Figure 4.2. The dialog is available from the menu by selecting Properties | Desktop
Properties.

The Table Expert
The Table Expert allows you to mix and match fields from example tables to create your
own table. The resulting table can be any type that is currently available to dBASE
through BDE.

You can configure BDE to work with Oracle, Sybase, Informix, and Microsoft SQL
Server through native SQL-Link drivers. dBASE also works with ODBC drivers through
BDE. If you have installed ODBC drivers as BDE alias names, the associated table types
become available to the Table Expert.

Using the Table Expert
There are several ways to invoke Experts when prompting is checked in the Desktop
Properties. Choose the method that fits your work style.

• From the Menu, select File|New and the desired file type.

• Click on the New file SpeedBar button and pick the desired file type from the popup
menu.

• From the Navigator or a Catalog, double click on (Untitled).

• From the Navigator or Catalog, pick (Untitled) and select New file from the
SpeedMenu or the Navigator/Catalog menu. You can also use the Shift-F2
accelerator key.

26 U p g r a d e G u i d e

Note If the chosen file type is not appropriate for an Expert, such as Program or Popup,
dBASE takes you directly to the design surface or editor.

The Table Expert has two steps. In the first step you select the fields for the table. Use the
following buttons to select fields:

> Select the currently highlighted field

>> Select all fields

<< Deselect all fields

< Deselect the currently highlighted field

The second step lets you pick the table type you want to create. The default type is the
dBASE DBF format. Once you reach the last step, you can start adding new records or
switch into the table designer to continue refining the new table.

Customizing the Table Expert
The Table Expert works with a Catalog to show example tables and fields. You can add,
modify, and remove tables from the catalog. The catalog and example tables reside in
the \DESIGNER\TABLE subdirectory.

Figure 4.3 Working with Table Expert Catalog

The US version of the catalog is TBLS0009.CAT. The number 9 refers to the Windows
country code and will vary for different localized versions of dBASE. You can use the
MODIFY CATALOG command to open and customize the example tables.

MODIFY CATALOG tbls0009.cat && open the Table Expert catalog

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 27

The Form Expert
The new Form Expert contains five steps. In the first step you select a view. In the
second, you select fields from the view. The third step determines the form layout and
the fourth step controls the font and color selections. The last step of every Expert
prompts you if you want to switch to run or design mode.

While the first two steps of the Form Expert are almost identical to those found in
dBASE 5.0, the next steps demonstrate significant enhancements. From the third step
you can now choose what controls go with what field types. For instance you can select
an EntryField or a SpinBox to handle date values.

The third step also gives you the option of creating multiple page forms if there are too
many fields to fit in a single form. Not only is this useful for complex views, but it is a
great way to learn how multiple page forms work.

Figure 4.4 Creating a multiple page form

The fourth step of the Form Expert lets you select and create form schemes. The schemes
determine what colors and fonts apply to different areas of the form. You also create and
apply schemes inside the Form Designer.

Figure 4.5 Creating schemes in the Form Expert

28 U p g r a d e G u i d e

As with the Table Expert, the Form Expert stores attributes in a dBASE table. The
schemes are in SCHS0009.DBF under the \DESIGNER\FORM subdirectory. Once
again the number 9 is for US versions and will change to match the country code for the
version of dBASE you are using.

The Report Expert
With the Report Expert, you can create a variety of reports from views and add
calculated fields without ever opening Crystal Reports. The different report types fall
into two main categories: detail and summary.

Figure 4.6 Creating summary groups in the Report Expert

As with the Form Expert, you begin by selecting a view. Once you have the view
established you can create a detail or summary report. The steps vary for the different
report types. The steps guide you through selecting fields, sort order, summary groups,
grand total information, layout styles, and custom headings.

You can create calculated fields as you select fields for printing. Within summary
groups, the Report Expert supports a wide variety of group statistics including sum,
average, maximum, minimum, count, sample variance, sample standard deviation,
population variance, population standard deviation, and distinct count. You can also
include grand total calculations for any fields. There are tabular and columnar layouts
with a variety of page break options.

The Label Expert
Now you can create labels quicker than ever with the five step Label Expert. In the first
step you pick your view or table. In the second step, you can select and arrange the
fields. The second step also contains a Quick Address button that automatically scans
the view for fields such as "NAME", "STREET", and "ZIP" and arranges them for an
address label. Like the Report Designer, you can add calculated fields and select the sort
order. The Label Expert supports over 45 of the most common Avery label formats. As
with all other Experts, the last step lets you move into run or design mode.

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 29

Custom Form Class Designer
Custom form classes serve as templates for new forms. This capability exists in dBASE
5.0 from the language, but not from the Form Designer. In dBASE 5.0 the Form Designer
always works with the stock FORM class. In Visual dBASE you can substitute any
custom form class in place of the stock FORM class. You can save an existing form as a
custom form class and use the new Custom Form Class Designer to create and modify
base form sets or collections of custom form classes.

As you start designing many forms for an application, it quickly becomes apparent that
many of the forms share similar characteristics. For instance, you might create a set of
navigation buttons on each data entry form and a set of OK, Cancel and Help buttons on
each modal form. The repetitive groups of controls and properties are good candidates
for custom form classes. You can create a custom form class for data entry that contains
navigation buttons and transaction logic. You can reuse the custom form class for any
data entry form. Likewise you can create a custom form class for modal dialogs.

Figure 4.7 Creating a custom form class for modal dialogs

Custom form classes give you a starting point other than a blank form. Unlike ordinary
templates, a custom form class is dynamically inherited at run time. This allows changes
to the custom form class to ripple down to all derived forms. You can design a custom
form class with record navigation buttons and later add buttons for transaction
processing. The new transaction buttons automatically appear on all derived forms.

Creating a new custom form class is much like creating any other new form. The main
difference is that you will want to place only reusable components into the custom form
class. Leave any controls, views, or DataLinks that are form-specific out of the custom
form class. Follow the steps below to create a new custom form class for modal dialogs.

30 U p g r a d e G u i d e

1 Open the Custom Form Class Designer. From the menu, select File|New|Custom
Form Class.

2 Clear any set custom form class. From the menu, select File | Set Custom Form Class.
If you are already using a custom form class, click on the Clear Custom Form Class
button.

3 Add the OK, Cancel and Help buttons that are common to modal dialogs. You can
use custom controls or add and configure your own PushButtons

4 After you have your custom form class designed, select File|Save as Custom...

5 The Save Custom dialog works with both Custom Controls and Custom Forms.
Choose the Save Form as Custom radio button.

6 Name your custom form class and specify the CFM library that will contain the
source code definition. You can use CFM files to create base form sets consisting of
many custom form classes. CFM files are similar to WFM files in that they work as
Two-Way-Tools. The source code in a CFM is fully modifiable and dBASE always
uses the latest changes. Unlike WFM files, CFM files do not contain header
information or code to create an instance of a form.

7 After naming your new custom form class as shown in Figure 4.8, click OK to save it
to the custom form file. If the custom form file does not exist, dBASE creates it. If the
custom form class already exists in the custom form file, dBASE asks if you want to
overwrite the old definition. This only overwrites the current class and leaves all
other classes in the file untouched.

When you design a custom form class, you do not need to create a standard form or
WFM file. The complete source code for the custom form class is in the CFM file.

CFM files appear as auxiliary form files in the Navigator. To see auxilliary form files in
the Navigator, select Properties|Navigator|Properties, and check the Show auxiliary
form files option. You can also examine and modify the CFM using the program editor
invoked with MODIFY COMMAND.

If you work with the source code for a CFM, be sure to leave the CUSTOM option on the
class definition. The CUSTOM option insures that properties, controls and events do not
stream out in a derived class.

Figure 4.8 Saving a custom form class to a base form library

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 31

Form Designer enhancements
The Form Designer is now a dual purpose work surface. As before you can use it to
create forms. In addition, the Form Designer is a visual class designer for custom form
classes and custom controls. Along with this powerful addition there are many other
enhancements including new palettes, multiple pages, easier ways to share data
between forms, improved visual property builders, a tab order dialog, and sizing
options.

In dBASE 5.0, the Form Designer surfaces one aspect of visual component reuse. It
allows you to use custom controls. Visual dBASE completes the object model with the
following four distinct operations of visual inheritance and subclassing.

• Custom Form Class Creation

• Custom Control Creation

• Custom Form Class Inheritance

• Custom Control Inheritance

This section assumes you are familiar with the dBASE 5.0 Form Designer. You might
want to review Part III of the dBASE 5.0 User's Guide before continuing. In particular,
you should know how to work with the Inspector, Procedure Editor, and Control
Windows.

If you are unfamiliar with the term Inspector, it refers to the window that shows
properties, events and methods. The window is available in the Form Designer and
through the INSPECT() function. dBASE 5.0 uses the terms Properties and Object
Properties to refer to the Inspector.

Working with custom form classes
New forms can inherit properties, events and controls from a custom form class.
For example, you can create a custom form class that colors the form red and contains a
CheckBox control. You can set the custom form class and design new forms that inherit
both the color and the control. Any later changes to the custom form class ripple down
through all derived forms.

Saving forms as custom form classes
The Form Designer can save any form to a base form set. If you discover that one of your
forms would work well as a custom form class, you can save it to a CFM file. To save a
form as a custom form class, open it with the Form Designer and select File|Save as
Custom. When you save a form to a base form set, dBASE leaves the original WFM file
unchanged. If you want to modify the custom form class or create a new custom Form
class, use the Custom Form Class Designer.

32 U p g r a d e G u i d e

Using a custom form class
If you have created a custom form class, you can use it for new forms. When you work
with a custom form class, dBASE generates different code for the class definition.
Without a custom form class, new forms are derived from the stock form class. The
following code shows what is generated for a form named ASK.WFM when no custom
form class is set.

CLASS ASKFORM OF FORM

If you set the base class of the same form to THREEBUTTON that is stored in
FORMLIB.CFM, the Form Designer generates different code. It replaces the stock class
FORM with the custom base class THREEBUTTON. The CLASS command also
contains a FROM clause that points to the source file where the definition for the custom
form class resides. Here is the code for ASK.WFM when it is set to THREEBUTTON.

CLASS ASKFORM OF THREEBUTTON From FORMLIB.CFM

Controls, properties, and events contained within custom form class do not stream out
into derived classes. The DEFINE statements for any control in a custom form class are
not included in the source code of a derived form.

Figure 4.9 Setting a custom form class

You can apply a custom form class to new forms and existing forms. All you need to do
to apply a custom form class is complete the Set Custom Form Class dialog shown in
Figure 4.9. Follow these steps to create a new form that uses the THREEBUTTON form
class created in the prior section.

1 Create a new blank form. Open the Form Designer without using the Form Expert.

2 From the menu, select File|Set Custom Form Class...

3 Enter FORMLIB.CFM for the source file name. You can also use the tool button to
locate your CFM files.

4 Choose THREEBUTTON from the class name ComboBox. The ComboBox lists all the
classes in the CFM file. If you created the CFM in the previous section, there is only
one available class name.

5 Click OK to close the dialog and apply the new custom form class.

Now you can add whatever other controls you need to create a specific instance of the
three button dialog. To make a login dialog, you could add an entry field and some text
controls to explain the dialog.

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 33

If you select any of the inherited controls, the nibs appear white. This provides an easy
way to distinguish inherited controls from controls defined in the WFM. Normally the
selection nibs appear in black.

The Form Expert always uses the stock FORM class. To apply a custom form class to a
form created by the Form Expert, simply open it in the form designer and set the custom
form class. When you save the WFM, dBASE creates a derived form from the Expert
generated form.

Working with dBASE custom controls
dBASE custom controls are controls derived from dBASE stock controls or VBX
controls. The definitions for dBASE custom controls reside in CC files. You can use
custom controls to create reusable components that encapsulate business rules and
common application routines. Common examples of custom controls are push buttons
for table navigation or closing a form.

You might be familiar with the BUTTONS.CC file from dBASE 5.0. While you can still
use custom controls from BUTTONS.CC, you can now visually create your own custom
controls and place them in the Control Palette without leaving the Form Designer.

Creating custom controls
The Form Designer lets you design custom controls the same way you design any
control. Simply place a stock or VBX control on the Form Designer and modify the
properties. Once you have it complete, you can save it to a CC file.

You can derive custom controls from any stock or VBX control. For example, you might
want to create a custom TabBox for three page forms. Follow the steps below to create a
new custom control for navigating between pages.

1 Create a new blank form. If you have set a custom form class, clear it using the Set
Custom Form Class dialog.

2 From the Control Palette, add a TabBox control. The TabBox automatically anchors to
the bottom of the form.

3 Select the TabBox control and open the Inspector. You can quickly get to the
Inspector from the Form Designer SpeedMenu whether or not it was previously
open.

4 From the Inspector, locate the DataSource property and click on the tool button to
open the DataSource Property Builder. This shows the default array containing
"TABBOX1".

34 U p g r a d e G u i d e

5 Open the Array Builder by clicking on the tool button. The Array Builder will let you
quickly design an array containing "One", "Two" and "Three".

6 From the Visual Array Builder, remove "TABBOX1". The Remove button deletes the
currently selected item from the array.

7 Use the String entry field to add "One", "Two" and "Three". You do not need to enter
quotes when adding strings. Simply type the number into the String entry field and
click on Add as shown in Figure 4.10. The three tabs appear when you close the
Visual Property Builders and return to the Inspector.

8 Once you have the three numbered tabs you are ready to add an event that navigates
between the three pages. Find the OnSelChange event for the TabBox.

9 Add a code block to set the form's PageNo property to the current tab. The current
tab is equal to the CurSel property of the TabBox. Enter the following code block into
the Inspector as shown in Figure 4.11. Be sure to include the initial semicolon to
distinguish the code block as an assignment statement.

; FORM.PageNo = THIS.CurSel

Figure 4.10 Building an array for a custom TabBox

Figure 4.11 Setting the OnSelChange event for paging

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 35

10 The last property to change is the Name property. The name of the control becomes
the default class name. Locate the Name property in the Identification Properties
group and change it from "TABBOX1" to "THREEPAGETAB".

11 After changing the Name property, select File | Save Custom... from the menu.
The Save Custom dialog opens as shown in Figure 4.12.

12 Using the "Save Selected Controls as Custom" option, check that the class name is
THREEPAGETAB and enter MYTABS.CC as the custom control file name. Once you
have given the control a name and a file to save to, you can close the dialog.

When you create new custom controls you do not need to save the WFM. After dBASE
saves the CC file, you can exit the Form Designer without saving any changes.

Now you have a custom control for setting up three page forms. You can examine the
code by editing MYTABS.CC in the program editor. Using the Navigator, you will find
CC files listed under the Custom view.

Using a custom control
You can place custom controls on the Control Palette and use them as stock controls. By
default, your custom controls appear on the custom tab of the control palette. The
palette also has on option of creating your own tabs for custom controls.

Figure 4.13 Adding custom controls

dBASE 5.0 included an option to add new CC files to the control palette. Visual dBASE
expands this feature by allowing to you examine, add and remove CC files and VBX
files from the control palette. Follow the steps below to see how to add the custom tab
control from the previous section into the control palette.

Figure 4.12 Saving custom controls

36 U p g r a d e G u i d e

1 Open the form designer with a blank form. Start with a blank form to insure that it
does not already contain a TabBox.

2 From the menu, select File|Setup custom controls.

3 Use the Add button to select your new dBASE custom control file, MYTABS.CC.

4 When you close the dialog, all the controls defined in MYTABS.CC appear on the
custom page of the Control Palette.

5 If you are using the Control Palette in bitmap only mode, place the mouse pointer
over the TabBox bitmap on the custom page to see the name of your custom control.
The name of your control appears as the Text and SpeedTip for the custom control.
The default bitmap is the bitmap for the stock class or VBX from which the new
custom control is derived.

You can add the ThreePageTab to any form for easy navigation between three pages.
When you use a custom control in a form, the Form Designer generates a DEFINE
command for your custom class. The definition only includes properties that you have
modified. If you are using all the properties and events as they appear in the custom
control, the definition will contain no properties. Here is an example using the
ThreePageTab custom control:

DEFINE THREEPAGETAB THREEPAGETAB1 OF THIS

Custom controls require that the source CC file be open during control definition.
dBASE opens CC files that appear in the [CustomControl] section of the initialization
file. You can also open CC files using the SET PROCEDURE statement.

The new palettes
Visual dBASE provides two new palettes that make form design easier and more
customizable. One palette contains stock, custom, and VBX controls. The other palette
contains a control for each field in the current view.

Figure 4.14 Setting palette properties

You can dock either palette at the top or bottom of the designer or use them as floating
MDI windows. There is an option to turn off tabs, conserving screen real estate.

Visual dBASE provides two ways of configuring the palettes. You can use the Properties
dialog and select the position as shown in Figure 4.14. The palettes can also be
dynamically docked by moving the window to the top or bottom of the frame window.

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 37

You can make the palettes float by dragging them away from the dBASE frame
window.

The Control Palette
In dBASE 5.0, the control palette consists of a ListBox in a floating window. The control
palette in Visual dBASE is a series of buttons that can be docked as a SpeedBar or remain
a floating window.

Most users find the control palette useful when it is docked at the bottom with tabs and
displaying the bitmap only. Docking the palette on the bottom gives you a larger work
area and keeps the top of the work area consistent in both run and design modes.

The control palette separates buttons into categories and groups. Categories can appear
on different tabbed pages, while groups can appear on the same page. The default
categories are Standard, Custom, and VBX. The default groups for each page include
one group for the pointer and one group for all the other controls in the category.

Setting up VBX controls

You can use the same dialog to setup VBX controls that you use to setup dBASE custom
controls. When you are in the Form Designer, you can open the Set Up Custom Control
dialog by choosing File|Setup Custom Controls...

Figure 4.15 Adding VBX controls from the Visual Solutions Pack

dBASE comes with a few VBX controls, but you can add many more. The Borland
Visual Solutions Pack comes with a wide variety of VBX controls including a rich text
editor, an Excel 4.0 compatible spreadsheet, charts, and a variety of gauges. The Visual
Solutions Pack installs controls into the WINDOWS\SYSTEM directory. Figure 4.15
shows a setup screen that contains sample VBX controls that come with dBASE as well
as three controls from the Visual Solutions Pack.

38 U p g r a d e G u i d e

The Custom Control Registry

You can assign bitmaps, categories, and groups to your custom controls using the
Custom Control Registry. The registry is a table located in the \DESIGNER\FORM
subdirectory. The registry is named CREG0009.DBF where the number 9 is dependent
on the localized version of dBASE.

Figure 4.16 Browsing the Custom Control Registry

Each record corresponds to a custom control. The class name field refers to the custom
class. The rest of the fields determine how the control appears in the palette. The
Filename field refers to a DLL that contains the bitmap for the control. In this case,
Filename has no relation to the CC file that contains the control definition. Here is the
complete structure for the control registry.

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 39

Structure for table CREG0009.DBF
Table type DBASE
Number of records 25
Last update 06/25/95
--
Field Field Name Type Length Dec Index
 1 CLASSNAME CHARACTER 32 N
 2 FILENAME CHARACTER 80 N
 3 UPBMPID NUMERIC 5 N
 4 DOWNBMPID NUMERIC 5 N
 5 UPXOFF NUMERIC 5 N
 6 UPYOFF NUMERIC 5 N
 7 DOWNXOFF NUMERIC 5 N
 8 DOWNYOFF NUMERIC 5 N
 9 WIDTH NUMERIC 5 N
 10 HEIGHT NUMERIC 5 N
 11 BORDER LOGICAL 1 N
 12 CATEGORY CHARACTER 32 N
 13 GROUP NUMERIC 2 N
--
** Total ** 188

If you want to use custom bitmaps for a control, you should create two bitmaps in a
DLL. One to display when the control is not selected or "up" and another for when it is
selected or "down". You can use Resource Workshop to create the controls. Resource
Workshop is available with Borland C++.

To conserve resources, you can store more than one glyph or image in a bitmap
resource. If you combine bitmaps, use the UPXOFF, UPYOFF, DOWNXOFF, and
DOWNYOFF to distinguish each glyph. You can ignore these fields if you store each
glyph in a separate bitmap resource.

The Category determines which tab the control appears on. If the category is blank, the
control displays in the Custom tab. You can use numeric values in the Group field to
create separate groups within a category. If you leave the group blank, the controls in
the same category appear as a single group.

The Field Palette
You can use the Field Palette to quickly add data aware controls to a form without
manually setting the DataLink property. The Field Palette reflects the current view. Any
fields in the view appear as controls in the Field Palette. The categories of the Field
Palette correspond to tables in the current view. When using page tabs, the fields appear
on the page with the associated table name. If the view only contains one table, the Field
Palette contains only one page.

You can add fields to a form from the Field Palette the same way you add controls from
the Control Palette. Simply drag and drop fields from the palette onto the form. Once
the field is on the form, you can use the Inspector to customize it.

40 U p g r a d e G u i d e

Figure 4.17 Two tables in the Field Palette

If you open the Field Palette without setting a view, it appears blank except for the
pointer button. When you change the view, the Field Palette refreshes to show the new
fields.

While you normally want to dock the Control Palette, most developers find that the
Field Palette works better in a floating window. The Field Palette is useful when you
begin designing a form. Once you have all the data controls on the form, you can clear
the work area by closing the Field Palette.

The glyph next to each field shows you what control will appear for that field. For
example, the binary Signature field appears in an image control and Credit_OK will
appear as a CheckBox. The field type determines the control. In this case the CheckBox
appears for logical fields and the Image appears for binary image fields.

Figure 4.18 Customizing the Field Palette

You can customize the Field Palette to use different controls for the various field types.
All the field types can work with EntryFields. Many field types can also work with
specialized controls such as the SpinBox and the Editor. The Field Palette always
associates character fields with EntryFields.

To change the associations, select Layout|Associate Control Types with Field Types.
The associations control the Form Expert as well as the Field Palette. You can also open
the associations dialog shown in Figure 4.18 from the Form Expert.

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 41

Creating multiple page forms
Forms now contain pages for breaking complex forms into a group of logical pages.
Pages give forms depth, where each page is a layer. The top layer is page one. By default
forms open at page one. For simple forms or dialogs you can simply use page one. For
forms with many controls, you can use as many as 255 pages.

Figure 4.19 dBASE dialog with six pages

dBASE contains examples of single and multiple page dialogs that you can use as a
guide for designing your own forms. The dialog for Field Palette Properties contains a
few controls that exist on a single page, while the dialog for Desktop Properties has
many controls separated into six logical pages. dBASE uses the TabBox to navigate
between pages.

While it is common to use a TabBox to move between pages, the TabBox is not tied
specifically to paging. The page implementation is extremely flexible. Any event on any
control can change the current page number.

Forms and controls include a PageNo property. The PageNo of the form determines the
current set of controls. The PageNo of a control associates it with a page. For instance, if
the current form PageNo is 1, all controls that have a PageNo of 1 appear. If you change
the form PageNo property to 2, the controls with PageNo of 1 disappear and controls
with a PageNo of 2 appear.

Moving between pages at design time
When you are working in the Form Designer, you navigate between the pages to drop
controls. For example, you could drop some fields on page 1, switch to page 2 and drop
some more. The designer gives you several ways to quickly move between pages.

• Using the keyboard, press PgUp and PgDn

• From the menu, select View | Previous Form Page or View | Next Form Page

• Using the mouse, click on the page navigation SpeedBar buttons.

For forms with many pages, you can use the View | Go to Form Page Number. This
opens a dialog for navigating to a specific page. All the Navigation options change the
Form's PageNo property.

42 U p g r a d e G u i d e

The best way to see how multiple page forms work is to create one. Use the following
example to create a multiple page form:

1 Create a new blank form.

2 Set the View property to the sample table CUSTOMER.DBF.

3 From the menu, select View|Field Palette.

4 Drag and drop the Name, Street and City fields onto the form. Position the Name
field near the top of the form. Resize the fields as needed.

5 Press PgDn to move to page 2.

6 Drag and drop the Signature field onto the form. Resize the signature image to leave
some blank space at the top of the form. After placing the signature field, the form
should appear similar to Figure 4.20.

7 Close the Field Palette.

Figure 4.20 Adding the Signature Field to page 2

8 Use the PgUp and PgDn keys to move between the pages.

The current page appears in the status bar. If you move to page zero you will see
controls from both pages.

Page zero
Forms contain a special page for controls that you want to appear on every page. If you
examine the Desktop Properties dialog in Figure 4.19, you will find four controls that
appear on every page. The TabBox for navigating pages and the OK, Cancel, and Help
push buttons appear on every page. You can achieve a similar effect using page zero.

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 43

If you press PgUp in the Form Designer when your are on page 1 you will end up at page
zero. If you switch the Form's PageNo property to zero, all controls appear. This
normally causes controls to overlap.

In multiple page data entry forms, you can place key fields on page zero. The key fields
help users keep track of the current record. Follow the steps to move the entry field to
page zero.

1 From the menu, select View|Go to Form Page Number.

2 Enter "1" and click OK. This changes the Form's PageNo property to 1.

3 Select the top control, EntryField1. It has a DataLink to the Customer Name.

4 Open the Inspector, select View|Inspector.

5 For the EntryField1 control, set the PageNo to 0. The PageNo property appears in the
Visual Properties group as shown in Figure 4.21.

The control will now appear on all pages. Switch between the pages using PgUp and
PgDn to see how the custom name appears on every page.

At run time the PgUp and PgDn keys control record navigation. PgUp moves to the
previous record, while PgDn moves to the next record. You need to add some other
mechanism to change pages when a form is running. Continue to the next section to see
how to add a page navigation TabBox.

Adding a control to move between pages at run time
Switching pages in the Form Designer changes the Form's PageNo property. To switch
pages at run time you need a control that does the same thing.

You can accomplish this using any control or set of controls. For instance you could
create a series of push buttons labeled one, two, three, etc. Each button could then set the
PageNo property to a specific value in the OnClick Event. The most common way to
move through pages is with a TabBox control. Use the following steps to complete the
multiple page form example with a TabBox.

Figure 4.21 Setting the PageNo to zero

44 U p g r a d e G u i d e

1 Go to Form Page zero.

2 Add a TabBox control. Be sure to use the standard TabBox control rather than a
custom control.

3 Open the Inspector. From the menu, select View|Inspector.

4 Find the DataSource for the TabBox.

5 Set the DataSource property to an array containing "Address" and "Signature". You
open Visual Property Builders using the tool button or enter the following directly in
the Inspector. In either case be sure to remove the default value "TABBOX1" from the
array.

ARRAY {"Address","Signature"}

6 Locate the OnSelChange event for the TabBox.

7 Enter the following code block. Be sure to include a leading semicolon. This code
block sets the form's PageNo property to a number corresponding to the selected tab.

; FORM.PageNo = THIS.CurSel

8 If you have the sample custom control library BUTTONS.CC loaded add a custom
Close button as shown in Figure 4.22. Place the close button on page zero.

9 Switch back to page one before saving your form. When you save a form, dBASE
remembers the current page number and uses it as the active page at run time. If you
save the form while on page zero, all the controls will appear when you run the form.

The form is now complete. You can press F2 to save and run your form. If you want to
add more pages simply drop the controls on them. For each new page, add one element
to the TabBox DataSource array. Any element you add to the array becomes a new tab.

Figure 4.22 Adding a page navigation TabBox

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 45

Working with more than one form
Visual dBASE makes it easy to create applications with many forms. When you open
more than one form you can provide each form with a separate data session or let them
share a view. Any form can also open as a modeless window or a modal dialog. The
CREATE SESSION command and the form's View property give forms an independent
data environment. The form's new DesignView property helps you design forms that
share data. When you save a form, the designer includes an optional parameter to open
the form as a dialog.

Using sessions to create independent data environments
The default behavior of the dBASE Navigator opens forms in separate sessions. As one
form opens and closes tables, the other forms are not affected. This behavior is desirable
for forms that do not use the same tables or views. It lets the user switch between forms
as separate applications.

Many applications use a main form or menu to open other forms. You can open
additional forms in any event. The two most common events are the menu and push
button OnClick. In either case, opening an additional form involves three steps as
shown in the following code.

Procedure PUSHBUTTON1_OnClick
 CREATE SESSION && step 1 - make a session
 SET TALK OFF && step 2 - session specific settings
 DO form2.wfm && step 3 - open the form

The first step is to create a session. The session must exist before creating an instance of
the form. A Form is permanently attached to the session which is active when the form
is created. If you define a form prior to creating a session, they are not linked.

The second step is to make any session specific settings. Creating a session is similar to
starting another copy of dBASE. Each new session starts with a fresh environment.
Settings that applied to the previous session, do not apply to the current session. Even
though TALK was OFF in the prior session, it will be ON by default in the new session.

The third step is to open the form. To open it as a modeless window, simply DO the
WFM file. If you do not include the WFM extension, dBASE will look for a PRG.

If you want a certain form to always open in a separate session, you can add the code for
making a session and setting up the environment to the form's header section. Many of
the sample forms that come with Visual dBASE use this technique.

Sharing the data environment between forms
If you have two forms that work with the same tables or views, you might want to keep
them in the same session. This is useful for forms that provide different layouts for the
same data. For instance, you might have a locate form that uses a browse control to
quickly find records and an update form showing only one record to edit a table. In this
case, you can let the two forms share the same view in the same session. This insures
that moving the record pointer in the browse control on the first form also moves the
record pointer in the second form.

46 U p g r a d e G u i d e

To create view sharing forms it is helpful to select one form that will open first. In the
case of the locate and update forms, the first one to open is the locate form. You can
design and open the locate form as you would any other form. That is, you can set the
View property and open it within a session.

For a second form, such as the update form, do not set the View property. Instead set the
DesignView property. This provides a data environment in the Form Designer.
DesignView lets you use the Field Palette to quickly add fields and the Visual Property
Builders to set DataLink and DataSource properties.

If you set the View property for the second form and ran it in the same session as the
first form, it would close and reopen the tables. That repositions the record pointer and
is generally not what you want when sharing data between forms. The DesignView
property only creates the view when you are in the Form Designer. It is up to you to
make sure the appropriate data environment exists at run time.

To open the second form that will share data with the first form, simply run the WFM
from an event on the first form without creating a session. Using the locate and update
example, you might have an UpdateButton on the Locate form to open the Update form.
The OnClick only needs a single line of code that can appear in a code block. Here is an
example of calling a form called Update.WFM from the OnClick event of an
UpdateButton.

Form.UpdateButton.OnClick = { ; DO Update.WFM }

Using a form for modal dialog
Forms can appear as modeless windows or modal dialogs. The default behavior for a
form is to be a modeless window. The Navigator and Command Window are examples
of modeless windows. You can click between them at any time. When a form appears as
a dialog, you cannot switch away from it. Dialogs require some type of input and
normally invoke some activity such as opening a table. Examples of modal dialogs are
the Table Open dialog and the About box. If you select Help|About from the menu, a
dialog appears and you cannot select the Navigator until you close the dialog.

Code saved by the Form Designer includes a new parameter for opening a form as a
modal dialog. Simply pass a .T. to the WFM and the form will appear as modal dialog.
For example:

DO myform.wfm WITH .T. && opens the form as a modal dialog.
DO myform.wfm && opens the form as a modeless window.

Dialogs have a fixed height and width. Since a dialog cannot be resized, it cannot appear
within an application's MDI space. The code in the WFM sets the MDI property to .F.
(false) for all modal dialogs. Here is the header code that controls modal behavior in a
WFM.

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 47

parameter bModal
local f
f = new DTESTFORM()
if (bModal)
 f.mdi = .F. && ensure not MDI
 f.ReadModal()
else
 f.Open()
endif

Note If you have forms created in dBASE 5.0, you can open them in the designer and select
File|Save and Close. Visual dBASE will add the new parameter when it saves the form.

Other changes
Along with the major enhancements to the Form Designer, you will find some revisions
that make it easier to arrange and modify objects. There are new options for sizing
controls, applying font and color schemes, and a simpler way to rearrange the tab order.
There is also a new windowing option.

There is a new Arrange Designer Windows option on the Window menu. Choose this
option to quickly reposition the inspector, palettes, and editor so all controls are visible
and logically organized.

Size
Four new sizing options let you resize groups of controls. The sizing options are
available from the Layout menu. To use the size options, select a group of controls and
pick one of the following options.

• Horizontal Grow To Largest

• Horizontal Shrink To Smallest

• Vertical Grow To Largest

• Vertical Shrink To Smallest

You can select a group of controls by clicking and dragging a lasso around all the
controls you want in the group. This is the easiest method for controls that are next to
each other. To group non-consecutive controls, hold down the shift key while clicking
on the different controls.

The horizontal sizing options change the Width property while the vertical options
change the Height property. The size options do not alter the top or left properties of
any control. You can use the alignment menu options and SpeedBar buttons to adjust
the Top and Left properties to relative coordinates.

Schemes
Another new option on the Layout menu is Set Scheme. This option lets you take
advantage of the Form Expert's scheme step on existing forms. When you apply a
scheme to an existing form, the dBASE categorizes the areas as follows:

48 U p g r a d e G u i d e

• Title is a text control with the name "TITLE". The scheme also recognizes custom
classes derived from the Text stock class.

• Non-Editing Controls include controls using or derived from the following stock
classes: CheckBox, RadioButton, Rectangle, TabBox and Text.

• Editing Controls include controls using or derived from the following stock classes:
Browse, ComboBox, Editor, EntryField, SpinBox and ListBox.

• PushButtons includes all PushButtons.

• Shapes includes shapes and lines. Neither of these controls can get focus or appear in
the tab order.

• Form sets the background color of the form, the title and all non-editing controls.

Some controls do not fall into any scheme categories. The OLE and Image controls do
not include font or color properties. dBASE does not draw colors or fonts into the area
defined by PaintBox. VBX controls use their own default colors and fonts.

ScrollBar always defaults to using the relative ScrollBar color. Relative colors
correspond to the current color scheme setup of the Windows environment. Users can
change relative colors using the Windows Control Panel.

There are two ways to work with a Scheme. You can use the "Apply Now" push button
to set all the controls on your current form to the colors and fonts of the scheme.

You can also leave your current form colors intact and select a scheme for new controls.
In this mode, the controls already on your form keep their colors while field and control
palettes take the fonts and colors of the scheme.

When you are working the Scheme designer, do not confuse OK with Apply Now. The
OK button establishes the selected scheme for use with new controls only. If you want to
change controls already on the form you must select Apply Now.

Set Order
Setting the tab order and Z-Order of controls is now easier than ever. The Z-Order refers
to the order of overlapping controls. Tab order is a subset of Z-order, for controls that
have a TabStop property. The Visual dBASE improves upon the order view of dBASE
5.0 and adds a new Set Order tool.

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 49

Figure 4.23 Using the Set Order Tool

The Set Order Tool shown in Figure 4.23 lets you reorder controls listed by name or
value. To open the Set Order tool, select Layout|Set Control Order.

The new Order View now shows you the controls as they appear at run time. You can
still order controls by clicking on the first control and clicking on all other controls in the
desired order. In addition, you can reorder controls from any position. For instance, if
you have twenty controls and want to rearrange the last two, simply Shift-Click on the
third to the last control. The Shift-click establishes a relative starting point and allows
you to reorder all remaining controls.

Popup menus
Visual dBASE includes a new fully object-oriented popup designer to complement the
existing menu designer. Popups are generic menu objects that you can open on any
event. The common use of a popup is a menu that appears when using the right mouse
button. dBASE refers to such menus as SpeedMenus.

You can easily create your own SpeedMenus using the Popup Designer and the form's
PopupMenu property. If you use the PopupMenu property, the popup appears
whenever the user right clicks on a form.

If you need more precise control, you can position and open the popup on an event. The
popup class contains top and left properties for positioning and an OPEN() method for
activation. You can use top, left and OPEN() to create popups that appear at the control
level rather than the form level.

50 U p g r a d e G u i d e

Using the Popup Menu Designer
The popup menu designer works much like the standard menu designer. The major
difference is that the popup designer does not let you create a menu bar. Tabbing from
the first menu item creates a pull-right. Follow the steps below to create a popup with
options for adding records, deleting records, and closing a form.

1 Start creating your popup by invoking the popup designer. You can use the CREATE
POPUP command or select File|New|Popup.

2 Create prompts for the SpeedMenu. You can enter the menu prompts directly onto
the designer surface. Create three new prompts by entering "Add", "Delete" and
"Close". Use the up and down arrow keys to navigate from prompt to prompt.

3 Attach a method to the OnClick event of the "Add" menu. The Inspector and
Procedure Editor are available in the popup and menu designers. Use the
SpeedMenu to open the Inspector. From the ComboBox at the top of the Inspector,
select form.root.add. Click on the "Events" tab to see OnClick event. Use the tool
button on the OnClick event to open the Procedure Editor as shown in Figure 4.24.
dBASE automatically generates the procedure statement and an appropriate name.
You can modify the name if you wish, otherwise simply enter the APPEND BLANK
command so the method reads:

Procedure ADDOnClick
 APPEND BLANK

To create an OnClick event for "Delete" that asks for a confirmation. Click on the
"Delete" prompt in the menu designer. The Inspector switches to show the events page
for form.root.delete. Click on the tool button next to OnClick and enter the method as
follows:

Figure 4.24 Creating a popup menu

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 51

Procedure DELETEOnClick
 IF MSGBOX('Delete record?','Alert',36) == 6
 DELETE
 GOTO TOP
 ENDIF

1 Finally add an OnClick event that will close the form. Click on the "Exit" prompt in
the menu designer. The Inspector switches to show the events page for form.root.exit.
Since forms serve as containers for popups and menus, events can refer directly to the
form and controls within it. The CloseOnClick method should read:

Procedure EXITOnClick
 FORM.CLOSE()

2 After adding the events save the popup as SPEED.POP. From the menu select File|
Save and Close or press Ctrl-W.

Popup menus appears in the custom view of the Navigator. You can right-click on a
popup and select Edit as Program to see the source code. The Popup Designer is another
Two-Way-Tool. The Popup Menu Designer recognizes modifications you make to the
source code.

The PopupMenu property
After creating a popup menu, you can attach it to the form. You can create a SpeedMenu
by setting a form's PopupMenu property to a popup. This is easily accomplished in the
OnOpen event.

Note The PopupMenu property takes an object reference. Unlike MenuFile, you cannot set it
to a file name. This allows you to set PopupMenu to any popup regardless of how you
create or store it.

If you created the SPEED.POP file in the previous section, you can follow these steps to
make it into a SpeedMenu. Before you can work with popup you need a form.

1 Create a new form using the Form Expert. Try using the dBASE language to start the
expert. From the menu select Window|Command and enter:

| CREATE FORM EXPERT

2 Choose the ANIMALS.DBF from the samples directory and click on Next.

3 Use >> to select all fields and click on Next.

4 Proceed through the rest of the Expert selecting any layout or scheme. When you get
to the last step of the Expert, select Design Form to place your new form in design
mode.

52 U p g r a d e G u i d e

5 Right-click on the Form Designer window and select Inspector from the SpeedMenu.

6 Click on the events tab and scroll down to the form's OnOpen event. When you find
the OnOpen event, click on the tool button (wrench) to open the procedure editor as
shown in Figure 4.25.

7 The Procedure Editor appears with a method heading. Since dBASE already named
this method and linked it to the OnOpen event, all you need to do is enter what you
want to happen during the event. Enter the following commands to create a
SpeedMenu from the SPEED.POP file:

Procedure FormOnOpen
 SET PROCEDURE TO speed.pop ADDITIVE
 FORM.PopupMenu = NEW SpeedPopup(FORM, "SpeedMenu")

8 When you finish writing the procedure, test your form. Press F2 or select View|Form
from the menu.

Right-Click anywhere on your form to see the popup shown in Figure 4.26. The
PopupMenu property gives dBASE the ability to automatically position the popup at
the mouse pointer. If you pick Add or Delete, the appropriate event fires and all controls
refresh after the event.

Figure 4.25 Attaching a Popup to a Form

Figure 4.26 Using a Popup

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 53

The MenuBar
Most Windows applications include an Edit menu that works with the clipboard and a
Window menu for moving between MDI windows. The Menu Designer eases the
creation of Edit and Window menus with the MenuBar class. Like Popup, a MenuBar
serves as the root object in a menu.

All other objects in the menu tree are from the Menu class. The MenuBar class includes
the following properties for setting up standard Edit and Window menus.

• EditCopyMenu gives a menu the action of copying selected text to the clipboard. It
also enables the menu when something is selected.

• EditCutMenu gives a menu the action of moving selected text to the clipboard. Like
EditCopyMenu, it only enables the menu if something is selected.

• EditPasteMenu gives a menu the action of pasting text from the clipboard into the
current control. It enables the menu if something is in the clipboard and focus is on a
control that accepts clipboard information.

• EditUndoMenu gives a menu the action of undoing the last clipboard operation.

• WindowMenu creates a menu item for each MDI window. Each new menu item has
the action of setting focus to the selected window.

The MenuBar properties are similar to the form's PopupMenu property. You can set
them to menu objects in the current menu tree. PopupMenu is normally setup in a
form's OnOpen event. You can also set the MenuBar properties in the OnOpen event or
encapsulate the action in the MenuBar OnInit event.

The MenuBar OnInit event fires when focus moves to any part of the menu tree. The
OnInit event also provides a central location to the set menu Checked and Enabled
properties.

Creating an Edit menu
The Menu Designer has a new option to create all four edit menus. This automates the
process of creating the menus and setting the text and short-cut properties. Follow the
steps to create a new menu file and add a complete Edit menu.

1 Create a new menu. You can select File|New|Menu, use the New SpeedButton or
enter the CREATE MENU command.

2 Add an Edit menu by selecting Menu|Insert "Edit" Menu. This option is available if
the cursor is in the menu bar. If you want to add an Edit menu to an existing menu,
place the cursor where you want the menu to be. When you select Menu|Insert
"Edit" Menu, dBASE will move the current menu and all following menus to the
right.

54 U p g r a d e G u i d e

3 Inspect the MenuBar object. All visible menus are menu objects. The MenuBar Object
is the parent of each top level menu. The reference to the MenuBar is FORM.ROOT.
Open the Inspector with View|Inspector. From the ComboBox at the top of the
Inspector, select FORM.ROOT.

4 Examine the properties of the MenuBar. See if the EditCopyMenu, EditCutMenu,
EditPasteMenu and EditUndoMenu are set to objects.

5 Switch over to the Events page for the MenuBar. Try using the keyboard instead of
the mouse. Press the Tab key to move to the page tabs and use the arrow keys to
switch pages. The MenuBar only has one Event, OnInitMenu. You can designate
MenuBar properties by placing the following code in the OnInitMenu event.

This.EditCopyMenu = This.Edit.Copy
This.EditCutMenu = This.Edit.Cut
This.EditPasteMenu = This.Edit.Paste
This.EditUndoMenu = This.Edit.Undo

6 When you finish designing the menu, save it as BAR1.MNU.

To test out the menu, modify any form that has editing controls so the MenuFile
property is set to BAR1.MNU. When you run the form, your Edit menu appears and
functions with any controls on the form.

Creating a Window menu
Adding a Window menu is similar to adding an Edit menu. The main difference is that
the menu items appearing below the Edit menu are static and visible in the designer,
while the items under the Window menu are dynamic and not visible in the designer. If

Figure 4.27 Inspecting the MenuBar object

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 55

you created the BAR1.MNU file in the previous example, try adding a Window menu as
shown below.

1 Open BAR1.MNU in the Menu Designer. You can locate it in the custom section of
the navigator or in a file open dialog by selecting File|Open and choosing *.MNU as
the File Type. Entering MODIFY MENU BAR1 in the Command window also works.

2 Press Tab to move the cursor to the right of the Edit menu. The standard menu layout
always places the Window menu to the right of the Edit menu and that is where you
will want to be.

3 From the menu, select Menu|Insert "Window" Menu.

4 Open the Inspector switch to FORM.ROOT to examine the MenuBar object.

5 See that the WindowMenu property is set to the new Window menu object. The
following command sets the property for you.

FORM.ROOT.WindowMenu = FORM.ROOT.Window

6 Save and close the menu.

Try using the menu with an MDI form. If you use it with a non-MDI form, the Window
menu appears with no items under it. When you are setting up an application with
multiple MDI windows and custom menus, it is a good idea to hide the Command and
Navigator windows. This gives applications full control of the dBASE environment. To
remove the Command and Navigator windows from the MDI space, add SHELL(.F.) to
the form's OnOpen event.

Note WindowMenu, EditCopyMenu, EditCutMenu, EditPasteMenu, and EditUndoMenu are
properties of the MenuBar class, not the Menu class.

SQL Statement Builder
The SQL Statement Builder is a utility for creating SQL statements and learning the
differences between SQL and dBASE. SQL, Structured Query Language is the most
common language for working with a relational database system. It only contains a few
commands and all the commands involve data manipulation. DML (Data Manipulation
Language) commands are restricted to data specific functions such as such relating and
updating tables. The SQL Statement Builder lets you create SQL DML commands.

SQL does not include any commands for controlling program flow, the user interface,
defining classes, etc. Other languages such as COBOL, C++, Object Pascal and dBASE
provide a framework for SQL.

The dBASE Language contains statements such as SET RELATION, REPLACE and
APPEND BLANK. Visual dBASE lets you mix and match SQL and dBASE DML
statements in the same program. The Query Designer is a Two-Way-Tool that works
with dBASE DML to create views and relations between tables. You can perform the
same operations and update tables using the SQL Statement Builder. You can create
.QBE files that contain SQL using the SQL Statement Builder.

56 U p g r a d e G u i d e

Running the SQL Statement Builder
The setup program installs the SQL Statement Builder in the UTILS subdirectory. If you
installed Visual dBASE to D:\VISUALDB, the SQL Statement Builder will reside in D:\
VISUALDB\UTILS.

Note The SQL Statement Builder is only available if you choose a full installation or used the
custom setup option to include 'Utilities and Custom Controls'. See chapter one for more
information on the setup program.

Follow these steps to run SQL Statement Builder and retrieve data from the sample
Animals table.

1 From the Navigator, select the utilities directory. You can also enter the following
command in the Command window.

CD D:\VISUALDB\UTILS

2 From the menu select View|Forms. The SQL Statement Builder is a dBASE form
named SQL.WFM. Double click on the form to start it. If your using the Command
window, enter:

DO SQL.WFM

3 You can create four types of SQL statements: Select, Update, Insert and Delete.
Regardless of what type you are building, you must begin by selecting a table. For
now, try creating a Select statement. Click on the tool button to pick a table.

4 Choose all fields from the Animals table. To pick the Animals table, use the directory
button to navigate to SAMPLES directory. Highlight ANIMALS.DBF as shown in
Figure 4.28. Click on >> to choose all fields.

Figure 4.28 Using the SQL Statement Builder

C h a p t e r 4 , W o r k i n g w i t h t h e n e w v i s u a l t o o l s 57

5 After picking a table, you can visually create three additional clauses to the Select
statement.
• Where lets you place a logical constraint on what rows appear in the table. This is

similar to the SET FILTER command. dBASE can create updatable cursors
regardless of whether you add a where clause or not. The clause for rows that have
a size is greater than ten is:

WHERE size > 10

• Group By summarizes your table. You can use group by with aggregate functions
to get averages, sums and counts for any column. For instance you could get a
count by area. Using the Group By clause is similar to the TOTAL ON command.
When you use the Group By clause, dBASE creates an answer table.

• Order By places your table in a specific order. This is similar to setting an index or
using the SET ORDER command. If no index exists, the behavior is more like the
SORT TO command resulting in a read-only answer table.

After adding any additional clauses, you can run the query and browse the result. There
is also a Show SQL button to view the SQL statement. If you want to use the statement
in your program, select Show SQL and copy the statement to the clipboard. You can
then paste it into your program.

Figure 4.29 Working with the SQL examples

SQL templates and examples
Use the Templates page and Examples page to learn more about SQL. Templates show
how you can add visual query builders into your own applications. The examples let
you compare and contrast SQL statements created by the SQL Statement Builder with
the dBASE command created by the Query Designer.

Note See Chapter 8 for a reference guide to embedded SQL.

58 U p g r a d e G u i d e

C h a p t e r 5 , D a t a b a s e a d m i n i s t r a t i o n 59

C h a p t e r

5
Chapter 5Database administration

This chapter covers the data administration tools for local and remote tables. It should
be read by database administrators who are responsible for referential integrity and
data security.

The first section of this chapter describes how to create and modify referential integrity
rules for Paradox tables and remote servers, such as InterBase, ORACLE, and Sybase.
Topics include:

• Defining referential integrity
• Update and delete behavior
• Changing or deleting referential integrity rules

The second section shows how to plan out your security scheme. Topics include:

• The various levels of security
• An overview of the various aspects of the Protect feature
• Planning group access for each table
• Planning each user’s login and user access level
• Planning user access to tables and fields within tables

The last section of this chapter shows how to set up your security scheme using the
Protect feature in Visual dBASE. It shows how to,

• Enter the database administrator’s password
• Create user profiles
• Set user privileges for table access
• Set user privileges for fields within tables

Referential integrity
Referential integrity means that a field or group of fields in one table (the “child” table)
must refer to the key of another table (the “parent” table). Only values that exist in the
parent table’s key are valid values for the specified field(s) of the child table.

60 U p g r a d e G u i d e

Figure 5.1 Referential integrity

You can establish referential integrity only between like fields that contain matching
values. For example, you can establish referential integrity between the sample
Customer.db and Orders.db tables on their Customer No fields. The field names don’t
matter as long as the field types and sizes are identical.

Visual dBASE lets you establish referential integrity for any file type that supports it.
You cannot establish referential integrity between .DBF files; however, you can use .DB
files if you need referential integrity. You can also use some SQL server tables if you
need referential integrity. See your server documentation to determine if your table type
supports referential integrity.

Defining referential integrity
You can establish referential integrity between tables in the current database. If no
database is specified, you can establish referential integrity between tables in the current
directory.

To define a referential integrity relationship,

1 Choose File|Database Administration.

The Database Administration dialog box appears.

2 Specify a Table Type that supports referential integrity, such as Paradox, then choose
Referential Integrity.

The Referential Integrity Rules dialog box appears.

3 Choose New.

CUSTOMER Customer No Name City

Users cannot enter a value in the
Orders Customer No field if it doesn’t
match an existing value in the
Customer Customer No field.ORDERS Order No Customer No

Figure 5.2 Referential Integrity Rules dialog box

C h a p t e r 5 , D a t a b a s e a d m i n i s t r a t i o n 61

The New Referential Integrity Rule dialog box appears. All tables in the current
database or directory appear in the Parent Table and Child Table lists.

4 Choose the parent table from the Parent Table list. The table’s key fields appear in the
Primary Key Fields area of the dialog box.

5 Choose the child table from the Child Table list. Fields available for referential
integrity appear in the Available Child Fields list.

6 Specify whether the tables are in a one-to-one or one-to-many relationship in the
Relationship section. The relationship you choose changes the available child fields.
• One-to-one relationships can be defined between the primary key field in the

parent and the primary key field in the child, or any field in the child that has a
unique index.

• One-to-many relationships can be defined between an indexed field that is not the
primary key in the child and the primary key field in the parent.

7 Choose the child table’s field in the Available Child Fields list and click the Add Field
arrow. The field name appears in the Related Child Fields area of the referential
integrity diagram.

You can establish referential integrity with a composite key. If the parent table has a
composite key, add fields from the Fields list to match all of the parent’s key fields.

8 Select the update and delete behavior you want. (See “Update and delete behavior”
later in this section.)

9 Optionally change the rule name Visual dBASE provides.

10 Choose OK to save the referential integrity relationship.

Note If you attempt to define referential integrity on a table that already contains data, some
existing values may not match a value in the parent’s key field. When this happens, the
operation fails to complete and you receive an error message.

62 U p g r a d e G u i d e

Update and delete behavior
You can specify the following rules for updating and deleting data in a parent table that
has dependent records in a child table:

• Restrict: You cannot change or delete a value in the parent’s key if there are records
that match the value in the child table.

For example, if the value 1356 exists in the Customer No field of Orders, you cannot
change that value in the Customer No field of Customer. (You can change it in
Customer only if you first delete or change all records in Orders that contain it). If,
however, the value doesn’t exist in any records of the child table, you can change the
parent table.

• Cascade: Any change you make to the value in the key of the parent table is
automatically made in the child table. If you delete a value in the key of the parent
table, dependent records in the child table are also deleted.

The availability of cascading updates and deletes varies according to the data source:

• Paradox: Cascading updates only
• Oracle: Cascading deletes only
• Sybase: No cascading updates or deletes permitted
• InterBase: No cascading updates or deletes permitted
• ODBC: No cascading updates or deletes permitted

Changing or deleting referential integrity
You can choose any referential integrity name from the list of named referential
integrity relationships in the Referential Integrity Rules dialog box to either modify or
delete it.

• Choose Edit to open the Edit Referential Integrity Rule dialog box with the selected
referential integrity relationship filled in. You must be able to obtain exclusive access
to all tables involved in the referential integrity when you modify it.

• Choose Drop to delete the selected referential integrity relationship.

Visual dBASE security
The Protect system can be used to create and maintain security on a dBASE system.
Protect only affects dBASE (DBF) tables; it cannot be used with other file formats.
Protect can be used on a single computer or in a network environment.

Protect is optional; you don’t have to use it. Once in place, however, the security system
will always control access to the affected tables.

C h a p t e r 5 , D a t a b a s e a d m i n i s t r a t i o n 63

Three levels of security
There are three distinct types of database protection, which occur in the following order:

• Login security limits access to Visual dBASE (or to any protected dBASE table) to
authorized personnel only.

Login security is the first security level. By default, once login security is in place,
users can’t access Visual dBASE until they pass login security. You can set up the
security scheme so that users are not forced to login until they try to access a
protected table.

• Data encryption scrambles dBASE tables so that unauthorized users can’t read the
information.

Data encryption scrambles data so that it can’t be read until it is unscrambled. An
encrypted file contains data that has been translated from source data to another
form that makes the content unreadable. If your database system is protected, Visual
dBASE automatically encrypts and decrypts tables and their associated index and
memo files.

• Table and field security lets you define which tables, and which fields within tables,
users can access.

Table and field security is the final security level. It determines what a user can do
with both a table and data within the table, and can be used to control processing of
program code.

You must implement the security types in the order listed above. For example, you can’t
establish table and field security without first creating login security. Similarly, you
must create login security to have data encryption. It is not necessary to implement all three
levels of security. Many database administrators implement only login security.

Make sure that users know how to request table protection, if they’ve created a table
that should be protected. Consider developing a form that users can submit to make
such requests. Also, keep a hard copy of your security information.

Login security
Protect allows you to create a password-protected system. If password protection is in
force,

• Users can only gain access to Visual dBASE by entering a valid login statement. The
login statement consists of three items: a group name, a login name, and a password.

• The user login screen appears whenever a user tries to start Visual dBASE. All paths
into the database system initiate the login process.

Decide how your users are to be assigned logins. Will they select their own user login
name, password, and group membership, or will you assign them? If you allow users to
select values for the login, be sure they know how long user names and passwords can
be, and what characters can be used in them.

64 U p g r a d e G u i d e

Password files
When you establish login security, Visual dBASE creates and maintains the
DBSYSTEM.DB password file, which contains records for each user that you define
through the Protect feature. DBSYSTEM.DB stores user profiles, including each user’s
login name, account name, password, group name, and access level.

When a user starts Visual dBASE at a network workstation, dBASE looks for the
password file in the dBASE directory. If it’s found, the login process is initiated. If it’s
not found, the user cannot log in.

DBSYSTEM.DB is maintained as an encrypted file that can be decrypted by dBASE.
Only a database administrator can view and modify this information.

Groups and user access
Once you have established login security for Visual dBASE, you can control access to
individual database tables (and to fields within those tables).

Table access
First, you’ll need to define user groups and determine which group has access to which
table. Try to organize users and tables into groups that reflect application use (for
example, by department or sales area).

• A table can be assigned to only one group. If the user group and table group do not
match, the user cannot access the table.

• Typically, each group is associated with a set of tables. By associating each
application with its own group, you can use the group to control data access.

• A user can belong to more than one group. However, each group that a user belongs
to must be logged-in separately.

• If a user needs to access tables from two different groups in the same session, the user
must log out of one group, then log in to the second. A user may have separate logins
into different groups in separate sessions to access files in different groups. See
Chapter 5 for a description of sessions.

User profiles and user access levels
You’ll need to develop a user profile for each user in each group. As part of each profile,
you’ll assign to the user an access level. Each user’s access level is matched with the
table’s privilege scheme (see the next section) to determine what access the user has to
the table and, within each table, to each field. For example, if you establish a read
privilege of 5 for a table, users with a level from 1 to 5 can read that table. Users with a
level of 6 or higher can’t read the table.

By establishing access levels within a group, you can give different users different kinds
of access to the table and to fields within the table.

C h a p t e r 5 , D a t a b a s e a d m i n i s t r a t i o n 65

• Access levels can range from 1 to 8 (the default is 1). Low numbers give the user
greater access; high numbers limit the user’s access. The access value is a relative
one—it has no intrinsic meaning.

• The less restrictive levels (1, 2, 3) are typically assigned to the fewest people. To limit
access to data, the more privileges a level has, the fewer users you should assign to
that level.

• You can assign any number of users to each access level.

• If you don’t need to vary the access level of the users within a group, there is no need
to change each user’s default level.

Table privilege schemes
Once you’ve established each users’s access level, you set up a privilege scheme for each
table. A table’s privilege scheme controls three things:

• Which group can access the table. (The user’s group name is matched with the table’s
group name to allow table access.)

• Which user access levels can read, update, extend and/or delete the table (table
privileges).

• Which user access levels can modify and/or view each field within the table (field
privileges).

After a user logs in, Visual dBASE determines what access the user has to that table and
its fields by matching the user’s access level with the rights you specified in the table’s
privilege scheme.

For example, if you assigned a user an access level of 2, that user’s access to the table,
and to various fields within the table, are determined by the privileges you assigned to
level 2 in the table privilege scheme.

In building a table privilege scheme, note that:

• A user’s ability to access a table is a function of both the access level of the group and
the user’s individual access level. However, only the user’s access level determines
what the user can do with a table once it is opened.

• If you do not create a privilege scheme for a table, all users of the group can read and
write to all fields in the table.

• Access rights can’t override a read-only attribute established for the table at the
operating system level.

Table privileges
At the table level, you can control which operations each user access level (1-8) can do:

• View records in a table (read privilege)
• Change table record contents (update privilege)
• Append new records to a table (extend privilege)
• Delete records from a table (delete privilege)

66 U p g r a d e G u i d e

When you create a table privilege scheme, all four table privileges are granted initially.
That is, all table access levels are 8 by default (8 being the least restrictive level).

Field privileges
At the field level, you can control which operations each user access level (1-8) can do:

• Read and write to the field in the table (FULL privilege). This is the initial default.

• Read but not write to the field (READ ONLY privilege).

• Neither read nor write the field (NONE privilege). NONE blocks a user from writing
to fields and from seeing fields you do not want to display.

Data encryption
A table is not encrypted until you select it, edit the access levels, and save the privilege
scheme.

When a table’s privilege scheme is saved, Visual dBASE encrypts the table, including the
production index (.MDX) file and the memo (.DBT) file, if any. dBASE also creates a
backup copy of the original, unencrypted table. To ensure proper security, the backup
files should be archived, then deleted from the system.

Using SET ENCRYPTION
Even after a database system has been protected, the database administrator and
application programmer maintain control over encryption of copied files.

If a database system has been protected, SET ENCRYPTION is ON by default. If you
SET ENCRYPTION OFF, files created with the COPY command won’t be encrypted.
SET ENCRYPTION can be set from either the Command Window or from the Desktop
Properties dialog box in the Properties menu. Refer to online Help for details on this
command.

Warning! If you use the COPY TO command and the target file is anything other than a dBASE
table (.DBF file), then the target file will be unencrypted even if SET ENCRYPTION is
ON.

General procedures
Follow these general steps to set up a protected database system:

1 Plan your user groups.

2 Plan each user’s access level.

3 Plan each table’s privilege scheme, including both table privileges and field
privileges.

C h a p t e r 5 , D a t a b a s e a d m i n i s t r a t i o n 67

Once your planning is done, follow these steps to implement the security scheme:

1 In Visual dBASE, start Protect and define the database administrator password.
2 Define the user profiles, including group membership and access level.
3 Define table privileges.
4 Define field privileges.
5 Set the login security scheme.
6 Save the security information.

The following sections describe these steps in detail.

Planning your security system
This section describes how to plan out your security system. It’s a good idea to think
through user access and table/field rights before you start entering security profiles into
dBASE.

Planning user groups
Take time to think through the various groups you can divide your users into, based on
which types of users need access to which tables. For example, an administrative staff
might need to access some tables that a sales staff does not, or vice versa.

It helps to develop a worksheet, to map this out in advance. The following table shows
one way of organizing this information; use whatever method works best for you.

Table 5.1 Worksheet for defining groups and group members

Table Group User name

CUSTOMER SALES AMORRIS
BBISSING
LJACUS
FFINE

PRODUCT ALL AMORRIS
BANDERS
BBISSING
CDORFFI
LJACUS

68 U p g r a d e G u i d e

Planning user access levels
Next, think about how much access each user needs to the table.

Although there are 8 access levels, you might standardize on 3 levels; one for full access,
one for typical use, and one for minimal access. The next table shows the sample work-
sheet, expanded to show user access levels.

Planning table privileges
Next, plan each table’s privilege scheme.

For each table operation, you’ll determine the most restricted access level that can
perform the operation. All levels less restricted than the specified one can perform that
operation; all levels more restricted than the specified level can’t.

The following worksheet illustrates one way to plan which user access levels grant
which table rights.

Table 5.2 Worksheet expanded to show user access levels

Table Group User name

Level 1
(full
access)

Level 4
(typical
access)

Level 8
(minimal
access)

CUSTOMER SALES AMORRIS X
BBISSING X
LJACUS X
FFINE X

PRODUCT ALL AMORRIS X
BANDERS X
BBISSING X
CDORFFI X
LJACUS X
FFINE X

Table 5.3 Worksheet for defining privileges for table operations

Table Read Update Extend Delete

CUSTOMER 8 4 4 1
PRODUCT 8 4 4 1
ORDERS 8 4 4 1

C h a p t e r 5 , D a t a b a s e a d m i n i s t r a t i o n 69

Planning field privileges
The last planning step is to determine which user access levels can read and/or write to
fields. Consider developing a worksheet similar to the following one.

Setting up your security system
Once you’ve planned out your security scheme, you’re ready to set it all up. This section
describes how to set the database administrator password, how to enter and edit user
profiles, and how to set up table privilege schemes.

Defining the database administrator password
Before initiating the protect system, make sure any open tables have been closed. Follow
these steps to enter the database administrator password:

1 Choose File|Database Administration.

2 In the Database Administration dialog box, make sure that the Current Database field
is set to <None> and the Table Type field is set for dBASE tables.

3 Click the Table Security button.

4 In the Administrator Password dialog box, enter a password of up to 16
alphanumeric characters. You can enter characters in upper- or lowercase. The
password does not appear onscreen.

The first time you use Protect, you’re prompted to reenter the password to confirm.
(In the future, the system gives you three chances to enter the password correctly
before the login terminates.) The Security Administrator dialog box appears, as
shown in Figure 5.4.

Table 5.4 Worksheet for defining field access privileges

Field name Full access Read only No access

PAYRATE Levels 1–2 Levels 3–6 Levels 7–8
FIRSTNAME Levels 1–6 Levels 7–8
LASTNAME Levels 1–6 Levels 7–8
SSN Levels 1–2 Levels 3–6 Levels 7–8

Figure 5.3 Administrator Password dialog box

70 U p g r a d e G u i d e

Warning Once established, the security system can be changed only if the administrator
password is supplied. Keep a hard copy of this password in a secure place. There is no
way to retrieve this password from the system.

Creating user profiles
The Security Administrator dialog box is where you create user profiles and establish an
access level for each user.

Figure 5.4 Security Administrator dialog box

Follow these steps to add a user profile:

1 In the Security Administrator dialog box, select the Users page and click the New
button.

2 Enter a user login name (1–8 alphanumeric characters). The entry is converted to
uppercase.

3 Enter a group name (1–8 alphanumeric characters). The entry is converted to
uppercase.

4 Enter a password for this user (1–16 alphanumeric characters).

5 Select an access level for this user (from 1 through 8; see page 64).

6 Enter the user’s full name (1–24 alphanumeric characters). This entry is optional.

7 Click OK to save the user profile.

You must specify a value for the user login name, group, and password. The full name
is the only optional item in a user profile. Since this item is not used in validating a login,

Figure 5.5 New User dialog box

C h a p t e r 5 , D a t a b a s e a d m i n i s t r a t i o n 71

you can use it any way you want. Frequently, the full name is used to add a more
complete user identification. Alphabetic characters you enter in the Full name option
will not be converted to uppercase.

Changing user profiles
To change a user’s profile,

1 Open the Users page of the Security Administration dialog box.
2 Select the user name of the user you want to change, and click the Edit button.
3 Make the desired changes, then click OK.

Warning! If you edit the group name, there is no way for the user to access tables associated with
the original group. You also shouldn’t delete the group. If you delete all users from a
group before all tables associated with the group are copied out in a decrypted form, no
one can access the tables.

Deleting user profiles
To delete a user profile,

1 Open the Users page of the Security Administration dialog box.
2 Select the user name of the user you want to delete, then click the Delete button.
3 To confirm the deletion, click the Yes button.

Establishing table privileges
You use the Tables page (Figure 5.6) of the Security Administration dialog box to create
and modify table privilege schemes. The table privilege schemes are saved in the table
structure.

Figure 5.6 Tables page

Use the tables page to:

• Assign a table to a specific group.
• Set table access privileges.
• Set field access privileges for each user access level.

Follow these steps to define table and field privileges for a table:

72 U p g r a d e G u i d e

1 Open the Tables page of the Security Administration dialog box.
2 Select a table.
3 Assign the table to a group.
4 Establish the most restrictive access level for each table privilege.
5 Select field privileges for each user access level.

The sections that follow describe these steps in detail.

Selecting a table
To select a table:

1 Open the Tables page of the Security Administration dialog box.

2 In the Table field, type the name of the desired table. (Or click to Tools button and
select the table.)

3 Click the Edit Table button. The Edit Table Privileges dialog box opens.

Assigning the table to a group
A table can be assigned to only one group. The group name is matched with a user
group name to enable data access.

Figure 5.7 Edit Table Privileges dialog box

Select a group for the table by selecting one of the available groups from the Group list
in the dialog box, as shown in Figure 5.7. (These groups were created when you created
user profiles.)

Specify the group
assigned to this table

C h a p t e r 5 , D a t a b a s e a d m i n i s t r a t i o n 73

Setting table privileges
For each type of table operation (see Table 5.5), specify the most restricted access level
that can perform that operation.

To set table privileges, select a value (1–8) for each operation (Read, Update, Extend and
Delete) in the dialog box.

Figure 5.8 Setting table privileges in the dialog box

Note You can’t specify access levels that are logically incompatible. For example, you can’t
prohibit level 6 from having read access, but also permit level 6 to have update access.
To have update access, level 6 also needs read access.

Setting field privileges
You can establish access for each field by user access level. The next table describes the
available field privileges.

Note Table privileges take precedence over field privileges. For example, if a table privilege is
set for Read but not Update, the only meaningful field privileges are Read-Only or

Table 5.5 Table operations

Privilege Access granted

READ View the table contents
UPDATE Edit existing records in the table
EXTEND Add records to the table
DELETE Delete records from the table

Table 5.6 Field privileges

Privilege Access granted

FULL View and modify the field. This is the default.
READ-ONLY View the field only (no update capability).
NONE No access. The user can neither read nor update the field, and the field does not

appear.

Select the minimum user
access level that can
perform each operation

74 U p g r a d e G u i d e

None. You must restrict table privileges to protect your data against table-oriented
commands like DELETE and ZAP. Restricting field privileges to Read-Only or None
without restricting table privileges doesn’t protect data against these commands.

The Fields list in the dialog box lists all of the fields in the table. The Rights buttons
display the field privileges for the current field for access levels 1 through 8. Initially, all
field privileges are set to Full.

Follow this procedure to change a field privilege:

1 Select the field.

2 Click the Rights buttons that correspond to the privileges you want to grant for the
field for each access level.

For example, to set privileges for the field PAYRATE so that users with access levels 1
and 2 have full access, users with access levels 3 through 6 have read-only access, and
users with access level 7 and 8 have no access, define the rights as shown in
Figure 5.9.

3 Repeat the process for other fields in the table.

4 Click OK to save the field access privileges.

Warning! Never change the access rights of the _DBASELOCK field of any table. The rights to this
field must remain Full for all access levels. For details on the _DBASELOCK field see the
CONVERT command in online Help.

Setting the security enforcement scheme
By default, a protected dBASE system requires a user to login when Visual dBASE starts.
If you prefer, you can set the security system to require a login only when a user tries to
load an encrypted table. This permits anyone to use dBASE and to load unencrypted
tables, but prevents unauthorized users from loading protected tables.

To change the security enforcement scheme, follow these steps:

For each field, select
privileges for each user
access level.

Figure 5.9 Setting field privileges in the dialog box

C h a p t e r 5 , D a t a b a s e a d m i n i s t r a t i o n 75

1 Open the Enforcement page of the Security Administration dialog box. The text on
the Enforcement page describes the security enforcement scheme currently in effect.

2 Select the enforcement scheme you want.

3 Click OK.

Adding passwords to Paradox tables
In Paradox, you can assign passwords to Paradox tables. Once a password is assigned,
the table can’t be opened in either dBASE or Paradox without supplying the password.
To assign a password to a Paradox table from within Visual dBASE, follow these steps:

1 Make sure to table you want to secure is closed.

2 From the File menu, select Database Administration.

3 Make sure that the Current Database field is set to <None> and the Table Type field
is set for Paradox tables.

4 Click the Table Security button to open the Security Administration dialog box.

5 Enter the name of table in the Table field (or click to tool icon to select the table). If the
table is not in the current directory, enter the appropriate directory (or use the tool to
select it).

6 Click the Edit Table button to open the Set Master Password dialog box.

7 Enter the new password for the table in the Master Password field. The password can
be up to 31 characters long and can contain spaces. Paradox passwords are case
sensitive.

8 Enter the password again in the Confirm password field.

9 Click the Set button to save the password.

Removing passwords from Paradox tables
To remove an existing password from a Paradox table, follow steps 1 through 6 in the
previous section. When prompted, enter the existing master password for the table.
Then click the Delete button to remove the password from the table.

Figure 5.10 Change Security Enforcement dialog box

76 U p g r a d e G u i d e

C h a p t e r 6 , E n h a n c e m e n t s t o t h e d B A S E L a n g u a g e 77

C h a p t e r

6
Chapter 6Enhancements to the dBASE

Language
Visual dBASE provides enhancements to three key areas of the dBASE Language:
commands and functions, stock classes, and embedded SQL. This chapter includes tips
for upgrading applications and a detailed reference for the changes to each area of the
dBASE Language.

Note This chapter assumes you have a basic understanding of the dBASE Language, the
dynamic object model and event-driven programming. It only covers changes since
dBASE 5.0. This guide contains no information on upgrading from dBASE III PLUS or
dBASE IV. Please refer to the Programmer's Guide for a tutorial on the dBASE
Language and information on migrating dBASE DOS applications.

Most dBASE applications will run without any change in Visual dBASE. This section
gives an overview of the most significant new language features you can integrate into
existing applications and covers the few areas that might require changes. The language
changes fall into four categories: database operations, encapsulation, stock classes,
Windows95 support and new operators.

Note See Chapter 3 for information on migrating existing dBASE 5.0 for Windows
applications.

Database operations
Visual dBASE provides robust database support through data administration tools and
embedded SQL. There are new commands to work with encrypted tables and ANSI
SQL-92 compliant embedded SQL. While both of these areas are new to Visual dBASE,
they are not new to dBASE. The commands for working with encrypted tables are fully
compatible with dBASE for DOS. The SQL implementation differs dramatically from
the implementation provided under dBASE for DOS, but the syntax for individual SQL
statements remains the same.

78 U p g r a d e G u i d e

Table Security
Database administrators can create table security rules and encrypt tables. The security
system lets you define user profiles to restrict a user's ability to view and modify tables
and fields within a table. For instance, you can encrypt the payroll table to restrict its use
to individuals in the payroll department. You can also restrict field and update rights
within the payroll department. For instance, you could limit clerks to "read only" rights
on the salary field and give managers all rights.

Figure 6.1 Logging into Visual dBASE

Chapter 5 contains complete information on database administration and setting up
table security on DBF and DB tables. Here are the dBASE commands and functions for
working with table security system:

• ACCESS() returns the dBASE user level for the current user. dBASE user rights and
levels are independent of any network profile. The PROTECT command opens up
the database administration tools for creating dBASE user profiles.

• LOGOUT closes all open tables, logs out the current user and opens the login dialog.
Figure 5.1 shows the login dialog that appears when you use the LOGOUT
command.

• PROTECT opens the database administration tools for setting up security on DBF
tables. To setup security on DB tables, select File|Database Administration.

• SET ENCRYPTION determines if tables created from encrypted tables inherit the
security attributes of the source table. The most common use of SET ENCRYPTION is
to create unencrypted copies of tables for backup or archive purposes. Since DBF and
DB recovery tools such as dSALVAGE do not work with encrypted tables, it is a good
idea to back them up without encryption.

• USER() returns the dBASE user name. As with dBASE user level, the dBASE user
name is independent of network login names. Use ID() to get the network user name.

Embedded SQL
While Xbase is the most common language for database application development, SQL
is the de-facto standard for data manipulation language for almost all client/server
development. SQL is a not a complete language. It has a small set of commands that
deal only with table operations and must exist within a host system that provides user
interface objects, program flow statements and variable manipulation.

C h a p t e r 6 , E n h a n c e m e n t s t o t h e d B A S E L a n g u a g e 79

Earlier versions of dBASE implemented SQL with varying degrees of success. dBASE
for DOS only allows SQL statements in special procedure files called PRS files and
restricts the interaction between SQL and standard Xbase DML. dBASE for DOS SQL
also translates SQL statements into standard Xbase DML rather than using an SQL
database engine. dBASE 5.0 for Windows includes the SQLEXEC() function that works
with any program or procedure file. Although SQLEXEC() works with the native SQL
engine in BDE, it does not create live views or cursors that are visible to the dBASE
environment.

Visual dBASE provides the only Xbase product with ANSI SQL-92 compliant SQL that is
capable of creating live and fully updatable views. You can mix and match SQL
statements with standard Xbase DML. You can use the SQL engine in BDE to work with
DB and DBF tables. BDE also optimizes performance for remote tables by passing SQL
statements directly to back-end servers connected through SQL-Links or ODBC. See the
last section in this chapter for detailed information on embedded SQL.

Encapsulation
You can now fully encapsulate properties and methods in the class definition. The new
PROTECT clause of the CLASS...ENDCLASS statement hides properties and methods
from procedures defined outside the class. The PROTECT clause is similar to the
LOCAL and STATIC scope specifiers. When a variable is LOCAL or STATIC, it is not
visible to any routines outside the routine that declared it. The encapsulation PROTECT
clause is not related to the table security PROTECT command

The following procedure shows how full encapsulation works. The class uses the
PROTECT clause to hide the top property and the funk1 method. When you create an
instance of a class, the object reference can refer to any property or method that is not
hidden. In this case, left and funk2 are not hidden. The TYPE() function reveals that top
and funk1 are undefined. Notice that the funk2 procedure can refer to hidden members.
This is allowed since funk2 is defined within the class. You can use this technique to
create visible or public methods that operate on hidden members.

f1 = NEW MyForm()
? TYPE('f1.left') && numeric
? TYPE('f1.top') && undefined
? TYPE('f1.funk1') && undefined
? f1.funk2() && can call funk1
CLASS myForm OF FORM
 PROTECT top, funk1
 this.top = 5
 FUNCTION funk1
 this.top = 7
 RETURN 0
 FUNCTION funk2
 CLASS::funk1()
 RETURN this.top
ENDCLASS

80 U p g r a d e G u i d e

Using the new classes, properties, events, and methods
Visual dBASE contains seven new stock classes and a wealth of new properties, events
and methods for existing classes. There are five new classes for creating UIObjects:
MenuBar, PaintBox, Popup, Shape and TabBox. You will find all of these on the Form
Designer's Control Palette. Two new classes, AssocArray and OLEAutoClient, do not
create user interface controls: . New properties, events, and methods allow you to
control the record buffer, Windows clipboard, SpeedTips (tool tips), and multiple page
forms.

Working with the new stock classes
Here is a brief overview of each of the new stock classes. See Chapter 7 for reference
information.

• AssocArray creates an associative array that uses character strings as the index.
Standard arrays use a numeric subscript. The following procedure shows how you
can create, examine and resize an associative array.

USE animals
aa = NEW AssocArray()
SCAN && fill from character fields
 aa[RTRIM(animals->name)] = animals->area
ENDSCAN
CLOSE TABLE
CLEAR
IF aa.IsIndex("Angel Fish") && look for name
 ? aa["Angel Fish"] && retrieve area
 ? aa.Count(), 'before' && check size
 ? aa.RemoveKey("Angel Fish") && remove item
 ? aa.Count(), 'after' && check new size
ENDIF

• MenuBar replaces the Menu object at the root of a menu tree. If you modify existing
MNU files with the Menu Designer, dBASE replaces the MENU object at the root
with a MenuBar object. All other menu objects remain the same. This is required to
take advantage of the new cut, copy, paste, undo and window menu properties.

C h a p t e r 6 , E n h a n c e m e n t s t o t h e d B A S E L a n g u a g e 81

• OLEAutoClient gives you full control of OLE2 servers such as the latest releases of
Excel, Word, Quattro Pro and WordPerfect. The properties, events and methods of an
OLEAutoClient object are determined by the server application. OLE2 applications
vary greatly in their implementations and you should refer to the server applications
documentation for specifics. The following program demonstrates how to create a
chart and place it in a form using Excel.

* open objects
aSheet = NEW OLEAutoClient("Excel.Sheet")
aSheet.Application.Visible = .T.
USE animals
* make grid
cell = aSheet.Cells(2, 1)
cell.Value = "Size"
cell = aSheet.Cells(3, 1)
cell.value = "Weight"
SCAN

cell = aSheet.cells(1, RECNO() + 1)
cell.value = animals->name
cell = aSheet.cells(2, RECNO() + 1)
cell.value = animals->size
cell = aSheet.cells(3, RECNO() + 1)
cell.value = animals->weight

ENDSCAN
* make chart
aChart = aSheet.ChartObjects.Add(100, 100, 200, 200)
series = aChart.chart.SeriesCollection
series.Add("Sheet1!R1C1:R2C7",.T.)
series.Add("Sheet1!R3C1:R3C7",.T.)
* copy chart to dBASE

Figure 6.2 Chart created with OLE2 automation

82 U p g r a d e G u i d e

aChart.Copy()
aSheet.application.quit()
* create temporary table to contain chart
temp1DBF = FUNIQUE()
CREATE (temp1DBF) STRUCTURE EXTENDED
APPEND BLANK
REPLACE field_name WITH "OLE", field_type WITH "G"
temp2DBF = FUNIQUE()
CREATE (temp2DBF) FROM (temp1DBF)
CLOSE TABLES
DELETE TABLE (temp1DBF)
* create form with OLE control
USE (temp2DBF) NOSAVE
APPEND BLANK
f1 = new form()
ole = new ole(f1)
ole.width = f1.width
ole.height = f1.height
ole.datalink = "OLE"
f1.OnOpen = { ; KEYBOARD "{Ctrl+V}" CLEAR }
f1.OnClose = { ; CLOSE TABLES }
f1.open()
* end of Excel example

• PaintBox gives advanced and add-on product developers a direct link between the
Windows API and a dBASE control object. The PaintBox contains an OnPaint event
in addition to the standard event handlers. dBASE gives you full control of
repainting the PaintBox region.

• Popup is the root object of a popup menu. See Chapter 3 for more information on
creating popups and attaching them to forms.

• Shape allows you to draw simple shapes on forms. Like the line object, shape is not
in the control tab order.

• TabBox is normally used to change pages in a multiple page form. See chapter 3 for
information about selecting pages through the OnSelChange event. You can also use
TabBox for record navigation in a single page form. The following procedure creates

Figure 6.3 Using a TabBox to locate records

C h a p t e r 6 , E n h a n c e m e n t s t o t h e d B A S E L a n g u a g e 83

a TabBox that serves as an alphabetical index into the Animals table. Figure 5.3 shows
the program in action. In this case the TabBox acts much like the tab controls in
popular address book programs such as Sidekick.

SET NEAR ON
USE animals ORDER TAG name
f1 = NEW TabForm()
f1.OPEN()
CLASS TabForm OF FORM

DEFINE TABBOX TabFind OF this ;
PROPERTY ;
DataSource "ARRAY {'ABC','DEF','GHI','JKL','MNO', ;

'PQR','STU','VWX','YZ'}", ;
OnSelChange { ;SEEK(CHR(62 + (this.CurSel * 3)))}

DEFINE BROWSE BrowseAnimals OF this ;
PROPERTY ;
width 70, ;
height 10

ENDCLASS

Working with the new properties, events, and methods
There are many new properties, events, and methods. Here are a few groups to outline
some uses for the new properties, events, and methods.

• Record Buffer methods include AbandonRecord(), BeginAppend(),
IsRecordChanged() and SaveRecord(). While dBASE has complete local and server
transaction support using BeginTrans(), Commit() and RollBack(), the new record
buffer methods let you control the dBASE record buffer for optimum performance.

• Clipboard methods let you cut, copy, and paste information to and from the
Windows clipboard. There is also an Undo() method for reversing the last clipboard
action. These methods are available on all controls that allow keyboard editing. See
chapter 3 for information on the MenuBar object and how to setup menus that work
with the clipboard.

• SpeedTips are helpful text messages that appear near a control when the mouse
pointer is positioned over the control. Many of the UIObjects now have a SpeedTip
property. The form's new ShowSpeedTips property controls the display of all
SpeedTips on the form.

• Page properties let you create and navigate through multiple page forms. Each
control has a PageNo property that ties it to a specific page. The PageNo property of a
form determines what page is currently active. Forms also have a PageCount()
method that returns the highest page number that contains a control. The TabBox
OnSelChange event is the most common event for switching pages. See chapter 3 for
information on setting up multiple page forms.

• MarkCustomis a new method for creating custom controls that inherit from multiple
classes. This lets you encapsulate the properties of a control this is created in the
constructor of a custom control class. See the sample custom controls for examples of
using MarkCustom.

84 U p g r a d e G u i d e

Windows95 Support
Visual dBASE fully supports Windows95 through both the Desktop and the language.
The Desktop, Visual Property Builders, and designers automatically adjust to work with
long file names. Similarly, your applications will run without change in Windows95.
The language has some new extensions that help you take advantage of the new
operating system.

One of the biggest changes in Windows95 is the new file system that supports long file
names and an extended set of attributes. Long file names can contain spaces and special
characters that are invalid under earlier versions of Windows. To refer to a long file
name in a dBASE application, place the name in quotes. Similarly you can create and
work with long directory names by placing them in quotes. Here are some examples of
working with Windows95 long names.

CREATE FORM "Accounts Receivable.WFM"
MODIFY REPORT "Top Ten Artists.RPT"
CD "C:\Musical Methods"
DO "Sales Rankings.PRG"
USE "Categories.DBF"

To maintain compatibility with Delphi and Paradox, BDE restricts names to DOS limits
during table creation. If you want to work with long table names, you need to rename
the tables using the COPY FILE command. The following function, Copy2Big, provides a
quick way to make long file names for existing tables.

* Program: Copy2Big
* Description: Copies an existing table
* to new table with long
* table name under Windows95
* Syntax:
* Copy2Big(<source>, <destination>)
*
* source: expC short DBF name - no extension
* destination: expC long DBF name - no extension
*
* returns .T. if file is created.
*
* example:
* Copy2Big("Animals","Animals Of The World")
*
FUNCTION Copy2Big(lcFrom, lcTo)
CLOSE TABLES
SET SAFETY OFF

** copy without index tags
LOCAL lcTemp
lcTemp = FUNIQUE()
USE (lcFrom)
COPY TO (lcTemp)
COPY FILE lcTemp + ".DBF" TO lcTo + ".DBF"
IF FILE(lcTemp + ".DBT") && check for memo

COPY FILE lcTemp + ".DBT" TO lcTo + ".DBT"
ENDIF

C h a p t e r 6 , E n h a n c e m e n t s t o t h e d B A S E L a n g u a g e 85

DELETE TABLE (lcTemp)

** create index tags
LOCAL lKey, lName, lFor, lDescend, lUnique
USE (lcTo) EXCLUSIVE IN SELECT()
SELECT (lcTo)
FOR i = 1 TO TAGCOUNT(lcFrom, lcFrom)

lKey = KEY(i, lcFrom)
lName = TAG(i, lcFrom)
lFor = FOR(i, lcFrom)
lDescend = IIF(DESCENDING(i, lcFrom), ;

"DESCENDING", SPACE(0))
lUnique = IIF(UNIQUE(i, lcFrom), ;

"UNIQUE", SPACE(0))
PRIVATE macro
macro = lKey + SPACE(1) + "TAG" + SPACE(1) + lName + SPACE(1);
+ IIF(ISBLANK(lFor), SPACE(1), "FOR" + SPACE(1) + lFor) ;
+ SPACE(1) + lDescend + SPACE(1) + lUnique
INDEX ON ¯o.
RELEASE macro

NEXT

** clean up and check if file was created
CLOSE TABLES
SET SAFETY ON

RETURN FILE(lcTo + '.DBF')

The Windows95 file system provides an expanded set of attributes including a short file
name or alias for older applications. dBASE contains the following new functions for
examining the new attributes: FACCESSDATE(), FCREATEDATE(),
FCREATETIME(), and FSHORTNAME(). The Array class contains a new DirExt()
method that fills the array with standard and extended attributes for all the files in a
directory. To determine if a drive supports long file names you can use the new
FNAMEMAX() function.

New operators
Visual dBASE contains new operators, one that simplifies array creation and another for
working with the alias of a long table name. Braces, { }, now serve as an array declaration
and assignment operator in addition to delimiting dates and code blocks. The colon, : ,
delimits the alias of a long table name and continues to be the delimiter for long field
names.

Using braces, { }, to create arrays
Along with using the DECLARE command and the NEW operator to create arrays, you
can now create them using braces. The advantage of using braces is that you can assign
elements to the array during creation. Here are three examples of creating an array.

86 U p g r a d e G u i d e

* Using the DECLARE statement
DECLARE colors[3]
colors[1] = "Red"
colors[2] = "White"
colors[3] = "Blue"

* Using the NEW oprator
colors = NEW ARRAY()
colors.Add("Red")
colors.Add("White")
colors.Add("Blue")

* Using braces
colors = {"Red","White","Blue"}

Each technique creates the exact same array. The first technique provides compatibility
with the older Xbase programs. The NEW operator is the most flexible, but still requires
four lines of code. Using braces produces the same result with only one line of code.

Keep in mind that braces still serve as code block and date delimiters. dBASE examines
the values within braces to determine if it is an array, code block or date. A single value
or comma delimited list of values specifies an array. Three numbers arranged as a literal
date are a date. If the character after the opening brace is a semicolon or a vertical bar,
the braces contain a code block.

* single element array
SmallArray = { "One" }

* date literal
Birthday = {10/30/67}

* code block
EndProgram = { ; QUIT }

* code block that creates an array of date literals
MakeArray = { ; SpecialDays = { { 11/02/85}, {03/12/88} } }

Note Code blocks in dBASE 5.0 applications may appear as literal arrays in Visual dBASE. See
Chapter 3 for tips on upgrading dBASE 5.0 applications.

Using the colon, :, to delimit a table alias
If you open a table using a long file name under Windows95, dBASE creates a long alias
name. Since the name can contain spaces and special characters, you need to delimit it
with the colon. This is the same delimiter that works with long field names. Here are
some examples that use colon to delimit the alias and fields:

USE "C:\Musical\Methods\Top Ten Artists.DB" IN SELECT()

REPLACE :Top Ten Artists:->:First Name: WITH "Travis"

SELECT :Top Ten Artists:

REPLACE :Last Name: WITH "Shook"

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 87

C h a p t e r

7
Chapter 7New commands, functions,

classes and properties
This chapter is a subset of the Language Reference covering items changed since dBASE
5.0 for Windows. The complete Language Reference is available as online help. The
chapter is organized as follows:

• NULL data type describes how to use NULL in expressions. Read this section if you
work with NULL data in .DB tables or servers such as ORACLE, Sybase, and
InterBase.

• Commands and Functions includes all of the syntax elements such as looping
structures and mathematical functions. The section is a language reference for all new
and changed commands and functions.

• Classes provide common user interface, DDE, OLE and array objects. The classes
section is a reference for the seven new stock classes.

• Properties as listed in the language reference refers to properties, events and
methods for stock classes. The properties section covers properties of new classes and
new properties for existing classes.

NULL data type
Visual dBASE supports the concept of a null value. NULL is a constant representing the
absence of a value, as opposed to a value of 0 for a numeric or an empty string for a
character variable. NULL is not supported in fields of .DBF files, but may be supported
by other database file formats which Visual dBASE can access.

When Visual dBASE is used to access tables which support null values, NULL can be
used to set a field to a null value or to retrieve a null value from a field. Therefore, each
of the following would be legal statements:

88 U p g r a d e G u i d e

REPLACE TABLE->FIELD WITH NULL
SET FILTER TO TABLE->FIELD <> NULL
SEEK NULL

Null can be used as a value in an expression. In general, if the expression needs to
manipulate the value passed to it, and that value is null, the expression will return
NULL. For example:

? SIN(0) && Returns 0.00
? SIN(NULL) && Returns NULL
? UPPER(““) && Returns an empty character string
? UPPER(NULL) && Returns NULL
? 4 + 0 && Returns 4
? 4 + NULL && Returns NULL

If a function does not need to manipulate the value passed, the NULL will be converted
to its default value for the type of argument the function expects. For example:

? TIME() && Returns the time to whole second
? TIME(0) && Returns the time to hundredths of a second
? TIME(NULL) && Returns the time to hundredths of a second, NULL treated as 0

Table 7.1 shows the internal default values for NULL that dBASE supports.

The default data type of NULL is unknown. NULL can be assigned a data type by using
it in an expression expecting a certain type, although it retains the value NULL:

x = NULL && x assigned NULL of unknown type
? TYPE(“x”) && Returns “U”
? UPPER(x) && Returns NULL of character type, x still unknown type
x = SIN(NULL) && Returns NULL of numeric type and assigns to x
? TYPE(“x”) && Returns “N”, x is numeric but still has NULL as value
? UPPER(x) && Data type mismatch error, UPPER() expects a character type parameter

Table 7.1 Default values for NULL

Type Default value

Bookmark ““ (empty character string)
Character blank character(s)
Date {//} (empty date)
Logical .F.
Numeric 0
Unknown 0, ““, .F., or {//}

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 89

A C C E S S ()

Commands and functions

ACCESS() Security

Returns the access level of the current user, as assigned with the PROTECT command.

Syntax
ACCESS()

Description
Use ACCESS() to build security into an application. The access level returned can be
used to test privileges assigned with PROTECT. If a user is not logged in to the
application, ACCESS() returns 0 (zero).

If you write programs that use encrypted files, check the user's access level early in the
program. If ACCESS() returns zero, your program might prompt the user to log in, or to
contact the system administrator for assistance.

For more information, see PROTECT.

See Also
LOGOUT, PROTECT, SET ENCRYPTION, USER()

BEGINTRANS() Shared data

Starts a transaction and returns .T. if the transaction started successfully.

Syntax
BEGINTRANS([<database name expC>] [<isolation level expN>])

<database name expC> The name of the SQL database in which to begin the
transaction.

• If <database name expC> is omitted but a SET DATABASE statement has been issued,
BEGINTRANS() refers to the database in the SET DATABASE statement.

• If <database name expC> is omitted and no SET DATABASE statement has been
issued, BEGINTRANS() refers to the database opened after issuing BEGINTRANS().

<isolation level expN > Specifies a pre-defined server-level transaction isolation
scheme.

• Valid values for <isolation level> are:

expN Description

0 Server's default isolation level
1 Uncommitted changes read (dirty read)

90 U p g r a d e G u i d e

B E G I N T R A N S ()

• <isolation level> is not supported for local tables.

• If an invalid value is given for <isolation level>, a dBASE "Value out of range" error is
generated.

• The <isolation level> is server-specific; a "Not supported" error will result from the
database engine if an unsupported level is specified.

Note If you include <database name expC> when you issue BEGINTRANS(), you must also
include it in subsequent COMMIT() or ROLLBACK() statements within that
transaction. If you don't, dBASE ignores the COMMIT() or ROLLBACK() statement.

Description
Use BEGINTRANS() to initiate a transaction during which the user might make changes
to a table or tables in an SQL database that supports transaction processing. Within a
transaction initiated with BEGINTRANS(), you can work in only one database. Also,
you can't nest transactions.

If you issue BEGINTRANS() against an SQL database that does not support
transactions, or if a server error occurs, BEGINTRANS() returns .F. Otherwise, it returns
.T. If BEGINTRANS() returns .F., use SQLERROR() or SQLMESSAGE() to determine
the nature of the server error that might have occurred.

To close a transaction, use COMMIT() or ROLLBACK().COMMIT() saves changes
made during the transaction, and ROLLBACK() discards changes and returns tables to
the state they were in before BEGINTRANS() was issued.

BEGINTRANS() applies to the following commands:

The following commands are not allowed in transactions. dBASE returns an error if you
try to issue them from within a transaction.

2 Committed changes read (read committed)
3 Full read repeatability (repeatable read)

@...SAY...GET DELETE REPLACE

APPEND EDIT REPLACE MEMO/BINARY/OLE

APPEND BLANK FLOCK() RLOCK()

APPEND MEMO INSERT

BROWSE RECALL

BEGINTRANS()
(nested transactions are not allowed)

DELETE TAG

CLEAR ALL INDEX

CLOSE ALL/DATABASE/INDEX
(any command that closes open tables
or indexes)

MODIFY STRUCTURE

expN Description

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 91

B E G I N T R A N S ()

Example
The following example begins a transaction with BEGINTRANS(). It opens a multi-user
version of Company.dbf and attempts to make all YTD_SALES 0. ON ERROR detects
any error which might occur. In particular, it will detect if another user has locked any
record in Company.dbf. If an error occurs, ROLLBACK() resets all values. Otherwise
COMMIT() writes the changes to disk:

CLOSE ALL
SET PROCEDURE TO PROGRAM(1) ADDITIVE
SET EXCLUSIVE OFF

BEGINTRANS()

TransErr=.f.
ON ERROR DO TransErr && Activates ON ERROR trap

USE L:\MultiUse\Company
REPLACE ALL Ytd_Sales WITH 0
ON ERROR && Disables ON ERROR

IF TransErr
? "Rollback"
ROLLBACK() && restore data

ELSE
? "Commit"
COMMIT() && save changes

ENDIF

PROC TransErr
WAIT "Warning: Transaction Fails"
TransErr=.t.

Portability
Not supported in dBASE IV or dBASE III PLUS. BEGINTRANS() replaces the BEGIN
TRANSACTION and END TRANSACTION commands in dBASE IV.

See Also
COMMIT(), FLOCK(), RLOCK(), ROLLBACK(), SET EXCLUSIVE, SQLERROR(),
SQLMESSAGE()

CONVERT PACK

CREATE FROM a USE that would close an open table,
or open a table in another database

ZAP

92 U p g r a d e G u i d e

B U I L D

BUILD Programs

Links object code files (.PRO, .WFO) and resources into a Windows executable
file (.EXE) if the optional Visual dBASE Compiler is installed.

Syntax
BUILD <filename list> | FROM <reponse filename>
[ICON <icon filename>]
[SPLASH <bitmap format filename>]
[TO <executable filename>]
<filename list>

List of filenames, separated by commas, to be linked into the executable. Unless
otherwise specified, the filename extensions are assumed to be .PRO.

FROM <response filename > Build the executable from the list of files listed in
<response filename>. Unless otherwise specified, the extension of the response file is
assumed to be .RSP. See the online help for details on the format of the response file.

ICON <icon filename > The optional icon (.ICO) file which is displayed when the
executable is minimized. The icon file is also the default icon when the executable is
represented in Program Manager.

SPLASH <bmp format filename>

The optional graphics (.BMP) file that displays as the executable is loading.

TO <executable filename > The name of the Windows executable file (.EXE) produced
by BUILD. If not specified, the executable filename defaults to the name of the first file
listed in the <filename list> or the <response file>.

Description
Use the BUILD command to link previously compiled dBASE program (.PRO, .WFO)
files, Windows resource files (such as .BMP and .ICO files), and other files needed to
support an application into a Windows executable (.EXE) file. See the online help for the
Visual dBASE compiler for details on creating executable files from dBASE programs.

Portability
Not supported in dBASE IV or dBASE III PLUS. Very similar in functionality to the
BDL.EXE linker utility in the dBASE Compiler for DOS.

See Also
COMPILE, DO, SET FORMAT, SET PROCEDURE

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 93

C L A S S . . . E N D C L A S S

CLASS...ENDCLASS Objects

Declares a custom class and specifies the member variables and functions for that class.

Syntax
CLASS <class name> [(<parameters>)] [CUSTOM]
[PARAMETERS <parameters>]
[FROM <filename>]
[OF <superclass name> [(<parameters>)]]
[PROTECT <propertyList>]
[<constructor code>]
[<member functions>]
ENDCLASS

CUSTOM Specifies that the new object is a custom control. For information on custom
controls, see Chapter 15 of the Programmer's Guide.

<class name > The name you give to the new class.

OF <superclass name > Specifies that the class you create inherits the properties and
methods of <superclass name>. For example, you can give your new class all the
properties and methods of the listbox class or another class you create with
CLASS...ENDCLASS.

FROM <filename > <filename> specifies the file containing the definition code for the
<superclass>, if the <superclass> is not defined in the same file as the class.

PROTECT <propertyList > <propertyList> is a list of properties and/or methods of the
class which are to be accessible only by other members of the class, and by classes
derived from the class.

<constructor code > Code that is executed when you create an object of class <class
name>. Constructor code includes all commands between the CLASS and ENDCLASS
keywords except code in <member functions>.

<member functions > Procedures and functions that you declare between the CLASS
and ENDCLASS keywords. These subroutines make up the methods of the new class.

Description
Use CLASS...ENDCLASS to create a new class.

A class is a specification, or template, for a type of object. Visual dBASE provides many
standard classes, such as Form and Entryfield; for example, when you create a form, you
are creating a new form object that has the standard properties and methods from the
Form class. However, when you declare a custom class with CLASS...ENDCLASS, you
specify the properties and methods that objects derived from the new class will have.

You create properties for the new class with <constructor code>. Constructor code
executes when you create an object of the class. Although constructor code can contain
any dBASE commands, it usually contains only property and method assignment
statements.

94 U p g r a d e G u i d e

C L A S S . . . E N D C L A S S

Properties and methods can be protected to prevent the user of the class from reading or
changing the protected property values, or calling the protected methods from outside
of the class.

When you create a new property in a class declaration, preface the property name with
the This keyword. This references the object you create. For example, the following code
sample includes a class declaration. The declaration uses This to specify that TagName,
a new property, is a member of the new class TableFile.

xFile = NEW TableFile()
? xFile.TagName
? xFile.FileNameId()

CLASS TableFile
This.TagName = "XORDER"
FUNCTION FileNameId&& Custom method.
RETURN DBF()

ENDCLASS

You create custom methods for the class with <member functions>, which can consist of
procedure declarations or user-defined function declarations. FUNCTION FileNameId
is an example of a custom method.

Example
The following example uses CLASS...ENDCLASS to define a class of objects within a
form that displays pictures from the Pictures table in the SAMPLES directory. This
example is an extract from PICTURES.WFM in the SAMPLES directory:

** END HEADER -- do not remove this line*
* Generated on 06/27/94
*
LOCAL f
f = NEW PFORM()
f.Open()

CLASS PFORM OF FORM
PROTECT HelpFile, HelpId

this.HelpFile = ""
this.Width = 97.00
this.Maximize = .F.
this.Minimize = .F.
this.Height = 24.82
this.Left = 19.40
this.Text = "Pictures Form"
this.Top = 0.53
this.ColorNormal = "BG/B"
this.OnOpen = {;create session}
this.View = "PICTURES.QBE"
this.HelpId = ""

DEFINE PUSHBUTTON SOUND OF THIS;
PROPERTY;
Width 18.00,;
Default .T.,;
OnClick {;play sound binary pictures->sound},;
Height 3.00,;

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 95

C L A S S . . . E N D C L A S S

Left 4.00,;
Text "Sound",;
Top 8.00,;
ColorNormal "N/W",;
FontName "Courier",;
FontSize 16.00

DEFINE LISTBOX THINGS OF THIS;
PROPERTY;
Width 18.40,;
DataSource "FIELD NAME",;
ColorHighLight "W+/B",;
Height 5.47,;
Left 3.60,;
Top 13.41,;
ColorNormal "bg+/b",;
FontName "Fixedsys",;
FontSize 11.25,;
ID 800

DEFINE IMAGE PICTURE OF THIS;
PROPERTY;
Width 62.00,;
DataSource "BINARY PICTURES->BITMAPOLE",;
Height 18.00,;
Left 25.00,;
Top 5.00,;
ID 88

DEFINE TEXT TITLE OF THIS;
PROPERTY;
Width 70.00,;
Height 4.30,;
Left 20.00,;
Text "Sights and Sounds",;
Top 0.00,;
ColorNormal "gr+/b",;
FontName "Serif",;
Border .F.,;
FontSize 32.00

* Provide methods to get and set the HelpFile
* and HelpID properties, since the user can't
* access them directly
FUNCTION GetHelpFile
RETURN This.HelpFile
FUNCTION GetHelpID
RETURN This.HelpID
FUNCTION SetHelpFile(cHelpFile)

IF TYPE("cHelpFile") = "C"
... This.HelpFile = cHelpFile

ENDIF
RETURN This.HelpFile
FUNCTION SetHelpID(cHelpID)

IF TYPE("cHelpID") = "C"
This.HelpID = cHelpID

ENDIF

96 U p g r a d e G u i d e

C O M M I T ()

RETURN This.HelpID

ENDCLASS

PROCEDURE Sound_OnClick
PLAY SOUND Binary Pictures->Sound

PROCEDURE ClosePictures
USE IN Pictures
FORM.CLOSE()

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
DEFINE, REDEFINE

COMMIT() Shared data

Ends a transaction initiated by BEGINTRANS() and writes to the open files any changes
made during the transaction. Returns .T. if the data was committed successfully.

Syntax
COMMIT([<database name expC>])

<database name expC> The name of the database in which to complete the
transaction.

• If you began the transaction with BEGINTRANS(<database name expC>), you must
issue COMMIT(<database name expC>). If instead you issue COMMIT(), dBASE
ignores the COMMIT() statement.

• If you began the transaction with BEGINTRANS(), <database name expC> is an
optional COMMIT() argument. If you include it, it must refer to the same database as
the SET DATABASE TO statement that preceded BEGINTRANS().

Description
Use COMMIT() to end the open transaction and write changes to any open files. To end
a transaction without writing changes to the file, use ROLLBACK(). For more
information on transactions, see BEGINTRANS().

Example
The following example begins a transaction with BEGINTRANS(). It opens a multi-user
version of Company.dbf and attempts to set all values in the Ytd_Sales field to 0. ON
ERROR detects any error which might occur. In particular, it will detect if another user
has locked any record in Company.dbf. If an error occurs, ROLLBACK() resets all
values. Otherwise COMMIT() writes the changes to disk:

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 97

C O M P I L E

CLOSE ALL
SET PROCEDURE TO PROGRAM(1) ADDITIVE
SET EXCLUSIVE OFF

BEGINTRANS()

TransErr=.f.
ON ERROR DO TransErr && Activates ON ERROR trap

USE L:\MultiUse\Company
REPLACE ALL Ytd_Sales WITH 0
ON ERROR && Disables ON ERROR

IF TransErr
? "Rollback"
ROLLBACK() && Restore data

ELSE
? "Commit"
COMMIT() && Save changes

ENDIF

PROC TransErr
WAIT "Warning: Transaction Fails"
TransErr=.t.

Portability
Not supported in dBASE IV or dBASE III PLUS. COMMIT() replaces the COMMIT
command in dBASE IV.

See Also
BEGINTRANS(), ROLLBACK(), SET EXCLUSIVE

COMPILE Programs

Compiles program files (.PRG, .WFM), creating object code files (.PRO, .WFO).

Syntax
COMPILE <filename> <filename skeleton>
[AUTO]
[LOG <filename>]
[TO <response filename>]

<filename > <filename skeleton > The file to compile. The <filename skeleton> options
display a dialog box from which you can select a file. If you specify a file without
including its path, dBASE looks for the file in the current directory. If you specify a file
without including its extension, dBASE assumes .PRG.

AUTO The optional AUTO clause causes the compiler to detect automatically which
files are
called by your program, and to compile those that have changed since the last compile.
All .PRG and associated files must be in the current directory to use this option.

98 U p g r a d e G u i d e

C O M P I L E

LOG <filename> LOG causes the compiler to write any error or warning messages to
<filename>.

TO <response filename> The TO clause causes the compiler to create a response file
containing the names of the
files output by the compiler (the object code files). If a specified source file cannot be
successfully compiled, its name is included in the response file marked with an asterisk.
The response file can be used by the BUILD command in the Visual dBASE compiler to
link the object code files into an executable file.

Description
Use COMPILE to create compiled program files without executing or opening the files,
or to compile only certain files. You can't run a program until it's been compiled.
Because a compiled file can't be read or modified, compiling a program protects your
source code from modification by users of the program. By default, dBASE creates
compiled object files in the same directory as the source code files.

COMPILE has several advantages over compiling files with DO, SET PROCEDURE, or
SET FORMAT:

• COMPILE doesn't execute or open the specified files.

• If you write an application that contains many program files, you can use COMPILE
to compile only those program files you change rather than all the program files of
the application. To specify a date and time range for the programs to be compiled,
use FDATE() and FTIME().

• COMPILE <filename skeleton> lets you compile groups of unrelated or related files.

When you compile a program, dBASE detects any syntax errors in the source file and
displays an error message corresponding to the error in a dialog box that contains three
buttons:

• Cancel cancels compilation (equivalent to pressing Esc).

• Ignore cancels compilation of the program containing the syntax error but continues
compilation of the rest of the files that match <filename skeleton> if you specified a
skeleton.

• Fix lets you fix the error by opening the source code in an editing window,
positioning the insertion point at the point where the error occurred.

See the on-line help for information about compiling dBASE programs into standalone
executable files.

Portability
By default, both dBASE IV and dBASE III PLUS create compiled object files in the
current directory rather than in the same directory as the source code files.

See Also
CLEAR PROGRAM, DO, FDATE(), FTIME(), SET COVERAGE, SET DEVELOPMENT,
SET FORMAT, SET PROCEDURE

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 99

C R E A T E

CREATE Table basics

Opens the Table Designer to create or modify a table interactively.

Syntax
CREATE
[<filename> | ? | <filename skeleton>
[[TYPE] PARADOX | DBASE]
[EXPERT [PROMPT]]

<filename > | ? | <filename skeleton > The name of the table you want to create. CREATE ? and
CREATE <filename skeleton> display a dialog box, in which you can specify the name of a
new table. If you specify a table name without including its path, Visual dBASE saves
the table to the current drive and directory. If you specify a table name without
including an extension, Visual dBASE assigns a .DBF extension or the file extension of
the table type you specified with SET DBTYPE. If you don't specify a name, the table
remains untitled until you save the file. If you specify an existing table name, Visual
dBASE asks whether you want to modify the existing table or overwrite it.

You can also create a table in a database (defined using the BDE Configuration Utility)
by specifying the database as a prefix (enclosed in colons) to the name of the table, that
is, :database name:table name. If the database is not already open, Visual dBASE displays a
dialog box in which you specify the parameters, such as a login name and password,
necessary to establish a connection to that database.

[TYPE] PARADOX | DBASE Specifies the type of table to create. The TYPE keyword is
included for readability only; it has no effect on the operation of the command.

Specifying PARADOX creates a Paradox table with a .DB extension.

Specifying DBASE creates a dBASE table (the default). If you don't include an extension
for <filename>, dBASE assigns a .DBF extension.

Description
CREATE opens the Table Designer, an interactive environment in which you can create
or modify the structure of a table, or the Table Expert, a tool which guides you through
the process of creating tables. The type of table you create or modify depends on your
selection of the table type specified with the CREATE command, or with SET DBTYPE.

Create a table by defining the name, type, and size of each field. For more information
on using the Table Designer, see the User's Guide.

Example
The following examples show several ways to use CREATE to design a table from the
Command window:

CREATE MailList && Opens table designer -.DBF table
CREATE MailList TYPE PARADOX

&& Opens table designer - .DB table
CREATE ? && Opens dialog box for naming file

100 U p g r a d e G u i d e

C R E A T E F O R M

See Also
APPEND, APPEND MEMO, COPY STRUCTURE, DISPLAY STRUCTURE, LIST
STRUCTURE,

CREATE FORM Forms

Opens the Form Designer to create or modify a form.

Syntax
CREATE FORM
[<filename> | ? | <filename skeleton>]
[EXPERT [PROMPT]]

<filename > | ? | <filename skeleton > The form to create or modify. CREATE FORM ?
and CREATE FORM <filename skeleton> display a dialog box, from which you can select
a file. If you specify a file without including its path, dBASE looks for the file in the
current directory, then in the path you specify with SET PATH. If you specify a file
without including its extension, dBASE assumes .WFM.

[EXPERT [PROMPT]] If the PROMPT clause is used, a dialog appears asking if you
want to use the Form Designer or the Form Expert. You can then invoke either the
designer or the expert. The EXPERT clause without PROMPT causes the Form Expert to
be invoked.

Description
Use CREATE FORM to open the Form Designer or Form Expert and create or modify a
form interactively. The Form Designer automatically generates dBASE program code
that defines the contents and format of a form, and stores this code in an editable text file
(.WFM).

CREATE SCREEN, CREATE APPLICATION and CREATE FORM are identical. For all
these commands, the presence of a form file determines whether a create or modify
operation occurs. If the .WFM file exists, the commands let you modify it in the Form
Designer. If the file doesn't exist, the commands create a new file.

Since a .WFM file is a program file, you can edit it with MODIFY COMMAND.

See the Forms chapters in the User's Guide for instructions on using the Form Designer.

Note The Forms Designer is a Two-Way-Tool. You can open a form in the Form Designer
even if you've edited the code in the .WFM file.

Example
The following examples open the Save File dialog box with the cursor positioned at the
File Name block to name a new form. The picklist of .WFM files on the current directory
is available if you desire to use an existing form name to create a new form. By contrast,
MODIFY FORM ? would edit an existing form:

CREATE FORM ?
CREATE FORM *.WFM

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 101

C R E A T E L A B E L

CREATE FORM issued alone in the Command window will open an unnamed form
design surface:

CREATE FORM

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CREATE APPLICATION, CREATE SCREEN, MODIFY APPLICATION, MODIFY
FORM, MODIFY SCREEN, OPEN FORM

CREATE LABEL Input/Output

Opens the Report Designer to create or modify a label file.

Syntax
CREATE LABEL
[<filename> | ? | <filename skeleton>]
[EXPERT [PROMPT]]

<filename > | ? | <filename skeleton > The label file to create or modify. The ? and
<filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE looks for the file in the current directory,
then in the path you specify with SET PATH. If you specify a file without including its
extension, dBASE assumes .RPL.

If dBASE can't find <filename>, it creates the file. By default, dBASE assigns an .RPL
extension to <filename> and saves the file in the current directory.

CREATE LABEL without an option opens the empty Report Designer to create a new
label file.

[EXPERT [PROMPT]] If the PROMPT clause is used, a dialog appears asking if you
want to use the Report Designer or the Report Expert. You can then invoke either the
designer or the expert. The EXPERT clause without PROMPT causes the Report Expert
to be invoked.

Description
Use CREATE LABEL to open the Report Designer and create or modify a label file. A
label file contains the information that formats labels. For information about using the
Report Designer, see the Crystal Reports documentation. CREATE LABEL and
MODIFY LABEL are identical commands.

Before issuing CREATE LABEL, you must have a default printer selected. After you
create or modify the label file, use LABEL FORM to print the labels.

102 U p g r a d e G u i d e

C R E A T E M E N U

Example
This example opens a database table and then issues CREATE LABEL to construct a
label form:

CLOSE DATABASE
USE Company
CREATE LABEL COMPLBL1
* If COMPLBL1.LBL already exists then it will be modified.
* Otherwise, a new label form will be created.

Portability
The <filename skeleton> option is not supported in dBASE IV or dBASE III PLUS. In
dBASE IV and dBASE III PLUS, the default label file extension is .LBL.

See Also
CREATE REPORT, LABEL FORM

CREATE MENU Forms

Opens the Menu Designer to create or modify a menu file.

Syntax
CREATE MENU
[<filename> | ? | <filename skeleton>]

<filename > | ? | <filename skeleton > The menu file to create or modify. CREATE
MENU? and CREATE MENU <filename skeleton> display a dialog box, from which you
can select a file. If you specify a file without including its path, dBASE looks for the file
in the current directory, then in the path you specify with SET PATH. If you specify a
file without including its extension, dBASE assumes .MNU.

Description
Use CREATE MENU to design a menu for a form.

The menu you design is stored in a menu definition file (.MNU), which contains dBASE
program code. You attach this program to a form via the form's Menu property.

For information on using the Menu Designer, see the User's Guide.

See Also
CLASS MENU

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 103

C R E A T E P O P U P

CREATE POPUP Forms

Opens the Menu Designer to create or modify a popup menu file.

Syntax

CREATE POPUP
[<filename> | ? | <filename skeleton>]

<filename > | ? | <filename skeleton > The popup menu file to create or modify.
CREATE POPUP ? and CREATE POPUP <filename skeleton> display a dialog box,
from which you can select a file. If you specify a file without including its path, dBASE
looks for the file in the current directory, then in the path you specify with SET PATH. If
you specify a file without including its extension, dBASE assumes .POP.

Description
Use CREATE POPUP to design a popup menu for a form. The menu you design is
stored in a popup definition file (.POP), which contains dBASE program code. For
information on using the Menu Designer, see UG_MENU.

See Also
CLASS MENU, CLASS POPUP

CREATE REPORT Input/Output

Opens the Report Designer to create or modify a report file.

Syntax
CREATE REPORT
[CROSSTAB]
[<filename> | ? | <filename skeleton>]
[EXPERT [PROMPT]]

CROSSTAB Opens the Report Designer with the Cross-Tab dialog box displayed.

<filename > | ? | <filename skeleton > The report file to create or modify. The ? and
<filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE looks for the file in the current directory,
then in the path you specify with SET PATH.

If you specify a file without including its extension, dBASE assumes .RPT if you haven't
specified CROSSTAB, and .RPC if you have. If dBASE can't find <filename>, it creates a
file with the appropriate extension and saves it in the current directory.

CREATE REPORT without any options opens the empty Report Designer to create a
new report.

[EXPERT [PROMPT]] If the PROMPT clause is used, a dialog appears asking if you
want to use the Report Designer or the Report Expert. You can then invoke either the

104 U p g r a d e G u i d e

D B M E S S A G E ()

designer or the expert. The EXPERT clause without PROMPT causes the Report Expert
to be invoked.

Description
Use CREATE REPORT to open the Report Designer and create or modify a report file. A
report file contains the information that formats a report. For information about using
the Report Designer, see the Crystal Reports documentation. CREATE REPORT and
MODIFY REPORT are identical commands.

Before issuing CREATE REPORT, you must have a default printer selected. After you
create or modify the report file, use REPORT FORM to print the report.

Example
This example opens a database table and then issues CREATE REPORT to construct a
report form:

CLOSE DATABASE
USE COMPANY
CREATE REPORT Comprep1
* If Comprep1 already exists then it will be modified.
* Otherwise, a new report form will be created.

Portability
The <filename skeleton> option is not supported in dBASE IV or dBASE III PLUS. In
dBASE IV and dBASE III PLUS, the default report file extension is .FRM.

See Also
REPORT FORM

DBMESSAGE() Error handling and debugging

Returns the error message of the last BDE error.

Syntax
DBMESSAGE()

Description
DBMESSAGE() returns the error message of the most recent IDAPI error.

See the table in the description of ERROR() that compares ERROR(), MESSAGE(),
DBERROR(), DBMESSAGE(), CERROR(), SQLERROR(), and SQLMESSAGE().

See online Help for a listing of all error messages.

Example
See DBERROR() for an example of using DBMESSAGE().

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 105

E X T E R N

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CERROR(), DBERROR(), ERROR(), MESSAGE(), SQLERROR(), SQLMESSAGE()

EXTERN Windows programming

Declares a prototype for a non-dBASE function contained in a DLL file.

Syntax
EXTERN [CDECL] <return type> <function name>
([<parameter type list>])
[<path>] <filename>

or

EXTERN [CDECL] <return type> <user-defined function name>
([<parameter type list>])
[<path>] <filename>
FROM <export function name> | <ordinal number>

Since you create a function prototype with EXTERN, parentheses are required as with
other functions. Parentheses affect the way data types are promoted and converted.

CDECL Makes EXTERN use the C calling convention. If you omit CDECL, dBASE
uses the Pascal calling convention. (See the following table.)

<function name > The export name of the function. The export name of an external
function is contained in the .REF file associated with the DLL file that holds the function.

<return type > and <parameter type > A keyword representing the data type of the
value returned by the function, and the data type of each argument you send to the
function, respectively. The following table lists the keywords you can use.

Keyword
dBASE
data type C data type

Pascal
data type

ASM
data type

Parameters or return values
CDOUBLE Numeric long double (80 bit) Double N/A
CHANDLE Numeric Handles, such as

HANDLE, HWND,
HFONT, HDC

Handles, such as
Hwnd, HFont, HDC

dw

CINT Numeric int Integer dw (16 bit)
CLOGICAL Logical short Int Integer dw (16 bit)
CLONG Numeric long int (32 bit) Long Int dd (32 bit)
CSTRING Character char far *

(zero terminated)
PChar dw (16 bit)

CVOID N/A void Procedure N/A
CWORD Numeric short int (16 bit) WORD dw (16 bit)

106 U p g r a d e G u i d e

E X T E R N

For example, a C function may expect a 32-bit unsigned long value as a parameter, and
return a char * string. In your EXTERN command, you specify CLONG as the parameter
in <parameter type list> and CSTRING as the <return type>. When you call the function,
you pass a dBASE numeric variable and store the returned value to a character variable.

<user-defined function name > The name you give to the external function instead of
the export name. When you specify <user-defined function name> (instead of <function
name>), you must use the FROM <expC> | <expN> clause to identify the function in the
DLL file.

FROM <export function name > | <ordinal number > Identifies the function in the DLL
file specified by <filename>. <export function name> identifies the function by its name,
which is stored in the .DEF file that is associated with the DLL file. <ordinal number>
identifies the function with a number, which is also stored in the .DEF file.

When the function you call does not return a value, specify CVOID for <return type>.

<filename > The name of the DLL file in which the external function is stored. This
name must include the extension if the DLL file is not already in memory. The file name
of any DLL that you load in memory must be unique; for example, you can't load
SCRIPT.DLL and SCRIPT.FON into memory concurrently, even though they have
different file-name extensions.

If the DLL file is not already loaded into memory, EXTERN loads it automatically. If the
DLL file is already in memory, EXTERN increments the reference counter once.
Therefore, it isn't necessary to execute LOAD DLL before using EXTERN.

The reference counter is incremented only the first time, regardless of how many times
you execute the LOAD DLL and EXTERN commands.

<path > The directory path to the DLL file in which the external function is stored.
When you omit <path>, dBASE looks in the following directories for the DLL by default:

1 The current directory.
2 The Windows directory (for example, C:\WINDOWS).
3 The Windows SYSTEM subdirectory (for example, C:\WINDOWS\SYSTEM).
4 The directory containing DBASEWIN.EXE, or the directory in which the .EXE file of

your compiled program is located.
5 The directories in the current DOS path.
6 The directories mapped for search in a network.

The <path> specification is necessary only when the DLL file is not in one of these
directories.

Description
Use EXTERN to declare a prototype for an external function written in a language other
than dBASE. A prototype tells dBASE to convert its arguments to data types the external

Parameters only
CPTR N/A void * Pointer dd (32 bit)

Keyword
dBASE
data type C data type

Pascal
data type

ASM
data type

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 107

E X T E R N

function can use, and to convert the value returned by the external function into a data
type dBASE can use.

To call an external DLL function, first prototype it with EXTERN. Then, using the name
of the function you specified with EXTERN, call the function as you would any dBASE
function. You must prototype an external function before you can call that function in
your dBASE program.

The external function is held in a C library such as Windows API or a customized DLL
file you create in C, Pascal, or ASM. (For more information on using EXTERN and DLL
files, see Chapter 25 in the Programmer’s Guide.) Although most library code is contained
in files with extensions of .DLL, such code can be held in .EXE files, or even in .DRV or
.FON files.

Example
The following example is a dBASE program that uses EXTERN to call a C program
(cSample1.PRG). Explanations of included functions are as follows:

* Reverse():
* Uses the FROM option to specify a new name for
* the function (StrRevC) in the .DLL that has the
* ordinal number 2. In this example the var
* myString is passed by reference, it is then
* modified by the function StrRevC() in the dll
* and the modified string is then displayed in
* dBASE.
* GetDOSEnv():
* This example shows returning a address of a
* String to display in dBASE from a .dll, the
* String is one of the DOS Environment strings.
* GetDOSEnvNum():
* This example shows returning a number to dBASE
* from a .dll, the number is the number of null
* terminated strings in the DOS Environment. Use
* this first to find how many strings to get from
* GetDOSEnv().
* GetDOSEnvLen():
* This example shows returning a number to dBASE
* from a .dll, the number is the length of all the
* strings in the DOS Environment.

CLEAR
EXTERN CVOID Reverse(CSTRING) cSample1.dll FROM 2
* 2 is the ORDINAL number in the DLL cSample.dll
EXTERN CSTRING GetDOSEnv(CWORD) cSample1.dll
EXTERN CWORD GetDOSEnvLen() cSample1.dll
EXTERN CWORD GetDOSEnvNum() cSample1.dll
myString = "AbCdE"
? "Original Str: ",myString
Reverse(myString)
? "From StrRevC: ",myString
nSize=GetDOSEnvLen()
? "The Size of the DOS Environment Sting is: ",nSize
?

108 U p g r a d e G u i d e

E X T E R N

? "The DOS Environment is:"
FOR i = 1 to GetDOSEnvNum() && for 1 to Number of;

Strings in DOS Env
? GetDOSEnv(i) && print each String;

from the DOS Env
NEXT

The C source code for creating the .DLL file is as follows: (cSample1.C)

#include <windows.h>
#include <string.h>
#pragma argsused
int FAR PASCAL LibMain(HINSTANCE hInstance,
WORD wDataSeg, WORD wHeapSize, LPSTR lpszCmdline){

if (wHeapSize > 0) UnlockData (0) ;
return 1;}

#pragma argsused
int FAR PASCAL WEP(int wParameter) {

return 1;}
/* ##

Function StrRevC()
##*/

#pragma argsused
void FAR PASCAL StrRevC(LPSTR lpstrString) {

strrev(lpstrString);}
/* ##

Functions related to GetDOSEnv()
##*/

#pragma argsused
LPSTR FAR PASCAL GetDOSEnv(UINT index) {

LPSTR p;
UINT i;
for(i=1,p=GetDOSEnvironment();

i<index && *p != '\0';
p += (lstrlen(p)+1),++i);

return p;}
#pragma argsused
UINT FAR PASCAL GetDOSEnvLen(void) {

return (UINT)
(GetDOSEnv((UINT)-1) - GetDOSEnv(1)) + 1;}

#pragma argsused
UINT FAR PASCAL GetDOSEnvNum(void) {

LPSTR p;
UINT i;
for(i=0,p=GetDOSEnvironment(); *p != '\0';
p += (lstrlen(p)+1),++i);

return i;}

The C source code for creating the .DEF file is as follows(cSample1.DEF):

LIBRARY CSAMPLE1
DESCRIPTION 'A Sample DLL for dBASE for Windows'
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD SINGLE
HEAPSIZE 1400

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 109

E X T E R N

EXPORTS
WEP @1
STRREVC @2
GETDOSENV @3
GETDOSENVLEN @4
GETDOSENVNUM @5

The following section demonstrates the FROM option of EXTERN (using the name of
the function in the .DLL): This code segment displays a messagebox with an 'i' icon, title
of 'MyBox', message of 'Hello World', and 2 buttons, 'OK' and 'Cancel'.

EXTERN CWORD MyBox(CHANDLE,CSTRING,CSTRING,CWORD);
user.exe FROM "MessageBox"

? MyBox(0,"Hello World","MyBox",65)

Example 2: Calling a PASCAL dll. In this example the variable myString is passed by
reference. It is then modified by the function StrRevP() in the dll and the modified string
is returned.

* dBASE Program (pStrRev.PRG)
EXTERN CVOID StrRevP(CSTRING) pStrRev.dll
myString = "ABCD"
StrRevP(myString)
? myString

DLL Source Code (pStrRev.PAS)

Library pStrRev;
Uses
Strings;

Function StrRevP(str : PChar) : PChar; Export;
Var
endstr : PChar;
ch : Char;

Begin
StrRevP := str;
If Assigned(str) And (str^ <> #0) Then

Begin
endstr := StrEnd(str);
Dec(endstr);
While endstr > str Do

Begin
ch := str^;
str^ := endstr^;
endstr^ := ch;
Inc(str);
Dec(endstr)

End
End

End;
Exports
StrRevP Index 1;

Begin
End.

110 U p g r a d e G u i d e

F A C C E S S D A T E ()

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
LOAD DLL, RELEASE DLL

FACCESSDATE() Windows95

Returns the last date a file was opened under Windows95.

Syntax

FACCESSDATE(<filename expC >)
<filename expC > The name of the file to check. If the file is not in the current directory,
you must provide the path. If the file does not exist, dBASE returns an error message.

Description
FACCESSDATE() checks the file specified by <filename> and returns the date that the
file was last opened, provided the file was last opened under the Windows95 operating
system. This function is only useful on a system running the Windows95 operating
system. Under Windows 3.1, FACCESSDATE() returns a blank date.

Example
The following example uses FACCESSDATE() to check the last opened date of a table:

? FACCESSDATE("C:\VISUALDB\SAMPLES\ANIMALS.DBF")
06/01/95

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FCREATEDATE(), FCREATETIME(), FDATE(), FTIME()

FCREATEDATE() Windows95

Returns the date a file was created under Windows95.

Syntax

FCREATEDATE(<filename expC >)
<filename expC > The name of the file to check. If the file is not in the current directory,
you must provide the path. If the file does not exist, dBASE returns an error message.

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 111

F C R E A T E T I M E ()

Description
FCREATEDATE() checks the file specified by <filename> and returns the date that the
file was created, provided the file was created under the Windows95 operating system.
This function is only useful on a system running the Windows95 operating system.
Under Windows 3.1, FCREATEDATE() returns a blank date.

Example
The following example uses FCREATEDATE() to check the creation date of a table:

? FCREATEDATE("C:\VISUALDB\SAMPLES\ANIMALS.DBF")
06/01/95

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FACCESSDATE(), FCREATETIME(), FDATE(), FTIME()

FCREATETIME() Windows95

Returns the time a file was created under Windows95.

Syntax
FCREATETIME(<filename expC>)

<filename expC > The name of the file to check. If the file is not in the current directory,
you must provide the path. If the file does not exist, dBASE returns an error message.

Description
FCREATETIME() checks the file specified by <filename> and returns the time, as a
character string, that the file was created, provided the file was created under the
Windows95 operating system. This function is only useful on a system running the
Windows95 operating system. Under Windows 3.1, FCREATETIME() returns an empty
string.

Example
The following example uses FCREATEDATE() to check the creation time of a table:

? FCREATETIME("C:\VISUALDB\SAMPLES\ANIMALS.DBF")
12:20:10

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FACCESSDATE(), FCREATEDATE(), FDATE(), FTIME()

112 U p g r a d e G u i d e

F N A M E M A X ()

FNAMEMAX() Windows 95

Returns the maximum allowable file-name length on a given drive or volume.

Syntax
FNAMEMAX([<expC>]
<expC>
The drive letter, or name of the volume, to check. If <expC> is not provided, the current
drive/volume is assumed. If the drive/volume does not exist, dBASE returns an error
message.

Description
FNAMEMAX() checks the drive or volume specified by <expC> and returns the
maximum file-name length allowed for files on that drive/volume. This function is only
useful on a system running the Windows 95 operating system. Under Windows 3.1,
FNAMEMAX() always returns 12.

Example
The following example uses FNAMEMAX() to determine the maximum allowable file-
name

length on drive C:
? FNAMEMAX("C")
255

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FSHORTNAME()

FSHORTNAME() Windows95

Returns the short name (i.e. the DOS compatible name) of a file created under
Windows95.

Syntax
FSHORTNAME(<filename expC>)

<filename expC > The name of the file to check. If the file is not in the current directory,
you must provide the path. If the file does not exist, dBASE returns an error message.

Description
FSHORTNAME() checks the file specified by <filename> and returns a name for the file
following the DOS file naming convention (eight character file name, three character
extension). If SET FULLPATH is ON, the path is also returned. This function is only

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 113

L A B E L F O R M

useful on a system running the Windows95 operating system. Under Windows 3.1,
FSHORTNAME() returns the file-name.

Example
The following example uses FSHORTNAME() to check the short name of a table:

? FSHORTNAME("ANIMAL_LISTINGS_TABLE.DBF")
ANIMAL~1.DBF

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
FNAMEMAX()

LABEL FORM Input/Output

Generates and displays or prints a label report, using the label format stored in a
specified label file and information derived from records in the current table.

Syntax
LABEL FORM <filename 1> | ? | <filename skeleton 1>
[<scope>] [FOR <condition 1>] [WHILE <condition 2>]
[SAMPLE]
[TO FILE <filename 2> | ? | <filename skeleton 2>] | [TO PRINTER]

<filename 1> | ? | <filename skeleton > The file to get label formats from. The ? and
<filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE looks for the file in the current directory,
then in the path you specify with SET PATH. If you specify a file without including its
extension, dBASE looks for .RPL, .LBG, or .LBL, in that order.

<scope > The number of records in the current table from which to derive labels.
RECORD <n> identifies a single record by its record number. NEXT <n> identifies n
records, beginning with the current record. ALL specifies all records. REST specifies all
records from the current record to the end of the file.

FOR <condition 1 >
WHILE <condition 2 > Determines which records are affected by LABEL FORM. FOR
restricts LABEL FORM to records that meet <condition 1>. WHILE starts processing with
the current record and continues with each subsequent record as long as <condition 2> is
true.

SAMPLE Displays or prints a label containing asterisks for text and then prompts you
for more samples.

TO FILE <filename 2 > | ? | <filename skeleton 2 > Directs output to the text file
<filename>. By default, dBASE assigns a .TXT extension to <filename> and saves the file
in the current directory. The ? and <filename skeleton> options display a dialog box in
which you specify the name of the target file and the directory to save it in.

114 U p g r a d e G u i d e

L O G O U T

TO PRINTER Directs output to the printer.

Description
Use LABEL FORM to print or display labels in a format that you've defined in the
Report Designer using CREATE LABEL or MODIFY LABEL. For information about
using the Report Designer, see the Crystal Reports documentation. If you don't specify a
<scope>, WHILE <condition 1>, or FOR <condition 2> option, LABEL FORM prints the
label specifications for each record in record number or index order.

When printing or displaying a label report that includes groups of data or group
subtotals, either the current table must be in sorted order or its master index must be in
use. The sorted file or index must be arranged according to the value of the field on
which the data is grouped.

LABEL FORM without the TO FILE or TO PRINTER options displays the labels in the
results pane of the Command window or current user-defined window.

Example
This example opens the Company database and then generates labels using the
Complbl1 label form:

CLOSE DATABASE
USE Company
LABEL FORM Complbl1 TO PRINT
* This label format produces one across labels,
* 6 lines per label, with Company, Street,
* City, State and Zip code:
* General Consolidated
* 35 Libra Plaza
* Nashua NH 09242
*
*
*
* Consolidated Brands, Inc.
* 3 Independence Parkway
* Rivendell CA 93456

Portability
The <filename skeleton> option is not supported in dBASE IV or dBASE III PLUS.

See Also
CREATE LABEL

LOGOUT Security

LOGOUT logs out the current user and sets up a new log-in dialog.

Syntax
LOGOUT

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 115

O P E N D A T A B A S E

Description
LOGOUT logs out the current user from the current session and sets up a new log-in
dialog when used with PROTECT. The LOGOUT command enables you to control user
sign-in and sign-out procedures. The command forces a logout and prompts for a login.

When the command is processed, a log-in dialog appears. The user can enter a group
name, log-in name, and password. The PROTECT command establishes log-in
verification functions and sets the user access level.

LOGOUT closes all open tables, their associated files, and program files.

If PROTECT has not been used, and no DBSYSTEM.DB file exists, the LOGOUT
command is ignored.

See also
PROTECT, QUIT

OPEN DATABASE Table basics

Establishes a connection to a database server or a database defined for a specific
directory location.

Syntax
OPEN DATABASE <database name>
[AUTOEXTERN]
[LOGIN <username>/<password>]
[WITH <option string>]

<database name> The name of the database you want to open. Databases are created
using the BDE Configuration Utility (see Getting Started for more information).

<user name>/<password> Character string specifying the user name and password
combination required to access the database.

WITH <option string> Character string specifying server-specific information required
to establish a database server connection. For information about establishing database
server connections, refer to your Borland SQL Link documentation, and contact your
network or database administrator for specific connection information.

Description
The OPEN DATABASE command is used to establish a connection with a database
defined with the BDE Configuration Utility. When opening a database, you need to
specify whatever login parameters and database-specific information that connection
requires. Typically, your network or system administrator can provide you with the
information necessary to establish connections to established databases and database
servers at your site.

116 U p g r a d e G u i d e

P R O T E C T

Example
The following example uses OPEN DATABASE to establish a connection with a
database server, opens a database previously created using the BDE Configuration
Utility with SET DATABASE TO, and opens a server dBASE table and appends it to the
client/server database:

CLEAR
SET DBTYPE TO DBASE
OPEN DATABASE CAClients && Establish connection with database server
USE CAClients IN 1 && Opens server table
SELECT 1 && Work area 1 active
APPEND FROM CLIENTS.DBF && Append from local dBASE table
CLOSE ALL && Closes Clients server table
CLOSE DATABASE CAClients && Disconnect from database server

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CLOSE..., DATABASE(), SET DATABASE, SET DBTYPE

PROTECT Security

Creates and maintains security on a dBASE system.

Syntax
PROTECT

Description
This command is issued within dBASE by the database administrator, who is
responsible for data security. PROTECT works in a single user or multiuser
environment.

PROTECT is optional. If you use it, however, the security system always controls
dBASE table access.

This command displays a multi-page dialog. The first time you use protect, the system
prompts you to enter and confirm an administrator password.

Warning Remembering the administrator password is essential. You can access the security
system only if you can supply the password. Once established, the security system can
be changed only if you enter the administrator password when you call PROTECT.
Keep a hard copy of the database administrator password in a secured area. There is no
way to retrieve a password from the system.

PROTECT includes three distinct types of database protection:

• Log-in security, which prevents access to dBASE, or all protected tables (at the
discretion of the database administrator), by unauthorized personnel.

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 117

P R O T E C T

• File and field access security, which allows you to define what dBASE tables, and
fields within tables, each user can access.

• Data encryption, which encrypts dBASE tables so that unauthorized users cannot
read them

The following table summarizes the database security types, how to implement each
security type, and the results of security implementation.

It is not necessary to implement all three levels of security; you can stop at the log-in
level if you wish. You must implement the security types in the order shown in the
previous table.

Log-in security is the first security level. Once a security system is in place, you can set
up log-in security in one of two ways:

• Users cannot access dBASE until they pass log-in security.

• Users can access dBASE, but cannot access any protected table until they pass log-in
security.

Access control is the next security level. Access control determines what a user can do
both with the table and the data in the table, and can be used to control processing of
application code. User access levels are numbered 1 through 8, where 1 has the greatest
and 8 has the lowest access privileges. You establish an access level for each user in the
user's profile, and additional access levels for table and field privileges in the table
privilege scheme.

You establish privileges for a table by assigning access levels, in any combination, for
read, update, extend, and delete operations.

Data encryption scrambles the table so that unauthorized users cannot read the data.

The DBSYSTEM.DB file PROTECT builds and maintains a password system file called
DBSYSTEM.DB, which contains a record for each user who accesses a PROTECTed
system. Each record, called a user profile, contains the user's log-in name, account name,
password, group name, and access level. When a user attempts to start dBASE (if
dBASE is configured to require a log-in to start the program), or attempts to access a
protected table (if dBASE is configured to require a log-in when a protected table is
accessed), dBASE looks for a DBSYSTEM.DB file. You can specify a location for this file
in the [CommandSettings] section of DBASEWIN.INI:

DBSYSTEM=C:\VISUALDB\BIN

If there is no DBSYSTEM entry in DBASEWIN.INI, dBASE looks for the file in the same
directory in which DBASEWIN.EXE is located. If it finds the file, it initiates the log-in
process. If it does not find the file, there is no log-in process.

Security Type You Define: You Get:

Log-in User name and password Control over access to dBASE or all protected
tables

File and Field Access Access levels Control over access to dBASE tables, fields in
tables, and application code

Data Encryption User and file group Automatic encryption and decryption of data

118 U p g r a d e G u i d e

R E P O R T F O R M

DBSYSTEM.DB is maintained as an encrypted file. Keep a record of the information
contained in DBSYSTEM.DB, as well as a current backup copy of the file. If the
DBSYSTEM.DB file is deleted or damaged and no backup is available, the database
administrator will need to reinitialize PROTECT using the same administrator
password and group names as before, or the data will be unrecoverable.

See the “Restricting access to confidential tables” chapter in the User's Guide for more
information about PROTECT.

See Also
ACCESS(), LOGOUT, SET ENCRYPTION, USER()

REPORT FORM Input/Output

Generates and displays or prints a report, using the report format stored in a specified
report file and information derived from records in the current table.

Syntax
REPORT FORM <filename 1> | ? | <filename skeleton 1>
[<scope>] [FOR <condition 1>] [WHILE <condition 2>]
[CROSSTAB]
[HEADING <expC>]
[NOEJECT]
[PLAIN]
[SUMMARY]
[TO FILE <filename 2> | ? | <filename skeleton 2>] | [TO PRINTER]

<filename 1 > | ? | <filename skeleton > The report format file to use. The ? and
<filename skeleton> options display a dialog box from which you can select a file. If you
specify a file without including its path, dBASE looks for the file in the current directory,
then in the path you specify with SET PATH. If you specify a file without including its
extension, dBASE looks for .RPT, .FRG, or .FRM, in that order. If you specify
CROSSTAB, dBASE looks for .RPC, .FRG, or .FRM, in that order.

<scope > The number of records to derive the report from. RECORD <n> identifies a
single record by its record number. NEXT <n> identifies n records, beginning with the
current record. ALL specifies all records. REST specifies all records from the current
record to the end of the file.

FOR <condition 1 >
WHILE <condition 2 > Determines which records are affected by REPORT FORM. FOR
restricts REPORT FORM to records that meet <condition 1>. WHILE starts processing
with the current record and continues with each subsequent record as long as <condition
2> is true.

CROSSTAB Specifies that the report was created with the Cross-Tab dialog box.

HEADING <expC> Adds a character expression, <expC>, as the heading of each page.
HEADING has no effect if used with PLAIN.

NOEJECT Prevents a page feed before printing begins.

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 119

R E P O R T F O R M

PLAIN Suppresses page numbers and dates on the pages of the report. Any title
appears only on the first page.

SUMMARY Includes only the totals of groups and subtotals of subgroups, excluding
the individual contents of records within each group and subgroup. The report format
defines groups and subgroups.

TO FILE <filename 2 > | ? | <filename skeleton 2 > Directs output to the text file <filename
2>. By default, dBASE assigns a .TXT extension to <filename 2> and saves the file in the
current directory. The ? and <filename skeleton> options display a dialog box in which
you specify the name of the target file and the directory to save it in.

TO PRINTER Directs output to the printer.

Description
Use REPORT FORM to print or display reports in a format that you've defined in the
Report Designer using CREATE REPORT or MODIFY REPORT. For information about
using the Report Designer, see the Crystal Reports documentation. If you don't specify a
<scope>, WHILE <condition 1>, or FOR <condition 2> option, REPORT FORM prints the
report specifications for each record in record number or index order.

When printing or displaying a report that includes groups of data or group subtotals,
the current table must either be in sorted order or its master index must be in use. The
sorted file or index must be arranged according to the value of the field on which the
data is grouped.

REPORT FORM without the TO FILE or TO PRINTER options displays the report in the
Command window or current user-defined window.

Example
This example opens the Company database and then generates a report using the
Comprep1 report definition:

CLOSE DATABASE
USE Company
REPORT FORM Comprep1 TO PRINT

Portability
The <filename skeleton> option is not supported in dBASE IV or dBASE III PLUS.

See Also
CREATE REPORT

120 U p g r a d e G u i d e

R E S T O R E I M A G E

RESTORE IMAGE Objects

Displays an image stored in a file or a binary field.

Syntax
RESTORE IMAGE FROM
<filename> | ? | <filename skeleton> | BINARY <binary field>
[TIMEOUT <expN>]
[TO PRINTER]
[[TYPE] PCX | TIF[F] | ICO | WMF | EPS]

FROM <filename > | ? | <filename skeleton > | BINARY <binary field > Identifies the file or binary
field to restore the image from. RESTORE IMAGE FROM ? and RESTORE IMAGE
FROM <filename skeleton> display the Open Source File dialog box, which lets the user
select a file. <filename> is the name of an image file; RESTORE IMAGE assumes a .BMP
extension and file type unless you specify otherwise. If you specify a file without
including its path, dBASE looks for the file in the current directory, then in the path you
specify with SET PATH. RESTORE IMAGE FROM BINARY <binary field> displays the
image stored in a binary field. You store an image in a binary field with the REPLACE
BINARY command.

TIMEOUT <expN> Specifies the number of seconds the image is displayed onscreen.

TO PRINTER Sends the image to the printer as well as to the screen.

[TYPE] PCX Specifies an image stored in PCX format, and assumes a .PCX file-name
extension if none is given. The word TYPE is optional.

Description
Use RESTORE IMAGE to display a graphic image that was generated and saved in
bitmap or PCX format. The image is displayed in a window.

Notes Your computer must have a graphics adapter to display an image.

To print an image with the TO PRINTER option, you must have a printer that can
process and print graphic data.

Example
The following example defines a form and list box for selection of an aircraft model and
uses RESTORE IMAGE to display a graphic from the memo field Image of the selected
record:

CLOSE ALL
SET TALK OFF
USE Aircrdb ORDER Aircraft IN SELECT()
SELECT Aircrdb
DEFINE FORM AC ;

PROPERTY ;
Top 5, ;
Left 2, ;
Height 13, ;
Width 30, ;
Text "Aircraft", ;

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 121

R O L L B A C K ()

Sizeable .T., ;
OnSelection Photo

DEFINE LISTBOX Model OF AC ;
PROPERTY ;

Top 2, ;
Left 10, ;
Height 7, ;
Width 18, ;
DataSource "FIELD Aircrdb->Aircraft"

OPEN FORM AC

FUNCTION Photo
RESTORE IMAGE FROM BINARY Image
RETURN .T.

Portability
Not supported in dBASE IV or dBASE III PLUS.

ROLLBACK() Shared data

Ends a transaction initiated by BEGINTRANS() without saving any changes to the open
files. Returns .T. if the data was rolled back successfully.

Syntax
ROLLBACK([<database name expC>])

<database name expC> The name of the database in which to cancel the transaction.

• If you began the transaction with BEGINTRANS(<database name expC>), you must
issue ROLLBACK(<database name expC>). If instead you issue ROLLBACK(), dBASE
ignores the ROLLBACK() statement.

• If you began the transaction with BEGINTRANS(), <database name expC> is an
optional ROLLBACK() argument. If you include it, it must refer to the same database
as the SET DATABASE TO statement that preceded BEGINTRANS().

Description
Use ROLLBACK() to end the open transaction and restore any open files to the state
they were in when BEGINTRANS() was issued. To end a transaction and write changes
to the files, use COMMIT().For more information on transactions, see BEGINTRANS().

Example
The following example begins a transaction with BEGINTRANS(). It opens a multi-user
version of Company.dbf and attempts to set values in the Ytd_Sales field to 0. ON
ERROR detects any error which might occur. In particular, it will detect if another user
has locked any record in Company.dbf. If an error occurs, ROLLBACK() resets all
values. Otherwise COMMIT() writes the changes to disk:

122 U p g r a d e G u i d e

S E T E N C R Y P T I O N

CLOSE ALL
SET PROCEDURE TO PROGRAM(1) ADDITIVE
SET EXCLUSIVE OFF

BEGINTRANS()

TransErr=.f.
ON ERROR DO TransErr && Activates ON ERROR trap

USE L:\MultiUse\Company
REPLACE ALL Ytd_Sales WITH 0
ON ERROR && Disables ON ERROR

IF TransErr
? "Rollback"
ROLLBACK() && restore data

ELSE
? "Commit"
COMMIT() && save changes

ENDIF

PROC TransErr
WAIT "Warning: Transaction Fails"
TransErr=.t.

Portability
Not supported in dBASE IV or dBASE III PLUS. ROLLBACK() replaces the
ROLLBACK command in dBASE IV.

See Also
BEGINTRANS(), COMMIT(), SET EXCLUSIVE

SET ENCRYPTION Security

Establishes whether a newly created dBASE table is encrypted if PROTECT is used.

Syntax
SET ENCRYPTION ON | off

Default
The default for SET ENCRYPTION is ON.

Description
This command determines whether copied dBASE tables (that is, tables created through
the COPY, JOIN, and TOTAL commands) are created as encrypted tables. An encrypted
table contains data encrypted into another form to hide the contents of the original table.
An encrypted table can only be read after the encryption has been deciphered or copied
to another table in decrypted form.

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 123

S E T L D C O N V E R T

To access an encrypted table, you must enter a valid user name, group name, and
password after the login screen prompts. Your authorization and access level determine
whether you can or cannot copy an encrypted table. After you access the table, SET
ENCRYPTION OFF to copy the table to a decrypted form. You need to do this if you
wish to use EXPORT, COPY STRUCTURE EXTENDED, MODIFY STRUCTURE, or
options of the COPY TO command.

Note Encryption works only with dBASE (.DBF) tables. Encryption works only with
PROTECT. If you do not enter dBASE or access the table through the log-in screen, you
will not be able to use encrypted tables.

All encrypted tables used concurrently in an application must have the same group
name.

Encrypted tables cannot be JOINed with unencrypted tables. Make both tables either
encrypted or unencrypted before JOINing them.

You can encrypt any newly created table by assigning the table an access level through
PROTECT.

See also
COPY TO, PROTECT, SET()

SET LDCONVERT Environment

Determines whether data read from and written to character and memo fields is
transliterated when the table character set does not match the global language driver.

Syntax
SET LDCONVERT ON | off

Default
The default for SET LDCONVERT is ON. To change the default, set the LDCONVERT
parameter in DBASEWIN.INI.

Description
Use SET LDCONVERT to determine whether the contents of character and memo fields
in tables created with a given language driver in effect, are converted to match the
language driver in effect at the time the fields are read or written to.

Language drivers determine the character set and sorting rules that dBASE uses, so if
you create a dBASE table with one language driver and then use that file with a different
language driver, some of the characters will appear incorrectly and you may get
incorrect results when querying data.

In general, SET LDCONVERT should be ON to insure that dBASE behaves as expected
when using data created under different language drivers.

For more information about working with language drivers, see PG_CHARLANG.

124 U p g r a d e G u i d e

U S E R ()

Portability
Not supported in dBASE IV or dBASE III PLUS.

See Also
CHARSET(), LDRIVER(), SET LDCHECK

USER() Security

Returns the login name of the user currently logged in to a protected system.

Syntax
USER()

Description
The USER() function returns the log-in name used by an operator currently logged in to
a system that uses PROTECT to encrypt files. On a system that does not use PROTECT,
USER() returns a null string.

See Also
ACCESS(), PROTECT

Classes

CLASS ASSOCARRAY
An array object class that takes character strings as subscripts.

Properties
The following table lists the properties of the Assocarray class. For more information on
each property, see the Properties section that follows.

Property Default Description

ClassName ASSOCARRAY Identifies the assocarray class
Count() N/A Returns the number of elements in the associated array
FirstKey N/A Returns the subscript character string for an element of an

associated array
IsKey() N/A Returns .T. if the specified character expression is a subscript of

the associated array
NextKey() N/A Returns the subscript of the next element in the associated array
RemoveAll() N/A Deletes all elements of the associated array.
RemoveKey() N/A Deletes a specified element from the associated array

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 125

C L A S S M E N U B A R

Description
Use the ASSOCARRAY class to create an array that has character strings as subscripts.
This lets you assign meaningful information to both the subscript and the array element
it references. For more information on using array objects, see ARRAYXREF.

Use the standard array operator [] to add and reference items in the array. An empty
string "" can be used as a subscript.

Example
The following example creates an associated array and displays its subscripts and
contents. It then deletes a specified element from the array.

aa = NEW ASSOCARRAY()
aa["San Francisco"] = "49ers"
aa["Los Angeles"] = "Rams"
x = aa.FirstKey
DO WHILE .NOT. EMPTY(x)

? x, aa[x] && display element subscript and contents
x = aa.NextKey(x) && 'increments' index pointer

ENDDO
? aa.Count() && Returns 2
aa.RemoveKey("San Francisco")&& Removes element from the array
? aa.Count() && Returns 1

See Also
CLASS ARRAY

CLASS MENUBAR
A MenuBar object specifies a top-level menu for a form. Using the MENUBAR class lets
you add the standard Windows Edit and Windows pull-down menus to a form.

Properties
The following table lists the properties of the Menubar class. For more information on
each property, see the Properties section that follows.

Property Default Description

ClassName MENUBAR Identifies the menubar object's class
EditCopyMenu .F. Specifies a menu item that copies selected text from a control to

the Windows clipboard
EditCutMenu .F. Specifies a menu item that deletes selected text from a control

and copies it to the Windows clipboard
EditPasteMenu .F. Specifies a menu item that pastes text from the Windows

clipboard to the edit control with focus
EditUndoMenu .F. Specifies a menu item that restores the form to the state before

the last edit operation was performed
ID 1 Identifies the menubar object with a numeric value
Name MENUBAR1 Specifies the menubar object's name

126 U p g r a d e G u i d e

C L A S S M E N U B A R

Description
A Menubar object specifies a top-level menu for a form. A form's top-level menu doesn't
contain any menu prompts itself; it is only the container for child menu objects. The
child menu objects of the top-level menu contain the form's actual menu items.

Menu objects that have a Menubar as a Parent appear on the top line of a form. By
default, the Menu Designer creates a MenuBar subclass when creating a .MNU file.

You can design and implement menus without using Menubars, as in earlier versions of
dBASE. The advantage of using the MENUBAR class is that you can implement an Edit
pulldown that uses the Windows clipboard for Cut, Copy, Paste and Undo operations,
and you can implement a Window pulldown that offers the standard MDI window list.
The properties that enable these menu choices (EditCutMenu, EditCopyMenu, etc.) all
take an object reference to a Menu object as their value.

To quickly add the Edit and Windows menus and their dropdown options (Cut, Copy,
etc.), use the Menu Designer and add these options using the Menu pulldown menu.

Note The command CREATE MENU creates a Menubar subclass by. You can also use
DEFINE MENUBAR m OF FormX to create a menu bar for the form named FormX.

Example

** END HEADER -- do not remove this line*
* Generated on 03/31/95
*
Parameter FormObj
NEW FOOMENU(FormObj,"Root")
CLASS FOOMENU(FormObj,Name) OF MENUBAR(FormObj,Name)

DEFINE MENU FILE OF THIS;
PROPERTY;
Text "&File"
DEFINE MENU EXIT OF THIS.FILE;

PROPERTY;
Text "E&xit"

DEFINE MENU EDIT OF THIS;
PROPERTY;
Text "&Edit"
DEFINE MENU UNDO OF THIS.EDIT;

PROPERTY;
Text "&Undo"

DEFINE MENU CUT OF THIS.EDIT;
PROPERTY;

Text "Cu&t"
DEFINE MENU COPY OF THIS.EDIT;

PROPERTY;

OnInitMenu N/A Specifies code that executes when the menubar is accessed
Parent N/A An object reference that points to the parent form
Release() N/A Removes the MenuBar definition from memory
WindowMenu .F. Specifies a top-level menu that displays the Window List of all

open MDI windows

Property Default Description

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 127

C L A S S O L E A U T O C L I E N T

Text "&Copy"
DEFINE MENU PASTE OF THIS.EDIT;

PROPERTY;
Text "&Paste"

DEFINE MENU WINDOW OF THIS;
PROPERTY;
Text "&Window"
DEFINE MENU ARRANGE OF THIS.WINDOW;

PROPERTY;
Text "&Arrange"

DEFINE MENU HELP OF THIS;
PROPERTY;
Text "&Help"
DEFINE MENU ABOUT OF THIS.HELP;

PROPERTY;
Text "&About"

This.EditUndoMenu = This.Edit.Undo
This.EditCutMenu = This.Edit.Cut
This.EditCopyMenu = This.Edit.Copy
This.EditPasteMenu = This.Edit.Paste
This.WindowMenu = This.Window

ENDCLASS

See Also
CLASS MENU, CLASS POPUP, DEFINE

CLASS OLEAUTOCLIENT
Creates an OLE2 controller which attaches to an OLE2 server.

Properties
The properties of this class are determined by the server.

Description
Use CLASS OLEAUTOCLIENT to attach to a server program. The syntax is:

<ClientClassName> = NEW OLEAUTOCLIENT<exp>

where <exp> is the server program ID. There is no equivalent DEFINE
OLEAUTOCLIENT statement.

After you have created the class, you can use the Property Inspector to see its properties.
You can change properties by using the Inspector or by using standard
ClientClassName.property statements.

128 U p g r a d e G u i d e

C L A S S O L E A U T O C L I E N T

Example

*
* OLEWORD.PRG
* Sample program to illustrate OLE2 Automation
* with Microsoft Word as the server.
*

*
* Create OLE2 Automation object. The parameter
* is the ProgID
*
ww = new oleautoclient(“word.basic”)
*
* All properties and methods of the OLE2
* Automation object are documented by the
* server.
*
ww.FileNew(“Normal”, 0)
ww.Insert(“This is my configuration file”)
ww.InsertBreak(6)
ww.InsertBreak(6)
ww.InsertFile(“c:\config.sys”)
ww.StartOfDocument()
ww.EndOfLine(1)
ww.EditCut()
ww.EditPaste()
ww.EditPaste()
? “current font size is”, ww.FontSize()
ww.EditSelectAll()
ww.GrowFont()
ww.GrowFont()
ww.GrowFont()
? “font size is now “, ww.FontSize()
ww.EditCopy() && Can paste into dBASE later
ww.FilePrint()
*
* Uncomment the following line to
* close Word
*ww.AppClose()

See Also
CLASS DDELINK, CLASS DDETOPIC, CLASS OLE

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 129

C L A S S P A I N T B O X

CLASS PAINTBOX
A generic control that can be placed on a form.

Properties
The following table lists the properties of the Paintbox class. For more information on
each property, see the Properties section of this chapter.

Property Default Description

Before N/A Specifies which object the paintbox object precedes in the
tabbing order of the parent form

ClassName PAINTBOX Identifies the paintbox object's class
ColorNormal WindowText/

Window
Sets the color of the paintbox object when it isn't
highlighted

Enabled .T. Determines if the paintbox object can be selected
Height N/A Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains

context-sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help

topic in a Windows Help file (.HLP)
hWnd N/A Returns the paintbox object handle
ID -1 Identifies the paintbox object with a numeric value
Left N/A Sets the position of the left border
Move() N/A Moves or sizes the paintbox object
Name PAINTBOX1 Specifies the paintbox object's name
OnChar N/A Executes a subroutine when a "printable" key or key

combination is pressed
OnClose N/A Executes a subroutine when a form is closed
OnFormSize N/A Executes a subroutine whenever the parent form is

resized, restored, or maximized
OnGotFocus N/A Executes a subroutine when the paintbox object receives

focus
OnKeyDown N/A Executes a subroutine when any key is pressed
OnKeyUp N/A Executes a subroutine when any key is released
OnLeftDblClick N/A Executes a subroutine when the user double-clicks the

paintbox object
OnLeftMouseDown N/A Executes a subroutine when the user clicks the paintbox

object with the left mouse button
OnLeftMouseUp N/A Executes a subroutine when the user releases the left

mouse button while the pointer is over the paintbox object
OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the

paintbox object with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks the paintbox

object with the middle mouse button
OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle

mouse button while the pointer is on the paintbox object

130 U p g r a d e G u i d e

C L A S S P A I N T B O X

Description
The PaintBox object is a generic control you can use to create a variety of objects. It is
designed for advanced developers who want to create their own custom controls using
the Windows API. It is simply a rectangular region of a form which has all the standard
control properties such as Height, Width, and Before, as well as all the standard mouse
events.

In addition to the standard events or properties, the PaintBox object has three events
that let you detect keystrokes entered when it has focus: OnChar, OnKeyDown, and
OnKeyUp. These let you create customized editing controls. The OnPaint and
OnFormSize properties let you modify the appearance of the object based on user
interaction.

Example

local f
f = new PAINTEXFORM()
f.Open()
CLASS PAINTEXFORM OF FORM

this.OnLeftMouseUp = CLASS::FORM_ONLEFTMOUSEUP
this.Text = "Form"
this.Left = 54.5
this.Top = 2
this.PageNo = 1
this.ColorNormal = "N/BTNFACE"
this.Height = 20.6465
this.TopMost = .F.

OnMouseMove N/A Executes a subroutine when the user moves the mouse
over the paintbox object

OnOpen N/A Executes a subroutine when the parent form is opened
OnPaint N/A Executes a subroutine whenever the object needs to be

redrawn
OnRightDblClick N/A Executes a subroutine when the user double-clicks the

paintbox object with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the paintbox

object with the right mouse button
OnRightMouseUp N/A Executes a subroutine when the user releases the right

mouse button while the pointer is on the paintbox object
PageNo N/A Specifies on which page of a multi-page form the

paintbox object appears
Parent N/A An object reference that points to the parent form
Release() N/A Removes the paintbox object definition from memory
SetFocus() N/A Gives focus to the paintbox object
TabStop .T. Determines if the user can give object focus to the

paintbox object by pressing Tab or Shift+Tab
Top N/A Sets the position of the top border
Visible .T. Determines whether the paintbox object is visible or

hidden
Width N/A Sets the width

Property Default Description

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 131

C L A S S P A I N T B O X

this.Width = 67.666
DEFINE PAINTBOX PAINTBOX1 OF THIS;

PROPERTY;
OnPaint CLASS::PAINTBOX1_ONPAINT,;
OnLeftMouseDown CLASS::PAINTBOX1_ONLEFTMOUSEDOWN,;
OnLeftMouseUp CLASS::PAINTBOX1_ONLEFTMOUSEUP,;
Left 9.333,;
Top 2,;
ColorNormal "B+/0xffff80",;
PageNo 1,;
Height 6.8818,;
OnOpen CLASS::PAINTBOX1_ONOPEN,;
Width 21.333

Procedure PAINTBOX1_OnPaint
hfact = (256/43)
vfact = (256/15.5)
lwidth = form.paintbox1.width * hfact
lheight = form.paintbox1.height * vfact
form.pointarray = makepoint(lwidth/2,0)
form.pointarray = form.pointarray + makepoint(0,lheight)
form.pointarray = form.pointarray + makepoint(lwidth,lheight)
local hDC
hDC = GetDc(this.hwnd)
hBrush = CreateSolidBrush(hdc,RGB(255,0,0))
SelectObject(hDC,hbrush)
SetTextColor(hDC, RGB(0,0,255))
SetPolyFillMode(hDC,2)
Polygon(hDC,form.pointarray,3)
ReleaseDc(this.hWnd, hDC)

return

Procedure PAINTBOX1_OnOpen
set proc to program(1) ADDITIVE

EXTERN CHANDLE GetDc(CHANDLE) USER.EXE
EXTERN CINT ReleaseDc(CHANDLE,CHANDLE) USER.EXE
EXTERN CLOGICAL Polygon(CHANDLE,CPTR,CINT) GDI.EXE
EXTERN CINT SetTextColor(CHANDLE, CLONG) GDI.EXE
EXTERN CLOGICAL Ellipse(CHANDLE,CINT,CINT,CINT,CINT) GDI.EXE
EXTERN CLOGICAL FloodFill(chandle,cint,cint,clong) GDI.EXE
EXTERN CINT SetPolyFillMode(chandle,cint) GDI.EXE
EXTERN Chandle CreateSolidBrush(chandle,clong) GDI.EXE
EXTERN Chandle SelectObject(chandle,chandle) GDI.EXE
this.moving = .f.

return

Procedure PAINTBOX1_OnLeftMouseDown(flags, col, row)
this.moving = .t.

return

Procedure form_OnLeftMouseUp(flags, col, row)
if form.paintbox1.moving

form.paintbox1.move(col,row,form.paintbox1.width,form.paintbox1.height)
form.paintbox1.moving = .f.

132 U p g r a d e G u i d e

C L A S S P O P U P

endif
return

Procedure PAINTBOX1_OnLeftMouseUp(flags, col, row)
this.moving = .f.

return
ENDCLASS
function RGB(r, g, b)
return b*65536+g*256+r
function MakePoint(x,y)
return(MakeInt(x) + MakeInt(y))
function MakeRect(left, top, width, height)
return
MakeInt(left)+MakeInt(top)+MakeInt(width+left)+MakeInt(top+height)
function MakeInt(int)
return chr(bitand(int,255))+chr(bitr(int,8))

See Also
CLASS IMAGE, CLASS OBJECT

CLASS POPUP
A Windows-style popup menu assigned to a form.

Properties
The following table lists the properties of the Popup class. For more information on each
property, see the Properties section of this chapter.

Description

Use CLASS POPUP to add a popup menu to a form. Popup menus give users a
"shortcut" way to perform actions without pulling down items from the menu bar. A
Popup's parent is always a Form. Individual menu items are attached to a Popup by
defining Menu objects with the Popup as parent.

Property Default Description

ClassName POPUP Identifies the Popup class
ID 1 Identifies the popup with a numeric value
Left N/A Sets the position of the left border
Name POPUP1 Specifies the name of the popup menu
OnInitMenu N/A Specifies code that executes when the popup menu is opened
Open() N/A Opens the popup menu
Parent N/A An object reference that points to the parent form
Release() N/A Removes the popup definition from memory
Top N/A Sets the position of the top border
TrackRight .T. Determines whether the popup menu responds to a right mouse

click for selection of a menu item

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 133

C L A S S P O P U P

A .POP file is similar to a .MNU in format with the name of the Popup passed as a
parameter instead of the explicit "Root" used in .MNU files.

A popup menu consists of two elements:

• The object reference variable that identifies the entire popup menu. You must create
this variable before you can create the menu. (The variable name is not displayed
anywhere.)

• Menu items, the prompts offered by the popup menu.

When you create a popup menu with the NEW operator, you can specify two
parameters:

• <parent form reference>-An object reference pointing to the parent form.

• <object name expC>-A character string assigned to the Name property of the new
popup menu. This value is optional.

For example, the following commands create a form and a popup to display in it:

MyForm = NEW FORM()
MyForm.MyPop = NEW POPUP(MyForm, "OurPopup")
MyForm.MyPop.Item1 = NEW MENU(MyForm.MyPop, "Close")
MyForm.MyPop.Item2 = NEW MENU(MyForm.MyPop, "Close and Save")
MyForm.Open()
MyForm.MyPop.Open()

The Name property of the new popup object contains "OurPopup".

Assigning actions to popup menu items You assign an action to a popup menu item
with the OnClick subroutine. For example, the following command assigns a subroutine
named ClsSave to the Close and Save menu item of the example above:

MyForm.MyPop.Item2.OnClick = ClsSave

Note You can design a popup menu with the Popup Designer, a tool that a popup menu file
(.POP). A popup menu file contains dBASE code that generates the popup menu you
design. To access the Popup Designer, click the File menu and select New | Popup.

Example

f = NEW Form()
DEFINE POPUP p OF f
DEFINE MENU Inspect OF f.p;
PROPERTY;

Text "Inspector"

See Also
CLASS MENU, CREATE POPUP

134 U p g r a d e G u i d e

C L A S S S H A P E

CLASS SHAPE
A region of color within a form.

Properties
The following table lists the properties of the Shape class. For more information on each
property, see the Properties section that follows.

Description
Use a Shape object to create a region of color within a form. The ShapeStyle property
determines the shape of the region you create. Like a Line object, a Shape does not have
an ID or an hWnd property.

While a Shape does not have a Border property, you can simulate a border by
designating a pair of colors (<foreground color>/<background color>) for the
ColorNormal property. The Shape object will display with a single-line border which is
<foreground color> while the interior of the Shape object is <background color>. Setting
ColorNormal to a single color value makes the entire shape that color.

Example
The following example creates a form and places an elliptical blue object with a bright
white border inside the form.

MyForm = NEW FORM("Shape Display")
MyShape = NEW SHAPE(MyForm, "OURSHAPE") &&Name property = "OURSHAPE"
MyShape.ShapeStyle = 2&& Elliptical shape

Property Default Description

ClassName SHAPE Identifies the shape class
ColorNormal BtnText/BtnFace Sets the border and interior colors of the shape object
Height N/A Sets the height
Left N/A Sets the position of the left border
Move() N/A Moves or sizes the shape object
Name SHAPE1 Specifies the name of the shape object
OnOpen N/A Executes a subroutine when the parent form is opened
PageNo N/A Specifies on which page of a multi-page form the shape object

appears
Parent N/A An object reference that points to the parent form
PenStyle 0 Specifies one of a series of line styles to be used for the border of

the shape object
PenWidth 1 Specifies the width of the border line of a shape object
Release() N/A Releases the shape object definition from memory
ShapeStyle 3 (Circle) Specifies which of several styles are applied to a shape object
Top N/A Sets the position of the top border
Visible .T. Determines whether the shape object is visible or hidden
Width N/A Sets the width

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 135

C L A S S T A B B O X

MyShape.ColorNormal = "W+/B"&& Bright white border, blue interior
MyForm.Open()

The Name property of the new Shape object contains "OURSHAPE".

See Also
CLASS IMAGE, CLASS RECTANGLE

CLASS TABBOX
A class that makes available the type of tab-based control that is used in the SET dialog,
the Property Inspector and other places in dBASE.

Properties
The following table lists the properties of the TabBox class. For more information on
each property, see the Properties section of this chapter.

Property Default Description

Anchor 1 Specifies whether the tab box stays in the same relative
position when the form is resized

Before N/A Specifies which object the tab box precedes in the
tabbing order of the parent form

ClassName TABBOX Identifies the tab box class
ColorHighlight BtnText/BtnFace Sets the color of the tab box when it is selected
ColorNormal BtnText/BtnFace Sets the color of the tab box when it isn't selected
CurSel 1 Specifies the currently-selected prompt in the tab box
DataSource ARRAY

{"TABBOX1"}
Specifies the prompts to display in the tab box

Enabled .T. Determines if the tab box can be selected
FontBold .T. Determines if characters in the tab box prompt are

displayed in bold type
FontItalic .F. Determines if characters are displayed in italic type
FontName MS Sans Serif Specifies the font to apply to displayed characters
FontSize N/A Specifies the size of the font in points
FontStrikeOut .F. Determines if characters are displayed in strikeout type
FontUnderline .F. Determines if characters are displayed in underlined

type
Height 1 Sets the height
HelpFile Empty string Identifies a Windows Help file (.HLP) that contains

context-sensitive Help topics
HelpID Empty string Specifies the context string or context number of a Help

topic in a Windows Help file (.HLP)
hWnd N/A Specifies the tab box handle
ID 100 Identifies the tab box with a numeric value
Left 0 Sets the position of the left border
Move() N/A Moves or sizes the tab box
Name TABBOX1 Specifies the tab box name

136 U p g r a d e G u i d e

C L A S S T A B B O X

Description
A TabBox contains a number of tabs that users can select. The TabBox control behaves
like a list box. As with the list box, you can use the CurSel and OnSelChange()
properties to specify actions to perform.

By setting the PageNo property of a TabBox control to 0 (the default), you can
implement a tabbed multi-page form where the user can easily switch pages by
selecting tabs. Use the PageNo property of a control to determine on which page the

OnGotFocus N/A Executes a subroutine when the tab box receives focus
OnHelp N/A Executes a subroutine when the user presses F1
OnLeftDblClick N/A Executes a subroutine when the user double-clicks the

tab box
OnLeftMouseDown N/A Executes a subroutine when the user clicks the tab box

with the left mouse button
OnLeftMouseUp N/A Executes a subroutine when the user releases the left

mouse button while the pointer is over the tab box
OnLostFocus N/A Executes a subroutine when focus is removed
OnMiddleDblClick N/A Executes a subroutine when the user double-clicks the

tab box with the middle mouse button
OnMiddleMouseDown N/A Executes a subroutine when the user clicks the tab box

with the middle mouse button
OnMiddleMouseUp N/A Executes a subroutine when the user releases the middle

mouse button while the pointer is on the tab box
OnMouseMove N/A Executes a subroutine when the user moves the mouse

pointer over the tab box
OnOpen N/A Executes a subroutine when the parent form is opened
OnRightDblClick N/A Executes a subroutine when the user double-clicks the

tab box with the right mouse button
OnRightMouseDown N/A Executes a subroutine when the user clicks the tab box

with the right mouse button
OnRightMouseUp N/A Executes a subroutine when the user releases the right

mouse button while the pointer is on the tab box
OnSelChange N/A Executes a subroutine when the highlight is moved from

one prompt to another
PageNo 0 Specifies on which page of a multi-page form the tab box

object appears; a value of 0 means it appears on all pages
Parent N/A An object reference that points to the parent form
Release() N/A Removes the tab box definition from memory
SetFocus() N/A Gives focus to the tab box
TabStop .T. Determines if the user can give focus to the tab box by

pressing Tab or Shift+Tab
Top N/A Sets the position of the top border
Visible .T. Determines whether the tab box is visible or hidden
When N/A Specifies a condition that must evaluate to true before

the user can give focus to the tab box
Width N/A Sets the width

Property Default Description

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 137

P r o p e r t i e s

control appears, and use the CurSel and OnSelChange() properties of the TabBox to
switch between pages.

You can use the DataSource property with a literal array to specify the text prompts that
appear on the tabs. For example, to create three tabs that say January, February, and
March, use the following statement as the DataSource property:

Array {"January","February","March"}

Note There is a space between the word Array and the opening brace ({).

Tabs within a TabBox control are always situated horizontally.

Example
f = NEW Form()
DEFINE TABBOX t OF f;
PROPERTY;

DataSource ‘ARRAY {"Page 1", "Page 2", "Page 3"}’
f.Open()

See Also
CLASS ARRAY, CLASS LISTBOX

Properties
AbandonRecord() Method

Releases a newly-created record from memory.

Property of class
FORM

Description
Use AbandonRecord() to cancel the creation of a new record stored in a temporary
memory buffer you created with BeginAppend().
For more information, see BeginAppend().

Example
See BeginAppend() for an example.

See Also
BeginAppend(), IsRecordChanged(), SaveRecord()

138 U p g r a d e G u i d e

A n c h o r

Anchor Property

Specifies whether an object stays in the same relative position when the form is resized.

Property of class
TABBOX

Data type
Numeric

Default
The default for Anchor is 1 (Bottom).

Description
Use Anchor to specify whether a tab box should maintain its size and location even if
the parent form is resized. Acceptable values for Anchor are 1 (Bottom) and 0 (None).
Generally, you'll want tabs on a form to automatically resize and reposition themselves
as their parent form is resized, so you'll want to set Anchor to 1. For example, if you are
using a tab box to move between different pages in a form, one tab is equivalent to one
page, so the size of the tab and the size of the page (or form) should be the same.

However, if you want the tabs to retain a particular placement and size configuration
despite the size of the parent form, set Anchor to 0.

Example

f = NEW Form()
DEFINE TABBOX TABBOX1 OF f PROPERTY Anchor 1

See Also
PageCount(), PageNo

BeginAppend() Method

Creates a temporary buffer in memory for a record that is based on the structure of the
current table, letting the user input data to the record without automatically adding the
record to the table.

Property of class
FORM

Description
BeginAppend() creates a single record buffer in the current table, without actually
adding the record to the table until SaveRecord() is issued. While this buffer exists, the
user can input data to the record with controls such as an entry field or a check box. Use
SaveRecord() to append the record to the currently active table, and use

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 139

B e g i n A p p e n d ()

AbandonRecord() to discard the record. Use IsRecordChanged() to determine if the
record has been changed since the BeginAppend() was issued.

For example, a form might contain two pushbuttons, one labeled Save and the other
labeled Abandon. The OnClick subroutine of the Save pushbutton might execute
SaveRecord() and the OnClick subroutine of the Abandon pushbutton might execute
AbandonRecord().

You might also attach a procedure to the Abandon pushbutton to check the status of
IsRecordChanged(). If it is true, you could ask the user to confirm that they want to
cancel the append operation.

Using BeginAppend() has different results than using either BEGINTRANS() and
APPEND BLANK or APPEND AUTOMEM. With these commands, if you cancel the
append operation, you have a record marked for deletion added to the table. If you use
AbandonRecord() to cancel the BeginAppend() operation, a new record is never added
to the table.

Example

local f
f = new ANIFORM()
f.Open()
CLASS ANIFORM OF FORM

this.Top = 3.5879
this.PageNo = 1
this.Width = 57.666
this.ColorNormal = "N/BTNFACE"
this.View = "animals.dbf"
this.Text = "Form"
this.TopMost = .F.
this.ScrollBar = 2
this.Height = 10.9404
this.Left = 24
this.OnOpen = CLASS::FORM_ONOPEN
DEFINE TEXT TITLE OF THIS;

PROPERTY;
Top 0.5,;
PageNo 1,;
Width 28,;
FontSize 18,;
ColorNormal "HIGHLIGHT/BTNFACE",;
Text "Animals",;
Border .F.,;
Height 2.0293,;
Left 1

DEFINE TEXT TEXT1 OF THIS;
PROPERTY;
Top 3,;
PageNo 1,;
Width 14,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "&Name",;
Border .T.,;
OldStyle .T.,;

140 U p g r a d e G u i d e

B e g i n A p p e n d ()

Height 2,;
Left 1

DEFINE ENTRYFIELD ENTRYFIELD1 OF THIS;
PROPERTY;
ColorHighLight "WindowText/Window",;
Top 4,;
PageNo 1,;
Width 13.3672,;
ColorNormal "WINDOWTEXT/WINDOW",;
Border .F.,;
Height 0.8232,;
Left 1.2988,;
DataLink "ANIMALS->NAME"

DEFINE TEXT TEXT2 OF THIS;
PROPERTY;
Top 3,;
PageNo 1,;
Width 14,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "&Size",;
Border .T.,;
OldStyle .T.,;
Height 2,;
Left 15

DEFINE SPINBOX SPINBOX1 OF THIS;
PROPERTY;
ColorHighLight "WindowText/Window",;
Top 4,;
PageNo 1,;
Width 13.3672,;
ColorNormal "WINDOWTEXT/WINDOW",;
Border .F.,;
Rangemax 100,;
Rangemin 1,;
Height 0.8232,;
Left 15.2988,;
DataLink "ANIMALS->SIZE"

DEFINE TEXT TEXT3 OF THIS;
PROPERTY;
Top 3,;
PageNo 1,;
Width 28,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "We&ight",;
Border .T.,;
OldStyle .T.,;
Height 2,;
Left 29

DEFINE SPINBOX SPINBOX2 OF THIS;
PROPERTY;
ColorHighLight "WindowText/Window",;
Top 4,;
PageNo 1,;
Width 13.3672,;
ColorNormal "WINDOWTEXT/WINDOW",;

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 141

B e g i n A p p e n d ()

Border .F.,;
Rangemax 100,;
Rangemin 1,;
Height 0.8232,;
Left 29.2988,;
DataLink "ANIMALS->WEIGHT"

DEFINE TEXT TEXT4 OF THIS;
PROPERTY;
Top 5,;
PageNo 1,;
Width 56,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "&Area",;
Border .T.,;
OldStyle .T.,;
Height 2,;
Left 1

DEFINE ENTRYFIELD ENTRYFIELD2 OF THIS;
PROPERTY;
ColorHighLight "WindowText/Window",;
Top 6,;
PageNo 1,;
Width 20.0342,;
ColorNormal "WINDOWTEXT/WINDOW",;
Border .F.,;
Height 0.8232,;
Left 1.2988,;
DataLink "ANIMALS->AREA"

DEFINE PUSHBUTTON PUSHBUTTON1 OF THIS;
PROPERTY;
Top 8,;
PageNo 1,;
Width 14.167,;
ColorNormal "BtnText/BtnFace",;
Text "&Save",;
Default .T.,;
OnClick CLASS::PUSHBUTTON1_ONCLICK,;
UpBitmap "RESOURCE #20",;
DownBitmap "RESOURCE #20",;
DisabledBitmap "RESOURCE #21",;
FocusBitmap "RESOURCE #20",;
Group .T.,;
Height 1.8818,;
Left 9.166

DEFINE PUSHBUTTON PUSHBUTTON2 OF THIS;
PROPERTY;
Top 8,;
PageNo 1,;
Width 14.167,;
ColorNormal "BtnText/BtnFace",;
Text "&Abandon",;
OnClick CLASS::PUSHBUTTON2_ONCLICK,;
UpBitmap "RESOURCE #24",;
DownBitmap "RESOURCE #24",;
DisabledBitmap "RESOURCE #25",;

142 U p g r a d e G u i d e

C a n C l o s e

FocusBitmap "RESOURCE #24",;
Group .T.,;
Height 1.8818,;
Left 31.166

Procedure PUSHBUTTON1_OnClick
IF Form.IsRecordChanged()

Form.SaveRecord()
ENDIF
GOTO BOTTOM
SKIP
Form.BeginAppend()

RETURN

Procedure PUSHBUTTON2_OnClick
Form.AbandonRecord()
Form.Close()

RETURN

Procedure Form_OnOpen
GOTO BOTTOM
SKIP
This.BeginAppend()

RETURN

ENDCLASS

See Also

AbandonRecord(), APPEND AUTOMEM, BEGINTRANS(), IsRecordChanged(),
SaveRecord()

CanClose Event

Executes a subroutine that determines if a form can be closed when an attempt is made
to close the form.

Property of class
FORM

Description

Use CanClose to prevent a form from closing until certain conditions are met. CanClose
can also be used to perform tasks when the form is about to close, but the form and its
objects are still in scope. This is different from OnClose which does not execute its
subroutine until the form is closed and the form’s object are out of scope. The subroutine
you assign to CanClose returns a value of true (.T.) which allows the form to close, or
false (.F.) which prevents the form from closing.

For example, when a form is based on a QBE that joins two tables on a key field, you
might want to prevent the key field of the parent table from containing blank or
duplicated values. The subroutine you assign to CanClose might search the parent table

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 143

C o p y ()

for blank or duplicated values and return true (.T.) if no such values exist (allowing the
form to close) or return false (.F.) if such values do exist (preventing the form from
closing).

Example
f = new SAMPLEFORM()
f.Open()
CLASS SAMPLEFORM OF FORM
* Form can only be closed if entryfield is not blank
this.CanClose = CLASS::FORM_CANCLOSE
DEFINE ENTRYFIELD ENTRYFIELD1 OF THIS;

PROPERTY;
Value " ",;
Top 2,;
Width 10,;
Height 1,;
Left 4

* Returns .T. only if TestField is not blank
Procedure Form_CanClose
RETURN IIF(ISBLANK(TRIM(THIS.ENTRYFIELD1.VALUE)), .F., .T.)

ENDCLASS

See Also
Close(), OnClose

Copy() Method

Copies selected text to the Windows clipboard.

Property of class
BROWSE, COMBOBOX, EDITOR, ENTRYFIELD, SPINBOX

Description
Use Copy() when the user has selected text and wants to copy it to the Windows
clipboard. The action of Copy() is identical to the Copy menu item on the standard
Windows Edit menu.

If you have assigned a menubar to the form, you can use the menubar's EditCopyMenu
property instead of using the Copy() property of individual objects on the form. For
more information, see EditCopyMenu.

Example

local f
f = new SAMPLEFORM()
f.Open()
CLASS SAMPLEFORM OF FORM

this.Width = 51.833
this.Text = "Sample Form"

144 U p g r a d e G u i d e

C o p y ()

this.Height = 12.6465
this.OnOpen = CLASS::FORM_ONOPEN
DEFINE ENTRYFIELD ENTRYFIELD1 OF THIS;

PROPERTY;
OnGotFocus CLASS::ENTRYFIELD1_ONGOTFOCUS,;
Value "Sample Text",;
Border .T.,;
Top 3,;
PageNo 1,;
Width 25,;
ColorNormal "WINDOWTEXT/WINDOW",;
Height 1.5,;
ColorHighLight "WINDOWTEXT/WINDOW",;
Left 3

DEFINE PUSHBUTTON PUSHBUTTON1 OF THIS;
PROPERTY;
Group .T.,;
Top 1,;
PageNo 1,;
Width 14,;
ColorNormal "BtnText/BtnFace",;
Text "&UnDo",;
OnClick CLASS::PUSHBUTTON1_ONCLICK,;
Height 1.5,;
Enabled .F.,;
Left 33.5

DEFINE PUSHBUTTON PUSHBUTTON2 OF THIS;
PROPERTY;
Group .T.,;
Top 4,;
PageNo 1,;
Width 14,;
ColorNormal "BtnText/BtnFace",;
Text "Cu&t",;
OnClick CLASS::PUSHBUTTON2_ONCLICK,;
Height 1.5,;
Left 33.5

DEFINE PUSHBUTTON PUSHBUTTON3 OF THIS;
PROPERTY;
Group .T.,;
Top 7,;
PageNo 1,;
Width 14,;
ColorNormal "BtnText/BtnFace",;
Text "&Copy",;
OnClick CLASS::PUSHBUTTON3_ONCLICK,;
Height 1.5,;
Left 33.5

DEFINE PUSHBUTTON PUSHBUTTON4 OF THIS;
PROPERTY;
Group .T.,;
Top 10,;
PageNo 1,;
Width 14,;
ColorNormal "BtnText/BtnFace",;

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 145

C o p y ()

Text "&Paste",;
OnClick CLASS::PUSHBUTTON4_ONCLICK,;
Height 1.5,;
Enabled .F.,;
Left 33.5

DEFINE ENTRYFIELD ENTRYFIELD2 OF THIS;
PROPERTY;
OnGotFocus CLASS::ENTRYFIELD2_ONGOTFOCUS,;
Value "",;
Border .T.,;
Top 6,;
PageNo 1,;
Width 25,;
ColorNormal "WINDOWTEXT/WINDOW",;
Height 1.5,;
ColorHighLight "WINDOWTEXT/WINDOW",;
Left 3

DEFINE TEXT TEXT1 OF THIS;
PROPERTY;
Border .F.,;
Top 2,;
PageNo 1,;
Width 20.166,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "C&opy/Cut from here:",;
Height 0.7646,;
Left 3.5

DEFINE TEXT TEXT2 OF THIS;
PROPERTY;
Border .F.,;
Top 5,;
PageNo 1,;
Width 18.166,;
ColorNormal "BTNTEXT/BTNFACE",;
Text "P&aste to here:",;
Height 0.7646,;
Left 3.5

Procedure PUSHBUTTON1_OnClick
Form.EntryLast.Undo()
This.Enabled = .F.

Return
Procedure PUSHBUTTON2_OnClick

IF .NOT. ISBLANK(TRIM(Form.EntryLast.Value))
Form.EntryLast.Cut()
Form.Pushbutton1.Enabled = .T.

ENDIF
RETURN
Procedure PUSHBUTTON3_OnClick

IF .NOT. ISBLANK(TRIM(Form.EntryLast.Value))
Form.EntryLast.Copy()

ENDIF
RETURN
Procedure PUSHBUTTON4_OnClick

Form.EntryLast.Paste()
Form.Pushbutton1.Enabled = .T.

146 U p g r a d e G u i d e

C o u n t ()

RETURN
Procedure ENTRYFIELD1_OnGotFocus

Form.EntryLast = This
Form.Pushbutton1.Enabled = .F.
Form.Pushbutton2.Enabled = .T.
Form.Pushbutton3.Enabled = .T.
Form.Pushbutton4.Enabled = .F.

Return
Procedure ENTRYFIELD2_OnGotFocus

Form.EntryLast = This
Form.Pushbutton1.Enabled = .F.
Form.Pushbutton2.Enabled = .F.
Form.Pushbutton3.Enabled = .F.
Form.Pushbutton4.Enabled = .T.

RETURN
Procedure Form_OnOpen

This.EntryField1.SetFocus()
Return

ENDCLASS

See Also
Cut(), EditCopyMenu, Paste(), Undo()

Count() Method

Returns the number of prompts in a list box or the number of elements in an associated
array.

Property of class
ASSOCARRAY, LISTBOX

Description
Use Count() when you can't anticipate the number of prompts a list box might have at
run time. For example, when you specify FILE *.* for the DataSource property, the
number of prompts varies when files are added to or deleted from the default directory.

You can use Count() to control loops that evaluate user choices in a multiple-choice list
box. For example, you can see which prompts were chosen by evaluating each prompt
with the Selected() method in a DO...WHILE loop.

Make a list box multiple-choice by setting the Multiple property to true (.T.).

You can also use Count() to determine the number of elements in an associated array.

Example
The following example defines a form that contains a listbox that displays names from
the Animals.DBF table. Property Multiple .T. lets the user select more than one listbox
prompt. The OnRightMouseDown property calls procedure Checked, which uses the
methods Count() and Selected() to send the selected prompts to the Command
window results pane with each OnRightMouseDown:

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 147

C U A T a b

LOCAL f
f = NEW XFORM()
f.Open()

CLASS XFORM OF FORM
this.Left = 52.80
this.Width = 40.60
this.Text = "Animals of the World"
this.HelpId = ""
this.OnRightMouseDown = CHECKED
this.HelpFile = ""
this.Top = 3.12
this.Height = 20.00

DEFINE LISTBOX LB1 OF THIS;
PROPERTY;
Left 10.00,;
ColorNormal "N/W*",;
Width 20.00,;
DataSource "FIELD ANIMALS->NAME",;
Multiple .T.,;
ColorHighLight "W+/B",;
Top 4.00,;
Height 12.00

ENDCLASS

PROCEDURE Checked
FOR i=1 TO Form.LB1.Count()
? Form.LB1.Selected(i)

NEXT i
RETURN

See Also
FOR...NEXT, LISTCOUNT(), LISTSELECTED(), Selected(), Multiple, IsKey, NextKey

CUATab Property

Determines cursor behavior when you press Tab while on a Browse or Editor object.

Property of class
BROWSE, EDITOR

Data type Logical

Default The default for CUATab is true (.T.).

Description
When CUATab is .T. (the default value), pressing Tab moves to the next control in the
Form's tab order. When CUATab is .F., pressing Tab moves to the next field in a Browse
object or moves the cursor to the next tab stop position in an Editor object.

148 U p g r a d e G u i d e

C u t ()

Example

local f
f = new SAMPLEFORM()
f.Open()
CLASS SAMPLEFORM OF FORM

this.Top = 2
this.Width = 76
this.Text = "Sample Form"
this.View = "animals.dbf"
this.Height = 20
this.Left = 11
DEFINE BROWSE BROWSE1 OF THIS;

PROPERTY;
Top 3,;
Width 56,;
Alias "ANIMALS",;
Height 16,;
CUATab .F.,;
Left 1

DEFINE OKBUTTON OKBUTTON1 OF THIS;
PROPERTY;
Group .T.,;
Top 3,;
Width 14,;
OnClick CLASS::OKBUTTON1_ONCLICK,;
Height 1.5,;
Left 60

Procedure OKBUTTON1_OnClick
Form.Close()

Return
ENDCLASS

See Also
_curobj, Before, NextObj, SET CUAENTER

Cut() Method

Cuts selected text and places it on the Windows clipboard.

Property of class
BROWSE, COMBOBOX, EDITOR, ENTRYFIELD, SPINBOX

Description
Use Cut() when the user has selected text and wants to remove it from the edit control
and place it on the Windows clipboard. The action of Cut() is identical to the Cut menu
item on the standard Windows Edit menu.

If you have assigned a menubar to the form, you can use the menubar's EditCutMenu
property instead of using the Cut() property of individual objects on the form. For more
information, see EditCutMenu.

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 149

D a t a S o u r c e

Example
See Copy() for an example.

See Also
Copy(), EditCutMenu, Paste(), Undo()

DataSource Property

Determines which data is displayed in a list box, a combo box, or an image object.

Property of class
COMBOBOX, IMAGE, LISTBOX, TABBOX

Data type
Character

Default
The default for DataSource is an empty string.

Description
You need to specify a valid value for the DataSource property to display an image in an
image object, or prompts in a list box or a combo box.

The DataSource property is similar to the DataLink property. However, data displayed
through the DataLink property can be changed, while data displayed through the
DataSource property is always read-only.

You can specify one of five DataSource values for a list box or a combo box:

1 FILE <filename skeleton expC> creates prompts from file names in the current default
directory.

2 FIELD <field name> creates prompts from all the values in a field in a table file. Each
prompt represents a record, and you can move from record to record by selecting
different prompts. To create prompts that don't move from record to record, copy the
field into an array object with COPY TO ARRAY, then use the DataSource ARRAY
<array name> option (described in this list).

3 STRUCTURE creates prompts from all the field names in a table.

4 ARRAY <array name> creates prompts from elements in an array object.

5 TABLES creates prompts from the names of all tables in the currently open database.
See OPEN DATABASE for information on databases.

To evaluate which prompts were chosen from a list box, use LISTSELECTED() or
Selected().

Note You can specify one of three DataSource values for an image object:

150 U p g r a d e G u i d e

D e s i g n V i e w

• RESOURCE <resource id><DLL name> designates a resource within a DLL file.
<resource id> is a numeric literal that identifies a bitmap image in the DLL file.
<DLL name> is the name of the DLL file and must include the file name extension if
the DLL file isn't already in memory.

• FILENAME <filename> is the name of a file containing a bitmap image.

• BINARY <binary field> is the name of a binary field containing bitmap images.

Example

NEW operator syntax:

this.COMBOBOX1 = NEW COMBOBOX(this)
this.COMBOBOX1.DataLink = "Company"
this.COMBOBOX1.Value = "General Consolidated"

DataSource = "FIELD COMPANY"
* or
* DataSource = "STRUCTURE"
* or
* DataSource = "FILE '*.PRG'"
* or
* DataSource = "TABLES"
* or
* DataSource = "Array 'ComboList'"

DEFINE object syntax:

DEFINE COMBOBOX COMBOBOX1 OF THIS;
PROPERTY;

DataLink "Company",;
Value "General Consolidated",;
DataSource "FIELD COMPANY"

* or
* DataSource "STRUCTURE"
* or
* DataSource "FILE '*.PRG'"
* or
* DataSource "TABLES"
* or
* DataSource "Array 'ComboList'"

See Also
DEFINE

DesignView Property

Designates a view (.QBE or table) that is used when designing a form.

Property of class
FORM

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 151

D i r E x t ()

Data type
Character

Default
The default for DesignView is an empty string.

Description

Use DesignView to facilitate creating and datalinking a form when you don’t want to
assign a View property to the form. The value in DesignView is ignored at runtime.

There are two main instances in which you may want to use DesignView instead of
View.

• If you know which tables will be open when the form is opened at runtime, use
DesignView to avoid opening the tables again when the form is opened. For
example, if you are designing a Search dialog box that will be opened only when a
specific table is already open, set the DesignView property of the dialog box instead
of the View property.

• If you don’t know which tables will be open when the form is opened at runtime, but
need certain tables open to design the form, use DesignView to avoid specifying at
design time which tables will be open at runtime.

If you specify a View property for a form, you should not also specify a DesignView
property. If you want to design multiple forms having different DesignView properties,
you should design the forms in different sessions.

See Also
Alias, DataLink, DataSource, View

DirExt() Method

Stores the name, size, date stamp, time stamp, and DOS and Windows95 attributes of
files to an array object.

Property of class
ARRAY

Description
DirExt() is identical to Dir(), but with extra columns for Windows95 file information.
For more information, see Dir().

Example

DirList = NEW ARRAY(1)
? DirList.DirExt()

152 U p g r a d e G u i d e

D r o p D o w n H e i g h t

See Also
Dir()

DropDownHeight Property

Specifies the number of lines displayed in the list portion of the combo box.

Property of class
COMBOBOX

Data type
Numeric

Default
The default for DropDownHeight is 6.

Description
Use DropDownHeight to specify how much information will appear when a user drops
down a list from a combo box.

Example
In the following example, the dropdown portion of the list contains either 10 lines or the
total number of list items available, whichever is smaller.

cbarray=NEW ARRAY(5) && Create array containing 5 elements
cbarray2=NEW ARRAY(15) && Create array containing 15 elements

f = NEW FORM()
c1 = NEW COMBOBOX(f)
c1.DataSource = 'ARRAY cbarray' && Acceptable values come from array
c1.Style = 2 && Only array items can be selected
c1.DropDownHeight = IIF(cbarray.size<10,cbarray.size,10) && 5 lines
c2 = NEW COMBOBOX(f)
c2.Left = c1.Left+20
c2.DataSource = 'ARRAY cbarray2'
c2.Style = 2
c2.DropDownHeight = IIF(cbarray2.size<10,cbarray2.size,10) && 10 lines
f.Open()

See Also
Style

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 153

E d i t C o p y M e n u

EditCopyMenu Property

Specifies a menu item that copies selected text from a control to the Windows clipboard.

Property of Class
MENUBAR

Data type
Object reference

Description
EditCopyMenu contains a reference to a menu object users select when they want to
copy text.

You can use the EditCopyMenu property of a form's menubar to copy selected text to
the Windows clipboard from any edit control in the form, instead of using the control's
Copy() property. In effect, EditCopyMenu calls Copy() for the active control. This lets
you provide a way to copy text with less programming than would otherwise be
needed. The Copy menu item is automatically disabled (greyed out) when no text is
selected, and enabled when text is selected.

For example, suppose you have a Browse object (b) and an Editor object (e) on a form (f).
To implement text copying, you could specify actions that would call b.Copy() or
e.Copy() whenever a user wanted to copy text. However, if you use a menubar, you can
set the EditCopyMenu property to the menu item the user will select to copy text. Then,
when the user selects that menu item, the text is automatically copied to the Windows
clipboard from the currently active control. You don't need to use the control's Copy()
property at all.

If you use the Menu Designer to create a menubar, EditCopyMenu is automatically set
to an item named Copy on a pulldown menu named Edit when you add the Edit menu
to the menubar:

this.EditCopyMenu = this.Edit.Copy

Example
See WindowMenu for an example.

See Also
CLASS MENUBAR, Copy(), EditCutMenu, EditPasteMenu, EditUndoMenu,
WindowMenu

154 U p g r a d e G u i d e

E d i t C u t M e n u

EditCutMenu Property

Specifies a menu item that cuts selected text from a control and places it on the
Windows clipboard.

Property of Class
MENUBAR

Data type
Object reference

Description
EditCutMenu contains a reference to a menu object users select when they want to
cut text.

You can use the EditCutMenu property of a form's menubar to cut (delete) selected text
and place it on the Windows clipboard from any edit control in the form, instead of
using the control's Cut() property. In effect, EditCutMenu calls Cut() for the active
control. This lets you provide a way to copy text with less programming than would
otherwise be needed. The Cut menu item is automatically disabled (greyed out) when
no text is selected, and enabled when text is selected.

For more information, see EditCopyMenu.

Example
For an example of EditCutMenu, see WindowMenu.

See Also
CLASS MENUBAR, Cut(), EditCopyMenu, EditPasteMenu, EditUndoMenu,
WindowMenu

EditPasteMenu Property

Specifies a menu item that copies text from the Windows clipboard to the currently
active edit control.

Property of Class
MENUBAR

Data type
Object reference

Description
EditPasteMenu contains a reference to a menu object users select when they want to
paste text to the cursor position in the currently active edit control.

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 155

E d i t U n d o M e n u

You can use the EditPasteMenu property of a form's menubar to paste text from the
Windows clipboard into any edit control in the form, instead of using the control's
Paste() property. In effect, EditPasteMenu calls Paste() for the active control. This lets
you provide a way to paste text with less programming than would otherwise be
needed. The Paste menu item is automatically disabled (greyed out) when the clipboard
is empty, and enabled when text is copied or cut to the clipboard.

For more information, see EditCopyMenu.

Example
For an example of EditPasteMenu, see WindowMenu.

See Also
CLASS MENUBAR, Paste(), EditCopyMenu, EditCutMenu, EditUndoMenu,
WindowMenu

EditUndoMenu Property

Specifies a menu item that reverses the effects of the last Cut, Copy, or Paste action.

Property of Class
MENUBAR

Data type
Object reference

Description
EditUndoMenu contains a reference to a menu object users select when they want to
undo their last Cut, Copy, or Paste action.

You can use the EditUndoMenu property of a form's menubar to undo a Cut or Paste
action from any edit control in the form, instead of using the control's Undo() property.
In effect, EditUndoMenu calls Undo() for the active control. This lets you provide a way
to undo with less programming than would otherwise be needed.

For more information, see EditCopyMenu.

Example
For an example of EditUndoMenu, see WindowMenu.

See Also
CLASS MENUBAR, Undo(), EditCopyMenu, EditCutMenu, EditPasteMenu,
WindowMenu

156 U p g r a d e G u i d e

F i r s t K e y

FirstKey Property

Returns the subscript character string for an element of an associated array.

Property of class
ASSOCARRAY

Description
Use FirstKey when you want to step through the elements in an associated array object,
starting from the first element in the array. Once you have issued FirstKey and are
positioned on the first element, use NextKey() to step through the elements in order.

Note Elements in associated array objects are not necessarily stored in the order in which you
add them to an array. This means you can't assume that the value returned by FirstKey
will be consistent, or that it will return the first item you added to the array.

For more information, see CLASS ASSOCARRAY.

Example
The following example creates an associated array and displays its subscripts and
contents.

aa = NEW ASSOCARRAY()
aa["San Francisco"] = "49ers"
aa["Los Angeles"] = "Rams"
x = aa.FirstKey
DO WHILE .NOT. EMPTY(x)

? x, aa[x] && display element subscript and contents
x = aa.NextKey(x) && 'increments' index pointer

ENDDO

See Also
IsKey(), NextKey()

Header3D Property

Specifies whether the top and left portions of a browse object appear raised (three-
dimensional).

Property of class
BROWSE

Data type
Logical

Default
The default for Header3D is true (.T.).

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 157

I c o n

Description
Header3D affects the appearance of the top and left sides of a browse window when
ShowHeading and/or ShowRecNo (respectively) are true. If Header3D is true, the
Heading and Record number appear three-dimensional, making it easier to see that they
don't represent values contained in the table. If ShowHeading and ShowRecNo are
false, Header3D has no effect.

Example
The following example shows a form with browse windows having three different
display formats.

f=NEW FORM()
f.View = "CLIENTS.DBF"
f.Width=80
b = NEW BROWSE(f)

b.Alias = "clients"
b.ColorNormal = "WindowText/Window"
b.colorHighLight = "WindowText/Window"
b.Header3D=.T. && 3D top and left

b3d = NEW BROWSE(f)
b3d.Alias = "clients"
b3d.Left = b.left+20
b3d.ColorNormal = "WindowText/Window"
b3d.colorHighLight = "WindowText/Window"
b3d.Header3D=.F. && Normal top and left

b3da = NEW BROWSE(f)
b3da.Alias = "clients"
b3da.Left = b3d.left+20
b3da.ColorNormal = "WindowText/Window"
b3da.colorHighLight = "WindowText/Window"
b3da.Header3D=.T. && Ignored because
b3da.ShowRecNo=.F. && ShowRecNo and
b3da.ShowHeading=.F. && ShowHeading are false

f.open()

See Also
ShowHeading, ShowRecNo

Icon Property

Specifies an icon format file (.ICO) or resource that displays when a form is minimized.

Property of class
FORM

Data type
Character

158 U p g r a d e G u i d e

I s K e y ()

Default
The default for Icon is an empty string.

Description
Use Icon to specify an image to be used when a form is minimized. You can specify a
resource (generally from a .DLL or .VBX file) or a file name.

Example
In the following example, the form is minimized when it opens, and an icon from a
specified DLL file is displayed:

f = NEW Form()
f.Icon = "RESOURCE #20 C:\MYAPP\MYAPP.DLL"
f.WindowState=1

See Also
Minimize, WindowState

IsKey() Method

Returns a logical value that indicates if the specified character expression is a subscript
of an element in an associated array.

Property of class
ASSOCARRAY

Description
Use IsKey(<expC>) to determine if an associated array contains an element with a
subscript of <expC>. This might be useful if you want to add an item to the array only if
it is not already there, or if you want to remove an element that has been added to the
array.

Example
The following example creates an associated array based on an existing table. It then
uses IsKey() to see if a specific element is in the array. If it isn't, it adds it to the array,
and to the table that was used to populate the array.

aa = NEW ASSOCARRAY()
USE customer
SCAN

cName = TRIM(name)
aa[cName] = city && Create element for each record

ENDSCAN
NewName = "Just Testing"
NewCity = "Anywhere"
IF aa.IsKey(NewName) = .F. && No matching element in array

APPEND BLANK
REPL name WITH NewName, ;

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 159

I s R e c o r d C h a n g e d ()

city WITH NewCity && Add record to table
aa[NewName] = NewCity && Add element to array

ENDIF

See Also
FirstKey, NextKey(), RemoveKey()

IsRecordChanged() Method

Returns a logical value that indicates whether the current record in the append buffer,
created with BeginAppend(), has been modified.

Property of class
Form

Data type
Logical

Description
Use IsRecordChanged() to determine whether a user has modified a new record created
with BeginAppend(). For example, if a user tries to close the new record without saving
it, check for IsRecordChanged(). If it's true, you can prompt the user to confirm they
want to abandon their changes.

Example
See BeginAppend() for an example.

See Also
AbandonRecord(), BeginAppend(), SaveRecord()

Keyboard() Method

Passes a character string to an edit control, simulating typed user input.

Property of class
BROWSE, COMBOBOX, EDITOR, ENTRYFIELD, SPINBOX

Description
Use Keyboard() when you want to pass text to an entry control as if the user had typed
it in manually. For example, if you are writing a tutorial, you can ask the user for
information, then use Keyboard() to demonstrate where the user would type the
information in an editor object on a form.

160 U p g r a d e G u i d e

N e x t K e y ()

Example

The following example illustrates using Keyboard() to simulate the typing of text in an
entry field.

f = new KBDFORM()
f.Open()
CLASS KBDFORM OF FORM

this.Text = "Form"
this.Top = 0
this.PageNo = 0
this.Width = 80
this.ColorNormal = "BtnText/BtnFace"
this.OnOpen = CLASS::FORM_ONOPEN
DEFINE ENTRYFIELD EF1 OF THIS;

PROPERTY;
Border .T.,;
ColorHighLight "WINDOWTEXT/WINDOW",;
Top 6,;
PageNo 1,;
Width 30,;
ColorNormal "WINDOWTEXT/WINDOW",;
Height 1,;
Left 12

Procedure Form_OnOpen
this.ef1.setfocus()
this.ef1.keyboard("Type your name here")

ENDCLASS

See Also
Paste()

NextKey() Method

Returns the subscript of the next element in an associated array.

Property of class
ASSOCARRAY

Description
Use NextKey() to step through the elements in an associated array object, starting from
the first element in the array. Generally, you'll use FirstKey to position yourself on the
first element in the array, and then use NextKey() to step through the elements in order.
NextKey() requires one parameter: the index of the element of the array to start from
when looking for the next element.

Example
See FirstKey for an example of NextKey().

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 161

O n C h a r

See Also
FirstKey, IsKey()

OnChar Event

Executes a subroutine when a “printable” key or key combination is pressed while the
control has focus.

Property of class
PAINTBOX

Data type
Function pointer or codeblock

Description
If you have created a paintbox object to develop a custom edit control, use OnChar to
determine actions that should take place when the object has focus and the user presses
a key or key combination that can be printed. (To specify actions triggered by other
keys, see OnKeyDown.)

OnChar is similar to OnKeyDown. However, OnChar returns nothing for non-printable
keys, such as Shift or CapsLock, while OnKeyDown returns a value for any key pressed.

Three numeric parameters are passed to the OnChar event:

• <nChar>: the scan code of the key or key combination

• <nReptCnt>: the number of times the keystroke is repeated based on how long the
key is held down

• <nFlags>: a parameter used to specify if the Shift or Ctrl key was pressed

(For more information on nFlags, see any of the On Mouse events, such as
OnLeftMouseDown.)

Example

local f
f = new SAMPLEFORM()
f.Open()
CLASS SAMPLEFORM OF FORM

this.TopMost = .F.
this.Height = 8.7051
this.Text = "Sample"
this.Left = 47.166
this.Top = 3.2344
this.PageNo = 1
this.Width = 27
this.ColorNormal = "N/BTNFACE"
DEFINE RECTANGLE RECTANGLE1 OF THIS;

PROPERTY;

162 U p g r a d e G u i d e

O n C h a r

Height 5.5,;
Text "",;
Left 4.5,;
Border .T.,;
Top 1.5,;
PageNo 1,;
Width 19,;
ColorNormal "BTNTEXT/BTNFACE"

DEFINE PAINTBOX PAINTBOX1 OF THIS;
PROPERTY;
OnKeyDown CLASS::PAINTBOX1_ONKEYDOWN,;
OnChar CLASS::PAINTBOX1_ONCHAR,;
Height 5,;
OnPaint CLASS::PAINTBOX1_ONPAINT,;
Left 6,;
Top 2,;
PageNo 1,;
OnFormSize CLASS::PAINTBOX1_ONFORMSIZE,;
Width 17,;
OnKeyUp CLASS::PAINTBOX1_ONKEYUP,;
ColorNormal "BTNTEXT/BTNFACE"

Procedure PAINTBOX1_OnChar(nChar, nRepCnt, nFlags)
? "OnChar values:"
? nChar
? nRepCnt
? nFlags
?

RETURN

Procedure PAINTBOX1_OnFormSize(sizeType, width, height)
? "OnFormSize values:"
? sizeType
? width
? height
?

RETURN

Procedure PAINTBOX1_OnKeyDown(nChar, nRepCnt, nFlags)
? "OnKeyDown values:"
? nChar
? nRepCnt
? nFlags
?

RETURN

Procedure PAINTBOX1_OnKeyUp(nChar, nRepCnt, nFlags)
? "OnKeyUp values:"
? nChar
? nRepCnt
? nFlags
?

Return

Procedure PAINTBOX1_OnPaint
? "PaintBox painted!"

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 163

O n F o r m S i z e

?
RETURN

ENDCLASS

See Also
Key, OnKeyDown, OnKeyUp, OnLeftMouseDown

OnFormSize Event

Executes a subroutine whenever the parent form of a paintbox object is resized.

Property of class
PAINTBOX

Data type
Function pointer or codeblock

Description
OnFormSize is called whenever the parent form of a paintbox object is resized, restored,
or maximized. This lets you reposition or resize the object based on the form's new size.
For example, you could use OnFormSize to implement behavior similar to the Anchor
property of the TABBOX class. keeping the bottom of the paintbox object positioned
near the bottom of the form.

OnFormSize is similar to OnPaint. However, OnPaint is triggered when the parent form
is opened and when items covering the paintbox object are moved away, while
OnFormSize is not.

Example
See OnChar for an example.

OnInitMenu Event

Specifies code that executes when a menubar or popup is opened.

Property of class
MENUBAR, POPUP

Data type
Function pointer or codeblock

Description
OnInitMenu is called whenever a menubar or popup is invoked, and is processed before
the menubar's child menus or the popup is displayed.

164 U p g r a d e G u i d e

O n K e y D o w n

You can use OnInitMenu to determine the status of menu items that will be displayed.
For example, use OnInitMenu to determine if the Enabled or Checked property of a
menu item should be true or false.

Example
Parameter FormObj
NEW SAMPLEMENU(FormObj,"Root")
CLASS SAMPLEMENU(FormObj,Name) OF MENUBAR(FormObj,Name)

this.OnInitMenu = {; ? "Menu opened!"}
DEFINE MENU FILE OF THIS;

PROPERTY;
Text "&File"
DEFINE MENU EXIT OF THIS.FILE;

PROPERTY;
Text "E&xit",;
OnClick {; Form.Close()}

ENDCLASS

See Also
Checked, Enabled

OnKeyDown Event

Executes a subroutine when any key or key combination is pressed while the control has
focus.

Property of class
PAINTBOX

Data type
Function pointer or codeblock

Description
If you have created a paintbox object to develop a custom edit control, use OnKeyDown
to determine actions that should take place when the object has focus and the user
presses any key or key combination. (To specify actions triggered by printable keys, see
OnChar.)

OnChar is similar to OnKeyDown. However, OnChar returns nothing for non-printable
keys, such as Shift or CapsLock, while OnKeyDown returns a value for any key pressed.

Three numeric parameters are passed to the OnKeyDown event:

• nChar - the scan code of the key or key combination

• nReptCnt - the number of times the keystroke is repeated based on how long the key
is held down

• nFlags - a parameter used to specify if the Shift or Ctrl key was pressed

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 165

O n K e y U p

(For more information on nFlags, see any of the On Mouse events, such as
OnLeftMouseDown.)

Example
See OnChar for an example.

See Also
Key, OnKeyDown, OnKeyUp, OnLeftMouseDown

OnKeyUp Event

Executes a subroutine when any key or key combination is released while the control
has focus.

Property of class
PAINTBOX

Data type
Function pointer or codeblock

Description
If you have created a paintbox object to develop a custom edit control, use OnKeyUp to
determine actions that should take place when the object has focus and the user releases
a key. (To specify actions triggered when the user presses a key, see OnKeyDown.)

Three numeric parameters are passed to the OnKeyup event:

• nChar - the scan code of the key or key combination

• nReptCnt - the number of times the keystroke is repeated based on how long the key
is held down

• nFlags - a parameter used to specify if the Shift or Ctrl key was pressed

(For more information on nFlags, see any of the On Mouse events, such as
OnLeftMouseUp.)

Example
See OnChar for an example

See Also
OnChar, OnKeyDown, OnLeftMouseUp

166 U p g r a d e G u i d e

O n P a i n t

OnPaint Event

Executes a subroutine whenever a paintbox object needs to be redrawn.

Property of class
PAINTBOX

Data type
Function pointer or codeblock

Description
OnPaint is called whenever a paintbox object needs to be redrawn. Events that trigger
OnPaint include:
• the parent form is opened
• the parent form is resized
• a minimized parent form is restored or maximized
• a window or object which has been covering the paintbox object is moved away

Example
See OnChar for an example.

See Also
OnFormSize

PageCount() Method

Returns the highest numbered page defined for a form.

Property of class
FORM

Description
Use PageCount() to determine how many pages a multi-page form contains. For
example, if you have a "Next Page" button or menu choice, you can use PageCount() in
conjunction with PageNo to determine if you are already on the last page of a form.

If you have a form that is set up as a result of user input or other program activities, you
might use PageCount() in conjunction with CLASS TABBOX to define a series of tabs
for the defined pages.

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 167

P a g e N o

Example

f = NEW Form()
DEFINE PUSHBUTTON p OF f;
PROPERTY;

Height 2,;
Left 2,;
Top 2,;
Text "Push",;
Width 10

f.Open()
? f.PageCount()

See Also
CLASS TABBOX

PageNo Property

PageNo Returns the active page of a form or the page on which a control appears.

Property of class
BROWSE, CHECKBOX, COMBOBOX, EDITOR, ENTRYFIELD, FORM, IMGE, LINE,
LISTBOX. OLE, PAINTBOX, PUSHBUTTON, RADIOBUTTON, RECTANGLE,
SCROLLBAR, SHAPE, SPINBOX, TABBOX, TEXT

Data Type
Numeric

Default
There is no default for the PageNo property of a form. However, when you create a new
form using the Form Designer, PageNo is set to 1.

The default for PageNo is 0 for a TabBox object and 1 for all other objects.

Description
The PageNo property of a form returns which page of the form is currently active. If you
set a form's PageNo property to 0 (zero), all controls on all pages are displayed.

For all controls other than forms, the PageNo property specifies on which page of a
multi-page form the control appears. A value of 0 (zero) means the control will appear
on every page of the form.

You may want to implement multi-page forms whenever a single form contains a large
number of objects. Dividing the objects logically among two or more pages helps
organize the objects, and may make the form easier to use.

If you want to use tabs to let users switch pages, set the PageNo property of the TabBox
to 0 (the default). This ensures that the tabs are visible while the user is on any page of
the form. If you want any other control to appear on all pages (such as a Close button),
set the PageNo property of the control to 0.

168 U p g r a d e G u i d e

P a g e N o

Example
The following example shows a form that contains two pages. The user switches
between them by using buttons labeled Next Page and Previous Page. A Close button
appears on every page.

LOCAL f
f = new MULTIPGFORM()
f.Open()
CLASS MULTIPGFORM OF FORM

this.Top = 0
this.Width = 60
this.OnOpen = {;form.pageno=1}&& Make sure page 1 displays first
DEFINE PUSHBUTTON PUSHBUTTON1 OF THIS;

PROPERTY;
Top 15,;
PageNo 1,;
Width 15,;
Text "Next Page",;
OnClick {;form.PageNo=2},;
Left 42

DEFINE PUSHBUTTON PUSHBUTTON2 OF THIS;
PROPERTY;
Top 15,;
PageNo 2,;
Width 15,;
Text "Previous Page",;
OnClick {;form.PageNo=1},;
Left 42

DEFINE PUSHBUTTON PUSHBUTTON3 OF THIS;
PROPERTY;
Top 17,;
PageNo 0,;
Width 10,;
Text "Close",;
OnClick {;form.Close()},;
Left 42

DEFINE TEXT TEXT1 OF THIS;
PROPERTY;
Top 4,;
PageNo 1,;
Width 34,;
Text "This appears on page 1",;
Height 2, ;
Left 13

DEFINE TEXT TEXT2 OF THIS;
PROPERTY;
Top 4,;
PageNo 2,;
Width 34,;
Text "This appears on page 2",;
Height 2, ;
Left 13

ENDCLASS

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 169

P a s t e ()

See Also
CLASS TABBOX, PageCount(), SpeedBar

Paste() Method

Copies text from the Windows clipboard to the currently active edit control.

Property of class
BROWSE, COMBOBOX, EDITOR, ENTRYFIELD, SPINBOX

Description
Use Paste() when the user wants to copy text from the Windows clipboard to the cursor
position in the currently active edit control. The action of Paste() is identical to the Paste
menu item on the standard Windows Edit menu.

If you have assigned a menubar to the form, you can use the menubar's EditPasteMenu
property instead of using the Paste() property of individual objects on the form. For
more information, see EditPasteMenu.

Example
See Copy() for an example.

See Also
Copy(), Cut(), EditPasteMenuUndo()

PenStyle Property

Specifies the type of line to be used as the border of a shape object.

Property of class
SHAPE

Data type
Numeric

Default
The default for PenStyle is 0 (Solid).

Description
Use PenStyle to control the appearance of the border of a shape object.

170 U p g r a d e G u i d e

P e n W i d t h

You can specify any of five settings for PenStyle:

Example
NEW operator syntax:

Sh2=NEW SHAPE(this)
Sh2.Left=3
Sh2.Top=8
Sh2.PenStyle = 3 && Dash Dot
DEFINE object syntax:
DEFINE SHAPE Sh2 OF THIS;
 PROPERTY Left 3, Top 8, PenStyle 3 &&Dash Dot

See Also
PenWidth, ShapeStyle

PenWidth Property

Specifies the width in pixels of the line used as the border of a shape object.

Property of class
SHAPE

Data type
Numeric

Default
The default for PenWidth is 1.

Description
Use PenWidth to specify the thickness of the line used to border a shape object.
If you set PenWidth to a value greater than 1, then PenSyle can only be set to 0.

Example
NEW operator syntax:

Sh2=NEW SHAPE(this)
Sh2.Left=3
Sh2.Top=8
Sh2.PenWidth = 3 && 3 pixels

Number Description Example

0 Solid
1 Dash
2 Dot
3 Dash Dot
4 DashDotDot

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 171

P o p u p M e n u

DEFINE object syntax:
DEFINE SHAPE Sh2 OF THIS;
PROPERTY Left 3, Top 8, PenWidth 3 && 3 pixels

See Also
PenStyle, ShapeStyle

PopupMenu Property

Specifies a popup menu for a form.

Property of class
FORM

Data Type
Object reference

Description
Assign the PopupMenu property to an existing popup menu to have the popup appear
when the user right clicks on the form.

Example
The following example creates a form and attaches an existing popup menu
(Pop0328.pop) to the form's OnOpen property. It then opens the form and the Inspector,
so you can inspect the form's PopupMenu property. If you right-click while the form is
open, the popup menu is displayed.

f = new POPFORM()
f.Open()
INSPECT(f)
CLASS POPFORM OF FORM

this.TopMost = .F.
this.Height = 20
this.Left = 53
this.Top = 0
this.PageNo = 1
this.Width = 60
this.OnOpen = CLASS::FORM_ONOPEN
Procedure Form_OnOpen

IF TYPE("This.PopupMenu") # "O"
DO Pop0328.pop with this,"MyPopTest"
form.PopupMenu = form.MyPopTest

ENDIF
Return

ENDCLASS

The code in Pop0328.pop was generated by the Menu Designer:

172 U p g r a d e G u i d e

* Pop0328.pop
Parameter FormObj,PopupName
NEW POP0328MENU(FormObj,PopupName)
CLASS POP0328MENU(FormObj,PopupName) OF POPUP(FormObj,PopupName)

this.Top = 0
this.Left = 0
this.TrackRight = .T.
DEFINE MENU CLOSE OF THIS;

PROPERTY;
Text "Close",;
OnClick {;form.close()}

ENDCLASS

See Also
OnOpen, TrackRight

Refresh() Method

Updates data displayed in control objects within a form.

Property of class
FORM

Description
Use Refresh() to update data displayed in a form to reflect the current state of the data
as it exists on disk. For example, you can use Refresh() in a multi-user environment to
ensure that the displayed data reflects all recent changes made by other users.

Example
The following example lets you use a scrollbar or an entry field to change the data in the
StartBal field of the Clients table. Because Refresh() is assigned to the scrollbar's
OnChange property, the value in the entry field and the table always reflect the value as
chosen with the scrollbar.

LOCAL f
f = NEW SBAR2FORM()
f.Open()
CLASS SBAR2FORM OF FORM

this.Top = 0
this.PageNo = 1
this.Width = 49
this.View = "CLIENTS.DBF"
this.Height = 20
this.Left = 50
DEFINE BROWSE BROWSE1 OF THIS;

PROPERTY;
Top 2,;
PageNo 1,;
Width 25.835,;
CUATab .T.,;

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 173

Alias "CLIENTS",;
ScrollBar 2,;
Fields "CLIENT_ID,STARTBAL",;
Height 11,;
Left 6,;
ShowRecNo .F.

DEFINE SCROLLBAR SCROLLBAR1 OF THIS;
PROPERTY;
Top 16,;
PageNo 1,;
Width 20,;
ColorNormal "ScrollBar",;
OnChange {;form.refresh()},;
DataLink "CLIENTS->STARTBAL",;
Height 1,;
Vertical .F.,;
Left 9, ;
Rangemax 32766

DEFINE ENTRYFIELD ENTRYFIELD1 OF THIS;
PROPERTY;
Top 15,;
PageNo 1,;
Width 11,;
ColorNormal "WINDOWTEXT/WINDOW",;
Border .T.,;
DataLink "CLIENTS->STARTBAL",;
Height 1,;
Left 14.5

Procedure SCROLLBAR1_OnChange

form.refresh()
ENDCLASS

See Also
REFRESH, SHOW OBJECT

RemoveAll() Method

Deletes all elements from an associated array object.

Property of class
ASSOCARRAY

Description
Use the RemoveAll() method to remove all elements from an associated array. You
might want to do this if you want to repopulate the array with new values.

Example
The following example removes all elements from an associated array.

174 U p g r a d e G u i d e

aa = NEW ASSOCARRAY()
aa["USA"] = "Washington, DC"
aa["Spain"] = "Madrid" && Array contains two elements
aa.RemoveAll() && Array now contains no elements

See Also
IsKey(), RemoveKey()

RemoveKey() Method

Deletes an element from an associated array object.

Property of class
ASSOCARRAY

Description
Use the RemoveKey() method to remove elements from an associated array object.
RemoveKey() accepts a character string as its parameter. This string represents the
subscript of the associated array element you want to remove.

Example
The following example removes an element from an associated array.

aa = NEW ASSOCARRAY()
aa["USA"] = "Washington, DC"
aa["Spain"] = "Madrid" && Array contains two elements
aa.RemoveKey("USA") && Array now contains one element

See Also
Delete(), IsKey(), RemoveAll()

See Also
DEFINE, REPLACE BINARY

SaveRecord() Method

Saves a temporary record by appending it to the currently active table.

Property of class
FORM

Description
Use SaveRecord() to add to the currently active table a new record stored in a
temporary memory buffer you created with BeginAppend().

For more information, see BeginAppend().

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 175

Example
See BeginAppend() for an example.

See Also
AbandonRecord(), BeginAppend(), IsRecordChanged()

ShapeStyle Property

Determines the shape of a shape object.

Property of class
SHAPE

Data type
Numeric

Default
The default for ShapeStyle is 3 (Circle).

Description
Use ShapeStyle to specify a shape for a shape object.

The shapes you can specify are as follows:

For example, if you want to provide a square, colored background for an area on a form,
you can create a shape object with a ShapeStyle value of 5, which specifies a square
shape. Use the ColorNormal property to specify the color of the shape object.

Example
The following example creates a form and places an elliptical blue object with a bright
white border inside the form.

MyForms = NEW FORM("Shape Display")
MyShape = NEW SHAPE(MyForm, "OURSHAPE" &&Name property = "OURSHAPE"
MyShape.ShapeStyle = 2 && Elliptical shape
MyShape.ColorNormal = "W+/B" && Bright white border, blue interior
MyForm.Open()

The Name property of the new Shape object contains "OURSHAPE".

Value Shape

0 Rectangle with rounded corners
1 Rectangle
2 Ellipse
3 Circle
4 Square with rounded corners
5 Square

176 U p g r a d e G u i d e

See Also
ColorNormal, PenStyle, PenWidth

ShowSpeedTip Property

Determines if tips about a control on a form appear in a balloon near the control when
the mouse rests on those controls. The controls must have tips text defined via the
SpeedTip property for tips to appear.

Property of class
FORM

Data type
Logical

Default
The default for ShowSpeedTip is true (.T.).

Description
Use ShowSpeedTip to determine whether tip messages appear for a control on a form. If
ShowSpeedTip is .T., and controls have tips defined via the SpeedTip property, the tip
will appear when the mouse comes to rest on the control. If ShowSpeedTip is .F., the tips
will not appear. ShowSpeedTip has no effect on controls where no tip has been defined.

Example
In the following example, the tips won't be displayed because ShowSpeedTip has been
set to false.

f = NEW Form()
f.ShowSpeedTip = .F.
DEFINE Pushbutton PSpeedTip OF f;
Property;

SpeedTip "Push to close",;
OnClick {; Form.Close()},;
Text "&Close" f.Open()

See Also
SpeedTip StatusMessage

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 177

SpeedTip Property

Specifies the text that appears when the mouse remains on a control for more than one
second.

Property of class
CHECKBOX, ENTRYFIELD, PUSHBUTTON, RADIOBUTTON, SPINBOX

Data type
Character

Default
The default for SpeedTip is an empty string.

Description
Use SpeedTip to create a brief text message which appears in a balloon when the mouse
rests on a control. Usually this message gives the user a clue as to the function of the
control. To suppress the display of Speed Tips, set the ShowSpeedTip property of the
form to false (.F.).

Example

f = NEW Form()
DEFINE PUSHBUTTON PSpeedTip OF f;
Property;

SpeedTip "Push to close",;
OnClick {; Form.Close()},;
Text "&Close" f.Open()

See Also
ShowSpeedTip, StatusMessage

TopMost Property

Specifies whether forms display on top of all other forms

Property of class
FORM

Description
Use the TopMost property to determine if a form stays in the foreground while focus
transfers to other windows.

For example, when an application displays an image object in its own form, it might be
desirable to keep the image visible while the user gives focus to other forms. Assigning a

178 U p g r a d e G u i d e

value of true (.T.) to the TopMost property keeps the form in the foreground regardless
of which form has focus.

TopMost has an effect only when the MDI property is false (.F.).

Example
The following example displays a form containing an image on top of another form. The
form with the image is visible even when the other form has focus.

f = new TOPMOSTFORM()
f2= new OTHERFORM()
f.open()
f2.open()
CLASS TOPMOSTFORM OF FORM

this.Top = 18
this.PageNo = 1
this.Width = 50
this.Text = "Modal TopMost"
this.TopMost = .T.
this.MDI = .F.
this.Height = 15
this.Left = 90
DEFINE IMAGE IMAGE1 OF THIS;

PROPERTY;
Top 2,;
PageNo 1,;
DataSource "FILENAME C:\WINDOWS\LEAVES.BMP",;
Width 30,;
Alignment 3,;
Height 10,;
Left 11

ENDCLASS
CLASS OTHERFORM OF FORM

this.Top = 4
this.PageNo = 1
this.Width = 87
this.Text = "Other form"
this.TopMost = .F.
this.MDI = .T.
this.Height = 26
this.Left = 63

ENDCLASS

See Also
MDI, WindowState

C h a p t e r 7 , N e w c o m m a n d s , f u n c t i o n s , c l a s s e s a n d p r o p e r t i e s 179

TrackRight Property

Determines if the user can select a popup menu item with a right mouse click.

Property of class
POPUP

Date type
Logical

Default
The default for TrackRight is true(.T.).

Description
When TrackRight is true (the default), users can select popup menu items with either
the right mouse button or the left mouse button.

Set TrackRight to false if you don't want users to be able to select items from a popup
menu with a right mouse click.

Example

f = NEW Form()
DEFINE POPUP p OF f;
PROPERTY;

TrackRight .F.

See Also
OnLeftMouseDown, OnRightMouseDown

WindowMenu Property

Specifies a menu object that displays a list of all open MDI windows.

Property of Class
MENUBAR

Data type
Object reference

Description
WindowMenu contains a reference to a menu object that has a menubar as its parent.
When users open this menu object, dBASE displays a pulldown list of all open MDI
windows.

180 U p g r a d e G u i d e

WindowMenu automatically places a separator line on the pulldown list between any
menu prompts and the list of open windows. The currently active window shows a
check next to the window name.

If you use the Menu Designer to create a menubar, WindowMenu is automatically set to
an item named Window on the menubar:

this.WindowMenu = this.Window

Example

NEW SAMPLEMENU(FormObj,"Root")
CLASS SAMPLEMENU(FormObj,Name) OF MENUBAR(FormObj,Name)

DEFINE MENU FILE OF THIS;
PROPERTY;
Text "&File"
DEFINE MENU EXIT OF THIS.FILE;

PROPERTY;
Text "E&xit"

DEFINE MENU EDIT OF THIS;
PROPERTY;
Text "&Edit"
DEFINE MENU UNDO OF THIS.EDIT;

PROPERTY;
Text "&Undo"

DEFINE MENU CUT OF THIS.EDIT;
PROPERTY;

Text "Cu&t"
DEFINE MENU COPY OF THIS.EDIT;

PROPERTY;
Text "&Copy"

DEFINE MENU PASTE OF THIS.EDIT;
PROPERTY;

Text "&Paste"
DEFINE MENU WINDOW OF THIS;

PROPERTY;
Text "&Window"
DEFINE MENU ARRANGE OF THIS.WINDOW;

PROPERTY;
Text "&Arrange"

DEFINE MENU HELP OF THIS;
PROPERTY;
Text "&Help"
DEFINE MENU ABOUT OF THIS.HELP;

PROPERTY;
Text "&About"

This.EditUndoMenu = This.Edit.Undo
This.EditCutMenu = This.Edit.Cut
This.EditCopyMenu = This.Edit.Copy
This.EditPasteMenu = This.Edit.Paste
This.WindowMenu = This.Window

ENDCLASS

See Also
CLASS MENUBAR, EditCopyMenu, MDI

C h a p t e r 8 , L o c a l S Q L 181

C h a p t e r

8
Chapter 8Local SQL

Visual dBASE provides the ability to mix dBASE and SQL commands for operations
against both local and remote data. This chapter describes the syntax of SQL commands
that can be used within dBASE when working with non-database server data (i.e.
dBASE and Paradox tables).

Note that the syntax described here is for use against dBASE/Paradox tables only.
Database servers (such as Interbase or Oracle) have their own implementations of SQL
syntax. When working with server data, the server’s syntax must be used. For detailed
information on SQL support in Visual dBASE, see the Programmer’s Guide. For
information on the SQL dialect and extensions used at your server, see your SQL server
documentation.

Memory variable substitution in SQL queries
dBASE supports the substitution of memvar values in SQL queries. dBASE memory
variables are indicated with a colon, as in the following example

x = "Robert"
SELECT * FROM customers WHERE firstname = :x

The memory variable x is resolved and "Robert" is substituted in its place.

Naming conventions

Table names
Table names may be comprised of alphanumeric characters, underscores (_), and the
period (.). They may include full file and path specifications or BDE alias specifications
(in the format :ALIASNAME:TABLENAME). They may even duplicate SQL keywords.

However, table names which include anything other than alphanumeric characters and
underscores, or include file or alias specifications, must always be enclosed in single or
double quotes. For example:

182 U p g r a d e G u i d e

A L T E R T A B L E

SELECT * FROM 'C:\SAMPLE.DAT\TABLE' includesfull path specification
SELECT * FROM "TABLE.DBF" includes a period
SELECT PASSID FROM "PASSWORD" duplicates an SQL keyword
SELECT BID_DATE FROM “:FSFDBASE:BIDS” includes BDE alias specification

Column names
Column names may be comprised of alphanumeric characters, underscores (_), and
spaces ().They may also duplicate SQL keywords.

However, column names that include spaces or duplicate SQL keywords must
always be:

• enclosed in single or double quotes

• prefaced with an SQL table name or table correlation name, in the format
TABLENAME.COLUMNNAME.

For example:

SELECT E."EMP ID" FROM EMPLOYEE includes a space
SELECTDATELOG."DATE" FROM TABLE duplicates an SQL keyword

ALTER TABLE
Adds or drops (deletes) one or more columns (fields) from a table.

Syntax
ALTER TABLE <table name> ADD <column name><data type> | DROP <column name>
[, ADD <column name><data type> ...] [,DROP <column name>...]

Description
Use ALTER TABLE to modify the structure of an existing table. ALTER TABLE with the
ADD clause adds the column <column name> of the type <data type> to <table name>. Use
the DROP clause to remove the existing column <column name> from <table>.

Warning Data stored in a dropped column is lost without warning, regardless of the SET SAFETY
setting.

Multiple columns may be added and/or dropped in a single ALTER TABLE command.

Use ALTER TABLE as a means of modifying the structure of a table without using the
dBASE Table Structure dialog.

Example
The following statement adds two columns (REFER and LASTCALL) and deletes one
column (FIRST_CONT) from a the table CUSTOMER.DBF:

ALTER TABLE CUSTOMER ADD REFER CHAR(20), ADD LASTCALL DATE, DROP FIRST_CONT

See also
CREATE TABLE, DROP TABLE, INSERT, MODIFY STRUCTURE (dBASE)

C h a p t e r 8 , L o c a l S Q L 183

C R E A T E I N D E X

CREATE INDEX
Creates a new index on a table.

Syntax
CREATE INDEX <index name> ON <table name> <column name> [, <column name>...]

Description
Use CREATE INDEX to create a new index <index name>, in ascending order, based on
the values in one or more columns <column name> of <table name>. Unlike the dBASE
language, expressions cannot be used to create an index, only columns.

When working with dBASE .DBF tables, the index can only be created for a single
column. The new index is created as a new index tag in the production index. A
production index is created if it does not exist.

CREATE INDEX is equivalent to the INDEX ON <field list> TAG <tag name> syntax in
the dBASE language.

Example
The following statement adds an index called ZIP on the ZIP_POSTAL column of the
CUSTOMER.DBF table:

CREATE INDEX ZIP ON CUSTOMER ZIP_POSTAL

See also
DROP INDEX, INDEX (dBASE)

CREATE TABLE
Creates a new table.

Syntax
CREATE TABLE tablename (<column name> <data type> [,<column name> <data type>...])

Usage
Use CREATE TABLE to create a new table. The type of table produced (dBASE or
Paradox) depends on the current setting of SET DBTYPE.

At least one <column name> <data type> must be defined. The column definition list must
be enclosed in parentheses.

184 U p g r a d e G u i d e

C R E A T E T A B L E

The following table lists SQL syntax for data types used with CREATE TABLE, and
describes how they are mapped to dBASE and Paradox types.

CREATE TABLE is a alternate way of creating a table without using the dBASE Table
Structure dialog or the dBASE CREATE STRUCTURE EXTENDED, CREATE FROM
commands.

Examples
The following example creates a dBASE table called SALES with the following
structure:

1. Parameters
x = length; if omitted, to 20 for dBASE
y = decimal places; if omitted, defaults to 4 for dBASE
n = length; if omitted, length defaults to 1
s = subtype; if a blob subtype is omitted, the subtype defaults to Memo

2. Blob subtypes
BINARY
FMTMEMO (Paradox only)
GRAPHIC (Paradox only)
MEMO
OLE

Table 8.1 Data type mappings for CREATE1

SQL Syntax dBASE Paradox

SMALLINT Numeric Short
INT Numeric Long
DECIMAL(x,y) N/A BCD
NUMERIC(x,y) Numeric(x,y) Number
FLOAT(x,y) Numeric(x,y) Number
CHARACTER(n) Character Alpha
DATE Date Date
BOOLEAN Logical Logical
BLOB(n,s)2 Memo/Binary Memo/Binary
TIME N/A Time
TIMESTAMP N/A TimeStamp
MONEY Numeric(20,4) Money
AUTOINC N/A Autoincrement
BYTES(n) N/A Bytes

Table 8.2 SALES.DBF structure

Field name Field type Field length Decimal places

SALESID Character 6
CUSTOMERID Character 10
ORDERDATE Date 8
ORDERNMBR Numeric 7 0

C h a p t e r 8 , L o c a l S Q L 185

D E L E T E F R O M

CREATE TABLE SALES (
SALESID CHAR(6),
CUSTOMERID CHAR(10),
ORDERDATE DATE,
ORDERNMBR NUMERIC(7,0),
ORDERAMT NUMERIC(9,2),
DELIVERED BOOLEAN)

See also
ALTER TABLE, CREATE (dBASE), CREATE FROM (dBASE), CREATE STRUCTURE
EXTENDED (dBASE), DROP TABLE

DELETE FROM
Deletes rows (records) from a table.

Syntax
DELETE FROM <table name> [WHERE <search condition>]

Usage
Use DELETE FROM to delete rows, or records, from <table name>. Without the WHERE
clause, all the rows in the table are deleted. Use the WHERE clause to specify a <search
condition>. Only records matching the <search condition> are deleted.

When DELETE FROM is run against dBASE .DBF tables the following rules apply:

1 If a WHERE clause is used, DELETE FROM only marks rows for deletion, even if all
the rows match the <search condition>. In this way, DELETE FROM behaves like the
dBASE DELETE command. The rows are recallable unless the table is packed.

2 Without the WHERE clause, all the rows in the table are actually deleted. In this case,
DELETE FROM behaves like the dBASE ZAP command. The rows are not recallable,
and the table will have zero rows.

When DELETE FROM is run against a Paradox table, all the rows matching the <search
condition> are actually deleted. If no WHERE clause is used, all the rows in the table are
deleted. The data in the deleted rows in not recallable.

Example
The following example deletes all the rows in a dBASE table called CUSTOMER and
results in a table with zero rows.

DELETE FROM CUSTOMER

ORDERAMT Numeric 9 2
DELIVERED Logical 1

Table 8.2 SALES.DBF structure (continued)

Field name Field type Field length Decimal places

186 U p g r a d e G u i d e

D R O P I N D E X

The following example marks all the rows in a dBASE table called CUSTOMER for
deletion, but does not actually delete the rows from the table.

DELETE FROM CUSTOMER WHERE CUSTOMER_N > 0

The following example marks all the rows where the CITY field is equal to “Freeport”
for deletion in a dBASE table called CUSTOMER.

DELETE FROM CUSTOMER WHERE CITY = “Freeport”

The following example deletes all the rows where the CITY field is equal to “Freeport”
in a Paradox table called CUSTOMER.

DELETE FROM “CUSTOMER.DB” WHERE CITY = “Freeport”

See also
DELETE (dBASE), PACK (dBASE), SELECT, ZAP (dBASE)

DROP INDEX
Drops (deletes) an existing index from a table.

Syntax
DROP INDEX <table name>.<index name>

Usage
Use DROP INDEX to drop, or delete, the index <index name> from <table name>. For
dBASE .DBF tables <index name> must be the name of a tag in the production index.

Example
The following statement drops the index tag NAME from the production index of a
dBASE table called EMPLOYEE:

DROP INDEX EMPLOYEE.NAME

The following statement drops a primary index on the Paradox table, EMPLOYEE.DB:

DROP INDEX “EMPLOYEE.DB”.PRIMARY

See also
CREATE INDEX, DELETE TAG (dBASE), DROP TABLE

C h a p t e r 8 , L o c a l S Q L 187

D R O P T A B L E

DROP TABLE
Drops (deletes) a table.

Syntax
DROP TABLE <table name>

Usage
Use DROP TABLE to delete the table <table name> from disk. The associated production
index file and memo file, if any, are also deleted.

Example
The following statement drops a dBASE table call EMPLOYEE:

DROP TABLE EMPLOYEE

See also
CREATE TABLE, DELETE FROM, DELETE TABLE (dBASE)

INSERT INTO
Adds new rows (records) to a table.

Syntax
INSERT INTO <table name> [(<column list>)] VALUES (<value list>) | SELECT <command>

Usage
Use INSERT INTO to add rows, or records, to a table. There are two forms of this
command. In the first form, you use <value list> to specify individual column values that
are to be inserted for the new row. The values to be inserted must match in number,
order, and type with the columns specified in <column list>, if <column list> is specified.
Columns in the new row for which no value is given are left blank. If no <column list> is
given, the order of the columns as they appear in the table is assumed. Without a
<column list> a value must be provided for each column in the <value list>.

In the second form, the SELECT clause is executed just like a SELECT command. The
row or rows returned by the SELECT are inserted into <table name>. The columns of the
rows returned by the SELECT are matched up with the columns listed in <column list>.
Therefore, the columns returned by SELECT must match in number, order, and type
with the columns specified in <column list>, if <column list> is specified. If no <column
list> is given, the number, order, and type of the columns returned by the SELECT must
match the number, order, and type of the columns in <table name>.

Example
The following example makes a copy of the structure of the dBASE table
CUSTOMER.DBF called CACUST.DBF, then adds customers to the new file.

188 U p g r a d e G u i d e

S E L E C T

USE CUSTOMER && open the customer table
COPY STRUCTURE TO CACUST && copy the structure
USE && close customer
* The next line adds a new row (record) to CACUST and inserts John Smith, Riverside, CA
* in the NAME, CITY, and STATE_PROV columns (fields) respectively
INSERT INTO CACUST (NAME, CITY, STATE_PROV) VALUES (“John Smith”, “Riverside”, “CA”)
* The next line retrieves all the records where the state is CA from CUSTOMER and adds
them to CACUST
INSERT INTO CACUST SELECT * FROM CUSTOMER WHERE STATE_PROV = “CA”

See also
APPEND (dBASE), APPEND BLANK (dBASE), APPEND FROM (dBASE), COPY
(dBASE), COPY TABLE (dBASE), CREATE TABLE, REPLACE (dBASE), SELECT

SELECT
Retrieves data from one or more tables.

Syntax
SELECT <column list> FROM <table list> [WHERE <search condition>] [GROUP BY <column list>]
[ORDER BY <column list>] [HAVING <search condition>] [SAVE TO <filename>]
[ALIAS <alias name>]

Usage
Use SELECT to retrieve data from a table or set of tables based on some criteria.

The <column list> is a comma-delimited list of columns in the table(s) that you wish to
retrieve. The columns are retrieved in the order given in the list. If two or more tables
used by SELECT use the same field names, distinguish the tables by using the table
name and a dot (“.”). For example, if you’re SELECTing from the CUSTOMER table and
the PRODUCT table, and they both have a field called NAME, enter the fields as
CUSTOMER.NAME and PRODUCT.NAME in <column list>. To retrieve all the
columns from <table list>, use an asterisk (*) for <column list>. To eliminate rows
containing duplicate values within the same column, precede the <column list> with the
keyword DISTINCT.

FROM <table list > The FROM clause specifies the table or tables from which to retrieve
data. <table list> can be a single table or a comma-delimited list of tables.

WHERE <search condition > The optional WHERE clause reduces the number of rows
returned by a SELECT to those that match the criteria specified in <search condition>.

GROUP BY <column list > The optional GROUP BY clause specifies how retrieved rows are
grouped for aggregate functions. Any column names that appear in the GROUP BY
<column list> must also appear in the SELECT <column list>.

ORDER BY <column list > The optional ORDER BY clause specifies the column to order the
retrieved rows by.

HAVING <search condition > The optional HAVING clause specifies a <search condition> that
evaluates to being true of false for each row in the group.

C h a p t e r 8 , L o c a l S Q L 189

U P D A T E

SAVE TO <filename > The optional SAVE TO clause specifies that the results of the SELECT
are to be saved to a new table called <filename>.

ALIAS <alias name> The optional ALIAS clause specifies the name of the alias given to the
work area the results of the SELECT appear in. If not specified, ALIAS defaults to
SQL_<integer>.

The default output of SELECT statements produces an open work area (similar to USE).
All dBASE commands and functions can be used on the result of a SELECT. If the query
produced a temporary table, the temporary table is deleted when the answer set is
closed. If you wish to save the results, use the SAVE TO option of SELECT or use the
COPY TO command after the SELECT.

SELECT opens the answer set in the first unused workarea, starting from area 1. If the
query was successful, the currently selected area is changed to the workarea where the
answer set was produced.

Examples
The following examples show simple SELECTs:

SELECT NAME, PHONE FROM CUSTOMER WHERE STATE_PROV = “CA”
SELECT CUSTOMER_NO FROM CUSTOMER WHERE LAST_NAME = “Johnson”
SELECT PART_NO, SUM(QUANTITY) AS PQTY FROM PARTS GROUP BY PART_NO

The following example shows a join in which fields from each table are involved in
some type of equality check require a WHERE clause:

SELECT DISTINCT PARTS.PART_NO, PARTS.QUANTITY, GOODS.CITY FROM PARTS, GOODS
WHERE PARTS.PART_NO = GOODS.PART_NO AND PARTS.QUANTITY > 20
ORDER BY PARTS.QUANTITY, GOODS.CITY, PARTS.PART_NO

The following example shows the use of the DESCENDING keyword in the ORDER BY
clause. Note that in this case you must also specify DISTINCT.

SELECT DISTINCT CUSTOMER_NO FROM CUSTOMER ORDER BY CUSTOMER_NO DESCENDING

See also
CREATE QUERY(dBASE), DELETE FROM, INSERT FROM, SET FILTER (dBASE), SET
KEY (dBASE), SET RELATION (dBASE), UPDATE

UPDATE
Adds or changes values in existing columns in existing rows of a table.

Syntax
UPDATE <table name> SET <column name> = <expression> [, <column name> = <expression>...]
WHERE <search condition>

Usage
Use UPDATE to update (change) values within existing columns in existing rows of a
table. The column specified by <column name> is updated with the value of <expression>

190 U p g r a d e G u i d e

U P D A T E

in all rows that match the <search criteria> of the WHERE clause. If the WHERE clause is
omitted, the column is updated in all rows in the table. Multiple columns may be
updated in a single UPDATE command. A given column of a table may only appear
once to the left of a “=” in the SET clause.

Example
The following command updates that YTD sales to zero for each customer that was
contacted in the previous calendar year:

UDATE CUSTOMER SET YTD_SALES = 0 WHERE FIRST_CONT < {01/01/95}

See also
INSERT FROM, REPLACE (dBASE), SELECT

C h a p t e r 9 , L e a r n i n g a n d e x t e n d i n g V i s u a l d B A S E 191

C h a p t e r

9
Chapter 9Learning and extending

Visual dBASE
Visual dBASE is a the most comprehensive and open Xbase environment available
today. There are numerous resources to help you learn more about the many facets of
the product. You can also extend Visual dBASE with companion products and tools
such as the Local InterBase Server and VBX controls. Read on to discover sources of
dBASE information beyond the documentation and how to harness the power of the
open architecture.

Learning more about Visual dBASE
Information on Visual dBASE is available in many forms to help you learn more about
the product. Visual dBASE comes with Interactive Tutors, an extensive online help
system and many sample programs. There are also videos, books and magazines
dedicated to helping you learn all about the Visual dBASE environment as well as the
dBASE language.

Interactive Tutors
Visual dBASE provides easy, step-by-step interactive tutors for learning how to create,
use and manage tables, queries, forms and reports. This feature is especially useful for
users who are new to dBASE as well as experienced dBASE power users that are
migrating from DOS to Windows.

192 U p g r a d e G u i d e

Figure 9.1 Learning with the Interactive Tutor

The Interactive Tutors work as both a traditional step by step guide and as a coach for
specific tasks. You can work through the tutorial a lesson at a time with the sample
tables or select a specific topic and have it guide you through a task using your own
data. Figure 9.1 shows a portion of the lesson on joining tables in the Query Designer.

Making online Help work for you
Context-sensitive help is always a keystroke or a click away. Simply press F1 or click on
the Help SpeedButton to see help on the current window with focus. You will also find
Help buttons in every visual property builder. If you are in the program editor, you can
select any command and press F1 to see help on that command.

The online help system includes the entire dBASE language and class reference. You can
look up commands, functions, and classes alphabetically or by category. The online help
system contains hundreds of examples that you can cut and paste into your own
programs. Another quick way to get help is by typing HELP <topic> in the Command
window.

Refer to online help for the latest information on syntax, classes, and properties. Like the
README.TXT file, online help often contains more recent information than the printed
documentation.

C h a p t e r 9 , L e a r n i n g a n d e x t e n d i n g V i s u a l d B A S E 193

Learning by example
Over 100 sample files show how to accomplish common programming tasks using
Visual dBASE. Many smaller tables, forms, queries, reports, and labels reside in the
samples directory <visualdb >\SAMPLES. One larger application installs to
<visualdb>\SAMPLES\MUSIC. This sample works with inventory data for a music
store. Information and samples for creating call-back capable DLL files resides in
<visualdb>\SAMPLES\EXTERN. See the EXTERN.TXT file for more information.

Online documentation
The CD-ROM version of Visual dBASE includes the complete documentation set in an
online format. You can view and search any book using the online reader. Hypertext
links let you jump directly to related topics. While the Language Reference is part of the
standard online help system, the other books are provided with Adobe Acrobat.

Visual dBASE provides extensive documentation covering all features of the product.
The User’s Guide and Using Crystal Reports for Visual dBASE give power users detailed
explanations of each visual tool. Developers can refer to the Programmer’s Guide for
information on developing sophisticated applications.

• User’s Guide (Acrobat)
Installation
Introduction
Borland Database Engine configuration
Designing and using tables, queries, and forms

• Using Crystal Reports for Visual dBASE (Acrobat)
Working with reports and labels

• Programmer’s Guide (Acrobat)
Programming
Objects and Classes
Event handlers
Custom controls
Data Manipulation Language
Network programming
Migrating DOS applications.

• Language Reference (Online Help)
Commands
Functions
Classes
Preprocessor
SQL
Reference charts

194 U p g r a d e G u i d e

Books, magazines, and videos
In addition to the documentation and online help that comes with the product, there is a
wealth of information covering all aspects of the dBASE language and environment.
You can get in-depth information from books, the latest techniques from magazines and
self-paced lessons on videos.

With strong support from the publishing community, there are currently over thirty
books covering the dBASE language and environment. Here is a sampling of what is
available.

Table 9.1 Books on dBASE

The following table lists magazines dedicated to dBASE for Windows. In addition to
these, Databased Advisor and DBMS often provide articles about dBASE tips and
techniques.

Table 9.2 Magazines on dBASE

Borland's Video Series offers two dBASE videos to introduce you to the dBASE
language and visual interface.

Table 9.3 Videos on dBASE

Getting support
For more help, the Borland Assist program offers technical support plans to suit
different users needs, from individual consultants to large corporations.

Standard support is available at no charge and includes an Installation Hotline, toll-free
Automated Support, toll-free TechFax, a download BBS and online support forums on

Books ISBN Author Publisher

dBASE for Windows Handbook 679-79131-0 Cary Prague Random House
dBASE for Windows Unleashed 0-672-305038 Ernest Escobar and

Paul Mahar
Sams Publishing

dBASE for Windows Developer's Guide 0-672-30198 Tom Hovis Sams Publishing
Learn dBASE for Windows Programming 0-201-60836-7 Martin L. Rinehart Addison-Wesley
dBASE for Windows for Dummies 1-56884-179-5 Scott Palmer IDG Books
Visual Guide to dBASE for Windows 1-56604-178-3 Carl Townsand Ventana Press

Magazines Publisher Phone

dBASE Advisor Advisor Publications (619) 483-6400
Inside dBASE for Windows The Cobb Group (502) 493-3300

Videos Lessons

Learning dBASE for Windows Navigator, Table Designer, Table Records Window, Query Designer,
Form Designer, and Report Designer.

dBASE for Windows Programming Covers stock classes and object oriented programming

C h a p t e r 9 , L e a r n i n g a n d e x t e n d i n g V i s u a l d B A S E 195

CompuServe, the Internet, BIX, and Genie. The toll-free and online services are available
24 hours a day, seven days a week. The Install Hotline is available from 6:00 A.M. to 5:00
P.M. Pacific Time.

Borland also offers extensive support plans for individuals, corporations, and help desk
professionals. Quick response time and consultative help are available from senior
engineers on the Advisor Line. You can call the Advisor Line through a 900 number and
an 800-number that can be billed to most major credit-cards.

Table 9.4 Visual dBASE Technical Support

Table 9.5 Online Services with Visual dBASE Technical Support

 Expanding the power of Visual dBASE
Visual dBASE is an open environment. You can plug in new components as needed.
With additional products, add-ons, and extensions, Borland gives you the tools you
need to build robust, state-of-the-art, applications for Windows, Windows95, and
Windows NT.

The Visual dBASE Compiler
To help developers distribute applications, Borland offers the Visual dBASE Compiler.
The Visual dBASE Compiler includes the compiler technology and utilities you need to
distribute your dBASE applications as easily installable royalty free EXE files. The Visual
dBASE Compiler automatically integrates into the dBASE desktop and provides a help
compiler and the Install Builder.

The Visual dBASE Compiler gives you an easy way to compile your dBASE applications
into EXE files. The compiler can automatically descend through an application to find

Service Number

Up and Running (408) 461-9110
TechFax 1-800-822-4269
Enhanced Technical Support Information 1-800-523-7070
900 Advisor Line 1-900-555-1009
Credit Card Advisor Line 1-800-285-1118
Borland download BBS (408) 431-5096
Automated Support BBS (408) 431-5250

Service Address

Internet FTP site borland.com
Borland World Wide Web http://www.borland.com/
CompuServe GO DBASEWIN
BIX JOIN BORLAND
Genie BORLAND

196 U p g r a d e G u i d e

and link in all relevant files without the need for a make or project file. The dBASE
compiler also lets you specify an icon and a splash image.

The Help Compiler generates HLP files that can connect your dBASE applications to the
Windows Help system. You can create context-sensitive help systems for your dBASE
applications by setting the HelpID property of any control to a topic in your HLP file.
You can use any editor that saves to RTF (Rich Text Format) to create your help system.
RTF capable editors include Word, WordPerfect, and the Windows95 WordPad
accessory.

Borland's application deployment technology completes the last step of the
development process. For the first time, you can use the same installation and setup
tools that Borland uses to create setup diskettes. The resulting diskettes include the
famous 'freeway' installer customized for your own dBASE executables. The installation
tools provide data compression, group creation, and options for installing the Borland
Database Engine, Crystal Reports, and database drivers.

The Local InterBase Server
dBASE works directly with the Local InterBase Server giving you the ideal "offline"
environment for creating client/server systems. You run the Local InterBase Server and
dBASE on a single workstation to minimize development costs while using a high
performance ANSI SQL-92 compliant server.

InterBase is an advanced server with support for stored procedures, triggers and
constraints. InterBase is optimized for complex data including Binary Large Objects
(BLObs) and multidimensional arrays.

You can leverage the power of InterBase to create fully scalable dBASE applications
with server support on Windows NT, NetWare, and Unix. Local InterBase Server
deployment kits are also available.

Client/Server connections
You can add SQL-Link drivers to the Borland Database Engine to connect to Oracle,
Sybase, InterBase, Informix and Microsoft SQL Server. SQL-Link drivers work directly
with the Borland Database Engine to give you performance unequaled by ODBC
drivers.

Using VBX controls
To take advantage of many of the prepackaged VBX controls available today, Borland
combined many of the industry's most popular and versatile controls together in one
box. The Borland Visual Solutions Pack is a collection of more than 30 drop-in
components that you can integrate into your Visual dBASE applications.

The Visual Solutions Pack includes controls for spreadsheets, WYSIWYG word
processors, 3-D and 2-D charts, image editors, serial communication interfaces,
animated buttons, gauges, sliders and a host of fun gadgets.

C h a p t e r 9 , L e a r n i n g a n d e x t e n d i n g V i s u a l d B A S E 197

You can use Borland C++ to write and compile your own DLL and VBX files for
extending Visual dBASE. Using the Borland C++ compiler insures that your DLL files
will have complete call-back compatibility with dBASE. Your DLL files can self-register
their functions with the dBASE environment.

Developing Windows Help
To simplify your development of Windows Help system, Borland offers ForeHelp.
ForeHelp is a Windows development tool that helps you create Windows Help without
getting into the intricacies of RTF files. ForeHelp works with the Help Compiler that
comes with the Visual dBASE Compiler. For more information on ForeHelp call 1-800-
628-9299.

198 U p g r a d e G u i d e

I n d e x 199

Symbols
: delimiter 86
{ } operator 85

A
AbandonRecord() property 137
ACCESS() 78, 89
accessing tables 116
ADD clause 182
adding

controls 12
custom controls 35–36
Edit menus to forms 153
fields 182

to forms 39
records 138, 174, 187
strings to forms 34
Window menus to forms 179

ALIAS clause 189
aliases 85

delimiting 86
ALTER TABLE 182
Anchor property 138
anchoring objects 138
ANSI language drivers 9
applications

compiling 16
distributing 16–17, 195
installing 196
upgrading 19–21

Array Builder 13
array elements

deleting 173, 174
subscripts 174

finding 156, 158, 160
array objects 124
arrays

associative 14, 80
creating 14

with braces 85
deleting elements 173, 174
file information 151
literal 15
multidimensional 196

AssocArray 14, 80
attributes, file

extended 15
Windows95 151

B
backing up tables 78
base form sets 29
BDE 5, 9, 25, 79, 196

configuration file 5
errors 104

BeginAppend() property 138
BEGINTRANS() 89
BLObs 196
borders 134, 169, 170
Borland Database Engine See

BDE
braces ({ }) operator 85
browse objects 156
BUILD 92

C
C calling conventions 105
calculated fields 11, 28
CanClose property 142
Cascade option (Referential

Integrity) 62
CC files 33
CFM files 30
changes, undoing 155

multiuser environments 121
changing

forms 100
records 159
referential integrity 62
tables 99

structures 99
character sets 123
child tables 59
choosing controls 27
CLASS ASSOCARRAY 124
CLASS MENUBAR 125
CLASS OLEAUTOCLIENT 127
CLASS PAINTBOX 129
CLASS POPUP 132
CLASS SHAPE 134
CLASS TABBOX 135
CLASS...ENDCLASS 93
classes, new 13–15, 80–83
closing

files 115
forms 142

code
constructor 93
editing 98

protecting 98
code blocks 15
colon (:) delimiter 86
ColorNormal property 134
colors, font schemes and 12
combo boxes 152

displaying data 149
COMMIT() 96
committing transactions 96
COMPILE 97
compiling

applications 16
canceling 98
Help 16, 196, 197
specified files 98
unrelated files 98

Component Builder 13
constructor code 93
Control Palette 37–39

customizing 12
controlling

cursors 147
table access 116

controls
adding 12
associations 12
choosing 27
resizing 47
setting order 48
VBX 33, 37, 196

converting
dBASE III+/IV files 13
external functions 107

COPY TO clause 189
Copy() property 143
copying text 143, 153
Count() property 146
CREATE 99
CREATE FORM 100
CREATE INDEX 183
CREATE LABEL 101

LABEL FORM and 114
CREATE MENU 102
CREATE POPUP 103
CREATE REPORT 103

REPORT FORM and 119
CREATE TABLE 183
creating

arrays 14
with braces 85

base form sets 29
calculated fields 28

Index

200 U p g r a d e G u i d e

custom controls 12, 33–35
custom form classes 29–30
Edit menus 53–54
form schemes 27
forms 27–28, 31–49, 100
indexes 183
labels 28
multiple page forms 27, 41–

44
objects 129
popups 50–51
reports 28, 104
setup diskettes 16, 196
SQL statements 13, 55–57
tables 25–26, 183
Window menus 54–55

CUATab property 147
cursors, controlling 147
custom classes 93
Custom Control Registry 38
custom controls 33–36

adding 35–36
creating 12, 33–35
saving 12, 35

custom editing controls 129
Custom Form Class Designer 11,

29–30
custom form classes 31–33
customizing

Control Palettes 12
Field Palettes 40
Table Experts 26

Cut() property 148

D
data

changes, undoing, multiuser
environments 121

displaying, objects and 149
protecting 9, 116
retrieving 188
saving in multiuser

environments 96
sharing 46
updating 189

data types
DLLs 105
external functions 107
local SQL 184

database administration 59–75
database servers, connecting

to 115
databases

opening 115
transactions 96, 121

DataLink property

DataSource vs. 149
DataSource property 149
dBASE Compiler 16
dBASE Custom Controls 33–36
dBASE data types 184
dBASE III+/IV files,

converting 13
dBASE IV SQL commands 181–

190
dBASE Language

enhancements 19–21, 77–86
DBMESSAGE() 104
debugging 14
declarations

external functions 106
object classes 93

DELETE FROM 185
deleting

array elements 173, 174
fields 182
index files 187
indexes 186
memo files 187
records 137, 185
tables 187
text 148, 154

delimiting table aliases 86
designing forms 150
DesignView property 13, 46, 150
detail reports 28
dialogs, modal 46
DirExt() property 151
displaying

data, objects and 149
forms 177
graphics 120
labels 114
prompts 149
reports 119

DISTINCT keyword 188
distributing applications 16–17,

195
DLLs

data types 105
files, search path 106
prototype functions 105

DO
COMPILE vs. 98

documentation
online 193
print 194

drawing shapes 14, 82, 169, 170,
175

drivers
ODBC 5
SQL-Link 196

DROP clause 182
DROP INDEX 186
DROP TABLE 187
DropDownHeight property 152

E
Edit menus 53–54

adding to forms 153
EditCopyMenu property 53, 153
EditCutMenu property 53, 154
editing code 98
editing, controls for 129
EditPasteMenu property 53, 154
EditUndoMenu property 53, 155
embedded SQL 8, 78
encapsulating

methods 79
objects 14
properties 79

encrypting tables 9, 78, 122
environment commands

SET LDCONVERT 123
Error dialog box 98
error messages, returning 104
error-handling commands

DBMESSAGE() 104
errors

BDE 104
fixing 98
run-time 104
syntax 98

evaluating
keystrokes 161, 164, 165
user choices 146

EXE files 16
Experts 24–28

Form 10, 27–28
Label 11, 28
opening 25
Report 10, 28
Table 10, 25–26
Upsizing 10

Expression Builder 11
EXTERN 105
external functions 107

F
FACCESSDATE() 110
FCREATEDATE() 110
FCREATETIME() 111
Field Inspector 9
Field Palette 12, 39–40

customizing 40
field values 59
fields

I n d e x 201

adding to forms 39
associations 12
calculated 11, 28
deleting 182
selecting 26

file attributes
(Windows95) 151
extended 15

file names
long 15, 84
short 85

files
BDE configuration 5
CC 33
CFM 30
closing 115
compiling 98
EXE 16
information, getting 151
linking 92
object 97
protecting 116
report 103
WFM 30

FirstIndex property 156
FNAMEMAX() 112
fonts, color schemes and 12
ForeHelp 197
form commands

CREATE FORM 100
CREATE MENU 102
CREATE POPUP 103

Form Designer 31–49, 100
custom controls 12
inheritance 11

Form Expert 10, 27–28, 100
form files 100
form schemes, creating 27
formatting labels 101
forms

adding
fields 39
menus 102, 125, 179
popups 103
strings 34

anchoring objects 138
attaching popups 51
changing 100
closing 142
control tips 176
creating 27–28, 31–49, 100
designing 150
displaying 177
drawing shapes 14, 82, 175
menu definition files 102
modal dialogs 46
moving through 167

multiple page 13, 27, 41–44,
136, 166, 167

objects in 167
opening from forms 45–47
popup definition files 103
popup menus 132, 171
properties 13
saving 31
sharing data 46
specifying text 177

FROM clause 188
FSHORTNAME() 112
function calls

C conventions 105
external 107
Pascal conventions 105

functions 85
converting 107
prototypes, DLLs 105

G
generating

menus 102, 125
popups 103

graphics
displaying 120
printing 120

graphics support 13
GROUP BY clause 57, 188

H
HAVING clause 188
Header3D property 156
Help Compiler 16, 196, 197

I
I/O commands

CREATE LABEL 101
CREATE REPORT 103
LABEL FORM 113
REPORT FORM 118

Icon property 157
icons 157
ID checking, language

drivers 123
ID() 78
IDAPI See BDE
image objects, displaying

data 149
images support 13
index files, deleting 187
indexes

creating 183
deleting 186

inheritance 11
initializing popup menus 163
INSERT INTO 187
inspecting properties 13
Inspector 31
installation 3–5

options 4
README file 3

installing applications 196
interactive tutors 191
InterBase 196
interface standards 15
IsIndex() property 158
isolation levels 8
IsRecordChanged()

property 159

K
Keyboard() property 159
keystrokes

evaluating 161, 164, 165
simulating 159

L
Label Expert 11, 28
label files 101
LABEL FORM 113
labels

creating 28
displaying 114
formatting 101
printing 114

language drivers
ANSI 9
ID checking 123

linking files 92
list boxes

displaying data 149
prompts 146

LISTSELECTED()
DataSource and 149

Local InterBase Server 196
local SQL commands 181–190
LOGOUT 78, 114
long file names 15, 84
loops 146

M
MDI windows 14
memo files, deleting 187
memory variables,

substituting 181
menu definition files 102
Menu Designer 53–55, 102, 103

202 U p g r a d e G u i d e

MenuBar 14, 53–55, 80
menus

Edit 53–54
generating 102, 125
initializing 163
popup 14, 49–52, 179
Window 54–55

methods
encapsulating 79
object classes 94
Record Buffer 83

modal dialogs 46
modal forms 177
modeless windows 46
MODIFY LABEL

CREATE LABEL and 101
LABEL FORM and 114

MODIFY REPORT
REPORT FORM and 119

modifying table structures 182
moving

through forms 167
through pages 41–44

multidimensional arrays 196
multiple forms 45–47
multiple page forms 13, 136, 166

creating 27, 41–44
multiple-choice list boxes 146
multiuser environments

saving data 96
transactions 89

committing 96
rolling back 121

undoing changes 121
updating data 96

N
navigating records 43
NextIndex() property 160
NULL 9

O
object classes

CLASS ASSOCARRAY 124
CLASS MENUBAR 125
CLASS

OLEAUTOCLIENT 127
CLASS PAINTBOX 129
CLASS POPUP 132
CLASS SHAPE 134
CLASS TABBOX 135
creating 93
declaring 93

object commands
CLASS...ENDCLASS 93

object files 97
objects

anchoring 138
array 124
browse 156
creating 129
displaying data 149
encapsulating 14
paintbox 163, 166
placing in forms 167
read-only 149
shape 175

objects commands
RESTORE IMAGE 120

ODBC
connectivity 9
drivers 5
tables 9

OLE server applications 127
OLEAutoClient 14, 81
OnChar property 161
OnFormSize property 163
OnInitMenu property 163
OnKeyDown property 164
OnKeyUp property 165
online documentation 193
online Help 192
OnPaint property 166
OPEN DATABASE 115
opening

databases 115
Experts 25
Form Designer 100
Menu Designer 102, 103
Report Designer 101, 103
Table Designer 99

operators 85–86
options, installation 4
ORDER BY clause 57, 188

P
Page properties 83
Page Zero 42–43
page zero 13
PageCount() property 166
PageNo property 41, 167
pages, moving through 41–44
PaintBox 14, 82
paintbox objects,

redrawing 163, 166
palettes 36–40
Paradox data types 184
Paradox tables

creating 99

parameters, passing DLL
function prototypes 106

parent tables 59
Pascal calling conventions 105
passthrough SQL 8
Paste() property 169
pasting text 154, 169
PenStyle property 169
PenWidth property 170
Popup 82
popup definition files 103
Popup Designer 14, 50–51
popup menus 14, 49–52, 132, 179

attaching to forms 51
creating 50–51
defined 49
generating 103
initializing 163

PopupMenu property 51–52,
171

print documentation 194
printing

graphics 120
labels 114
reports 119

procedures, stored 8
program commands

BUILD 92
COMPILE 97

program execution 98
program files 97
prompts

combo boxes 149
list boxes 146
list boxes, displaying 149

properties
custom classes 93
encapsulating 79
expanded 14
form 13
inspecting 13
new 13–15
setting 13

PROTECT 78
protecting

code 98
data 9, 116
files 116

prototypes
defined 106
DLL functions 105

Q
queries, SQL 181
Query Designer 55
Quick Address 11

I n d e x 203

R
README file 3
read-only objects 149
Record Buffer methods 83
records

adding 138, 174, 187
changing 159
deleting 137, 185
navigating 43

referential integrity 9, 59–62
changing 62
defined 59
specifying 60–61

Referential Integrity dialog box
Cascade option 62
Prohibit option 62

Refresh() property 172
refreshing screens 172
RemoveAll() property 173
RemoveKey() property 174
Report Designer 101, 103
Report Expert 10, 28
report files 103
REPORT FORM 118
report types 28
reports

creating 28, 104
displaying 119
printing 119

resizing controls 47
RESTORE IMAGE 120
Restrict option (Referential

Integrity) 62
retrieving data 188
ROLLBACK() 121
rolling back transactions 121
run-time errors 104

S
SAVE TO clause 189
SaveRecord() property 174
saving

custom controls 12, 35
data in multiuser

environments 96
forms 31

schemes 47–48
screens, refreshing 172
search path, DLL files 106
security 9, 78
security commands

ACCESS() 89
LOGOUT 114
PROTECT 116

SET ENCRYPTION 122
USER() 124

SELECT clause 187
SELECT statement 57, 188
Selected() property

DataSource and 149
selecting fields 26
servers

connecting to 115, 127
local 196

sessions 45
SET clause 190
SET DATABASE

BEGINTRANS() and 89
COMMIT() and 96
ROLLBACK() and 121

SET DBTYPE 183
CREATE and 99

SET ENCRYPTION 78, 122
SET FORMAT

COMPILE vs. 98
SET LDCONVERT 123
SET PROCEDURE

COMPILE vs. 98
setting

control order 48
properties 13

setup diskettes, creating 16, 196
Shape 14, 82
shape objects 134, 175

borders 169, 170
shapes, drawing 14, 82, 175
ShapeStyle property 134, 175
shared data commands

BEGINTRANS() 89
COMMIT() 96
ROLLBACK() 121

sharing data between forms 46
short file names 85
ShowSpeedTip property 176
specifying

referential integrity 60–61
text in forms 177

SpeedTip property 83, 177
SQL

embedded 8, 78
passthrough 8

SQL data types 184
SQL databases

BEGINTRANS() and 90
SQL Statement Builder 13, 55–57
SQL, local commands 181–190
SQLEXEC() 79
SQL-Link drivers 196
stored procedures 8

strings
adding to forms 34
subscripts 124

subscripts 124, 156
substituting memory

variables 181
summary reports 28
support, technical 194
syntax errors 98

T
tab order 48
TabBox 13, 82
table basics commands

CREATE 99
OPEN DATABASE 115

Table Designer 99
Table Expert 10, 25–26, 99

customizing 26
table structures

changing 99
table structures, modifying 182
tables

adding
fields 182
records 187

backing up 78
changing 99
child 59
closing 115
controlling access 116
creating 25–26, 183
deleting 187

fields 182
indexes 186
records 185

encrypting 9, 78, 122
ODBC 9
parent 59
referential integrity 9
retrieving data 188
security 9, 78
types 26
updating data 189

tabs 136, 138
technical support 194
text

copying 143, 153
deleting 148, 154
pasting 154, 169
specifying 177

This variable 94
tools, visual 10–13, 23–58
TopMost property 177
TrackRight property 179
transactions 89

204 U p g r a d e G u i d e

committing 96
isolation levels 8
rolling back 121

tutors, interactive 191
Two-Way Tools 11–13

U
undoing changes, multiuser

environments 121
UPDATE 189
updating data 189

multiuser environments 96
upgrading applications 19–21
Upsizing Expert 10
user choices, evaluating 146
USER() 78

V
VALUES clause 187
VBX controls 33, 37, 196
views 150
Visual dBASE

CD-ROM edition 3, 193

installing 3–5
over dBASE 5.0 3

learning aids 191–195
new features 7–17
print documentation 194

Visual dBASE Compiler 195
Visual Solutions Pack 37
visual tools 10–13, 23–58

W
WFM files 30
WHERE clause 57, 185, 188, 190
Window menus 54–55

adding to forms 179
WindowMenu property 53, 179
windows

MDI 14
modeless 46

Windows 95 112
Windows 95 commands

FNAMEMAX() 112
Windows API 14

Windows Help 197
Windows programming

commands
EXTERN 105

Windows95 110, 111, 112
extended file attributes 15
file attributes 151
file names 15, 84, 85
interface standards 15
support 15, 84–85

Windows95 commands
FACCESSDATE() 110
FCREATEDATE() 110
FCREATETIME() 111
FSHORTNAME() 112

X
Xbase DML 78

Z
Z-Order 14, 48

Upgrade Guide

Visual dBASE®

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1984,1995 Borland International. All rights reserved. All Borland products are
trademarks or registered trademarks of Borland International, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Printed in the U.S.A.

1E0R695
9596979899-987654321
D2

i

Introduction 1
Contents of the Upgrade Guide 1

Chapter 1
Setting up Visual dBASE 3
The README file. 3
Installing over dBASE 5.0 3
CD-ROM setup . 3
Running the Setup program 4

Chapter 2
What’s new in Visual dBASE 7
Robust database support 8
Expanded visual tools 10
More programming power 13
Windows95 support 15
 Application distribution. 16

Chapter 3
Upgrading applications 19

Chapter 4
Working with the new visual tools 23
The Experts . 24

The Table Expert 25
Using the Table Expert 25
Customizing the Table Expert 26

The Form Expert 27
The Report Expert 28
The Label Expert 28

Custom Form Class Designer. 29
Form Designer enhancements 31

Working with custom form classes 31
Saving forms as custom form classes 31
Using a custom form class 32

Working with dBASE custom controls 33
Creating custom controls 33
Using a custom control 35

The new palettes 36
The Control Palette 37

Setting up VBX controls. 37
The Custom Control Registry 38

The Field Palette 39
Creating multiple page forms. 41

Moving between pages at design time 41
Page zero . 42

Adding a control to move between pages
at run time . 43

Working with more than one form 45
Using sessions to create independent data

environments 45
Sharing the data environment between

forms . 45
Using a form for modal dialog 46

Other changes 47
Size . 47
Schemes . 47
Set Order. 48

Popup menus . 49
Using the Popup Menu Designer 50
The PopupMenu property 51

The MenuBar . 53
Creating an Edit menu 53
Creating a Window menu 54

SQL Statement Builder 55
Running the SQL Statement Builder 56
SQL templates and examples 57

Chapter 5
Database administration 59
Referential integrity. 59

Defining referential integrity. 60
Update and delete behavior 62
Changing or deleting referential integrity . . . 62

Visual dBASE security 62
Three levels of security 63
Login security 63
Password files 64
Groups and user access 64

Table access . 64
User profiles and user access levels 64

Table privilege schemes. 65
Table privileges 65
Field privileges 66

Data encryption 66
Using SET ENCRYPTION 66

General procedures 66
Planning your security system 67

Planning user groups 67
Planning user access levels 68
Planning table privileges 68
Planning field privileges 69

Setting up your security system 69
Defining the database administrator

password . 69

Contents

ii

Creating user profiles 70
Changing user profiles 71
Deleting user profiles 71

Establishing table privileges 71
Selecting a table. 72
Assigning the table to a group 72
Setting table privileges 73
Setting field privileges. 73

Setting the security enforcement scheme 74
Adding passwords to Paradox tables 75

Removing passwords from Paradox tables . 75

Chapter 6
Enhancements to the dBASE
Language 77

Database operations 77
Table Security . 78
Embedded SQL 78

Encapsulation . 79
Using the new classes, properties, events,

and methods . 80
Working with the new stock classes 80
Working with the new properties, events,

and methods. 83
Windows95 Support 84
New operators. 85

Using braces, { }, to create arrays 85
Using the colon, :, to delimit a table alias 86

Chapter 7
New commands, functions,
classes and properties 87

NULL data type. 87
Commands and functions 89
ACCESS() . 89
BEGINTRANS() 89
BUILD . 92
CLASS...ENDCLASS 93
COMMIT() . 96
COMPILE . 97
CREATE . 99
CREATE FORM. 100
CREATE LABEL 101
CREATE MENU 102
CREATE POPUP 103
CREATE REPORT 103
DBMESSAGE() 104
EXTERN . 105
FACCESSDATE() 110

FCREATEDATE() 110
FCREATETIME() 111
FNAMEMAX() 112
FSHORTNAME(). 112
LABEL FORM 113
LOGOUT . 114
OPEN DATABASE 115
PROTECT . 116
REPORT FORM 118
RESTORE IMAGE 120
ROLLBACK() 121
SET ENCRYPTION 122
SET LDCONVERT 123
USER() . 124
Classes . 124
CLASS ASSOCARRAY 124
CLASS MENUBAR 125
CLASS OLEAUTOCLIENT 127
CLASS PAINTBOX 129
CLASS POPUP 132
CLASS SHAPE 134
CLASS TABBOX 135
Properties . 137
AbandonRecord() 137
Anchor . 138
BeginAppend() 138
CanClose . 142
Copy() . 143
Count() . 146
CUATab . 147
Cut() . 148
DataSource . 149
DesignView . 150
DirExt(). 151
DropDownHeight. 152
EditCopyMenu 153
EditCutMenu 154
EditPasteMenu 154
EditUndoMenu 155
FirstKey. 156
Header3D. 156
Icon . 157
IsKey() . 158
IsRecordChanged(). 159
Keyboard(). 159
NextKey() . 160
OnChar . 161

iii

OnFormSize . 163
OnInitMenu . 163
OnKeyDown 164
OnKeyUp . 165
OnPaint. 166
PageCount(). 166
PageNo . 167
Paste() . 169
PenStyle . 169
PenWidth . 170
PopupMenu . 171
Refresh() . 172
RemoveAll(). 173
RemoveKey() 174
SaveRecord() 174
ShapeStyle . 175
ShowSpeedTip 176
SpeedTip . 177
TopMost . 177
TrackRight . 179
WindowMenu. 179

Chapter 8
Local SQL 181

Memory variable substitution in SQL queries 181
Naming conventions 181

Table names. 181
Column names 182

ALTER TABLE 182
CREATE INDEX 183
CREATE TABLE 183
DELETE FROM 185
DROP INDEX 186
DROP TABLE 187
INSERT INTO 187
SELECT. 188
UPDATE . 189

Chapter 9
Learning and extending
Visual dBASE 191

Learning more about Visual dBASE 191
Interactive Tutors 191
Making online Help work for you 192
Learning by example 193
Online documentation 193
Books, magazines, and videos194
Getting support 194

 Expanding the power of Visual dBASE. . . . 195
The Visual dBASE Compiler. 195
The Local InterBase Server196
Client/Server connections 196
Using VBX controls 196
Developing Windows Help 197

iv

2.1 Editing referential integrity 8
2.2 Setting up table security 9
2.3 Using Quick Address 11
2.4 Saving a group of custom controls. 12
2.5 The Field Palette. 12
2.6 Visual dBASE running under Windows95 . . 15
2.7 Creating setup diskettes 16
3.1 Error from invalid code block 19
4.1 Prompting for the label expert 24
4.2 Selecting when to prompt for Expert 25
4.3 Working with Table Expert Catalog. 26
4.4 Creating a multiple page form 27
4.5 Creating schemes in the Form Expert 27
4.6 Creating summary groups in the Report

Expert. . 28
4.7 Creating a custom form class for modal

dialogs . 29
4.8 Saving a custom form class to a base form

library. . 30
4.9 Setting a custom form class 32
4.10 Building an array for a custom TabBox 34
4.11 Setting the OnSelChange event for paging. . 34
4.12 Saving custom controls 35
4.13 Adding custom controls 35
4.14 Setting palette properties 36
4.15 Adding VBX controls from the Visual

Solutions Pack 37
4.16 Browsing the Custom Control Registry. . . . 38

4.17 Two tables in the Field Palette 40
4.18 Customizing the Field Palette 40
4.19 dBASE dialog with six pages 41
4.20 Adding the Signature Field to page 2 42
4.21 Setting the PageNo to zero 43
4.22 Adding a page navigation TabBox 44
4.23 Using the Set Order Tool 49
4.24 Creating a popup menu 50
4.25 Attaching a Popup to a Form 52
4.26 Using a Popup 52
4.27 Inspecting the MenuBar object 54
4.28 Using the SQL Statement Builder. 56
4.29 Working with the SQL examples 57
5.1 Referential integrity 60
5.2 Referential Integrity Rules dialog box 60
5.3 Administrator Password dialog box 69
5.4 Security Administrator dialog box 70
5.5 New User dialog box 70
5.6 Tables page . 71
5.7 Edit Table Privileges dialog box. 72
5.8 Setting table privileges in the dialog box . . . 73
5.9 Setting field privileges in the dialog box 74
5.10 Change Security Enforcement dialog box . . . 75
6.1 Logging into Visual dBASE 78
6.2 Chart created with OLE2 automation 81
6.3 Using a TabBox to locate records 82
9.1 Learning with the Interactive Tutor 192

Figures

	MAIN MENU
	READER TIPS
	FIGURES
	2.1 Editing referential integrity
	2.2 Setting up table security
	2.3 Using Quick Address
	2.4 Saving a group of custom controls
	2.5 The Field Palette
	2.6 Visual dBASE running under Windows95
	2.7 Creating setup diskettes
	3.1 Error from invalid code block
	4.1 Prompting for the label expert
	4.2 Selecting when to prompt for Expert
	4.3 Working with Table Expert Catalog
	4.4 Creating a multiple page form
	4.5 Creating schemes in the Form Expert
	4.6 Creating summary groups in the Report Expert
	4.7 Creating a custom form class for modal dialogs
	4.8 Saving a custom form class to a base form library
	4.9 Setting a custom form class
	4.10 Building an array for a custom TabBox
	4.11 Setting the OnSelChange event for paging
	4.12 Saving custom controls
	4.13 Adding custom controls
	4.14 Setting palette properties
	4.15 Adding VBX controls from the Visual Solutions Pack
	4.16 Browsing the Custom Control Registry
	4.17 Two tables in the Field Palette
	4.18 Customizing the Field Palette
	4.19 dBASE dialog with six pages
	4.20 Adding the Signature Field to page 2
	4.21 Setting the PageNo to zero
	4.22 Adding a page navigation TabBox
	4.23 Using the Set Order Tool
	4.24 Creating a popup menu
	4.25 Attaching a Popup to a Form
	4.26 Using a Popup
	4.27 Inspecting the MenuBar object
	4.28 Using the SQL Statement Builder
	4.29 Working with the SQL examples
	5.1 Referential integrity
	5.2 Referential Integrity Rules dialog box
	5.3 Administrator Password dialog box
	5.4 Security Administrator dialog box
	5.5 New User dialog box
	5.6 Tables page
	5.7 Edit Table Privileges dialog box
	5.8 Setting table privileges in the dialog box
	5.9 Setting field privileges in the dialog box
	5.10 Change Security Enforcement dialog box
	6.1 Logging into Visual dBASE
	6.2 Chart created with OLE2 automation
	6.3 Using a TabBox to locate records
	9.1 Learning with the Interactive Tutor

	INTRODUCTION
	Contents of the Upgrade Guide

	CHAPTER 1: Setting up Visual dBASE
	The README file
	Installing over dBASE 5.0
	CD-ROM setup
	Running the Setup program

	CHAPTER 2: What's new in Visual dBASE
	Robust database support
	Expanded visual tools
	More programming power
	Windows95 support
	 Application distribution

	CHAPTER 3: Upgrading applications
	CHAPTER 4: Working with the new visual tools
	The Experts
	The Table Expert
	Using the Table Expert
	Customizing the Table Expert

	The Form Expert
	The Report Expert
	The Label Expert

	Custom Form Class Designer
	Form Designer enhancements
	Working with custom form classes
	Saving forms as custom form classes
	Using a custom form class

	Working with dBASE custom controls
	Creating custom controls
	Using a custom control

	The new palettes
	The Control Palette
	Setting up VBX controls
	The Custom Control Registry

	The Field Palette

	Creating multiple page forms
	Moving between pages at design time
	Page zero
	Adding a control to move between pages at run time

	Working with more than one form
	Using sessions to create independent data environments
	Sharing the data environment between forms
	Using a form for modal dialog

	Other changes
	Size
	Schemes
	Set Order

	Popup menus
	Using the Popup Menu Designer
	The PopupMenu property

	The MenuBar
	Creating an Edit menu
	Creating a Window menu

	SQL Statement Builder
	Running the SQL Statement Builder
	SQL templates and examples

	CHAPTER 5: Database administration
	Referential integrity
	Defining referential integrity
	Update and delete behavior
	Changing or deleting referential integrity

	Visual dBASE security
	Three levels of security
	Login security
	Password files
	Groups and user access
	Table access
	User profiles and user access levels

	Table privilege schemes
	Table privileges
	Field privileges

	Data encryption
	Using SET ENCRYPTION

	General procedures
	Planning your security system
	Planning user groups
	Planning user access levels
	Planning table privileges
	Planning field privileges

	Setting up your security system
	Defining the database administrator password
	Creating user profiles
	Changing user profiles
	Deleting user profiles

	Establishing table privileges
	Selecting a table
	Assigning the table to a group
	Setting table privileges
	Setting field privileges

	Setting the security enforcement scheme
	Adding passwords to Paradox tables
	Removing passwords from Paradox tables

	CHAPTER 6: Enhancements to the dBASE Language
	Database operations
	Table Security
	Embedded SQL

	Encapsulation
	Using the new classes, properties, events, and methods
	Working with the new stock classes
	Working with the new properties, events, and methods

	Windows95 Support
	New operators
	Using braces, { }, to create arrays
	Using the colon, :, to delimit a table alias

	CHAPTER 7: New commands, functions, classes and properties
	NULL data type
	Commands and Functions
	ACCESS()
	BEGINTRANS()
	BUILD
	CLASS...ENDCLASS
	COMMIT()
	COMPILE
	CREATE
	CREATE FORM
	CREATE LABEL
	CREATE MENU
	CREATE POPUP
	CREATE REPORT
	DBMESSAGE()
	EXTERN
	FACCESSDATE()
	FCREATEDATE()
	FCREATETIME()
	FNAMEMAX()
	FSHORTNAME()
	LABEL FORM
	LOGOUT
	OPEN DATABASE
	PROTECT
	REPORT FORM
	RESTORE IMAGE
	ROLLBACK()
	SET ENCRYPTION
	SET LDCONVERT
	USER()

	Classes
	ASSOCARRAY
	MENUBAR
	OLEAUTOCLIENT
	PAINTBOX
	POPUP
	SHAPE
	TABBOX

	Properties
	AbandonRecord()
	Anchor
	BeginAppend()
	CanClose
	Copy()
	Count()
	CUATab
	Cut()
	DataSource
	DesignView
	DirExt()
	DropDownHeight
	EditCopyMenu
	EditCutMenu
	EditPasteMenu
	EditUndoMenu
	FirstKey
	Header3D
	Icon
	IsKey()
	IsRecordChanged()
	Keyboard()
	NextKey()
	OnChar
	OnFormSize
	OnInitMenu
	OnKeyDown
	OnKeyUp
	OnPaint
	PageCount()
	PageNo
	Paste()
	PenStyle
	PenWidth
	PopupMenu
	Refresh()
	RemoveAll()
	RemoveKey()
	SaveRecord()
	ShapeStyle
	ShowSpeedTip
	SpeedTip
	TopMost
	TrackRight
	WindowMenu

	CHAPTER 8: Local SQL
	Memory variable substitution in SQL queries
	Naming conventions
	Table names
	Column names

	ALTER TABLE
	CREATE INDEX
	CREATE TABLE
	DELETE FROM
	DROP INDEX
	DROP TABLE
	INSERT INTO
	SELECT
	UPDATE

	CHAPTER 9: Learning and extending Visual dBASE
	Learning more about Visual dBASE
	Interactive Tutors
	Making online Help work for you
	Learning by example
	Online documentation
	Books, magazines, and videos
	Getting support

	 Expanding the power of Visual dBASE
	The Visual dBASE Compiler
	The Local InterBase Server
	Client/Server connections
	Using VBX controls
	Developing Windows Help

	INDEX
	Symbols - C
	D - F
	G - M
	N - Q
	R - T
	W - Z

