Chapter 6:
Running and Debugging an Applet

Chapter introduction

A compiler will catch most errors your code may have in syn-
tax; but, because the computer doesn’t already know what
you have in mind, it is impossible to detect flaws in the logic of
your code. This chapter discusses what to do after you've
compiled your code: how to run and debug it.

Running an applet

Once your applet has been successfully compiled, you can run
it using the Roaster Applet Runner or debug it with the help of
the built-in debugger. The Roaster Applet Runner allows you to
run your applet without the need of a Java-capable Web
browser.

Running applets referenced within HTML files

The Roaster Applet Runner reads an HTML file and displays
only the applets found inside of the HTML source (these are
indicated by the <APPLET> HTML tag). If there is more than
one applet reference inside of the HTML file, the Applet
Runner will run each applet in a separate window.

Running an applet from the IDE

You can run an applet in a few different ways. The first is to
run it from within the IDE. You can accomplish this by select-
ing Run from the Project menu or by hitting “CMD-R.” This will

Roaster™ User Reference

cause the IDE to launch the Roaster Applet Runner, which will
open the HTML file called “examplel.html” in the current pro-
ject’s folder.

ooo

Remember that this file must have an applet tag that refer-
ences the class of your project. See the “Preparing the
Roaster Applet Runner to run your applet” portion of
Chapter 3: Organizing and Managing Your Projects for more
information about this HTML file.

ooo

If the IDE determines that any file associated with your Java
project has been modified since you last compiled, it will
compile your project again when you attempt to run it. You
can prevent this by turning off the Make all before run option
found in the Compiler panel of the Preferences window.
Remember that if you turn off this feature, you must manually
recompile your applet by choosing Compile or Make from the
Project menu before you try to run it if you’ve made changes
to any of the source code.

Running an applet by dragging an icon

You can also run an applet by dragging either the HTML
source file or the project icon onto the Roaster Applet Runner
icon. If you run the applet by dragging the HTML source onto
the runner, you should first make sure that the .class files
needed to run the applet are in the same folder as the HTML
source. If you run the applet by dragging the project file onto
the runner, make sure that both the .class files and the
“examplel.html” HTML source file are in the same folder as
the project file.

Debugging your code

Now that you know the various ways to run an applet, you
can move on to debugging your code. Roaster’s debugger
supports both byte code and source code level debugging.
(After starting the program and enabling the debugger, simply

Roaster™ User Reference

control-click and hold in the browser to bring up a popup
menu to switch between byte code debugging and source
code debugging. Also, you can access this option from the
Debug menu.) The debugger will allow you to step through
your code line by line, set breakpoints at various places in
your applet, or view the current contents of objects or vari-
ables in the current applet, as well as the current execution
stack.

To use the debugger, you must be in the Roaster IDE with the
project you want to debug open. You can enable or disable the
debugger by selecting Enable Debugger from the Project
menu. The menu item will appear with a check mark when the
debugger is enabled.

= Demo.w Browser: <default> =
Packages Classes Members
<default: [rerno

@ = T =5 =5 =X = p— p— [r—

i e g St s s A =l E 2 8@
/# Simple image derno - Written by James Ducharme , Matural Intelligence, Inc. #/
import jova.applet.Applet;
import jowa.awt Colaor;
import jouva.awt Event;
import jowva.awt. Graphics;
import jouwa.awt. Image;

{ini J=>

public class Demo extends jouva.aqpplet Applet

Image thelmage;
int xpos, ypos;

public void initc?
i
L= setBackgroundcColor black;
String imagename = getParameter(" Image"l;

thelmage = getimagedgetDocumentBased), imagenams ;

}
Line: 15 & 309 b S [

=[]

Roaster™ User Reference

With the debugger enabled, you can place breakpoints in your
code by clicking in the left hand margin. You can set break-
points to control where the debugger should halt execution of
the applet. To set a breakpoint, you must have the debugger
enabled and a .java or .class file open. When you have deter-
mined where in the file you want to set a breakpoint, click
once to the left of the light gray line in the file. A red dot will
appear where you clicked, indicating a permanent breakpoint,
which must be removed by the user to become disabled. To
set a “one-shot” breakpoint, which will be removed automati-
cally once the debugger reaches that point, simply option-
click to the left of the light gray line, and a blue dot will
appear to indicate a one-shot breakpoint. With either type of
breakpoint, the debugger will stop executing on the break-
point it encounters and return control to you.

ooo

Please note that when the Applet Runner is not running,
you can set breakpoints literally anywhere in your files.
Once you launch the Applet Runner, it verifies the break-
points and disables the ones that are invalid. However,
when the Applet Runner is running, you can only set valid
breakpoints. If you try to set invalid breakpoints (i.e., break-
points next to a non-excecutable line of code such as com-
ments or simple variable definitions) , you will not be able
to.

ooo

As mentioned above, permanent breakpoints (set by clicking)
need to be removed by the user, and one-shot breakpoints
(set by option-clicking) are removed automatically once the
debugger reaches that point. If you open the Show
Breakpoints window, it has the same red (permanent) or blue
(one shot) dots on the left side. Clicking these dots toggles
between permanent, one shot and disabled breakpoints. A
disabled breakpoint is just that, disabled, but not removed.
You can turn it on again by clicking the dot area and making it
a one shot or permanent breakpoint again.

To remove a breakpoint, simply click on the red dot in your
source code window and it will go away. Once your break-

Roaster™ User Reference

x (o] |5

"l

2 ta

r

E

K]

points are set, you can execute your applet by selecting Run
in the Project menu. You can set breakpoints at any time.

The green arrow to the left of the code shows the debugger’s
current point of execution. The code that the green arrow
points to is code that has not yet been executed. At this point,
you are ready to step through and debug your code using the
debug tools found in the Debugger Controls window (see
below) or the Debug menu.

[Debugger Controls (i

L= [[sha[ari] [574] |2l

The debug tools are:

Run: This tells the runtime to continue execution of the applet
up until the next breakpoint or until the program completes if
no breakpoints are set.

Stop: This will stop execution of the applet if it is running.

Kill: Kills the current applet and quits the Roaster Applet
Runner.

Step Over: Executes the current line of code and stops the
debugger at the next line. If the line contains calls to a
method, that method will be called before returning to the next
line in the current method.

Step In: If the current line of code is a call to a subroutine,
then the debugger steps into the first line of that subroutine
and stops. Otherwise, it has the effect of Step Over.

Step Out: The debugger continues execution until the current
subroutine returns to its caller. A typical use of this function is
when you step into a function called from your class and you
have seen all you need to see in the subroutine, you will want
to continue execution of the subroutine until you get back to

the previous routine.

Step Over Continuous: This is the same as if you hit the Step
Over button repeatedly. This function lets you view the execu-
tion of the current class’ byte code. Hit Stop or CMD-"." to

Roaster™ User Reference

halt execution.

Step In Continuous is similar to Step Over Continuous, but
instead it steps into every line of code instead of stepping
over them. This feature allows you to see the execution of
every line of code in your applet.

You can test the debugger using the Demo sample code list-
ed earlier by performing the following steps:

1) Ensure that the Demo project file is open in the IDE and is
the current project.

2) Enable the debugger by selecting this item under the
Project menu.

3) Open the Demo.java file located in your project directory.

4) Set a breakpoint in the init method on the
"setBackground(Color.black);" line and another in the
mouseMove method on the "xpos = x;" line by clicking to the
left of the code. Make sure a red dot appears next to each
line you selected.

0000000000000 00000000000 eecccccccccce ©e0ccc0ccccccccccc00cc0ccce eecccccccccce .

Remember that currently, the IDE will allow you to set
breakpoints on any line, even lines that are not executed
(i.e., comments.) ,Make sure you only set breakpoints on
lines of code that are executed, otherwise the debugger will
not stop. However, if the Applet Runner is running, you will
only be able to set breakpoints on valid lines.

0000000000000 00000000000 eecccccccccce ©e0ccc0ccccccccccc00cc0ccce eecccccccccce .

5) Select Run from the Project menu. The Roaster Applet
Runner will start up and a browser window will open.

0000000000000 00000000000 eecccccccccce ©e0ccc0ccccccccccc00cc0ccce eecccccccccce .

When you run an applet, the AppletViewer.class file will
appear in the browser because this is where Roaster begins
execution of an applet. See the "Creating a new project"
portion of Chapter 3: Organizing and Managing Your
Projects for more information on the AppletViewer.class
file.

0000000000000 00000000000 eecccccccccce ©e0ccc0ccccccccccc00cc0ccce eecccccccccce .

6) To view the breakpoints you set, select Show Breakpoints

Roaster™ User Reference

from the Debug menu.

7) Select Go from either the Debug menu or the Debugger
Controls window. The applet should begin execution and stop
at the init method in the Demo.java file.

If you select Step Over, you will see the green arrow move
down a line at a time in the Demo.java file. Try this 2 or 3
times. When you select Go again, the applet will do a little
more work, and then display the applet window. As soon as
you move your mouse over the applet window, you'll be
brought to the mouseMove method in the Demo.java file.

From here you can also see information on the current Java
object by using the Local Variables menu item under the
Windows menu. This command brings up a window that
shows the instance variables of the current Java object you
are stepping through and their types and values.

At this point the current object should look like:

] Local Yariabhles
[this Derno
irnagenarne | java.lang.Stri

=

If you double-click on an object or array, you will get a new
Object Inspector window showing the item’s contents. At any
point, if you want to continue execution of your applet without
interruptions from breakpoints, you can select Clear All
Breakpoints from the Debug menu, then select Go.

Now that you’ve gone through basic steps it takes to create
and run an applet, the next chapter shows you how to call
your applet from within a web page.

Other important debugger features

Roaster™ User Reference

The following are some other features you will want to keep in
mind when debugging your code:

Current call chain. This displays a list of methods in the call
stack. Double-click on one of these methods to go to that
area in the code. The Local Variables window then updates to
where the call chain method is.

] Calling Chain
Derna init()

sun.applet. AppletFanel.runi)
java.lang.Thread.runi)

(=]

Class list. This displays a list of class definitions currently
loaded into memory. Selecting a class and unloading it will
cause it to be reloaded from disk the next time it is referenced
by a new object (i.e., each time a new object of that class is
created). The old objects will continue to reference the old
class.

This is useful if you have made modifications to your program
and wish to test them without restarting the program.

Break on Exceptions. When this option is enabled using the
Debug menu, when an exception is thrown, the debugger will
automatically take you to the point in your code where the
exception was thrown, if possible. (For example, if the excep-
tion was thrown in a native method, you might not be able to
get to that code.)

Roaster™ User Reference

