
Algorithms

The following is only a brief description of the algorithms used in MacPattern. For detailed 
information please refer to the cited literature.

Pattern Matching Algorithm

The pattern matching algorithm employed by MacPattern v3.0 and higher is more than twice as 
fast than the one used in earlier versions. Most of this speed improvement results from binary 
encoding the query sequence and the PROSITE patterns plus adopting a sequence hashing 
approach.

The encoding is performed by converting an amino acid ASCII code into a unique binary value; 
for example, Ala becomes 00000001, Gly 00000010, Cys 00000100, and so on. PROSITE 
patterns are converted to a table with one entry for each pattern position. Each table entry 
includes a “mask” value which, in binary format, reflects the list of allowed and excluded 
residues at this position, created by transforming the ASCII pattern description into a binary 
representation as described above and applying Boolean algebra.

Sliding this table along the sequence allows the identifiation of matching regions in a highly 
efficient manner, because only simple Boolean comparisons are required. To accommodate well-
defined repetitions of residues at particular positions - for example, A(3,5) in PROSITE notation 
means 3, 4 or 5 alanines are allowed - the pattern table includes the minimal and maximal 
allowed number of occurrences of residues at each position. These values are considered during 
the matching step which is modified by introducing a depth-first search procedure at variable-
length pattern positions.

This basic algorithm is speeded up furthermore by hashing the input sequence after encoding it 
into binary format. If there is some invariant residue position in the pattern, i. e. only one 
particular residue is allowed at that position, then this hash table approach allows the quick 
identification of potential match regions in the input sequence by rapidly locating all occurrences 
of the invariant residue. Matching is then only attempted around these anchor points. Thus, 
instead of sliding along the sequence one effectively “jumps” from anchor point to anchor point, 
resulting in a considerable reduction of the number of necessary comparisons.

Block Search Algorithm

The approximate block search algorithm used by MacPattern v3.0 and higher is described in 
detail elsewhere (Fuchs, 1993b). It is a modification of the basic method by    Henikoff et al. 
(1990).

In brief, from a BLOCKS entry a site-specific scoring matrix is constructed, in which each 



column is filled with values that reflect the frequency of occurrence of each amino acid at the 
coresponding position of the block. For the computation of a scoring matrix column, the 
arrangement of very closely related proteins into subgroups within a BLOCKS entry is taken into 
account and frequencies are averaged for each subgroup to reduce the contribution of multiply 
represented subfamilies    (Henikoff et al., 1990). As from BLOCKS Release 7, the explicit 
weights supplied for each sequence are used instead. Furthermore, the resulting values are then 
adjusted to compensate for database bias by dividing them by the frequency of this amino acid in 
SWISS-PROT. The values in each column of the matrix are finally normalized to 100%. 

The resulting matrix is used to calculate a score for each fragment of the query sequence of the 
width of the block by adding the matrix values for each residue at each position, and the highest 
scoring fragment is identified. To allow comparison of scores obtained with blocks of different 
length, a raw score is adjusted by dividing it by the “99.5%” value of this block, which is the 
99.5th percentile of raw scores of true negative sequences with this block, and multiplying it by 
1000 (Wallace and Henikoff, 1992).

This basic method has been modified by employing a hashing technique, similar to the one used 
for pattern searches. Invariant positions within a block are identified and serve as anchor points 
to jump along the query sequence (Fuchs, 1993b). This approach is 2 to 5 times faster than the 
standard method, however, it yields only approximate results and may fail to identify some 
biologically significant similarities. Therefore, by providing an adjustable “sensitivity” 
parameter, MacPattern gives complete control to the user who can decide to what extend she 
wants to make use of this option. Invariant positions may occur simply by chance, and they 
become more reliable the more sequences there are in a block. The sensitivity parameter is 
effectively the minimum number of sequences that must appear in a block before MacPattern 
applies the approximate algorithm. If the block features less sequences, the standard sliding-
window approach is applied. The lower the threshold is the faster the search will be, but the 
chance of missing some hits increases as well.

The choice of the sensitivity parameter depends on the particular problem at hand: for a thorough 
analysis of individual sequences, one would choose “exact search”, while for the rapid, 
preliminary analysis of a large number of sequences a low threshold may be perfectly 
appropriate. For routine application a value of 5 seems reasonable.

MMS Analysis Algorithm

Maximal segment score (MSS) analysis is based on a method introduced by Karlin and Altschul 
(1990). They showed that for sufficiently large sequences the probability of finding one or more 
distinct segments with scores greater than or equal to S is closely approximated by 1 - exp( -KN 
exp[-lS]), where N is the length of the sequence and the parameters K and l are dependent on 
the scoring scheme and the letter frequencies. MacPattern uses the karlin() function from the 
BLAST program (Altschul et al., 1990) to compute K and l for a given scoring scheme and input 
sequence. An algorithm similar to the one described by Karlin and Brendel (1992) is used to find 
variable-length fragments with maximum scores, and for each fragment found the probability of 
finding one with this score or higher is calculated.



Eguchi & Seto Algorithm

This method was proposed by Eguchi and Seto (1992). It is a variant of a family of k-tupel 
analysis algorithms (Claverie et al., 1990; Gabrielian et al., 1990). The basic assumption is that 
the most “dissimilar” oligomer in a sequence contains the highest information and is supposed to 
play a functionally or structurally important role. Eguchi and Seto could demonstrate that this 
method is well suited for the identification of active sites in peptide hormones.

For each amino acid in a sequence its average PAM score versus all other residues in the 
sequence is calculated. Then a window is slid along the sequence and the segment dissimilarity 
score is computed. The regions with lowest scores can then be identified.

The original method as proposed by Eguchi and Seto has been modified in MacPattern by using 
the BLOSUM62 similarity score matrix instead of PAM250, and by employing a triangular 
window smoothing technique (Claverie and Daulmerie, 1991) instead of a simple rectangular 
one, yielding much cleaner graphs.

While the usefulness of this method has been demonstrated for small proteins, its general 
applicability is unclear. Various tests with MacPattern have shown, however, that the hit rate 
(identification of a structurally or functionally important part of a sequence) is surprisingly high 
with general proteins.


