
MaskImage:

an Exercise in Creating

Anti-Aliased Pictures

by

Lawrence D’Oliveiro
Computer Services Dept

University of Waikato
Hamilton, New Zealand

Internet mail: ldo@waikato.ac.nz
1991 December 26

MaskImage is a utility for superimposing one image on top of another through a mask, 
with nice smooth-looking anti-aliased edges at the mask boundaries. The technique for 
doing this on the Mac is described in detail in the article “Scoring Points with TrueType”, 
in issue 7 of Apple’s develop magazine.

Basically, anti-aliasing is a technique for smoothing the edges of graphical objects by 
interpolating mixtures of the two adjacent colours all along the boundaries. The result 
looks very nice on a colour screen, but don’t try printing it out on a black-and-white 
device (e g a LaserWriter)—it just looks all fuzzy. Also, the anti-aliasing computation is 
quite time-consuming to do, which is probably why you don’t see it done more often on 
the Mac. However, you could use it to pretty up logos and other selected images, for 
on-screen presentation purposes.

To use this utility, you must have a colour-capable Macintosh (LC, Classic II, 
PowerBook 140 or better). Your system version must be at least 6.0.5 (if your machine 
doesn’t require a newer version). If your machine is a Mac II, IIx, IIcx or SE/30, you 
must have the 32-bit QuickDraw extension installed (or be running System 7.0 or later). 
To actually view the images you’re generating in all their glory, you will need suitable 
display hardware (e g a colour screen and 8-bit-per-pixel or better display hardware), 
but this is not necessary just to generate the images.

To start with, you will need to get three images from somewhere: a foreground, a 
background, and a mask. The mask controls which part of the foreground image 
“shows through” the background. Here’s a simple example:



A =
background foreground mask result

In this case, the background image is a solid green rectangle, the foreground image is 
a solid orange rectangle, and the mask is the letter “A” in 96-point Times Italic. The 
foreground and background can be any sort of image you like—if they are not raster 
images, they will be converted to a raster in the result. The mask should be a black-
and-white image that can be scaled up to four times its initial size without introducing 
any “jaggies”: thus, I don’t recommend a raster image for the mask. For best results, it 
should consist of resizable geometric objects, or (as in this case) text drawn with 
scalable outline (TrueType or ATM) fonts.

If you’re using a drawing program to create the images, it will be easiest if you run the 
program together with HyperCard under MultiFinder. Within the drawing document, 
position the foreground, background and mask images the way you want them to 
appear in the composite image. Click on the graphics comprising the foreground image 
and copy them to the Clipboard. Switch to the MaskImage stack and click the “Paste 
Foreground Picture” button (don’t use HyperCard’s “Paste Picture” function). Go back 
to your drawing document and select the graphics that make up the foreground image. 
Copy these to the Clipboard. Back to the MaskImage stack again, and this time click 
the “Paste Background Picture” button. Back to your drawing document, and select and 
copy the graphics for the mask. One last time to MaskImage, and click the “Paste Mask 
Picture” button.

Now you’ve got all the pieces of the image into the stack, click the “Generate Result” 
button. This part of the operation may take a few seconds (like more than 10), so wait 
patiently until the button highlight goes off. Once it does, switch back to your drawing 
program and do a Paste. Voila!

If you didn’t get the position of some component quite right, simply reposition it, recopy 
it to the Clipboard, click the appropriate Paste button in MaskImage, and regenerate 
the result. MaskImage keeps all the component images around in memory until you 
replace them with new ones or you leave the stack, so you don’t have to recopy and 
paste the ones that don’t change.

And, if you haven’t figured it out already, you didn’t have to paste them into MaskImage 
initially in the order that I described.

If you don’t have enough memory to run your drawing program and HyperCard at the 
same time, you can copy the component images one by one from the drawing program 
into the Scrapbook desk accessory, quit the drawing program, start up HyperCard and 
open the MaskImage stack, paste the components from the Scrapbook one by one, 
generate the result, paste it back into the Scrapbook, quit HyperCard, restart your 
drawing program, and paste the result in from the Scrapbook.



Notes:

I did all my testing with Canvas 2.1.1 (not having got my 3.0 upgrade yet). Canvas 
maintains the relative positions of objects when they’ve been copied to the Clipboard, 
so the alignment between foreground, background and mask doesn’t get thrown off. 
However, there may be other drawing programs around that don’t do this.

Some drawing programs won’t let you paste in graphics that they can’t generate 
themselves. For example, when you paste a colour raster image into MacDraw II, it 
converts it to a black-and-white one. If your drawing program has a “paste as picture” 
function, which lets you bring in a picture without trying to interpret it as a collection of 
editable objects, you could try using it. Otherwise, get another drawing program.

The composite image is generated at a pixel depth of 16 bits per pixel, which I thought 
was a decent compromise between image size and quality. You can specify another 
depth (say 32 bits per pixel) by adding another argument in the call to the “MaskImage” 
XFCN, but I haven’t tested this. If your machine’s display has 8 bits or less per pixel, 
you may notice that the composite image draws relatively slowly. This is because it 
uses QuickDraw’s “ditherCopy” mode, which gives a truer approximation to the actual 
image colours, at the expense of some graininess and (of course) drawing speed.

This stack requires HyperCard 2.0 or later, even though it doesn’t actually take 
advantage of any of the features introduced with HyperCard 2.0.

Why a HyperCard Stack?

Let’s face it, I’m a hacker. I write lots of little utilities to perform useful functions (useful 
to me, at least) like this one. I can’t always be bothered to take the time to design a 
nice user interface for all of them. Which is a pity if I want to give them to others.

HyperCard, however, comes with a ready-made set of user-interface tools. And it 
comes with this truly wonderful ability to let you add new functions to it, in the form of 
XCMDs and XFCNs. Thus I can spend my time writing the core part of the code without 
worrying about the user interface, and then design the interface as a separate step, 
without worrying about how that impacts on the core part of the code.

And if you don’t like my interface, you can take apart my stack and build a new one. Or 
you can just tinker. Feel free to browse, if you’re curious. I’m even enclosing the source 
code for the main part of the MaskImage XFCN, in case you can’t get hold of the 
develop article. If you have any comments, you can contact me at the address at the 
start of this document.

Late Addition: Ramp Generation

I stuck this in as an afterthought, and haven’t put together a proper interface for 
invoking it yet. If you want to experiment with this, have a look at the “GenerateRamp” 
procedure in the card script. What this does is let you generate a graduated fill between 
any two colours, going either horizontally or vertically. The result could be used as the 
foreground or background with the MaskImage function, or just pasted into a drawing 
you’re creating, if your drawing program doesn’t include a function for generating ramps 
more conveniently.


