
The Task Manager
Version 2.2.1

This software source package is Copyright © 1990–91 by Michael Hecht. All Rights Reserved. It may be freely distributed in
source or object code format; however, the source code may not be sold for profit or charged for in any way. The source code
must be distributed as a package including all H files, sample code and projects, and this documentation.

The Task Manager is a package for creating and managing tasks—separate execution threads that run nonpreemptively in the
background. Tasks should periodically call a Task Manager yielding routine to allow other tasks to run. Tasks are ideal for
lengthy processes that you would like to run in the background, since the task runs in a separate execution thread from your event
loop.

The Task Manager was written using THINK C 5.0.1, and requires the MacTraps library. If you are using THINK C 4.0, see the
section below called “Using the Task Manager With THINK C 4.0.”

This package consists of the following files:

Task Manager Folder: contains entire package
TaskTest.π project for sample application
TaskTest.c source code for sample application
Task Manager Notes this documentation (Word 4.0)
Task Manager Notes.txt this documentation in text–only form
Task Manager Source: folder containing the source code

Task.c Task Manager source code
Task.h Task Manager include file

Overview

The Event Loop

A simplified Macintosh event loop looks something like this:

void EventLoop(void)
{

Boolean gotEvent;
RgnHandle cursorRgn;

cursorRgn = NewRgn();
do {

gotEvent = WaitNextEvent(everyEvent, &theEvent,
GetSleep(), cursorRgn);
AdjustCursor(theEvent.where, cursorRgn);
if(gotEvent)

DoEvent(&theEvent);
else

DoIdle();

} while(TRUE);
}

The application calls WaitNextEvent to retrieve the next event from the event queue. The application–defined
routine GetSleep determines the minimum number of ticks to allow the operating system to wait before returning
control to this application. When a null event occurs, the application calls its DoIdle routine to perform
background operations. This is when the Task Manager should be called to run background tasks:

void DoIdle(void)
{

RunTasks(GetWake());
}

At idle time, the application calls the Task Manager routine RunTasks to process background tasks. The single
parameter to RunTasks is the minimum number of ticks that background tasks may use. This time is calculated by
the application–defined routine GetWake.

The Task

The task itself is an application–defined routine that may look something like this:

void MyTaskProc(long taskRefCon)
{

Boolean moreToDo;

moreToDo = TRUE;
while(moreToDo) {

/* Allow other tasks to run */
TaskYield();

/* Do my task processing */
…

}
}

The task procedure should periodically call the Task Manager routine TaskYield, which allows the Task Manager
to run other tasks. When TaskYield is called, the Task Manager checks whether the number of ticks specified in
the call to RunTasks has been exceeded, or if there are any events pending for the application. If there is no reason
to suspend the task, then TaskYield simply returns. Otherwise, the task is suspended and control returns to
DoIdle, immediately after its call to RunTasks. The application can then cycle through its event loop once more.
The next time the application calls RunTasks, control will return to MyTaskProc, immediately following the call
to TaskYield.

This flow of control may seem a bit crazy at first. There are two loops—the event loop and the loop within the task
procedure—which appear to be executing simultaneously. This is the beauty of the Task Manager. It allows you to
write your tasks as simple loops (nested loops if necessary), and merely call an idling routine to relinquish control
periodically. Without the Task Manager, either you would need to “unroll” the loops in your task proce

dures and turn them into finite state machines, or you would need a second, more restrictive event loop that you
could call from within your task procedure.

The Task Manager accomplishes this magic by maintaining separate execution threads for each task, and by
switching context between threads when running different tasks. This is very similar to the way that the Finder will
switch contexts between applications. Task switching within the Task Manager, however, is much more efficient,
since all tasks are still part of the same application, and therefore share low–memory globals and all other
application–specific data structures.

Task Term Procedures

For each task, you can define a special procedure that will be called when the task
is disposed of. This can happen

• when the task returns from its task procedure (it finishes its task normally),

• when any task calls DisposeTask for it (the user closes a window
associated with the task, or presses command–period),

• or when the application calls TermTasking (the user quits the
application).

Sleep and Wake Times

The application spends its time alternating between periods of sleep and wake. It
does its work while awake, and other applications do their work while it is asleep.
You must choose a good balance of sleep and wake times so that your application
can get its work done without too much expense from other applications.

There are two factors that should affect your application’s sleep–wake cycle:
whether the application is in the foreground or background, and whether the
application has work to do (tasks) at the moment. This table shows the four
resulting situations and gives sample values for wake and sleep (all values are in
ticks):

in Foreground in Background
has Tasks high wake (60)

low sleep (0)
low wake (30)

medium sleep (30)
no Tasks high wake (60)

high sleep (12000)
low wake (30)

high sleep (12000)

There are a few things to note here:

• When there are no tasks, we sleep for a ridiculously long time. The operating
system will wake us when we receive an event. Otherwise, there’s nothing to
do, so we let other applications run.

• However, there’s no need to adjust our wake time based on number of tasks,
since RunTasks will return immediately when there are no tasks.

• We presume that the user is focused on the foreground application, and
wants it to get more time than applications in the background. When we are
in the foreground and busy, we work for one second, then poll for events and
allow other applica

tions to work briefly. When we are in the background, we spend less time awake
and more time asleep.

The Stack

The key to creating separate execution threads is to create a separate stack for each
one. The stack location itself doesn’t change, but when a task is suspended, the
current stack contents are copied into a Handle. When the task is resumed, the
contents of this Handle are copied back to the stack.

While a task is running, its stack handle is made purgeable. When the task yields,
this handle is reallocated to the current stack size. The stack handle is allocated
from temporary memory, if possible. Otherwise, it is allocated from the
application’s heap.

This method is quite reliable. And, since the amount of stack space that a task will
use is typically quite small, it proves to be fairly efficient as well.

Task Manager Routines

Task Manager Initialization

Before using the Task Manager routines, your application should call
InitTasking to set up the Task Manager’s data structures:

OSErr InitTasking(void);

If the Task Manager could not be initialized due to memory limitations,
InitTasking will return the appropriate system error code.

Creating Tasks

To create a new task, call NewTask:

OSErr NewTask(TaskProcPtr taskProc, TaskProcPtr
taskTermProc, long taskRefCon, short
*taskRefNum);

where
taskProc is the task procedure
taskTermProc is the task term procedure. You may pass a

NULL pointer if you don’t need a term
procedure.

taskRefCon is a parameter that is passed to the task
taskRefNum is the task’s reference number. You may pass

a NULL pointer if you don’t need the
reference number.

NewTask returns a Memory Manager error code if there is not enough memory
available for the task’s data structures or stack. The task’s stack will be allocated
from temporary memory if it is available.

A TaskProcPtr is defined as:

typedef void (*TaskProcPtr)(long taskRefCon);

The task procedure and the task term procedure can either be static or extern C
functions, but their CODE segments should remain loaded until the task procedure
returns. If the task term procedure is in a different segment from the task
procedure, then the task term procedure can unload the task procedure’s segment.

Disposing of Tasks

When a task has finished its work, its task procedure simply returns. It will be
automatically removed. To dispose of a task before its task procedure returns (for
example, if the user closes a window associated with a task, clicks “Stop,” or
presses command–period), call DisposeTask:

OSErr DisposeTask(short taskRefNum);

where
taskRefNum is the task’s reference number.

DisposeTask returns an error code (paramErr) if the task reference number is
invalid.

DisposeTask calls the task’s term procedure, if one is defined.

Task Manager Termination

When you have finished using the Task Manager, or when your application exits,
call TermTasking:

OSErr TermTasking(void);

This routine calls DisposeTask for all running tasks and restores any traps that
were patched by InitTasking. It is extremely important to call
TermTasking, since if you don’t, important traps won’t be restored and your
machine may crash when it exits.

TermTasking must be called from the context of your application. If called from
a task procedure, it returns paramErr.

Letting Tasks Run

Your application should call RunTasks in response to a null event or a FALSE
return code from GetNextEvent or WaitNextEvent:

void RunTasks(unsigned long wakeTime);

where
wakeTime is the amount of time you want allocated to

background tasks.

The constant kDefaultWakeTime is a reasonable choice for the wakeTime
parameter. However, you should keep track of whether your application is in the
foreground or the background and whether tasks are running, and use this
information to determine a more

suitable wake time. See the discussion of sleep and wake times above, for more
information.

Occasionally, your task procedure should call TaskYield to allow other
applications and other tasks within your application to run.

void TaskYield(void);

TaskYield will return control to the application (that is, the application will
return from it’s call to RunTasks) if there are no more tasks to run, if the wake
time specified in RunTasks has elapsed, or if there is an event pending for the
application.

Keeping Track of Tasks

Your application can keep track of its tasks by calling these Task Manager routines:

short CountTasks(void);

CountTasks returns the number of tasks that the Task Manager is currently
running.

short CurrentTask(void);

CurrentTask returns the task reference number of the current task, or 0 if there
is no current task (if called from the application, for example).

short GetIndTask(short index);

where
index is the number of the nth task counting from

0 to CountTasks() – 1

GetIndTask returns the task reference number of the given task, or 0 if index
is invalid.

long GetTaskRefCon(short taskRefNum);

where

taskRefNum is the reference number of the task whose
reference constant you want

GetTaskRefCon returns the reference constant for the given task, or 0 if
taskRefNum is invalid. This is useful if you want to send messages to your tasks
by changing parameters that are pointed to by the tasks’ reference constants.

OSErr SetTaskRefCon(short taskRefNum, long
taskRefCon);

where

taskRefNum is the reference number of the task whose
reference constant you want to set

taskRefCon is the new value for the task’s reference
constant

SetTaskRefCon changes the reference constant for the given task. This is useful
if you want to send messages to your tasks by modifying their actual reference
constants.

SetTaskRefCon returns paramErr if taskRefNum is invalid.

Debugging Tasks

The Task Manager contains some debugging checks designed to uncover common
errors. To enable these checks, simply edit “Task.h” and change the macro
TASK_DEBUG to 1.

When TASK_DEBUG is set to 1, the Task Manager checks for the following error
conditions:

• Stack overflow—This can occur when the heap grows beyond a suspended
task’s stack and restoring its stack would cause the heap to be overwritten.

• WindowRecord in stack—Due to the way the stack is managed, it is not a
good idea to allocate nonrelocatable parameter blocks in the stack (i.e., as
local variables). A common example of this occurs when allocating a
WindowRecord on the stack. To help track down this case, the Task Manager
will check the WindowList for WindowRecords that were allocated in the
stack.

• RunTasks called from task—RunTasks should only be called from the
application.

• TaskYield called from application—TaskYield should only be called
from a task procedure.

• Unable to save environment—This can occur if a task’s environment can’t
be saved due to memory constraints.

Using the Task Manager With THINK C 4.0

The Task Manager will work just fine under THINK C 4.0. It

requires the ANSI and MacTraps libraries, and the Gestalt
function. You need the MacTraps library from Symantec which
contains the Gestalt glue. If this is not available, contact me and
I will supply you with temporary glue you can use.

ANSI

The Task Manager uses the setjmp and longjmp routines from the THINK C
ANSI library. If you don’t want to include ANSI, then include the file “setjmp.c” in
your project.

With THINK C 5.0, the ANSI library is not needed.

Profiler

Under THINK C 4.0, “Task.c” will not work if it is compiled with the Profiler code
generation option. To circumvent this, create a project (“Task.π”) containing only
“Task.c.” Turn the Profiler code generation option off and compile “Task.c.” In
your application’s project, remove Task.c and replace it with Task.π.

You should also avoid profiling across TaskYield calls. Set the global variable
_profile to FALSE before calling TaskYield, then set it back to TRUE
afterwards.

Under THINK C 5.0, the code is immune to any option settings.

Limitations

Task Procedures

You are only limited by available memory to the number of tasks you can create
and run simultaneously.

Task procedures can call any Toolbox routine (including QuickDraw). However,
the current grafPort is not preserved across calls to TaskYield. If you have
several tasks drawing to different ports, or if you draw in your application code,
you may need to call SetPort after calling TaskYield.

Local Variables

Since the stack contents are not guaranteed to remain constant while TaskYield
is executing, you should not allocate parameter blocks as local variables. For
example, the following code will not work if pb is a pointer to a local variable:

OSErr TPBOpen(ParmBlkPtr pb)
{

OSErr err;

/* Clear ioCompletion */
pb->ioCompletion = 0;

/* Open the file asynchronously */
err = PBOpen(pb, TRUE);
if(err != noErr)

return err;

/* While waiting for the open to complete… */
while(pb->ioResult == 1) {

/* …allow other tasks to run */
TaskYield();

}

/* Completed; return the result */
return pb->ioResult;

}

To make this routine function properly, your parameter block should be a global or static variable, or allocated from
the heap.

Version History

Version 1.0

• Initial Release.

Version 1.1

• Add TermTasking routine to circumvent crashes when an application
exits under Finder.

Version 1.2

• Fix bug in GetTaskRefCon.
• Use StripAddress on the address passed to NSetTrapAddress, to

avoid any nasty 32-bit addressing problems.

Version 2.0

• Make the Task Manager work with THINK C 5.0. It will compile correctly if
the “Require Prototypes” and “Check Pointer Types” are enabled. It will also
compile correctly with a <MacHeaders> that was built with “Check Pointer
Types” turned on.

• Rename TaskIdle to TaskYield, which is more descriptive. For
compatibility, a macro is included that maps TaskIdle to TaskYield.

• By popular demand, add task term procedures.

Version 2.2

• Rework the way the Task Manager handles the stack. See the section “The
Stack” above for more details.

Version 2.2.1

• Fix a bug in the SaveEnvironment routine that caused task switching to
crash. This routine requires certain parameters and variables to live in
registers.

Coming Attractions

Please send me mail regarding any new features you would like
to see added to this package.

Yours Truly

I welcome any comments or suggestions that will help me
improve or extend the functionality of the Task Manager. You
can reach me at:

Internet: Michael_Hecht@mac.sas.com
AppleLink: SAS.HECHT

Happy Tasking!
— Michael Hecht

