TransSkel Programmer’s Note 4 Function Prototypes

TransSkel
Programmer’s Notes

4: TransSkel and Function Prototypes

Who to blame: Paul DuBois, dubois@primate.wisc.edu
Note creation date: 02/16/93

Note revision: 1.02

Last revision date: 01/06/94

TransSkel release: 3.02

The TransSkel header and source files use function prototypes to provide the compiler
with valuable information. It’s best that you make use of this information by including
TransSkel.h when compiling any of your own source files in which TransSkel functions
are used. If you don’t, you may end up with programs that compile properly but likely
don’t run correctly — and fail in subtle and hard to catch ways. This Note explains why.

C and prototypes

In C, you have a choice of two ways of defining and declaring functions. You can use the
syntax of Kernighan and Ritchie’s original description of C, or the newer ANSI C syntax.
The K&R and ANSI styles are referred to here as the old and new styles, respectively.

C functions, as originally described by Kernighan and Ritchie, are defined like this:

functype £ (argl, arg2)
argtypel argl;
argtype?2 arg2;
{
}

and declared (e.g., in a header file) like this:
functype £ ();

functype is the return value type of £ and argtypel and argtype?2 are the types of the arguments. (The number of arguments may
vary, of course.) If functype is missing from the definition or declaration, £ is assumed to return int. A function is also assumed to
return int if it’s used before a definition or declaration for it has been seen.

Although the declaration can indicate the function’s return value type, it doesn’t say anything about the argument types, or even whether
there are any.

Using ANSI C, the same function can be defined like this:

functype f (argtypel argl, argtype2 arg2)

Page 1 of 3

TransSkel Programmer’s Note 4 Function Prototypes

{
}

and is declared using a prototype like this:

Page 2 of 3

TransSkel Programmer’s Note 4 Function Prototypes

functype f (argtypel argl, argtype2 arg?);

Prototypes affect compiler behavior in two important ways: (i) the compiler can perform more complete type checking on function calls,
since it can check not only the function return value type, but also the number and types of the arguments; (ii) the compiler is free to
optimize the way it passes arguments.

When K&R C declarations are used, the compiler performs promotion or “widening” of arguments passed to function calls. For instance,
char and short are widened to int, float is widened to double. If the compiler is provided with ANSI function prototypes instead,
it is free to pass arguments in the most efficient way. In particular, it may forego the argument widening that occurs in K&R C. A char, for
instance, is widened to int when passed to a function for which there is no prototype, but if there is a prototype available indicating an
argument is a char, it may well be passed as char, without promotion.

Problems can arise when the old and new styles are mixed, e,g., if a function is compiled to expect its arguments non-widened and calls to
the function are compiled with widened arguments, or vice-versa. Suppose a function takes a char argument and is defined using an ANSI
style definition. It will expect to see an char-width argument. If calls to the function are compiled without prototype information,
widening will occur and an int-width argument will be passed. The result is that the program may compile and link properly, but fail to
run correctly. Problems of this sort can be quite difficult to track down.

It’s best to use prototyped declarations together with ANSI style definitions, or else unprototyped declarations together with K&R style
definitions to avoid mixing old and new styles and getting bitten as described above. The discussion below describes how this general
principle applies to working with TransSkel.

Prototypes in TransSkel

TransSkel is written and compiled using ANSI function definitions and prototyped
declarations. You should use the prototype information when compiling any of your own
source containing calls to TransSkel routines. Failure to do so can result in mismatches of
the sort described above.

There are two things to watch out for:

* Your application should call TransSkel functions in a way that’s consistent with the
way TransSkel expects them to be called. SkelDlogFilter () is an example. Its
prototype looks like this:

ModalFilterProcPtr
SkelDlogFilter (ModalFilterProcPtr filter, Boolean doReturn);

Boolean in THINK C is a character (single byte) type. If you compile a call to this function without prototype information, the
Boolean argument will be widened, but TransSkel is compiled not to expect widened parameters. The result of the mismatch is that
doReturn always appears to be false to SkelDlogFilter(). (The symptom is that the return key doesn’t select the default button in the
dialog you’re using SkelDlogFilter () with.)

» Functions in your application called by TransSkel should be compiled in a way consistent with the way TransSkel expects to call them.
For instance, the window handler callback function that handles activate events is supposed to take a single argument, a Boolean
indicating whether the window is coming active or not. The prototype for activate handlers looks like this:

Page 3 of 3

TransSkel Programmer’s Note 4 Function Prototypes

void (*SkelWindActivateProcPtr) (Boolean active);

Here too, since TransSkel is compiled using prototypes, the compiler is free to pass a Boolean as a single byte, without promotion.
This means your activate functions should expect non-widened arguments. In order to avoid mixing old and new function styles, you
should define your activate function this way:

void Activate (Boolean active)

{
}

If you define it as given below instead, you’re still using a K&R-style function definition:

void Activate (active)
Boolean active;

{
}

In this case, your routine will be compiled to expect a widened argument, i.e., it will expect a Boolean to be passed as an int and
active will always appear to be false.

If you include TransSkel.h in your source files that call TransSkel functions, you’ll avoid function style inconsistencies, or at least you get a
warning from the compiler when changes need to be made in your code. Your calls to TransSkel functions will be compiled using prototype
information, and will be consistent with the way TransSkel is compiled. In addition, the compiler will know whether the functions you pass
to TransSkel routines are defined the way TransSkel expects to call them. This is because it will know the prototypes for functions passed
as arguments to TransSkel routines (e.g., the activate handler passed to the SkelWindow () function) and can compare them with the way
your functions are actually defined to see if they are consistent. If they’re not, you will get a compilation error.

Conclusion: it’s pretty important that you use the information in TransSkel.h.

In some sense the requirement for using prototypes and ANSI style function definitions turns TransSkel from a benevolent servant into a
harsh taskmaster. This is somewhat unfortunate. On the other hand, it’s not clear what a better solution might be. If TransSkel were written
without prototypes, it would mean the programmer would need to not use prototypes for TransSkel-related routines, such as window and
menu handler callback functions. So no matter which way TransSkel were written, it would enforce a discipline on the use of its routines
and callbacks to those routines.

Page 4 of 3

