
Blob Manager Manual Using the Blob Manager

3.    Using the Blob Manager

This section describes how to write a blob scenario using the Blob Manager.

3.1 General Overview

The header file BlobMgr.h should be included in any source file using Blob Manager calls, in order to
access Blob Manager data types, constants and other definitions. Your application project document must
include theBlobMgr project or library document so that Blob Manager functions can be linked in.

For each blob set that is to be used, you call NewBlobSet(), which returns a handle to an empty set.
Call NewBlob() once for each blob that is to be added to the set, passing the blob set handle to
NewBlob() so that it knows which set to attach the blob to. Then the blob image is constructed, either by
creating a picture or installing an image-drawing procedure.

If the scenario is not such as to require special treatment, it is often sufficient to set the BlobClick()
flags, then call BlobClick() whenever there is a mouse click in a window containing blobs. After each
click you can check which receptors have globs to see whether a termination state has been reached.

Before exiting, call DisposeBlobSets() to shut down the Blob Manager.

The Blob Manager Demo source code may be examined as an example of an application that sets up
several scenarios with widely differing requirements.

3.2    Blob Manager Data Types

Blobs are organized into blob sets. Every blob in the set is represented internally by a blob record
containing all the pertinent information about the blob. The blob record contains the following types of
information.

• A flags word. This indicates whether the blob is enabled or frozen, the drawing modes of the
static and drag regions, and other sorts of information.

• A flags word used by routines that freeze and thaw blobs. This field is for internal use only;
user programs shouldn’t mess with it.

• A handle to the picture or the procedure that draws the blob.

• Handles to the static and drag regions.

• The bounds rectangles of the static and drag regions at the time the blob image was assigned
to the blob. This is for internal use only.

• A count of the number of times that the blob may be glued onto other blobs before its drag
region goes dim and becomes unavailable for dragging. This is used for blobs serving as
donors.

• A count of the number of blobs the blob is actually glued to. This is used for blobs serving as
donors.

• A handle to the set of blobs that match the blob. This is used for blobs serving as receptors.

• A handle to the current glob. This is used for blobs serving as receptors.

Page 3–122

Blob Manager Manual Using the Blob Manager

• A reference value that is reserved for use by your application. You specify an initial reference
value when the blob is created, and can read or change the reference value whenever desired.
You might use it to store a blob ID number, or a handle to a data structure containing other
information about the blob that is used to perform operations the Blob Manager does not
provide.

• A handle to the next blob in the set.

The blob record is defined as follows:

typedef struct BlobRecord BlobRecord, *BlobPtr, **BlobHandle;

struct BlobRecord
{

Integer
Integer

union
{

PicHandle
/* blob picture (and original frame) */

BDrawProcPtr
/* blob drawing procedure */

} bPicProc;
RgnHandle
RgnHandle

Rect
Rect

Integer
Integer

MatchHandle
BlobHandle

long
BlobHandle

};

You can store into and access most of a blob record’s fields with Blob Manager routines, so normally you
don’t have to know the exact field names.

A blob record may contain a handle to a list of blobs considered to be matches. Initially this handle is nil.
If it’s non-nil, each element in the match list has the following structure:

typedef struct MatchRecord MatchRecord, *MatchPtr, **MatchHandle;

struct MatchRecord
{

BlobHandle mBlob;
MatchHandle nextMatch;

};

Every blob set has a header containing handles to the first and last blob in the set:

typedef struct BlobSetRecord BlobSetRecord, *BlobSetPtr, **BlobSetHandle;

struct BlobSetRecord
{

Page 3–122

Blob Manager Manual Using the Blob Manager

BlobHandle firstBlob;
BlobHandle lastBlob;

BlobSetHandle nextBlobSet;
};

The nextBlobSet field of the BlobSetRecord is used internally by the Blob Manager to maintain a
master list of all blob sets created and should not be changed by user programs.

All blob sets can be disposed of at program termination time by calling DisposeBlobSets(). To
dispose of an individual blob or blob set, use ClobberBlob() or ClobberBlobSet().

Note
Although sets as mathematical entities are unordered, blob sets in particular have an ordering
induced on them by the implementation (sets are treated as lists). When blobs are created, they are
added to the end of their set, thus the i-th blob in a set — a concept with no mathematical meaning —
is easily obtained with GetBlobHandle(). This allows treatment of blob sets as single- dimensional
arrays. More complex data structures can be induced on a blob set by making use of this fact.

3.3    Creating a Blob Set

To create a new blob set, declare a BlobSetHandle variable and call NewBlobSet():

BlobSetHandle myBlobSet;

myBlobSet = NewBlobSet ();

NewBlobSet() allocates a new BlobSet record and returns a handle to it, or nil if there is insufficient
memory.

Once you have the BlobSet handle, you can call NewBlob() as many times as necessary to create the
blobs that should make up the set:

BlobHandle b;

b = NewBlob (&myBlobSet, enable, maxGlue, mustMatch, refCon);

NewBlob() takes a pointer to the BlobSet handle, and parameters indicating whether the blob is initially
enabled, the maximum glue count, whether or not the blob needs an explicit match, and a reference
constant. NewBlob() allocates a new blob record, initializes it, adds it to the given blob set, and returns a
handle to it. If there is insufficient memory to allocate the blob, NewBlob() returns nil.

The enable parameter is true or false, and determines whether or not the blob will be drawn as soon
as its image picture or drawing procedure is installed. maxGlue indicates the number of other blobs the
drag region can be glued to before the blob goes dim. mustMatch is true or false and indicates
whether or not the blob requires an explicit match to be quiet. refCon is a reference constant and can be
used for whatever purpose you want.

A newly-created blob cannot be used for anything;    it is given empty static and drag regions, and it has
no image. Nor can the blob be drawn until you inform the Blob Manager how to draw its image.

The appearance, or image, of a blob is arbitrary, subject to the constraint that drawing is always done
inside of the static and drag regions. The image is arbitrary because it can consist of anything you can
draw with QuickDraw. The constraint is enforced by clipping the picture to the appropriate region when it
is drawn.

Page 3–122

Blob Manager Manual Using the Blob Manager

There are two methods for defining blob images. The first is to issue a set of QuickDraw calls as a picture
definition, and install the picture into the blob record. Blobs imaged this way are picture blobs. Whenever
the Blob Manager draws a picture blob, it replays the picture, clipped to the region of the blob that is to be
drawn. This effectively draws only that part of the picture that lies within the desired region.

When the drag region of a blob A is glued to another blob B, the drag region of A is redrawn in a similar
manner, except that the picture is clipped to the drag region of B. The picture for A is mapped to the
picture frame of B’s drag region so that the picture for A is resized to fit B.

When a picture blob is dimmed, it’s drawn the usual way by replaying the picture. Then a gray pattern is
drawn over it in patBic mode to erase some of it.

The second method of defining a blob image is to have the blob passed to a procedure that knows how to
draw it. Blobs imaged this way are procedure blobs.

There are trade-offs to consider when deciding which blob imaging method should be used.

Advantages of picture blobs:

• The picture method is often easier because the QuickDraw picture mechanism allows pictures
to be replayed in any location or size.

Disadvantage of picture blobs:

• For sets of blobs whose members all look very similar, memory can be wasted since a picture
must be installed in each blob (pictures are not shared between blobs).

• Some QuickDraw calls, such as CopyMask() and PlotCIcon(), are not recorded in pictures.
In such cases, you must use procedure blobs.

Advantages of procedure blobs:

• A drawing procedure can be shared among several blobs, which can result in a lower memory
requirement than generating and storing pictures for each blob.

• Blob appearance may be modified under program control without creating a new picture.

• The procedure can be written to draw only the region of the blob indicated by partCode. This
can be more efficient than drawing the entire blob (which is essentially what happens for
picture blobs). If you want, you can still draw the entire blob for simplicity, because the
clipping is still set so that drawing only appears in the appropriate region.

• Dimmed procedure blobs can be drawn to look nicer. On monitors capable of it, the procedure
can draw in true gray, which looks better than splatting gray over the region after drawing it
normally. The drawing procedure can either let the Blob Manager set the pen color before the
procedure is called and restore it afterward, or the procedure can do its own dimming.

Disadvantages of procedure blobs:

• The procedure must know how to draw the blob in any location, and, if blobs are of different
sizes, how to adjust for size differences.

• Drawing procedures must be careful to avoid certain QuickDraw calls such as PenNormal(),
since if the pen has been changed to gray, that undoes the pen color change.

Note

Page 3–122

Blob Manager Manual Using the Blob Manager

It is possible to mix picture and procedure blobs within a scenario. In particular, picture blobs may be
glued onto procedure blobs, and vice versa.

3.3.1    Picture Blob Creation

The process of blob picture creation is analogous to the process of picture creation in general: you open
the blob, draw its image, and close it. In fact, the routines that open and close blobs use the picture
creation routines OpenPicture() and ClosePicture(), so you should be familiar with the operation
of those routines.

To set up a picture blob, call OpenBlob(), draw the image that determines what the blob should look
like, then call either CloseRgnBlob() or CloseRectBlob():

OpenBlob ();
/* draw image */
CloseRgnBlob (b, dragRgn, statRgn);

OpenBlob ();
/* draw image */
CloseRectBlob (b, dragRect, statRect);

OpenBlob() calls OpenPicture(), which hides the pen, so nothing appears on the screen while the
picture is being formed. The blob-closing functions take a handle to the blob that the picture should be
assigned to, and the regions or rectangles that describe the drag and static regions. CloseRgnBlob() is
more general, but CloseRectBlob() can be more convenient if the outlines of the blob regions can be
described as rectangles.

CloseRectBlob() and CloseRgnBlob() partition the general blob region into the static and drag
regions, and assign the picture to the blob. Some preprocessing is done to the picture to avoid the
QuickDraw picture replay quirk that sometimes results in nothing being drawn if the picture is redrawn into
a different sized frame.

The regions or rectangles you specify don’t need to be mutually exclusive: the drag region takes
precedence, so that any overlap between the static and drag regions is assigned to the drag region.

Here’s an example that creates a blob consisting of two adjacent circles:

show

Note that this code disposes of the regions after passing them to CloseRgnBlob(); this is done
because CloseRgnBlob() installs copies of the regions into the blob.

Here’s an example of a blob consisting of one rectangle within the other, where the inner rectangle is the
drag region:

show

Any picture blob which is enabled when it is closed is drawn by the close procedure as soon as the
picture is installed.

If you redefine a blob’s image, the old picture (if any) is disposed of.

Glob images of picture blobs are scaled to the receptor blob drag region. If the glob’s drag region is a
different size or shape than that of the receptor, scaling is done automatically by the QuickDraw picture
drawing mechanism.

Page 3–122

Blob Manager Manual Using the Blob Manager

*** Discuss clipping region problems here, and how the Blob Manager takes care of them. ***

3.3.2    Procedure Blob Creation

To set up a procedure blob, define the regions or rectangles describing the static and drag regions, then
call SetProcRgnBlob() or SetProcRectBlob(). These functions take a blob handle, a pointer to the
procedure that draws the blob, and the regions or rectangles:

SetProcRgnBlob (b, DrawProc, dragRgn, statRgn);

SetProcRectBlob (b, DrawProc, dragRect, statRect);

To set up the picture blobs described above as procedure blobs instead, you could do this:

show

Note that this code disposes of the regions after passing them to SetProcRgnBlob(); this is done
because SetProcRgnBlob() installs copies of the regions into the blob.

When a procedure blob needs to be drawn, the Blob Manager calls the drawing function, which should
look like this:

pascal void
DrawProc (BlobHandle bDst, BlobHandle bSrc, Integer partCode)
{
}

bSrc is the blob that should be drawn and partCode indicates which region to draw. bDst indicates
where to draw the given region of bSrc. This is to handle the case where a blob is glued onto another,
since that means the drag region needs to be drawn, but in the location of the drag region of another
blob.    (If partCode is inStatBlob, bSrc and bDst are always the same.)

Since you may need to draw the static region at a location of a blob different than that of the blob to which
the static region belongs, your draw procedure needs to be able to draw it at any arbitrary location.

With these considerations in mind, the drawing procedures DrawCircleBlob() and DrawRectBlob()
can be written like this:

pascal void
DrawCircleBlob (BlobHandle bDst, BlobHandle bSrc, Integer partCode)
{
Rect r;

r = BDragBox (bDst);
EraseOval (&r);
FrameOval (&r);

r = BStatBox (bDst);
EraseOval (&r);
FrameOval (&r);

}

pascal void
DrawRectBlob (BlobHandle bDst, BlobHandle bSrc, Integer partCode)
{

Page 3–122

Blob Manager Manual Using the Blob Manager

Rect r;

r = BDragBox (bDst);
EraseRect (&r);
FrameRect (&r);

r = BStatBox (bDst);
EraseRect (&r);
FrameRect (&r);

}

If the glob is a procedure blob, scaling is done only if the drawing procedure is intelligent enough to do so.

The bRefcon field often used to distinguish blobs. If the source and dest blobs are different, that means
draw a glob on a blob.

3.4    Blob Drawing

If the blob is not enabled or has no image (i.e., no picture, no drawing procedure), the Blob Manager
won’t draw it. Period. If the blob is enabled, the Blob Manager can be told to draw either or both the static
and drag regions. The image drawn in the static region is always the blob's own image, clipped to the
static region. The image drawn in the drag region is either its own (if it has no glob), or its glob's drag
image (if it has a glob), in either case clipped to its own drag region.

A blob region is drawn either normally or dimmed, depending on its drawing mode:

typedef enum
{

normalDraw = 1, /* draw blob normally */
dimDraw = 2

};

Each region has its own drawing mode, so each region can be drawn normally or dimmed independently
of the other.

By default, a picture blob region is dimmed by drawing it normally, then filling the region with gray in
patBic mode. (If the image is initially drawn this way, dimming it will make it invisible, so be careful.) The
default dimming behavior may be changed with SetBDimInfo(), which takes a QuickDraw drawing
mode and a pattern. For instance, a host can make dimmed blobs disappear by changing the dimming
pattern to black, or make dimmed blobs appear inverted relative to their normal appearance by
changing the pattern to black and the mode to patXor. The current dimming pattern and drawing mode
may be obtained with GetBDimInfo().

Procedure blobs are dimmed by changing the pen to gray during drawing if the system and monitor
support gray. If a gray pen is not available, dimming is done by filling the region after drawing the same
way as for picture blobs. Procedure blobs also have the option of telling the Blob Manager not to do the
dimming, but to let the drawing procedure do it.

Blobs are made visible or invisible by calling ShowBlob() or HideBlob(), respectively. Enabled blobs
may be redrawn (e.g., in response to update events) by calling DrawBlob(), which draws the blob with
the current drawing modes. Entire sets may be hidden, drawn or redrawn with HideBlobSet(),
ShowBlobSet() or DrawBlobSet().

3.5    Blob Hit-testing, Tracking, Dragging and Moving

For many scenarios, the BlobClick() routine is entirely sufficient to handle all transactions. Should the

Page 3–122

Blob Manager Manual Using the Blob Manager

host itself wish to determine which blobs mouse clicks fall in, or do tracking or dragging operations itself, it
can do so.

The TestBlob() routine determines whether a mouse point is in a given blob or not and returns a part
code to indicate whether the point is in the static region or the drag region, or zero to indicate that the
point is not in the blob.

typedef enum
{

inStatBlob = 1, /* static region only */
inDragBlob = 2, /* drag region only */

inFullBlob = 3 /* entire blob */
};

A blob must be active (enabled, not frozen), and the part of the blob that the mouse is in must be
undimmed, for the blob to be considered hit.

FindBlob() may be used to determine which, if any, of a set of blobs a mouse point lies in.

When the mouse button is pressed in a blob, the Blob Manager may be called to drag around a gray
outline of the blob or part of the blob. The blob may be dragged to the point where the mouse is released,
or the Blob Manager may simply return the result of the blob drag. TrackBlob() drags an outline of the
tracked part around and returns the result of the drag. DragBlob() tracks the part and then moves it to
the endpoint of the drag.

Blob dragging involves the concepts of the limit and slop rectangles, and of the drag axis. These are
discussed under the DragGrayRgn() routine in the Window Manager manual. The routines
DTrackBlob() and DDragBlob() allow tracking and dragging with the Blob Manager's default drag
axis and rectangles. These are set when the Blob Manager is initialized. The default limit and slop
rectangles are the size of the standard Macintosh screen and a wide-open rectangle, respectively, but the
limit rectangle should usually be set to the portRect of the window in which the scenario lives.

Blobs may also be offset or moved by the host program with OffsetBlob() or MoveBlob(). When a
blob's picture is created, the static and drag regions are mutually exclusive. If both regions of a blob are
moved together, they move in synchrony, so that the regions remain non- overlapping. If either region is
moved independently of the other, the appearance of the blob may be affected adversely, especially if
they overlap.

The blob tracking routines track the blob by making an outline of it follow the movements of the mouse. In
constrast, BTrackMouse() is used to track whether the mouse remains in a stationary blob when the
mouse moves. This is analogous to TrackControl(). It takes a blob, a starting point and a part code.
The region specified by the part code is highlighted (by inverting it) whenever the mouse is inside it. If the
mouse is released inside the region, BTrackMouse() returns true. Conceptually, this operation is
identical to the way push buttons are tracked when clicked with the mouse. Since the appearance of
blobs is less constrained, one can easily implement “controls” of highly arbitrary appearance.

3.6    Blob Manager State Information and Multiple Blob Scenarios

Applications implementing multiple scenarios should take note of the following information. Certain Blob
Manager operations use parameters that may be set by the host application to implement particular
scenarios. If an application supports more than one scenario, and the parameter settings differ between
them, it is important to set them when switching from one scenario to another. Typically each scenario
gets its own window, so you switch scenarios when an activate event occurs.

Settable parameters include the dimming pattern and drawing mode, the default limit and slop rectangles

Page 3–122

Blob Manager Manual Using the Blob Manager

and the default drag axis, and the BlobClick() zoomback and transaction permissions flags, and the
advisory function. (The advisory is described in the section discussing miscellaneous topics.)

The dimming pattern and drawing mode are used whenever blobs are drawn. The default rectangles and
drag axis are used by the default tracking and dragging routines. The default tracking routine, the flags,
and the advisory are all used in turn by BlobClick(). This means that any scenario using
BlobClick() is subject to the current settings of all these parameters.

3.7    Miscellaneous Topics

3.7.1 Secondary Data Structures

When blobs are created, they are added to the end of their set. Thus they form an implicit one-
dimensional array, the i-th member of which can be accessed as GetBlobHandle (bSet, i). For
small blob sets, this may be perfectly adequate. For sets of larger size, GetBlobHandle() may be too
inefficient as a general access method. In such cases, it is beneficial to induce secondary structures on
the blob set.

An explicit array can be used to speed up access:

BlobSetHandle bSet;
BlobHandle b[maxBlob];
Integer i;

bSet = NewBlobSet ();
for (i = 0; i < maxBlob; ++i)
{

b[i] = NewBlob (bSet, ...);
/* create blob image here */

}

Higher-order structures may easily be created in analogous fashion. For instance, creation of blobs to
populate a checkboard may be done as follows:

BlobSetHandle bSet;
BlobHandle board[8][8];
Integer i;

bSet = NewBlobSet ();
for (i = 0; i < 8; ++i)
{

for (j = 0; j < 8; ++j)
{

b[i][j] = NewBlob (bSet, ...);
/* create blob image here */

}
}

In both examples, blobs may be accessed directly in constant time through array references, rather than
by looking through a list. Reference the the checkerboard blobs are much quicker; using
GetBlobHandle(), 64/2 = 32 blobs must be scanned before finding the right one, on average.

3.7.2    BlobClick() Revisited: The Advisory Filter

In simple Blob Manager applications, the host creates the blobs to be operated on, sets the transaction

Page 3–122

Blob Manager Manual Using the Blob Manager

permissions and then passes mouse clicks to BlobClick(), which carries out its job without assistance
from the host. When it returns, a transaction has either been completed or not, and the host may examine
the blob sets to see whether a termination state has been reached.

Often illegal moves can be ruled out by freezing certain blobs or by setting the transaction permissions
appropriately. For instance, in tic-tac-toe, all illegal moves can be prevented before the user clicks the
mouse simply by freezing every square on the board that is already occupied. The same end can be
achieved here by turning off replace permission. Not every situation is so simple, however, and in such
cases it is desirable to know something about transactions while they are actually occurring.

For example, in a game of checkers, illegal moves cannot be prevented by freezing certain board
positions, because the set of legal moves is dependent on the piece the user wishes to move. If it were
known which piece the mouse was clicked in and which square of the board it was dragged to, the legality
of the move could be assessed and the move either allowed or disallowed before the piece was actually
moved. In a game of solitaire, only certain cards may legally be laid on each other card, but again the set
of cards that may be placed on each card varies. Knowing which cards the user planned to move, and
where, is information that could be used to disallow transactions which might be legal according to the
general transaction permissions, but illegal according to the semantics of the game.

BlobClick() allows the host to specify an advisory filter function to cope with scenarios that may be too
complex to handle with the normal mechanism. Installation of an advisory function allows the host access
to information about transactions in progress, so that it can, in effect, “call the shots” on transactions
without having to perform the mechanics of hit-testing, dragging, etc. It should be declared to take two
arguments.

pascal Boolean
BCFilter (short message, BlobHandle blob)
{
}

BlobClick() calls this filter in several different circumstances. The message argument indicates a click
type or the transaction that BlobClick() proposes to perform. These messages are as follows:

typedef enum
{

advDClick, /* click in donor */
advRClick, /* click in receptor */

advGlue, /* glue transaction proposed */
advUnglue, /* unglue transaction proposed */

advXfer, /* transfer transaction proposed */
advDup, /* duplicate transaction proposed */

advSwap /* swap transaction proposed */
};

The blob argument indicates the blob involved.

(i) When a mouse click falls in an active donor blob, the message is advDClick and the blob
argument is the donor in which the mouse was clicked.

(ii) When the donor from (i) is dragged onto an active receptor, the message is advGlue and the
blob argument is the receptor onto which the donor was dragged.

(iii) When a mouse click falls in an active receptor with a glob attached to it, the message is
advRClick and the blob argument is the receptor in which the mouse was clicked.

(iv) When the glob from (iii) is dragged onto a different active receptor, the blob argument is the
receptor the glob is dragged onto, and the message is advXfer, advDup or advSwap,
depending on the transaction that BlobClick() proposes to perform. If the glob is dragged

Page 3–122

Blob Manager Manual Using the Blob Manager

back to the donor it came from, the message is advUnglue, and the blob argument is the
receptor the glob was dragged from.

(v) When an active receptor with a glob is double-clicked in its drag region, the message if
advUnglue and the blob argument is the receptor in which the mouse was double-clicked.

Note that the advisory function is called twice for most transactions. It will not be called at all if the mouse
click doesn’t fall in something draggable, and will only be called once if a donor or glob is hit but not
dragged somewhere it can be glued.

The advisory function does not extend the scope of allowable transactions or override the general
transaction permissions. It is not even called unless BlobClick() considers the action done by the user
to be legal according to those permissions, so the advisory can only further restrict the user’s actions.
Thus if a donor is dragged to a receptor already having a glob, but replace permission is turned off, the
advisory is called only when the donor is clicked, not when the donor is dragged to the receptor
(BlobClick() wouldn’t consider replacing the glob that is already there, anyway).

The advisory function examines its arguments, takes whatever action it deems appropriate, then returns a
boolean value to BlobClick() indicating whether to continue processing or not. A return value of false
causes BlobClick() to abort.

If the advisory causes BlobClick() to abort, BClickResult() returns zero. The cast returned from
BClickCast() is undefined unless BClickResult() returns a non-zero value.

If the advisory causes BlobClick() to abort when BlobClick() has dragged a blob somewhere, the
drag is considered bad and zoomback occurs as appropriate according to the value of the bad drag and
zoomback flags. This value is set with SetBCZoomFlags().

There are several observations to be made about the order of messages received by advisory functions.
These are stated below without proof, but are important as they imply certain things about the state that
advisories should consider themselves to be in at any given time.

(i) All attempted transactions begin with one of the messages advDClick or advRClick.
(ii) Transactions that are completable always receive a second message, which is either

advGlue, advUnglue, advXfer, advDup or advSwap.
(iii) Not all transactions are completable. The user may fail to drag a blob onto an active

receptor; the permissions may not all the transaction type; the advisory might have aborted
BlobClick().

(iv) (i) and (ii) imply that advGlue, advUnglue, advXfer, advDUp and advSwap messages are
always immediately preceded by an advDClick or advRClick message.

(v) (iii) implies that advDClick and advRClick messages need not be followed by one of the
advGlue, advUnglue, advXfer, advDup or advSwap messages.

(i) – (v) taken together lead to the result that the string of messages received by an advisory function may
be described by the regular expression:

((advDClick|advRClick)+ (advGlue|advUnglue|advXfer|advDup|advSwap)*)*

where

() indicates grouping
x|y indicates alternation, i.e, x or y
+ indicates one or more of the preceding group
* indicates any number (possibly zero) of the preceding group

Page 3–122

Blob Manager Manual Using the Blob Manager

*** An example advisory would not be entirely inappropriate here. ***

3.7.3    “Donorless” Scenarios

3.7.4    Multiple Drag Regions

Multiple drag regions in receptor blobs may be simulated to some extent by clustering. Returning to the
states and capital cities example, suppose we wish to display a small picture of the state and require that
both the state name and the capital city name be associated with it. A receptor blob with two drag regions
would be sufficient, but another way to do it would be to draw the state picture in the static region of one
receptor blob, and cluster it with another receptor blob with no static region. The match set for each
receptor blob would accept either the state name or the capital city name. If the donor blobs are set to
single-use (maximum glue count of one), there is no possibility that a false match could occur, since if a
name is dragged onto the drag region or either receptor, it cannot be dragged onto the other at the same
time. Thus, if both drag regions are quiet, each must have one of the two desired names.

In general, a receptor blob with n drag regions may be simulated by n-clusters of single drag region
receptors if the donor blobs are all single-use, by giving each receptor blob a match set consisting of
every donor blob that is to be associated with the n-cluster.

This technique isn’t really very useful unless all drag regions are geometrically congruent.

3.7.5 Customizing the Blob Manager

3.7.5.1 Click Filter

3.7.5.2 Quiet Proc/Rand Proc

Page 3–122

