
Blob Manager Manual 4–190

4.    Blob Manager Routines

Unless otherwise specified, routines that take a blob part code as a parameter may be assumed to 
understand what to do with any of the codes inFullBlob, inDragBlob or inStatBlob.

4.1    Initialization

Threre is no specific initialization call. (This would not be true if the Blob Manager were written in a 
language not allowing static initialization, such as Pascal). If a large number of blobs will be created, it 
might be a good idea for the host to call MoreMasters() several times (see the Memory Manager 
manual). In a TransSkel application, the number of times to call MoreMasters() can be specified in the 
structure passed to SkelInit().

Initial values of important Blob Manager variables are:

BlobClick() Zoomback Flags
Zoomback on unglue transactions true
Zoomback on bad drags true

BlobClick() Transaction Permissions
Unglue transactions allowed true
Replace transactions allowed true
Transfer transactions allowed true
Duplication transactions allowedfalse
Swap transactions allowed true

BlobClick() Advisory Filter none
Dragging and Tracking

default drag axis noConstraint
default drag limit rectangle standard Macintosh screen size
default drag slop rectangle wide open rectangle

Dimming
dimming pattern gray
dimming mode patBic

4.2    Blob Allocation and Disposal

pascal BlobSetHandle
NewBlobSet (void);

NewBlobSet() creates a new, empty blob set and returns a handle to it. The blob set is added 
to the Blob Manager’s master list of blob sets.

If insufficient memory is available, NewBlobSet() returns nil.

pascal BlobHandle
NewBlob (BlobSetHandle bSet, Boolean enable, short glueMVal,

Creates a new blob and adds it to the given set. A handle to the new blob is returned. The blob 
is enabled according to the value of the enable parameter. This does not draw the blob if the 
enable parameter is true, (since it has no image initially anyway), but means that the blob will 
be drawn as soon as an image is defined. If enable is false, the blob will not be drawn until 
ShowBlob() is called. The glueMVal parameter is the number of receptors to which the blob 



Blob Manager Manual 4–190

can be glued before it goes dim. If it is equal to infiniteGlue (0x8000) the blob can be glued 
to any number of other blobs. If explicit is true, the blob requires an explicit match. The 
refCon reference value is stored into the blob record, and can be used for any purpose you 
wish.

All new blobs are given empty static and drag regions. The handles to the match set and to 
the glob are set to nil. The glueCount field is set to zero. The initial drawing modes of the 
static and drag regions are set to ormalDraw.

Blobs are always added to the end of their set. A handle to the i-th blob in a set may be 
obtained with GetBlobHandle(). The number of blobs in a set may be obtained with 
BlobSetSize().

If insufficient memory is available to create a new blob, NewBlob() returns nil.

pascal void
NewBlobMatch (BlobHandle b1, BlobHandle b2);

NewBlobMatch() adds b1 to the match set of b2. This means that whenever the glob field of 
b2 is equal to b1, BlobQuiet(b2) returns true. (The section discussing quiet and noisy 
blobs should be consulted for a complete description of blob matching properties.)

If insufficient memory is available to create a new match record, NewBlobMatch() returns 
nil.

pascal void
DisposeBlobSets (void);

DisposeBlobSets() disposes of all blob sets in the master blob set list. This may be called 
at application exit time to shut down the Blob Manager, but that is not strictly necessary.

pascal void
DisposeBlobSet (BlobSetHandle bSet);

DisposeBlobSet() removes the set from the master blob set list and disposes of all the 
blobs in the set. The handle to the blob set, and all handles to members of the set become 
invalid. In particular, if any blobs in the set are glued to any blobs, the glob handles in the 
latter blobs become invalid. You should never dispose of a blob set containing blobs that have 
a non-zero glueCount field unless you are also disposing of the blobs they are glued to.

Note
DisposeBlobSet() does not hide blobs before disposing of them.

pascal void
ClobberBlob (BlobHandle b, BlobSetHandle bSet);

ClobberBlob() deletes the blob from the blob set and disposes of it. All handles to the blob 
become invalid. In particular, if the blob is glued to any blobs, the glob handles in those blobs 
become invalid. A blob that has a non-zero glueCount field should be unglued before it is 
deleted.

pascal void
DisposeBlob (BlobHandle b);



Blob Manager Manual 4–190

Disposes of the blob and any data structures owned by it. All blobs own their pictures and 
their match set. The blob’s glob is not disposed of, since glue blobs are not owned but only 
associated with other blobs. Similarly, the blobs in the match set are not disposed of, but only 
the match records themselves (see DisposeMatchSet()). Any handle to the blob becomes 
invalid.

DisposeBlob() is not like DisposeControl(), which takes the control out of the owner 
window’s control list. It simply disposes of the blob, and is intended for use only by the Blob 
Manager. To dispose of a blob and remove it from its set, use ClobberBlob() instead.

pascal void
DisposeBlobPic (BlobHandle b);

DisposeBlobPic() disposes of any picture installed by the blob and sets the picture handle 
in the blob record to nil. The blob becomes undrawable, but DisposeBlobPic()does not 
erase it. Thus HideBlob() should normally be called first, unless the application is in the 
process of shutting down.

pascal void
ClobberBlobMatch (BlobHandle b1, BlobHandle b2);

ClobberBlobMatch() deletes b1 from the match set of b2.

pascal void
DisposeBlobMatchSet (BlobHandle b);

Disposes of the blob’s match set, if it has one. This does not dispose of the blobs whose 
handles are stored in the match records, only the match records themselves.

4.3    Blob Record Field Access

pascal BlobHandle
BGlob (BlobHandle b);

BGlob() returns a handle to the blob glued to b.

pascal BlobHandle
FirstBlob (BlobSetHandle bSet);

GetFirstBlob() returns a handle to the first blob in the set.

pascal BlobHandle
LastBlob (BlobSetHandle bSet);

GetLastBlob() returns a handle to the last blob in the set.

pascal BlobHandle
NextBlob (BlobHandle b);

NextBlob() returns a handle to the next blob in the set after b.

pascal BlobHandle
FirstBMatch (BlobHandle b);

FirstBMatch() returns a handle to the first blob in the blob’s match set.



Blob Manager Manual 4–190

pascal RgnHandle
BStatRgn (BlobHandle b);

BStatRgn() returns the blob’s static region handle.

pascal RgnHandle
BDragRgn (BlobHandle b);

BDragRgn() returns the blob’s drag region handle.

pascal Rect
BStatBox (BlobHandle b);

BStatBox() returns the rgnBBox field of the blob’s static region.

pascal Rect
BDragBox (BlobHandle b);

BDragBox() returns the rgnBBox field of the blob’s drag region.

pascal long
GetBRefCon (BlobHandle b);

GetBRefCon() returns the reference value of the blob.

pascal void
SetBRefCon (BlobHandle b, long refCon);

SetBRefCon() sets the reference value of the given blob to the given value.

pascal void
SetBGlueMax (BlobHandle b, short max);

Sets the glue count of the blob to max. In subsequent transactions, the blob is dimmed and 
becomes unavailable for dragging if it is simultaneously glued to max blobs.

When SetBGlueMax() is called, if the value of max is less than or equal to the number of 
blobs that the blob currently is glued to, it becomes dimmed. If the blob is dimmed, and max is 
greater than the number of blobs the blob is glued to, the blob becomes undimmed.

pascal short
GetBGlueMax (BlobHandle b);

GetBGlueMax() returns the maximum glue count of the blob.

4.4    Picture Blob Picture Creation and Region Assignment

pascal void
OpenBlob (void);

OpenBlob()tells the Blob Manager to start saving QuickDraw calls as a picture definition. 
After calling OpenBlob() you should draw the image of the entire blob, then call 
CloseRectBlob() or CloseRgnBlob() to establish the static and drag regions.



Blob Manager Manual 4–190

The call to OpenBlob() must always be balanced by a call to CloseRectBlob() or 
CloseRgnBlob() after the blob’s picture has been drawn. Since OpenBlob() starts saving the 
blob picture by calling OpenPicture(), you should not call OpenBlob() or OpenPicture() 
while another call to OpenBlob() or OpenPicture() is in progress.

pascal void
CloseRgnBlob (BlobHandle b, RgnHandle dragRgn, RgnHandle statRgn);

CloseRgnBlob() calls ClosePicture() to stop saving the picture started by OpenBlob(), 
installs it into the given blob, and installs regions into the blob corresponding to dragRgn and 
statRgn. The static region actually assigned is set to the difference of statRgn and dragRgn.

The bounds rectangles of the static and drag regions are installed as the blob’s statRect and 
dragRect fields, respectively.

If the blob is enabled, CloseRgnBlob() draws the blob before returning.

The caller is responsible for disposing of the regions passed to CloseRgnBlob(); those 
regions are used to construct new regions which are installed into the blob.

pascal void
CloseRectBlob (BlobHandle b, Rect *dragRect, Rect *statRect);

CloseRectBlob() calls ClosePicture() to stop saving the picture started by OpenBlob() 
and installs it into the given blob. statFrame and dragFrame should be equal to the 
rectangles bounding the static region and the drag region. The drag region is set to be 
equivalent to the dragFrame rectangle. The static region is set to be equivalent to the 
statFrame rectangle minus any overlap with dragFrame.

The bounds rectangles of the static and drag regions are installed as the blob’s statRect and 
dragRect fields, respectively.

If the blob is enabled, CloseRectBlob() draws the blob before returning.

4.5    Procedure Blob Procedure Installation and Region Assignment

pascal void
SetProcRgnBlob (BlobHandle b, BDrawProcPtr proc,

SetProcRgnBlob() installs proc as the blob’s drawing procedure and installs regions into 
the blob corresponding to dragRgn and statRgn. The static region actually assigned is set to 
the difference of statRgn and dragRgn. 

The bounding rectangles of the static and drag regions are installed as the blob’s statRect 
and dragRect fields, respectively.

If the blob is enabled, SetProcRgnBlob() draws the blob before returning.

The caller is responsible for disposing of the regions passed to SetProcRgnBlob(); those 
regions are used to construct new regions which are installed into the blob.

The drawing procedure should be defined like this:



Blob Manager Manual 4–190

pascal void
DrawProc (BlobHandle bDst, BlobHandle bSrc, Integer partCode)
{
}

bSrc is the blob that should be drawn and partCode indicates which region to draw. bDst 
indicates where to draw the given region of bSrc. This is to handle the case where a blob is 
glued onto another, since that means the drag region needs to be drawn, but in the location of 
the drag region of another blob.    (If partCode is inStatBlob, bSrc and bDst are always the 
same.)

Since you may need to draw the static region at a location of a blob different than that of the 
blob to which the static region belongs, your draw procedure needs to be able to draw it at 
any arbitrary location.

pascal void
SetProcRectBlob (BlobHandle b, BDrawProcPtr proc,

SetProcRectBlob() installs proc as the blob’s drawing procedure and installs rectangular 
regions into the blob corresponding to dragFrame and statFrame. The static region actually 
assigned is set to the difference of statFrame and dragFrame.

The bounding rectangles of the static and drag regions are installed as the blob’s statRect 
and dragRect fields, respectively.

If the blob is enabled, SetProcRectBlob() draws the blob before returning.

The drawing procedure should be defined as described under SetProcRgnBlob() above.

4.6    Low-Level Blob Region Assignment

These routines are called by Blob Manager routines that also install pictures or procedures; they are not 
generally called by the host.

pascal void
SetBlobRgns (BlobHandle b, RgnHandle dragRgn, RgnHandle statRgn);

SetBlobRgns() installs regions into the blob corresponding to dragRgn and statRgn. The 
static region actually assigned is set to the difference of statRgn and dragRgn.

The caller is responsible for disposing of the regions passed to SetBlobRgns(); those 
regions are used to construct new regions which are installed into the blob.

pascal void
SetBlobRects (BlobHandle b, Rect *dragRect, Rect *statRect);

SetBlobRects() installs rectangular regions into the blob corresponding to dragFrame and 
statFrame. The static region actually assigned is set to the difference of statFrame and 
dragFrame.

pascal RgnHandle
BCalcRegion (BlobHandle b, short partCode);

BCalcRegion() returns a handle to a copy of the blob region corresponding to the given part 



Blob Manager Manual 4–190

code. The caller is responsible for disposing of the region.

4.7    Graphic Operations on Blobs

In many ways, graphic operations on blobs are analogous to graphic operations on controls 
(HideBlob(), HideControl(); ShowBlob(), ShowControl(), etc.). There are some differences to 
be aware of. The most important is the difference in ownership of blobs and controls. When a control is 
created, the window it belongs to must be specified, and the control is only drawn in that window. A blob 
can be drawn in any window, but you must be sure that the current grafport is set correctly before 
performing any graphic blob operations.

pascal void
ShowBlob (BlobHandle b);

ShowBlob() makes the blob visible by enabling it and drawing it with DrawBlob(). If the blob 
is already enabled, ShowBlob() has no effect.

pascal void
ShowBlobSet (BlobSetHandle bSet);

Calls ShowBlob() for each blob in the set.

Note
ShowBlob() and ShowBlobSet() draw blobs immediately. Sometimes it is preferable to forestall 
drawing (for instance so that they will be drawn by the normal window updating procedure). To enable 
blobs without showing them, use EnableBlob() or EnableBlobSet(). These are useful in 
conjunction with invalidation of a window’s portRect to trigger redrawing by the update procedure.

pascal void
HideBlob (BlobHandle b);

HideBlob() makes the blob invisible by disabling it and filling the bounding rectangles of the 
blob’s static and drag regions with the background pattern of the current window’s grafPort. 
The rectangles are added to the window’s update region. If the blob is already disabled, 
HideBlob() has no effect.

pascal void
HideBlobSet (BlobSetHandle bSet);

Calls HideBlob() for each blob in the set.

Note
Since HideBlob() invalidates the bounds rectangles of the regions occupied by each blob, 
HideBlobSet() can result in a good deal of region calculation. For large blob sets the time involved 
in these calculations may be noticable. In such cases it is often much faster to invalidate the entire 
portRect of the grafPort first. If the blobs do not overlap other objects drawn in the window, the 
port can be validated after HideBlobSet() to forestall an update event.

pascal void
EnableBlob (BlobHandle b);

EnableBlob() sets the enabled bit in the blob’s flag word. This does no redrawing.

pascal void
EnableBlobSet (BlobSetHandle bSet);



Blob Manager Manual 4–190

EnableBlobSet() enables every blob in the set. This does no redrawing.

pascal void
DisableBlob (BlobHandle b);

DisableBlob() clears the enabled bit in the blob’s flag word. This does no redrawing.

pascal void
DisableBlobSet (BlobSetHandle bSet);

DisableBlobSet() enables every blob in the set. This does no redrawing.

pascal void
DrawBlob (BlobHandle b, short partCode);

If the blob is enabled, DrawBlob() draws the part of the blob indicated by partCode, using 
the blob’s frame, picture or procedure, drawing modes and glue blob, in the manner discussed 
in Chapter 2 under “Blob Drawing.” Drawing occurs even if the blob is already enabled. If 
partCode is inFullBlob, the entire blob is drawn.

pascal void
DrawBlobSet (BlobSetHandle bSet);

DrawBlobSet() calls DrawBlob() for each blob in the set with inFullBlob as the part code. 
This is commonly called in response to update events.

pascal void
DimBlobRgn (BlobHandle b, short partCode);

Dims the region of the given blob indicated by the part code. This should not be called for 
blobs that do dimming in some manner other than by dithering a gray pattern over the region.

pascal Boolean
BeginBlobDimDraw (BlobHandle b, short partCode);

Sets up to begin drawing in dimmed mode. Turns the pen gray if possible, otherwise does 
nothing. BeginBlobDimDraw() and EndBlobDimDraw() can be useful in procedure blobs 
that do their own dimming.

pascal void
EndBlobDimDraw (void);

Ends dim drawing. Restores the pen color to what it was before BeginBlobDimDraw() was 
called, if gray was available. Otherwise calls DimBlobRgn() to fill the affected blob region with 
gray.

pascal void
HiliteBlob (BlobHandle b, short partCode, short mode);

HiliteBlob() sets the drawing mode of the part of the blob indicated by partCode. If 
partCode is inFullBlob, the entire blob is set to the given mode. If HiliteBlob() changes 
the drawing mode of any of the parts of an enabled blob, they are redrawn appropriately.

pascal void



Blob Manager Manual 4–190

HiliteBlobSet (BlobSetHandle bSet, short partCode, short mode);

HiliteBlobSet() calls HiliteBlob() for every blob in the set, passing the given part code 
and drawing mode.

pascal void
GetBDimInfo (Pattern *p, short *mode);

Copies the current blob dimming pattern and drawing mode into the arguments.

pascal void
SetBDimInfo (Pattern p, short mode);

Sets the blob dimming pattern and drawing mode to the given pattern and mode. The defaults 
are gray and patPic, respectively.

pascal short
GetBDrawMode (BlobHandle b, short partCode);

GetBDrawMode() returns the drawing mode of the indicated part of the blob. partCode must 
be inStatBlob or inDragBlob.

pascal void
SetBDrawMode (BlobHandle b, short partCode, short mode);

SetBDrawMode() sets the drawing mode of the indicated part of the blob. The drawing mode 
of the entire blob is set if partCode is inFullBlob. SetBDrawMode() does no redrawing.

pascal short
GetFzBDrawMode (BlobHandle b, short partCode);

GetFzBDrawMode() returns the drawing mode of the indicated part of the blob, as it was 
before the blob was last frozen. This is used by routines that thaw frozen blobs, to determine 
how to restore their previous display state. partCode must be inStatBlob or inDragBlob.

4.8    Blob Transactions

4.8.1    High-Level Transaction Routines

The routines discussed below are used to perform automatic transaction handling. The descriptions are 
incomplete, as these routines are discussed more fully in the section “User-Initiated Transactions — the 
lobClick() Routine.”

pascal void
BlobClick (Point thePt, long t, BlobSetHandle dSet,

Call BlobClick() when the mouse is pressed to automatically perform blob transactions. The 
actions of BlobClick() are subject to the transaction permissions, the zoomback flags, the 
default dragging specifications and, if one is installed, the advisory filter function.

dSet may be nil if there is no donor set.

pascal short
BClickResult (void);



Blob Manager Manual 4–190

BClickResult() reports the result of the last call to BlobClick(). A value of zero means no 
transaction, otherwise the value indicates the transaction type.

typedef enum
{

noBcAct = 0, /* nothing done */
bcGlue, /* donor blob glued to receptor */
bcClear, /* glob unglued from receptor */

bcXfer, /* glob transferred to another receptor */
bcDup,

bcSwap
};

If an advisory causes BlobClick() to abort, BClickResult() returns zero.

pascal void
BClickCast (BlobHandle *d1, BlobHandle *d2,

BClickCast() is used to find out which blobs were involved in a transaction (these are 
known collectively as the cast — as in cast of thousands — of the transaction). The meaning 
of the cast is dependent on the type of transaction performed. The values are undefined if 
BClickResult() returns zero.

Glue: db1 = donor glued, rb1 = receptor glued to, db2 = donor replaced by db1 (nil 
if no replacement occurred), rb2 = nil.

Unglue: db1 = donor unglued, rb1 = receptor unglued from, db2, rb2 = nil.

Transfer: db1 = donor transferred, rb1 = source receptor, rb2 = destination receptor, db2 
= donor replaced by db1 (nil if no replacement occurred).

Duplication: same as transfer, except db1 = donor duplicated.

Swap: db1 = donor originally glued to rb1, db2 = donor originally on rb2, rb1 = 
source receptor, rb2 = dest receptor.

pascal void
SetBCPermissions (Boolean canUnglue, Boolean canXfer,

SetBCPermissions() sets the permission booleans that control the types of transactions 
BlobClick() is allowed to perform.

canUnglue is true if double-clicking detaches globs from receptors and if globs can be 
dragged off of receptors back to their donors. canXfer is true if globs can be transferred 
between receptors. anDup is true if globs can be duplicated onto other receptors. canSwap is 
true if globs can be swapped between receptors. canRep is true if transfers, swaps and 
duplications can cause a receptor’s glob to be replaced by another. Note that if canRep is 
false, transfers and duplications can only be made to empty receptors, and swaps fail 
altogether.

Swaps take precedence over duplications, and both take precedence over transfers, if two or 



Blob Manager Manual 4–190

more of these flags are on. All are subject to the value of the replacement flag, as noted above.

pascal void
GetBCPermissions (Boolean *canUnglue, Boolean *canXfer,

Boolean *canDup, Boolean *canSwap, Boolean *canRep);

GetBCPermissions() obtains the current permissions for the various types of transactions 
performed by BlobClick().

pascal void
SetBCZoomFlags (Boolean uGlueZoom, Boolean bDragZoom);

SetBCZoomFlags() sets the flags determining whether BlobClick() does zooming on 
unglue transactions and bad drags. uGlueZoom determines whether BlobClick() will zoom 
an outline of the receptor drag region back to the donor when a donor is unglued from a 
receptor as a result of double-clicking the receptor. bDragZoom determines whether the 
outline of a dragged donor will be zoomed back where it was dragged from if it’s not dragged 
somewhere it can be glued to.

pascal void
GetBCZoomFlags (Boolean *uGlueZoom, Boolean *bDragZoom);

GetBCZoomFlags() returns the current values of the flags controlling whether BlobClick() 
does zooming on unglue transactions and bad drags.

pascal void
SetBCAdvisory (BAdvisoryProcPtr p);

SetBCAdvisory() sets the address of the advisory filter function used by BlobClick(). If 
it’s nil, BlobClick() does all the work itself. Otherwise, the function is consulted during 
transactions to see whether to continue processing or not. If the filter returns false, 
BlobClick() terminates early, and BClickResult() will return zero.

The advisory function should be defined like this:

pascal Boolean
Advisory (short mesg, BlobHandle blob)
{
}

The mesg argument indicates a click type or the transaction that BlobClick() proposes to 
perform. These messages are as follows:

typedef enum
{

advDClick, /* click in donor */
advRClick, /* click in receptor */

advGlue, /* glue transaction proposed */
advUnglue, /* unglue transaction proposed */

advXfer, /* transfer transaction proposed */
advDup, /* duplicate transaction proposed */

advSwap /* swap transaction proposed */
};

The blob argument indicates the blob involved.



Blob Manager Manual 4–190

For more information, see section 3.7.2.

pascal void
GetBCAdvisory (BAdvisoryProcPtr *p);

GetBCAdvisory() returns the current address of the BlobClick()advisory filter function. A 
value of nil turns off any advisory currently in effect.

4.8.2    Low-Level Transaction Routines

The routines in this section can be used to perform blob transactions under program control. The 
transaction permissions and zoomback flags that are used to control BlobClick() have no effect on 
these routines.

pascal void
GlueGlob (BlobHandle d, BlobHandle r);

GlueGlob() glues the donor blob d to the receptor blob r. The donor’s current glue count is 
incremented, and its drag region is dimmed if the count reaches or exceeds the donor’s 
maximum glue count. If r already has a glue blob, it is unglued first (and undimmed if 
appropriate). The drag region of r is redrawn if it is enabled.

pascal void
ZGlueGlob (BlobHandle d, BlobHandle r);

ZGlueGlob() is the same as GlueGlob() except that an outline of the donor is zoomed the 
receptor for visual effect.

pascal void
UnglueGlob (BlobHandle b);

If b has a glue blob, UnglueGlob() unglues it. The glob’s current glue count is decremented, 
and its drag region undimmed if the glue count goes below its maximum. The drag region of b 
is redrawn if it is enabled.

pascal void
ZUnglueGlob (BlobHandle b);

ZUnglueGlob() is the same as UnglueGlob() except that an outline of the glob is zoomed 
back from the receptor to the donor for visual effect.

pascal void
UnglueGlobSet (BlobSetHandle bSet);

For each blob in the given set, UnglueGlobSet() unglues its glue blob by calling 
UnglueGlob().

pascal void
ZUnglueGlobSet (BlobSetHandle bSet);

For each blob in the given set, ZUnglueGlobSet() unglues its glue blob by calling 
ZUnglueGlob().

pascal void



Blob Manager Manual 4–190

TransferGlob (BlobHandle r1, BlobHandle r2);

If r1 has a glue blob, TransferGlob() unglues it from r1 and glues it to r2. If r1 is enabled, 
its drag region is redrawn. Any glob already glued to r2 is unglued first (and undimmed if 
appropriate). The drag region of r2 is redrawn if it is enabled.

pascal void
DupGlob (BlobHandle r1, BlobHandle r2);

pascal void
ZDupGlob (BlobHandle r1, BlobHandle r2);

If r1 has a glob, DupGlob() glues the glob to r2 as well. Any glob already glued to r2 is 
unglued first (and undimmed if appropriate). The drag region of r2 is redrawn if it is enabled. 
ZDupGlob() is the same but zooms an outline of the glob from r1 to r2.

pascal void
SwapGlob (BlobHandle r1, BlobHandle r2);

If r1 and r2 have globs, SwapGlob() glues the glob attached to r1onto r2, and glues the glob 
attached to r2 onto r1. If either r1 or r2 is enabled, its drag region is redrawn.

pascal void
IncBlobGlue (BlobHandle b);

IncBlobGlue() increments the current glue count of the blob, and dims it if it is enabled and 
the count reaches the blob’s maximum glue count.

pascal void
DecBlobGlue (BlobHandle b);

DecBlobGlue() decrements the current glue count of the blob, and undims it if it is enabled 
and the count goes below the blob’s maximum glue count.

4.9    Blob Movement

The following routines may be used to move blobs or parts of blobs to a relative or absolute location.

Note
Moving one region of a blob without moving the other region may give undesirable results; you could 
end up with overlapping regions.

pascal void
OffsetBlob (BlobHandle b, short partCode,

OffsetBlob() offsets the indicated part of the blob a distance of dh horizontally and dv 
vertically. If partCode is inFullBlob, the entire blob is offset as a unit. If the blob is enabled, 
it is hidden and redrawn at the new location.

pascal void
MoveBlob (BlobHandle b, short partCode,

MoveBlob() moves the indicated part of the blob so that its top left corner is at the horizontal 



Blob Manager Manual 4–190

and vertical coordinates h and v. If partCode is inFullBlob, the entire blob is moved as a 
unit; the top left corner of the static region bounding rectangle is placed at (h, v), while the 
drag region remains at the same location relative to the static region as it was prior to the call 
to MoveBlob(). If the blob is enabled, it is hidden and redrawn at the new location.

4.10    Blob Hit Testing

pascal short
TestBlob (BlobHandle b, Point thePoint);

TestBlob() returns a part code (inStatBlob or inDragBlob) if thePoint lies within the 
blob’s static or drag region, zero otherwise.

Only undimmed regions of active blobs are tested.

pascal short
FindBlob (Point thePoint, BlobSetHandle bSet, BlobHandle *bhPtr);

If thePoint does not lie within any blob in the given blob set, FindBlob() returns zero. If 
thePoint lies within a blob in the given blob set, FindBlob() returns a handle to it in b, and 
the function result is the part code of the part of the blob that the point is in (either 
inStatBlob or inDragBlob).

Only undimmed regions of active blobs are tested.

4.11    Blob Tracking and Dragging

pascal void
DragBlob (BlobHandle b, Point startPoint,

Rect *limitRect, Rect *slopRect, short axis);

When the mouse button is pressed in a blob, call DragBlob() with the point at which the 
mouse was pressed. ragBlob() follows movements of the mouse by dragging around a gray 
outline of the blob until the mouse button is released. If the mouse button is released inside of 
the slopRect, the blob is erased and redrawn at the new location.

pascal long
TrackBlob (BlobHandle b, short partCode, Point startPoint,

TrackBlob() drags around a gray outline of a the indicated blob part (the entire blob if 
partCode is inFullBlob), until the mouse button is released. If the button is released outside 
of the slopRect, TrackBlob() returns 0x80008000. Otherwise the vertical and horizontal 
differences between the final mouse point and the startPoint are returned in the high and 
low order words of the result.

pascal void
DDragBlob (BlobHandle b, Point startPoint);

pascal long
DTrackBlob (BlobHandle b, short partCode, startPoint);

DDragBlob()() and DTrackBlob()() are the same as DragBlob() and TrackBlob(), 
respectively, except that the Blob Manager’s default limitRect, slopRect and drag axis are 
used.



Blob Manager Manual 4–190

pascal void
SetBDragRects (Rect *limitRect, Rect *slopRect);

SetBDragRects() sets the Blob Manager’s default limit and slop drag rectangles to 
limitRect and slopRect, respectively.

pascal void
GetBDragRects (Rect *limitRect, Rect *slopRect);

GetBDragRects() returns the Blob Manager’s default limit and slop drag rectangles in the 
limitRect and slopRect parameters, respectively.

pascal void
SetBDragAxis (short axis);

SetBDragAxis() sets the Blob Manager’s default drag axis to the given value.

pascal short
GetBDragAxis (void);

GetBDragAxis() returns the Blob Manager’s default drag axis value.

pascal Boolean
BTrackMouse (BlobHandle b, Point startPt, short partCode);

The blob tracking routines track the blob by making it follow mouse movements. 
BTrackMouse() tracks the mouse to see whether it remains inside of a stationary blob. When 
the mouse is clicked in a blob, pass a handle to the blob, the mouse position and a part code 
to BTrackMouse(). BTrackMouse() highlights the part whenever the mouse is in it, and 
returns true if the mouse is released in the same part. Ths routine is useful to applications that 
wish to use blobs that act in a manner similar to controls such as push buttons.

4.12    Blob Match Testing and Match Result Display

pascal Boolean
InBlobMatchSet (BlobHandle b1, BlobHandle b2);

InBlobMatchSet() returns true if b1 is found in the match set of blob b2, false otherwise.

pascal Boolean
BlobQuiet (BlobHandle b);

If the blob is quiet according to the rules for blob matching, lobQuiet() returns true, 
otherwise false. Blob matching is discussed in more detail under “Overview of Blob 
Behavior.”

pascal void
SetBQuietTest (BQuietProcPtr proc);

Installs a routine to be called to test whether a blob is quiet or not. If proc is nil, the default 
routine is used. Otherwise the routine should be declared like this:

pascal Boolean
QuietTest (BlobHandle b)



Blob Manager Manual 4–190

{
}

The argument indicates the blob to test. The routine should return true or false depending 
on whether or not the blob should be considered quiet.

pascal Boolean
BlobSetQuiet (BlobSetHandle bSet);

If every blob in the set is quiet according to the rules for blob matching, BlobSetQuiet() 
returns true, otherwise false. Blob matching is discussed in more detail under “Overview of 
Blob Behavior.”

pascal void
FreezeBlob (BlobHandle b);

FreezeBlob() freezes the blob. This causes its current state, including its drawing modes 
and whether it is enabled or not, to be saved. Freezing a frozen blob has no effect.

pascal void
FreezeBlobSet (BlobSetHandle bSet);

FreezeBlobSet() freezes the enabled blobs in the set.

pascal void
ThawBlob (BlobHandle b);

If the blob is frozen, ThawBlob() unfreezes it and restores it to its pre-freeze state.

pascal void
ThawBlobSet (BlobSetHandle bSet);

ThawBlobSet() thaws the enabled blobs in the set.

pascal void
BlobFeedback (BlobSetHandle bSet,

For each enabled blob in the set, BlobFeedback() freezes it and calls BlobQuiet(). If the 
blob is quiet, it is drawn in quietMode drawing mode, otherwise it is drawn with noisyMode 
drawing mode. Since BlobFeedback() freezes enabled blobs, ThawBlobSet() must be called 
to restore them.

4.13    Blob Condition Testing

pascal void
SetBlobFlags (BlobHandle b, short bitMask);

For each bit that is set in the bit mask, SetBlobFlags() sets the corresponding bit in the flag 
word of the blob.

pascal void
ClearBlobFlags (BlobHandle b, short bitMask);

For each bit that is set in the bit mask, ClearBlobFlags() clears the corresponding bit in the 



Blob Manager Manual 4–190

flag word of the blob.

pascal short
TestBlobFlags (BlobHandle b, short bitMask);

For each bit that is set in the bit mask, TestBlobFlags() returns a one or a zero in the 
corresponding bit of the result, depending on whether the bit is set or cleared in the blob’s 
flag word.

pascal Boolean
BlobEnabled (BlobHandle b);

BlobEnabled() returns true if the enable bit of the blob’s flag word is set, false otherwise.

pascal Boolean
BlobDimmed (BlobHandle b, short partCode);

BlobDimmed() returns true if the given region of the blob is dimmed, false otherwise. If 
partCode is inFullBlob, the drag region and the static region must both be dimmed for 
BlobDimmed() to return true.

pascal Boolean
BlobFrozen (BlobHandle b);

BlobFrozen() returns true if the frozen bit of the blob’s flag word is set, false otherwise.

pascal Boolean
BlobActive (BlobHandle b);

BlobActive() returns true if the blob is active, false otherwise. A blob is active if it is 
enabled but not frozen.

pascal Boolean
CanGlue (BlobHandle b);

CanGlue() returns true if b is not currently glued to the number of receptors specified by its 
glueMax field, i.e., if it can be glued onto another receptor.

pascal Boolean
PicBlob (BlobHandle b);

PicBlob() returns true if b is a picture blob, false if it’s not (i.e., if it’s a procedure blob).

4.14    Miscellaneous Routines

pascal BlobHandle
GetBlobHandle (BlobSetHandle bSet, short i);

GetBlobHandle() returns the handle of the i-th blob in the given blob set, if i is in the range 
from 0 (the first blob in the set) to the number of blobs in the set – 1. GetBlobHandle() 
returns nil otherwise.

This function allows blob sets to be treated like one-dimensional arrays, albeit in a rather 
inefficient manner.



Blob Manager Manual 4–190

pascal short
GetBlobIndex (BlobSetHandle bSet, BlobHandle b);

GetBlobIndex() returns the sequential position of blob b within the blob set bSet. The first 
blob has index 0.

pascal short
BlobSetSize (BlobSetHandle bSet);

BlobSetSize() returns the number of blobs in the set.

pascal short
BlobRand (short max);

BlobRand() returns a random integer between 0 and max-1, inclusive.

pascal void
SetBlobRand (BRandProcPtr f);

If the default properties of BlobRand() are unsatisfactory, they may be changed by installing 
a different generator. The generator function should be declared like this:

pascal short
MyRand (short max)
{
}

The generator should return an integer between zero and max, inclusive. It is installed by 
passing its address to SetBlobRand().

If f is nil, the default generator is reinstalled.

pascal void
ShuffleBlobSet (BlobSetHandle bSet);

Randomizes the locations of the blobs in the given set. The locations of the blobs in the set 
remains the same, but assignment of individual blobs to those locations changes. If the blobs 
are enabled there will be lots of movement on the screen, so you should call ideBlobSet() 
before calling ShuffleBlobSet() and ShowBlobSet() afterward, if you wish to avoid this.

Note
When blobs are shuffled they are moved. If they are also enabled, moving them causes them to be 
hidden and redrawn (HideBlob()/ShowBlob()), so the same remarks about region calculations 
made under the description of HideBlobSet() apply to ShuffleBlobSet(). It is sometimes 
preferable to invalidate the window portRect before shuffling and validate it afterwards, to speed up 
the shuffle and to avoid an update event.

Warning
ShuffleBlobSet() may not work correctly if any of the blobs in the set have empty drag regions. 
This does not often occur.

pascal void
ShuffleGlobSet (BlobSetHandle bSet);

ShuffleGlobSet() randomly swaps around the globs glued to the blobs in bSet. Unlike 



Blob Manager Manual 4–190

ShuffleBlobSet(), no region invalidation is involved.

pascal void
BMgrZoomRect (Rect *r1, Rect *r2);

BMgrZoomRect() zooms a gray rectangle from the location of r1 to the location of r2. At the 
beginning of the zoom, the gray rectangle is the shape of r1. During the zoom the rectangle 
changes shape so that at the end of the zoom it is the shape of r2. BMgrZoomRect() is 
nondestructive to the display.

pascal void
BlobLoopProc1 (BLoopProcPtr1 p, BlobSetHandle bSet);

pascal void
BlobLoopProc2 (BLoopProcPtr2 p, BlobSetHandle bSet,

BlobLoopProc1() and BlobLoopProc2() are used to implement operations on sets of blobs. 
For each blob in the set, BlobLoopProc1() passes the blob to the given procedure. For 
instance, ShowBlobSet() is implemented as

BlobLoopProc (ShowBlob, bSet)

The function called by BlobLoopProc1() should be defined like this:

pascal void
Func (BlobHandle b)
{
}

BlobLoopProc2() is similar, except that it also passes a part code. For instance, 
DrawBlobSet() is implemented as

BlobLoopProc2 (DrawBlob, bSet, inFullBlob)

The function called by BlobLoopProc2() should be defined like this:

pascal void
Func (BlobHandle b, short partCode)
{
}

Although the third argument is used as a part code by the Blob Manager, in fact 
BlobLoopProc2() can be used to pass a blob and any short argument.


