InstallerNG

InstallerNG

] COLLABORATORS
TITLE :
InstallerNG
ACTION NAME DATE SIGNATURE
WRITTEN BY January 19, 2025
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

InstallerNG iii

Contents

1 InstallerNG 1
1.1 Well, some nice qUOLeS... v v vt i e e e e e e e e e e 1
1.2 Installer NGo o e 2
1.3 Introduction e e e e e e 3
1.4 Disclaimer. 3
1.5 TIneedyourhelp! e 3
1.6 That'sme ;) v o e e e e e e 4
1.7 Distribution of the InstallerNG e 4
1.8 Twanttothank... e e e 4
1.9 Still not 100% perfect e e 6
1.10 Very important notes!!! L e 6
1.11 Whatistlefttodo o e e 8
1.12 How to start the Installer e 9
1.13 Running from WB 0 oL 9
1.14 Running from Shell/CLL e e 10
1.15 Thehistory of this Program e 10
1.16 The Installer Language L 20
1.17 The symbols of the language e e e 21
1.18 Builtin functions e e 22
1.19 Builtin variables L e e e 26
1.20 Advanced features L L. e e e e 28
1.21 Whatisnew here??? L e 29
1.22 Known Bugs, not yet removed *sorry* L Lo 31
1.23 The Brrors o e e 31
1.24 Trouble with other soft e 32
L25 TF . e 32
1.26 WHILE 33
127 UNTIL . . .o e e e e 33
1.28 ABORT e 34

1.29

InstallerNG iv

1.30 COPYFILES e 35
131 COPYLIB 35
1.32 DEBUG e 35
1.33 DELAY 36
1.34 DELETE e 36
1.35 EXECUTE 37
1.36 EXIT . . e 37
1.37 FOREACH 37
1.38 LET e 37
1.39 MAKEASSIGN 39
1.40 MAKEDIR e 39
1.41 MESSAGE 39
142 NOP . . o e 39
1.43 ONERROR 40
1.44 PROCEDURE e 40
1.45 PROTECT 40
1.46 RENAME 40
147 REXX . . 41
1.48 RUN . . o o e 41
149 SET . . . o 41
1.50 SETENV . . e 41
1.51 SIMULATE-ERROR 42
1.52 STARTUP e 43
1.53 SWING 43
1.54 TEXTFILE e 44
1.55 TOOLTYPE 44
1.56 TRAP . . . e 44
1.57 USER . . . 44
1.58 WELCOME e 45
1.59 WORKING 45
1.60 EQU . . . o e 45
1.61 NE . . . o 45
1.62 GT . . o e 46
1.63 GE . . . o 46
1.64 LT . . . e 46
1.65 LE . . . o 46
1.66 COMPARE e 47
1.67 ADD e 47

1.68 SUB e e 47

InstallerNG v

1.69 MUL . . . e 48
L70 DIV . 48
L71 AND . . o e 48
L72 OR .. 48
173 XOR . . o e 49
L74 NOT . . . 49
1.75 BITAND o e 49
1.76 BITOR 49
177 BITXOR . . e 50
178 BITNOT 50
1.79 SHIFTLEFT e e e e 50
1.80 SHIFTRIGHT e 50
L8L IN . . o e 51
1.82 ASKDIR 51
1.83 ASKFILE e 51
1.84 ASKSTRING 51
1.85 ASKNUMBER e 52
1.86 ASKCHOICE 52
1.87 ASKOPTIONS e 52
1.88 ASKBOOL 52
1.89 ASKDISK o e 53
1.90 BEEP 53
191 CAT . . o e 53
1.92 DATABASE 53
1.93 EXISTS . . . e 55
1.94 EXPANDPATH 56
1.95 EARLIER e 56
1.96 FILEONLY e e e e e 56
1.97 FINDBOARD e 56
1.98 GETASSIGN 57
1.99 GETDEVICE e 57
1.IO0OGETDISKSPACE 57
L.I0IGETENV . . e 58
1.I02GET-PROPERTY 58
L.103GETSIZE o e e 58
LIOAGETSUM 59
1.1I0SGETVERSION e e 59
L.IO6PATHONLY e e e e e 59

LI0TPATMATCH e e e 59

InstallerNG Vi

1.108PUT-PROPERTY e e 60
LIOORANDOM 60
L.ITOREBOOT e 61
LITTIREMOVE-PROPERTY e e s 61
LI12SELECT o o e e 61
LII3STRLEN 62
L.IT4SUBSTR . . . e 62
LIISTRANSCRIPT o 62
LITI6TACKON . . . e e e e 62
LITTALL 63
L.I1I8APPEND o e 63
LII9ASSIGNS . . o 63
L.120CHOICES e 63
LI2ICOMMAND 64
1.122CONFIRM e 64
LI23DEFAULT 64
1.124DELOPTS o e 64
LI25DEST . . . o 65
1.126DISK . . o e 65
LI2TFILES 65
L128FONTS . o o e 65
LI29HELP . . . o 66
L.130INCLUDE e 66
LIBTINFOS . . . 66
LI32NEWNAME o e 66
LI33NEWPATH 67
L.134NOGAUGE e 67
LLI3SNOPOSITION e e e e e e 67
1.136NOREQ e 67
LI370PTIONAL 68
L138PATTERN o e 68
LI39PROMPT 68
LI40QUIET e 68
LI4IRANGE 69
L.142SAFE . . o e 69
1.I43SETTOOLTYPE 69
1.144SETDEFAULTTOOQOL e e e e e e e e 69
LI45SETSTACK 70

1.146SOURCE e 70

InstallerNG Vii

1.147SWAPCOLORS 70
1.148STRPART 70
LI4ONUMPART . . . e e 71
1.150Technical information o e e e e e e 71
1.151The interpretation ProCeSS v v v v v v v v i e e e e e e e e e e e e e e e e e e 71
1.152The syntax of the language e e e e 72

1.153Information about the Grammer e e e e e e e e e 72

InstallerNG

1/72

Chapter 1

InstallerNG

1.1 Well, some nice quotes...

Life is a strange thing

Just when you think you learned how to use it
It's gone

Shakespears Sister

We talk about our flights

In this queer dimension

And how we are afraid

To carry on alone

And finish our direction... flying home
Linda Perry

They lowered my body in a dark hole

The dry ground now covers my remains

I stood at their side and watched them crying
They can’t know, the tears they are in vain
Rage

Remember in this game we call life

That no one said it's fair

Axl Rose

Und du rufst in die Welt

DaB sie dir nicht mehr gefillt

Du willst “ne schonere erleben

Doch es wird keine and're geben
Witt/Heppner

Well who am I to complain

About a bit of earthly pain?

InstallerNG 2/72

Tito & Tarantula

How “bout not equating death with stopping?
Alanis Morissette

D’Oh!

Homer Simpson

Horst Du die Engel singen?

Horst Du die Harfen klingen?

Hat sich das Leiden nicht gelohnt?

Fiitter das Weille Licht fiir mich!

OOMPH!

Go on

1.2 Installer NG

InstallerNG v1.2 pre-release

THIS IS A PUBLIC BETA VERSION
THUS THERE MAY BE MANY BUGS AND MISBEHAVIOURS AND MISSING FUNCTIONALITY.
USAGE IS YOUR OWN RISK.

Maybe an error occurs while you use my InstallerNG. If this happens, follow these
steps:

- note the Hunk/Offset trace and the error (if you use e.g. Mungwall/Enforcer)

- send me a bugreport and please include:

a) the script, which caused the error

b) complete error description (what you did, what happend...)

Introduction

Introduction - What's this thing about?
Author - Thats me :-)

Distribution - The Way I spread this Stuff
Thanks - Thanks for help...

Disclaimer - For all!

The Installer

What's New - Cool things I extended
Incompatibilities - Sorry for this!
Important notes - READ THIS
Starting the Installer - Getting started

The language - A small description of the language

InstallerNG

3/72

Compilation Errors - Errors? look here!

Trouble with other soft - You should know about this

Help - I need some help

Additional Information

To Do - There is soooo much left to do

History - The history so far

Technical Information - Wanna know something about the Interpreter?

Known Bugs - Shit!!!

1.3 Introduction

If you know the original Installer tool, provided by the AmigaOS, then you

don’t need to read this ...

You may know large packages of software, which come with several libraries, fonts,
envs, which needs assigns, new directories and so on. Well, an installation on your own
may be very hard for novice users. Okay, this tool makes this process easier: the author
of a program should write a socalled "Installer-Skript", which consist of a special
syntax and which uses the powerfull functionality of the InstallerNG. This script

will be executed by this Installer tool. To learn about the language of these skripts,

you should go here. If you want to know something about how to run such scripts, have

a look at this.

1.4 Disclaimer

Since I really don't like people, who release every damn shit as "Shareware", I decided
to make this project "Freeware". Maybe a upcoming "developer version" (which includes
a source-level debugger, a script creator etc...) will be "Shareware", but this

InstallerNG won't.

This version 1.0 pre-release is Freeware. You are allowed to spread this package, as long
as the archive is complete and as long as no profit will be made. You are also allowed

to put this InstallerNG into your own releases for installing your stuff, as long as you

put the guide also into your release.

Suggestions, bugreports, money and sweet girls are always welcome ;)

1.5 | need your help!

Maybe you can help me with one (or more) of the following things:

- who would paint some nice icons for buttons and a cool logo?

InstallerNG

4/72

1.6 That'sme))

Snail Mail

Jens Troger

HochschulstraBe 48, 11-4

01069 Dresden

Germany

Phone

+49351/4701609

E-Mail

jt18 @irz.inf.tu-dresden.de
WWW
http://www.inf.tu-dresden.de/~jt18
http://www.savage.light-speed.de
IRC

Nick: _savage

Channel: #amigager

1.7 Distribution of the InstallerNG

The InstallerNG will be distributed and supported by
LightSpeed Communications GbR

c/o Jens Langner

Bergstrafie 68

01069 Dresden

Germany

WwWww

http://www.light-speed.de

1.8 | want to thank...

Special thanx for...

patience and testing the InstallerNG again and again
Jens Langner

Sven Steiniger

interesting talks about coding

Olaf Barthel

Michael Rock

Sven Steiniger

InstallerNG 5/72

additional

James Maurice Battle - for his icon and the nice picture
And last, but really not least, all those people, who have sent me so many
nice & fanatic mails and who are the important reason, that i will go on with
writing this program...

Tino Wildenhain Marcin Orlowski
Robert Reiswig Jon Peterson

Lee Stoneman

Andrea Valinotto

Christian Hattemer

Daniel Confora

Frank Pagels

Henning Kiel

Jeff Grimmet

Kai Hofmann

Linus McCabe

Marko Seppanen

Markus Merding

Martin Steigerwald

Oywind Falch

Philippe Bovier

Pieter Frenssen

Thomas Klein

Soyeb Aswat

Tobias Abt

Alasdair Simpson

Jens Weichert

Dobes Vandermeer

Joel Newkirk

Grzegorz Kraszewski

John Pullicino

Dirk Stocker

Rainer Miiller

Herve Dupont

InstallerNG

6/72

1.9 Still not 100% perfect

The C=Installer is a mess... buggy, bad language handling and weird

type constructs. I tried to do a better job, but one aim was, to stay

compatible with the C= installer. Thus, the InstallerNG has also some

weird’ features (note: these are no bugs, these are features!), but

on the other hand, I think I built a better compiler kernel and a much

better interpreter :)

If you want to compile buggy’ scripts, you can switch on the LAZYCOMPILE
Tooltype/CLI-Argument to skip any check procedures!

1.10 Very important notes!!!

There are some very important things you must respect:
Version

The variable @installer-version is set to the current version
of the Installer. In this version, this variable contains the same
value as the lates release of the C= installer: 44.6! Additional
you can check, whether you run on the InstallerNG or not by
testing the @installer-ng-version variable: the C= installer returns
a 0 (zero), but the InstallerNG holds its version in this
variable.

(IF @installer-ng-version

(

; this InstallerNG version

)

(

; the original amiga installer

)

)

Most public programming faults

Uninitialized variables

Most of the programmers forget to set the variables before use.
The original installer accepts this and sets these variables to

0 (zero). The InstallerNG warns you but behaves in the same
way.

Use the debug output to find uninitialized variables!

Wrong usage of parameter functions

There come some function calls like this:

InstallerNG

7172

(ASKFILE (IF (= 0 #bla) (PROMPT "Blurp"))

(IF (= 1 #bla) (PROMPT "Barg"))

(IF (=2 #bla) (PROMPT "Tirz"))

(HELP "Help...")

(DEFAULT "SYS:")

)

This results in a "Warning: wrong number of arguments", because ASKFILE
is missing the PROMPT argument. Note, that this is only a semantic warning,
the InstallerNG behaves in the right way! For future scripts use

something like this:

(ASKFILE (PROMPT (IF (= 0 #bla)

"Blurp"

(IF (=1 #bla)

"Barg"

"Tirz"

)

)

)
(HELP "Help...")

(DEFAULT "SYS:")

)

Weird syntactic/semantic constructs

It is amazing what people code and more funny what the C= Installer
compiles...

(IF <condition> <then> <else> <what-the-hell-is-this>)
Or something like this:

(ASKOPTIONS (CHOICES 123

(DEFAULT 1

(HELP "little help..."

(PROMPT "choose!")

)

)

)

)

Parameter functions at wrong positions

Some scripts come along with wrong positions for the parameter functions, e.g.
(MAKEDIR (SAFE) (INFOS) "sys:new_dir")

This does not work and if you have a look at the original documentation of the
installer language, you will find the correct expression:

(MAKEDIR "sys:new_dir" (SAFE) (INFOS))

InstallerNG

8/72

1.11 What ist left to do

Personal aims

- make STARTUP with CONFIRM complete

- automatically turn off the UN!X-Dirs commodity to avoid path conflicts

- retry option for DOS errors

- reduce the memory overkill

- remove all known Bugs

- new function: CREATE-ICON

- implement the logfile and delete-skript creation (maybe an option to select
whether the InstallerNG should create an uninstall shell-script or an uninstall
installer-script)

- variable spy, source-level debugger

LISP like extensions

- CLOS: new functions DEFINE-CLASS, MAKE-INSTANCE, DEFINE-METHOD,
INVOKE-METHOD etc.

- CATCH and THROW (or enhance the ONERROR and TRAP functions)

- continuations: CALL-CC (something like the TRACE/RETRACE functions)
Suggestions by others

- reading compressed skripts would be very useful (Tobias Abt)

- lowlevel function to partition and install alien file systems via special
functions (Thomas Mache)

- when running the installer with a *.lha file instead of a script (new tooltype
ARCHIVE ?) the installer will extract a file "install" from the archive and
uses this for installing directly from the archive (Dirk Stocker)

- something like a "global logfile" which holds all installed

packages (Alasdair Simpson)

- image buttons (Danial Canfora)

- a function INCLUDE to read external sources (thus: writing a preprocessor?)
(Kai Hofmann)

- modify startup-sequence optionally (Volker Schmitt)

- automatic creation of directories via ASKDIR (Alexander Reiffinger)

- online registration for software (Jiirgen Haage)

- give the Installer an application window, so that one can "drop" the
destination path/file (??)

- give Installer a "gauge-port" such that a command (started with the EXECUTE
function) can signal its current working state (useful: pipe the lha-output

to a special tool which converts it and sends working-state-signals to

Installer) (Ignatios Sourvakis)

InstallerNG 9/72

- show device-list when invalid directory was typed in ASKDIR/ASKFILE functions
(Jens Langner)

Does this make sense ?

- type inferencing

- saving the compiled program as binary for a later reloading

- use XPK-functions for unpacking

- add constants to the language: e.g. (SETCONST a 5)

- shared library interface for simple libcalls:

raw: (LIBCALL "dos" -198 "d1" 50) ; Delay(50)

(LIBCALL "intuition" -78) ; CloseWorkBench()

FD files: (LIBCALL "dos.Delay(50)")

(LIBCALL "intuition.CloseWorkBench()")

Wildest dream :)

Create executables. Running this executable has the same effect as running

the installer and a script. This should reduce the resources in any way.

1.12 How to start the Installer

There are two possibilities to run the Installer:
From WB
From Shell/CLI

1.13 Running from WB

SCRIPT

APPNAME
MINUSER

DEFUSER

LOGFILE
LANGUAGE
PRETEND

LOG

NOPRINT

ICONIFY
LAZYCOMPILE
DEBUGMODE
CREATEUNINSTALL
COPYFILECOMMENT
ALWAYSCONFIRM
NOSYSDELETE

InstallerNG

10/72

1.14 Running from Shell/CLI

SCRIPT/A,APPNAME/K MINUSER/K,DEFUSER/K,LOGFILE/K,LANGUAGE/K,
NOPRETEND/S,NOLOG/S,NOPRINT/S,LAZYCOMPILE/S,DEBUGMODE/S,
CREATEUNINSTALL=CUI/S,COPYFILECOMMENT=CFC/S, ALWAY SCONFIRM/S,
NOSYSDELETE=NSD/S

1.15 The history of this Program

1.2 pre-release (current...)

September 6, 1999 (my sister’s birthday)

- function EFFECT will fall back to the "Workbench" screen, if the custom
screen for the InstallerNG fails

- included the .license file (thanx to Jens Langner)

- removed an enforcer hit in the builtin gui

September 2, 1999

- when done with the installation, the "Proceed..." button gets renamed to
"Finish" (James Maurice Battle)

September 1, 1999

- fixed small problem with reading version strings (Jens Langner)

- if started from WB, then the variable @ICON was set to the script (wrong)
and is now set to the icon path

- @ICON is now a constant and, thus, cannot be modified

August 30, 1999

- RUN also supports @EXECUTE-DIR for now

- added the forgotten @ ABORT-BUTTON support (builtin GUI only)

1.1 pre-release (Aug 30, 1999)

August 29, 1999

- modified the version-string handling and the catalog files

- builtin GUI: fixed some Enforcer-Hits in the Listview and in the makedir
window of the ASKFILE function

August 27, 1999

- COPYFILES crashed with the installergui.library (James Maurice Battle)
- builtin GUI: the InstallerNG now opens with an optimized window size,
if the gui was not snapshoted (Tobias Abt)

August 25, 1999

- if a WORKING follows another WORKING, the last one was not correctly
layouted (i.e. it appeared in the window frame) (Sven Steiniger)

- sometimes the InstallerNG asked the "Really quit" question two times

InstallerNG 11/72

(Jens Langner, Dirk Stocker)

- scanner could read wrong numbers in special cases

1.0 (August 24, 1999)

August 23, 1999

- if an condition (see IF, WHILE, UNTIL) evaluated to an zero-length
string value, this is now handled as value FALSE of type NUMBER

- moving the locked window to an EFFECT screen caused an enforcer hit
August 22, 1999

- every new InstallerNG process can open its own EFFECT screen

- now cares for the return value of Intuition.CloseScreen()

- simplified the GUI-API: igui_WakeApp(), igui_KickWakeApp() and igui_SleepApp()
are no longer part of the API, the gui has to care for this itself

August 17, 1999

- COPYLIB does nothing if soure-version equals dest-version (Jens Langner)
- reading the version of files with resident-structures (e.g. shared-libs

or devices) always returned version 0.0

- sometimes the GUI was locked, although the installer waits for

user input

August 15, 1999

- COMPARE evaluated an empty string to a number of value zero and, thus,
could produce type conflicts

- the installer now sets a return code: RETURN_OK (0) if everything was
fine or RETURN_FAIL (20) if any error occured (?7?)

- "@installer-version" now equals 44.6 (Installer version of OS3.5)

August 14, 1999

- new function NOP :-)

- finished the MUI API

- finished some new functions of the OS3.5 Installer tool:
EFFECT/TRACE/RETRACE/BACK

August 4, 1999

- hopefully finished the new builtin BOOPSI-GUI

- many, many, many internal fixes and rewrites and modifications and

other work and discussions with users

0.8 (June 23, 1999)

June 23, 1999

- when no error occured inside of a TRAP statement, then TRAP raised an
"Unknown error"

- pressing "Abort" inside of a TRAP statement caused the "Are you sure to quit"

requester to pop-up

InstallerNG

12/72

- fixed an Enforcer-Hit in COMPARE

- setting a variable to @ EACH-NAME (see FOREACH) caused Mung-Hits outside
of that FOREACH statement (Jens Langner)

June 18, 1999

- the system does no longer block when the installer closes down

June 8, 1999

- DATABASE doesn’t return "680x0/PPC" anymore; if you want to check for a

PPC, use the (DATABASE "ppc") statement

June 7, 1999

- EQU (=...) raised a type conflict when first argument was a string and the

second one a string-encoded numer (Jens Langner)

- SELECT evaluated (n-1)th node instead of the n-th node (Jens Langner)

June 3, 1999

- ported the source code from StormC to SAS-C and recompiled the

complete projects with SAS-C

May 29, 1999

- removed the @system-language variable and modified the behavior

of @language to be compatible with C= (Jens Langner)

- COPYFILES now also shows the filename of the source (Jens Langner)

April 9/10, 1999

- reworked the error handling and the type system

- added functions PUT-PROPERTY, GET-PROPERTY and REMOVE-PROPERTY to realize
LISP-like property-lists for symbold and, thus, to implement a really simple

kind of OOP (let's call this SOOP)

April 8, 1999

- modified the interpreter kernel for better multi-threading

- reworked CONCURRENT-DO and the stacktrace protocols

April 7, 1999

- CONCURRENT-DO crashed sometimes because of the stacktrace protocol; fixed this
bug, but, thus, the interpreter kernel is a bit slower now! (i should remove this
function... it's a bit superfluous, isn’t it?)

March 26, 1999

- added new installmode NOSYSDELETE, which forbids to delete files from system
drawers (Alexander Reiffinger)

- COPYFILES/COPYLIB supports now OPTIONAL/DELOPTS (thus i rewrote the functions for
cloning and deleting files, hope they are still correct!)

March 24, 1999

- sending CTRL-F to any of the slave-processes, caused the MUI gui to hang up
March 23, 1999

InstallerNG 13/72

- optimized code

- removed possible type conflicts in some math functions

- DELETE now supports OPTIONAL and DELOPTS

March 22, 1999

- TOOLTYPE now works correctly with SETTOOLTYPE (sorry, i simply forgot to
implement this feature ;-)

March 21, 1999 (beginning of Spring ;)

- sending CTRL-F caused the installer to execute all the ONERROR statements

- ALWAYSCONFIRM overwrote PROMPT and HELP strings everytime

- by setting the tooltypes of the InstallerNG itself, you may now preset the

working environment (Tino Wildenhain)

March 19, 1999

- removed/optimized some code

March 13, 1999

- a stacktrace is dumped in the case of a runtime error and if the SHOWDEBUG option
is switched on

- GETSUM is now compatible to the algorithm of the C= installer (Marcin Orlowski)
March 11, 1999

- scanner/parser errors are now located correctly (Jens Langner)

March 10, 1999

- REXX did not support PROMPT/HELP/CONFIRM

- added new installmode (thus, new Tooltype/Shell-Argument) ALWAYSCONFIRM, which
always asks the user for confirmation of every action (??)

- added new Tooltypes/Shell-Arguments DEBUGMODE, CREATEUNINSTALL, COPYFILECOMMENT
(Jens Langner)

March 2, 1999

- added new function RANDOM

February 23, 1999

- added new function SWING to allow special UNDO/REDO environments

February 22, 1999

- DELETE failed if the destination file was nonexistent

February 21, 1999

- WELCOME and the other functions which use the applications name, now use the value
of "@APP-NAME" (which is initially set to "APPNAME") instead of the "APPNAME"
startup argument

- optionally set the comment for every copied file to the packages name

(i.e. the value of "@APP-NAME") (7?)

0.7 (February 16, 1999)

February 15, 1999

InstallerNG 14/72

- GETASSIGN now returns NULL instead of an empty string (as noted in the original
installer documetation), if the assign is not valid (Tobias Abt)

- small face-liftings (Jens Langner)

- special thanx to Jens Langner: he wrote a function to center too long

texts inside of (buggy!) MUI Floattext objects

February 14, 1999

- GETASSIGN now expands the result, if this is a valid path (Jens Langner)

- FINDBOARD now returns the number of existing boards (Tobias Abt)

February 5, 1999

- the german catalog contained some mistakes

- the semantic-checker skiped the procedures (Jens Langner)

February 3, 1999

- COPYFILES and PATTERN didn"t work together

- quitting while COPYFILES was waiting for user confirmation left

file-locks unreleased

- the semantic checker now reports missing user-level of CONFIRM

- while creating a full path, MAKEDIR overwrote existing drawer-icons

January 22, 1999

- because of ignoring runtime-errors, some enforcer hits raised when the installer
used NULL-vars of type string (Tino Wildenhain)

- the builtin-variable @ PRETEND was not of type number (Tino Wildenhain)

- added gauge to show the continuation of scanning/parsing (Tino Wildenhain)

- if debug-mode is on, then runtime-errors will also be written to the debug console
January 17, 1999

- facelifted the gui (Tino Wildenhain)

January 16, 1999

- variables named "ADD", "SUB", "MUL", "DIV" where scanned as function symbols
(Jens Langner)

December 17, 1998

- seems that MUIA_List_Format, "P=\33c" (ver 19.8 of Floattext class) does not
work - there is no line wrapping! thus the InstallerNG does not center the text

- the scanner now handles all C= Installer v42.6 escape sequences in the same way
- COPYLIB does nothing when source-files version equals dest-files version

- hopefully fixed the COPYFILES bug

December 14, 1998

- supports now binary and hex numbers

- calling empty procedures caused enforcer hits

November 25, 1998

- when InstallerNG runs in debug mode, uninitialized vars and pattern errors are

InstallerNG

15/72

reported

- the InstallerNG uses several own console windows for debug-, uninstall- and
standard-output

- REXX now works (thanx to Olaf Barthel, Andrea Vallinotto, Jeff Grimmett)
November 24, 1998

- when InstallerNGs "Debug" option is on, every access to an uninitialized

variable will be reported

- OPTIONAL/DELOPTS are working correct (only as local definitions), but are not
yet supported by COPYFILES/COPYLIB/DELETE (Olaf Barthel)

- DELETE always removed the .info files

- error requester of DOS-errors was unreadable, when IoErr() delivered 0

- forgot to unlock the target directory, if DELETE failed

- the builtin pattern-matcher now works the same way like the original one (removed
Charles Bloom's matcher, sorry) (Olaf Barthel)

November 23, 1998

- ONERROR did not execute all previous defined ONERROR statements (Olaf Barthel)
November 22, 1998

- hopefully re-bugfixed lost changes from Oct 1, 1998 till my crash on

Oct 9, 1998:

October 9, 1998

- the debug version deliveres much more information

- when running from WB, the builtin variable @icon did not hold the complete
path to the script (Marko Seppanen)

October 8, 1998

- several builtin variables weren't accessable

- started to use a custom pattern matcher, to be more compatible to the

C= installer (thanx to Charles Bloom for CRBLIB source)

October 2, 1998

- added /* and */ for multi-lined comments to the language

October 1, 1998

- while the semantic checks, you may optionally skip the errors/warnings or you
can create a dump of them (Jens Langner, Sven Steiniger)

November 21, 1998

- TRAP now catches only the specified error and raises an interpreter error

for none-catched errors

November 19, 1998

- wrote the TRAP function (special thanx to Olaf Barthel)

November 16, 1998

- nesting TRAP/ONERROR/PROCEDURE confused the parser and caused weired structured

InstallerNG

16/72

syntax-trees (Sven Steiniger)

- error-handling of unknown user functions (PROCEDURE) caused an enforcer hit
November 10, 1998

- debug output is ON by default

- removed scanner error for multilined comments

On November 9, my HD crashed and I lost all changes from October 1 till now. Thus
I have to rewrite lost parts, update some tools and so on. Special thanx to

Jens Langner for fast help and for beeing my "backup server" :)

0.6 (October 1, 1998)

October 1, 1998

- ASKNUMBER did show the "range" comment everytime

- TOOLTYPE's SETPOSITION wrote zeros, although no SETPOSITION was given
September 28, 1998

- CONCURRENT-DO gives every new child process a specific number

- modified the scanner, but forgot to also modify the builtin variable names :)
September 26, 1998

- when an error occurs, then InstallerNG also shows the name of the buggy function
September 25, 1998

- COPYFILES didn't raise an error, if the SOURCE does not exist (Thomas Lenz)
September 24, 1998

- RUN, EXECUTE did not accept more than one argument to build the command, which
has to be started

- new function DELAY

- you can quit the installer everytime, by sending the CTRL-F signal

to its process (Oliver Brunner)

September 20, 1998

- changed the catalog file

- now DOS errors are also be shown

- execution of a script can now be continued with the next statement

(please be prepared, that this may lead into new errors!)

September 9, 1998

- new function REBOOT

- the scanner now removes "<ESC>[2p" sequences at the beginning of every

string (Jens Langner)

September 4, 1998

- set all "@..-help" variables to their correct text values

- localized the ASKBOOL function

September 3, 1998

- ASKFILE always returned the path part of the selected file

InstallerNG

17/72

September 1, 1998

- DATABASE should now recognize the Picasso96 graphics system

(thanks to "DaMato" Jens Langner)

August 31, 1998

- first public beta version released

0.5 (August 28, 1998)

August 28, 1998

- removing of inner LET environments (LET env inside of a LET environment) failed
- DATABASE can now read the current system date and time

- new function LET

August 16, 1998

- new function CONCURRENT-DO

- started to make big parts of the InstallerNG reentrant, to prepare

the implementation of a new function (see above)

August 1, 1998

- DELETE should be much faster, if you don’t use pattern matching

- disabling the DEBUG output also disabled the interpretation of the
arguments of the DEBUG function

July 31, 1998

- SELECTing the n-th node of a list failed under different conditions

July 30, 1998

- switching on/off the creation of the uninstall-script did not work

- functions, which use CONFIRM/COMMAND/SETTOOLTYPE/GETTOOLTYPE did not work anymore
(because i modified the environment handling yesterday...)

July 29, 1998

- string-format routines of several functions optimized

- PROTECT was a bit buggy...

- MAKEASSIGN did not work correct with SAFE removing of system assigns
- reworked the whole environment handling

July 28, 1998

- some functions still overwrote the local environment of the outside-function
(if there was one)

- the raw body of the uninstall-script will be printed to CON:

- ASKNUMBER now corrects a DEFAULT which is out of RANGE

July 27, 1998

- COMPLETE reworked and optimized

- when using CONFIRM for the COPYFILES functions, the copy failed (Falk Ziihlsdorff)
0.4 (July 26, 1998)

July 26, 1998

InstallerNG 18/72

- added keyfile support: if no keyfile is available, then the InstallerNG

always runs in pretend mode

- functions using CONFIRM now asking for confirmation, even in pretend mode
July 25, 1998

- in pretend mode, COPYFILES/COPYLIB always raised the "bad source" error (Dirk Stocker)
July 24, 1998

- updated the guide, espacially the "enhanced functions" (see What's new)

- DATABASE now returns correct values and supports the checkvalue functionality
- if an identifier contained chars with ascii-code greater than 0x7F, then this

caused the scanner to interpret this char as an intertoken space

- ASKCHOICE/ASKOPTION skipped the last choice (Dirk Stocker)

- "@installer-version" now equals 43.3 (as the latest C= installer version is)

(Dirk Stocker)

- new variable " @installer-ng-version" which is 0 iff the script does not run on the
InstallerNG, otherwise it is set to the version of the InstallerNG

(Dirk Stocker)

July 23, 1998

- MAKEASSIGN always caused an enforcer hit

- Menu "Quit" did not work

July 13, 1998

- added the FINDBOARD function

July 12, 1998

- updated the Known Bugs list :(

- optimized the lowlevel code of DATABASE

July 10, 1998

- dedicated to Dirk Stocker: debug output also prints access to uninitialized variables
- EXISTS modified the wrong environment or caused an enforcer hit (Dirk Stdcker)
- ASKCHOICE/ASKOPTION returned wrong results if several CHOICES had zero length
argument(s) (Dirk Stocker)

July 9, 1998

- DATABASE now identifies PPC processors and the CV graphics card

July 7, 1998

- ASKNUMBER/COPYLIB prompted weired CONFIRM message

- mixing strings with numbers for comparison results in a infinity loop

- added: ability to send the output of DEBUG to nil:

- the logfile will now be created as "T:installer_log_file"

- MAKEDIR stopped creating new directories before it reached the end of the
destination path (Sven Steiniger)

- the reduction of an arbitrary path reached a polling, iff the first component

InstallerNG

19/72

of this path was an invalid device (Sven Steiniger)

July 5, 1998

- reworked the string-format routines (thanx for trick: Sven Steiniger)

- relational functions raised type conflict error when a number was compared to a
signed string number

July 3, 1998

- DELETE supports the OPTIONAL/DELOPTS settings

- reworked the pattern-match routines to prepare custom code for the matching
process itself

July 2, 1998

- COPYLIB has had problems with DEST path (Jens Langner)

- COPYLIB now makes correct version check even if CONFIRM is not set (Jens Langner)
- WELCOME now really quits when pressing the "Abort" button (Jens Langner)

July 1, 1998

- reworked my linker library to work with all data models (FAR, NEAR, NEAR_AG6) and
found some small mistakes. hope i did not add new ones ;)

June 29, 1998

- OPTIONAL now modifies the global environment, not the local one of the functions
DELETE/COPYFILES/COPYLIB (Dietmar Eilert)

- string-format without args ("string") now returns correct type (Sven Steiniger)

- MAKEDIR now works correct too, when the path of the directory was given without
a slash (MAKEDIR "ram:bla") (Sven Steiniger)

- CONFIRM accepts no longer zero arguments (switch on LAZYCOMPILE to skip)
(Sven Steiniger)

- remove the "Scanning, parsing and... " message, when the installer starts to

interpret the statements before a WELCOME (Sven Steiniger)

June 26, 1998

- ASKFILE/ASKDIR should handle the SOURCE and DEST parameters correct (Falk Ziihlsdorff)

- STARTUP now modifies "user-startup", but still does no modification to
"startup-sequence"

0.3 (June 26, 1998)

- every function which has related parameter-functions now creates a dynamic
runtime environment for the results of the parameter-functions

- added new functions: BEEP, SETENYV, SIMULATE-ERROR, COMPARE

- added new tooltype/cli-argument: LAZY COMPILE

- fixed dozens of silly bugs :)

0.2 (June 1, 1998)

- grammar rewritten (and thus, most parts of parser/tree-evaluator)

- bugfixing and optimisations

InstallerNG

20/72

- added serial output to most of the functions (debug-beta version)

0.1 (somewhere in fall 1997)

Started in october 1997 this project. Earlier (august) first formal descriptions.
First working parts (scanner, parser ...) in november. Added the GUI (first
version: MUI by Stefan Stunz) in november too.

Fully functional versions in january/february 1998.

1.16 The Installer Language

The language used by the Installer is a simple, imperative language. Since |
like functional languages, I tried to give this language a "functional”

touch, i.e. every expression can be evaluated and returns a typed result.
Furthermore I started to make the language a bit type stronger, because types
are very needful for preventing errors. But don't panic, this language is
definitly not functional (it has side-effects!) and very easy to use.

Imagine of the Installer as the Interpreter of a given script. Interpreter means,
the Installer first looks at the whole program (i.e. the script) and then fetches
the first function, evaluates it and maybe uses the result as an argument for the
next function, then it gets the next function, evaluates it... and so on. For more
detailed information see section Technical You may have noticed the syntax:
it may look strange to some, but it is a simple prefix notation. "Prefix" means,

that the functional symbol is at first position, followed by its parameters. Every

function must be enclosed by parenthesis. For example to simply add two numbers,

you must write: (+ 2 3)

A complete list of all functions you will find here. Of course you find everything

of a good imperative language: conditionals, variables, a big set of built-in
functions, the ability to define custom functions and much more.

Since the original Installer does not offer all the things I wanted to use, I

added some more functions and features. See the What s New section for more

information.

NOTE: everytime I talk about a string or a number value, you are allowed to use

an identifier of type string or number or an expression (function,
function list) which deliveres a result of type string or number.
Symbols

Syntax

Builtin functions

Builtin variables

Advanced features

InstallerNG 21/72

1.17 The symbols of the language

Spaces

Spaces are the characters between other symbols and are skipped, when the
InstallerNG scanns the script-file. Every character with an ASCII less or
equal 32 gets handled as a space.

Parenthesis

Parenthesis are used to enclose functions and function lists. Only ’(’ and *)’
are legal for that.

Strings

A string is enclosed in either "..." or ’..." and must not contain

linefeeds. Special characters start with a backslash, followed by

the character, which should appear in the string itself:

\O for a NULL character (ASCII-0)

\b beep (ASCII-8)

\t \h tabulator (ASCII-9)

\n linefeed (ASCII-10)

\v ? (ASCII-11)

\f ? (ASCII-12)

\r carriage return (ASCII-13)

\\ for a backslash itself

\o octal encoded number

\x hex encoded number

)

\’ touse a’” inside of a ’..." string

s

\"touse a’" inside of a "..." string
Example: "string"

"first line\nsecond line"

"numbers are: 123 \o123 \x123"
’string "cite"’
’string \’cite\”
"string "cite’"

"string \"cite\""

Numbers

There are three types of numbers:

binary: starting with "%’ and followed by a sequence of ’0’ and 1’
decimal: starting with a number or a "+’ or a ’-’ and followed

by a sequence of ’0’...’9’

hex: starting with ’$’ and followed by a sequence of ’0’...”9’

and ’a’...’f” (lower or upper case allowed)

InstallerNG

22/72

Example: -4 +53 23 %101011 $A35B

Identifiers

Functions

Functions are character sequences (like variables), but the Installer identifies
them as function sybols. See the builtin functions section for which symbols

are reserved. Case insensitive.

Example: < >=/ AND ASKFILE

Variables

Are character sequences, which are not builtin functions. Note, that only the

first 32 characters count! Case insensitive.

Example: #bla ___*A" popopop

Comments

Single line comments start with a semicolon ’;” and end with a return (ASCII-10)
Multi lined comments can be enclosed in */** and **/* and may contain anything
but a EOF (ASCII-0). Note, that multi lined comments are new with the InstallerNG
and NOT supported by the C= Installer!

Example: // single lined comment

/*

multi lined comment

*/

1.18 Builtin functions

NOTE: - functions marked with a * are new in the InstallerNG
- functions marked with a + provide enhanced functionality

- functions marked with v44+ are also new with v44 of the C= installer and
AmigaOS 3.5

SOOP support

GET-PROPERTY *

PUT-PROPERTY *

REMOVE-PROPERTY *

Conditional

IF

UNTIL

WHILE

Multimedia support (needs datatypes)

CLOSEMEDIA v44+

SETMEDIA v44+

SHOWMEDIA v44+

InstallerNG

23/72

Functions

<>

COMPARE *

+

%

/

AND

OR

XOR

NOT
BITAND
BITOR
BITXOR
BITNOT

IN
SHIFTLEFT
SHIFTRIGHT
ABORT
ASKDIR
ASKFILE
ASKSTRING
ASKNUMBER
ASKCHOICE
ASKOPTIONS
ASKBOOL
ASKDISK
BEEP *

CAT
COMPLETE
COPYFILES
COPYLIB
DATABASE +
DEBUG

InstallerNG

24 /72

DELAY *
DELETE
EFFECT v44+
EXECUTE
EXISTS +
EXIT
EXPANDPATH
EARLIER
FILEONLY
FINDBOARD *
FOREACH
GETASSIGN
GETDEVICE
GETDISKSPACE
GETENV
GETSIZE
GETSUM
GETVERSION
ICONINFO
LET *
MAKEASSIGN
MAKEDIR
MESSAGE
NOP *
ONERROR
PATHONLY
PATMATCH
PROCEDURE
PROTECT

QUERYDISPLAY v44+

RANDOM *
REBOOT *
RENAME
RETRACE v44+
REXX

RUN

SELECT

SET

SETENV *

InstallerNG 25/72

SIMULATE-ERROR *
STARTUP
STRLEN
SUBSTR
SWING *
TACKON
TEXTFILE
TOOLTYPE
TRACE v44+
TRANSCRIPT
TRAP

USER
WELCOME
WORKING
Parameter Functions
ALL

APPEND
ASSIGNS
BACK v44+
CHOICES
COMMAND
CONFIRM
DEFAULT
DELOPTS
DEST

DISK

FILES

FONTS
GETDEFAULTTOOL
GETPOSITION
GETSTACK
GETTOOLTYPE
HELP
INCLUDE
INFOS
NEWNAME
NEWPATH
NOGAUGE
NOPOSITION

InstallerNG

26/72

NOREQ
OPTIONAL
PATTERN

PROMPT

QUIET

RANGE
RESIDENT

SAFE
SETTOOLTYPE
SETDEFAULTTOOL
SETSTACK
SOURCE
SWAPCOLORS

1.19 Builtin variables

@abort-button

The text, which should be used for the "Abort installation" button
Default: "Abort installation"

Type: STRING

@app-name

Name of the application to install. This will be used for the
"Comment every File with Packagename" option too.

Default: "user-application”

Type: STRING

@icon

The path and name of the script, i.e. the icon, where the Installer
was started from (WB start).

Default: the script, even

Type: STRING

@execute-dir

The working directory for the commands started with RUN or EXECUTE
Default: "" (should be the scripts dir)

Type: STRING

@default-dest

@language

The language, which is currently used by the Installer. This depends
on the preferred system language and the available catalog file

Default: "english"

InstallerNG

27172

Type: STRING

@pretend

The state of the "pretend"” flag (1 for pretend)

Default: 0 or set by startup-args

Type: NUMBER

@user-level

The user level, which is the Installer running on. (0 for "Novice",
1 for "Average", 2 for "Expert"). Note: this can be set by the
USER function, do not use SET for this case!

Note: the InstallerNG affers the builtin constants NOVICE, AVERAGE and
EXPERT for a easier usage.

Default: O or set by startup-args

Type: NUMBER

@installer-version

Version of the Installer. Note: this does NOT equal the version of the
InstallerNG!

Default: 0x002c0006 (which is a 44 in the upper word and a 6 in the lower one)
Type: NUMBER

@error-msg

@special-msg

@ioerr

In case of a DOS-error, this variable holds the error-code.
Default: depends

Type: NUMBER

@each-name

@each-type

Name and type (file or directory) of the currently examined file
of the FOREACH function

Default: depends

Type: STRING/NUMBER

@askoptions-help

@askchoice-help

@asknumber-help

@askstring-help

@askdisk-help

@askfile-help

@askdir-help

@copylib-help

@copyfiles-help

InstallerNG

28/72

@makedir-help
@startup-help

The bultin help texts.
Default: (...)

Type: STRING

1.20 Advanced features

Defining custom functions

Often it should be useful to define custom functions, which are called

as they were part of the Installer. Use the PROCEDURE function for this
purpose. With v44 of the original Installer, there are still no local variables.
Use the InstallerNG function LET, if you want to use locals.

(PROCEDURE version-to-string ; name

#ver ; argument

("%1d.%1d" (/ #ver 65536) (BITAND #ver 65535)) ; body

)

String formatting

If the functional symbol (remember: this is the leftmost one, because this is a
prefix language) is of type string, then this string gets handled like a format
string, and the following expressions are the format parameters. The InstallerNG
supports all C like (see printf()...) formatsymbols.

For example, if you write

("Hi, I'm %s and I am %]Id years old" "Nick" 29)

you will get the following as result of the evaluation:

"Hi, I'm Nick and I am 29 years old"

Function lists

You can join as many functions as you want into one block: simply put parenthesis
around the functions you want to yoin. The result of this block is the result of
the last evaluated function. This is often used, if you want more than one
functions be part of an (e.g.) IF or just to make the code more readable.

(IF (= #bla #surz) ; the condition

(MESSAGE "#bla equals #surz") ; "THEN" expression

(; "ELSE" block

(MESSAGE "#bla equals #surz")

(BEEP)

)

)

InstallerNG

29/72

1.21 What is new here???

Here you find all the things I added to the Interpreter.

Note: if you use these new features and run the script on the original

Installer you may run into errors. Thats why a version check is very important!
No restrictions

The original installer has some terrible restrictions: maximum string-length,
maximum size of a string value. The InstallerNG makes none of these:

a string (and the value of a string variable too) can be as long as it fits

into your memory.

Nice GUI

The gui is based on a BOOPSI class-collection, which was also written by me;

these classes allow easy font-adaption, resizing and support the MagicWB pens.

Additionally, you may "plug-in" other gui-systems (like MUI, BGui, ...) via
a shared library named "installergui.library".

Furthermore, the help window can stay open, while you install your packages;
this is a builtin feature and should be provided by every GUI

Comfortable WB-Start

If you run the InstallerNG from WB and give it no script via tooltypes

a requester pops up which asks you whether you want to load a script by a
file-requester or if you want to app-iconify the installer. If you drop a
script-file on the application icon the InstallerNG gets started.

Returncode

The InstallerNG now returns RETURN_OK (0) if everything of the installation
went fine, or, in case of an error, it returns RETURN_FAIL (20). This could
be useful, if you call the InstallerNG from a script and the script wants

to check whether the InstallerNG was successfull or not.

Flexible interpretation

If an error raises while the interpretation process, InstallerNG provides

to continue at the very next statement. Please be careful with this option,
because going on may lead to some other errors, but often it's really useful to
finish the (uncomplete) installation.

New builtin variables

@installer-ng-version

the version of the InstallerNG

Constants

- TRUE/DOSTRUE and FALSE/DOSFALSE are now constants and cannot be modified
- NOVICE, AVERAGE and EXPERT are builtin constants, so you can use them instead

of 0, 1 and 2 (usefull for CONFIRM and USER statements)

InstallerNG 30/72

New Tooltypes/CLI-Arguments

LAZYCOMPILE: if set, then the InstallerNG is as lazy as the C= installer

is. that means, InstallerNG skips its semantic check procedures

to be more compatible

DEBUGMODE: if set, then InstallerNG will switch on it’'s debugmode
CREATEUNINSTALL=CUI: if set, then InstallerNG creates an uninstall skript
COPYFILECOMMENT=CFC: if set, every copied file will be commented with the package name
ALWAYSCONFIRM: if set, every action has to be confirmed in every user-level!
NOSYSDELETE: if set, calls to DELETE from system drawers will be ignored
Interuptable Interpretation

The InstallerNG can be interupted everytime by sending the CTRL-F signal to its
process. This option allows to break out of infinite loops (thanks to Oliver

Brunner for this suggestion)

Local environments

Everytime you want to, you are allowed to create a new environment (i.e. to declare
several new variables). Inside this environment you can run some code, which uses

the local variables prior the global ones. See the function LET for more details.

SOOP - Simple Object Oriented Programing

With help of the new functions PUT-PROPERTY, GET-PROPERTY and REMOVE-PROPERTY the
InstallerNG implements LISP-like property-lists for symbols. Imagine of a symbol

as an object and the properties as the objects attributes. Furthermore, if you write
PROCEDURE's, which are able to operate on an object’s attributes, you just can produce
simple OO code :) ...without a class hierarchy, but object oriented!

UNDO-REDO environments

Using the function SWING you are able to build an environment, in which you can
"swing" from one (topmost) function to the next. When reaching the last one, the
installation may proceed. This looks/works much like the MS-Setup program :)

With v44 of the C= installer, you are able to simulate such an environment by

special TRACE/RETRACE/BACK functions (have a look at the C= installer documentation)
Full installation control

If you want to, the InstallerNG asks for confirmation of every action, no mattter

what the script-programmer codes in his installer script

Enhanced Functions

DATABASE

EXISTS

New Functions

BEEP

COMPARE

DELAY

InstallerNG

31/72

FINDBOARD

LET

NOP

RANDOM
REBOOT

SETENV
SIMULATE-ERROR
SWING
GET-PROPERTY
PUT-PROPERTY
REMOVE-PROPERTY

1.22 Known Bugs, not yet removed *sorry*

My own bugs

- maybe some open resources (locks, some bytes of mem) when quitting
Thats not my fault...

- DATABSE crashes the system if there is no ppc-processor in the system but
the ppc.library is installed

- trying to open "powerpc.library" without having a PPC processor or WarpOS installed

causes lots of enforcer hits

1.23 The Errors

To understand these errors think of the syntactical structure of any program:

A program consists of one or more functions or function lists. An expression can
be either a number, a string, a variable or a new function. Functions are enclosed
in paranthesis, the first symbol can be anything but a number and a function-
specific number of arguments. An argument can be again any expression.
Syntax Errors

(‘expected

The Installer needs a new statement

(or function expected

The Installer needs the beginning of a new statement or the name of

a function. (you may have wrote a number)

Function not allowed here

A function-name (like ASKFILE...) is used as a parameter to any other

function. Remove this or enclose it with parenthesis.

Unexpected EOS

InstallerNG 32/72

The end of the source was reached to early. Maybe a missing close-parenthesis
leads this error.

Expression expected

Any expression is needed here.

Functional expression needed

The first expression behind opening parenthesis must be an identifier or a
string. What you wrote is maybe a number.

) expected

You forgota ")" 77?

1.24 Trouble with other soft

UN!X-Dirs

Some people may use this commodity. But please note: if you work
with *X, then something like ’/bla’ means to be a mounted volume
(the amiga equivalent is ’bla:’). A software package may now come
with several subdirs and, thus, an install script would like to

copy from ’/mytools’ to your destination. This collides with UN!X-
Dirs and a "Volume not mounted" requester pops up.

SOLUTION: Turn off UN!X-Dirs before installing soft!

1.25 IF

Conditionally execute statements. If <condition> is TRUE (i.e. not 0) then
the <then> will be executed, otherwise <else>

Template

(IF <condition> <then> <else>)

Parameters

<condition> any expression

<then> expression/statements are executed if <condition> is TRUE
<else> expression/statements are executed if <condition> is FALSE
Options

Result

Returns the result of <then> or <else>

Note

Example

(IF (=2 4) ; condition

(MESSAGE "TRUE") ; then

(;else

InstallerNG

33/72

(MESSAGE "FALSE")
(BEEP)

)

)

See also

1.26 WHILE

Execute a list of statements as long as a condition holds.
Template

(WHILE <condition> <statements>)

Parameters

<condition> any function

<statements> a list of statements which are executed as long as <condition> is TRUE
Options

Result

Returns the result of the last <statement>

Note

Example

(SETi5) ; set a variable i to value 5

(WHILE (>1 0) ; check whether i is greater then zero
(;if 1is greater than zero then:

(MESSAGE "i =" 1) ; - print the value of i
(SETi(-1i1)); - decrement i with 1

)

)

See also

1.27 UNTIL

A list of statements will be executed until the condition holds (or: while

this condition does not hold)

Template

(UNTIL <condition> <statements>)

Parameters

<condition> any function

<statements> a list of statements which are executed as long as <condition> is FALSE
(or until <condition> is TRUE)

Options

InstallerNG

34/72

Result

Returns the result of the last <statement>
Note

Example

(SETi5) ; set a variable i to value 5
(UNTIL (=1 0) ; check whether i equals to zero
(; if i doesnt equal to zero then:
(MESSAGE "i =" 1) ; - print the value of i
(SETi(-11)) ;- decrement i with 1

)

)

See also

1.28 ABORT

This exits the installation with the given messages and executes
the {"ONERROR" link ONERROR} statements (if any)
Template

(ABORT <msg> <msg> ...)

Parameters

<msg> - strings which will be concatenated an shown right before
the InstallerNG starts to execute the ONERROR statements
Options

Result

Type: NUMBER

Returns 0

Note

Example

(ABORT "Sorry, I have to quit cause: " #reason)

1.29 COMPLETE

Inform the user about the completion of an installation process.
This message will be printed in the title bar of the installer
window.

Template

(COMPLETE <done>)

Parameters

<done> - a number between 0 and 100 which means the amount

InstallerNG

35/72

of done work

Options

Result

Type: NUMBER

Returns the argument <done>

Note

Example

(COMPLETE 75) ; print, that 75% of the installation is done

See also

1.30 COPYFILES

Template
Parameters
Options
Result
Note

Example

1.31 COPYLIB

Template
Parameters
Options
Result
Note

Example

1.32 DEBUG

Print anything to the InstallerNG-DEBUG console. You can supress
this output with switching off the "Show debug" option or by not
setting the DEBUGMODE shell-argument/tooltype.

Template

(DEBUG <whatever> <whatever> ...)

Parameters

<whatever> - this can be anything: a number, a string, an expression.

DEBUG prints the evaluation-result of <whatever> to the

console window, followed by a linefeed.

InstallerNG

36/72

Options

Result

Type: STRING

The result of the last <whatever> - evaluation

Note

If <whatever> is an uninitialized variable, then DEBUG prints

an "<NIL>" to warn the user

Example

(SET a0)

(DEBUG 1 "does not equal” a b) ; results in "1 does not equal 0 <NIL>"

See also

1.33 DELAY

Sometimes it is useful to wait a specific time. Use the DELAY function for this
purpose.

Template

(DELAY <ticks>)

Parameters

<ticks> - a number whichs defines the ticks. A tick is 1/50 second.
Options

Result

Type: NUMBER

Returns the <ticks>

Note

Example

(DELAY 50) ; wait a second

See also

1.34 DELETE

Template
Parameters
Options
Result
Note

Example

InstallerNG

37/72

1.35 EXECUTE

Template
Parameters
Options
Result
Note

Example

1.36 EXIT

Causes a normal termination of a script. The ONERROR statements are not

evaluated.

Template

(EXIT <string> <string> ... (QUIET))

Parameters

<string> - these strings are concatenated and displayed as the final report

Options

(QUIET) - skip the final message

Result

Type: NUMBER
Returns 0 (zero)
Note

Example

1.37 FOREACH

Template
Parameters
Options
Result
Note

Example

1.38 LET

This function creates a new environment. This means, you can declare new variables
within the <init> statements and use them in the <body> statements. If you define

local variables, which have the same name like existing ones, you "replace" the existing

InstallerNG 38/72

by the local variables. Nevertheless you can access existing variables, which are
not overwritten.

Imagine of the new environment as a layer, which overwrites variables with the same name
but keeps all other variables.

Put this function as the first into a PROCEDURE definition and write the body of the
PROCEDURE as the body of the LET function! Now you have private variables for the
procedure :)

Template

(LET <init> <body>)

Parameters

<init> - one statement, which initializes the local environment. It does not make
sense to use other functions than SET here

<body> - the body of a LET function are the statements, which use this local
environment

Options

Result

LET returns the result of the last statement of <body>

Note

Since LET is a simple function, you can create LET environments inside of LET
environments inside of...

Example

; this "creates" the value 7 by adding values of the local environment

(LET (SETx3y4)

(+xy)

)

; a procedure with local variables

(PROCEDURE P_bla #argl #arg2

(LET (SET #local_x #argl

#local_y #arg2

)

(

; do anything with #local_x and #local_y

)

)

)

InstallerNG

39/72

1.39 MAKEASSIGN

Template
Parameters
Options
Result
Note

Example

1.40 MAKEDIR

Template
Parameters
Options
Result
Note

Example

1.41 MESSAGE

Template
Parameters
Options
Result
Note

Example

1.42 NOP

Does nothing...

Since my language definition does not allow empty statement-lists,
I thought it would be useful to have a NOP function for this case :)
Template

(NOP)

Parameters

Options

Result

Type: NUMBER

Returns 0

Note

Example

(NOP)

See also

InstallerNG

40/72

1.43 ONERROR

Template
Parameters
Options
Result
Note

Example

1.44 PROCEDURE

Template
Parameters
Options
Result
Note

Example

1.45 PROTECT

Template
Parameters
Options
Result
Note

Example

1.46 RENAME

Template
Parameters
Options
Result
Note

Example

InstallerNG 41/72

1.47 REXX

Template
Parameters
Options
Result
Note

Example

1.48 RUN

Template
Parameters
Options
Result
Note

Example

1.49 SET

Template
Parameters
Options
Result
Note

Example

1.50 SETENV

Sets a system variable. This is only temporary done in the ENV: directory
and the variable will be lost after a reset.

Template

(SETENYV <varname> <value>)

Parameters

<varname> - a string which is the name of the variable

<value> - this string must contain the value for the variable

Options

Result

Type: STRING

InstallerNG

4272

Returns <value>

Note

The variable is only temporary set to ENV:
Example

(SET var "MY_TEMP_VARIABLE")
(SETENYV var "the value of my temp variable")
See also

GETENV

1.51 SIMULATE-ERROR

A runtime error will be simulated. This is very useful for testing and
debugging scripts.

Template

(SIMULATE-ERROR <error>)

Parameters

<error> - a number value which ranges from 1 to 5. The meaning of the
numbers are: 1 - Quit

2 - Out of mem

3 - Error in script

4 - DOS error (@ioerr is set to 236 (ERROR_NOT_IMPLEMENTED))
5 - Bad parameter data

every other number simulates the "Out of range" error.

Options

Result

Type: NUMBER

Returns <error>

Note

The <error> argument numbers are the same as used by the TRAP statement.

Example

(ONERROR (

(BEEP)

(MESSAGE "Damn, an error!")
)

)
(SIMULATE-ERROR 2)

(SET #err (TRAP 3 (SIMULATE-ERROR 3)

)

)

(IF (= #err 3) (MESSAGE "There was an error in the script..."))
See also

ONERROR, TRAP

InstallerNG

43/72

1.52 STARTUP

Template
Parameters
Options
Result
Note

Example

1.53 SWING

This allows you to jump (inside of this block) from one statement to its neighbour
statement. Thus, you may use all the ASK... functions to set the installation
environment AND to have an undo/redo option

Template

(SWING <stmt> ...)

Parameters

<stmt> - one or more statements. SWING will jump between them
Options

Result

Type: number

Returns 0

Note

You MUST NOT nest SWING functions.

Example

(SET number 5

text "bla"

)

(SWING

(SET number (ASKNUMBER (PROMPT "Enter a number")
(HELP "...")

(DEFAULT number)

)

)
(SET text (ASKSTRING (PROMPT "Enter a text")

(HELP "...")
(DEFAULT text)
)
)
)

InstallerNG

44172

1.54 TEXTFILE

Template
Parameters
Options
Result
Note

Example

1.55 TOOLTYPE

Template
Parameters
Options
Result
Note

Example

1.56 TRAP

Template
Parameters
Options
Result
Note

Example

1.57 USER

Template
Parameters
Options
Result
Note

Example

InstallerNG 45/72

1.58 WELCOME

Template
Parameters
Options
Result
Note

Example

1.59 WORKING

Template
Parameters
Options
Result
Note

Example

1.60 EQU

Template
Parameters
Options
Result
Note

Example

1.61 NE

Template
Parameters
Options
Result
Note

Example

InstallerNG 46 /72

1.62 GT

Template
Parameters
Options
Result
Note

Example

1.63 GE

Template
Parameters
Options
Result
Note

Example

1.64 LT

Template
Parameters
Options
Result
Note

Example

1.65 LE

Template
Parameters
Options
Result
Note

Example

InstallerNG 47172

1.66 COMPARE

This function compares two values of any, but the same type and returns
the result of this comparison.

Template

(COMPARE <exprl> <expr2>)

Parameters

<exprl> - first value

<expr2> - value, which has to be compared with the first value

Options

Result

Type: NUMBER

Returns 1 - <exprl> greater than <expr2>

0 - <exprl> equals <expr2>

-1 - <exprl> is smaller than <expr2>

Note

Both arguments must be of the same type. The InstallerNG tries always
to convert a string into a number if this is needed.

Example

(COMPARE 22) ->0

(COMPARE 2 "2") -> 0

(COMPARE "bla" "nana") -> -1

See also

1.67 ADD

Template
Parameters
Options
Result
Note

Example

1.68 SUB

Template
Parameters
Options
Result
Note

Example

InstallerNG

48 /72

1.69 MUL

Template
Parameters
Options
Result
Note

Example

1.70 DIV

Template
Parameters
Options
Result
Note

Example

1.71 AND

Template
Parameters
Options
Result
Note

Example

1.72 OR

Template
Parameters
Options
Result
Note

Example

InstallerNG

49/72

1.73 XOR

Template
Parameters
Options
Result
Note

Example

1.74 NOT

Template
Parameters
Options
Result
Note

Example

1.75 BITAND

Template
Parameters
Options
Result
Note

Example

1.76 BITOR

Template
Parameters
Options
Result
Note

Example

InstallerNG

50/72

1.77 BITXOR

Template
Parameters
Options
Result
Note

Example

1.78 BITNOT

Template
Parameters
Options
Result
Note

Example

1.79 SHIFTLEFT

Template
Parameters
Options
Result
Note

Example

1.80 SHIFTRIGHT

Template
Parameters
Options
Result
Note

Example

InstallerNG

51/72

1.81 IN

Template
Parameters
Options
Result
Note

Example

1.82 ASKDIR

Template
Parameters
Options
Result
Note

Example

1.83 ASKFILE

Template
Parameters
Options
Result
Note

Example

1.84 ASKSTRING

Template
Parameters
Options
Result
Note

Example

InstallerNG 52/72

1.85 ASKNUMBER

Template
Parameters
Options
Result
Note

Example

1.86 ASKCHOICE

Template
Parameters
Options
Result
Note

Example

1.87 ASKOPTIONS

Template
Parameters
Options
Result
Note

Example

1.88 ASKBOOL

Template
Parameters
Options
Result
Note

Example

InstallerNG

53/72

1.89 ASKDISK

Template
Parameters
Options
Result
Note

Example

1.90 BEEP

Simply flashes the screen and beeps.
Template

(BEEP)

Parameters

Options

Result

Type: NUMBER

Returns 0

Note

This respects your prefs-settings when beeping.

Example
(BEEP)

See also

1.91 CAT

Template
Parameters
Options
Result
Note

Example

1.92 DATABASE

Returns information about the AMIGA that the InstallerNG is running on. The second
argument <checkvalue> is meant to be optional. If you do not use this argument, DATABASE

always returns a string with the result (see below for valid results). When using the

InstallerNG 54 /72

<checkvalue>, then InstallerNG returns a number which is either O or 1.
Template

(DATABASE <feature> [<checkvalue>])

Parameters

<feature> This string argument describes the information you are looking
for. Valid features are:

"CPU" - which type of CPU

("68000", "68010", "68020", "68030", "68040", "68060")

"PPC" - checks for PPC; returns "PPC" if there is a PPC installed,
"" otherwise

"FPU" - which type of FPU ("68881", "68882", "FPU040", "FPU060")
"MMU" - which type of MMU ("68851", "MMU040", "MMU060")
"OS-VER" - the version of exec (e.g. "40")

"GRAPHICS-MEM" - amount of free chip memory

"FAST-MEM" - amount of free fast memory

"TOTAL-MEM" - total free memory

"CHIPREV" - the revision of the graphic chipset

("AA", "ECS", "AGNUS")

"GFXSYSTEM" - the installed graphics system

("CyberGraphics", "Picasso96")

"DATE" - the current date of your computer

"TIME" - the current time of your computer

"GUI" - type of the used GUI

<checkvalue> When given, this has to be a string. After evaluating the <feature>, the
result-string is compared to <checkvalue>. If this comparison matches,

then DATABASE returns the number 1, otherwise the number 0

Options

Result

the only parameter is <feature>

a string containing the requested information or "unknown" if <feature> is an
illegal string

both parameters <feature> and <checkvalue> specified

a number; 1 if <checkvalue> matches the result of <feature>, otherwise 0
Note

InstallerNG accepts patterns for the <checkvalue> string, which will not work
with the C= installer

Example

(DATABASE "cpu") -->e.g. "68060"

(DATABASE "bla") --> "unknown"

InstallerNG

55/72

(DATABASE "cpu" "68000") --> 1 iff you run on a 68000, otherwise 0

; this worx on every installer!!!

(IF @installer-ng-version

(

(DATABASE "cpu" "(68040168060)")

)

(

(PATMATCH "(68040168060)" (DATABASE "cpu"))
)

) --> 1 iff you run on a 68040 or 68060, otherwise 0

See also

1.93 EXISTS

Checks if a given path is valid or not. The result is a number, which describes

the type of the path.
Template
(EXISTS <path> <options>)

Parameters

<path> this string is the object, which has to be examined, e.g. "s:blurp”

Options

(NOREQ) when specified, then no requester will pop up, if <path> is not on an

mounted volume

Result

Type: NUMBER

Returns O - <path> does not exist

1 - <path> is a file

2 - <path> is a directory

3 - <path> is a link to a file

4 - <path> is a link to a directory

Note

Example

(EXISTS "s:startup-sequence") --> should be 1
(EXISTS "C:") --> should be 2

(EXISTS "grfm:hlbzs/hsjs") --> maybe O ;)

See also

InstallerNG 56/72

1.94 EXPANDPATH

Template
Parameters
Options
Result
Note

Example

1.95 EARLIER

Template
Parameters
Options
Result
Note

Example

1.96 FILEONLY

Template
Parameters
Options
Result
Note

Example

1.97 FINDBOARD

This functions makes you able to find a specific hardware expansion board in
the system.

Template

(FINDBOARD <manufacturer> <product>)

Parameters

<manufacturer> - the manufacturer id of the board. this id is unique for
every (registered!) hardware producer and is assigned by C=

<product> - the number of the product of a specific manufacturer.

Options

Result

InstallerNG 57172

Type: NUMBER

Returns the number of found boards

Note

To get a list of valid manufacturers and their products, please have a look

at the "board.library" package or related tools like "ShowBoardsMUI" by

Torsten Bach

Example

(SET #boardcount (FINDBOARD 8512 67)) ; how many CV64/3D gfx-cards has the system?

See also

1.98 GETASSIGN

Template
Parameters
Options
Result
Note

Example

1.99 GETDEVICE

Template
Parameters
Options
Result
Note

Example

1.100 GETDISKSPACE

Template
Parameters
Options
Result
Note

Example

InstallerNG

58/72

1.101 GETENV

Template
Parameters
Options
Result
Note

Example

1.102 GET-PROPERTY

Template

(GET-PROPERTY <symbol> <property>)
Parameters

<symbol> - the target symbol

<property> - the desired property of the symbol
Options

Result

Type: depends on the propertys type

Returns the value of the property

Note

Example

(SET #bla "savage is cool :-)") ; declare a symbol #bla
(PUT-PROPERTY #bla "property" 20) ; add property "property" to the symbol #bla
(MESSAGE ; get the value of #bla's property "property"

(GET-PROPERTY #bla "property")
)

(REMOVE-PROPERTY #bla "property") ; remove "property" from #bla

See also
PUT-PROPERTY
REMOVE-PROPERTY

1.103 GETSIZE

Template
Parameters
Options
Result
Note

Example

InstallerNG

59/72

1.104 GETSUM

Template
Parameters
Options
Result
Note

Example

1.105 GETVERSION

Template
Parameters
Options
Result
Note

Example

1.106 PATHONLY

Template
Parameters
Options
Result
Note

Example

1.107 PATMATCH

Template
Parameters
Options
Result
Note

Example

InstallerNG

60/72

1.108 PUT-PROPERTY

Template

(PUT-PROPERTY <symbol> <property> <value>)
Parameters

<symbol> - the target symbol

<property> - the property you wish to create or modify
<value> - the (new) value of the property

Options

Result

Type: depends on the type of <value>

Returns <value>

Note

If the <property> for the <symbol> already exists, the value of

the property will be changed to <value>
Example

see GET-PROPERTY

See also

GET-PROPERTY
REMOVE-PROPERTY

1.109 RANDOM

This results in a random number, which ranges in given bounds

Template
(RANDOM <lower> <upper>)
Parameters

<lower>

<upper> - the numbers which specify the range, where the result ranges in

Options

Result

Type: NUMBER

Returns a random number from <lower> ... <upper>
Note

Example

(RANDOM 20 50) ; give a number between 20 and 50

See also

InstallerNG 61/72

1.110 REBOOT

This function causes a reboot of your Amiga. Several scripts may need this to
mount new drivers to the system. Be careful with this ;)
Template

(REBOOT)

Parameters

Options

Result :)

Type: NUMBER

Returns 0

Note

Example

(REBOOT)

See also

1.111 REMOVE-PROPERTY

Template

(REMOVE-PROPERTY <symbol> <property>)
Parameters

<symbol> - the target symbol

<property> - the property you wish to remove
Options

Result

Type: NUMBER

Returns 0

Note

Example

see GET-PROPERTY

See also

GET-PROPERTY

PUT-PROPERTY

1.112 SELECT

Template
Parameters
Options
Result
Note

Example

InstallerNG

62/72

1.113 STRLEN

Template
Parameters
Options
Result
Note

Example

1.114 SUBSTR

Template
Parameters
Options
Result
Note

Example

1.115 TRANSCRIPT

Template
Parameters
Options
Result
Note

Example

1.116 TACKON

Template
Parameters
Options
Result
Note

Example

InstallerNG

63/72

1.117 ALL

Template
Parameters
Options
Result
Note

Example

1.118 APPEND

Template
Parameters
Options
Result
Note

Example

1.119 ASSIGNS

Template
Parameters
Options
Result
Note

Example

1.120 CHOICES

Template
Parameters
Options
Result
Note

Example

InstallerNG 64/72

1.121 COMMAND

Template
Parameters
Options
Result
Note

Example

1.122 CONFIRM

Template
Parameters
Options
Result
Note

Example

1.123 DEFAULT

Template
Parameters
Options
Result
Note

Example

1.124 DELOPTS

Template
Parameters
Options
Result
Note

Example

InstallerNG

65/72

1.125 DEST

Template
Parameters
Options
Result
Note

Example

1.126 DISK

Template
Parameters
Options
Result
Note

Example

1.127 FILES

Template
Parameters
Options
Result
Note

Example

1.128 FONTS

Template
Parameters
Options
Result
Note

Example

InstallerNG

66/72

1.129 HELP

Template
Parameters
Options
Result
Note

Example

1.130 INCLUDE

Template
Parameters
Options
Result
Note

Example

1.131 INFOS

Template
Parameters
Options
Result
Note

Example

1.132 NEWNAME

Template
Parameters
Options
Result
Note

Example

InstallerNG

67 /72

1.133 NEWPATH

Template
Parameters
Options
Result
Note

Example

1.134 NOGAUGE

Template
Parameters
Options
Result
Note

Example

1.135 NOPOSITION

Template
Parameters
Options
Result
Note

Example

1.136 NOREQ

Template
Parameters
Options
Result
Note

Example

InstallerNG 68/72

1.137 OPTIONAL

Template
Parameters
Options
Result
Note

Example

1.138 PATTERN

Template
Parameters
Options
Result
Note

Example

1.139 PROMPT

Template
Parameters
Options
Result
Note

Example

1.140 QUIET

Template
Parameters
Options
Result
Note

Example

InstallerNG

69/72

1.141 RANGE

Template
Parameters
Options
Result
Note

Example

1.142 SAFE

Template
Parameters
Options
Result
Note

Example

1.143 SETTOOLTYPE

Template
Parameters
Options
Result
Note

Example

1.144 SETDEFAULTTOOL

Template
Parameters
Options
Result
Note

Example

InstallerNG 70/72

1.145 SETSTACK

Template
Parameters
Options
Result
Note

Example

1.146 SOURCE

Template
Parameters
Options
Result
Note

Example

1.147 SWAPCOLORS

Template
Parameters
Options
Result
Note

Example

1.148 STRPART

Template
Parameters
Options
Result
Note

Example

InstallerNG

71/72

1.149 NUMPART

Template
Parameters
Options
Result
Note

Example

1.150 Technical information

Here you find some additional information about the Installer. One can find
how the Interpreter itself works or the theoretical aspects of the language.
Have fun ;-)

For a big overview about the specification and implementation (german only)

please have a look at my homepage (note that this script is obsolete with version 0.3+).

Interpretation
Syntax

Grammar Info

1.151 The interpretation process

The interpreter does it's job using "call-by-name" strategy. This means it first
evaluates the expression at the first (functional) position of a function, which
results into a function call. The called function then evaluates the arguments

and uses the results of this as arguments. As you can see this process is recursive.
An example: given the following statements (set i (+ 3 4)) the Installer produces
such a tree:

set

i+

34

Now the interpreter arrives at the top node "set". This means the interpreter

calls the internal function "set" and gives as arguments its childs. These childs
are an identifier "i" and a sub-tree. Now "set" knows it needs the value of the
sub-tree (+ 3 4) so it calls the internal "add" function and this functions gets
both, "3" and "4" as arguments. Now "add" evaluates to "7" and gives the result to
"set" and now "i" is set to "7".

To give this an other name: interpreting a program means to visit every node of
the tree in depth-first-left-to-right-order. Or: go down every (sub)-tree from

left to right.

InstallerNG

72/72

1.152 The syntax of the language

A legal script contains at least one function. A function opens with

a’(’ followed by the functional symbol (this is called "prefix notation")
followed by zero or more argument expressions; a function ends with a ’)’.
A valid expression can be either a number, a string, an identifier or a
function again.

Below you find the EBNF description:

<prog> ::= [<func>]+

<func> ::="(" "IDENT" [<expr> |* ")"

["(" "STRING" [<expr>]* ")"

["(" [<func>]+ ")"

<expr> ::= "NUMBER"

["STRING"

| "IDENT"

| <func>

For a definition of the symbols NUMBER, STRING and IDENT see the

Symbols section.

1.153 Information about the Grammer

For those who are interested in this: The underlying grammer of the language is
a context-free LL(1) grammar. Every functional symbol has some attributes (e.g.
"Number of args" or "Scope" attributes). The parser is a top-down one. While
parsing the source it calculates some attributes for the nodes of the syntax tree.
When done with the tree the optimizer starts to try to optimize the given tree.
After this a special function checks whether the given tree is correct or not by

comparing and calculating attributes.

	InstallerNG
	Well, some nice quotes...
	Installer NG
	Introduction
	Disclaimer
	I need your help!
	That`s me ;)
	Distribution of the InstallerNG
	I want to thank...
	Still not 100% perfect
	Very important notes!!!
	What ist left to do
	How to start the Installer
	Running from WB
	Running from Shell/CLI
	The history of this Program
	The Installer Language
	The symbols of the language
	Builtin functions
	Builtin variables
	Advanced features
	What is new here???
	Known Bugs, not yet removed *sorry*
	The Errors
	Trouble with other soft
	IF
	WHILE
	UNTIL
	ABORT
	COMPLETE
	COPYFILES
	COPYLIB
	DEBUG
	DELAY
	DELETE
	EXECUTE
	EXIT
	FOREACH
	LET
	MAKEASSIGN
	MAKEDIR
	MESSAGE
	NOP
	ONERROR
	PROCEDURE
	PROTECT
	RENAME
	REXX
	RUN
	SET
	SETENV
	SIMULATE-ERROR
	STARTUP
	SWING
	TEXTFILE
	TOOLTYPE
	TRAP
	USER
	WELCOME
	WORKING
	EQU
	NE
	GT
	GE
	LT
	LE
	COMPARE
	ADD
	SUB
	MUL
	DIV
	AND
	OR
	XOR
	NOT
	BITAND
	BITOR
	BITXOR
	BITNOT
	SHIFTLEFT
	SHIFTRIGHT
	IN
	ASKDIR
	ASKFILE
	ASKSTRING
	ASKNUMBER
	ASKCHOICE
	ASKOPTIONS
	ASKBOOL
	ASKDISK
	BEEP
	CAT
	DATABASE
	EXISTS
	EXPANDPATH
	EARLIER
	FILEONLY
	FINDBOARD
	GETASSIGN
	GETDEVICE
	GETDISKSPACE
	GETENV
	GET-PROPERTY
	GETSIZE
	GETSUM
	GETVERSION
	PATHONLY
	PATMATCH
	PUT-PROPERTY
	RANDOM
	REBOOT
	REMOVE-PROPERTY
	SELECT
	STRLEN
	SUBSTR
	TRANSCRIPT
	TACKON
	ALL
	APPEND
	ASSIGNS
	CHOICES
	COMMAND
	CONFIRM
	DEFAULT
	DELOPTS
	DEST
	DISK
	FILES
	FONTS
	HELP
	INCLUDE
	INFOS
	NEWNAME
	NEWPATH
	NOGAUGE
	NOPOSITION
	NOREQ
	OPTIONAL
	PATTERN
	PROMPT
	QUIET
	RANGE
	SAFE
	SETTOOLTYPE
	SETDEFAULTTOOL
	SETSTACK
	SOURCE
	SWAPCOLORS
	STRPART
	NUMPART
	Technical information
	The interpretation process
	The syntax of the language
	Information about the Grammer

