HrMmLParse—An HTML preprocessor

Chris Rutter

April 10, 1997
Version 1.10



Contents

1

Introduction

1.1 The structure of each page. . . . . . . . . ... ... ..
1.2 How to invoke HtmlParse . . . . .. .. ... ... ... .. ...
1.3 The recommended script directory structure . . . . . . . ... ..
1.4 Directives . . . . . . . e
1.5 How HtmlParse scans the input directory . . . . .. ... .. ..

Features
2.1 The $ character . . . . . . . . . . ..
2.2 Links. . . . . e

2.2.1 Link format files . . . . .. . . ... ... .. ... .. ..
2.2.2 The #links directive . . . . . . . .. . .. ... ... ...
2.2.3 Examples of link setups . . . . ... ... ... ... ...
2.3 Controls . . . . . . . .
2.3.1 Reference number scheme . . . . . . .. ... ... ....
2.3.2 Page-linking method . . . . . . ... ... 0L
2.3.3 The #controls directive . . . . . . . . . ... ... ....
2.4 Headers, footers and titles . . . . . . .. ... ... ... .....
2.4.1 The #title directive . . . . . . . . . . ... ... ... ..
2.4.2 The #header directive . . . . . . . . . .. ... ... ...
2.4.3 The #footer directive . . . . . . . . .. ... .. ... ..
2.4.4 The #scaffold directive. . . . . . . . . . .. ... ....
2.5 The #noscaffold directve . . . . . . . . . . .. ... .. ... ..

Scripts

3.1 The Setup section . . . . . . ... ..o
3.2 The Links section . . . . . . . . ... ... ... ... ...
3.3 The Scaffold section . . . . . . ... ... ... ... ... ...

Quick directive reference
4.1 Preamble directives . . . . . . . . ... ... oo
4.2 In-line directives . . . . . . . . . ..

Future improvements
History

Contacting the author

W W NN NN

O O © © OO0 OO ULU I R

11
11
12

12

12

13



1 Introduction

HrMmLParse is a utility designed to save time managing a web site. It provides
useful utilities for dealing with page headers, footers and most importantly, links
between pages. The idea of it is to prevent duplication of material which may
later need changing throught the entire site. Before using HTMLParse, you must
setup a script (see section 3) which HTMLParse uses to process your website.
Each time you want to process the web site, you rerun the HTmMLParse program
which reads in the options from the script, and processes the files into a separate
output directory.

1.1 The structure of each page

Each page that HTMmLParse will process starts with the preamble. The preamble
contains a series of directives describing the page (e.g. what footer it should
have and what reference number to give the page). As soon as HTMLParse
encounters a line that does not start with #, it considers the preamble over,
and the document body starts. The document body can contain directives,
also. The final output page consists of five sections: the preamble file, the title,
the header, the body (including any text inserted by in-line directives) and the
footer.

1.2 How to invoke HtmlParse

The HtmlParse program itself (i.e. !'HtmlParse.!RunImage on RISC OS ma-
chines) can be invoked simply by running it with parameters

HtmlParse <script file>

However, under RISC OS HTMmLParse has been setup to save time. As soon as
HrMmLParse has been ‘seen’; all files of type 0x109 (or HPScript) will invoke
HrMLParse automatically when run.

1.3 The recommended script directory structure

In the script file you have to supply HTMLParse with the paths of several direct-
ories containing various bits and pieces that HTMLParse uses when processing
the pages. It is more convienient if all these directories are subdirectories of
a central ‘web site’ directory. Therefore, the recommended directory structure
layout is shown in figure 1. The script file should be the actual script file which
you want HTMLParse to look at (see section 3 for more information on script
files). It is suggested that you create an obey file called ‘RunScript’ (or a similar
name) containing the following;:

Set WWWRoot$Path <Obey$Dir>.
Run WWWRoot:Script

which will (providing HTmLParse has been seen) start up HTMLParse in a
taskwindow, working on your script. Then, whenever you need to specify
the name of a directory in the script, you can simply use WWWRoot : <directory
name>.



Figure 1: Recommended directory structure

1.4 Directives

Directives can be placed on each page that HrMLParse will process. There
are two different types of directives: in-line and preamble. In-line directives
can be placed anywhere on the page, so long as they are at the start of a line.
Typically, in-line directives insert a bit of HTML at the point where they are
placed on the page. An example would be the #1links directive, which inserts
a set of links to other pages wherever you place the command. An example
of a preamble directive is the #page directive, which gives the page a reference
number. HTMLParse considers it has found the end of the directive when it
reaches either a ; character or a newline character. For example:

...some text</p>
#links pr,main
<p>The main point...

HrMmLParse will process in-line directives found in the preamble as though
they were placed at the top of the document body. If you want to insert a #
character itself at the beginning of a line, use the string ##, otherwise just use
# in the middle of a line — directives can only be placed at the beginning of a
line.

1.5 How HtmlParse scans the input directory

HTMmLParse processes the input directory in two stages: first, it goes round all
the pages copying each page’s preamble into memory, but ignoring the document
body, so that it can form a hierarchy of pages internally. Then, it goes round
again, processing the document body of each page.



2 Features

2.1 The $ character

At any point in the script (apart from when specifying ADFS pathnames), the
$ character can be used to mean ‘the root of the output directory’. As an
example, if you placed a $ character in an HTML file two directories down
from the root input directory, it would be replaced with ../../ (meaning go
up two directories). This way, you can always specify a path relative to the
root directory without worrying how many levels deep the file is, as HTMLParse
will automatically reprocess the $ character if the directory moves. If you want
to insert a dollar character into the file, you must use the sequence $$. If the
$ character is used in either a link definition or the control directory specifier,
then needless ../ sequences will be avoided. For example, if a link was defined
as $progs/off/g.html and it was referenced from directory /progs/off then
only g.html would be inserted into the output, not ../../progs/off/g.html
as in other cases. Full support of this kind for all uses of the $ character will be
a forthcoming improvment in HTMLParse.

2.2 Links

Typically, at some place on every page, you will want some kind of standard
graphic(s)/text that links to the pages around and above. For example, a page
two levels deep describing the features of a program might link to the central
program page above, and also to the main page two levels above. Obviously, if
you change the name or position one of these pages that several other pages link
to, it will mean a time-consuming search-and-replace throughout all the pages
in your web site to make all the pages point to the new location. Equally, if
you wanted to change the format in which the links where presented (e.g. from
text into images, or a different layout of text) the job would involve manually
going round every single page that you wanted to change (very time consuming).
HrMLParse includes provision for defining a series of commonly-used links in
the script file (see section 3.2 to find out how). On the page, you can use the
in-line directive #1links to include a set of those links, formatted according to
the links format file.

2.2.1 Link format files

In the script, you specify a directory that contains all the link format files. (Each
link will use the format file called “default” if no other is specified.) For each
link format, you need to define

e the beginning string of HTML that goes before any of the links
e the format of a linked-to item

e the string of HTML that goes between multiple links

e the closing string of HTML that goes at the end of all the links.

Each link that you define in the script file has two mandatory properties and
two optional ones. The properties are



Path This is the destination URL of the page that the link links to
Textual description This is the textual description of the link
Image file This is the image file to use for the link (optional).

ALT tag contents This is the text to put in the ALT= tag inside the image tag. It is necessary
when you are using image links, because when the page is viewed on a text-
only system the image is not displayed. In most cases, you will omit this
property of the link, and simply use the textual description instead for the
ALT= tag contents.

When specifying your format string, you can use the four control sequences (%p,
%t, %i and %a) at any point. HTMLParse will replace the control sequence with
either the path (%p), the textual description (%t), the image file path (%i) or
the ALT= tag contents (%a).

2.2.2 The #1links directive

The #1inks directive is an in-line directive. Its format is

#links <comma-separated links list> [optional alternative format

file]

The links in the comma-separated links list must all be defined in the links
section of the script file (see section 3.2 for further details). An example directive
would be

#links progs,main program
which would insert links to the ‘progs’ and ‘main’ pages, using the format file
‘program’.
2.2.3 Examples of link setups
Here are some examples of various format setups:

1. If you want to use simple text-based links . ..
In this example the link main links to $index.html and is called ‘main
page’ and the link progs links to $info/progs.html and is called ‘pro-
grams page’. If your links format file was like this:

Click to go up to the
<a href="Yp">/t</a>

s U

then the instruction to include links main and progs would produce the
following output:

Click to go up to the <a href="$info/progs.html">prog-
rams page</a>, <a href="$index.html">main page</a>.



2. Another variant of text-based links . ..
In this example, you would want to use the name of the page first, and
the link second.

Links:

[%t -- <a href="Yp">here</a>]
s L

blank line

would produce the following output (with the links from the previous
example):

Links: [programs page -- <a href="$info/progs.html"-
>here</a>], [main page -- <a href="$index.html">here-
</a>]

or as far as the final formatted HTML is concerned, it would look like this:

Links: [programs page — here], [main page — here]

3. An example with images ...
In this example, link main links to $index.html, its textual description is
‘main page’ and the image property is set to $images/links/main.gif.

[
<a href="Yp"><img ,src="%i" alt="%t"></a>

U

]

when told to produce a link to main produces the following output:

[<a href="$index.html"><img src="$images/links/main.-
gif" alt="main page"></a>]

2.3 Controls

The popular BTEX2HTML package splits a ITEX file up into several HTML
pages, each page with a row of ‘video-control’! style buttons which link to
different sections. This behaviour can be duplicated with HTMLParse. First,
each page must be given a reference number (if a page is not given a reference
number then it is not included in the hierarchy of pages that the control buttons
use?). Then, HTMLParse will automatically link together all pages given a
reference number, placing the controls at a user-defined place on each page.

1By ‘video-control’ I mean back, forward, etc.
2Hereafter referred to as the ‘controls hierarchy’.



2.3.1 Reference number scheme

All pages are given an maximum eight-digit long reference number. Each digit
can range from 0-9, A-Z (A following 9). The main page is defined as having
reference number 0. Each page can have 35 other pages on the same ‘level’
as itself. When the digits are read from left-to-right, the digits leading up to
the final digit indicate which pages are ‘above’ the page in the hierarchy. For
example, page 1 would be a page on the same level as the main page, probably
linked to via the main page. Page 04 would be a page linked to from the main
page, where the main page would be one level above it. Similarly, 0B would be
a page linked to from the main page, where the main page would also be one
level above it. Page 0B4 would be a page linked to from page 0B, where page
0B would be one level above and the main page two levels above.

Figure 2: An example hierarchy of pages

2.3.2 Page-linking method

So, how does HTMLParse actually link the pages together? Well, it puts four
control buttons at the specified place on the page: previous, next, back and
main. The rules for each control button on any page are as follows (HTMLParse
tries out each rule in the order they are listed here, until it gets a rule that
produces a page that is different to the current page and is valid):

Next 1. Pick the page one level down the hierarchy from this page with the
smallest last digit

2. Pick the page with the next highest last digit on the same level and
branch?

3. Go up the hierarchy of pages that lead to this one, until a level is
found where rule 2 applies

4. Discard the next link on this page.

Previous 1. Locate a page that has the nezt pointer set to this page

2. Discard the previous link on this page.

Back 1. Pick the page one level up the hierarchy
2. Discard the back link on this page.

Main 1. Link to page 0

2. Discard the main link on this page.



next

nextg

prev.

prevg

back.
backg.
main.

maing.

Figure 3: An example showing the linking together of the pages from the pre-
vious example

So for our previous diagram the pages would be linked together as in figure
3.

The image used to draw each icon is found in a directory you specify as a
subdirectory of the web site*. The image files that need to be present are:

.gif This is used for an active ‘next’ link

.gif This is used for an inactive ‘next’ link (i.e. where HTMLParse couldn’t
find a rule which produced a next page different to itself).

gif This is used for an active ‘previous’ link

.gif This is used for an inactive ‘previous’ link

gif This is used for an active ‘back’ link

gif This is used for an inactive ‘back’ link

gif This is used for an active link to the main page
gif This is used for an inactive link to the main page.

Also, there should be a text file (specified in the script) which contains eight
lines, each containing the ALT= tag contents for each image (in the same order
as in the above list).

2.3.3 The #controls directive
The #controls directive is an in-line directive. Its format is
#controls [optional format string]

By default, the controls are placed in the order previous, next, back, main.
However, you are not always going to want the links in this order. Therefore,
you can specify a format string after the #controls directive. The format string
is composed of the initials of the controls you want to include, in the order they
should appear. For example

#controls PBN

3i.e. identical first (n — 1) characters where n is the length of the string.
4You should specify this directory in URL format, e.g. $images/misc/controls/.



would include the controls previous, back and next, in that order. However,
sometimes, you would prefer an inactive link icon (see above) not to appear if a
suitable page cannot be found. Any link which should simply disappear instead
of placing an inactive icon should be specified with a lower-case letter. This is
useful on the main page, for example, where it would be preferable to have the
‘main page’ icon simply disappear rather than display greyed out. An example
of this would be

#controls PbNm

where if a suitable back or main link is not found, the icon is deleted. However,
if a suitable previous link is not found, an inactive icon is placed in its place
instead. You can specify your default controls configuration by using the Def-
aultControls script element (see section 3.3 for more information).

2.4 Headers, footers and titles

HrMmLParse has the option to insert a header and footer onto every page. If
no other header or footer is chosen on the page itself, the header and footer
‘default’ is chosen, but the header used on an individual page can be changed
by using the page directives (see later). The header comes before everything
on the page apart from the title, and the footer comes after the page body (see
section 1.1 for more information on the page structure). Note that the header
file should not contain the opening <html>, <head> or <title> tags, as those
are already inserted before the header, by the #title directive. The beginning
of the header file is inserted after the closing </title> tag, with the <head>
element open — it is up to you to close it, using </head>. This allows you to
insert META information into the header. So, the first HTML tag in the header
file should be </head>. An example header file would be:

</head> <!-- Page designed by Chris Rutter -->
<body><hl align=left><img src="$images/logos.gif"></h1>

The footer file is appened after the links. In this example, an opening <p>
tag has been used in the links, and so the footer must use a closing </p> tag.
Note that the header and footer can contain in-line directives (e.g. #controls)
which would be useful if you want the header and footer at a standard place on
every page.

<hr>

<address><a href="$about.html">Sibelius Software</a>
<a href="mailto:info@sibelius.demon.co.uk">

<img src="$images/post.gif" alt="[maill" border=0>
</a></address></p></body></html>

2.4.1 The #title directive

The #title directive is a preamble directive. Its format is simply #title <title
string>. It inserts the string

<title> <title string> </title>

after the end of the preamble file on the output page.



2.4.2 The #header directive

The #header directive is a preamble directive. Its format is #header <header
file>. Tt inserts the specified header file, processing as it were part of the file it
being attached to. If no #header directive is specified on a page, HTMLParse
inserts the header file called ‘default’. The file is inserted after the title. The
header can contain all normal in-line directives (e.g. #controls) which is useful
if you want standard links (e.g.) at a standard place on every page.

2.4.3 The #footer directive

The #footer directive is a preamble directive. Its format is #footer <footer
file>. It inserts the specified footer file, processing as it were part of the file it
being attached to . If no #footer directive is specified on a page, HTMLParse
inserts the footer file called ‘default’. The file is inserted at the very end of
the output page. The file is inserted after the title. The footer can contain
all normal in-line directives (e.g. #links) which is useful if you want standard
links (e.g.) at a standard place on every page.

2.4.4 The #scaffold directive

Putting the preamble directive #scaffold <file> in an input file has the same
effect as putting two separate #header <file> and #footer <file> directives
(i.e. it is a command simply to save on typing).

2.5 The #noscaffold directve

If you want to prevent a header and footer from being added, put #noscaffold
in the preamble to a page.

3 Scripts

HrMLParse infers all its setup from the script it is supplied. The script is
simply a human-readable textfile, with several lines setting various options.
The script parser will ignore blank lines and lines starting with a ‘#’ charac-
ter. The script should contain various sections®, each started by having a line
blank except for [section name]. The basis of every HTMLParse command
is ‘variable=contents’, where wvariable might be something such as ‘Source’
(the source directory from which to read the files) and contents might be
‘<WebRoot$Dir>.Files. Input’S.

3.1 The Setup section

The setup section is present to tell HTMLParse where to find the input directory
and where to put the files once they are processed and what access permission
to give them. The variables that must be defined are:

5Script commands have different effects depending on their section.
6Note that all RISC OS pathnames are parsed via OS_GSTrans and therefore can contain
system variables and paths.

10



# Our example HtmlParse script
# Version 1.00

[Setup]

Source=ADFS: :4.$.Foo.Bar
Destination=WWWRoot:<Output$Dir>.pages
Access=wr/WR

Figure 4: An example fragment from a setup script

Source The input directory (containing all the unprocessed files) should be spe-
cified as Source=<input directory>

Destination The destination directory (which once the files have been processed con-
tains every file in the input directory except in a processed state) should
be specified as Destination=<output directory>

Access The access permission set on all the processed files should be of the stand-
ard Acorn form (e.g. wr/WR would set public read and write access). It
should be specified as Access=<access permission>

3.2 The Links section

The format to define a link is linkname=path,textual description|,image file
path,ALT tag contents]. An example would be main=$index.html,main page,
or perhaps progs=$progs/index.html,programs page,$images/links/progs.
gif if you were using image links. Note the use of the $§ character (section 2.1).
The format at which links are placed at the bottom of the can be defined in the
links directory (see section 3.3).

3.3 The Scaffold section

The Scaffold section is present to tell HTMLParse where to find certain commonly-
used resources. The variables to define are:

Headers The contents of this should be the base directory in which all the header
files can be found.

Footers The contents of this should be the base directory in which all the footer
files can be found.

Links The contents of this should be the base directory in which all the link
format files can be found.

Preamble The contents of this should be a text file which contain data to put at
very beginning of a file. Typical contents would be

<!doctype html public "-//W3C//DTD HTML 3.2//EN">
<html><head>

11



but the only requirement is that you have an opening <html> and <head>
tag in this file.

Controls The contents of this should be the base directory in which all the controls
images can be found. (This is taken to be a URL-type pathname, e.g.
$images/misc/controls/.)

ControlsAlt This should be the (RISC OS) path of a file which contains the ALT= tag
text for the control images (see section 2.3.2 for more information).

DefaultControls DefaultControls sets the default setting for the controls format (see section
2.3.3 for information on the format of this string).

4 Quick directive reference

4.1 Preamble directives

Command | Format Decscription
#header | #header <file> Use a particular header
#footer | #footer <file> Use a particular footer
#scaffold | #scaffold <file> | Use a header and footer
#title | #title <title> Specify the page title
#page | #page <ref no> Include a page in the controls hierarchy
#noscaffold | #noscaffold Prevent addition of header, footer or links

4.2 In-line directives

Command | Format Decscription
#links | #links <linknames> [format file] | Insert links
#controls | #controls <format> Insert control buttons

5 Future improvements

e Automatically include width=, height= tags to improve page-loading times
(and disimprove the look of the page on certain browsers)

Support for #include directive

Create user-defined macros

Date-stamp mechanism so only changed files are reprocessed

WIMP filter that traps loading of HTML (Oxfaf) files and reprocesses

that file only, and then passes the file on to the loading application (e.g.

HTMLEdit)
6 History
1.02beta—1.05beta  — Made HTMLParse much less likely to trash confusing setups involving

“IHtmlParse” files

— Restructured HrMLParse internally to make it nicer to maintain

12




— Fixed incorrect usage of fgetc() and fgets()

1.05beta—1.06beta  — Fixed bug where HTMLParse got confused with directory pointers
when scanning directories containing “!/HtmlParse” files (previously
would have most often deleted all directories after the first)

— If HrMmLParse detects a too long command name it will stop reading
in and cause an error

— Turned source tree into multiple-file arrangement where all are com-
piled separately but linked in one pass (saves time)

— Added limits checking for everything that needed limits checking
1.06beta—1.07beta  — Ensured that empty lines in links format files are read in as blanks,
not as junk
— Set type of resulting files to HTML (0xfaf) instead of text
— Added $ charcter collapsing for link statements

1.07beta—1.08beta  — Tidied up the pages_scan() routines
— Fixed a rather nasty bug which caused heap overwriting

— Fixed a bug which got the levels of files wrong when binary files were
present

— Fixed a bug which would have prevented one worded header com-
mands from being recognised (e.g. #noscaffold)

— Restructed output directory creating system, so that binary direct-
ories do not have to be in the top-level directory

1.08beta—1.09beta  — Marginally tidied up a few loose statements

— Fixed a tedious bug which churned out rubbish into links directives

1.09beta-1.10  — Shunted source files around a lot in my new format
— Moved lots of functions about
— Tidied memory structure slightly
— Fixed a few bugs (uninitialised local variables)

— Added Preamble= scaffold field, and stopped closing <head> tag after
title

7 Contacting the author

The author may be contacted

e by snail mail ...
0Old Laceys, St John’s Street, Duxford, Cambridge, CB2 4RA.

e by email ... as chris@Qfluff.org
e by phone ... on 01223 832474

e by ArcadeMail ... as Chris Rutter

13



