
Caligari trueSpace 1.0 file format:
document version 1.0

This document contains details on the geometry and material information stored
in Caligari object files (*.cob). It should provide enough information for you to be able
read and write such files.

Caligari files are chunked files. They consist of standard header followed by 1 or
more data chunks. The last chunk in the file should always be the special ‘END ‘ chunk.
Each chunk consists of a chunk header followed by chunk dependent data. Chunks may
not be embedded in other chunks. Each chunk contains an ID and a Parent ID. This
allows chunks to be “owned” by other chunks.

The file comes in two flavors ASCII and binary. These formats encode the same
information and have the same general layout. The ASCII files can be editted in a text
editor while the binary files are faster for programs to load and save.

There is also a provision for little-endian or big-endian formats. Currently all
Caligari files are little-endian so you can safely ignore this for the moment.

Caligari Header

The header consists of 32 bytes as follows:
Size Type Value Describtion

9 bytes char “Caligari “ Identifies Caligari file

6 bytes char “V00.01” Version number of file. This document
describes version 00.01 files

1 byte char “A” for ASCII or
“B” for binary

Specifies whether file is in ASCII
format or binary format

2 bytes char “LH” for little endian or
“HL” for big endian

Intel based machines are little endian
and currently all Caligari files are too.

13 bytes char “ “ Leave as blank spaces

1 byte char “\n” Newline character Newline

When attempting to decide on the format of a file you are trying to read you
should check if the first 15 bytes match the first two fields in the header. This should
definitively identify the file as a Caligari file. You will also need to know if the file is
ASCII or binary and read the appropiate format

Chunks Headers

Each chunk consists of a header followed by chunk dependent data. The chunk
header consists of six fields.

The chunk type tells what type of the chunk and what data it contains. Several
chunk types are listed later in this document. You should use this field to choose the
appropiate routine to read this chunk or if you do not recognize the chunk type you should
skip this chunk.

The major and minor version numbers tell you which version of the chunk type
this is. If you get a version number other than the ones you know how to read you should
most likely skip this chunk.

The chunk id and the parent id fields let chunks be owned by other chunks. Each
chunk has a unique chunk id. You should keep track of these ids as you read them in. If
the parent id is zero then the chunk has no parent, otherwise the parent id is the chunk id of
a chunk located earlier in the file and this chunk should be considered to be owned by that
previous chunk. An example of this is a file created from a cube which has been painted
with two materials. The geometry of the cube will be saved in a ‘PolH’ chunk, and
following it will be two material ‘Mat1’ chunks. Each of the material chunks will have
their parent id fields set to the chunk id of the geometry chunk to show that the materials
are owned by the cube.

There is also a data size field which tells you how many data bytes are contained
in the chunk exclusive of the header. This allows you to quickly skip chunks you don’t
recognize or are not interested in. Be aware however that it is permissible to set the data
size to -1 to indicate that the size is unknown.

The binary header is as follows:
Size Type Describtion

4 bytes char Chunk type

2 bytes short Major version

2 bytes short Minor version

4 bytes long Chunk id

4 bytes long Parent id

4 bytes long Number of bytes in chunk data

the ASCII chunk header is
“%4c V%d.%d Id %d Parent %d Size %d”

A typical ASCII chunk header looks like:
“PolH V0.02 Id 2490008 Parent 0 Size 00000947”

This chunk has the type ‘PolH’ (polygonal data chunk), the major version is 0, the minor
version is 2, the chunk id is 2490008, the parent id is 0 (no parent), and there are 947 data
bytes following the header in this chunk. I would encourage you to save a few objects in
ASCII format and take a look at them in your favorite text editor. This should give you a
feel to the general format of Caligari files. To output ASCII files from trueSpace choose
the “Save Object As...” option and check the ASCII box in the file dialog box.

Some common elements in chunks

Here are some common elements which appear is several different chunks.

Strings

In ASCII format strings are represented as used by printf and scanf. That is 1 or
more non-whitespace characters followed by a whitespace character. This allows you to
use the “%s” format string to read and write strings using printf and scanf.

 ascii format
“%s”

 binary format
Size Type Describtion

2 bytes short String length

length bytes String in ASCII characters. Does not include a terminating NULL
character.

Names

Many chunks contain a name field. To keep each name unique within its context,
each name has a number attached to it. We refer to this number as the names dupecount,
and it is always >= 0. The ASCII format consists of a string which contains the name
optionally followed by a comma and the dupecount (e.g. “Obj,1”). Note if the dupecount
is absent then it should be assumed to be zero.

 ascii fomat
“\nName %s”

 binary format
Size Type Describtion

2 bytes short Name dupecount

2+length string Name excluding dupecount (see description of strings)

Local Axes

Some chunks define their own local set of axes. This consists of a position or
center for the axes and directions for the x, y, and z axes. These are given in World
coordinates. The x, y, and z axes should be perpendicular to each other and are not relative
to the center of axes.

 ascii format
"\ncenter %g %g %g"
"\nx axis %g %g %g"
"\ny axis %g %g %g"
"\nz axis %g %g %g"

 binary format
Size Type Describtion

12 bytes floats X, Y, and Z coordinates for center of axes. (3 floats)

12 bytes floats X, Y, and Z coordinates for direction of local X axis.

12 bytes floats X, Y, and Z coordinates for direction of local Y axis.

12 bytes floats X, Y, and Z coordinates for direction of local Z axis.

Current Position

Most chunks which contain 3D geometry define a local space. The current
position is a matrix which transforms from local space to world space. The local
coordinates are treated as column vectors with a 1 in the fourth position and multiplied by
the matrix to get the corresponding World coordinates. Note: trueSpace currently does not
use the fourth row of the matrix and this row should always be [0,0,0,1] or the matrix may
not be interpreted correctly.

 ascii format
"\nTransform"
"\n%g %g %g %g"
"\n%g %g %g %g"
"\n%g %g %g %g"
"\n%g %g %g %g"

 binary format
Size Type Describtion

16 bytes floats first row of matrix

16 bytes floats second row of matrix

16 bytes floats third row of matrix

Note: binary format does not include row 4 of the matrix. Its assumed to be 0,0,0,1.

Chunk Types

‘END ‘ - (End of file Chunk)

Major version 1
Minor version 0

This chunk contains no data. It signifies the end of the file and always be the last chunk in
the file.

‘Grou’ - (Group Chunk)

Chunk type: ‘Grou’
Major version: 0
Minor version: 1

The group chunk consists of the following:
Chunk Header
Name
Local Axes
Current Postion

See the appropiate sections for descriptions of each of these.

‘PolH’ (Polygonal Data Chunk)

Chunk type: ‘PolH’
Major version: 0
Minor version: 2

The polygonal data chunk consists of the following:
Chunk Header
Name
Local Axes
Current Position
Local Vertex list
UV Vertex list
Face list

The Local Vertex list is a list of 3D positions in the local coordinate space defined by this
chunk’s Current Position (see appropiate section). It consists a count of the number of
vertices followed by the vertices. Each vertex consists of three float for the X, Y, and Z
values.

 ascii format
"\nWorld Vertices %ld" - gives number of local vertices following (>= 0)
for each local vertex

"\n%f %f %f"

 binary format
Size Type Describtion

4 bytes long number of local vertices

12 bytes
each

floats X, Y, and Z coordinates for each local vertex. (3 floats)

The UV Vertex list is a list of UV (texture) positions. It consists of a count of the number
of UV vertices followed by the UV vertices. Each UV vertex consists of two floats for the
U and V values.

 ascii format
"\nTexture Vertices %ld" - gives number of UV vertices following (>= 0)
for each UV vertex

"\n%f %f"

 binary format
Size Type Describtion

4 bytes long number of UV vertices

8 bytes
each

floats U and V coordinates for each UV vertex. (2 floats)

The Face list is a list of faces and holes. Each face has a set of flags, a material number, a
count of the number of face vertices, and a list of face vertices. Each hole has a count of
the number of faces vertices it contains followed by the face vertices. The hole should be
interpreted as being a hole in the most recently read face. Each face vertex consists of two
integers; these are an index into the local Vertex list followed by an index into the UV
Vertex list.

 ascii format
"\nFaces %ld" - gives the number of faces following (>=0)
for each face

either "\nFace verts %hd flags %hd mat %hd"
or "\nHole verts %hd"
for each face vertex in the face or hole

"<%ld,%ld> "

 binary format
Size Type Describtion

4 bytes long number of faces and holes

? ? faces and holes

a face is
Size Type Describtion

1 bytes byte flags byte (F_HOLE flag is not set)

2 bytes short number of vertices in face (not including any holes)

2 bytes short material index for face

8 bytes
each

longs face vertices. Each consists of a long index in the local Vertex list
followed by a long index into the UV Vertex list

a hole is
Size Type Describtion

1 bytes byte flags byte (F_HOLE flag is set)

2 bytes short number of vertices in face (not including any holes)

8 bytes
each

longs face vertices. Each consists of a long index in the local Vertex list
followed by a long index into the UV Vertex list

There are two flags currently defined for faces:
F_HOLE 0x08 (bit 3)
F_BACKCULL 0x10 (bit 4)

The F_HOLE flag is used to distinguish holes from faces in the binary format. The
F_BACKCULL flag means that this face should not be displayed if its facing away from
the camera or view. This flag is currently only used on two dimensional objects, where the
front and back face of an object occupy the same space.

The normal of a face is obtained by using the right hand rule. Some operations
like quad-divide will only work on objects which trueSpace considers to be solids. For an
object to be solid, the number of faces in an object minus two must equal the number of
vertices plus the number of edges. In addition each edge must be shared by exactly two
faces. Thus when a flat polygon is created in trueSpace, it is represented by two polygons;
one facing up and one facing down.

‘Mat1’ (Material Chunk)

Chunk type: ‘Mat1’
Major version: 0
Minor version: 5

The material chunk consists of the following:
Chunk Header
Material data
Environment map data (optional)
Texture map data (optional)
Bump map data (optional)

The material data contains the shader type, facet type, color (red,green,blue), and
some shader attributes: opacity (alpha), ambient coefficient (ka), specular coefficient (ks),
hilight size coefficient (exp), and index of refraction (ior). It also contains a material
number. All material chunks have a parent chunks and the material number identifies
which child material this is. For instance if a material chunk has material number 2 and its
parent is a ‘PolH’ or polygonal chunk, then this is material number 2 of that chunk and all
faces which have their material id set to 2 in the ‘PolH’ chunk should use this material.

ascii format
“\nmat# %d” - material number
“\nshader: %s facet: %s”
“\nrgb %g,%g,%g\n” - material color
“\nalpha %g ka %g ks %g exp %g ior %g”

The current possibilities for the shader field: “flat”, “phong”, and “metal”.
The current possibilities for the facet field: “faceted”, “auto%d”, and “smooth”. The
autofacet choice contains a value for the autofacet angle. Thus autofacet with an angle of
45 degrees would be “auto45”.

 binary format
Size Type Describtion

2 bytes short material number

1 byte char shader type (‘f’-flat, ‘p’-phong, ‘m’-metal)

1 byte char facet type (‘f’-faceted, ‘a’-autofacet, ‘s’-smooth)

1 byte char autofacet angle (0-179 degrees)

4 bytes float red component of color (0.0 - 1.0)

4 bytes float green component of color (0.0 - 1.0)

4 bytes float blue component of color (0.0 - 1.0)

4 bytes float opacity (0.0-1.0)

4 bytes float ambient coefficient (0.0-1.0)

4 bytes float specular coefficient (0.0-1.0)

4 bytes float hilight size coefficient (0.0-1.0)

4 bytes float index of refraction

If the environment map data is present then it starts which an identifying field, the
full pathname of the environment map file, and a set of flags. The flags for environment
maps are:

ENVR_CUBIC 0x01 (bit 0)
ENVR_USE 0x02 (bit 1)

The ENVR_USE flag is always set. The ENVR_CUBIC flag is set to indicate that the
environment map is a cubic map, otherwise its assumed to be a spherical environment map.

ascii format
“\nenvironment: %s” - full pathname of environment file

“\nflags %d”

 binary format
Size Type Describtion

2 bytes chars environment map data identifier (‘e:’)

1 byte char environment map flags

2+length string pathname of environment map file (see strings section)

If the texture map data is present then it starts which an identifying field, the full
pathname of the texture map file, an offset in U and V, the number of times to repeat the
texture map in U and V, and a set of flags. The flags for texture maps are:

TXTR_OVERLAY 0x01 (bit 0)
TXTR_USE 0x02 (bit 1)

The TXTR_USE flag is always set. If TXTR_OVERLAY flag is set then the objects color
will show through where the texture map is at least paritally transparent. Otherwise the
object will be genuinely transparent in those areas.

ascii format
“\ntexture: %s” - full pathname of texture file
“\noffset %g,%g repeats %g,%g flags %hd”

 binary format
Size Type Describtion

2 bytes chars texture map data identifier (‘t:’)

1 byte char texture map flags

2+length string pathname of texture map file (see strings section)

4 bytes float U offset for texture map

4 bytes float V offset for texture map

4 bytes float Number of times to repeat texture map in U direction

4 bytes float Number of times to repeat texture map in V direction

If the bump map data is present then it starts which an identifying field, the full
pathname of the bump map file, an amplitude for the bump map, an offset in U and V, the

number of times to repeat the bump map in U and V, and a set of flags. The flags for
bumps maps are:

BUMP_USE 0x02 (bit 1)
The BUMP_USE flag is always set.

ascii format
“\nbump: %s” - full pathname of bump file
“\noffset %g,%g repeats %g,%g amp %g flags %hd”

binary format
Size Type Describtion

2 bytes chars bump map data identifier (‘b:’)

1 byte char bump map flags

2+length string pathname of bump map file (see strings section)

4 bytes float U offset for bump map

4 bytes float V offset for bump map

4 bytes float Number of times to repeat bump map in U direction

4 bytes float Number of times to repeat bump map in V direction

4 bytes float Relative amplitude of bump map

