
Bidirectional Wordprocessing With AbiWord
Dec 6, 2003

Tomas Frydrych <tomas@frydrych.uklinux.net>

Contents
Introduction

Controlling Bidirectional Ordering
Dominant Direction of Text
Explicit Direction Overrides
Direction Markers

Examples
Automatic Insertion

Mirroring Characters

Glyph Shaping

Introduction
Some languages, such as English, are written from left to right, while other languages, such as
Arabic, from right to left. AbiWord can handle both directions of text, as well as their
combinations -- AbiWord is a bidirectional word processor.

Controlling Bidirectional Ordering
The bidirectional ordering of text in AbiWord is done automatically, closely following the
Unicode Bidirectional Algorithm (UBA; see the Unicode Consortium website). The Unicode
character set assigns each character certain directional properties which are then used by the
UBA to order text. Thus, Hebrew or Arabic characters will automatically be treated as right-to-
left, and English characters as left-to-right. There are some characters that are directionally
ambiguous, and how they are treated by the UBA depends on what characters are found in their
vicinity (this includes all white space and punctuation characters).

Sometimes it is desirable to have the characters ordered differently than the following the UBA.
In AbiWord the user has at his or her disposal three basic mechanisms that allow him or her to
fine-tune the results. These are specifying dominant direction of text, overriding implicit
directional properties of characters, and inserting direction markers.

Dominant Direction of Text

The same sequence of characters with different directional properties will look differently if it is
assumed to be a left-to-right text with right-to-left text embedded in it, or if it is understood to be
a right-to-left text with left-to-right text embedded. In AbiWord we refer to the basic direction of

mailto:tomas@frydrych.uklinux.net
http://www.unicode.org/

text as the dominant direction (in the the Unicode documentation it is known as the base
embedding level). The dominant direction in AbiWord operates on four hierarchical levels:
paragraph, section, document, and the program.

Paragraph-Level Dominant Direction

The paragraph-level dominant direction can be set either by the Right-to-left dominant check box
in the Format->Paragraph dialogue, or from Format->Direction, or by using the equivalent
button on the Extra toolbar. If the dominant direction is not set explicitly by the user, AbiWord
will work it out from the rest of the dominant direction hierarchy, i.e., it will check if dominant
direction is set explicitly for the section in which the paragraph is located, and if not, it will
check the document level settings, finally resorting to program-level defaults.

Section-Level Dominant Direction

The section-level dominant direction is controlled by the Use RTL order check box of the
Format->Columns dialogue. Apart from providing the default for any of the section paragraphs
that do not have their dominant direction set explicitly, the section dominant direction controls
how columns in multicolumn sections are ordered, it determines the dominant direction of text of
footnotes inserted into the section, and the order of columns in tables. If section-level dominant
direction is not set, AbiWord will derive it from the rest of the dominant direction hierarchy as
described earlier.

Document-Level Dominant Direction

The document-level dominant direction is derived from the program-level dominant direction at
the time when the document is created. So, if your program-level dominant direction is set to
RTL, every new document will have its default direction set to RTL. At present there is no way
to change document-level dominant direction in an existing document (this is going to change in
future versions).

Program-Level Dominant Direction

This is the value to which AbiWord recourses if everything else fails. The program-level
dominant direction is set in the preferences (Tools->Preferences->Language->Bidirectional
options). The default preference value is set to LTR (if you build AbiWord yourself from the
AbiWord sources, you can change the default preference value to RTL).

Explicit Direction Overrides

The visual order of characters that is automatically produced by the UBA might not always be
what the user needs. AbiWord allows the user to specify explicitly that certain characters should
be treated as left-to-right or right-to-left irrespective of their Unicode properties. This is done by
selecting the characters in question and then applying the direction override from the Format-
>Direction menu or using the corresponding buttons on the Extra toolbar.

It is important to understand that the direction override is in fact a formatting property applied to
the text. The consequence of this is that when you place the insertion point into or just after text
with the override set, any new characters input will also have the override set. For example if
you set the insertion point just pass text which has override set explicitly to LTR and then type a

Hebrew or Arabic character, it too will have the override set and will be treated as if it was LTR.
To remove the override, you proceed in a manner analogous to setting it.

Direction Markers

Setting explicit direction override might sometimes not be the best way of changing the order of
characters, particularly if the ordering is to be changed for one of the directionally ambiguous
characters. The Unicode character set contains two special characters called direction markers:
LRM (left to right direction marker) and RLM (right to left direction marker). The sole purpose
of these characters is to allow small adjustments of the bidirectional order by affecting properties
of ambiguous characters in their vicinity: when the text is reordered these markers behave as
normal left-to-right and right-to-left characters, but when the text is displayed they are not shown
(that is, unless you have Show Formatting Marks turned on). The LRM and RLM markers can be
inserted using the Insert->Direction Markers menu, or by using keyboard shortcuts Alt+Ctrl+>
and Alt+Ctrl+< respectively.

Examples of Using Direction Markers

The use of the markers is best shown on a couple of examples such as writing formulas and
phone numbers.

As a first example, we will take the formula log(x). If it is embedded into right-to-left text
(represented here by capital letters ABCEFG), it will look like this:

GFE (log(x CBA

This is because the UBA will disambiguate the closing parenthesis of the formula to RTL (the
algorithm does not know, and does not care, which is the opening parenthesis it matches; it takes
an approach that will more often than not produce desired result, i.e., it assumes that a closing
parenthesis on a direction boundary will have the properties of the characters that follow it).
However, in our case the order we want is:

GFE log(x) CBA

This can be achieved by following the closing parenthesis with the LRM marker. The inclusion
of the marker will make the parenthesis completely surrounded by LTR characters, and so it will
behave as an LTR character.

The same result could, of course, be achieved by selecting the closing parenthesis and applying
to it an explicit left-to-right override as described in the previous section. The main disadvantage
of using an override in case like this has to do with the persistence of the explicit override
described in the previous section. In contrast, the marker only affects the characters in its
immediate vicinity, and only those that are directionally ambiguous. So if you insert RTL
character just after the LRM marker, the new character will still behave as RTL, not LTR.

Another situation in which these markers come handy is with phone numbers. For instance, if the
phone number 123 456 789 is embedded into a right-to-left text, it will look like this:

FED 789 456 123 CBA

This is because English digits are considered weak LTR characters: they will be ordered from left
to right themselves, but any ambiguous characters embedded among them will derive their

direction from directionally strong characters that surround the whole number segment. In our
case those are the ABC, DEF characters and so the spaces between the three groups of numbers
behave as right-to-left characters. If, however, what the user wants is a phone number that looks
like this:

FED 123 456 789 CBA

all that is requires is that the LRM character is inserted just before typing in the first digit; this
will make the following numbers behave as strong LTR characters, and consequently the spaces
too will behave as LTR characters.

Automatic Insertion of LRM and RLM Markers

In certain circumstances AbiWord is capable of inserting these direction markers automatically,
based on the keyboard layout used (this is currently only supported under Windows). In order to
use this feature you need to first of all make sure that the option to change language when
changing keyboard layout is turned on (Tools->Preferences->Language), and that also the
bidirectional option auto-insert direction markers is turned on (Tools->Preferences->Language).
AbiWord will then follow all closing parenthesis (Unicode characters ')', ']', and '}') with a
direction marker derived from the language applied to that character. For instance, if a ')'
character is set as being written in Hebrew, it will be followed by a RLM marker but if it is set as
being in English, it will be followed by a LRM marker. Similarly, it will precede all opening
parenthesis ('(', '[', and '{' characters) with an appropriate direction marker.

This feature could easily be extended to other characters; if you would find it useful, file a
request in our Bugzilla.

Mirroring Characters
Mirroring characters are characters the glyphs of which need to be mirrored when displayed in
RTL context. An example of a mirroring character is the opening parenthesis, which looks (in
LTR context but) in RTL context. When it comes to these characters the Unicode definition is
strictly semantic, i.e., opening parenthesis has always the same numerical code, but when found
in RTL context the application is expected to display in its place the mirror glyph of LTR
opening parenthesis, which happens to be the glyph associated with LTR closing parenthesis.
The effect of this is that if you display RTL text with parentheses that follow the Unicode rules in
a plain text editor that is not Unicode-compliant, you will see '(' where you would expect ')' and
vice versa.

AbiWord, as a Unicode-based application, complies with the Unicode rules for handling
mirroring characters. The consequence of the above is that your keyboard has to generate
semantically correct values for the mirroring characters. On some Unix system this is not the
case, and the keyboard for languages such as Hebrew generates the code for closing parenthesis
in place of the code for opening parenthesis and vice verse. If you are seeing ')' when you are
expecting '(' and vice versa, you need to fix the keyboard definition file (how to do that is beyond
scope of this document).

Glyph Shaping

http://bugzilla.abiword.com/

Closely related to AbiWord's bidirectional capabilities is its ability to change visual appearance
of certain glyphs depending on their context. This is essential for correct handling of the so-
called mirroring characters described above, as well as for languages that use scripted alphabets,
such as Arabic, in which each letter has different shapes depending whether it stands alone, or at
the beginning, in the middle or at the end of a word. Alongside this type of glyph shaping,
AbiWord can also replace a sequence of two glyphs with a special ligature glyph where needed.

At present AbiWord uses a proprietary shaping engine of fairly limited capabilities. We are
currently working on getting adequate support for Arabic, and support for other languages that
require shaping can be added on request. However, the built-in shaping engine can only handle
languages for which the alternative glyph shapes have separate code points assigned to them in
the Unicode character set (such as Arabic); some languages that were added to the Unicode
character set relatively recently rely solely on advanced font technologies for shaping and these
will not be supported in near future (e.g., Syriac).

When shaping and replacing ligatures, AbiWord always checks for the presence of the
replacement glyph in the currently selected font. If the glyph is not available it will use the
original character(s), providing they are available. If even the original characters are absent,
AbiWord will first try to remap them to sensible values, but if event that fails, it will use the
absent glyph character.

An important thing to understand about the glyph shaping is that the changes only take place in
the visual plain (on screen or paper print out), but the characters that are contained in the
document do not change in the process.

Glyph shaping is controlled from the Language tab of the Tools->Preference dialogue. There are
two check boxes there: Determine glyph shapes from context and Use glyph shaping for Hebrew.
The former of these is the master-switch that turns the glyph shaping engine on and off. When
the second check box is checked, the shaping engine will shape also the five Hebrew letters that
have a final form. Please note that this is not intended to be used for writing modern
Hebrew and Yiddish documents, since in modern Hebrew and Yiddish the final forms are
considered different characters (and because as I have explained above the shaping does not
change the characters in a document, if nothing else, your spell-check will not work, and your
files will not look right on other people's computers).

	Bidirectional Wordprocessing With AbiWord
	Contents
	Introduction
	Controlling Bidirectional Ordering
	Dominant Direction of Text
	Paragraph-Level Dominant Direction
	Section-Level Dominant Direction
	Document-Level Dominant Direction
	Program-Level Dominant Direction

	Explicit Direction Overrides
	Direction Markers
	Examples of Using Direction Markers
	Automatic Insertion of LRM and RLM Markers

	Mirroring Characters
	Glyph Shaping

