
ReqTools

ReqTools ii

COLLABORATORS

TITLE :

ReqTools

ACTION NAME DATE SIGNATURE

WRITTEN BY December 6, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ReqTools iii

Contents

1 ReqTools 1

1.1 Table Of Contents . 1

1.2 rtallocrequesta() . 1

1.3 rtchangereqattra() . 2

1.4 rtclosewindowsafely() . 4

1.5 rtezrequesta() . 5

1.6 rtfilerequesta() . 10

1.7 rtfontrequesta() . 14

1.8 rtfreefilelist() . 16

1.9 rtfreereqbuffer() . 17

1.10 rtfreerequest() . 17

1.11 rtgetlonga() . 18

1.12 rtgetstringa() . 20

1.13 rtgetvscreensize() . 22

1.14 rtlockwindow() . 22

1.15 rtpaletterequesta() . 23

1.16 rtreqhandlera() . 25

1.17 rtscreenmoderequesta() . 27

1.18 rtscreentofrontsafely() . 30

1.19 rtsetreqposition() . 31

1.20 rtsetwaitpointer() . 32

1.21 rtspread() . 32

1.22 rtunlockwindow() . 33

ReqTools 1 / 34

Chapter 1

ReqTools

1.1 Table Of Contents

TABLE OF CONTENTS

rtAllocRequestA()
rtChangeReqAttrA()
rtCloseWindowSafely()
rtEZRequestA()
rtFileRequestA()
rtFontRequestA()
rtFreeFileList()
rtFreeReqBuffer()
rtFreeRequest()
rtGetLongA()
rtGetStringA()
rtGetVScreenSize()
rtLockWindow()
rtPaletteRequestA()
rtReqHandlerA()
rtScreenModeRequestA()
rtScreenToFrontSafely()
rtSetReqPosition()
rtSetWaitPointer()
rtSpread()
rtUnlockWindow()

1.2 rtallocrequesta()

NAME rtAllocRequestA()

req = rtAllocRequestA (type, taglist);

APTR rtAllocRequestA (ULONG, struct TagItem *);
D0 D0 A0

req = rtAllocRequest (type, tag1,...);

ReqTools 2 / 34

APTR rtAllocRequest (ULONG, Tag,...);

DESCRIPTION
Allocates a requester structure for you in a future compatible manner.
This is the only way to properly allocate a rtFileRequester,
rtFontRequester or rtReqInfo structure. The structure will be
initialized for you.

Use rtFreeRequest() to free the requester structure when you no longer
need it.

INPUTS
type - type of structure to allocate, currently RT_REQINFO,

RT_FILEREQ, RT_FONTREQ or RT_SCREENMODEREQ.
taglist - pointer to array of tags (currently always NULL).

TAGS
no tags defined yet

RESULT
req - pointer to the requester allocated or NULL if no memory.

BUGS
none known

SEE ALSO
rtFreeRequest()

1.3 rtchangereqattra()

NAME rtChangeReqAttrA()

[long =] rtChangeReqAttrA (req, taglist);

[LONG] rtChangeReqAttrA (APTR, struct TagItem *);
A1 A0

[long =] rtChangeReqAttr (req, tag1,...);

[LONG] rtChangeReqAttr (APTR, Tag,...);

DESCRIPTION
Change requester attributes with supplied taglist. This is the only
correct way to change the attributes listed below.

The return code from rtChangeReqAttrA() should be ignored unless stated
otherwise.

Don’t pass the tags listed below to the requester itself (unless
documented otherwise). They will not be recognized.

INPUTS
req - pointer to requester.
taglist - pointer to array of tags.

ReqTools 3 / 34

TAGS
for the file requester:

RTFI_Dir - (char *)
Name of new directory to position file requester
in. The requester’s buffer will be deallocated.

RTFI_MatchPat - (char *)
New pattern string to match files on.

RTFI_AddEntry - (BPTR)
THIS *MUST* BE THE LAST TAG~(just before TAG_END)!
Tagdata must hold a lock on a file or directory
you want to add to the file requester’s buffer.
The lock should have been obtained using Lock(),
and you must unlock this lock yourself.
It is your responsibility to make sure the file
or directory is indeed in the directory the file
requester is in.
If the entry is already in the file requester’s
buffer it will simply be updated.
It is harmless to use this tag if the requester’s
buffer is not initialized. rtChangeReqAttr() will
return a boolean to indicate success or failure
(out of memory).

RTFI_RemoveEntry - (char *)
Name of file or directory you want to remove from
the file requester’s buffer.
It is your responsibility to make sure the file
or directory is indeed in the directory the file
requester is in.
It is harmless use this tag if the requester’s
buffer is not initialized.

for the font requester:
RTFO_FontName - (char *)

Set the name of the currently selected font.
RTFO_FontHeight - (UWORD)

Set the fontsize of the currently selected font.
RTFO_FontStyle - (UBYTE)

Set the style of the current font.
RTFO_FontFlags - (UBYTE)

Set the flags of the current font.
for the screenmode requester [V38]:

RTSC_ModeFromScreen - (struct Screen *)
Screen to get mode attributes from.
NOTE: You must make sure the mode this screen
is in will be accepted by the screen
mode requester. Otherwise it will auto-
matically cancel. For example, you use
RTDI_ModeFromScreen on a HAM screen and
you haven’t set the SCREQF_NONSTDMODES
flag.

RTSC_DisplayID - (ULONG)
Set 32-bit mode id of selected mode. The width
and height will be set to the default (visible)
width and height, and the depth will be set to
maximum. Also read note above.

RTSC_DisplayWidth - (UWORD)
Set width of display. Must come after
RTSC_DisplayID or RTSC_ModeFromScreen tags.

ReqTools 4 / 34

RTSC_DisplayHeight - (UWORD)
Set height of display. Must come after
RTSC_DisplayID or RTSC_ModeFromScreen tags.

RTSC_DisplayDepth - (UWORD)
Set depth of display. Must come after
RTSC_DisplayID or RTSC_ModeFromScreen tags.

RTSC_OverscanType - (ULONG)
Set type of overscan. Set to 0 for regular
size, otherwise use OSCAN_... constants.
See ’intuition/screens.[h|i]’.

RTSC_AutoScroll - (BOOL)
Boolean state of autoscroll checkbox.

RESULT
none (except when RTFI_AddEntry tag is used, see above)

BUGS
none known

SEE ALSO
Lock()

1.4 rtclosewindowsafely()

NAME rtCloseWindowSafely() [V38]

rtCloseWindowSafely (window);

void rtCloseWindowSafely (struct Window *);
A0

DESCRIPTION
Closes a window which shares its IDCMP port with another window. All the
pending messages (concerning this window) on the port will be removed and
the window will be closed.

Do not use this function to close windows which have an IDCMP port set up
by Intuition. If you do the port will be left in memory!

If you intend to open a lot of windows all sharing the same IDCMP port it
is easiest if you create a port yourself and open all windows with
newwin.IDCMPFlags equal to 0 (this tells Intuition to NOT set up an IDCMP
port). After opening the window set the win->UserPort to your message
port and call ModifyIDCMP to set your IDCMP flags.

When you then receive messages from intuition check the imsg->IDCMPWindow
field to find out what window they came from and act upon them.

When closing your windows call rtCloseWindowSafely() for all of them and
delete your message port. Easy peasy :-)

INPUTS
window - pointer to the window to be closed.

RESULT

ReqTools 5 / 34

none

NOTE
This function is for the advanced ReqTools user.

BUGS
none known

SEE ALSO
intuition.library/CloseWindow()

1.5 rtezrequesta()

NAME rtEZRequestA()

ret = rtEZRequestA (bodyfmt, gadfmt, reqinfo, argarray, taglist);

ULONG rtEZRequestA
(char *, char *, struct rtReqInfo *, APTR, struct TagItem *);
D0 A1 A2 A3 A4 A0

ret = rtEZRequest (bodyfmt, gadfmt, reqinfo, taglist, arg1, arg2,...);

ULONG rtEZRequest
(char *, char *, struct rtReqInfo *, struct TagItem *,...);

ret = rtEZRequestTags(bodyfmt, gadfmt, reqinfo, argarray, tag1,...);

ULONG rtEZRequestTags(char *, char *, struct rtReqInfo *, APTR, Tag,...);

DESCRIPTION
This function puts up a requester for you and waits for a response from
the user. If the response is positive, this procedure returns TRUE.
If the response is negative, this procedure returns FALSE.
The function may also return an IDCMP flag or a value corresponding with
one of other possible responses (see below).

’gadfmt’ may contain several possible responses. Separate these
responses by a ’|’. For example: "Yes|No", or ’Yes|Maybe|No". The
responses should be typed in the same order as they will appear on
screen, from left to right. There is no limit to the number of responses
other than the width of the screen the requester will appear on.

’bodyfmt’ can contain newlines (’\n’, ASCII 10). This will cause a new
line to be started (surprise, surprise :-).
You may also include ’printf’ style formatting codes. The format
arguments should be pointed to by ’argarray’.
You can use formatting codes in ’gadfmt’ as well. The arguments for
this format string should follow the ones for ’bodyfmt’.

NOTE: The formatting is done by exec.library/RawDoFmt(), so be aware that
to display a 32-bit integer argument you must use "%ld", not "%d",
since RawDoFmt() is "word-oriented."

The second and third function use a variable number of arguments. These

ReqTools 6 / 34

functions can be found in ’reqtools[nb].lib’.
The second function has the RawDoFmt arguments as variable args, the
third the tags. If you need both this is what you can do:

...
{
ULONG tags[] = { RTEZ_ReqTitle, (ULONG)"mytitle", TAG_END };

rtEZRequest ("String, num: %s, %ld", NULL, "Ok",
(struct TagItem *)tags, "six", 6);

}
...

You can satisfy the requester with the following keyboard shortcuts:
’Y’ or Left Amiga ’V’ for a positive response,
ESC, ’N’, ’R’ or Left Amiga ’B’ for a negative response.

If EZREQF_NORETURNKEY is _not_ set (see RTEZ_Flags below) the RETURN key
is also accepted as a shortcut for the positive response (can be changed
using RTEZ_DefaultResponse, see below). The response that will be
selected when you press RETURN will be printed in bold.

The EZREQF_LAMIGAQUAL flag should be used when you put up a requester
for a destructive action (e.g. to delete something). When it is set
the keyboard shortcuts are limited to Left Amiga ’V’ and ’B’ so it is
harder to accidently select something you will regret.
Note that the RETURN and ESC key remain active! To disable the RETURN
key use the EZREQF_NORETURNKEY flag. The ESC key cannot be disabled.

You may pass a NULL for ’gadfmt’, but make sure you know what you are
doing. Passing a NULL opens an EZRequester with NO responses, just a
body text. This implies the user has no means of "answering" this
requester. You must therefore use the RT_IDCMPFlags tag to allow some
other events to end the requester (e.g. IDCMP_MOUSEBUTTONS,
IDCMP_INACTIVEWINDOW,...) or you must make use of the ReqHandler feature.
Using a requester handler you can end the requester by program control.
This way you can e.g. put up a requester before you start loading a file
and remove it after the file has been loaded. Do not pass an empty
string as ’gadfmt’!

’reqinfo’ can be used to customize the requester. For greater control
use the tags listed below. The advantage of the rtReqInfo structure is
that it is global, where tags have to be specified each function call.
See libraries/reqtools.[hi] for a description of the rtReqInfo structure.

INPUTS
bodyfmt - requester body text, can be format string a la RawDoFmt().
gadfmt - text for gadgets (left to right, separated by ’|’) or NULL.
argarray - pointer to array of arguments for format string(s).
reqinfo - pointer to a rtReqInfo structure allocated with

rtAllocRequest() or NULL.
taglist - pointer to a TagItem array.

TAGS
RT_Window - (struct Window *)

Window that will be used to find the screen to put the
requester on.

ReqTools 7 / 34

You *MUST* supply this if you are a task calling this
function and not a process! This is because tasks
don’t have a pr_WindowPtr.

RT_IDCMPFlags - (ULONG)
Extra idcmp flags to return on. If one these IDCMP
flags causes the requester to abort the return code
will equal the flag in question.

RT_ReqPos - (ULONG)
One of the following:

REQPOS_POINTER - requester appears where the mouse
pointer is (default).

REQPOS_CENTERSCR - requester is centered on the
screen.

REQPOS_CENTERWIN - requester is centered in the
window (only works if the
pr_WindowPtr of your process is
valid or if you use RT_Window).
If RT_Window is NULL the
requester will be centered on
the screen.

REQPOS_TOPLEFTSCR - requester appears at the top left
of the screen.

REQPOS_TOPLEFTWIN - requester appears at the top left
of the window (only works if the
pr_WindowPtr of your process is
valid or if you use RT_Window).

The requester will always remain in the visible part of
the screen, so if you use the Workbench 2.0 ScreenMode
preferences editor to enlarge your Workbench screen and
you scroll around, the requester will always appear in
the part you can see.
REQPOS_CENTERSCR and REQPOS_TOPLEFTSCR also apply to
the visible part of the screen. So if you use one of
these the requester will be appear in the center or the
top left off what you can see of the screen as opposed
to the entire screen.
REQPOS_CENTERWIN and REQPOS_TOPLEFTWIN fall back to
REQPOS_CENTERSCR or REQPOS_TOPLEFTSCR respectively
when there is no parent window. So you can safely use
these without worrying about the existence of a window.

RT_LeftOffset - (ULONG)
Offset of left edge of requester relative to position
specified with RT_ReqPos (does not offset the requester
when RT_ReqPos is REQPOS_POINTER).

RT_TopOffset - (ULONG)
Offset of top edge of requester relative to position
specified with RT_ReqPos (does not offset the requester
when RT_ReqPos is REQPOS_POINTER).

RT_PubScrName - (char *)
Name of public screen requester should appear on. When
this tag is used the RT_Window tag will be ignored.
If the public screen is not found the requester will
open on the default public screen.
Only works on Kickstart 2.0! reqtools.library does
not check this, it is up to you *NOT* to use this tag
on Kickstart 1.3 or below!
Note that the 1.3 version of reqtools.library also

ReqTools 8 / 34

understands and supports this tag (on 2.0).
RT_Screen - (struct Screen *)

Address of screen to put requester on. You should
never use this, use RT_Window or RT_PubScrName.

RT_ReqHandler - (struct rtHandlerInfo **)
Using this tag you can start an "asynchronous"
requester. ti_TagData of the tag must hold the address
of a pointer variable to a rtHandlerInfo structure.
The requester will initialize this pointer and will
return immediately after its normal initialization.
The return code will not be what you would normally
expect. If the return code is _not_ equal to
CALL_HANDLER an error occurred and you should take
appropriate steps. If the return code was CALL_HANDLER
everything went ok and the requester will still be up!
See the explanation for rtReqHandlerA() below for the
following steps you have to take.

RT_WaitPointer - (BOOL)
If this is TRUE the window calling the requester will
get a standard wait pointer set while the requester is
up. This will happen if you used the RT_Window tag or
if your process’s pr_WindowPtr is valid. Note that
after the requester has finished your window will be
ClearPointer()-ed. If you used a custom pointer in
your window you will have to re-set it, or not use the
RT_WaitPointer tag and put up a wait pointer yourself.
If your program requires ReqTools V38 it is advised you
use RT_LockWindow instead. Defaults to FALSE.

RT_LockWindow - (BOOL) [V38]
If this is TRUE the window calling the requester will
get locked. It will no longer accept any user input
and it will get standard wait pointer set. This will
happen only if you used the RT_Window tag or if your
process’s pr_WindowPtr is valid. RT_LockWindow will
restore a custom pointer if you have used one (unlike
RT_WaitPointer). So you do not have to worry about
having to restore it yourself. It is advised you use
this tag as much as possible. Defaults to FALSE.

RT_ScreenToFront - (BOOL) [V38]
Boolean indicating whether to pop the screen the
requester will appear on to the front. Default is TRUE.

RT_ShareIDCMP - (BOOL) [V38]
Boolean indicating whether to share the IDCMP port of
the parent window. Use this tag together with the
RT_Window tag to indicate the window to share IDCMP
with. Sharing the IDCMP port produces less overhead,
so it is advised you use this tag. Defaults to FALSE.

RT_Locale - (struct Locale *) [V38]
Locale to determine what language to use for the
requester text. If this tag is not used or its data
is NULL, the system’s current default locale will be
used. Default NULL.

RT_IntuiMsgFunc - (struct Hook *) [V38]
The requester will call this hook for each IDCMP
message it gets that doesn’t belong to its window.
Only applies if you used the RT_ShareIDCMP tag to share
the IDCMP port with the parent window. Parameters are

ReqTools 9 / 34

as follows:
A0 - (struct Hook *) your hook
A2 - (struct rtReqInfo *) your requester info
A1 - (struct IntuiMessage *) the message

After you have finished examining the message and your
hook returns, ReqTools will reply the message. So do
not reply the message yourself!

RT_Underscore - (char) [V38]
Indicates the symbol that precedes the character in the
gadget label to be underscored. This is to define a
keyboard shortcut for this gadget. Example: to define
the key ’Q’ as a keyboard shortcut for "Quit" and ’N’
for "Oh, No!" you would use the tag RT_Underscore, ’_’
and pass as gadfmt "_Quit|Oh, _No!". Do not use the
symbol ’%’ as it is used for string formatting. The
usual character to use is ’_’ like in the example.
IMPORTANT: the shortcuts defined using RT_Underscore
take precedence of the default shortcuts! It is for
example not wise to use a ’N’ for a positive response!
Pick your shortcuts carefully!

RT_TextAttr - (struct TextAttr *) [V38]
Use this font for the requester. Default is to use the
screen font. Note that the font must already be
opened by you. ReqTools will call OpenFont() on this
TextAttr, _not_ OpenDiskFont()! If the font cannot be
opened using OpenFont() the default screen font will
be used.

RTEZ_ReqTitle - (char *)
Title of requester window, default is "Request" unless
the requester has less than 2 responses, then the
default title is "Information".

RTEZ_Flags - (ULONG)
Flags for rtEZRequestA():

EZREQF_NORETURNKEY - turn off the RETURN key as
shortcut for positive response.

EZREQF_LAMIGAQUAL - keyboard shortcuts are limited
to Left Amiga ’V’ and ’B’, ESC
and RETURN.

EZREQF_CENTERTEXT - centers each line of body text
in the requester window. Useful
for about requesters.

RTEZ_DefaultResponse - (ULONG)
Response value that will be returned when the user
presses the return key. Will be ignored if the
EZREQF_NORETURNKEY flag is set. The text for this
response will be printed in bold. Default is 1.

RESULT
ret - 1 (TRUE) for leftmost (positive) response, then each consecutive
response will return 1 more, the rightmost (false) response will
return 0 (FALSE), so 1,2,3,...,num-1,0 -- or idcmp flag.

NOTE
Automatically adjusts the requester to the screen font.

rtEZRequestA() checks the pr_WindowPtr of your process to find the
screen to put the requester on.

ReqTools 10 / 34

BUGS
none known

SEE ALSO
exec.library/RawDoFmt(), rtReqHandlerA()

1.6 rtfilerequesta()

NAME rtFileRequestA()

ret = rtFileRequestA (filereq, filename, title, taglist);

APTR rtFileRequestA
(struct rtFileRequester *, char *, char *, struct TagItem *);
D0 A1 A2 A3 A0

ret = rtFileRequest (filereq, filename, title, tag1,...);

APTR rtFileRequest (struct rtFileRequester *, char *, char *, Tag,...);

DESCRIPTION
Get a directory and filename(s), or just a directory from the user.

’filename’ should point to an array of at least 108 chars. The filename
already in ’filename’ will be displayed in the requester when it comes
up. When the requester returns ’filename’ will probably have changed.

Using certain tags may result in the calling of a caller-supplied hook.

The hook will be called with A0 holding the address of your hook
structure (you may use the h_Data field to your own liking), A2 a pointer
to the requester structure calling the hook (’req’) and A1 a pointer to
an object. The object is variable and depends on what your hook is for.

This is an example of a hook suitable to be used with the RTFI_FilterFunc
tag:

SAS/C users can define their function thus:

BOOL __asm __saveds filterfunc (register __a0 struct Hook *filterhook,
register __a2 struct rtFileRequester *req,
register __a1 struct FileInfoBlock *fib)

{
BOOL accepted = TRUE;

/* examine fib to decide if you want this file in the requester */
...
return (accepted);

}

Your hook structure should then be initialized like this:

filterhook->h_Entry = filterfunc;
/* in this case no need to initialize hook->h_SubEntry */

ReqTools 11 / 34

filterhook->h_Data = your_userdata_if_needed;

You can also use a stub written in machine code to call
your function. (see ’utility/hooks.h’)

INPUTS
filereq - pointer to a struct rtFileRequester allocated with

rtAllocRequestA().
filename - pointer to an array of chars (must be 108 bytes big).
title - pointer to requester window title (null terminated).
taglist - pointer to a TagItem array.

TAGS
RT_Window - see rtEZRequestA()
RT_ReqPos - see rtEZRequestA()
RT_LeftOffset - see rtEZRequestA()
RT_TopOffset - see rtEZRequestA()
RT_PubScrName - see rtEZRequestA()
RT_Screen - see rtEZRequestA()
RT_ReqHandler - see rtEZRequestA()
RT_WaitPointer - see rtEZRequestA()
RT_LockWindow - [V38] see rtEZRequestA()
RT_ScreenToFront - [V38] see rtEZRequestA()
RT_ShareIDCMP - [V38] see rtEZRequestA()
RT_Locale - [V38] see rtEZRequestA()
RT_IntuiMsgFunc - (struct Hook *) [V38]

The requester will call this hook for each IDCMP
message it gets that doesn’t belong to its window.
Only applies if you used the RT_ShareIDCMP tag to
share the IDCMP port with the parent window.
Parameters are as follows:

A0 - (struct Hook *) your hook
A2 - (struct rtFileRequester *) your requester
A1 - (struct IntuiMessage *) the message

After you have finished examining the message and
your hook returns, ReqTools will reply the message.
So do not reply the message yourself!

RT_Underscore - (char) [V38]
Indicates the symbol that precedes the character in
a gadget’s label to be underscored. This will also
define the keyboard shortcut for this gadget.
Currently only needed for RTFI_OkText. Usually set
to ’_’.

RT_DefaultFont - (struct TextFont *)
This tag allows you to specify the font to be used
in the requester when the screen font is
proportional. Default is GfxBase->DefaultFont.

RT_TextAttr - (struct TextAttr *) [V38]
Use this font for the requester. Must be a fixed
width font, _not_ a proportional one. Default is to
use the screen font or the default font (if the
screen font is proportional). Note that the font
must already be opened by you. ReqTools will call
OpenFont() on this TextAttr, _not_ OpenDiskFont()!
If the font cannot be opened using OpenFont() or if
the font is proportional the default screen font
will be used (or the font set with RT_DefaultFont).

ReqTools 12 / 34

RTFI_Flags - (ULONG)
Several flags:

FREQF_NOBUFFER - do _not_ use a buffer to
remember directory contents
for the next time the file
requester is used.

FREQF_MULTISELECT - allow multiple files to be
selected. rtFileRequest() will
return a pointer to an
rtFileList structure which
will contain all selected
files. Use rtFreeFileList()
to free the memory used by
this file list.

FREQF_SELECTDIRS - set this flag if you wish to
enable the selecting of dirs
as well as files. You *must*
also set FREQF_MULTISELECT.
Directories will be returned
together with files in
rtFileList, but with StrLen
equal to -1. If you need the
length of the directory’s name
use strlen().

FREQF_SAVE - Set this if you are using the
requester to save or delete
something. Double-clicking
will be disabled so it is
harder to make a mistake and
select the wrong file. If the
user enters a non-existent
directory in the drawer string
gadget, a requester will
appear asking if the directory
should be created.

FREQF_NOFILES - Set this if you want to use
the requester to allow the
user to select a directory
rather than a file. Ideal for
getting a destination dir. May
be used with FREQF_MULTISELECT
and FREQF_SELECTDIRS.

FREQF_PATGAD - When this is set a pattern
gadget will be added to the
requester.

RTFI_Height - (ULONG)
Suggested height of file requester window.

RTFI_OkText - (char *)
Replacement text for "Ok" gadget, max 6 chars long.

RTFI_VolumeRequest - (ULONG) [V38]
The presence of this tag turns the file requester
into a volume/assign disk requester. This requester
can be used to get a device name ("DF0:", "DH1:",..)
or an assign ("C:", "FONTS:",...) from the user.
The result of this requester can be found in the
filereq->Dir field. The volume can also be changed
with rtChangeReqAttrA() and the RTFI_Dir tag. Note

ReqTools 13 / 34

that the user may edit the disk/assign names, or
enter a new one. Note also that the real device
name is returned, not the name of the volume in the
device. For example "DH1:", not "Hard1:".
The tag data (ULONG) is used to set following flags:

VREQF_NOASSIGNS - Do not include the assigns in
the list, only the real devices.

VREQF_NODISKS - Do not include devices, just
show the assigns.

VREQF_ALLDISKS - Show _all_ devices. Default
behavior is to show only those
devices which have valid disks
inserted into them. So if you
have no disk in drive DF0: it
will not show up. Set this flag
if you do want these devices
included.

NOTE: Do *NOT* use { RTFI_VolumeRequest, TRUE }!
You are then setting the VREQF_NOASSIGNS flag!
Use { RTFI_VolumeRequest, 0 } for a normal
volume requester.

NOTE: If you use the RTFI_FilterFunc described
below the third parameter will be a pointer
to a rtVolumeEntry structure rather than a
pointer to a FileInfoBlock structure!
Tech note: the DOS device list has been
unlocked, so it is safe to e.g. Lock() this
device and call Info() on this lock.

RTFI_FilterFunc - (struct Hook *) [V38]
Call this hook for each file in the directory being
read (or for each entry in the volume requester).
Parameters are as follows:

A0 - (struct Hook *) your hook
A2 - (struct rtFileRequester *) your filereq
A1 - (struct FileInfoBlock *) fib of file OR

(struct rtVolumeEntry *) device or assign
in case of a volume requester.

If your hook returns TRUE the file will be accepted.
If it returns FALSE the file will be skipped and
will not appear in the requester.
IMPORTANT NOTE: If you change your hook’s behavior

you _MUST_ purge the requester’s
buffer (using rtFreeReqBuffer())!

IMPORTANT NOTE: When this callback hook is called
from a volume requester the
pr_WindowPtr of your process will
be set to -1 so *no* DOS requesters
will appear when an error occurs!

RTFI_AllowEmpty - (BOOL) [V38]
If RTFI_AllowEmpty is TRUE an empty file string will
also be accepted and returned. Defaults to FALSE,
meaning that if the user enters no filename the
requester will be canceled. You should use this tag
as little as possible!

RESULT
ret - TRUE if the user selected a file (check ’filereq->Dir’ for the

ReqTools 14 / 34

directory and ’filename’ for the filename) or FALSE if the
requester was canceled -- or a pointer to a struct rtFileList
(if FREQF_MULTISELECT was used).

NOTE
You CANNOT call the file requester from a task because it uses DOS calls!

Automatically adjusts the requester to the screen font.
If the screen font is proportional the default font will be used.

If the requester got too big for the screen because of a very large font,
the topaz.font will be used.

rtFileRequest() checks the pr_WindowPtr of your process to find the
screen to put the requester on.

BUGS
none known

SEE ALSO

1.7 rtfontrequesta()

NAME rtFontRequestA()

bool = rtFontRequestA (fontreq, title, taglist);

BOOL rtFontRequestA (struct rtFontRequester *, char *, struct TagItem *);
D0 A1 A3 A0

bool = rtFontRequest (fontreq, title, tag1,...);

BOOL rtFontRequest (struct rtFontRequester *, char *, Tag,...);

DESCRIPTION
Let the user select a font and a style (optional).

INPUTS
fontreq - pointer to a struct rtFontRequester allocated with

rtAllocRequestA().
title - pointer to requester window title (null terminated).
taglist - pointer to a TagItem array.

TAGS
RT_Window - see rtEZRequestA()
RT_ReqPos - see rtEZRequestA()
RT_LeftOffset - see rtEZRequestA()
RT_TopOffset - see rtEZRequestA()
RT_PubScrName - see rtEZRequestA()
RT_Screen - see rtEZRequestA()
RT_ReqHandler - see rtEZRequestA()
RT_WaitPointer - see rtEZRequestA()
RT_LockWindow - [V38] see rtEZRequestA()
RT_ScreenToFront - [V38] see rtEZRequestA()
RT_ShareIDCMP - [V38] see rtEZRequestA()

ReqTools 15 / 34

RT_Locale - [V38] see rtEZRequestA()
RT_IntuiMsgFunc - (struct Hook *) [V38]
The requester will call this hook for each IDCMP
message it gets that doesn’t belong to its window.
Only applies if you used the RT_ShareIDCMP tag to
share the IDCMP port with the parent window.
Parameters are as follows:

A0 - (struct Hook *) your hook
A2 - (struct rtFontRequester *) your requester
A1 - (struct IntuiMessage *) the message

After you have finished examining the message and
your hook returns, ReqTools will reply the message.
So do not reply the message yourself!

RT_Underscore - (char) [V38]
Indicates the symbol that precedes the character in
a gadget’s label to be underscored. This will also
define the keyboard shortcut for this gadget.
Currently only needed for RTFO_OkText. Usually set
to ’_’.

RT_DefaultFont - (struct TextFont *)
This tag allows you to specify the font to be used in
the requester when the screen font is proportional.
Default is GfxBase->DefaultFont.

RT_TextAttr - [V38] see rtFileRequestA()
Remember: font cannot be proportional!

RTFO_Flags - (ULONG)
Several flags:

FREQF_NOBUFFER - do not buffer the font list
for subsequent calls to
rtFontRequestA().

FREQF_FIXEDWIDTH - only show fixed-width fonts.
FREQF_COLORFONTS - show color fonts also.
FREQF_CHANGEPALETTE - change the screen’s palette

to match that of a selected
color font.

FREQF_LEAVEPALETTE - leave the palette as it is
when exiting rtFontRequestA()
Useful in combination with
FREQF_CHANGEPALETTE.

FREQF_SCALE - allow fonts to be scaled
when they don’t exist in the
requested size.
(works on Kickstart 2.0 only,
has no effect on 1.2/1.3).

FREQF_STYLE - include gadgets so the user
may select the font’s style.

RTFO_Height - (ULONG)
Suggested height of font requester window.

RTFO_OkText - (char *)
Replacement text for "Ok" gadget. Maximum 6 chars.
(7 is still ok, but not esthetically pleasing)

RTFO_SampleHeight - (ULONG)
Height of font sample display in pixels (default 24).

RTFO_MinHeight - (ULONG)
Minimum font size displayed.

RTFO_MaxHeight - (ULONG)
Maximum font size displayed.

ReqTools 16 / 34

RTFO_FilterFunc - (struct Hook *) [V38]
Call this hook for each available font.
Parameters are as follows:

A0 - (struct Hook *) your hook
A2 - (struct rtFontRequester *) your filereq
A1 - (struct TextAttr *) textattr of font

If your hook returns TRUE the font will be accepted.
If it returns FALSE the font will be skipped and
will not appear in the requester.
IMPORTANT NOTE: If you change your hook’s behavior
you _MUST_ purge the requester’s buffer (using
rtFreeReqBuffer())!

RESULT
bool - TRUE if the user selected a font (freq->Attr holds the font),
FALSE if the requester was canceled.

NOTE
You CANNOT call the font requester from a task because it may use DOS
calls!

Automatically adjusts the requester to the screen font.
If the screen font is proportional the default font will be used.

If the requester got too big for the screen because of a very large font,
the topaz.font will be used.

rtFontRequest() checks the pr_WindowPtr of your process to find the
screen to put the requester on.

BUGS
none known

SEE ALSO

1.8 rtfreefilelist()

NAME rtFreeFileList()

rtFreeFileList (filelist);

void rtFreeFileList (struct rtFileList *);
A0

DESCRIPTION
Frees a filelist returned by rtFileRequest() when the FREQF_MULTISELECT
flag was set. Call this after you have scanned the filelist and you no
longer need it.

INPUTS
filelist - pointer to rtFileList structure, returned by rtFileRequest()

(may be NULL).

RESULT
none

ReqTools 17 / 34

BUGS
none known

SEE ALSO
rtFileRequest()

1.9 rtfreereqbuffer()

NAME rtFreeReqBuffer()

rtFreeReqBuffer (req);

void rtFreeReqBuffer (APTR);
A1

DESCRIPTION
Frees the buffer associated with ’req’. In case of a file requester this
function will deallocate the directory buffer, in case of a font
requester the font list.

It is safe to call this function for requesters that have no buffer, so
you may call this for all requesters to free as much memory as possible.

INPUTS
req - pointer to requester.

RESULT
none

BUGS
none known

SEE ALSO
rtFileRequest(), rtFontRequest()

1.10 rtfreerequest()

NAME rtFreeRequest()

rtFreeRequest (req);

void rtFreeRequest (APTR);
A1

DESCRIPTION
Free requester structure previously allocated by rtAllocRequestA().
This will also free all buffers associated with the requester, so there
is no need to call rtFreeReqBuffer() first.

INPUTS
req - pointer to requester (may be NULL).

ReqTools 18 / 34

RESULT
none

BUGS
none known

SEE ALSO
rtAllocRequestA()

1.11 rtgetlonga()

NAME rtGetLongA()

ret = rtGetLongA (&longvar, title, reqinfo, taglist);

ULONG rtGetLongA (ULONG *, char *, struct rtReqInfo *, struct TagItem *);
D0 A1 A2 A3 A0

ret = rtGetLong (&longvar, title, reqinfo, tag1,...);

ULONG rtGetLong (ULONG *, char *, struct rtReqInfo *, Tag,...);

DESCRIPTION
Puts up a requester to get a signed long (32-bit) number from the user.

’reqinfo’ can be used to customize the requester. For greater control
use the tags listed below. The advantage of the rtReqInfo structure is
that it is global, where tags have to be specified each function call.
See libraries/reqtools.[hi] for a description of the rtReqInfo structure.

INPUTS
&longvar - address of long (32 bit!) variable to hold result.
title - pointer to null terminated title of requester window.
reqinfo - pointer to a rtReqInfo structure allocated with

rtAllocRequest() or NULL.
taglist - pointer to a TagItem array.

TAGS
RT_Window - see rtEZRequestA()
RT_IDCMPFlags - see rtEZRequestA()
RT_ReqPos - see rtEZRequestA()
RT_LeftOffset - see rtEZRequestA()
RT_TopOffset - see rtEZRequestA()
RT_PubScrName - see rtEZRequestA()
RT_Screen - see rtEZRequestA()
RT_ReqHandler - see rtEZRequestA()
RT_WaitPointer - see rtEZRequestA()
RT_Underscore - [V38] see rtEZRequestA()

Only when you also use the RTGL_GadFmt tag.
RT_LockWindow - [V38] see rtEZRequestA()
RT_ScreenToFront - [V38] see rtEZRequestA()
RT_ShareIDCMP - [V38] see rtEZRequestA()
RT_Locale - [V38] see rtEZRequestA()
RT_IntuiMsgFunc - [V38] see rtEZRequestA()

ReqTools 19 / 34

RT_TextAttr - [V38] see rtEZRequestA()
Note that under 1.2/1.3 the string gadget’s font
will remain the screen font.

RTGL_Min - (ULONG)
Minimum allowed value. If the user tries to enter a
smaller value the requester will refuse to accept it.

RTGL_Max - (ULONG)
Maximum allowed value, higher values are refused.

RTGL_Width - (ULONG)
Width of requester window in pixels. This is only a
suggestion. rtGetLongA() will not go below a
certain width.

RTGL_ShowDefault - (BOOL)
If this is TRUE (default) the value already in
’longvar’ will be displayed in the requester when it
comes up. If set to FALSE the requester will be empty.

RTGL_GadFmt - (char *) [V38]
Using this tag you can offer the user several
responses. See rtEZRequestA() for more information.
Note that selecting this gadget is considered a
positive response so the integer in the gadget is
copied to ’&longvar’.

RTGL_GadFmtArgs - (APTR) [V38]
If you used formatting codes with RTGL_GadFmt use this
tag to pass the arguments.

RTGL_Invisible - (BOOL) [V38]
Using this tag you can switch on invisible typing.
Very useful if you need to get something like a
code number from the user. It is strongly advised to
use { RTGL_ShowDefault, FALSE } or the user may get
very confused! Default is FALSE.

RTGL_Backfill - (BOOL) [V38]
Backfill requester window with pattern. Default TRUE.

RTGL_TextFmt - (char *) [V38]
Print these lines of text above the gadget in the
requester. Very useful to inform the user of what
he should enter. Most of the time you will also want
to set the GLREQF_CENTERTEXT flag. If you set the
RTGL_Backfill tag to FALSE _no_ recessed border will
be placed around the text. Formatting codes may be
used in the string (see RTGL_TextFmtArgs tag).

RTGL_TextFmtArgs - (APTR) [V38]
If you used formatting codes with RTGL_TextFmt use
this tag to pass the arguments.

RTGL_Flags - (ULONG) [V38]
GLREQF_CENTERTEXT - centers each line of text above

gadget in the requester window.
Should be generally set.

RESULT
ret - TRUE if user entered a number, FALSE if not. If one of your idcmp
flags caused the requester to end ’ret’ will hold this flag.
If you used the RTGL_GadFmt tag the return code will hold the
value of the response as with rtEZRequestA().

NOTE
’longvar’ will NOT change if the requester is aborted.

ReqTools 20 / 34

Automatically adjusts the requester to the screen font.

rtGetLongA() checks the pr_WindowPtr of your process to find the
screen to put the requester on.

BUGS
none known

SEE ALSO

1.12 rtgetstringa()

NAME rtGetStringA()

ret = rtGetStringA (buffer, maxchars, title, reqinfo, taglist);

ULONG rtGetStringA
(UBYTE *, ULONG, char *, struct rtReqInfo *, struct TagItem *);

D0 A1 D0 A2 A3 A0

ret = rtGetString (buffer, maxchars, title, reqinfo, tag1,...);

ULONG rtGetString (UBYTE *, ULONG, char *, struct rtReqInfo *, Tag,...);

DESCRIPTION
Puts up a string requester to get a line of text from the user.
The string present in ’buffer’ upon entry will be displayed, ready to
be edited.

’reqinfo’ can be used to customize the requester. For greater control
use the tags listed below. The advantage of the rtReqInfo structure is
that it is global, where tags have to be specified each function call.
See libraries/reqtools.[hi] for a description of the rtReqInfo structure.

INPUTS
buffer - pointer to buffer to hold characters entered.
maxchars - maximum number of characters that fit in buffer (EX-cluding

the 0 to terminate the string !).
title - pointer to null terminated title of requester window.
reqinfo - pointer to a rtReqInfo structure allocated with

rtAllocRequest() or NULL.
taglist - pointer to a TagItem array.

TAGS
RT_Window - see rtEZRequestA()
RT_IDCMPFlags - see rtEZRequestA()
RT_ReqPos - see rtEZRequestA()
RT_LeftOffset - see rtEZRequestA()
RT_TopOffset - see rtEZRequestA()
RT_PubScrName - see rtEZRequestA()
RT_Screen - see rtEZRequestA()
RT_ReqHandler - see rtEZRequestA()
RT_WaitPointer - see rtEZRequestA()
RT_Underscore - [V38] see rtEZRequestA()

ReqTools 21 / 34

Only when you also use the RTGS_GadFmt tag.
RT_LockWindow - [V38] see rtEZRequestA()
RT_ScreenToFront - [V38] see rtEZRequestA()
RT_ShareIDCMP - [V38] see rtEZRequestA()
RT_Locale - [V38] see rtEZRequestA()
RT_IntuiMsgFunc - [V38] see rtEZRequestA()
RT_TextAttr - [V38] see rtEZRequestA()

Note that under 1.2/1.3 the string gadget’s font
will remain the screen font.

RTGS_Width - (ULONG)
Width of requester window in pixels. This is only a
suggestion. rtGetStringA() will not go below a certain
width.

RTGS_AllowEmpty - (BOOL)
If RTGS_AllowEmpty is TRUE an empty string will also
be accepted and returned. Defaults to FALSE, meaning
that if the user enters an empty string the requester
will be canceled.

RTGS_GadFmt - (char *) [V38]
Using this tag you can offer the user several
responses. See rtEZRequestA() for more information.
Note that selecting this gadget is considered a
positive response so the string in the gadget is
copied to ’buffer’.

RTGS_GadFmtArgs - (APTR) [V38]
If you used formatting codes with RTGS_GadFmt use this
tag to pass the arguments.

RTGS_Invisible - (BOOL) [V38]
Using this tag you can switch on invisible typing.
Very useful if you need to get something like a
password from the user. It is strongly advised to use
an empty initial string or the user may get very
confused! Default is FALSE.

RTGS_Backfill - (BOOL) [V38]
Backfill requester window with pattern. Default TRUE.

RTGS_TextFmt - (char *) [V38]
Print these lines of text above the gadget in the
requester. Very useful to inform the user of what
he should enter. Most of the time you will also want
to set the GSREQF_CENTERTEXT flag. If you set the
RTGS_Backfill tag to FALSE _no_ recessed border will
be placed around the text. Formatting codes may be
used in the string (see RTGS_TextFmtArgs tag).

RTGS_TextFmtArgs - (APTR) [V38]
If you used formatting codes with RTGS_TextFmt use
this tag to pass the arguments.

RTGS_Flags - (ULONG) [V38]
GSREQF_CENTERTEXT - centers each line of text above

gadget in the requester window.
Should be generally set.

RESULT
ret - TRUE if user entered something, FALSE if not. If one of your idcmp
flags caused the requester to end ’ret’ will hold this flag.
If you used the RTGS_GadFmt tag the return code will hold the
value of the response as with rtEZRequestA().

ReqTools 22 / 34

NOTE
The contents of the buffer will NOT change if the requester is aborted.

Automatically adjusts the requester to the screen font.

rtGetStringA() checks the pr_WindowPtr of your process to find the
screen to put the requester on.

BUGS
none known

SEE ALSO

1.13 rtgetvscreensize()

NAME rtGetVScreenSize()

rtGetVScreenSize (screen, widthptr, heightptr);

ULONG rtGetVScreenSize (struct Screen *, ULONG *, ULONG *);
D0 A0 A1 A2

DESCRIPTION
Use this function to get the size of the visible portion of a screen.

The value returned by rtGetVScreenSize() can be used for vertical
spacing. It will be larger for interlaced and productivity screens.
Using this number for spacing will assure your requester will look
good on an interlaced and a non-interlaced screen.

Current return codes are 2 for non-interlaced and 4 for interlaced.
These values may change in the future, don’t depend on them too much.
They will in any case remain of the same magnitude.

INPUTS
screen - pointer to the screen.
widthptr - address of an ULONG variable to hold the width.
heightptr - address of an ULONG variable to hold the height.

RESULT
none

NOTE
This function is for the advanced ReqTools user.

BUGS

SEE ALSO

1.14 rtlockwindow()

ReqTools 23 / 34

NAME rtLockWindow() [V38]

windowlock = rtLockWindow (window);

APTR rtLockWindow (struct Window *);
D0 A0

DESCRIPTION
Lock a window so it will no longer accept any user input. The only
functions left to the user are depth arrangement and window dragging.
All gadgets will be un-selectable and the window can not be resized.
It will also get the standard wait pointer set. The pointer at the
time of locking will be restored when the window is unlocked.

You may nest calls to rtLockWindow() and rtUnlockWindow(). Just make
sure you unlock the window in the correct (opposite) order.

See the RT_LockWindow tag for an automatic way of locking your window.

Use this function (and rtUnlockWindow()) instead of rtSetWaitPointer().

INPUTS
window - pointer to the window to be locked.

RESULT
windowlock - a pointer to a (private) window lock. You must pass this
to rtUnlockWindow() to unlock the window again.
Never mind if this is NULL. This means there was not enough
memory and the window will not be locked. There is no
sense in reporting this, just carry on and pass the NULL
window lock to rtUnlockWindow().

NOTE
The wait pointer will look exactly like the standard Workbench 2.0
wait pointer. In combination with PointerX, ClockTick or LacePointer
the handle will turn.

BUGS
none known

SEE ALSO

1.15 rtpaletterequesta()

NAME rtPaletteRequestA()

color = rtPaletteRequestA (title, reqinfo, taglist);

LONG rtPaletteRequestA (char *, struct rtReqInfo *, struct TagItem *);
D0 A2 A3 A0

color = rtPaletteRequest (title, reqinfo, tag1,...);

LONG rtPaletteRequest (char *, struct rtReqInfo *, Tag,...);

ReqTools 24 / 34

DESCRIPTION
Put up a palette requester so the user can change the screen’s colors.

The colors are changed in the viewport of the screen the requester will
appear on, so that is where you will find them after the palette
requester returns.

The selected color is returned, so you can also use this requester to let
the user select a color.

’reqinfo’ can be used to customize the requester. For greater control
use the tags listed below. The advantage of the rtReqInfo structure is
that it is global, where tags have to be specified each function call.
See libraries/reqtools.[hi] for a description of the rtReqInfo structure.

INPUTS
title - pointer to requester window title (null terminated).
reqinfo - pointer to a rtReqInfo structure allocated with

rtAllocRequest() or NULL.
taglist - pointer to a TagItem array.

TAGS
RT_Window - see rtEZRequestA()
RT_ReqPos - see rtEZRequestA()
RT_LeftOffset - see rtEZRequestA()
RT_TopOffset - see rtEZRequestA()
RT_PubScrName - see rtEZRequestA()
RT_Screen - see rtEZRequestA()
RT_ReqHandler - see rtEZRequestA()
RT_WaitPointer - see rtEZRequestA()
RT_LockWindow - [V38] see rtEZRequestA()
RT_ScreenToFront - [V38] see rtEZRequestA()
RT_ShareIDCMP - [V38] see rtEZRequestA()
RT_Locale - [V38] see rtEZRequestA()
RT_IntuiMsgFunc - [V38] see rtEZRequestA()
RT_DefaultFont - (struct TextFont *)

This tag allows you to specify the font to be used in
the requester when the screen font is proportional.
Default is GfxBase->DefaultFont.

RT_TextAttr - [V38] see rtFileRequestA()
Remember: font cannot be proportional!

RTPA_Color - (ULONG)
Initially selected color of palette. Default is 1.

RESULT
color - the color number of the selected color or -1 if the user

canceled the requester.

NOTE
Automatically adjusts the requester to the screen font.
If the screen font is proportional the default font will be used.

If the requester got too big for the screen because of a very large font,
the topaz.font will be used.

rtPaletteRequestA() checks the pr_WindowPtr of your process to find the

ReqTools 25 / 34

screen to put the requester on.

BUGS
none known

SEE ALSO

1.16 rtreqhandlera()

NAME rtReqHandlerA()

ret = rtReqHandlerA (handlerinfo, sigs, taglist);

ULONG rtReqHandlerA (struct rtHandlerInfo *, ULONG, struct TagItem *);
D0 A1 D0 A0

ret = rtReqHandler (handlerinfo, sigs, tag1,...);

ULONG rtReqHandler (struct rtHandlerInfo *, ULONG, Tag,...);

DESCRIPTION
This function should be called if you used the RT_ReqHandler tag with a
requester function.

The requester you used the tag with will have returned immediately after
its initialization and will have initialized a pointer to a rtHandlerInfo
structure for you.
You should now do the following:

Check the DoNotWait field. If it is FALSE you have to wait for the
signals in the WaitMask field (plus your own signals if you like).
If any of the signals in WaitMask are received or DoNotWait was not FALSE
you have to call rtReqHandlerA() and check its return value for one of
the following values:

CALL_HANDLER - Check DoNotWait again, Wait() if you have to
and call rtReqHandlerA() again. In other words, loop.
everything else - normal return value, requester has finished. This
return value will be the same as if the requester
had run normally.

You must pass the signals you received to rtReqHandlerA().

NOTE: if you want to wait for your own signals do not do so if
DoNotWait is TRUE. Call rtReqHandlerA() and if you must know
if one of your signals arrived use SetSignal() to find this out.
If you are waiting for a message to arrive at a message port you
can simple call GetMsg() and check if it is non-null.
DoNotWait will naturally only be TRUE when it absolutely,
positively has to be. A multitasking machine as the Amiga should
use Wait() as much as possible.

This is an example of a "requester loop":

...

ReqTools 26 / 34

struct rtHandlerInfo *hinfo;
ULONG ret, mymask, sigs;

...
/* calculate our mask */
mymask = 1 << win->UserPort->mp_SigBit;

/* We use the RT_ReqHandler tag to cause the requester to return
after initializing.
Check the return value to see if this setup went ok. */

if (rtFontRequest (req, "Font", RT_ReqHandler, &hinfo, TAG_END)
== CALL_HANDLER) {

do {
/* Wait() if we can */
if (!hinfo->DoNotWait)

sigs = Wait (hinfo->WaitMask | mymask);

/* check our own message port */
while (msg = GetMsg (win->UserPort)) {

...
/* here we handle messages received at our windows IDCMP ...

port */
...
}

/* let the requester do its thing (remember to pass ’sigs’) */
ret = rtReqHandler (hinfo, sigs, TAG_END);

/* continue this loop as long as the requester is up */
} while (ret == CALL_HANDLER)

/* when we get here we know the requester has finished, ’ret’
is the return code. */

...
}

else notify ("Error opening requester!");
...

INPUTS
handlerinfo - pointer to handler info structure initialized by using

the RT_ReqHandler tag when calling a requester function.
sigs - the signals received by previous wait, will be ignored if

hinfo->DoNotWait was TRUE.
taglist - pointer to a TagItem array.

TAGS
RTRH_EndRequest - supplying this tag will end the requester. The return

code from rtReqHandlerA() will _not_ be CALL_HANDLER,
but the requester return code. If the tagdata of this
tag is REQ_CANCEL the requester will be canceled, if it
is REQ_OK the requester will be ok-ed.
In case of an EZRequest tagdata should be the return
code of the requester (TRUE, FALSE or 2,3,4,...).

RESULT
ret - CALL_HANDLER if you have to call rtReqHandlerA() again,
or the normal return value from the requester.

ReqTools 27 / 34

BUGS
none known

SEE ALSO
rtEZRequest() (RT_ReqHandler explanation)

1.17 rtscreenmoderequesta()

NAME rtScreenModeRequestA() [V38]

ret = rtScreenModeRequestA (screenmodereq, title, taglist);

BOOL rtScreenModeRequestA
(struct rtScreenModeRequester *, char *, struct TagItem *);

D0 A1 A3 A0

ret = rtScreenModeRequest (screenmodereq, title, tag1,...);

BOOL rtScreenModeRequest
(struct rtScreenModeRequester *, char *, Tag,...);

DESCRIPTION

IMPORTANT THIS REQUESTER IS ONLY AVAILABLE FROM KICKSTART 2.0 ONWARDS!
The 1.3 version of ReqTools also contains the screenmode
requester, but unless you are running 2.0 or higher it will
not come up. So what you essentially have to do is NOT
call rtScreenModeRequestA() if your program is running on
a machine with Kickstart 1.2/1.3. You can safely call
rtScreenModeRequestA() if you are running on a 2.0 machine,
even if the user has installed the 1.3 version of ReqTools.

Get a screen mode from the user.

The user will be able to pick a screen mode by name, enter the size and
the number of colors (bitplane depth).

rtScreenModeRequestA() will call the appropriate 2.0 functions to get all
the mode’s information. If no name has been assigned to the mode one
will be constructed automatically.

INPUTS
screenmodereq - pointer to a struct rtScreenModeRequester allocated with

rtAllocRequestA().
title - pointer to requester window title (null terminated).
taglist - pointer to a TagItem array.

TAGS
RT_Window - see rtEZRequestA()
RT_ReqPos - see rtEZRequestA()
RT_LeftOffset - see rtEZRequestA()
RT_TopOffset - see rtEZRequestA()
RT_PubScrName - see rtEZRequestA()
RT_Screen - see rtEZRequestA()

ReqTools 28 / 34

RT_ReqHandler - see rtEZRequestA()
RT_WaitPointer - see rtEZRequestA()
RT_LockWindow - see rtEZRequestA()
RT_ScreenToFront - see rtEZRequestA()
RT_ShareIDCMP - see rtEZRequestA()
RT_Locale - see rtEZRequestA()
RT_IntuiMsgFunc - (struct Hook *) [V38]

The requester will call this hook for each IDCMP
message it gets that doesn’t belong to its window.
Only applies if you used the RT_ShareIDCMP tag to
share the IDCMP port with the parent window.
Parameters are as follows:

A0 - (struct Hook *) your hook
A2 - (struct rtScreenModeRequester *) your req
A1 - (struct IntuiMessage *) the message

After you have finished examining the message and
your hook returns, ReqTools will reply the message.
So do not reply the message yourself!

RT_Underscore - (char) [V38]
Indicates the symbol that precedes the character in
a gadget’s label to be underscored. This will also
define the keyboard shortcut for this gadget.
Currently only needed for RTSC_OkText. Usually set
to ’_’.

RT_DefaultFont - (struct TextFont *)
This tag allows you to specify the font to be used
in the requester when the screen font is
proportional. Default is GfxBase->DefaultFont.

RT_TextAttr - [V38] see rtFileRequestA()
Remember: font cannot be proportional!

RTSC_Flags - (ULONG)
Several flags:

SCREQF_OVERSCANGAD - Add an overscan cycle
gadget to the requester.
After the requester returns
you may read the overscan
type in ’rq->OverscanType’
If this is 0 no overscan is
selected (Regular Size), if
non-zero it holds one of
the OSCAN_... values
defined in the include file
’intuition/screens.[h|i]’.

SCREQF_AUTOSCROLLGAD - Add an autoscroll checkbox
gadget to the requester.
After the requester returns
read ’smreq->AutoScroll’ to
see if the user prefers
autoscroll to be on or off.

SCREQF_SIZEGADS - Add width and height
gadgets to the requester.
If you do not add these
gadgets the width and
height returned will be the
default width and height
for the selected overscan
type.

ReqTools 29 / 34

SCREQF_DEPTHGAD - Add a depth slider gadget
to the requester. If you
do not add a depth gadget,
the depth returned will be
the maximum depth this mode
can be opened in.

SCREQF_NONSTDMODES - Include all modes. Unless
this flag is set
rtScreenModeRequestA()
will exclude nonstandard
modes. Nonstandard modes
are presently HAM and EHB
(ExtraHalfBrite). So unless
you are picking a mode to
do some rendering in leave
this flag unset. Without
this flag set the mode
returned will be a normal
bitplaned mode.

SCREQF_GUIMODES - Set this flag if you are
getting a screen mode to
open a user interface
screen in. The modes
shown will be standard
modes with a high enough
resolution (minumum 640
pixels). If this flag is
set the SCREQF_NONSTDMODES
flag is ignored.

RTSC_Height - (ULONG)
Suggested height of screenmode requester window.

RTSC_OkText - (char *)
Replacement text for "Ok" gadget, max 6 chars long.

RTSC_MinWidth - (UWORD)
The minimum display width allowed.

RTSC_MaxWidth - (UWORD)
The maximum display width allowed.

RTSC_MinHeight - (UWORD)
The minimum display height allowed.

RTSC_MaxHeight - (UWORD)
The maximum display height allowed.

RTSC_MinDepth - (UWORD)
The minimum display depth allowed. Modes with a
minimum display depth lower than this value will not
be included in the list.

RTSC_MaxDepth - (UWORD)
The maximum display depth allowed.

RTSC_PropertyFlags - (ULONG)
A mode must have these property flags to be
included. Only bits set in RTSC_PropertyMask are
considered.

RTSC_PropertyMask - (ULONG)
Mask to apply to RTSC_PropertyFlags to determine
which bits to consider. See use of ’newsignals’ and
’signalmask’ in exec.library/SetSignal(). Default
is to consider all bits in RTSC_PropertyFlags as
significant.

ReqTools 30 / 34

RTSC_FilterFunc - (struct Hook *)
Call this hook for each display mode id in the
system’s list.
Parameters are as follows:

A0 - (struct Hook *) your hook
A2 - (struct rtScreenModeRequester *) your req
A1 - (ULONG) 32-bit extended mode id

If your hook returns TRUE the mode will be accepted.
If it returns FALSE the mode will be skipped and
will not appear in the requester.

RESULT
ret - FALSE if the requester was canceled or TRUE if the user selected a
screen mode (check ’smreq->DisplayID’ for the 32-bit extended
display mode, ’smreq->DisplayWidth’ and ’smreq->DisplayHeight’ for
the display size, ’smreq->DisplayDepth’ for the screen’s depth) or
FALSE if the requester was canceled.

NOTE
Automatically adjusts the requester to the screen font.
If the screen font is proportional the default font will be used.

If the requester got too big for the screen because of a very large font,
the topaz.font will be used.

rtScreenModeRequest() checks the pr_WindowPtr of your process to find the
screen to put the requester on.

BUGS
none known

SEE ALSO
graphics/GetDisplayInfoData() graphics/displayinfo.h
exec.library/SetSignal()
Intuition/SA_DisplayID screen tag

1.18 rtscreentofrontsafely()

NAME rtScreenToFrontSafely()

rtScreenToFrontSafely (screen);

void rtScreenToFrontSafely (struct Screen *);
A0

DESCRIPTION
Brings the specified screen to the front of the display, but only after
checking it is still in the list of currently open screens.

This function can be used to bring a screen back to the front of the
display after bringing another screen to the front. If the first screen
closed while you where busy it is harmless to call this function, unlike
calling the normal ScreenToFront().

INPUTS

ReqTools 31 / 34

screen - pointer to the screen.

RESULT
none

NOTE
This function is for the advanced ReqTools user.

BUGS
none known

SEE ALSO
intuition.library/ScreenToFront()

1.19 rtsetreqposition()

NAME rtSetReqPosition()

rtSetReqPosition (reqpos, newwindow, screen, window);

void rtSetReqPosition
(ULONG, struct NewWindow *, struct Screen *, struct Window *);

D0 A0 A1 A2

DESCRIPTION
Sets newwindow->LeftEdge and newwindow->TopEdge according to reqpos.

Except for the left- and topedge ’newwindow’ must already be completely
initialized.

The newwindow->LeftEdge and newwindow->TopEdge already in the NewWindow
structure will be used as offsets to the requested position. If you’d
like a window at position (25,18) from the top left of the screen you
would fill newwindow->LeftEdge with 25, newwindow->TopEdge with 18 and
call rtSetReqPosition() with reqpos equal to REQPOS_TOPLEFTSCR.

Don’t forget to make sure newwindow->LeftEdge and newwindow->TopEdge
are 0 if you don’t want to offset your window.

In case of REQPOS_POINTER you can use them to point to your window’s
hotspot, where the pointer should point. If you call rtSetReqPosition()
with the left- and topedge equal to 0 you’d get a window appearing with
its top- and leftedge equal to the current pointer position.

Note that the screen pointer may _NOT_ be NULL. If you have your own
window open you can supply yourwindow->WScreen to this function.

The window pointer is only required if reqpos is REQPOS_CENTERWIN or
REQPOS_TOPLEFTWIN. Even in this case you may call rtSetReqPosition()
with a NULL window pointer. The positions will simply fall back to
REQPOS_CENTERSCR and REQPOS_TOPLEFTSCR respectively.

INPUTS
reqpos - one of the REQPOS_... constants usable with RT_ReqPos.
newwindow - pointer to your (already initialized) NewWindow structure.

ReqTools 32 / 34

screen - pointer to screen the requester will appear on.
window - pointer to parent window or NULL.

RESULT
none

NOTE
This function is for the advanced ReqTools user.

BUGS
none known

SEE ALSO
RT_ReqPos tag

1.20 rtsetwaitpointer()

NAME rtSetWaitPointer()

rtSetWaitPointer (window);

void rtSetWaitPointer (struct Window *);
A0

DESCRIPTION
Change the window’s pointer image to that of a wait pointer. Call this
function whenever your program will be busy doing something for a lengthy
period of time.

It is recommended you call this function before calling any of the
requester functions. This way if the user clicks in your window he will
know he must respond to the requester before doing anything else. Also
see the RT_WaitPointer tag for an automatic way of setting the wait
pointer. If you are using ReqTools V38+ check out the RT_LockWindow tag!

INPUTS
window - pointer to the window to receive the wait pointer.

RESULT
none

NOTE
The wait pointer will look exactly like the standard Workbench 2.0
wait pointer. In combination with PointerX, ClockTick or LacePointer
the handle will turn.

BUGS
none known

SEE ALSO

1.21 rtspread()

ReqTools 33 / 34

NAME rtSpread()

rtSpread (posarray, sizearray, totalsize, min, max, num);

void rtSpread (ULONG *, ULONG *, ULONG, ULONG, ULONG, ULONG);
A0 A1 D0 D1 D2 D3

DESCRIPTION
Evenly spread a number of objects over a certain length.
Primary use is for arrangement of gadgets in a window.

Example:

’sizearray’ holds following values: 4, 6, 4, 2 and 8,
’totalsize’ is 24 (= 4 + 6 + 4 + 2 + 8),
’min’ is 3, ’max’ is 43,
and finally, ’num’ is 5.

After calling rtSpread() ’posarray’ would hold the following
values: 3, 11, 19, 26 and 31.

My attempt at a visual representation:

| |
| | | |
| OOOO OOOOOO OOOO OO OOOOOOOO |
| | | |
| 1 1 2 2 3 3 4 4
0----5----0----5----0----5----0----5----0----5

INPUTS
posarray - pointer to array to be filled with positions.
sizearray - pointer to array of sizes.
totalsize - total size of all objects (sum of all values in sizearray).
min - first position to use.
max - last position, first _NOT_ to use.
num - number of objects (size of posarray and sizearray).

RESULT
none

NOTE
This function is for the advanced ReqTools user.

BUGS
none known

SEE ALSO

1.22 rtunlockwindow()

NAME rtUnlockWindow() [V38]

rtUnlockWindow (window, windowlock);

ReqTools 34 / 34

void rtUnlockWindow (struct Window *, APTR);
A0 A1

DESCRIPTION
Unlock a window previously locked with rtLockWindow(). The window will
once again accept user input and will get its original mouse pointer
back (default or custom).

INPUTS
window - pointer to the window to be unlocked.
windowlock - the windowlock pointer returned by rtLockWindow(), may
be NULL.

RESULT
none

BUGS
none known

SEE ALSO

	ReqTools
	Table Of Contents
	rtallocrequesta()
	rtchangereqattra()
	rtclosewindowsafely()
	rtezrequesta()
	rtfilerequesta()
	rtfontrequesta()
	rtfreefilelist()
	rtfreereqbuffer()
	rtfreerequest()
	rtgetlonga()
	rtgetstringa()
	rtgetvscreensize()
	rtlockwindow()
	rtpaletterequesta()
	rtreqhandlera()
	rtscreenmoderequesta()
	rtscreentofrontsafely()
	rtsetreqposition()
	rtsetwaitpointer()
	rtspread()
	rtunlockwindow()

