Summary

Summary

] COLLABORATORS
TITLE :
Summary
ACTION NAME DATE SIGNATURE
WRITTEN BY December 6, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Summary iii
1 Summary 1
L1 A++Class Summary o oo e e e e e e e e e e 1
1.2 at+inheritancetree L L L L. e e e e 1
1.3 at+4application e e e 2

1.4 appobject

Summary

Chapter 1

Summary

1.1 A++ Class Summary

A++ Class summary - A view through the library

(Shate: 1994/05/23 14:27:48 §)

A++ APPObject class

A++ Doubly Linked List classes
A++ LivingObject class

A++ SignalResponder class

A++ Timer class

A++ TimedMsgPort class

A++ AttrList class

A++ IntuiObject class
A++ GraphicObject class
A++ Gadget classes

A++ Window classes

A++ DrawArea classes

A++ Inheritance Tree

AA

How A++ applications are build up

Open questions and problems (maybe you find a solution?)

—-> Back to the root menu..

1.2 a++inheritancetree

APPObject

\
ListC<——-MapArray<-—--IntuiObject--->ITransponder—-—-—->AttrList

Summary

RectObject
| \ \
| GraphicObject---->GBorder
\ / \ \
N/ \ ScreenC
\/ \
/\ WindowCV-—->IntuiMessageC
/ N\ |
/ \ |
/ DrawArea——|—-—>FontC
/ \ |
/ \ |
GadgetCV GWindow
/ | \
/ | \
/ | \
/ | \

StdGadget BoopsiGadget GT_Gadget

A-——>B : "A uses B"-relation

A
| : "B is derived from A"-relation
B

1.3 a++application

Every A++ application that uses IntuiObjects, that is every application with
an Intuition® graphical user interface, has the same pattern:

void APPmain() // NOTE: int main(argc,argv) is defined in ’APPmain.cxx’

{
// create objects that represent the application (any objects you like)
// (of course you can create and destroy objects anywhere in your
// application.)

// enter the main event loop
while (running) // control the loop yourself
{
SignalResponder::WaitSignal () ;
// each received signal is processed within WaitSignal() .
// WaitSignal () returnes after each signal.
// Usually you will not do anything here in this loop.
// Action takes place in event callbacks on objects.
// "Think object-oriented!"

The C standard main function is defined in "APPmain.cxx" which is within
the A++ link library ("aplusplus.lib").

By simply adding a SignalResponder for the CTRL-C_BREAK signal, that breaks

Summary

3/4

the loop, the program can be terminated at any point by sending a BREAK
signal to it, either with pressing CTRL-C in the standard input window (CLI)
or by use of the ’'break <process-no.>’ command. Look at the demo programs.

1.4 appobject

APPObject class

The APPObject class is one root class for the A++ classes, actually it’s the

root

class for most A++ classes.

It provides an object status report and introduces a runtime type inquiry
mechanism. All derived classes have to support this runtime type inquiry, too.

The APPObject plays an important role during the constructor execution of
any object:

- constructors are invoked in order from base class towards derived

cl

asses. So, APPObject::APPObject is called first and sets object status

to APPOBJECT_INVALID which is no error status!
— FEach derived class’ constructor now has to check for the validity of the
object in construction.

if Ok () returns TRUE do the constructor work and on successfull
initialisation set the object to a valid state with ’setID(id_number)’,
where ’id_number’ is >0. If your constructor failed to allocate some
resources etc., use ’'setError (error_number)’ to set a class specific
error code.

if Ok () returns FALSE only initialise for safe destruction (do not
allocate any resources) and keep off the ’'setID’ method so that

the error code can be read from the class using code.

The class user who creates an object should test it’s wvalidity with "0k ()’.
The macro "APPOK ()’ checks a given object pointer being NULL before applying

"0k ()

On ob
APPOB

myPro

{
De

if

//
{

}
el

{

" to it.

ject deletion, the APPObject base class sets the object status to
JECT_INVALID, thus causing obj->0k () to return FALSE.

cedure ()
rivedObject #*obj = new DerivedObject ();

(obj) // check for memory allocation failure

if (obj-—>0k()) // check validity of the created object

both if stmnts can be replaced by ’'if (APPOK(obij)’
// work on the object
se

cerr << "Initialisation error occured: " << obj->error () << endl;
delete obj; // free the memory allocated for the object data

Summary

4/4

Class implementors are recommended to check the base class validity within
their constructor:

class MyClass : private InheritedClass, virtual public APPObject
{
public:
MyClass ()
{
if (Ok()) // has an error already occured ?
{
// at this point the object has the class ID of the last class in
the
// inheritance list.
if (initialise()==FALSE) // class initialisation
{
#define MYCLASS_SOMETHING_FAILED (MY_CLASS+1)
_ierror (MYCLASS_SOMETHING_FAILED) ;
// set the error variable to a value and
// print the error string "MYCLASS_SOMETHING_FAILED" to stderr
}
else setID (MY_CLASS);
}
else // initialise only for SAFE destruction, no resource allocation
{
}

And define a personal class ID like this
#define MY_CLASS xxx

Do not forget to set up the necessary support for the Type_info class,
the A++ Runtime-Type-Inquiry mechanism.

	Summary
	A++ Class Summary
	a++inheritancetree
	a++application
	appobject

