
bzip2 and libbzip2

a program and library for data
ompression

opyright (C) 1996-2000 Julian Seward

version 1.0 of 21 Mar
h 2000

Julian Seward

1

This program, bzip2, and asso
iated library libbzip2, are Copyright (C) 1996-2000 Julian

R Seward. All rights reserved.

Redistribution and use in sour
e and binary forms, with or without modi�
ation, are per-

mitted provided that the following
onditions are met:

� Redistributions of sour
e
ode must retain the above
opyright noti
e, this list of
on-

ditions and the following dis
laimer.

� The origin of this software must not be misrepresented; you must not
laim that you

wrote the original software. If you use this software in a produ
t, an a
knowledgment

in the produ
t do
umentation would be appre
iated but is not required.

� Altered sour
e versions must be plainly marked as su
h, and must not be misrepresented

as being the original software.

� The name of the author may not be used to endorse or promote produ
ts derived from

this software without spe
i�
 prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR \AS IS" AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-

POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-

QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-

BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Julian Seward, Cambridge, UK.

jseward�a
m.org

http://sour
eware.
ygnus.
om/bzip2

http://www.
a
heprof.org

http://www.muraroa.demon.
o.uk

bzip2/libbzip2 version 1.0 of 21 Mar
h 2000.

PATENTS: To the best of my knowledge, bzip2 does not use any patented algorithms.

However, I do not have the resour
es available to
arry out a full patent sear
h. Therefore

I
annot give any guarantee of the above statement.

Chapter 1: Introdu
tion 2

1 Introdu
tion

bzip2
ompresses �les using the Burrows-Wheeler blo
k-sorting text
ompression algorithm,

and Hu�man
oding. Compression is generally
onsiderably better than that a
hieved by

more
onventional LZ77/LZ78-based
ompressors, and approa
hes the performan
e of the

PPM family of statisti
al
ompressors.

bzip2 is built on top of libbzip2, a
exible library for handling
ompressed data in the

bzip2 format. This manual des
ribes both how to use the program and how to work with

the library interfa
e. Most of the manual is devoted to this library, not the program, whi
h

is good news if your interest is only in the program.

Chapter 2 des
ribes how to use bzip2; this is the only part you need to read if you just want

to know how to operate the program. Chapter 3 des
ribes the programming interfa
es in

detail, and Chapter 4 re
ords some mis
ellaneous notes whi
h I thought ought to be re
orded

somewhere.

Chapter 2: How to use bzip2 3

2 How to use bzip2

This
hapter
ontains a
opy of the bzip2 man page, and nothing else.

NAME

bzip2, bunzip2 - a blo
k-sorting �le
ompressor, v1.0

bz
at - de
ompresses �les to stdout

bzip2re
over - re
overs data from damaged bzip2 �les

SYNOPSIS

bzip2 [-
dfkqstvzVL123456789 ℄ [�lenames ... ℄

bunzip2 [-fkvsVL ℄ [�lenames ... ℄

bz
at [-s ℄ [�lenames ... ℄

bzip2re
over �lename

DESCRIPTION

bzip2
ompresses �les using the Burrows-Wheeler blo
k sorting text
ompres-

sion algorithm, and Hu�man
oding. Compression is generally
onsiderably

better than that a
hieved by more
onventional LZ77/LZ78-based
ompressors,

and approa
hes the performan
e of the PPM family of statisti
al
ompressors.

The
ommand-line options are deliberately very similar to those of GNU gzip,

but they are not identi
al.

bzip2 expe
ts a list of �le names to a

ompany the
ommand-line
ags. Ea
h

�le is repla
ed by a
ompressed version of itself, with the name original_

name.bz2. Ea
h
ompressed �le has the same modi�
ation date, permissions,

and, when possible, ownership as the
orresponding original, so that these prop-

erties
an be
orre
tly restored at de
ompression time. File name handling is

naive in the sense that there is no me
hanism for preserving original �le names,

permissions, ownerships or dates in �lesystems whi
h la
k these
on
epts, or

have serious �le name length restri
tions, su
h as MS-DOS.

bzip2 and bunzip2 will by default not overwrite existing �les. If you want this

to happen, spe
ify the -f
ag.

If no �le names are spe
i�ed, bzip2
ompresses from standard input to stan-

dard output. In this
ase, bzip2 will de
line to write
ompressed output to a

terminal, as this would be entirely in
omprehensible and therefore pointless.

bunzip2 (or bzip2 -d) de
ompresses all spe
i�ed �les. Files whi
h were not

reated by bzip2 will be dete
ted and ignored, and a warning issued. bzip2

attempts to guess the �lename for the de
ompressed �le from that of the
om-

pressed �le as follows:

filename.bz2 be
omes filename

filename.bz be
omes filename

Chapter 2: How to use bzip2 4

filename.tbz2 be
omes filename.tar

filename.tbz be
omes filename.tar

anyothername be
omes anyothername.out

If the �le does not end in one of the re
ognised endings, .bz2, .bz, .tbz2 or

.tbz, bzip2
omplains that it
annot guess the name of the original �le, and

uses the original name with .out appended.

As with
ompression, supplying no �lenames
auses de
ompression from stan-

dard input to standard output.

bunzip2 will
orre
tly de
ompress a �le whi
h is the
on
atenation of two or

more
ompressed �les. The result is the
on
atenation of the
orresponding

un
ompressed �les. Integrity testing (-t) of
on
atenated
ompressed �les is

also supported.

You
an also
ompress or de
ompress �les to the standard output by giving

the -

ag. Multiple �les may be
ompressed and de
ompressed like this. The

resulting outputs are fed sequentially to stdout. Compression of multiple �les

in this manner generates a stream
ontaining multiple
ompressed �le represen-

tations. Su
h a stream
an be de
ompressed
orre
tly only by bzip2 version

0.9.0 or later. Earlier versions of bzip2 will stop after de
ompressing the �rst

�le in the stream.

bz
at (or bzip2 -d
) de
ompresses all spe
i�ed �les to the standard output.

bzip2 will read arguments from the environment variables BZIP2 and BZIP, in

that order, and will pro
ess them before any arguments read from the
ommand

line. This gives a
onvenient way to supply default arguments.

Compression is always performed, even if the
ompressed �le is slightly larger

than the original. Files of less than about one hundred bytes tend to get larger,

sin
e the
ompression me
hanism has a
onstant overhead in the region of 50

bytes. Random data (in
luding the output of most �le
ompressors) is
oded

at about 8.05 bits per byte, giving an expansion of around 0.5%.

As a self-
he
k for your prote
tion, bzip2 uses 32-bit CRCs to make sure that

the de
ompressed version of a �le is identi
al to the original. This guards

against
orruption of the
ompressed data, and against undete
ted bugs in

bzip2 (hopefully very unlikely). The
han
es of data
orruption going unde-

te
ted is mi
ros
opi
, about one
han
e in four billion for ea
h �le pro
essed.

Be aware, though, that the
he
k o

urs upon de
ompression, so it
an only

tell you that something is wrong. It
an't help you re
over the original un
om-

pressed data. You
an use bzip2re
over to try to re
over data from damaged

�les.

Return values: 0 for a normal exit, 1 for environmental problems (�le not found,

invalid
ags, I/O errors, &
), 2 to indi
ate a
orrupt
ompressed �le, 3 for an

internal
onsisten
y error (eg, bug) whi
h
aused bzip2 to pani
.

OPTIONS

Chapter 2: How to use bzip2 5

-
 --stdout

Compress or de
ompress to standard output.

-d --de
ompress

For
e de
ompression. bzip2, bunzip2 and bz
at are really the

same program, and the de
ision about what a
tions to take is done

on the basis of whi
h name is used. This
ag overrides that me
h-

anism, and for
es bzip2 to de
ompress.

-z --
ompress

The
omplement to -d: for
es
ompression, regardless of the in-

vokation name.

-t --testChe
k integrity of the spe
i�ed �le(s), but don't de
ompress them.

This really performs a trial de
ompression and throws away the

result.

-f --for
e

For
e overwrite of output �les. Normally, bzip2 will not overwrite

existing output �les. Also for
es bzip2 to break hard links to �les,

whi
h it otherwise wouldn't do.

-k --keepKeep (don't delete) input �les during
ompression or de
ompression.

-s --small

Redu
e memory usage, for
ompression, de
ompression and testing.

Files are de
ompressed and tested using a modi�ed algorithm whi
h

only requires 2.5 bytes per blo
k byte. This means any �le
an be

de
ompressed in 2300k of memory, albeit at about half the normal

speed.

During
ompression, -s sele
ts a blo
k size of 200k, whi
h lim-

its memory use to around the same �gure, at the expense of your

ompression ratio. In short, if your ma
hine is low on memory (8

megabytes or less), use -s for everything. See MEMORY MAN-

AGEMENT below.

-q --quiet

Suppress non-essential warning messages. Messages pertaining to

I/O errors and other
riti
al events will not be suppressed.

-v --verbose

Verbose mode { show the
ompression ratio for ea
h �le pro
essed.

Further -v's in
rease the verbosity level, spewing out lots of infor-

mation whi
h is primarily of interest for diagnosti
 purposes.

-L --li
ense -V --version

Display the software version, li
ense terms and
onditions.

-1 to -9 Set the blo
k size to 100 k, 200 k .. 900 k when
ompressing. Has

no e�e
t when de
ompressing. See MEMORY MANAGEMENT

below.

-- Treats all subsequent arguments as �le names, even if they start with

a dash. This is so you
an handle �les with names beginning with

a dash, for example: bzip2 -- -myfilename.

Chapter 2: How to use bzip2 6

--repetitive-fast

--repetitive-best

These
ags are redundant in versions 0.9.5 and above. They pro-

vided some
oarse
ontrol over the behaviour of the sorting algo-

rithm in earlier versions, whi
h was sometimes useful. 0.9.5 and

above have an improved algorithm whi
h renders these
ags irrel-

evant.

MEMORY MANAGEMENT

bzip2
ompresses large �les in blo
ks. The blo
k size a�e
ts both the
ompres-

sion ratio a
hieved, and the amount of memory needed for
ompression and

de
ompression. The
ags -1 through -9 spe
ify the blo
k size to be 100,000

bytes through 900,000 bytes (the default) respe
tively. At de
ompression time,

the blo
k size used for
ompression is read from the header of the
ompressed

�le, and bunzip2 then allo
ates itself just enough memory to de
ompress the

�le. Sin
e blo
k sizes are stored in
ompressed �les, it follows that the
ags -1

to -9 are irrelevant to and so ignored during de
ompression.

Compression and de
ompression requirements, in bytes,
an be estimated as:

Compression: 400k + (8 x blo
k size)

De
ompression: 100k + (4 x blo
k size), or

100k + (2.5 x blo
k size)

Larger blo
k sizes give rapidly diminishing marginal returns. Most of the
om-

pression
omes from the �rst two or three hundred k of blo
k size, a fa
t worth

bearing in mind when using bzip2 on small ma
hines. It is also important to

appre
iate that the de
ompression memory requirement is set at
ompression

time by the
hoi
e of blo
k size.

For �les
ompressed with the default 900k blo
k size, bunzip2 will require

about 3700 kbytes to de
ompress. To support de
ompression of any �le on a 4

megabyte ma
hine, bunzip2 has an option to de
ompress using approximately

half this amount of memory, about 2300 kbytes. De
ompression speed is also

halved, so you should use this option only where ne
essary. The relevant
ag

is -s.

In general, try and use the largest blo
k size memory
onstraints allow, sin
e

that maximises the
ompression a
hieved. Compression and de
ompression

speed are virtually una�e
ted by blo
k size.

Another signi�
ant point applies to �les whi
h �t in a single blo
k { that means

most �les you'd en
ounter using a large blo
k size. The amount of real memory

tou
hed is proportional to the size of the �le, sin
e the �le is smaller than a

blo
k. For example,
ompressing a �le 20,000 bytes long with the
ag -9 will

ause the
ompressor to allo
ate around 7600k of memory, but only tou
h 400k

+ 20000 * 8 = 560 kbytes of it. Similarly, the de
ompressor will allo
ate 3700k

but only tou
h 100k + 20000 * 4 = 180 kbytes.

Here is a table whi
h summarises the maximum memory usage for di�erent

blo
k sizes. Also re
orded is the total
ompressed size for 14 �les of the Calgary

Chapter 2: How to use bzip2 7

Text Compression Corpus totalling 3,141,622 bytes. This
olumn gives some

feel for how
ompression varies with blo
k size. These �gures tend to understate

the advantage of larger blo
k sizes for larger �les, sin
e the Corpus is dominated

by smaller �les.

Compress De
ompress De
ompress Corpus

Flag usage usage -s usage Size

-1 1200k 500k 350k 914704

-2 2000k 900k 600k 877703

-3 2800k 1300k 850k 860338

-4 3600k 1700k 1100k 846899

-5 4400k 2100k 1350k 845160

-6 5200k 2500k 1600k 838626

-7 6100k 2900k 1850k 834096

-8 6800k 3300k 2100k 828642

-9 7600k 3700k 2350k 828642

RECOVERING DATA FROM DAMAGED FILES

bzip2
ompresses �les in blo
ks, usually 900kbytes long. Ea
h blo
k is handled

independently. If a media or transmission error
auses a multi-blo
k .bz2 �le

to be
ome damaged, it may be possible to re
over data from the undamaged

blo
ks in the �le.

The
ompressed representation of ea
h blo
k is delimited by a 48-bit pattern,

whi
h makes it possible to �nd the blo
k boundaries with reasonable
ertainty.

Ea
h blo
k also
arries its own 32-bit CRC, so damaged blo
ks
an be distin-

guished from undamaged ones.

bzip2re
over is a simple program whose purpose is to sear
h for blo
ks in

.bz2 �les, and write ea
h blo
k out into its own .bz2 �le. You
an then use

bzip2 -t to test the integrity of the resulting �les, and de
ompress those whi
h

are undamaged.

bzip2re
over takes a single argument, the name of the damaged �le, and

writes a number of �les re
0001file.bz2, re
0002file.bz2, et
,
ontaining

the extra
ted blo
ks. The output �lenames are designed so that the use of

wild
ards in subsequent pro
essing { for example, bzip2 -d
 re
*file.bz2 >

re
overed_data { lists the �les in the
orre
t order.

bzip2re
over should be of most use dealing with large .bz2 �les, as these

will
ontain many blo
ks. It is
learly futile to use it on damaged single-blo
k

�les, sin
e a damaged blo
k
annot be re
overed. If you wish to minimise any

potential data loss through media or transmission errors, you might
onsider

ompressing with a smaller blo
k size.

PERFORMANCE NOTES

The sorting phase of
ompression gathers together similar strings in the �le.

Be
ause of this, �les
ontaining very long runs of repeated symbols, like

"aabaabaabaab ..." (repeated several hundred times) may
ompress more

Chapter 2: How to use bzip2 8

slowly than normal. Versions 0.9.5 and above fare mu
h better than previous

versions in this respe
t. The ratio between worst-
ase and average-
ase
om-

pression time is in the region of 10:1. For previous versions, this �gure was

more like 100:1. You
an use the -vvvv option to monitor progress in great

detail, if you want.

De
ompression speed is una�e
ted by these phenomena.

bzip2 usually allo
ates several megabytes of memory to operate in, and then

harges all over it in a fairly random fashion. This means that performan
e,

both for
ompressing and de
ompressing, is largely determined by the speed at

whi
h your ma
hine
an servi
e
a
he misses. Be
ause of this, small
hanges

to the
ode to redu
e the miss rate have been observed to give disproportion-

ately large performan
e improvements. I imagine bzip2 will perform best on

ma
hines with very large
a
hes.

CAVEATS

I/O error messages are not as helpful as they
ould be. bzip2 tries hard to

dete
t I/O errors and exit
leanly, but the details of what the problem is some-

times seem rather misleading.

This manual page pertains to version 1.0 of bzip2. Compressed data
reated

by this version is entirely forwards and ba
kwards
ompatible with the previous

publi
 releases, versions 0.1pl2, 0.9.0 and 0.9.5, but with the following ex
eption:

0.9.0 and above
an
orre
tly de
ompress multiple
on
atenated
ompressed

�les. 0.1pl2
annot do this; it will stop after de
ompressing just the �rst �le in

the stream.

bzip2re
over uses 32-bit integers to represent bit positions in
ompressed �les,

so it
annot handle
ompressed �les more than 512 megabytes long. This
ould

easily be �xed.

AUTHOR

Julian Seward, jseward�a
m.org.

The ideas embodied in bzip2 are due to (at least) the following people: Mi
hael

Burrows and David Wheeler (for the blo
k sorting transformation), David

Wheeler (again, for the Hu�man
oder), Peter Fenwi
k (for the stru
tured

oding model in the original bzip, and many re�nements), and Alistair Mo�at,

Radford Neal and Ian Witten (for the arithmeti

oder in the original bzip).

I am mu
h indebted for their help, support and advi
e. See the manual in

the sour
e distribution for pointers to sour
es of do
umentation. Christian von

Roques en
ouraged me to look for faster sorting algorithms, so as to speed up

ompression. Bela Lubkin en
ouraged me to improve the worst-
ase
ompres-

sion performan
e. Many people sent pat
hes, helped with portability problems,

lent ma
hines, gave advi
e and were generally helpful.

Chapter 3: Programming with libbzip2 9

3 Programming with libbzip2

This
hapter des
ribes the programming interfa
e to libbzip2.

For general ba
kground information, parti
ularly about memory use and performan
e as-

pe
ts, you'd be well advised to read Chapter 2 as well.

3.1 Top-level stru
ture

libbzip2 is a
exible library for
ompressing and de
ompressing data in the bzip2 data

format. Although pa
kaged as a single entity, it helps to regard the library as three separate

parts: the low level interfa
e, and the high level interfa
e, and some utility fun
tions.

The stru
ture of libbzip2's interfa
es is similar to that of Jean-loup Gailly's and Mark

Adler's ex
ellent zlib library.

All externally visible symbols have names beginning BZ2_. This is new in version 1.0. The

intention is to minimise pollution of the namespa
es of library
lients.

3.1.1 Low-level summary

This interfa
e provides servi
es for
ompressing and de
ompressing data in memory. There's

no provision for dealing with �les, streams or any other I/O me
hanisms, just straight

memory-to-memory work. In fa
t, this part of the library
an be
ompiled without in
lusion

of stdio.h, whi
h may be helpful for embedded appli
ations.

The low-level part of the library has no global variables and is therefore thread-safe.

Six routines make up the low level interfa
e: BZ2_bzCompressInit, BZ2_bzCompress, and

BZ2_bzCompressEnd for
ompression, and a
orresponding trio BZ2_bzDe
ompressInit,

BZ2_bzDe
ompress and BZ2_bzDe
ompressEnd for de
ompression. The *Init fun
tions

allo
ate memory for
ompression/de
ompression and do other initialisations, whilst the

*End fun
tions
lose down operations and release memory.

The real work is done by BZ2_bzCompress and BZ2_bzDe
ompress. These
ompress and

de
ompress data from a user-supplied input bu�er to a user-supplied output bu�er. These

bu�ers
an be any size; arbitrary quantities of data are handled by making repeated
alls

to these fun
tions. This is a
exible me
hanism allowing a
onsumer-pull style of a
tivity,

or produ
er-push, or a mixture of both.

3.1.2 High-level summary

This interfa
e provides some handy wrappers around the low-level interfa
e to fa
ilitate

reading and writing bzip2 format �les (.bz2 �les). The routines provide hooks to fa
ilitate

reading �les in whi
h the bzip2 data stream is embedded within some larger-s
ale �le

stru
ture, or where there are multiple bzip2 data streams
on
atenated end-to-end.

For reading �les, BZ2_bzReadOpen, BZ2_bzRead, BZ2_bzReadClose and

BZ2_bzReadGetUnused are supplied. For writing �les, BZ2_bzWriteOpen, BZ2_bzWrite and

BZ2_bzWriteFinish are available.

Chapter 3: Programming with libbzip2 10

As with the low-level library, no global variables are used so the library is per se thread-safe.

However, if I/O errors o

ur whilst reading or writing the underlying
ompressed �les, you

may have to
onsult errno to determine the
ause of the error. In that
ase, you'd need a

C library whi
h
orre
tly supports errno in a multithreaded environment.

To make the library a little simpler and more portable, BZ2_bzReadOpen and BZ2_

bzWriteOpen require you to pass them �le handles (FILE*s) whi
h have previously been

opened for reading or writing respe
tively. That avoids portability problems asso
iated

with �le operations and �le attributes, whilst not being mu
h of an imposition on the

programmer.

3.1.3 Utility fun
tions summary

For very simple needs, BZ2_bzBuffToBuffCompress and BZ2_bzBuffToBuffDe
ompress

are provided. These
ompress data in memory from one bu�er to another bu�er in a single

fun
tion
all. You should assess whether these fun
tions ful�ll your memory-to-memory

ompression/de
ompression requirements before investing e�ort in understanding the more

general but more
omplex low-level interfa
e.

Yoshioka Tsuneo (QWF00133�niftyserve.or.jp / tsuneo-y�is.aist-nara.a
.jp) has

ontributed some fun
tions to give better zlib
ompatibility. These fun
tions are BZ2_

bzopen, BZ2_bzread, BZ2_bzwrite, BZ2_bzflush, BZ2_bz
lose, BZ2_bzerror and BZ2_

bzlibVersion. You may �nd these fun
tions more
onvenient for simple �le reading and

writing, than those in the high-level interfa
e. These fun
tions are not (yet) oÆ
ially part

of the library, and are minimally do
umented here. If they break, you get to keep all the

pie
es. I hope to do
ument them properly when time permits.

Yoshioka also
ontributed modi�
ations to allow the library to be built as a Windows DLL.

3.2 Error handling

The library is designed to re
over
leanly in all situations, in
luding the worst-
ase situation

of de
ompressing random data. I'm not 100% sure that it
an always do this, so you might

want to add a signal handler to
at
h segmentation violations during de
ompression if you

are feeling espe
ially paranoid. I would be interested in hearing more about the robustness

of the library to
orrupted
ompressed data.

Version 1.0 is mu
h more robust in this respe
t than 0.9.0 or 0.9.5. Investigations with

Che
ker (a tool for dete
ting problems with memory management, similar to Purify) indi
ate

that, at least for the few �les I tested, all single-bit errors in the de
ompressed data are

aught properly, with no segmentation faults, no reads of uninitialised data and no out of

range reads or writes. So it's
ertainly mu
h improved, although I wouldn't
laim it to be

totally bombproof.

The �le bzlib.h
ontains all de�nitions needed to use the library. In parti
ular, you should

de�nitely not in
lude bzlib_private.h.

In bzlib.h, the various return values are de�ned. The following list is not intended as

an exhaustive des
ription of the
ir
umstan
es in whi
h a given value may be returned {

those des
riptions are given later. Rather, it is intended to
onvey the rough meaning of

Chapter 3: Programming with libbzip2 11

ea
h return value. The �rst �ve a
tions are normal and not intended to denote an error

situation.

BZ_OK The requested a
tion was
ompleted su

essfully.

BZ_RUN_OK

BZ_FLUSH_OK

BZ_FINISH_OK

In BZ2_bzCompress, the requested
ush/�nish/nothing-spe
ial a
tion was
om-

pleted su

essfully.

BZ_STREAM_END

Compression of data was
ompleted, or the logi
al stream end was dete
ted

during de
ompression.

The following return values indi
ate an error of some kind.

BZ_CONFIG_ERROR

Indi
ates that the library has been improperly
ompiled on your platform

{ a major
on�guration error. Spe
i�
ally, it means that sizeof(
har),

sizeof(short) and sizeof(int) are not 1, 2 and 4 respe
tively, as they

should be. Note that the library should still work properly on 64-bit platforms

whi
h follow the LP64 programming model { that is, where sizeof(long) and

sizeof(void*) are 8. Under LP64, sizeof(int) is still 4, so libbzip2, whi
h

doesn't use the long type, is OK.

BZ_SEQUENCE_ERROR

When using the library, it is important to
all the fun
tions in the
orre
t

sequen
e and with data stru
tures (bu�ers et
) in the
orre
t states. libbzip2

he
ks as mu
h as it
an to ensure this is happening, and returns BZ_SEQUENCE_

ERROR if not. Code whi
h
omplies pre
isely with the fun
tion semanti
s, as

detailed below, should never re
eive this value; su
h an event denotes buggy

ode whi
h you should investigate.

BZ_PARAM_ERROR

Returned when a parameter to a fun
tion
all is out of range or otherwise

manifestly in
orre
t. As with BZ_SEQUENCE_ERROR, this denotes a bug in the

lient
ode. The distin
tion between BZ_PARAM_ERROR and BZ_SEQUENCE_ERROR

is a bit hazy, but still worth making.

BZ_MEM_ERROR

Returned when a request to allo
ate memory failed. Note that the quantity of

memory needed to de
ompress a stream
annot be determined until the stream's

header has been read. So BZ2_bzDe
ompress and BZ2_bzRead may return BZ_

MEM_ERROR even though some of the
ompressed data has been read. The same

is not true for
ompression; on
e BZ2_bzCompressInit or BZ2_bzWriteOpen

have su

essfully
ompleted, BZ_MEM_ERROR
annot o

ur.

BZ_DATA_ERROR

Returned when a data integrity error is dete
ted during de
ompression. Most

importantly, this means when stored and
omputed CRCs for the data do not

Chapter 3: Programming with libbzip2 12

mat
h. This value is also returned upon dete
tion of any other anomaly in the

ompressed data.

BZ_DATA_ERROR_MAGIC

As a spe
ial
ase of BZ_DATA_ERROR, it is sometimes useful to know when the

ompressed stream does not start with the
orre
t magi
 bytes ('B' 'Z' 'h').

BZ_IO_ERROR

Returned by BZ2_bzRead and BZ2_bzWrite when there is an error reading or

writing in the
ompressed �le, and by BZ2_bzReadOpen and BZ2_bzWriteOpen

for attempts to use a �le for whi
h the error indi
ator (viz, ferror(f)) is set.

On re
eipt of BZ_IO_ERROR, the
aller should
onsult errno and/or perror to

a
quire operating-system spe
i�
 information about the problem.

BZ_UNEXPECTED_EOF

Returned by BZ2_bzRead when the
ompressed �le �nishes before the logi
al

end of stream is dete
ted.

BZ_OUTBUFF_FULL

Returned by BZ2_bzBuffToBuffCompress and BZ2_bzBuffToBuffDe
ompress

to indi
ate that the output data will not �t into the output bu�er provided.

3.3 Low-level interfa
e

3.3.1 BZ2_bzCompressInit

typedef

stru
t {

har *next_in;

unsigned int avail_in;

unsigned int total_in_lo32;

unsigned int total_in_hi32;

har *next_out;

unsigned int avail_out;

unsigned int total_out_lo32;

unsigned int total_out_hi32;

void *state;

void *(*bzallo
)(void *,int,int);

void (*bzfree)(void *,void *);

void *opaque;

}

bz_stream;

int BZ2_bzCompressInit (bz_stream *strm,

int blo
kSize100k,

int verbosity,

int workFa
tor);

Chapter 3: Programming with libbzip2 13

Prepares for
ompression. The bz_stream stru
ture holds all data pertaining to the
om-

pression a
tivity. A bz_stream stru
ture should be allo
ated and initialised prior to the

all. The �elds of bz_stream
omprise the entirety of the user-visible data. state is a

pointer to the private data stru
tures required for
ompression.

Custom memory allo
ators are supported, via �elds bzallo
, bzfree, and opaque. The

value opaque is passed to as the �rst argument to all
alls to bzallo
 and bzfree, but is

otherwise ignored by the library. The
all bzallo
 (opaque, n, m) is expe
ted to return

a pointer p to n * m bytes of memory, and bzfree (opaque, p) should free that memory.

If you don't want to use a
ustom memory allo
ator, set bzallo
, bzfree and opaque to

NULL, and the library will then use the standard mallo
/free routines.

Before
alling BZ2_bzCompressInit, �elds bzallo
, bzfree and opaque should be �lled

appropriately, as just des
ribed. Upon return, the internal state will have been allo
ated

and initialised, and total_in_lo32, total_in_hi32, total_out_lo32 and total_out_

hi32 will have been set to zero. These four �elds are used by the library to inform the

aller of the total amount of data passed into and out of the library, respe
tively. You

should not try to
hange them. As of version 1.0, 64-bit
ounts are maintained, even on

32-bit platforms, using the _hi32 �elds to store the upper 32 bits of the
ount. So, for

example, the total amount of data in is (total_in_hi32 << 32) + total_in_lo32.

Parameter blo
kSize100k spe
i�es the blo
k size to be used for
ompression. It should be

a value between 1 and 9 in
lusive, and the a
tual blo
k size used is 100000 x this �gure. 9

gives the best
ompression but takes most memory.

Parameter verbosity should be set to a number between 0 and 4 in
lusive. 0 is silent, and

greater numbers give in
reasingly verbose monitoring/debugging output. If the library has

been
ompiled with -DBZ_NO_STDIO, no su
h output will appear for any verbosity setting.

Parameter workFa
tor
ontrols how the
ompression phase behaves when presented with

worst
ase, highly repetitive, input data. If
ompression runs into diÆ
ulties
aused by

repetitive data, the library swit
hes from the standard sorting algorithm to a fallba
k al-

gorithm. The fallba
k is slower than the standard algorithm by perhaps a fa
tor of three,

but always behaves reasonably, no matter how bad the input.

Lower values of workFa
tor redu
e the amount of e�ort the standard algorithm will expend

before resorting to the fallba
k. You should set this parameter
arefully; too low, and many

inputs will be handled by the fallba
k algorithm and so
ompress rather slowly, too high,

and your average-to-worst
ase
ompression times
an be
ome very large. The default value

of 30 gives reasonable behaviour over a wide range of
ir
umstan
es.

Allowable values range from 0 to 250 in
lusive. 0 is a spe
ial
ase, equivalent to using the

default value of 30.

Note that the
ompressed output generated is the same regardless of whether or not the

fallba
k algorithm is used.

Be aware also that this parameter may disappear entirely in future versions of the library. In

prin
iple it should be possible to devise a good way to automati
ally
hoose whi
h algorithm

to use. Su
h a me
hanism would render the parameter obsolete.

Chapter 3: Programming with libbzip2 14

Possible return values:

BZ_CONFIG_ERROR

if the library has been mis-
ompiled

BZ_PARAM_ERROR

if strm is NULL

or blo
kSize < 1 or blo
kSize > 9

or verbosity < 0 or verbosity > 4

or workFa
tor < 0 or workFa
tor > 250

BZ_MEM_ERROR

if not enough memory is available

BZ_OK

otherwise

Allowable next a
tions:

BZ2_bzCompress

if BZ_OK is returned

no spe
i�
 a
tion needed in
ase of error

3.3.2 BZ2_bzCompress

int BZ2_bzCompress (bz_stream *strm, int a
tion);

Provides more input and/or output bu�er spa
e for the library. The
aller maintains input

and output bu�ers, and
alls BZ2_bzCompress to transfer data between them.

Before ea
h
all to BZ2_bzCompress, next_in should point at the data to be
ompressed,

and avail_in should indi
ate how many bytes the library may read. BZ2_bzCompress

updates next_in, avail_in and total_in to re
e
t the number of bytes it has read.

Similarly, next_out should point to a bu�er in whi
h the
ompressed data is to be pla
ed,

with avail_out indi
ating how mu
h output spa
e is available. BZ2_bzCompress updates

next_out, avail_out and total_out to re
e
t the number of bytes output.

You may provide and remove as little or as mu
h data as you like on ea
h
all of BZ2_

bzCompress. In the limit, it is a

eptable to supply and remove data one byte at a time,

although this would be terribly ineÆ
ient. You should always ensure that at least one byte

of output spa
e is available at ea
h
all.

A se
ond purpose of BZ2_bzCompress is to request a
hange of mode of the
ompressed

stream.

Con
eptually, a
ompressed stream
an be in one of four states: IDLE, RUNNING, FLUSH-

ING and FINISHING. Before initialisation (BZ2_bzCompressInit) and after termination

(BZ2_bzCompressEnd), a stream is regarded as IDLE.

Upon initialisation (BZ2_bzCompressInit), the stream is pla
ed in the RUNNING state.

Subsequent
alls to BZ2_bzCompress should pass BZ_RUN as the requested a
tion; other

a
tions are illegal and will result in BZ_SEQUENCE_ERROR.

At some point, the
alling program will have provided all the input data it wants to. It

will then want to �nish up { in e�e
t, asking the library to pro
ess any data it might have

bu�ered internally. In this state, BZ2_bzCompress will no longer attempt to read data from

Chapter 3: Programming with libbzip2 15

next_in, but it will want to write data to next_out. Be
ause the output bu�er supplied

by the user
an be arbitrarily small, the �nishing-up operation
annot ne
essarily be done

with a single
all of BZ2_bzCompress.

Instead, the
alling program passes BZ_FINISH as an a
tion to BZ2_bzCompress. This

hanges the stream's state to FINISHING. Any remaining input (ie, next_in[0 .. avail_

in-1℄) is
ompressed and transferred to the output bu�er. To do this, BZ2_bzCompress

must be
alled repeatedly until all the output has been
onsumed. At that point, BZ2_

bzCompress returns BZ_STREAM_END, and the stream's state is set ba
k to IDLE. BZ2_

bzCompressEnd should then be
alled.

Just to make sure the
alling program does not
heat, the library makes a note of avail_in

at the time of the �rst
all to BZ2_bzCompress whi
h has BZ_FINISH as an a
tion (ie, at the

time the program has announ
ed its intention to not supply any more input). By
omparing

this value with that of avail_in over subsequent
alls to BZ2_bzCompress, the library
an

dete
t any attempts to slip in more data to
ompress. Any
alls for whi
h this is dete
ted

will return BZ_SEQUENCE_ERROR. This indi
ates a programming mistake whi
h should be

orre
ted.

Instead of asking to �nish, the
alling program may ask BZ2_bzCompress to take all the

remaining input,
ompress it and terminate the
urrent (Burrows-Wheeler)
ompression

blo
k. This
ould be useful for error
ontrol purposes. The me
hanism is analogous to that

for �nishing:
all BZ2_bzCompress with an a
tion of BZ_FLUSH, remove output data, and

persist with the BZ_FLUSH a
tion until the value BZ_RUN is returned. As with �nishing,

BZ2_bzCompress dete
ts any attempt to provide more input data on
e the
ush has begun.

On
e the
ush is
omplete, the stream returns to the normal RUNNING state.

This all sounds pretty
omplex, but isn't really. Here's a table whi
h shows whi
h a
tions

are allowable in ea
h state, what a
tion will be taken, what the next state is, and what the

non-error return values are. Note that you
an't expli
itly ask what state the stream is in,

but nor do you need to { it
an be inferred from the values returned by BZ2_bzCompress.

IDLE/any

Illegal. IDLE state only exists after BZ2_bzCompressEnd or

before BZ2_bzCompressInit.

Return value = BZ_SEQUENCE_ERROR

RUNNING/BZ_RUN

Compress from next_in to next_out as mu
h as possible.

Next state = RUNNING

Return value = BZ_RUN_OK

RUNNING/BZ_FLUSH

Remember
urrent value of next_in. Compress from next_in

to next_out as mu
h as possible, but do not a

ept any more input.

Next state = FLUSHING

Return value = BZ_FLUSH_OK

RUNNING/BZ_FINISH

Remember
urrent value of next_in. Compress from next_in

Chapter 3: Programming with libbzip2 16

to next_out as mu
h as possible, but do not a

ept any more input.

Next state = FINISHING

Return value = BZ_FINISH_OK

FLUSHING/BZ_FLUSH

Compress from next_in to next_out as mu
h as possible,

but do not a

ept any more input.

If all the existing input has been used up and all
ompressed

output has been removed

Next state = RUNNING; Return value = BZ_RUN_OK

else

Next state = FLUSHING; Return value = BZ_FLUSH_OK

FLUSHING/other

Illegal.

Return value = BZ_SEQUENCE_ERROR

FINISHING/BZ_FINISH

Compress from next_in to next_out as mu
h as possible,

but to not a

ept any more input.

If all the existing input has been used up and all
ompressed

output has been removed

Next state = IDLE; Return value = BZ_STREAM_END

else

Next state = FINISHING; Return value = BZ_FINISHING

FINISHING/other

Illegal.

Return value = BZ_SEQUENCE_ERROR

That still looks
ompli
ated? Well, fair enough. The usual sequen
e of
alls for
ompressing

a load of data is:

� Get started with BZ2_bzCompressInit.

� Shovel data in and shlurp out its
ompressed form using zero or more
alls of BZ2_

bzCompress with a
tion = BZ_RUN.

� Finish up. Repeatedly
all BZ2_bzCompress with a
tion = BZ_FINISH,
opying out the

ompressed output, until BZ_STREAM_END is returned.

� Close up and go home. Call BZ2_bzCompressEnd.

If the data you want to
ompress �ts into your input bu�er all at on
e, you
an skip the
alls

of BZ2_bzCompress (..., BZ_RUN) and just do the BZ2_bzCompress (..., BZ_FINISH

)
alls.

All required memory is allo
ated by BZ2_bzCompressInit. The
ompression library
an

a

ept any data at all (obviously). So you shouldn't get any error return values from the

BZ2_bzCompress
alls. If you do, they will be BZ_SEQUENCE_ERROR, and indi
ate a bug in

your programming.

Trivial other possible return values:

Chapter 3: Programming with libbzip2 17

BZ_PARAM_ERROR

if strm is NULL, or strm->s is NULL

3.3.3 BZ2_bzCompressEnd

int BZ2_bzCompressEnd (bz_stream *strm);

Releases all memory asso
iated with a
ompression stream.

Possible return values:

BZ_PARAM_ERROR if strm is NULL or strm->s is NULL

BZ_OK otherwise

3.3.4 BZ2_bzDe
ompressInit

int BZ2_bzDe
ompressInit (bz_stream *strm, int verbosity, int small);

Prepares for de
ompression. As with BZ2_bzCompressInit, a bz_stream re
ord should be

allo
ated and initialised before the
all. Fields bzallo
, bzfree and opaque should be set if

a
ustom memory allo
ator is required, or made NULL for the normal mallo
/free routines.

Upon return, the internal state will have been initialised, and total_in and total_out will

be zero.

For the meaning of parameter verbosity, see BZ2_bzCompressInit.

If small is nonzero, the library will use an alternative de
ompression algorithm whi
h uses

less memory but at the
ost of de
ompressing more slowly (roughly speaking, half the speed,

but the maximum memory requirement drops to around 2300k). See Chapter 2 for more

information on memory management.

Note that the amount of memory needed to de
ompress a stream
annot be determined

until the stream's header has been read, so even if BZ2_bzDe
ompressInit su

eeds, a

subsequent BZ2_bzDe
ompress
ould fail with BZ_MEM_ERROR.

Possible return values:

BZ_CONFIG_ERROR

if the library has been mis-
ompiled

BZ_PARAM_ERROR

if (small != 0 && small != 1)

or (verbosity < 0 || verbosity > 4)

BZ_MEM_ERROR

if insuÆ
ient memory is available

Allowable next a
tions:

BZ2_bzDe
ompress

if BZ_OK was returned

no spe
i�
 a
tion required in
ase of error

3.3.5 BZ2_bzDe
ompress

int BZ2_bzDe
ompress (bz_stream *strm);

Chapter 3: Programming with libbzip2 18

Provides more input and/out output bu�er spa
e for the library. The
aller maintains input

and output bu�ers, and uses BZ2_bzDe
ompress to transfer data between them.

Before ea
h
all to BZ2_bzDe
ompress, next_in should point at the
ompressed data, and

avail_in should indi
ate how many bytes the library may read. BZ2_bzDe
ompress up-

dates next_in, avail_in and total_in to re
e
t the number of bytes it has read.

Similarly, next_out should point to a bu�er in whi
h the un
ompressed output is to be

pla
ed, with avail_out indi
ating how mu
h output spa
e is available. BZ2_bzCompress

updates next_out, avail_out and total_out to re
e
t the number of bytes output.

You may provide and remove as little or as mu
h data as you like on ea
h
all of BZ2_

bzDe
ompress. In the limit, it is a

eptable to supply and remove data one byte at a time,

although this would be terribly ineÆ
ient. You should always ensure that at least one byte

of output spa
e is available at ea
h
all.

Use of BZ2_bzDe
ompress is simpler than BZ2_bzCompress.

You should provide input and remove output as des
ribed above, and repeatedly
all BZ2_

bzDe
ompress until BZ_STREAM_END is returned. Appearan
e of BZ_STREAM_END denotes

that BZ2_bzDe
ompress has dete
ted the logi
al end of the
ompressed stream. BZ2_

bzDe
ompress will not produ
e BZ_STREAM_END until all output data has been pla
ed into

the output bu�er, so on
e BZ_STREAM_END appears, you are guaranteed to have available

all the de
ompressed output, and BZ2_bzDe
ompressEnd
an safely be
alled.

If
ase of an error return value, you should
all BZ2_bzDe
ompressEnd to
lean up and

release memory.

Possible return values:

BZ_PARAM_ERROR

if strm is NULL or strm->s is NULL

or strm->avail_out < 1

BZ_DATA_ERROR

if a data integrity error is dete
ted in the
ompressed stream

BZ_DATA_ERROR_MAGIC

if the
ompressed stream doesn't begin with the right magi
 bytes

BZ_MEM_ERROR

if there wasn't enough memory available

BZ_STREAM_END

if the logi
al end of the data stream was dete
ted and all

output in has been
onsumed, eg s->avail_out > 0

BZ_OK

otherwise

Allowable next a
tions:

BZ2_bzDe
ompress

if BZ_OK was returned

BZ2_bzDe
ompressEnd

otherwise

Chapter 3: Programming with libbzip2 19

3.3.6 BZ2_bzDe
ompressEnd

int BZ2_bzDe
ompressEnd (bz_stream *strm);

Releases all memory asso
iated with a de
ompression stream.

Possible return values:

BZ_PARAM_ERROR

if strm is NULL or strm->s is NULL

BZ_OK

otherwise

Allowable next a
tions:

None.

3.4 High-level interfa
e

This interfa
e provides fun
tions for reading and writing bzip2 format �les. First, some

general points.

� All of the fun
tions take an int* �rst argument, bzerror. After ea
h
all, bzerror

should be
onsulted �rst to determine the out
ome of the
all. If bzerror is BZ_OK, the

all
ompleted su

essfully, and only then should the return value of the fun
tion (if

any) be
onsulted. If bzerror is BZ_IO_ERROR, there was an error reading/writing the

underlying
ompressed �le, and you should then
onsult errno/perror to determine

the
ause of the diÆ
ulty. bzerror may also be set to various other values; pre
ise

details are given on a per-fun
tion basis below.

� If bzerror indi
ates an error (ie, anything ex
ept BZ_OK and BZ_STREAM_END), you

should immediately
all BZ2_bzReadClose (or BZ2_bzWriteClose, depending on

whether you are attempting to read or to write) to free up all resour
es asso
i-

ated with the stream. On
e an error has been indi
ated, behaviour of all
alls ex
ept

BZ2_bzReadClose (BZ2_bzWriteClose) is unde�ned. The impli
ation is that (1)

bzerror should be
he
ked after ea
h
all, and (2) if bzerror indi
ates an error,

BZ2_bzReadClose (BZ2_bzWriteClose) should then be
alled to
lean up.

� The FILE* arguments passed to BZ2_bzReadOpen/BZ2_bzWriteOpen should be set to

binary mode. Most Unix systems will do this by default, but other platforms, in
luding

Windows and Ma
, will not. If you omit this, you may en
ounter problems when moving

ode to new platforms.

� Memory allo
ation requests are handled by mallo
/free. At present there is no fa
ility

for user-de�ned memory allo
ators in the �le I/O fun
tions (
ould easily be added,

though).

3.4.1 BZ2_bzReadOpen

typedef void BZFILE;

BZFILE *BZ2_bzReadOpen (int *bzerror, FILE *f,

int small, int verbosity,

Chapter 3: Programming with libbzip2 20

void *unused, int nUnused);

Prepare to read
ompressed data from �le handle f. f should refer to a �le whi
h has been

opened for reading, and for whi
h the error indi
ator (ferror(f))is not set. If small is 1,

the library will try to de
ompress using less memory, at the expense of speed.

For reasons explained below, BZ2_bzRead will de
ompress the nUnused bytes starting at

unused, before starting to read from the �le f. At most BZ_MAX_UNUSED bytes may be

supplied like this. If this fa
ility is not required, you should pass NULL and 0 for unused

and nUnused respe
tively.

For the meaning of parameters small and verbosity, see BZ2_bzDe
ompressInit.

The amount of memory needed to de
ompress a �le
annot be determined until the �le's

header has been read. So it is possible that BZ2_bzReadOpen returns BZ_OK but a subsequent

all of BZ2_bzRead will return BZ_MEM_ERROR.

Possible assignments to bzerror:

BZ_CONFIG_ERROR

if the library has been mis-
ompiled

BZ_PARAM_ERROR

if f is NULL

or small is neither 0 nor 1

or (unused == NULL && nUnused != 0)

or (unused != NULL && !(0 <= nUnused <= BZ_MAX_UNUSED))

BZ_IO_ERROR

if ferror(f) is nonzero

BZ_MEM_ERROR

if insuÆ
ient memory is available

BZ_OK

otherwise.

Possible return values:

Pointer to an abstra
t BZFILE

if bzerror is BZ_OK

NULL

otherwise

Allowable next a
tions:

BZ2_bzRead

if bzerror is BZ_OK

BZ2_bzClose

otherwise

3.4.2 BZ2_bzRead

int BZ2_bzRead (int *bzerror, BZFILE *b, void *buf, int len);

Reads up to len (un
ompressed) bytes from the
ompressed �le b into the bu�er buf. If

the read was su

essful, bzerror is set to BZ_OK and the number of bytes read is returned.

Chapter 3: Programming with libbzip2 21

If the logi
al end-of-stream was dete
ted, bzerror will be set to BZ_STREAM_END, and the

number of bytes read is returned. All other bzerror values denote an error.

BZ2_bzRead will supply len bytes, unless the logi
al stream end is dete
ted or an error

o

urs. Be
ause of this, it is possible to dete
t the stream end by observing when the

number of bytes returned is less than the number requested. Nevertheless, this is regarded

as inadvisable; you should instead
he
k bzerror after every
all and wat
h out for BZ_

STREAM_END.

Internally, BZ2_bzRead
opies data from the
ompressed �le in
hunks of size BZ_MAX_

UNUSED bytes before de
ompressing it. If the �le
ontains more bytes than stri
tly needed

to rea
h the logi
al end-of-stream, BZ2_bzRead will almost
ertainly read some of the

trailing data before signalling BZ_SEQUENCE_END. To
olle
t the read but unused data

on
e BZ_SEQUENCE_END has appeared,
all BZ2_bzReadGetUnused immediately before BZ2_

bzReadClose.

Possible assignments to bzerror:

BZ_PARAM_ERROR

if b is NULL or buf is NULL or len < 0

BZ_SEQUENCE_ERROR

if b was opened with BZ2_bzWriteOpen

BZ_IO_ERROR

if there is an error reading from the
ompressed �le

BZ_UNEXPECTED_EOF

if the
ompressed �le ended before the logi
al end-of-stream was dete
ted

BZ_DATA_ERROR

if a data integrity error was dete
ted in the
ompressed stream

BZ_DATA_ERROR_MAGIC

if the stream does not begin with the requisite header bytes (ie, is not

a bzip2 data �le). This is really a spe
ial
ase of BZ_DATA_ERROR.

BZ_MEM_ERROR

if insuÆ
ient memory was available

BZ_STREAM_END

if the logi
al end of stream was dete
ted.

BZ_OK

otherwise.

Possible return values:

number of bytes read

if bzerror is BZ_OK or BZ_STREAM_END

unde�ned

otherwise

Allowable next a
tions:

olle
t data from buf, then BZ2_bzRead or BZ2_bzReadClose

if bzerror is BZ_OK

olle
t data from buf, then BZ2_bzReadClose or BZ2_bzReadGetUnused

if bzerror is BZ_SEQUENCE_END

BZ2_bzReadClose

otherwise

Chapter 3: Programming with libbzip2 22

3.4.3 BZ2_bzReadGetUnused

void BZ2_bzReadGetUnused (int* bzerror, BZFILE *b,

void** unused, int* nUnused);

Returns data whi
h was read from the
ompressed �le but was not needed to get to the

logi
al end-of-stream. *unused is set to the address of the data, and *nUnused to the

number of bytes. *nUnused will be set to a value between 0 and BZ_MAX_UNUSED in
lusive.

This fun
tion may only be
alled on
e BZ2_bzRead has signalled BZ_STREAM_END but before

BZ2_bzReadClose.

Possible assignments to bzerror:

BZ_PARAM_ERROR

if b is NULL

or unused is NULL or nUnused is NULL

BZ_SEQUENCE_ERROR

if BZ_STREAM_END has not been signalled

or if b was opened with BZ2_bzWriteOpen

BZ_OK

otherwise

Allowable next a
tions:

BZ2_bzReadClose

3.4.4 BZ2_bzReadClose

void BZ2_bzReadClose (int *bzerror, BZFILE *b);

Releases all memory pertaining to the
ompressed �le b. BZ2_bzReadClose does not
all

f
lose on the underlying �le handle, so you should do that yourself if appropriate. BZ2_

bzReadClose should be
alled to
lean up after all error situations.

Possible assignments to bzerror:

BZ_SEQUENCE_ERROR

if b was opened with BZ2_bzOpenWrite

BZ_OK

otherwise

Allowable next a
tions:

none

3.4.5 BZ2_bzWriteOpen

BZFILE *BZ2_bzWriteOpen (int *bzerror, FILE *f,

int blo
kSize100k, int verbosity,

int workFa
tor);

Prepare to write
ompressed data to �le handle f. f should refer to a �le whi
h has been

opened for writing, and for whi
h the error indi
ator (ferror(f))is not set.

Chapter 3: Programming with libbzip2 23

For the meaning of parameters blo
kSize100k, verbosity and workFa
tor, see

BZ2_bzCompressInit.

All required memory is allo
ated at this stage, so if the
all
ompletes su

essfully, BZ_MEM_

ERROR
annot be signalled by a subsequent
all to BZ2_bzWrite.

Possible assignments to bzerror:

BZ_CONFIG_ERROR

if the library has been mis-
ompiled

BZ_PARAM_ERROR

if f is NULL

or blo
kSize100k < 1 or blo
kSize100k > 9

BZ_IO_ERROR

if ferror(f) is nonzero

BZ_MEM_ERROR

if insuÆ
ient memory is available

BZ_OK

otherwise

Possible return values:

Pointer to an abstra
t BZFILE

if bzerror is BZ_OK

NULL

otherwise

Allowable next a
tions:

BZ2_bzWrite

if bzerror is BZ_OK

(you
ould go dire
tly to BZ2_bzWriteClose, but this would be pretty pointless)

BZ2_bzWriteClose

otherwise

3.4.6 BZ2_bzWrite

void BZ2_bzWrite (int *bzerror, BZFILE *b, void *buf, int len);

Absorbs len bytes from the bu�er buf, eventually to be
ompressed and written to the �le.

Possible assignments to bzerror:

BZ_PARAM_ERROR

if b is NULL or buf is NULL or len < 0

BZ_SEQUENCE_ERROR

if b was opened with BZ2_bzReadOpen

BZ_IO_ERROR

if there is an error writing the
ompressed �le.

BZ_OK

otherwise

3.4.7 BZ2_bzWriteClose

Chapter 3: Programming with libbzip2 24

void BZ2_bzWriteClose (int *bzerror, BZFILE* f,

int abandon,

unsigned int* nbytes_in,

unsigned int* nbytes_out);

void BZ2_bzWriteClose64 (int *bzerror, BZFILE* f,

int abandon,

unsigned int* nbytes_in_lo32,

unsigned int* nbytes_in_hi32,

unsigned int* nbytes_out_lo32,

unsigned int* nbytes_out_hi32);

Compresses and
ushes to the
ompressed �le all data so far supplied by BZ2_bzWrite.

The logi
al end-of-stream markers are also written, so subsequent
alls to BZ2_bzWrite are

illegal. All memory asso
iated with the
ompressed �le b is released. fflush is
alled on

the
ompressed �le, but it is not f
lose'd.

If BZ2_bzWriteClose is
alled to
lean up after an error, the only a
tion is to release the

memory. The library re
ords the error
odes issued by previous
alls, so this situation will

be dete
ted automati
ally. There is no attempt to
omplete the
ompression operation, nor

to fflush the
ompressed �le. You
an for
e this behaviour to happen even in the
ase of

no error, by passing a nonzero value to abandon.

If nbytes_in is non-null, *nbytes_in will be set to be the total volume of un
ompressed

data handled. Similarly, nbytes_out will be set to the total volume of
ompressed data

written. For
ompatibility with older versions of the library, BZ2_bzWriteClose only yields

the lower 32 bits of these
ounts. Use BZ2_bzWriteClose64 if you want the full 64 bit

ounts. These two fun
tions are otherwise absolutely identi
al.

Possible assignments to bzerror:

BZ_SEQUENCE_ERROR

if b was opened with BZ2_bzReadOpen

BZ_IO_ERROR

if there is an error writing the
ompressed �le

BZ_OK

otherwise

3.4.8 Handling embedded
ompressed data streams

The high-level library fa
ilitates use of bzip2 data streams whi
h form some part of a

surrounding, larger data stream.

� For writing, the library takes an open �le handle, writes
ompressed data to it, fflushes

it but does not f
lose it. The
alling appli
ation
an write its own data before and

after the
ompressed data stream, using that same �le handle.

� Reading is more
omplex, and the fa
ilities are not as general as they
ould be sin
e

generality is hard to re
on
ile with eÆ
ien
y. BZ2_bzRead reads from the
ompressed

�le in blo
ks of size BZ_MAX_UNUSED bytes, and in doing so probably will overshoot

the logi
al end of
ompressed stream. To re
over this data on
e de
ompression has

Chapter 3: Programming with libbzip2 25

ended,
all BZ2_bzReadGetUnused after the last
all of BZ2_bzRead (the one returning

BZ_STREAM_END) but before
alling BZ2_bzReadClose.

This me
hanism makes it easy to de
ompress multiple bzip2 streams pla
ed end-to-

end. As the end of one stream, when BZ2_bzRead returns BZ_STREAM_END,
all BZ2_

bzReadGetUnused to
olle
t the unused data (
opy it into your own bu�er somewhere).

That data forms the start of the next
ompressed stream. To start un
ompressing that next

stream,
all BZ2_bzReadOpen again, feeding in the unused data via the unused/nUnused

parameters. Keep doing this until BZ_STREAM_END return
oin
ides with the physi
al end

of �le (feof(f)). In this situation BZ2_bzReadGetUnused will of
ourse return no data.

This should give some feel for how the high-level interfa
e
an be used. If you require extra

exibility, you'll have to bite the bullet and get to grips with the low-level interfa
e.

3.4.9 Standard �le-reading/writing
ode

Here's how you'd write data to a
ompressed �le:

FILE* f;

BZFILE* b;

int nBuf;

har buf[/* whatever size you like */ ℄;

int bzerror;

int nWritten;

f = fopen ("myfile.bz2", "w");

if (!f) {

/* handle error */

}

b = BZ2_bzWriteOpen (&bzerror, f, 9);

if (bzerror != BZ_OK) {

BZ2_bzWriteClose (b);

/* handle error */

}

while (/*
ondition */) {

/* get data to write into buf, and set nBuf appropriately */

nWritten = BZ2_bzWrite (&bzerror, b, buf, nBuf);

if (bzerror == BZ_IO_ERROR) {

BZ2_bzWriteClose (&bzerror, b);

/* handle error */

}

}

BZ2_bzWriteClose (&bzerror, b);

if (bzerror == BZ_IO_ERROR) {

/* handle error */

}

Chapter 3: Programming with libbzip2 26

And to read from a
ompressed �le:

FILE* f;

BZFILE* b;

int nBuf;

har buf[/* whatever size you like */ ℄;

int bzerror;

int nWritten;

f = fopen ("myfile.bz2", "r");

if (!f) {

/* handle error */

}

b = BZ2_bzReadOpen (&bzerror, f, 0, NULL, 0);

if (bzerror != BZ_OK) {

BZ2_bzReadClose (&bzerror, b);

/* handle error */

}

bzerror = BZ_OK;

while (bzerror == BZ_OK && /* arbitrary other
onditions */) {

nBuf = BZ2_bzRead (&bzerror, b, buf, /* size of buf */);

if (bzerror == BZ_OK) {

/* do something with buf[0 .. nBuf-1℄ */

}

}

if (bzerror != BZ_STREAM_END) {

BZ2_bzReadClose (&bzerror, b);

/* handle error */

} else {

BZ2_bzReadClose (&bzerror);

}

3.5 Utility fun
tions

3.5.1 BZ2_bzBuffToBuffCompress

int BZ2_bzBuffToBuffCompress(
har* dest,

unsigned int* destLen,

har* sour
e,

unsigned int sour
eLen,

int blo
kSize100k,

int verbosity,

int workFa
tor);

Attempts to
ompress the data in sour
e[0 .. sour
eLen-1℄ into the destination bu�er,

dest[0 .. *destLen-1℄. If the destination bu�er is big enough, *destLen is set to the size

of the
ompressed data, and BZ_OK is returned. If the
ompressed data won't �t, *destLen

is un
hanged, and BZ_OUTBUFF_FULL is returned.

Chapter 3: Programming with libbzip2 27

Compression in this manner is a one-shot event, done with a single
all to this fun
tion. The

resulting
ompressed data is a
omplete bzip2 format data stream. There is no me
hanism

for making additional
alls to provide extra input data. If you want that kind of me
hanism,

use the low-level interfa
e.

For the meaning of parameters blo
kSize100k, verbosity and workFa
tor,

see BZ2_bzCompressInit.

To guarantee that the
ompressed data will �t in its bu�er, allo
ate an output bu�er of size

1% larger than the un
ompressed data, plus six hundred extra bytes.

BZ2_bzBuffToBuffDe
ompress will not write data at or beyond dest[*destLen℄, even in

ase of bu�er over
ow.

Possible return values:

BZ_CONFIG_ERROR

if the library has been mis-
ompiled

BZ_PARAM_ERROR

if dest is NULL or destLen is NULL

or blo
kSize100k < 1 or blo
kSize100k > 9

or verbosity < 0 or verbosity > 4

or workFa
tor < 0 or workFa
tor > 250

BZ_MEM_ERROR

if insuÆ
ient memory is available

BZ_OUTBUFF_FULL

if the size of the
ompressed data ex
eeds *destLen

BZ_OK

otherwise

3.5.2 BZ2_bzBuffToBuffDe
ompress

int BZ2_bzBuffToBuffDe
ompress (
har* dest,

unsigned int* destLen,

har* sour
e,

unsigned int sour
eLen,

int small,

int verbosity);

Attempts to de
ompress the data in sour
e[0 .. sour
eLen-1℄ into the destination bu�er,

dest[0 .. *destLen-1℄. If the destination bu�er is big enough, *destLen is set to the size

of the un
ompressed data, and BZ_OK is returned. If the
ompressed data won't �t, *destLen

is un
hanged, and BZ_OUTBUFF_FULL is returned.

sour
e is assumed to hold a
omplete bzip2 format data stream.

BZ2_bzBuffToBuffDe
ompress tries to de
ompress the entirety of the stream into the out-

put bu�er.

For the meaning of parameters small and verbosity, see BZ2_bzDe
ompressInit.

Be
ause the
ompression ratio of the
ompressed data
annot be known in advan
e, there

is no easy way to guarantee that the output bu�er will be big enough. You may of
ourse

Chapter 3: Programming with libbzip2 28

make arrangements in your
ode to re
ord the size of the un
ompressed data, but su
h a

me
hanism is beyond the s
ope of this library.

BZ2_bzBuffToBuffDe
ompress will not write data at or beyond dest[*destLen℄, even in

ase of bu�er over
ow.

Possible return values:

BZ_CONFIG_ERROR

if the library has been mis-
ompiled

BZ_PARAM_ERROR

if dest is NULL or destLen is NULL

or small != 0 && small != 1

or verbosity < 0 or verbosity > 4

BZ_MEM_ERROR

if insuÆ
ient memory is available

BZ_OUTBUFF_FULL

if the size of the
ompressed data ex
eeds *destLen

BZ_DATA_ERROR

if a data integrity error was dete
ted in the
ompressed data

BZ_DATA_ERROR_MAGIC

if the
ompressed data doesn't begin with the right magi
 bytes

BZ_UNEXPECTED_EOF

if the
ompressed data ends unexpe
tedly

BZ_OK

otherwise

3.6 zlib
ompatibility fun
tions

Yoshioka Tsuneo has
ontributed some fun
tions to give better zlib
ompatibility. These

fun
tions are BZ2_bzopen, BZ2_bzread, BZ2_bzwrite, BZ2_bzflush, BZ2_bz
lose, BZ2_

bzerror and BZ2_bzlibVersion. These fun
tions are not (yet) oÆ
ially part of the library.

If they break, you get to keep all the pie
es. Nevertheless, I think they work ok.

typedef void BZFILE;

onst
har * BZ2_bzlibVersion (void);

Returns a string indi
ating the library version.

BZFILE * BZ2_bzopen (
onst
har *path,
onst
har *mode);

BZFILE * BZ2_bzdopen (int fd,
onst
har *mode);

Opens a .bz2 �le for reading or writing, using either its name or a pre-existing �le des
riptor.

Analogous to fopen and fdopen.

int BZ2_bzread (BZFILE* b, void* buf, int len);

int BZ2_bzwrite (BZFILE* b, void* buf, int len);

Reads/writes data from/to a previously opened BZFILE. Analogous to fread and fwrite.

int BZ2_bzflush (BZFILE* b);

void BZ2_bz
lose (BZFILE* b);

Chapter 3: Programming with libbzip2 29

Flushes/
loses a BZFILE. BZ2_bzflush doesn't a
tually do anything. Analogous to fflush

and f
lose.

onst
har * BZ2_bzerror (BZFILE *b, int *errnum)

Returns a string des
ribing the more re
ent error status of b, and also sets *errnum to its

numeri
al value.

3.7 Using the library in a stdio-free environment

3.7.1 Getting rid of stdio

In a deeply embedded appli
ation, you might want to use just the memory-to-memory

fun
tions. You
an do this
onveniently by
ompiling the library with prepro
essor symbol

BZ_NO_STDIO de�ned. Doing this gives you a library
ontaining only the following eight

fun
tions:

BZ2_bzCompressInit, BZ2_bzCompress, BZ2_bzCompressEnd

BZ2_bzDe
ompressInit, BZ2_bzDe
ompress, BZ2_bzDe
ompressEnd

BZ2_bzBuffToBuffCompress, BZ2_bzBuffToBuffDe
ompress

When
ompiled like this, all fun
tions will ignore verbosity settings.

3.7.2 Criti
al error handling

libbzip2
ontains a number of internal assertion
he
ks whi
h should, needless to say, never

be a
tivated. Nevertheless, if an assertion should fail, behaviour depends on whether or not

the library was
ompiled with BZ_NO_STDIO set.

For a normal
ompile, an assertion failure yields the message

bzip2/libbzip2: internal error number N.

This is a bug in bzip2/libbzip2, 1.0 of 21-Mar-2000.

Please report it to me at: jseward�a
m.org. If this happened

when you were using some program whi
h uses libbzip2 as a

omponent, you should also report this bug to the author(s)

of that program. Please make an effort to report this bug;

timely and a

urate bug reports eventually lead to higher

quality software. Thanks. Julian Seward, 21 Mar
h 2000.

where N is some error
ode number. exit(3) is then
alled.

For a stdio-free library, assertion failures result in a
all to a fun
tion de
lared as:

extern void bz_internal_error (int err
ode);

The relevant
ode is passed as a parameter. You should supply su
h a fun
tion.

In either
ase, on
e an assertion failure has o

urred, any bz_stream re
ords involved
an

be regarded as invalid. You should not attempt to resume normal operation with them.

Chapter 3: Programming with libbzip2 30

You may, of
ourse,
hange
riti
al error handling to suit your needs. As I said above,
riti
al

errors indi
ate bugs in the library and should not o

ur. All "normal" error situations are

indi
ated via error return
odes from fun
tions, and
an be re
overed from.

3.8 Making a Windows DLL

Everything related to Windows has been
ontributed by Yoshioka Tsuneo

(QWF00133�niftyserve.or.jp / tsuneo-y�is.aist-nara.a
.jp), so you should send

your queries to him (but perhaps C
: me, jseward�a
m.org).

My vague understanding of what to do is: using Visual C++ 5.0, open the proje
t �le

libbz2.dsp, and build. That's all.

If you
an't open the proje
t �le for some reason, make a new one, naming these �les:

blo
ksort.
, bzlib.
,
ompress.
,
r
table.
, de
ompress.
, huffman.
,

randtable.
 and libbz2.def. You will also need to name the header �les bzlib.h and

bzlib_private.h.

If you don't use VC++, you may need to de�ne the propro
essor symbol _WIN32.

Finally, dlltest.
 is a sample program using the DLL. It has a proje
t �le, dlltest.dsp.

If you just want a make�le for Visual C, have a look at makefile.ms
.

Be aware that if you
ompile bzip2 itself on Win32, you must set BZ_UNIX to 0 and BZ_

LCCWIN32 to 1, in the �le bzip2.
, before
ompiling. Otherwise the resulting binary won't

work
orre
tly.

I haven't tried any of this stu� myself, but it all looks plausible.

Chapter 4: Mis
ellanea 31

4 Mis
ellanea

These are just some random thoughts of mine. Your mileage may vary.

4.1 Limitations of the
ompressed �le format

bzip2-1.0, 0.9.5 and 0.9.0 use exa
tly the same �le format as the previous version,

bzip2-0.1. This de
ision was made in the interests of stability. Creating yet another

in
ompatible
ompressed �le format would
reate further
onfusion and disruption for users.

Nevertheless, this is not a painless de
ision. Development work sin
e the release of bzip2-

0.1 in August 1997 has shown
omplexities in the �le format whi
h slow down de
ompression

and, in retrospe
t, are unne
essary. These are:

� The run-length en
oder, whi
h is the �rst of the
ompression transformations, is entirely

irrelevant. The original purpose was to prote
t the sorting algorithm from the very

worst
ase input: a string of repeated symbols. But algorithm steps Q6a and Q6b

in the original Burrows-Wheeler te
hni
al report (SRC-124) show how repeats
an be

handled without diÆ
ulty in blo
k sorting.

� The randomisation me
hanism doesn't really need to be there. Udi Manber and Gene

Myers published a suÆx array
onstru
tion algorithm a few years ba
k, whi
h
an be

employed to sort any blo
k, no matter how repetitive, in O(N log N) time. Subsequent

work by Kunihiko Sadakane has produ
ed a derivative O(N (log N)^2) algorithm whi
h

usually outperforms the Manber-Myers algorithm.

I
ould have
hanged to Sadakane's algorithm, but I �nd it to be slower than bzip2's

existing algorithm for most inputs, and the randomisation me
hanism prote
ts ade-

quately against bad
ases. I didn't think it was a good tradeo� to make. Partly this

is due to the fa
t that I was not
ooded with email
omplaints about bzip2-0.1's

performan
e on repetitive data, so perhaps it isn't a problem for real inputs.

Probably the best long-term solution, and the one I have in
orporated into 0.9.5 and

above, is to use the existing sorting algorithm initially, and fall ba
k to a O(N (log

N)^2) algorithm if the standard algorithm gets into diÆ
ulties.

� The
ompressed �le format was never designed to be handled by a library, and I have

had to jump though some hoops to produ
e an eÆ
ient implementation of de
ompres-

sion. It's a bit hairy. Try passing de
ompress.
 through the C prepro
essor and you'll

see what I mean. Mu
h of this
omplexity
ould have been avoided if the
ompressed

size of ea
h blo
k of data was re
orded in the data stream.

� An Adler-32
he
ksum, rather than a CRC32
he
ksum, would be faster to
ompute.

It would be fair to say that the bzip2 format was frozen before I properly and fully under-

stood the performan
e
onsequen
es of doing so.

Improvements whi
h I was able to in
orporate into 0.9.0, despite using the same �le format,

are:

� Single array implementation of the inverse BWT. This signi�
antly speeds up de
om-

pression, presumably be
ause it redu
es the number of
a
he misses.

Chapter 4: Mis
ellanea 32

� Faster inverse MTF transform for large MTF values. The new implementation is based

on the notion of sliding blo
ks of values.

� bzip2-0.9.0 now reads and writes �les with fread and fwrite; version 0.1 used put

and get
. Duh! Well, you live and learn.

Further ahead, it would be ni
e to be able to do random a

ess into �les. This will require

some
areful design of
ompressed �le formats.

4.2 Portability issues

After some
onsideration, I have de
ided not to use GNU auto
onf to
on�gure 0.9.5 or

1.0.

auto
onf, admirable and wonderful though it is, mainly assists with portability problems

between Unix-like platforms. But bzip2 doesn't have mu
h in the way of portability prob-

lems on Unix; most of the diÆ
ulties appear when porting to the Ma
, or to Mi
rosoft's

operating systems. auto
onf doesn't help in those
ases, and brings in a whole load of new

omplexity.

Most people should be able to
ompile the library and program under Unix straight out-of-

the-box, so to speak, espe
ially if you have a version of GNU C available.

There are a
ouple of __inline__ dire
tives in the
ode. GNU C (g

) should be able to

handle them. If you're not using GNU C, your C
ompiler shouldn't see them at all. If your

ompiler does, for some reason, see them and doesn't like them, just #define __inline__

to be /* */. One easy way to do this is to
ompile with the
ag -D__inline__=, whi
h

should be understood by most Unix
ompilers.

If you still have diÆ
ulties, try
ompiling with the ma
ro BZ_STRICT_ANSI de�ned. This

should enable you to build the library in a stri
tly ANSI
ompliant environment. Building

the program itself like this is dangerous and not supported, sin
e you remove bzip2's
he
ks

against
ompressing dire
tories, symboli
 links, devi
es, and other not-really-a-�le entities.

This
ould
ause �lesystem
orruption!

One other thing: if you
reate a bzip2 binary for publi
 distribution, please try and link it

stati
ally (g

 -s). This avoids all sorts of library-version issues that others may en
ounter

later on.

If you build bzip2 on Win32, you must set BZ_UNIX to 0 and BZ_LCCWIN32 to 1, in the �le

bzip2.
, before
ompiling. Otherwise the resulting binary won't work
orre
tly.

4.3 Reporting bugs

I tried pretty hard to make sure bzip2 is bug free, both by design and by testing. Hopefully

you'll never need to read this se
tion for real.

Nevertheless, if bzip2 dies with a segmentation fault, a bus error or an internal assertion

failure, it will ask you to email me a bug report. Experien
e with version 0.1 shows that

almost all these problems
an be tra
ed to either
ompiler bugs or hardware problems.

� Re
ompile the program with no optimisation, and see if it works. And/or try a di�erent

Chapter 4: Mis
ellanea 33

ompiler. I heard all sorts of stories about various
avours of GNU C (and other

ompilers) generating bad
ode for bzip2, and I've run a
ross two su
h examples myself.

2.7.X versions of GNU C are known to generate bad
ode from time to time, at high

optimisation levels. If you get problems, try using the
ags -O2 -fomit-frame-pointer

-fno-strength-redu
e. You should spe
i�
ally not use -funroll-loops.

You may noti
e that the Make�le runs six tests as part of the build pro
ess. If the

program passes all of these, it's a pretty good (but not 100%) indi
ation that the

ompiler has done its job
orre
tly.

� If bzip2
rashes randomly, and the
rashes are not repeatable, you may have a
aky

memory subsystem. bzip2 really hammers your memory hierar
hy, and if it's a bit

marginal, you may get these problems. Ditto if your disk or I/O subsystem is slowly

failing. Yup, this really does happen.

Try using a di�erent ma
hine of the same type, and see if you
an repeat the problem.

� This isn't really a bug, but ... If bzip2 tells you your �le is
orrupted on de
ompression,

and you obtained the �le via FTP, there is a possibility that you forgot to tell FTP to

do a binary mode transfer. That absolutely will
ause the �le to be non-de
ompressible.

You'll have to transfer it again.

If you've in
orporated libbzip2 into your own program and are getting problems, please,

please, please,
he
k that the parameters you are passing in
alls to the library, are
orre
t,

and in a

ordan
e with what the do
umentation says is allowable. I have tried to make the

library robust against su
h problems, but I'm sure I haven't su

eeded.

Finally, if the above
omments don't help, you'll have to send me a bug report. Now, it's

just amazing how many people will send me a bug report saying something like

bzip2
rashed with segmentation fault on my ma
hine

and absolutely nothing else. Needless to say, a su
h a report is totally, utterly,
ompletely

and
omprehensively 100% useless; a waste of your time, my time, and net bandwidth.

With no details at all, there's no way I
an possibly begin to �gure out what the problem

is.

The rules of the game are: fa
ts, fa
ts, fa
ts. Don't omit them be
ause "oh, they won't be

relevant". At the bare minimum:

Ma
hine type. Operating system version.

Exa
t version of bzip2 (do bzip2 -V).

Exa
t version of the
ompiler used.

Flags passed to the
ompiler.

However, the most important single thing that will help me is the �le that you were trying

to
ompress or de
ompress at the time the problem happened. Without that, my ability to

do anything more than spe
ulate about the
ause, is limited.

Please remember that I
onne
t to the Internet with a modem, so you should
onta
t me

before mailing me huge �les.

Chapter 4: Mis
ellanea 34

4.4 Did you get the right pa
kage?

bzip2 is a resour
e hog. It soaks up large amounts of CPU
y
les and memory. Also, it

gives very large laten
ies. In the worst
ase, you
an feed many megabytes of un
ompressed

data into the library before getting any
ompressed output, so this probably rules out

appli
ations requiring intera
tive behaviour.

These aren't faults of my implementation, I hope, but more an intrinsi
 property of the

Burrows-Wheeler transform (unfortunately). Maybe this isn't what you want.

If you want a
ompressor and/or library whi
h is faster, uses less memory but gets pretty

good
ompression, and has minimal laten
y,
onsider Jean-loup Gailly's and Mark Adler's

work, zlib-1.1.2 and gzip-1.2.4. Look for them at

http://www.
drom.
om/pub/infozip/zlib and http://www.gzip.org respe
tively.

For something faster and lighter still, you might try Markus F X J Oberhumer's LZO real-

time
ompression/de
ompression library, at

http://wildsau.idv.uni-linz.a
.at/mfx/lzo.html.

If you want to use the bzip2 algorithms to
ompress small blo
ks of data, 64k bytes or

smaller, for example on an on-the-
y disk
ompressor, you'd be well advised not to use

this library. Instead, I've made a spe
ial library tuned for that kind of use. It's part

of e2
ompr-0.40, an on-the-
y disk
ompressor for the Linux ext2 �lesystem. Look at

http://www.netspa
e.net.au/~reiter/e2
ompr.

4.5 Testing

A re
ord of the tests I've done.

First, some data sets:

� B: a dire
tory
ontaining 6001 �les, one for every length in the range 0 to 6000 bytes.

The �les
ontain random lower
ase letters. 18.7 megabytes.

� H: my home dire
tory tree. Do
uments, sour
e
ode, mail �les,
ompressed data. H

ontains B, and also a dire
tory of �les designed as boundary
ases for the sorting;

mostly very repetitive, nasty �les. 565 megabytes.

� A: dire
tory tree holding various appli
ations built from sour
e: eg
s, g

-2.8.1,

KDE, GTK, O
tave, et
. 2200 megabytes.

The tests
ondu
ted are as follows. Ea
h test means
ompressing (a
opy of) ea
h �le in

the data set, de
ompressing it and
omparing it against the original.

First, a bun
h of tests with blo
k sizes and internal bu�er sizes set very small, to dete
t any

problems with the blo
king and bu�ering me
hanisms. This required modifying the sour
e

ode so as to try to break it.

1. Data set H, with bu�er size of 1 byte, and blo
k size of 23 bytes.

2. Data set B, bu�er sizes 1 byte, blo
k size 1 byte.

3. As (2) but small-mode de
ompression.

4. As (2) with blo
k size 2 bytes.

Chapter 4: Mis
ellanea 35

5. As (2) with blo
k size 3 bytes.

6. As (2) with blo
k size 4 bytes.

7. As (2) with blo
k size 5 bytes.

8. As (2) with blo
k size 6 bytes and small-mode de
ompression.

9. H with bu�er size of 1 byte, but normal blo
k size (up to 900000 bytes).

Then some tests with unmodi�ed sour
e
ode.

1. H, all settings normal.

2. As (1), with small-mode de
ompress.

3. H,
ompress with
ag -1.

4. H,
ompress with
ag -s, de
ompress with
ag -s.

5. Forwards
ompatibility: H, bzip2-0.1pl2
ompressing, bzip2-0.9.5 de
ompressing,

all settings normal.

6. Ba
kwards
ompatibility: H, bzip2-0.9.5
ompressing, bzip2-0.1pl2 de
ompressing,

all settings normal.

7. Bigger tests: A, all settings normal.

8. As (7), using the fallba
k (Sadakane-like) sorting algorithm.

9. As (8),
ompress with
ag -1, de
ompress with
ag -s.

10. H, using the fallba
k sorting algorithm.

11. Forwards
ompatibility: A, bzip2-0.1pl2
ompressing, bzip2-0.9.5 de
ompressing,

all settings normal.

12. Ba
kwards
ompatibility: A, bzip2-0.9.5
ompressing, bzip2-0.1pl2 de
ompressing,

all settings normal.

13. Mis
 test: about 400 megabytes of .tar �les with bzip2
ompiled with Che
ker (a

memory a

ess error dete
tor, like Purify).

14. Mis
 tests to make sure it builds and runs ok on non-Linux/x86 platforms.

These tests were
ondu
ted on a 225 MHz IDT WinChip ma
hine, running Linux 2.0.36.

They represent nearly a week of
ontinuous
omputation. All tests
ompleted su

essfully.

4.6 Further reading

bzip2 is not resear
h work, in the sense that it doesn't present any new ideas. Rather, it's

an engineering exer
ise based on existing ideas.

Four do
uments des
ribe essentially all the ideas behind bzip2:

Mi
hael Burrows and D. J. Wheeler:

"A blo
k-sorting lossless data
ompression algorithm"

10th May 1994.

Digital SRC Resear
h Report 124.

ftp://ftp.digital.
om/pub/DEC/SRC/resear
h-reports/SRC-124.ps.gz

If you have trouble finding it, try sear
hing at the

New Zealand Digital Library, http://www.nzdl.org.

Chapter 4: Mis
ellanea 36

Daniel S. Hirs
hberg and Debra A. LeLewer

"Effi
ient De
oding of Prefix Codes"

Communi
ations of the ACM, April 1990, Vol 33, Number 4.

You might be able to get an ele
troni

opy of this

from the ACM Digital Library.

David J. Wheeler

Program bred3.
 and a

ompanying do
ument bred3.ps.

This
ontains the idea behind the multi-table Huffman

oding s
heme.

ftp://ftp.
l.
am.a
.uk/users/djw3/

Jon L. Bentley and Robert Sedgewi
k

"Fast Algorithms for Sorting and Sear
hing Strings"

Available from Sedgewi
k's web page,

www.
s.prin
eton.edu/~rs

The following paper gives valuable additional insights into the algorithm, but is not imme-

diately the basis of any
ode used in bzip2.

Peter Fenwi
k:

Blo
k Sorting Text Compression

Pro
eedings of the 19th Australasian Computer S
ien
e Conferen
e,

Melbourne, Australia. Jan 31 - Feb 2, 1996.

ftp://ftp.
s.au
kland.a
.nz/pub/peter-f/ACSC96paper.ps

Kunihiko Sadakane's sorting algorithm, mentioned above, is available from:

http://naomi.is.s.u-tokyo.a
.jp/~sada/papers/Sada98b.ps.gz

The Manber-Myers suÆx array
onstru
tion algorithm is des
ribed in a paper available

from:

http://www.
s.arizona.edu/people/gene/PAPERS/suffix.ps

Finally, the following paper do
uments some re
ent investigations I made into the perfor-

man
e of sorting algorithms:

Julian Seward:

On the Performan
e of BWT Sorting Algorithms

Pro
eedings of the IEEE Data Compression Conferen
e 2000

Snowbird, Utah. 28-30 Mar
h 2000.

i

Table of Contents

1 Introdu
tion . 2

2 How to use bzip2 . 3

NAME . 3

SYNOPSIS . 3

DESCRIPTION . 3

OPTIONS . 4

MEMORY MANAGEMENT . 6

RECOVERING DATA FROM DAMAGED FILES

. 7

PERFORMANCE NOTES . 7

CAVEATS . 8

AUTHOR . 8

3 Programming with libbzip2 9

3.1 Top-level stru
ture . 9

3.1.1 Low-level summary . 9

3.1.2 High-level summary . 9

3.1.3 Utility fun
tions summary . 10

3.2 Error handling . 10

3.3 Low-level interfa
e . 12

3.3.1 BZ2_bzCompressInit . 12

3.3.2 BZ2_bzCompress . 14

3.3.3 BZ2_bzCompressEnd . 17

3.3.4 BZ2_bzDe
ompressInit . 17

3.3.5 BZ2_bzDe
ompress . 17

3.3.6 BZ2_bzDe
ompressEnd . 19

3.4 High-level interfa
e . 19

3.4.1 BZ2_bzReadOpen . 19

3.4.2 BZ2_bzRead . 20

3.4.3 BZ2_bzReadGetUnused . 22

3.4.4 BZ2_bzReadClose . 22

3.4.5 BZ2_bzWriteOpen . 22

3.4.6 BZ2_bzWrite . 23

3.4.7 BZ2_bzWriteClose . 23

3.4.8 Handling embedded
ompressed data streams 24

3.4.9 Standard �le-reading/writing
ode 25

3.5 Utility fun
tions . 26

3.5.1 BZ2_bzBuffToBuffCompress 26

3.5.2 BZ2_bzBuffToBuffDe
ompress 27

3.6 zlib
ompatibility fun
tions . 28

3.7 Using the library in a stdio-free environment 29

ii

3.7.1 Getting rid of stdio . 29

3.7.2 Criti
al error handling . 29

3.8 Making a Windows DLL . 30

4 Mis
ellanea. 31

4.1 Limitations of the
ompressed �le format 31

4.2 Portability issues . 32

4.3 Reporting bugs . 32

4.4 Did you get the right pa
kage? . 34

4.5 Testing . 34

4.6 Further reading . 35

