
MHI_dev

Paul Qureshi



MHI_dev ii

COLLABORATORS

TITLE :

MHI_dev

ACTION NAME DATE SIGNATURE

WRITTEN BY Paul Qureshi July 31, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



MHI_dev iii

Contents

1 MHI_dev 1

1.1 MHI Developer Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction to MHI and MPEG audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 MPEG overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Writing a decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Authors and contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Legal stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6



MHI_dev 1 / 7

Chapter 1

MHI_dev

1.1 MHI Developer Guide

* MHI Developers Guide *

2001 Paul Qureshi

MHI is a system for accessing hardware to decode MPEG audio data (including

the popular MP3 format). It provides an abstraction layer so that software

may use a common API to access any kind of hardware a user has.

Introduction Introduction to MHI and MPEG audio

MPEG overview Facts about MPEG audio

Using MHI How to use MHI in your program

Writing decoders How to create your own driver

Authors Contact us about anything

BSD licence This software is free!

This guide © (C) 2001 Paul Qureshi. Freely distributeable.

1.2 Introduction to MHI and MPEG audio

Overview of MHI

---------------

MHI is a new standard for MPEG audio decoders, both hardware and CPU based.

It was born from a need to find a standard way of using MPEG decoder hardware

in AmigaAMP, which supported internal and external decoders, mpega.library

(68K and PPC), and the Prelude MPEGiT hardware.

At the time, the only common system was the mpeg.device, developed by

Commodore for the CD32 FMV device. This system was, however, flawed in many

ways. For a start, the programmer had little control over the audio and it

was hard to tell what the capabilities of a decoder were. There is also the

difficulty involved in writing devices, where as libraries are relatively easy



MHI_dev 2 / 7

to create.

Thus, MHI was created. Using MHI an application can use any MPEG audio

decoder in a simple, efficient and consistent manner. Support for tone

control (bass, treble, mid and prefactor), volume, panning and stereo mixing

are also available. Full developer material is also available for those

wishing to use MHI or develop MHI applications. AmigaAMP is the first program

to support MHI.

MHI was developed by Paul Qureshi, Thomas Whenzel and Dirk Conrad. If you

want to have input on this project or ask any questions,

contact us.

1.3 MPEG overview

Overview of MPEG audio

----------------------

Note: a full understanding of MPEG audio is not needed to program with

MHI. Free free to skip this section if you like.

MPEG audio was designed to compress audio to a fraction of the original

storage size while maintaining audio quality as much as possible. It works

by using a psycho-acoustic model (i.e. one based on the way the human ear

works and the way the brain decodes sounds) to guess at which parts of the

audio are most important. Using this model it can discard 90% of the audio

information (which is unimportant to the way human beings perceive sound)

and compress the rest as much as possible. The results are surprisingly good,

with quality well above the requirements of most listeners.

MPEG is actually a standard for video and audio. MPEG comes in the form

of streams. A stream can be in the form of a file on disk,

a stream of data from a TCP/IP (internet) connection, or any other data

storage method. The three most common MPEG streams are MPEG movies, MP3

audio files and streaming MP3 from the internet.

There are currently three MPEG standards in common use: MPEG 1, MPEG 2

and MPEG 41. MPEG 4 is not very common yet. From a simple applications

point of view there isn’t much difference between these standards when used

for audio streams. MHI is capable of dealing with them all (although note

that not all MHI decoders will be capable of decoding them all).

MPEG streams are made up of layers. A layer is a collection of

one type of data (say, audio data) in a standard format. The most commonly

mentioned layer is Layer III, the audio layer used in MP3 (MPEG

Layer 3). For MPEG 1 and 2 there are three possible audio layers, 1, 2 and



MHI_dev 3 / 7

3. Each uses a different kind of compression, with layer 3 being the most

compressed. The layer used in an MPEG stream is only important if you

are interested in the parameters of the audio stream, otherwise you can

simply ignore it and pass it to MHI for decoding.

MPEG audio streams have certain characteristics. The two main ones are

the bitrate and the sampling frequency. The bitrate

refers to the number of bits the encoded stream uses per second of

decoded data. A common value is 128kb, which gives near CD quality when

used with layer 3. The sampling frequency is the number of samples per

second of the decoded data. Commonly this is 44100, the same as used for

CD audio.

An extension to the standard MPEG stream that is only of use when the

stream is stored as a file is the ID header. This header is the last 128

bytes of a stream file and contains information on the track name, artist,

album, comment and the genera the audio fits into. It is referred to as

an ID3 tag.
1 Yes, that’s right, there is no MPEG 3 :)

1.4 Getting Started

Getting started with MHI

------------------------

All the example code in this manual is in C, since that is my favorite

language. Some times I leave out error checking, but in real life you should

always check the values MHI returns to you.

MHI drivers are actually just standard Amiga shared libraries. They are

located in Libs:mhi/. You can use a file requester or similar to pick one.

Each driver uses the same API.

To use MHI, you need to buffer your MPEG data. I recommend you use at least

three buffers (I use 8 in my example code) and make them at least around 8K

each. You should not really go over about 128k per buffer either, although

there is no limit built into MHI. Experiment to see what gives you the best

results.

MHI communicates with you via signals. Essentially, they are used to tell

you when a buffer had been decoded and is now ready to be re-filled.

Using MHI is really quite simple. The overall structure of your code will

look something like this:

Open driver library

|



MHI_dev 4 / 7

Query available features

|

Allocate a handle

|

Buffer MPEG data

|

Start playing

|

Feed buffers until end of file

|

Wait for stream end

|

Free handle

Lets walk through it. To start with, you open your selected driver library.

It’s as easy as:

OpenLibrary("libs:mhi/mhiXXX.library")

Once that is done, you query the driver for what features it supports. You

should always check if the driver supports a feature before you use it.

Having said that, you can usually safely ignore things like the MPEG types

and layers supported (see here) since you will just get

silence if you try to play non supported streams. You can also query things

like the driver name, version and author here, for display in your program :)

The next thing to do is allocate a handle. It is important to be aware of

when you should do this. Allocating a handle effectively allocates the decoder

and all required hardware (such as audio channels, ports etc). It may also

start things like interrupts which use CPU time. Therefore, you should only

allocate a handle when you are about to play audio, and free it as soon as

you are done. Don’t just allocate it when your program loads up!

Allocating a handle is easy:

mytask = FindTask(0);

mysignal = AllocSignal(-1);

sigmask = 1L << mysignal;

handle = MHIAllocDecoder(mytask, sigmask);

Notice that you have to pass a pointer to your task and a signal mask. This

is how MHI sends you feedback on the decoding process. Once you have

allocated a handle, the decoder is in the default state. Volume is full,

there is no tone control, panning is centered etc. The player is ’stopped’

(MHIF_STOPPED)

At this point, you should buffer up some MPEG data by passing MHI the



MHI_dev 5 / 7

buffers, like this:

MHIQueueBuffer(handle, bufmem, size);

By buffering up data before you start playing, you prevent skipping. Once

memory (called a ’buffer’) has been added to the queue, you must not touch

it. Do not deallocate it, don’t write into it, don’t even read from it.

Once you are done, you can start playing the audio with MHIPlay(handle);. Now

the audio data is being decoded, and the decoder will continue to decoder any

buffers you add to the queue as long as it is in ’play’ (MHIF_PLAYING)

mode.

The main loop of your program should look like this:

while (not end of file)

{

tempsigs = Wait(sigmask | SIGBREAKF_CTRL_C);

while (usedbuf = MHIGetEmpty(handle))

{

find empty buffer

load more data into it

add it to the queue again

}

}

In other words, you keep looping until the end of your file. When you get a

signal from MHI (make sure it is the signal you gave to MHI, and not a CTRL-C

or something!) you know that at least one buffer is now ’empty’ (i.e. has

been completely decoded) and is ready to be re-used. It is possible for more

than one buffer to be empty, so you must loop round and keep checking until

MHIGetEmpty returns 0. If there is an empty buffer MHIGetEmpty will return

the address of that buffer. It is up to you to work out which buffer that

address relates to, although if all your buffers are the same size you can

simply load more data into that address safely. Once you have loaded more of

the MPEG stream into the buffer, you put it back in the queue with

MHIQueueBuffer().

Of course, while you are playing the MPEG audio you can use other MHI

commands to pause, stop or alter the decoding parameters (such as volume,

tone control etc).

Once you come to the end of the file, you must wait for MHI to finish

decoding all the data still in the queue. To do this, simply loop around

waiting for signals from MHI, and when they arrive check if the player is now

out of data, like this:

while((MHIGetStatus(handle) == MHIF_PLAYING))



MHI_dev 6 / 7

{

wait for another signal

}

When the decoder runs out of buffers to decoder, MHIGetStatus() will return

MHIF_OUT_OF_DATA. You can then safely free your handle, or call

MHIStop() and load your next file. Freeing your handle can be done at any

time, and it will automatically remove all buffers from the queue. MHIStop()

will also clear the queue, and return all buffers to you. You can then safely

FreeMem() the buffer memory, or write into it as you like.

1.5 Writing a decoder

If you wish to write an MHI decoder, please contact

us. You are free to use the MAS Player Pro decoder as a base. Writing a

decoder is not too hard, so don’t worry!

1.6 Authors and contacts

The Authors

-----------

MHI was developed jointly by:

Paul Qureshi (paul.qureshi@btinternet.com)

Thomas Whenzel

Dirk Conrad

Feel free to contact us about anything regarding MHI, especially if you

want to write an MHI driver.

Our thanks go to Eternity for sending Thomas a MAS Player Pro unit so he

could work on MHI support in AmigaAMP. Thanks also to the ASA crew who

encouraged Paul to work on MHI, thanks guys! Find them at

www.amigasupport.co.uk.

1.7 Legal stuff

This licence was adapted from the BSD licence.

Copyright © Paul Qureshi, Thomas Whenzel and Dirk Conrad. All rights

reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:



MHI_dev 7 / 7

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the authors nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

Or, in English:

- You’re free to derive any work you like from this, just don’t change

the original source.

- Give credit where credit is due

- Don’t fob it off as your own work

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS” AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.


	MHI_dev
	MHI Developer Guide
	Introduction to MHI and MPEG audio
	MPEG overview
	Getting Started
	Writing a decoder
	Authors and contacts
	Legal stuff


