gcc-amigaos

gcc-amigaos

] COLLABORATORS
TITLE :
gcc-amigaos
ACTION NAME DATE SIGNATURE
WRITTEN BY July 31, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

gcc-amigaos iii

Contents

1 gcc-amigaos 1
1.1 gec-amigaos.guide L. e e 1
1.2 gcc-amigaos.guide/Introduction Lo e e e |
1.3 gecc-amigaos.guide/Invocation oL e e e e e e e e e 3
1.4 gcc-amigaos.guide/-noixemul Lo 3
1.5 gcc-amigaos.guide/-fbaserelo 4
1.6 gcc-amigaos.guide/-resident L. e e e e e 4
1.7 gcc-amigaos.guide/-fbaserel32o 5
1.8 gcc-amigaos.guide/-resident32 L e e e e e e e 5
1.9 gcc-amigaos.guide/-msmall-code e 6
1.10 gecc-amigaos.guide/-mstackchecko 6
1.11 gcc-amigaos.guide/-mstackextend L. e e e 7
1.12 gcc-amigaos.guide/-mfixedstack e 7
1.13 gecc-amigaos.guide/-mrestore-ad oL L e e e e e e 8
1.14 gcc-amigaos.guide/-malways-restore-ad L. e e e e e e e e 8
1.15 gcc-amigaos.guide/-mregparmo L oL e e e e e e 9
1.16 gcc-amigaos.guide/-frepo L e 10
1.17 gec-amigaos.guide/Attributes L L e e e e e e e e e 11
1.18 gcc-amigaos.guide/chip 11
1.19 gcc-amigaos.guide/saveds e e 12
1.20 gecc-amigaos.guide/interrupt L L. L e e e e e e e e e e e e 12
1.21 gcc-amigaos.guide/stackext e 13
1.22 gcc-amigaos.guide/regparm oL L e e e e e e e 14
1.23 gec-amigaos.guide/stkparm L L Lo oL e e 14
1.24 gcc-amigaos.guide/Defines oL e e 15
1.25 gcc-amigaos.guide/Identifying machine L e 15
1.26 gcc-amigaos.guide/Options informationo Lo oL e 16
1.27 gecc-amigaos.guide/Keyword macros L. e e 17
1.28 gcc-amigaos.guide/Miscellaneous L. e e e e e e e 17
1.29 gcc-amigaos.guide/Explicit register specification Lo oL Lo 18

gcc-amigaos iv

1.30 gcc-amigaos.guide/Case sensitive CPP L 18
1.31 gcc-amigaos.guide/GCCPRIORITY L . . e e e e 19
1.32 gcc-amigaos.guide/Library flavors L e 19

1.33 gcc-amigaos.guide/Indexl e 20

gcc-amigaos

1/21

Chapter 1

gcc-amigaos

1.1 gcc-amigaos.guide

This document describes the AmigaOS-only features of the GNU CC
compiler.

Last updated Oct 25th, 1997.

Introduction Purpose of this document.
Invocation Command line options.

Attributes Variable and function attributes.
Defines Preprocessor symbols.
Miscellaneous Uncategorizable.

Index Concept index.

1.2 gcc-amigaos.guide/Introduction

Introduction

*kkkkhkkkkkkk*k

This document is supposed to be an addendum to the baseline GCC
documentation.

It focuses on the features that are visible by users and are
important to them. It is not supposed to document the internals of the
AmigaOS port of GCC.

It describes features implemented in the Geek Gadgets GCC port. As

of this writing, this is version 2.7.2.1, Geek Gadgets snapshot 970728.

For more information about Geek Gadgets, please refer to:

http://www.ninemoons.com/ADE/ADE.html
ftp://ftp.ninemoons.com/pub/geekgadgets/README

gcc-amigaos 2/21

This document also describes some features that are not yet part of
the Geek Gadgets GCC port, but which should be there soon. Such
features are marked with [EXPERIMENTAL]. If you have GCC from a
snapshot later than specified above, it’s possible that these features
are available in it. Some of these features might also be available in
BETA GCC releases available on Kamil Iskra’s WWW page:

http://student.uci.agh.edu.pl/~iskra/ade.html

This document focuses on GCC. It does not describe the AmigaOS-only
features of other GNU packages, such as binutils, unless they are very
closely connected to GCC.

This means, that, unless stated otherwise, when we talk about the
"compiler", we mean the gcc, cpp and ccl executables, i.e., the
executables that convert C source code to assembly source code. The

assembler and linker are generally beyond the scope of this document.

The primary source of information used to create this document was
the GCC source code. Some parts of this document are based on:

* The LibNIX manual, written by Matthias Fleischer and Gunther Nikl:

fleischr@izfm.uni-stuttgart.de
gnikl@informatik.uni-rostock.de

* The A2IXLibrary manual, written by Hans Verkuil:
hans@wyst.hobby.nl
* The README file, maintained by Rask Ingemann Lambertsen:

gc948374@gbar.dtu.dk
http://www.gbar.dtu.dk/~c948374/GNU/

* The Geek Gadgets FAQ, maintained by Lynn Winebarger:

owinebar@indiana.edu
http://nickel.ucs.indiana.edu/~owinebar/interests/amiga/amiga.html

* The FAQ for g++ and libg++, written by Joe Buck:

jbuck@synopsys.com
http://www.cygnus.com/misc/g++FAQ_toc.html

* Discussions on various Geek Gadgets mailing lists:

gg@ninemoons.com
gg—-gccl@ninemoons.com
gg-ixemul@ninemoons.com

This document was created by Kamil Iskra. Please email any questions,
suggestions etc. to <iskra@student.uci.agh.edu.pl> or, even better, to
the <gg—-gccl@ninemoons.com> mailing list.

The author would like to thank Kriton Kyrimis <kyrimis@cti.gr> and
Lars Hecking <lhecking@nmrc.ucc.ie> for correcting an awful lot of

gcc-amigaos 3/21

language mistakes in this document.

1.3 gcc-amigaos.guide/lnvocation

Invocation
* ok Kk kK kkk kK

The AmigaOS port of GCC supports the following non-standard command
line options:

-noixemul Link with LibNIX.

—fbaserel Produce a4d-relative data.

—-resident Produce a pure executable.

—fbaserel32 Produce ad4-relative data with no size limits.
—-resident32 Produce a pure executable with no size limits.
-msmall—-code Produce PC-relative code.

-mstackcheck Produce stack-checking code.

-mstackextend Produce stack-extending code.

-mfixedstack Produce plain code.

-mrestore-a4 Reload a4 in public functions.
-malways—-restore-a4 Reload a4 in all functions.

-mregparm Pass function arguments in registers.

—-frepo Enable C++ Template Repository.

Accordingly, the AmigaOS port of GCC supports several flavors of
linker libraries. See
Relation between library flavors and compile-time options.

1.4 gcc-amigaos.guide/-noixemul

-noixemul

By default, the executables created with GCC require ixemul.library
to run. This has its advantages (easy porting of UN*X programs,
resource tracking, debugging, profiling, etc) and disadvantages
(UNxX-style pathnames, large shared library, etc).

If —noixemul is specified on the GCC command line, the executable
created will not require ixemul.library —-- it will use the static
linker library LibNIX instead. This library is very Amiga-like and
SAS/C-1like, so it is convenient for the AmigaOS-specific development.

Note: There is no great mystery about the —-noixemul option. It has

gcc-amigaos 4/21

absolutely no effect on the code generated by the compiler, only
instructing the gcc driver to pass different options to the linker
and preprocessor (see Options information, See Library flavors).

This option has no negative form.

For more information, please refer to the LibNIX documentation.

1.5 gcc-amigaos.guide/-fbaserel

—fbaserel

By default, the code generated by GCC references data using 32-bit,
absolute addressing.

The —-fbaserel option will make GCC generate code that references
data with 16 bit offsets relative to the a4 address register. This
makes executables smaller and faster. Unfortunately, the size of the
data section cannot exceed 64 KB, so this option cannot be used for
large programs, like GCC itself.

Note: For a base-relative executable, —-fbaserel needs to be
specified for compiling and linking. Base-relative programs
require special startup code and special versions of linker
libraries. Since not all linker libraries are available in both
plain and base relative versions, the usefulness of this option is
limited. It is important to note that when the base-relative
library is missing, the linker will attempt to use the plain one.
This might result in strange link-time or even run-time errors.

This option is the AmigaOS equivalent of the standard GCC option
—-fpic, which is not supported by the AmigaOS port. -—fpic
generates code that references data indirectly, through a global
offset table. The special addressing modes available on the m68k
processor family allow for a much more efficient implementation
with —-fbaserel.

The negative form of —-fbaserel is —-fno-baserel, and is on by
default.

For more information, please refer to the LibNIX documentation.

1.6 gcc-amigaos.guide/-resident

-resident

Executables produced with the -resident option are pure, so they can
be made resident using the AmigaShell resident command. resident

gcc-amigaos 5/21

executables are loaded to memory just once, and several concurrent
instances share the code section.

Note: The compiler generates the same code for -resident as for
—fbaserel (see —fbaserel). Only the linking stage is different
(special startup code is linked).

This option has no negative form.

For more information, please refer to the LibNIX documentation.

1.7 gcc-amigaos.guide/-fbaserel32

—-fbaserel32

The difference between the —-fbaserel32 and -fbaserel options (see
—fbaserel) is the same as between the standard GCC options —-fPIC and
—fpic.

Code generated with —-fbaserel32 references data with 32 bit offsets
relative to the a4 address register. In contrast to the —-fbaserel (see
—fbaserel) option, there is no 64 KB size limit. Unfortunately, the
addressing modes with 32 bit offsets are only available on 68020 and
higher processors. Therefore, it is necessary to specify -m68020 or
higher to use this option.

Note: This option used to be called -flarge-baserel before Geek
Gadgets snapshot 970109. Since it was not functional then, this
should not cause any compatibility problems.

The negative form of —-fbaserel32 is —-fno-baserel32, and is on by
default.

1.8 gcc-amigaos.guide/-resident32

-resident32

This option is an improved version of -resident (see -resident) --
it does not impose any limits on data section size. Unfortunately, just
like —-fbaserel32 (see —-fbaserel32), it is only available for 68020 or
higher processors. Therefore, it is necessary to specify -m68020 or
higher to use this option.

Note: This option was first made available in the GCC 2.7.2.1,
Geek Gadgets snapshot 9701009.

This option has no negative form.

gcc-amigaos 6/21

1.9 gcc-amigaos.guide/-msmall-code

-msmall-code

By default, the code generated by the compiler references functions
using 32-bit, absolute addressing.

Code generated by GCC with the -msmall-code option references
symbols in the code section with 16 bit offsets, relative to the PC
(program counter). This makes executables smaller and faster.
Unfortunately, the size of the code section is generally limited to 32
KB, so this option can only be used for relatively small programs.

Note: Actually, the compiler always generates 32-bit code
references. If the assembler can calculate the offset between the
referencing instruction and the referenced symbol (in other words,
if the referenced symbol is in the same source file), it replaces
the 32-bit reference with the PC-relative one. External references
are left intact, unless -msmall-code is used, in which case the
assembler generates PC-relative references, and the exact offsets
are calculated by the linker.

This option has no negative form.

For more information, please refer to the LibNIX documentation.

1.10 gcc-amigaos.guide/-mstackcheck

-mstackcheck

By default, the code generated by GCC does not check if there is
enough stack available before performing stack-consuming operations.
This is generally not necessary on UNxX systems, where the stack is
extended automagically whenever needed.

Unfortunately, the AmigaOS provides tasks with a static, fixed size
stack.

However, if a program is compiled with -mstackcheck, it will check
if there is enough stack available before performing any stack-hungry
operations. If there is a danger of stack overflow, the program will
abort and the user will be notified.

Needless to say, stack checking increases the executable size and the
execution time.

Note: Stack checking cannot be used for functions that might be
called from outside your task. This includes interrupt handlers,
shared library functions, hooks etc. In such cases, you should
either avoid using -mstackcheck for files containing such
functions, or use __attribute_ ((interrupt)) (see interrupt).

gcc-amigaos

7121

It is safe to call a function that performs stack checking from one
that does not, and vice versa.

The negative form of -mstackcheck is -mno-stackcheck, and is on by
default.

Warning: -mno-stackcheck used to be called —-mnostackcheck before
Geek Gadgets snapshot 961012.

For more information, please refer to the LibNIX documentation.

1.11 gcc-amigaos.guide/-mstackextend

-mstackextend

-mstackextend is very similar to -mstackcheck (see -mstackcheck).

The main difference is that when a program runs out of stack, it is
not aborted, but a new stack area is allocated and the program
continues to run.

Note: Stack extension can slow programs down significantly. It is
advised that programs are written in such a way that they do not
require too much stack. This can generally be achieved by
explicitly allocating memory for large structures and arrays using
functions like malloc() or AllocMem(), instead of creating them as
local variables. Another method is replacing recursion with
iteration. In addition, it might be considered to use stack
extension only for selected, "dangerous" functions (see

stackext), not for all functions in a given program.

The negative form of -mstackextend is -mno-stackextend, and is on
by default.

Warning: -mno-stackextend used to be called -mnostackextend before
Geek Gadgets snapshot 961012.

For more information, please refer to the LibNIX documentation.

1.12 gcc-amigaos.guide/-mfixedstack

-mfixedstack

This option makes GCC generate plain code, that does neither stack
checking nor extension. Since this is the default, there is generally
no need to use this option.

gcc-amigaos 8/21

Note: This option has no negative form.

1.13 gcc-amigaos.guide/-mrestore-a4

-mrestore-ad

This option is used to create the IXEmul shared libraries (those
*.ixlibrary files).

It sets a4 to the appropriate value in the prologues of all public
functions (i.e., functions with external linkage). This is necessary if

these functions are called from the code of application.

Note: This option should not be used except for the creation of an
IXEmul shared library.

This option was first made available in the GCC 2.7.2, Geek
Gadgets snapshot 960902. It used to be called -frestore-a4, and
was relabeled to its current name in the GCC 2.7.2.1, Geek Gadgets

snapshot 961012.

The negative form of -mrestore-a4 is —-mno-restore-—-a4, and is on by
default.

For more information, please refer to the A2IXLibrary documentation.

1.14 gcc-amigaos.guide/-malways-restore-a4

-malways—-restore-a4

This option is very similar to —-mrestore-a4 (see —mrestore-ai4).

The only difference is that it sets a4 in all functions, including
private ones (i.e., functions with internal linkage, static). This is
safer than -mrestore-a4 (see —-mrestore-a4), but is also slower.

Note: This option should not be used except for the creation of an
IXEmul shared library.

This option was first made available in the GCC 2.7.2, Geek
Gadgets snapshot 960902. It used to be called -falways-restore-a4,
and was relabeled to its current name in the GCC 2.7.2.1, Geek
Gadgets snapshot 961012.

The negative form of -malways-restore-a4 is
-mno-always—-restore—-a4, and is on by default.

For more information, please refer to the A2IXLibrary documentation.

gcc-amigaos 9/21

1.15 gcc-amigaos.guide/-mregparm

—mregparm

On the m68k architecture, GCC passes function arguments on the stack
by default.

-mregparm allows for passing arguments in registers. This can be
slightly faster than the standard method of passing arguments on the
stack.

The full syntax of this option is:
-mregparm[=<value>]

value should be an integer ranging from 1 to 4. If no value 1is
provided, 2 will be used.

Four types of function arguments are recognized:

Integer
Integer numbers (this includes enumerations, small structures and
bool in C++, but excludes long long, which is too large). They are
passed in data registers, starting from dO.

Pointer
Pointers to objects or functions (this includes C++ references and
the implicit this argument). They are passed in address registers,
starting from aO0.

Float
Floating point numbers. If the floating point code generation is
enabled, they are passed in floating point registers, starting from
fp0. Otherwise, they are handled like the next type.

Other
All the other types of arguments, like large structures, pointers

to class methods in C++, etc. They are always passed on the stack.

The value given for -mregparm indicates how many arguments of each
of the above first three types should be passed in registers.

Example: GCC is invoked with -mregparm (without any value, so 2 will
be used) to compile a source containing the function:

void fun (int a, char *str, char b, int c¢);

a and b will be passed in dO and dl, respectively, str will be
passed in a0, and c will be passed on the stack.

Note: To use this option properly, it is very important that all
sources are fully prototyped. There may be very serious problems

gcc-amigaos

10/ 21

if they are not, since GCC will have to "guess" where to put
arguments, potentially making a wrong decission. Example:

[in filel.c]
void f (void)
{
g(0); /* Call to a function with no prototype. The argument
will be put in d0, since it is an integer. */

[in file2.c]
void g(char =*a) /* The argument is expected in a0, since it is
a pointer. «/

—Wimplicit -Wstrict-prototypes should be used to ensure that there
are no prototypes missing.

In case of stdargs functions, such as printf, all arguments are
passed on the stack.

As of this writing, -mregparm is supported by neither IXEmul nor
LibNIX, so its usefulness is very limited.

This option was first made available in the GCC 2.7.2.1, Geek
Gadgets snapshot 961012.

The negative form of -mregparm is -mno-regparm, and is on by
default.

1.16 gcc-amigaos.guide/-frepo

The AmigaOS port of GCC includes C++ Template Repository patch,
so—-called repo patch.

In order to activate it, please compile C++ source files with
—frepo. The compiler will not generate unnecessary template code, and
will create .rpo files that contain information about template symbols
used in each source file. Afterwards, during linking stage, a special
tool called collect2 will make sure that every required instantiation of
each template is linked into the executable, recompiling some source
files if necessary.

Note: This option was first made available in the GCC 2.7.2.1,
Geek Gadgets snapshot 9701009.

This option is not specific to the AmigaOS port of GCC,
nevertheless it is not fully supported in the baseline sources.

This patch has been created in Cygnus Support, a company that is a

gcc-amigaos 11/21

major contributor to the GNU project. It has not been integrated
into the baseline sources due to design disagreements.

The negative form of —-frepo is —-fno-repo, and is on by default.

For more information, please refer to the G++ FAQ.

1.17 gcc-amigaos.guide/Attributes

Attributes
* ok Kk kK kkk kK

The following non-standard attributes are available in the AmigaOS
port of GCC:
Variable attributes:

chip Put object in chip memory.

Function attributes:

saveds Reload a4.

interrupt Do not mess with the stack.
stackext Generate stack extension.
regparm Pass arguments in registers.
stkparm Pass arguments on the stack.

1.18 gcc-amigaos.guide/chip

chip

Amiga hardware requires some data to be located in chip memory.
Typically, if an initialized buffer is required (containing a picture
bitmap, for example), a plain, statically initialized buffer is used,
and the data is copied into a dynamically allocated MEMF_CHIP buffer.
This is not necessary with the chip attribute. If this attribute is
specified for an initialized, static variable, it will be allocated in
chip memory automagically by the AmigaOS.
A small example:
UWORD __attribute_ ((chip)) bitmapl[] = { ... };
Note: For compatibility with other AmigaOS C compilers, a
preprocessor symbol _ chip is available, which expands to

__attribute__ ((chip)) (see Keyword macros).

All the chip attribute does is specifying that data should go to a

gcc-amigaos

12/21

section called .datachip. Therefore, the standard GCC feature
_ _attribute_ ((section(".datachip"))) can be used instead.

This attribute was first made available in the GCC 2.7.2.1, Geek
Gadgets snapshot 970328.

For proper operation, this attribute requires a special version of
the assembler, which generates standard AmigaOS object files. This
version is not yet available in Geek Gadgets in binary form, since
support for this object files format is not yet complete.

1.19 gcc-amigaos.guide/saveds

saveds

This attribute is ignored, unless base-relative data (see
—fbaserel) is compiled.

To improve speed, programs compiled with the AmigaOS port of GCC set
the a4 register to the appropriate value only once, in the startup
code. Code generated with the standard GCC option —-fpic, in contrast,
sets the a4 register in every function which references global data.

This is only safe as long as all function calls are performed from
within your own code. Things become "tricky" if callback functions,
like the AmigaOS hooks, interrupt handlers etc. are used. If global
data is referenced in such functions, a4 has to be set properly.

This is exactly what the saveds attribute does: it initializes a4 in
the function prologue, and restores it to its original value in the
function epilogue.

Note: For compatibility with other AmigaOS C compilers, a
preprocessor symbol _ saveds 1is available, which expands to
__attribute_ ((saveds)) (see Keyword macros) .

Please do not use this attribute in pure executables (see
-resident, see -resident32). This is because several
invocations of pure executables can run concurrently, each one
having its own data section, and there is no way to find out to
which of these sections should a4 be set.

The saveds attribute is not necessary in function declarations
(prototypes) .

This attribute was first made available in the GCC 2.7.2.1, Geek
Gadgets snapshot 961012.

1.20 gcc-amigaos.guide/interrupt

gcc-amigaos 13/ 21

interrupt

This attribute should be used for any kind of callback functions that
can be called from outside your task. This includes interrupt handlers,
shared library functions, etc.

Most often, the interrupt attribute is only necessary if a program
is compiled with stack checking or extension (see -mstackcheck, see
-mstackextend). It will prevent the compiler from generating stack
checking or extension code for the function it was specified for.

Additionally, it will set CC (condition codes register) in the
function epilogue to return value, by performing tstl dO.

Note: For compatibility with other AmigaOS C compilers, a
preprocessor symbol _ interrupt is available, which expands to
__attribute_ ((interrupt)) (see Keyword macros) .

The interrupt attribute is mutually exclusive with the stackext
attribute (see stackext).

This attribute is not necessary in function declarations
(prototypes) .

This attribute was first made available in the GCC 2.7.2.1, Geek
Gadgets snapshot 961012.

1.21 gcc-amigaos.guide/stackext

stackext

This attribute makes GCC generate stack extension code for the
function for which it was used (see -mstackextend). This makes it
possible to use stack extension selectively, only for the "dangerous"
functions -- recursive functions, functions with large local variables,
etc.

Note: For compatibility with other AmigaOS C compilers, a
preprocessor symbol _ stackext is available, which expands to
__attribute_ ((stackext)) (see Keyword macros).

The stackext attribute is mutually exclusive with the interrupt
attribute (see interrupt).

This attribute is not necessary in function declarations
(prototypes) .

This attribute was first made available in the GCC 2.7.2.1, Geek
Gadgets snapshot 961012.

gcc-amigaos 14/ 21

1.22 gcc-amigaos.guide/regparm

regparm

The regparm attribute, together with the stkparm attribute (see
stkparm), can be used to fine-tune the way arguments are passed. It
makes GCC pass arguments in registers for the function for which it was
used, regardless of whether the global -mregparm option was used or not
(see —mregparm) .

An optional integer argument ranging from 1 to 4 indicates how many
arguments of each type should be passed in registers (see -mregparm).
The syntax is the following:

void __attribute_ ((regparm(3))) fun(int a, char *str, char b, int c);

This will make GCC pass a, b and ¢ in d0, dl and d2, respectively,
and str in aO.

If the argument is not provided, the value given for -mregparm will
be used (or 2 if that option was not specified, see -mregparm).

Note: There is generally no need to use this attribute unless
files compiled with different calling conventions are linked
together.

For compatibility with other AmigaOS C compilers, a preprocessor
symbol ___regargs is available, which expands to
__attribute__ ((regparm)) (see Keyword macros) .

The regparm attribute is mutually exclusive with the stkparm
attribute (see stkparm).

This attribute is necessary both in function declarations
(prototypes) and definitions (function code) .

This attribute was first made available in the GCC 2.7.2.1, Geek
Gadgets snapshot 961012.

1.23 gcc-amigaos.guide/stkparm

The stkparm attribute, together with the regparm attribute (see
regparm), can be used to fine-tune the way arguments are passed. It
makes GCC pass arguments on stack for the function for which it was
used, regardless of whether the global -mregparm option was used or not
(see —mregparm) .

Note: There is generally no need to use this attribute unless
files compiled with different calling conventions are linked

gcc-amigaos 15/ 21

together.
For compatibility with other AmigaOS C compilers, a preprocessor
symbol ___stdargs is available, which expands to

__attribute__ ((stkparm)) (see Keyword macros).

The stkparm attribute is mutually exclusive with the regparm
attribute (see regparm).

This attribute is necessary both in function declarations
(prototypes) and definitions (function code) .

This attribute was first made available in the GCC 2.7.2.1, Geek
Gadgets snapshot 961012.

1.24 gcc-amigaos.guide/Defines

Defines

* k ok k ok ok k

The AmigaOS-specific preprocessor symbols available in GCC can be
divided into three groups:

Identifying machine What machine is this?
Options information Which options have been specified?
Keyword macros Compatibility with other compilers.

1.25 gcc-amigaos.guide/ldentifying machine

Symbols identifying machine

The following machine-identifying preprocessor symbols are available:
mc68000
This macro identifies the machine as having a CPU from the Motorola
68000 family.
amiga
amigaos
amigados
These macros identify the machine as being an Amiga, running the
AmigalOS.

AMIGA

MCH_AMIGA

gcc-amigaos

16/ 21

These macros are provided for compatibility with other AmigaOS C
compilers.

Note: These symbols are available in three groups: plain (as
specified above), with two leading underscores, and with two
leading and two tailing underscores. The plain ones are not

available when compiling with the -ansi option.

The amigados symbol is obsolete and will be removed in future.

Please use amigaos, which was first made available in the GCC
2.7.2.1, Geek Gadgets snapshot 961012.

1.26 gcc-amigaos.guide/Options information

Symbols identifying specified options

GCC has several options to choose the CPU model that the code should
be generated for. The following preprocessor symbols identify which
options have been specified on the command line:

mc68020
Either one of —-m68020, -mc68020 or —-mc68020-40 has been specified.

mc68030
-m68030 has been specified.

mc68040
-m68040 has been specified.

mc68060
-m68060 [EXPERIMENTAL] has been specified.

__HAVE_68881_
-m68881 has been specified.

Note: The symbols beginning with mc are available in three groups:
plain (as specified above), with two leading underscores, and with
two leading and two tailing underscores. The plain ones are not
available when compiling with the —-ansi option. The "underscored"
ones were first made available in the GCC 2.7.2.1, Geek Gadgets
snapshot 9701009.

mc68000 is defined regardless of which —-m680x0 options have been
used.

In addition to the above, a preprocessor symbol ixemul (together
with the "underscored" versions) is available when not compiling with
-noixemul (see -noixemul) and identifies the runtime environment as
IXEmul. This symbol was first made available in the GCC 2.7.2.1, Geek
Gadgets snapshot 970328.

gcc-amigaos

17/ 21

1.27 gcc-amigaos.guide/Keyword macros

"Keyword" macros

Most AmigaOS-specific C compilers have special "custom keywords",
which make the AmigaOS-specific development easier. Unfortunately, the
idea of "custom keywords" is not available in GCC. However, attributes
are available, and they provide virtually identical functionality. For
compatibility with other AmigaOS C compilers, preprocessor symbols are
provided, which expand to the appropriate attributes (see Attributes).

__chip
See chip.

saveds
See saveds.

__interrupt
See interrupt.

___stackext
See stackext.

__regargs
See regparm.

__stdargs
See stkparm.

__aligned
This expands to the standard GCC __attribute_ ((aligned(4))).

Note: With SAS/C, these keywords may be specified either before or
after the type, so the following declaration is correct:

__saveds void func (void);
Unfortunately, the syntax rules of GCC 2.7.2.1 do not allow to
specify the attributes before the type, so the above example must
be changed to:

void __ saveds func(void);

This will be fixed in GCC 2.8.0.

1.28 gcc-amigaos.guide/Miscellaneous

Miscellaneous

*hkkkkhkkkhkkkk*kx

The following "hard to categorize" features are available in the
AmigaOS port of GCC:

gcc-amigaos 18/ 21
Explicit register specification Specify registers for arguments.
Case sensitive CPP <String.h> is not the same as <string.h>
GCCPRIORITY Set the priority of the compiler.
Library flavors Linker libraries.

1.29 gcc-amigaos.guide/Explicit register specification

Explicit register specification

In certain situations, like writing callback hooks, "patchers",
standard shared libraries, etc., functions have to receive arguments in
particular registers.

-mregparm (see —-mregparm) 1is not appropriate in this case, since it
does not give the programmer enough control on which registers will be
used.

To overcome this problem in the AmigaOS port of GCC, explicit
register specification has been extended to be available for function

arguments, as well:

void myhook (struct Hookx hook __asm("aO"), APTR object __asm("a2"),
APTR message __asm("al"))

Note: This feature is currently not available in G++.
Only the ANSI-style declarations (prototypes) are supported.

Registers have to be specified both in function declarations
(prototypes) and definitions (function code) .

This feature was first made available in the GCC 2.7.2.1, Geek
Gadgets snapshot 961012.

1.30 gcc-amigaos.guide/Case sensitive CPP

Case sensitive CPP

The preprocessor available in the AmigaOS port of GCC is case
sensitive. This means, that the header names provided in the #include
directives have to be correct, including upper and lower case letters.
This affects only the way the preprocessor works. Currently available
native AmigaOS file systems are case insensitive.

gcc-amigaos 19/ 21

Note: This might seem like a horrible hack and a crazy attempt to
implement a "ridiculous" UNIX feature on Amiga. However, this
feature has been introduced to terminate the endless G++ problems
with a standard ANSI C header string.h: under the AmigaOS, a C++
header String.h would be included, instead.

1.31 gcc-amigaos.guide/GCCPRIORITY

GCCPRIORITY

GCC supports one AmigaOS-specific environment variable: GCCPRIORITY.

This variable specifies the exec priority of the compiler. If this
variable is not set, the default Shell priority will be used.

Note: By default, the AmigaOS assigns the priority 0 to user

tasks. It is thus generally unwise to set GCCPRIORITY higher than
0.

1.32 gcc-amigaos.guide/Library flavors

Library flavors

The AmigaOS port of GCC may use different linker libraries depending
upon the options used while invoking the compiler. These libraries
reside in subdirectories of the standard locations, such as GG:lib/ or,
with GCC 2.7.2.1, GG:lib/gcc-lib/m68k-amigaos/2.7.2.1/.

If you invoke gcc with -v, you’ll see the precise flavor of
libraries used as a —-fl option in the 1d invocation. Here is a list of
the available flavors (and hence the subdirectories names) :

* 1ibb corresponds to the —-fbaserel option.

* 11ibb32 corresponds to the -fbaserel32 option.

* 1ibm020 corresponds to the -m68020 (or higher) options.

* 11ibm881 corresponds to the -m68881 option.

* libnix corresponds to the -noixemul option.

More than one flavor can be specified simultaneously. For example,
when both -fbaserel and -m68020 are specified, the libraries will be

searched in 1ibb/1ibm020 subdirectory (as well as in libb subdirectory
and in the standard location).

gcc-amigaos

20/ 21

1.33 gcc-amigaos.guide/Index

Index
* Kk Kk kK

—fbaserel

—fbaserel32

—-fpic

—frepo

-malways—-restore—a4
-mfixedstack

-mregparm

-mrestore-a4

-msmall-code

-mstackcheck

-mstackextend

-noixemul

—-resident

-resident32

32 KB code limit

64 KB data limit

<String.h> is not the same as <string.h>
a4

Attributes

Case sensitive CPP

chip

Command line options
Compatibility with other compilers
Defines

Do not mess with the stack
Enable C++ Template Repository
Explicit register specification
GCCPRIORITY

Generate stack extension
interrupt

Introduction

Invocation

IXEmul

Keyword macros

LibNIX

Library flavors

Link with LibNIX

Linker libraries

Miscellaneous

Pass arguments in registers
Pass arguments on the stack
Pass function arguments in registers
Preprocessor symbols

Produce a pure executable

Produce a pure executable with no size limits

Produce ad4-relative data

Produce ad4-relative data with no size limits

Produce PC-relative code
Produce plain code

Produce stack-checking code
Produce stack-extending code

—fbaserel
—fbaserel32
—fbaserel
—frepo
-malways—-restore—a4
-mfixedstack
-mregparm
-mrestore-a4
-msmall-code
-mstackcheck
-mstackextend
-noixemul
—-resident
—-resident32
-msmall-code
—fbaserel
Case sensitive CPP
—fbaserel
Attributes
Case sensitive CPP
chip
Invocation
Keyword macros
Defines
interrupt
—frepo
Explicit register specification
GCCPRIORITY
stackext
interrupt
Introduction
Invocation
-noixemul
Keyword macros
-noixemul
Library flavors
-noixemul
Library flavors
Miscellaneous
regparm
stkparm
-mregparm
Defines
—-resident
-resident32
—fbaserel
—-fbaserel32
-msmall—-code
-mfixedstack
-mstackcheck
-mstackextend

gcc-amigaos

21/21

Purpose of this document

Put object in chip memory
regparm

Reload a4

Reload a4 in all functions
Reload a4 in public functions
saveds

Set the priority of the compiler
Specify registers for arguments
stackext

stkparm

Symbols identifying CPU

Symbols identifying ixemul
Symbols identifying machine
Symbols identifying specified options
Uncategorizable

Variable and function attributes
What machine is this

Which CPU model options have been specified

Introduction

chip

regparm

saveds

-malways—-restore—a4

-mrestore—-a4

saveds

GCCPRIORITY

Explicit register specification

stackext

stkparm

Options information

Options information

Identifying machine

Options information

Miscellaneous

Attributes

Identifying machine
Options information

	gcc-amigaos
	gcc-amigaos.guide
	gcc-amigaos.guide/Introduction
	gcc-amigaos.guide/Invocation
	gcc-amigaos.guide/-noixemul
	gcc-amigaos.guide/-fbaserel
	gcc-amigaos.guide/-resident
	gcc-amigaos.guide/-fbaserel32
	gcc-amigaos.guide/-resident32
	gcc-amigaos.guide/-msmall-code
	gcc-amigaos.guide/-mstackcheck
	gcc-amigaos.guide/-mstackextend
	gcc-amigaos.guide/-mfixedstack
	gcc-amigaos.guide/-mrestore-a4
	gcc-amigaos.guide/-malways-restore-a4
	gcc-amigaos.guide/-mregparm
	gcc-amigaos.guide/-frepo
	gcc-amigaos.guide/Attributes
	gcc-amigaos.guide/chip
	gcc-amigaos.guide/saveds
	gcc-amigaos.guide/interrupt
	gcc-amigaos.guide/stackext
	gcc-amigaos.guide/regparm
	gcc-amigaos.guide/stkparm
	gcc-amigaos.guide/Defines
	gcc-amigaos.guide/Identifying machine
	gcc-amigaos.guide/Options information
	gcc-amigaos.guide/Keyword macros
	gcc-amigaos.guide/Miscellaneous
	gcc-amigaos.guide/Explicit register specification
	gcc-amigaos.guide/Case sensitive CPP
	gcc-amigaos.guide/GCCPRIORITY
	gcc-amigaos.guide/Library flavors
	gcc-amigaos.guide/Index

