Warp3D

Warp3D

] COLLABORATORS
TITLE :
Warp3D
ACTION NAME DATE SIGNATURE
WRITTEN BY July 31, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Warp3D iii

Contents

1 Warp3D 1
1.1 Warp3D . . o e e 1
1.2 Warp3D/W3D_AllocStencilBuffer() e 2
1.3 Warp3D/W3D_AllocTexObj() o o o 3
1.4 Warp3D/W3D_AllocZBuffer() o 5
1.5 Warp3D/W3D_BestModeID() e 6
1.6 Warp3D/W3D_BindTexture() o e e e 7
1.7 Warp3D/W3D_CheckDriver() 0 o e 8
1.8 Warp3D/W3D_CheckIdle() o o e e e e e 9
1.9 Warp3D/W3D_ClearDrawRegion() e 9
1.10 Warp3D/W3D_ClearStencilBuffer() e 10
1.11 Warp3D/W3D_ClearZBuffer() e e 11
1.12 Warp3D/W3D_ColorPointer() o e e e e 11
1.13 Warp3D/W3D_CreateContext() o v v v v vt e e e e e e e e e e e e e e e 13
1.14 Warp3D/W3D_DestroyConteXt()« o v v v v e et e e e e e e e e e e e e e e 15
1.15 Warp3D/W3D_DrawArray() o oot e e e e e 15
1.16 Warp3D/W3D_DrawElements() e e e e 17
1.17 Warp3D/W3D_Drawline() o e e e e 19
1.18 Warp3D/W3D_DrawLineLoop() e 19
1.19 Warp3D/W3D_DrawLineStrip() o o e e 20
1.20 Warp3D/W3D_DrawPoint() o e e e 21
1.21 Warp3D/W3D_DrawTriangle() o e e 22
1.22 Warp3D/W3D_DrawTriangleV() e e e e e 22
1.23 Warp3D/W3D_DrawTriFan() o o e e 23
1.24 Warp3D/W3D_DrawTriFanV() e 24
1.25 Warp3D/W3D_DrawTriStrip() o o o e e e e 25
1.26 Warp3D/W3D_DrawTriStripV() e 26
1.27 Warp3D/W3D_FillStencilBuffer() e 27
1.28 Warp3D/W3D_Flush() e 27
1.29 Warp3D/W3D_FlushFrame() e 28

Warp3D iv
1.30 Warp3D/W3D_FlushTextures()« o o o i i e e e e e e e e e e 29
1.31 Warp3D/W3D_FreeAllTexObj() o o o e e e e e e 29
1.32 Warp3D/W3D_FreeScreenmodeLiist() 30
1.33 Warp3D/W3D_FreeStencilBuffer() e 30
1.34 Warp3D/W3D_FreeTexObj() o o o o i e e 31
1.35 Warp3D/W3D_FreeZBuffer() e 32
1.36 Warp3D/W3D_GetDestFmt() 32
1.37 Warp3D/W3D_GetDrivers() o o o i e e e e e e e e e e 33
1.38 Warp3D/W3D_GetDriverState() e e e e 34
1.39 Warp3D/W3D_GetDriverTexFmtInfo() e 35
1.40 Warp3D/W3D_GetScreenmodelist() e 36
1.41 Warp3D/W3D_GetState() v v v o e e e e e e e e e e e e e e e e e e 37
1.42 Warp3D/W3D_GetTexFmtInfo() e 38
1.43 Warp3D/W3D_Hint() e 39
1.44 Warp3D/W3D_LockHardware() o o e e e 40
1.45 Warp3D/W3D_Query() o o o ot e e e e e e e 41
1.46 Warp3D/W3D_QueryDriver() e e e 43
1.47 Warp3D/W3D_ReadStencilPixel() e e 44
1.48 Warp3D/W3D_ReadStencilSpan() e 45
1.49 Warp3D/W3D_ReadZPixel() o e e e 46
1.50 Warp3D/W3D_ReadZSpan() 47
1.51 Warp3D/W3D_ReleaseTexture() o v i vt it e e e e e e e e e e e e e 48
1.52 Warp3D/W3D_RequestMode() e 48
1.53 Warp3D/W3D_SetAlphaMode() e e e e e 49
1.54 Warp3D/W3D_SetBlendMode() o e e 50
1.55 Warp3D/W3D_SetChromaTestBounds() o i e e 51
1.56 Warp3D/W3D_SetColorMask() o e e 52
1.57 Warp3D/W3D_SetCurrentColor() o o e e e e e e e e 53
1.58 Warp3D/W3D_SetCurrentPen() o . e e 53
1.59 Warp3D/W3D_SetDrawRegion() e e e e e 54
1.60 Warp3D/W3D_SetDrawRegionWBM() e 55
1.61 Warp3D/W3D_SetFilter() o e e e e e e 55
1.62 Warp3D/W3D_SetFogParams() e 56
1.63 Warp3D/W3D_SetLogicOp()« « o o e e e 57
1.64 Warp3D/W3D_SetPenMask() e e 58
1.65 Warp3D/W3D_SetScissor() v o v v o e e e e e e e e e 59
1.66 Warp3D/W3D_SetState() o v v e e e e e e e 59
1.67 Warp3D/W3D_SetStencilFunc() e e e e 60
1.68 Warp3D/W3D_SetStencilOp() e 61

Warp3D v
1.69 Warp3D/W3D_SetTexEnv() o e 62
1.70 Warp3D/W3D_SetWrapMode() o o e e 63
1.71 Warp3D/W3D_SetWriteMask() o e e e e e 64
1.72 Warp3D/W3D_SetZCompareMode() e 65
1.73 Warp3D/W3D_TestMode() o o ot e e e e 66
1.74 Warp3D/W3D_TexCoordPointer() o o v it e e e e e e e e e e e e e 66
1.75 Warp3D/W3D_UnLockHardware() o o e e e e e 68
1.76 Warp3D/W3D_UpdateTexImage() o o o i e e e e e 68
1.77 Warp3D/W3D_UpdateTexSublmage() o e 69
1.78 Warp3D/W3D_UploadTexture() o v i it e et e e e e e e e e e e e e 71
1.79 Warp3D/W3D_VertexPointer() o e e e e 71
1.80 Warp3D/W3D_Waitldle() o 73
1.81 Warp3D/W3D_WriteStencilPixel() e e e e 73
1.82 Warp3D/W3D_WriteStencilSpan() e e 74
1.83 Warp3D/W3D_WriteZPixel() o o o e e e 75
1.84 Warp3D/W3D_WriteZSpan() o o o e e e e e e 76

Warp3D

1/77

Chapter 1

Warp3D

1.1

Warp3D

W3D_AllocStencilBuffer ()
W3D_AllocTexObj ()
W3D_AllocZBuffer ()
W3D_BestModelID ()
W3D_BindTexture ()
W3D_CheckDriver ()
W3D_CheckIdle ()
W3D_ClearDrawRegion ()
W3D_ClearStencilBuffer ()
W3D_ClearZBuffer ()
W3D_ColorPointer ()
W3D_CreateContext ()
W3D_DestroyContext ()
W3D_DrawArray ()
W3D_DrawElements ()
W3D_DrawLine ()
W3D_DrawLineLoop ()
W3D_DrawLineStrip ()
W3D_DrawPoint ()
W3D_DrawTriangle ()
W3D_DrawTriangleV ()
W3D_DrawTriFan ()
W3D_DrawTriFanV ()
W3D_DrawTriStrip ()
W3D_DrawTriStripV ()
W3D_FillStencilBuffer ()
W3D_Flush ()
W3D_FlushFrame ()
W3D_FlushTextures ()
W3D_FreeAllTexObj ()
W3D_FreeScreenmodelList ()
W3D_FreeStencilBuffer ()
W3D_FreeTexObj ()
W3D_FreeZBuffer ()
W3D_GetDestFmt ()
W3D_GetDrivers ()
W3D_GetDriverState ()
W3D_GetDriverTexFmtInfo ()

Warp3D 2/77

W3D_GetScreenmodeList ()
W3D_GetState ()
W3D_GetTexFmtInfo ()
W3D_Hint ()
W3D_LockHardware ()
W3D_Query ()
W3D_QueryDriver ()
W3D_ReadStencilPixel ()
W3D_ReadStencilSpan ()
W3D_ReadzPixel ()
W3D_ReadZSpan ()
W3D_ReleaseTexture ()
W3D_RequestMode ()
W3D_SetAlphaMode ()
W3D_SetBlendMode ()
W3D_SetChromaTestBounds ()
W3D_SetColorMask ()
W3D_SetCurrentColor ()
W3D_SetCurrentPen ()
W3D_SetDrawRegion ()
W3D_SetDrawRegionWBM ()
W3D_SetFilter()
W3D_SetFogParams ()
W3D_SetLogicOp ()
W3D_SetPenMask ()
W3D_SetScissor ()
W3D_SetState ()
W3D_SetStencilFunc ()
W3D_SetStencilOp ()
W3D_SetTexEnv ()
W3D_SetWrapMode ()
W3D_SetWriteMask ()
W3D_SetZCompareMode ()
W3D_TestMode ()
W3D_TexCoordPointer ()
W3D_UnLockHardware ()
W3D_UpdateTexImage ()
W3D_UpdateTexSubImage ()
W3D_UploadTexture ()
W3D_VertexPointer ()
W3D_WaitIdle ()
W3D_WriteStencilPixel ()
W3D_WriteStencilSpan ()
W3D_WritezZPixel ()
W3D_WriteZSpan ()

1.2 Warp3D/W3D_AllocStencilBuffer()

NAME
W3D_AllocStencilBuffer —— Allocate stencil buffer

SYNOPSIS
success = W3D_AllocStencilBuffer (context);
do a0

Warp3D 3/77

ULONG W3D_AllocStencilBuffer (W3D_Context =*);

FUNCTION
Allocate a stencil buffer for the given context. For more
information on stencil buffering, see the OpenGL specs.

INPUTS
context - The context the stencil buffer is allocated on
RESULT
One of the following wvalues:
W3D_SUCCESS The allocation was successful
W3D_NOGFXMEM No memory was left on the graphics board

W3D_NOSTENCILBUFFER Stencil buffering is not available
EXAMPLE

NOTES
Stencil buffering and the ViRGE: The ViRGE is not capable of stencil
buffering, it became a necessity later when hardware accelerators
started to support the OpenGL standard.

BUGS

SEE ALSO
W3D_FreeStencilBuffer

1.3 Warp3D/W3D_AllocTexObij()

NAME
W3D_AllocTexObj -- Allocate a new texture object
SYNOPSIS
texture = W3D_AllocTexObj (context, error, ATOTags);
do a0 al a2

W3D_Texture *W3D_AllocTexObj(W3D_Context, ULONG %, struct Tagltem x);

FUNCTION
Create a new texture object. Such a texture object contains
information about a texture in addition to the normal image data
that is displayed.

INPUTS
context - pointer to a W3D_Context
error - pointer to a ULONG, which will contain an error code,

or NULL if you do not want to get the error code.
ATOTags - pointer to a taglist. Supported tags are:
W3D_ATO_IMAGE (mandatory) :

A pointer to the source texture image
W3D_ATO_FORMAT (mandatory) :

The texture format of the source texture. Must be
one of the following values (check the include file
for more precise definition):

— W3D_CHUNKY

Warp3D

4/77

- W3D_A1R5G5B5S
— W3D_R5G6B5
— W3D_R8GS8BS8
— W3D_A4R4G4BR4
— W3D_ABR8GSBS
— W3D_R8BG8BBAS
- W3D_AS8
- W3D_L8
- W3D_L8AS
- W3D_1I8
W3D_ATO_WIDTH (mandatory):
The width of the texture in pixels. Must
be 27n.
W3D_ATO_HEIGHT (mandatory) :
The height of the texture in pixels. Must
be 2”n.
W3D_ATO_MIPMAP (optional):
If specified, the texture can be used for mipmapping.
The value of this tag defines, which mipmap levels
have to be generated automatically. It should be set
so that the generated mipmaps and the provided ones
build a complete mipmap set.
The value is a bitmask with one specific bit
representing a mipmap level. Bit 0 corresponds to
level 1, Bit 1 to level 2, so Bit n to level n-1.
A value of 0 means, that all mipmaps are provided
by the application.
Note, that providing only a part of all mipmaps
which leave holes between the provided levels may
result in performance loss.
W3D_ATO_MIPMAPPTRS (mandatory for user-supplied mipmaps)
If W3D_ATO_MIPMAP is specified, mipmapping is used
for texturing. The mipmap mask specifies which of the
mipmaps will be created. With the W3D_ATO_MIPMAPPTRS tag,
an array of (void x) to the mipmaps you want to
supply yourself is defined. This array must be
NULL-Terminated
Example: You want to give only level 3 and 5, and
let W3D_AllocTexObj create the rest of the mipmaps.
Assume a 128x128 texture (7 mipmap levels)
Define an array like this:

void *mips[3];

mips[0] = (void «)level_ 3_map;
mips[1l] = (void «)level_5_map;
mips[2] = NULL;

When calling W3D_AllocTexObj, you would give
W3D_ATO_MIPMAP the value 0x6B (binary 1101011)
W3D_ATO_MIPMAPPTRS would be mips.
W3D_ATO_PALETTE (mandatory for chunky textures):
Defines the palette which is necessary to handle
chunky textures. A pointer to a palette must be
provided. The palette itself is an array of
ULONG’ s, and every ULONG defines the ARGB value
for one color index. Therefore the palette must
be 1024 bytes. (Note: On 8bit screens, this
palette xshouldx be the screen palette,

unless the driver returns TRUE on W3D_Q_ PALETTECONV.)

Warp3D 5/77

RESULT
Either a pointer to the successfully created texture
object, or NULL, in which case the optional error variable
is set to one of the following values:

W3D_SUCCESS It worked!

W3D_ILLEGALINPUT Some information was invalid, maybe
a mandatory tag missing

W3D_NOMEMORY No memory was available

W3D_UNSOPPORTEDTEXSIZE The driver can'‘t handle a texture
of the given size.

W3D_NOPALETTE The texture should be a chunky (CLUT)
texture, but no palette was given.

W3D_UNSUPPORTEDTEXFMT The format can not be used with the
current driver

EXAMPLE
extern W3D_Context =xcontext;
void ximage = LoadImage ("texture.iff");

W3D_Texture xtexobij;
struct Tagltem tags[] = {

W3D_ATO_IMAGE, image,
W3D_ATO_FORMAT, W3D_A1R5G5B5,
W3D_ATO_WITDH, 128,
W3D_ATO_HEIGHT, 128,
TAG_DONE, 0

bi
ULONG error;

texobj = W3D_AllocTexObj (context, &error, tags);
if (!'texobi)
printf ("An error has occurred because: An error has occurred (%d)\n",
error) ;

NOTES
The pointers to textures and mipmaps passed to this function are
considered ‘locked' until this texture object is released again,
or the image is updated with W3D_UpdateTexImage.
You may not free the memory.

BUGS
SEE ALSO
W3D_FreeTexObj, W3D_ReleaseTexture, W3D_UpdateTexImage,

W3D_FlushTextures, W3D_SetFilter, W3D_SetTexEnv, W3D_SetWrapMode
W3D_UploadTexture

1.4 Warp3D/W3D_AllocZBuffer()

NAME
W3D_AllocZBuffer —— Allocate a ZBuffer

SYNOPSIS
result = W3D_AllocZBuffer (context);

Warp3D 6/77
do ao
ULONG W3D_AllocZBuffer (W3D_Context =*);
FUNCTION
Allocates a ZBuffer. The size of the ZBuffer depends on the
size of the bitmap used with this context. The memory is allocated
on the graphics board.
INPUTS
context - pointer to the context to be used with the ZBuffer
RESULT
One of the following wvalues:
W3D_SUCCESS The allocation was successful
W3D_NOGFXMEM Not enough video memory
W3D_NOZBUFFER ZBuffering is not available on this hardware
W3D_NOTVISIBLE - The bitmap is not visible/swapped out of vmem
EXAMPLE
ULONG error, status;
struct BitMap myBitMap;
struct Tagltem taglist[] = {
W3D_CC_BITMAP, (ULONG) &myBitMap,
W3D_CC_YOFFSET, 0,

W3D_CC_DRIVERTYPE, W3D_DRIVER_BEST

bi
W3D_Context #*context;

InitBitMap (&myBitMap, 15, 640, 480);
createPlanes (&myBitMap) ;

context = W3D_CreateContext (&error, taglist);
status = W3D_AllocZBuffer (context);

NOTES
This function should be called before textures are uploaded to
the graphics board, to avoid fragmentation of video memory.

BUGS

SEE ALSO
W3D_FreeZBuffer

1.5 Warp3D/W3D_BestModelD()

NAME
W3D_BestModeID —-- Find a suitable ModeID (V3)

SYNOPSIS
ModeID = W3D_BestModelID (tags) ;
ModeID W3D_BestModeIDTags (Tagl, ...);

ULONG W3D_BestModelID (struct Tagltem =*tags);
ULONG W3D_BestModelIDTags (Tag tagl, ...);

Warp3D 7177

FUNCTION
Returns a screen mode ID that best fits the parameters
supplied in the tag list.

INPUTS
tags - a taglist, consisting of the following possible tag item:
W3D_BMI_DRIVER Must work with this driver
W3D_BMI_WIDTH Must have approximately this width
W3D_BMI_HEIGHT Must have approximately this height
W3D_BMI_DEPTH Must have at least this depth
RESULT

ModeID - A screenmode ID or INVALID_ID in case of error
EXAMPLE
NOTES
BUGS

SEE ALSO

1.6 Warp3D/W3D_BindTexture()

NAME
W3D_BRindTexture - set the current Texture (V4)
SYNOPSIS
error = W3D_BindTexture (context, tmu, texture);
DO AQ DO Al

ULONG W3D_BindTexture (W3D_Context+, ULONG, W3D_Texturex);

FUNCTION
This function specifies the texture to use for the next call to
W3D_DrawArray or W3D_DrawElements. If the texture parameter
is NULL, the binding is cancelled, and the texture object
may be deleted without danger.

The texture need not be in video ram. If it isn’t, it is automatically
uploaded if AUTOTEXMANAGEMENT is enabled.

INPUTS
context — pointer to a context obtained by W3D_CreateContext
tmu - must be zero
texture - pointer to a W3D_Texture object.

RESULT

Currently this function always returns W3D_SUCCESS
EXAMPLE
NOTES

You may not delete a texture object that is bound with this
function unless you reset the binding by calling this function

Warp3D

with NULL as a texture pointer. Otherwise the next drawing operation
might crash.

Currently the bound texture object is *ONLY* valid for W3D_DrawArray
or W3D_DrawElements. Traditional drawing operations still require

the texture to be specified in the appropriate structure.

For the time being only one TMU is supported, so the tmu argument
must be zero.

No sanity checks are done. It is the programmers resposibility not
to use illegal TMU’s

BUGS
SEE ALSO

W3D_VertexPointer, W3D_ColorPointer, W3D_TexCoordPointer,
W3D_DrawArray, W3D_DrawElements

1.7 Warp3D/W3D_CheckDriver()

NAME

W3D_CheckDriver —-- Check driver availability
SYNOPSIS

flags = W3D_CheckDriver();

do

ULONG W3D_CheckDriver (void) ;

FUNCTION
Checks what driver is available (CPU/HW), and returns it
as a bit mask.

INPUTS
None

RESULT
A long word that has it‘'s bit set accordingly:
W3D_DRIVER_3DHW - A hardware driver is available
W3D_DRIVER_CPU - A software driver is available

EXAMPLE
ULONG flags = W3D_CheckDriver();
if (flags & W3D_DRIVER_3DHW) printf ("Hardware driver available\n");
if (flags & W3D_DRIVER_CPU) printf ("Software driver available\n");

NOTES
This function can be called without a valid context. It can
be used to evaluate the possibilities the system is offering.
Note though, that you should give the user a chance to get into
your program, even if you think it would be too slow without
hardware acceleration...

BUGS

Warp3D 9/77

SEE ALSO

1.8 Warp3D/W3D_Checklidle()

NAME

W3D_CheckIdle —- check if hardware is working
SYNOPSIS

working = W3D_CheckIdle (context);

do a0

ULONG W3D_CheckIdle (W3D_Context =*);

FUNCTION
Check if the hardware is finished with it‘s current operation.

INPUTS
context - a pointer to a W3D_Context

RESULT
One of to values indicating busy/idle state:
W3D_SUCCESS - The hardware is idle
W3D_BUSY — The hardware is still working
EXAMPLE

NOTES
This function is not very useful for applications.

BUGS

SEE ALSO
W3D_WaitIdle

1.9 Warp3D/W3D_ClearDrawRegion()

NAME

W3D_ClearDrawRegion -- Clear the current drawing area
SYNOPSIS

success = W3D_ClearDrawRegion (context, color);

do a0 do

ULONG W3D_ClearDrawRegion (W3D_Context =*, ULONG);

FUNCTION
ClearDrawRegion clears the current drawing area to the color
given by color. The operation may performed with the boards
blitter, so this is the prefered way for clearing. Additionally,
this call makes using V39 multibuffering easier by prociding
a way to clear the back buffer.

Warp3D 10/77

INPUTS
context - A pointer to the context to use
color — The color value to clear to. For direct color drawing

regions (i.e. TrueColor/HiColor), this is a 32 bit
color value in the form ARGB, with each component 8 bit.
For 8 bit (palettized) screens, it’s an 8 bit color
index. Note that for the first form, the color is

always 8 bits per component, regardless of the color
format of the drawing region (15/16/24/32 bit).

RESULT
One of the following:
W3D_SUCCESS The operation was successful
W3D_NOTVISIBLE The contex was not in locked state
EXAMPLE
NOTES

W3D_NOTVISIBLE is a bit misleading. The drawing area must not
be visible on the screen to be clear, but the context must be
locked, so that the screen buffer is in memory

BUGS

SEE ALSO

1.10 Warp3D/W3D_ClearStencilBuffer()

NAME
W3D_ClearStencilBuffer —— Clear the stencil buffer
SYNOPSIS
success = W3D_ClearStencilBuffer (context, clearval);
do a0 al

ULONG W3D_ClearStencilBuffer (W3D_Context %, ULONG =«);

FUNCTION
Clear the stencil buffer (fill it up) with the value
pointed to by clearval.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - the context to work on
clearval - pointer to a value used for clearing

RESULT
One of the following:
W3D_SUCCESS Operation was successful

W3D_NOSTENCILBUFFER Stencil buffer not present (not allocated,
or not supported by driver)

W3D_NOTVISIBLE The stencil buffer can not be accessed by
the hardware

Warp3D 11/77

W3D_QUEUEFAILED In indirect mode only. Queueing this request
failed

EXAMPLE
NOTES
BUGS

SEE ALSO
W3D_AllocStencilBuffer, W3D_FreeStencilBuffer

1.11 Warp3D/W3D_ClearZBuffer()

NAME

W3D_ClearZBuffer —-- Clear the ZBuffer with a given wvalue
SYNOPSIS

success = W3D_ClearZBuffer (context, clearvalue);

do a0 al

ULONG W3D_ClearzZBuffer (W3D_Context =, W3D_Double =*);

FUNCTION
Clear the ZBuffer with a given value.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - pointer to the context
clearvalue - pointer to a W3D_Double, ranging from [0..1].

If NULL, 0.0 is used

RESULT
One of the following values:
W3D_SUCCESS operation successful

W3D_NOZBUFFER No ZBuffer was allocated
W3D_NOTVISIBLE The ZBuffer was not in video ram
W3D_QUEUEFAILED In indirect mode only. Queueing this request
failed
EXAMPLE
NOTES

BUGS

SEE ALSO
W3D_AllocZBuffer, W3D_FreeZBuffer

1.12 Warp3D/W3D_ColorPointer()

Warp3D 12/77

NAME
W3D_ColorPointer - Set the color value pointer (V4)

SYNOPSIS
error = W3D_ColorPointer (context, pointer, stride, format, mode, flags);
DO A0 Al DO D1 D2 D3

ULONG W3D_ColorPointer (W3D_Context*, voidx, ULONG, ULONG, ULONG) ;

FUNCTION
Sets the pointer for obtaining vertex color info. Data is fetched
from the address pointed to by the pointer parameter.

When color data is needed for element <n>, the pointer is cast to an
UBYTE*x and n*xstride is added to this pointer. The result is cast back
to a pointer as determined by the format parameter, and used for color
data lookup according to mode.

INPUTS
context - pointer to a context obtained by W3D_CreateContext
pointer - pointer to the texture array data or NULL to delete the pointer.
stride - array stride, i.e. the byte offset from one element to
the next.
format - the format of the color data. The following is allowed:
W3D_COLOR_FLOAT all color components are floats in the
range 0.0 .. 1.0
W3D_COLOR_UBYTE all color components are UBYTEs in
the range 0 .. 255
mode — the color mode used. The following is alloed
W3D_CMODE_RGB three components red, green and blue
W3D_CMODE_BGR three components of blue, green and red
W3D_CMODE_RGBA four components red, green, blue and alpha
W3D_CMODE_ARGB four components alpha, red, green and blue
W3D_CMODE_BGRA four components blue, green, red and alpha
flags — MUST be set to 0 for now.
RESULT
error — either W3D_SUCCESS or an error code. The following errors

may occur:

W3D_SUCCESS - no error
W3D_ILLEGALINPUT — driver cannot handle this layout
EXAMPLE
W3D_Vertex VertArray[1000]; // Vertex array

ULONG error = W3D_ColorPointer (context, (void x)VertArray+32,
sizeof (W3D_Vertex), W3D_COLOR_FLOAT, W3D_CMODE_RGRA, 0);

NOTES
Array pointers may be interleaved. That means that using the W3D_Vertex
structures as an array works even when you use the color and texture
coordinate pointers pointing to the same structures.

Offsets and stride may be negative. No assumptions are made about these,
and no sanity checks are performed.

Warp3D 13/77

BUGS

SEE ALSO
W3D_VertexPointer, W3D_ColorPointer

1.13 Warp3D/W3D_CreateContext()

NAME

W3D_CreateContext —-—- Create a new Warp3D context
SYNOPSIS

context = W3D_CreateContext (&error, CCTags);

DO A0 Al

W3D_Context *W3D_CreateContext (ULONG =%, struct Tagltem x);

FUNCTION
This function creates a new Warp3D context, which is required by most
other API functions as first parameter.

The number of open contexts is not limited. Full multitasking capabilities
are provided.

INPUTS
error - A pointer to a ULONG which gets the error wvalue,
or NULL if you don'‘t want an error code returned
CCTags - A taglist containing various input parameters:

W3D_CC_MODEID (special):

Specifies the ModeID of the screen you opened or

intend to open, or generally the ModeID of the drawing
area you intend to use. If you plan to use Warp3D in
windowed mode, you may leave this tag unset. Otherwise,
the tag MUST be set correctly, as the ModeID is used to
extract the required hardware.

W3D_CC_BITMAP (mandatory) :

A pointer to the bitmap which is used for 3D drawing.
For 3DHW drivers, the bitmap must absolutely be located
in video memory (it may be swapped out at the moment).
For CPU drivers, it doesn’t matter, where the bitmap is
located. Note, that CPU drivers might use FAST-RAM
buffers for intermediate results to speed up rendering,
therefore bitmaps in FAST-RAM might not be optimal in
this case.

Also note, that never bitmaps should be provided which
are directly visible!

W3D_CC_YOFFSET (mandatory) :

A vertical offset, which defines, at which Y-Position
the drawing area starts. This can be used to achieve
multibuffering using the ScrollVPort trick, which might
be the only possibility to achieve proper multibuffering
with some graphics interface software.
W3D_CC_DRIVERTYPE (mandatory) :

A constant which defines what type of driver should

be used (use the API function W3D_CheckDriver to get

Warp3D 14 /77

more information about the drivers). Possible values
are:
— W3D_DRIVER_BEST the best driver is chosen
— W3D_DRIVER_3DHW the hardware driver is chosen,
if none is present, NULL is
returned
— W3D_DRIVER_CPU the software driver is chosen,
if none is present, NULL is
returned

W3D_CC_W3DBM (optional) :

Boolean tag. If this is set to TRUE, the W3D_CC_BITMAP
tag doesn’t point to a struct BitMap. Instead, it points
to a Warp3D bitmap (of type W3D_Bitmap), which might

be in fast-ram (for CPU rendering). Note that the
W3D_CC_YOFFSET tag is ignored if W3D_CC_W3DBM is set

to TRUE.

W3D_CC_INDIRECT (optional):

Boolean tag. If set to TRUE, then all drawing actions are
possibly not performed directly, but are queued until

the buffer is full, or W3D_Flush is called, or the
indirect state is switched off with W3D_SetState
W3D_CC_GLOBALTEXENV (optional):

Boolean tag. If set to TRUE, calls to SetTexEnv do not
modify the given texture, but are used for all textures.
W3D_CC_DOUBLEHEIGHT (optional):

Boolean tag. This tag should be set to TRUE if the drawing
area is a double height screen. Double height screens

may be used for double buffering with CyberGraphX.
W3D_CC_FAST: (optional):

Boolean tag. If set to TRUE, drawing functions are allowed
to modify the passed structures.

RESULT
A pointer to a newly created context structure, or NULL for failure.
If an error variable was provided, the error value is filled in.
It may be one of the following values:

W3D_SUCCESS - Operation was successful

W3D_ILLEGALINPUT - Illegal input, maybe a left out tag item

W3D_NOMEMORY — Unable to get enough memory

W3D_NODRIVER - No driver was available

W3D_UNSUPPORTEDFMT - The supplied bitmap can‘t be supported

W3D_ILLEGALBITMAP — The bitmap is not properly initialised
EXAMPLE

ULONG error;
struct BitMap myBitMap;

struct TagItem taglist[] = {
W3D_CC_BITMAP, (ULONG) &myBitMap,
W3D_CC_YOFFSET, 0,

W3D_CC_DRIVERTYPE, W3D_DRIVER_BEST
}i
W3D_Context =*context;

InitBitMap (&myBitMap, 15, 640, 480);
createPlanes (&myBitMap) ;
context = W3D_CreateContext (&error, taglist);

Warp3D 15/77

NOTES
An error of type W3D_UNSUPPORTEDFMT is returned if a W3D_Bitmap
is given as drawregion and no CPU driver is available, or
a HW driver is also requested.

BUGS

SEE ALSO
W3D_DestroyContext, W3D_Flush, W3D_SetState

1.14 Warp3D/W3D_DestroyContext()

NAME

W3D_DestoryContext —-—- Release a Warp3D context
SYNOPSIS

W3D_DestoryContext (context) ;

AQ

void W3D_DestroyContext (W3D_Context =*);
FUNCTION
This function frees up all resources for the given context,

destroying it.

INPUTS
context - Pointer to a Warp3D context

RESULT
None

EXAMPLE
W3D_Context xcontext;

context = W3D_CreateContext(.....)
W3D_DestroyContext (context) ;
NOTES
Always release contexts. Even if the memory loss doesn’t kill you,
the hardware may be blocked.

BUGS

SEE ALSO
W3D_CreateContext

1.15 Warp3D/W3D_DrawArray()

NAME
W3D_DrawArray - draw primitives based on array data (V4)

Warp3D 16 /77

SYNOPSIS
error = W3D_DrawArray (context, primitive, base, count);
DO AQ DO D1 D2

ULONG W3D_DrawArray (W3D_Contextx, ULONG, ULONG, ULONG);

FUNCTION
Draws a primitive based on the current array pointers.
Basically, this function is equivalent to the appropriate
pre-V4 drawing function. However, there is no W3D_Triangle
or similar structure; input data for this function is taken
fomr the VertexPointer, TexCoordPointer and ColorPointer
functions.

The first vertex is fetched from the array element <base>.
Subsequent data is fetched from <base+l>, <base+2) and

so on until <count> elements have been read. An error is
returned if <count> does not match the number of vertices
needed by the specified primitive type; for example, it

is an error to specify W3D_PRIMITIVE_TRIANGLES with only

2 vertices.

All rules for the drawing functions still apply. All states
are honored (except W3D_INDIRECT, which should be considered

depricated) .
INPUTS
context - pointer to a context obtained by W3D_CreateContext
primitive - the primitive type to draw. The following are valid:
W3D_PRIMITIVE_TRIANGLES - draws <count>/3 triangles
W3D_PRIMITIVE_TRIFAN - draws a triangle fan
W3D_PRIMITIVE_TRISTRIP - draws a triangle strip
W3D_PRIMITIVE_POINTS - draws <count> points
W3D_PRIMITIVE_LINES - draws <count>/2 disjoint lines
W3D_PRIMITIVE_LINELOOP - draws a line loop
W3D_PRIMITIVE_LINESTRIP - draws a line strip (open loop)
base — the array index of the first element to draw
count — the number of array elements to use
RESULT
error — either W3D_SUCCESS or an error code. The following errors

may occur:

W3D_SUCCESS - Nno error

W3D_ILLEGALINPUT - not enough vertex data.

W3D_NOTEXTURE - Texture is missing for texture mapping.

W3D_TEXNOTRESIDENT - Texture 1is not resident and autotexture management
is disabled

W3D_NOTVISIBLE - drawing area is not in video ram

W3D_NOZBUFFER - zbuffer not present but zbuffering requested

W3D_NOMEMORY — The operation failed because it required

memory but could not allocate it.

EXAMPLE
W3D_Vertex VertArray[1000]; // Vertex array
error = W3D_DrawArray (context, W3D_PRIMITIVE_TRIANGLES, 0, 3);

Warp3D 17 /77

NOTES
If a pointer is unspecified but the current state vector asks for
it, an error W3D_ILLEGALINPUT is generated. The same applies if the
count argument specifies too few entries. It is not an error to
have no TexCoord pointer, for example, when texture mapping is
disabled. If W3D_GOURAUD is enabled, the color pointer must be
present, otherwise the color data is fetched (as normally) from
W3D_CurrentColor or W3D_CurrentPen.

Note also that there is no such concept as an array size. Data
is fetched from the arrays without bounds check. It is the
programmers responsibility to ensure that indices never go out
of bounds.

The W3D_NOMEMORY error might be generated when a driver or the

API library emulation of the array feature required memory for
temporary storage but could not obtain it.

BUGS
SEE ALSO

W3D_VertexPointer, W3D_ColorPointer, W3D_TexCoordPointer,
W3D_DrawElements

1.16 Warp3D/W3D_DrawElements()

NAME
W3D_DrawElements - draw an indexed primitive (V4)

SYNOPSIS
error = W3D_DrawElements (context, primitive, type, count, indices);
DO A0 DO D1 D2 Al

ULONG W3D_DrawElements (W3D_Context*, ULONG, ULONG, ULONG, voidx);

FUNCTION
This function is very similar to the W3D_DrawArray function. Unlike
W3D_DrawArray, this function does not draw primitives based on consecutive
array elements but rather based on an array of indices passed to the
function.

Like W3D_DrawArray, the primitive parameter specifies the type of primitive

to draw. The type argument specifies the layout of the indices array (more <
on

that in a moment). The count specifies the number of indices to fetch from <«
the

index array. Finally, the indices parameter points to the array of indices.

The type argument is used to specify the data type of the indices. There <
are
three possible values W3D_INDEX_UBYTE, W3D_INDEX_USHORT and W3D_INDEX_ULONG <>

Accordingly the pointer is advanced by one, two or four bytes on each
subsequent index fetch.

Warp3D 18/77
INPUTS
context - pointer to a context obtained by W3D_CreateContext
primitive - the primitive type to draw. The following are valid:
W3D_PRIMITIVE_TRIANGLES - draws <count>/3 triangles
W3D_PRIMITIVE_TRIFAN - draws a triangle fan
W3D_PRIMITIVE_TRISTRIP - draws a triangle strip
W3D_PRIMITIVE_POINTS - draws <count> points
W3D_PRIMITIVE_LINES - draws <count>/2 disjoint lines
W3D_PRIMITIVE_LINELOOP - draws a line loop
W3D_PRIMITIVE_LINESTRIP - draws a line strip (open loop)
type — the data type of the indices. Possible values are
W3D_INDEX_ UBYTE — indices are 8 bit unsigned
W3D_INDEX_UWORD — indices are 16 bit unsigned
W3D_INDEX_ULONG — indice are 32 bit unsigned.
count — the number of array elements to use
indices - typeless pointer to the array of indices.
RESULT
error — either W3D_SUCCESS or an error code. The following errors
may occur:
W3D_SUCCESS - Nno error
W3D_ILLEGALINPUT - not enough vertex data.
W3D_NOTEXTURE - Texture is missing for texture mapping.
W3D_TEXNOTRESIDENT - Texture is not resident and autotexture management
is disabled
W3D_NOTVISIBLE - drawing area is not in video ram
W3D_NOZBUFFER - zbuffer not present but zbuffering requested
EXAMPLE
W3D_Vertex VertArray[1000]; // Vertex array
UBYTE indices[] = {1, 2, 3, 0, 4, 3, 1, 2, 5};
error = W3D_DrawElements (context,
W3D_PRIMITIVE_TRIANGLES, W3D_INDEX_ UBRYTE, 9,
(void =)indices);
NOTES

BUGS

If a pointer is unspecified but the current state vector asks for
it, an error W3D_ILLEGALINPUT is generated. The same applies if the
count argument specifies too few entries. It is not an error to
have no TexCoord pointer, for example, when texture mapping is
disabled. If W3D_GOURAUD is enabled, the color pointer must be
present, otherwise the color data is fetched (as normally) from
W3D_CurrentColor or W3D_CurrentPen.

Note also that there is no such concept as an array size. Data
is fetched from the arrays without bounds check. It is the
programmers responsibility to ensure that indices never go out
of bounds.

The same applies to the indices array - there is no bounds check done,
so an out-of-array access might result in an access violation error
or worse. In a locked state, the requester opening might freeze the
machine entirely.

Warp3D

19/77

SEE ALSO
W3D_VertexPointer, W3D_ColorPointer, W3D_TexCoordPointer,
W3D_DrawArray

1.17 Warp3D/W3D_DrawLine()

NAME

W3D_DrawlLine —- Draw a three-dimensional line
SYNOPSIS

success = W3D_DrawLine (context, line);

do a0 al

ULONG W3D_DrawLine (W3D_Context %, W3D_Line «);

FUNCTION
This function draws a line based on the current state.
It may only be used while the hardware is locked, except when
indirect drawing is used.

INPUTS
context - The context to be drawn in
line — Definition of a line.
RESULT
A value inidcating success or failure. One of the following:
W3D_SUCCESS (you guessed 1it!)
W3D_NOTEXTURE The line has no texture
W3D_TEXNOTRESIDENT The required texture is not in video ram
W3D_NOGFXMEM No memory available on the graphics card
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer
W3D_QUEUEFAILED The request can’t be queued in indirect mode
EXAMPLE
NOTES

The linewidth parameter will probably not be supported
by most 3D hardware.

BUGS

SEE ALSO

1.18 Warp3D/W3D_DrawLineLoop()

NAME
W3D_DrawlLineLoop —-- Draw a closed sequence of connected lines

SYNOPSIS
success = W3D_DrawLinelLoop (context, lines);

Warp3D 20/77
do al al
ULONG W3D_DrawLineLoop (W3D_Context %, W3D_Lines x*);
FUNCTION
This function draws a connected sequence of lines, similar to
the W3D_DrawLineStrip function. The only difference is that the
last vertex is connected to the first with a line segment, too,
meaning that the vertexcount lines are drawn.
INPUTS
context — pointer to the context.
lines - pointer to the W3D_Lines (not the trailing ’'s’)
structure defining the line strip.
RESULT
One of the following:
W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_ILLEGALINPUT Fewer than two vertices were given
W3D_QUEUEFAILED The request can’t be queued in indirect mode
EXAMPLE
NOTES
BUGS

Currently, this call is not queued.

SEE ALSO
W3D_DrawLineLoop, W3D_DrawLine

1.19 Warp3D/W3D_DrawLineStrip()

NAME

W3D_DrawLineStrip —-- Draw a sequence of connected lines (V2)
SYNOPSIS

success = W3D_DrawLineStrip (context, lines);

do al al

ULONG W3D_DrawLineStrip (W3D_Context %, W3D_Lines x);

FUNCTION
Draws a sequence of connected lines (a line strip). The first
line is defined by vertices 0 and 1, the second line by vertices

1 and 2, ..., up to the last line being defined by vertices
n-1 and n, with n being the vertexcount field from the W3D_Lines
structure.

INPUTS

context - pointer to the context.

Warp3D

21/77

lines — pointer to the W3D_Lines (not the trailing ’s’)
structure defining the line strip.

RESULT

One of the following:

W3D_SUCCESS
W3D_NOTEXTURE
W3D_TEXNOTRESIDENT
W3D_NOTVISIBLE
W3D_NOZBUFFER
W3D_ILLEGALINPUT
W3D_QUEUEFAILED

EXAMPLE

NOTES

BUGS

It worked.

No texture given

The texture is not on the graphics board‘'s memory
The drawing area is not visible

No ZBuffer present, although it has been requested
Fewer than two vertices were given

The request can’t be queued in indirect mode

Currently, this call is not queued.

SEE ALSO

W3D_DrawLineLoop,

W3D_DrawLine

1.20 Warp3D/W3D_DrawPoint()

NAME
W3D_DrawPoint —-- Draw a point

SYNOPSIS
success = W3D_DrawPoint (context, point);
do a0 al

ULONG W3D_DrawPoint (W3D_Context *, W3D_Point =«);

FUNCTION

Draw a point based on the current context
It may only be used while the hardware is locked, except when
indirect drawing is used.

INPUTS
context - a pointer to the context to draw with
point - a pointer to a filled W3D_Point
RESULT

One of the following:

W3D_SUCCESS
W3D_NOTEXTURE
W3D_TEXNOTRESIDENT
W3D_NOTVISIBLE
W3D_NOZBUFFER
W3D_QUEUEFAILED

EXAMPLE

NOTES

It worked.

No texture given

The texture is not on the graphics board‘s memory
The drawing area is not visible

No ZBuffer present, although it has been requested
The request can’t be queued in indirect mode

Warp3D 22/77

The pointsize parameter will probably not be supported by most
3D hardware.

Although the vertex has it’s own color, the GOURAUD shading state
must be enabled to use this color, otherwise the current color set
by W3D_SetCurrentColor/W3D_SetCurrentPen will be used.

BUGS

SEE ALSO

1.21 Warp3D/W3D_DrawTriangle()

NAME
W3D_DrawTriangle -- Draw a triangle

SYNOPSIS
success = W3D_DrawTriangle (context, triangle);
do a0 al

ULONG W3D_DrawTriangle (W3D_Context +, W3D_Triangle x);

FUNCTION
Draw a triangle to the given context, based on that context'‘s
state.
It may only be used while the hardware is locked, except when
indirect drawing is used.

INPUTS
context - the context to be drawn to
triangle - the triangle to be drawn
RESULT
One of the following:
W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area 1is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_QUEUEFAILED The request can’t be queued in indirect mode
EXAMPLE
NOTES
BUGS
SEE ALSO

W3D_DrawTriFan, W3D_DrawTriStrip

1.22 Warp3D/W3D_DrawTriangleV()

Warp3D 23/77

NAME
W3D_DrawTriangleV —-- Draw a triangle

SYNOPSIS
success = W3D_DrawTriangleV (context, triangle);
do ao al

ULONG W3D_DrawTriangleV (W3D_Context %, W3D_TriangleV «x);

FUNCTION
Draw a triangle to the given context, based on that context's
state.
It may only be used while the hardware is locked.
Indirect drawing is not supported by this call.
This is the "vectorized" version; instead of inlined vertex
structures, it uses pointers.

INPUTS
context — the context to be drawn to
triangle — the triangle to be drawn
RESULT
One of the following:
W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area 1is not wvisible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_QUEUEFAILED The request can’t be queued in indirect mode
EXAMPLE
NOTES

Requires Warp3D V3
BUGS

SEE ALSO
W3D_DrawTriFanV, W3D_DrawTriStripV

1.23 Warp3D/W3D_DrawTriFan()

NAME
W3D_DrawTriFan -- Draw a triangle fan
SYNOPSIS
success = W3D_DrawTriFan (context, triangles);
do a0 al

ULONG W3D_DrawTriFan (W3D_Context %, W3D_Triangles x);

FUNCTION
Draw a triangle fan. The first vertex in the list is
considered the common point for the fan. For more

Warp3D 24177
information on triangle fans, see the OpenGL specs.
This function may only be used while the hardware is locked,
except when indirect drawing is used.
INPUTS
context - pointer to the context.
triangles - pointer to a vertex list. Note that this
is a W3D_Triangles (trailing s, avoid mixing
up with W3D_Traingle)
RESULT
One of the following:
W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area 1is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_ILLEGALINPUT Less than three vertices were given
W3D_QUEUEFAILED The request can’t be queued in indirect mode
EXAMPLE
NOTES
BUGS
SEE ALSO

W3D_DrawTriangle, W3D_DrawTriStrip

1.24 Warp3D/W3D_DrawTriFanV()

NAME
W3D_DrawTriFanV -- Draw a triangle fan
SYNOPSIS
success = W3D_DrawTriFanV (context, triangles);
do a0 al

ULONG W3D_DrawTriFanV (W3D_Context *, W3D_TrianglesV «x);

FUNCTION
Draw a triangle fan. The first vertex in the list is
considered the common point for the fan. For more
information on triangle fans, see the OpenGL specs.
This function may only be used while the hardware is locked.
Indirect drawing is not supported by this call.
This is the "vectorized" version. Instead of suplying a
pointer to an array of vertex structure, you supply a pointer
to an array of vertex structure pointers.

INPUTS
context - pointer to the context.
triangles - pointer to a vertex list. Note that this

is a W3D_TrianglesV (trailing s, avoid mixing
up with W3D_TraingleV)

Warp3D 25/77

RESULT
One of the following:
W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘'s memory
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_ILLEGALINPUT Less than three vertices were given
W3D_QUEUEFAILED The request can’t be queued in indirect mode
W3D_NOMEMORY The feature should have been emulated since the
driver does not support it, but memory alloc failed.
EXAMPLE
NOTES

Requires Warp3D V3
BUGS

SEE ALSO
W3D_DrawTriangleV, W3D_DrawTriStripV

1.25 Warp3D/W3D_DrawTriStrip()

NAME
W3D_DrawTriStrip —-- Draw a triangle strip
SYNOPSIS
success = W3D_DrawTriStrip (context, triangles);
do a0 al

ULONG W3D_DrawTriStrip (W3D_Context %, W3D_Triangles «x);

FUNCTION
Draw a triangle strip. For more information
on triangle strips, see the OpenGL specs.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - pointer to the context.
triangles - pointer to a vertex list. Note that this

is a W3D_Triangles (trailing s, avoid mixing
up with W3D_Traingle)

RESULT
One of the following:
W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_ILLEGALINPUT Less than three vertices were given

W3D_QUEUEFAILED The request can’t be queued in indirect mode

Warp3D

26/77

EXAMPLE
NOTES
BUGS

SEE ALSO
W3D_DrawTriangle, W3D_DrawTriFan

1.26 Warp3D/W3D_DrawTriStripV()

NAME
W3D_DrawTriStripV —-- Draw a triangle strip
SYNOPSIS
success = W3D_DrawTriStripV (context, triangles);
do ao al

ULONG W3D_DrawTriStripV (W3D_Context %, W3D_TrianglesV x);

FUNCTION
Draw a triangle strip. For more information
on triangle strips, see the OpenGL specs.
This function may only be used while the hardware is locked.
Indirect drawing is not supported for this function.
This is the "vectorized" version. Instead of suplying a
pointer to an array of vertex structure, you supply a pointer
to an array of vertex structure pointers.

INPUTS
context - pointer to the context.
triangles — pointer to a vertex list. Note that this

is a W3D_Triangles (trailing s, avoid mixing
up with W3D_Traingle)

RESULT
One of the following:
W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_ILLEGALINPUT Less than three vertices were given
W3D_QUEUEFAILED The request can’t be gqueued in indirect mode
EXAMPLE
NOTES
BUGS
SEE ALSO

W3D_DrawTriangle, W3D_DrawTriFan

Warp3D 27177

1.27 Warp3D/W3D_FillStencilBuffer()

NAME
W3D_FillStencilBuffer ——- Fill the stencil buffer

SYNOPSIS
success = W3D_FillStencilBuffer (context, x, y, width, height, depth, data);
do a0 do dl d2 d3s d4 al

ULONG W3D_FillStencilBuffer (W3D_Context %, ULONG, ULONG, ULONG, ULONG,
ULONG, void «*);

FUNCTION
This function fills the stencil buffer with a rectangular image
with the given dimensions.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - the context
X,V — Coordinates into the stencil buffer
width - Width of the image data
height - Height of the image data
depth — Depth of the image data. Must be 8,16 or 32
data - The data itself
RESULT
One of the following wvalues:
W3D_SUCCESS Operation successful
W3D_NOSTENCILBUFFER No stencil buffer present (either it ‘s not
allocated, or not supported)
W3D_ILLEGALINPUT Illegal depth value
W3D_NOTVISIBLE The stencil buffer can not be accessed by
the hardware
EXAMPLE
NOTES
BUGS
SEE ALSO

W3D_CreateStencilBuffer, W3D_ClearStencilBuffer

1.28 Warp3D/W3D_Flush()

NAME
W3D_Flush -- Flush indirect drawing gqueue
SYNOPSIS
result = W3D_Flush (context);
a0

ULONG W3D_Flush (W3D_Context =«);

Warp3D 28/77

FUNCTION
If the given context is not in indirect mode, nothing happens.
Otherwise, the internal queue is flushed and all buffered drawing
request are drawn.

INPUTS
context - the context which should be flushed

RESULT
A value indicating error or success:
W3D_SUCCESS success

W3D_NOTVISIBLE Locking the hardware was unsuccesful
EXAMPLE
NOTES
BUGS

SEE ALSO
W3D_SetState, W3D_CreateContext, W3D_LockHardware, W3D_UnLockHardware

1.29 Warp3D/W3D_FlushFrame()

NAME

W3D_FlushFrame -- Flush the current frame
SYNOPSIS

W3D_FlushFrame (context) ;

a0

void W3D_FlushFrame (W3D_Contextx*) ;

FUNCTION
This function flushes the current frame. It must be called at the end
of your drawing when the frame is finished. This function xmust* be
called by any application, even if you do not "intent" to support
CPU drivers (for which this function is mainly designed).

INPUTS
context - The context to flush

RESULT

EXAMPLE

NOTES
If the context is indirect, this function also flushes the
Queue.

BUGS

SEE ALSO

Warp3D 29/77

1.30 Warp3D/W3D_FlushTextures()

NAME

W3D_FlushTextures ——- Release all textures from video ram
SYNOPSIS

W3D_FlushTextures (context) ;

a0

void W3D_FlushTextures (W3D_Context) ;
FUNCTION
This function releases every texture that'‘s currently

on the graphics board‘s texture memory.

INPUTS
context - Pointer to a W3D_Context

RESULT
None

EXAMPLE
NOTES
BUGS

SEE ALSO
W3D_ReleaseTexture

1.31 Warp3D/W3D_FreeAllTexObj()

NAME

W3D_FreeAllTexObj —-—- Free all textures in context
SYNOPSIS

W3D_FreeAllTexObj (context);

a0

void W3D_FreeTexObj (W3D_Context «x);

FUNCTION
Free all texture objects allocated in the current context.

INPUTS
context - the pointer to the context

RESULT
EXAMPLE
NOTES

BUGS

Warp3D 30/77

SEE ALSO
W3D_FreeTexObj, W3D_AllocTexOb]j

1.32 Warp3D/W3D_FreeScreenmodeList()

NAME
W3D_FreeScreenmodelist — Free the list of screen modes (V3)

SYNOPSIS
void W3D_FreeScreenmodelList (W3D_ScreenMode =) ;

W3D_FreeScreenmodelList (1list);
FUNCTION
Frees all resources that are attached to the Screen Mode list

which must have been allocated with W3D_GetScreenmodelList.

INPUTS
list - the list pointer obtained by W3D_GetScreenmodelList

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_GetScreenmodelList

1.33 Warp3D/W3D_FreeStencilBuffer()

NAME

W3D_FreeStencilBuffer ——- Free the stencil buffer
SYNOPSIS

success = W3D_FreeStencilBuffer (context);

do a0

ULONG W3D_FreeStencilBuffer (W3D_Context =*);

FUNCTION
Free up all memory associated with the stencil buffer.

INPUTS
context - the context containing the stencil buffer to be freed

RESULT
One of the following wvalues:
W3D_SUCCESS Operation succesful

Warp3D 31/77

W3D_NOSTENCILBUFFER No stencil buffer was allocated, or stencil
buffering is not supported by the current
hardware driver.
W3D_NOTVISIBLE The stencil buffer can not be accessed by
the hardware
EXAMPLE
NOTES
BUGS

SEE ALSO
W3D_CreateStencilBuffer

1.34 Warp3D/W3D_FreeTexObj()

NAME

W3D_FreeTexObj —-—- Free a texture object
SYNOPSIS

W3D_FreeTexObj (context, texture);

a0 al
void W3D_FreeTexObj (W3D_Context *, W3D_Texture x);

FUNCTION
Remove the texture object from the list of textures
and free up all resources associated with it.

INPUTS
context - Pointer to a W3D_Context
texture - Pointer to a texture to be released

RESULT
None
EXAMPLE
extern W3D_Context xcontext;
void ximage = LoadImage ("texture.iff");
W3D_Texture xtexobi;
struct TaglItem tags[] = {
W3D_ATO_IMAGE, image,
W3D_ATO_FORMAT, W3D_A1R5G5B5,
W3D_ATO_WITDH, 128,
W3D_ATO_HEIGHT, 128,
TAG_DONE, 0

bi
ULONG error;

texobj = W3D_AllocTexObj (context, &error, tags);
if ('texobij) {
printf ("An error has occurred because: An error has occurred (%d)\n",
error) ;
} else {

Warp3D 32/77

Draw some cool stuff
W3D_FreeTexObj (context, texobij);

NOTES
Free all textures. Even if you can afford the memory loss in main memory,
you'll loose video memory.
The ‘locked' pointers (those to the image and user-defined mipmaps)
are now ‘unlocked', and may be used again.

BUGS

SEE ALSO
W3D_AllocTexObj

1.35 Warp3D/W3D_FreeZBuffer()

NAME
W3D_FreeZBuffer —- Free ZBuffer
SYNOPSIS
success = W3D_FreeZBuffer (context);
do a0

ULONG W3D_FreeZBuffer (W3D_Context =);

FUNCTION
Free the ZBuffer previously allocated with W3D_AllocZBuffer

INPUTS
context - Pointer to a W3D_Context

RESULT
One of the following wvalues:
W3D_SUCCESS Success

W3D_NOZBUFFER No Z Buffer was allocated
W3D_NOTVISIBLE ZBuffer i1s not visible

EXAMPLE
NOTES
BUGS

SEE ALSO
W3D_AllocZBuffer

1.36 Warp3D/W3D_GetDestFmt()

NAME
W3D_GetDestFmt —-- Get information about supported formats

Warp3D 33/77

SYNOPSIS
format = W3D_GetDestFmt () ;
do

ULONG W3D_GetDestFmt (void) ;

FUNCTION
*DEPRECATED+ DO NOT USE THIS IN NEW PROJECTS
This function can be used to get information about the destination
(i.e. screen) format supported by the current driver. The result
is a bitmask, with each bit representing a supported format.
This function can be used before opening a display, to ensure
that only a supported display area is selected.

INPUTS
None

RESULT

A bitmask representing supported modes. Currently, some of the

following bits:
W3D_FMT_CLUT
W3D_FMT_R5G5B5
W3D_FMT_B5G5R5
W3D_FMT_R5G5B5PC
W3D_FMT_B5G5R5PC
W3D_FMT_R5G6B5
W3D_FMT_B5G6R5
W3D_FMT_R5G6B5PC
W3D_FMT_B5G6R5PC
W3D_FMT_R8G8BS8
W3D_FMT_B8G8RS
W3D_FMT_AB8R8G8BS8
W3D_FMT_A8B8G8RS8
W3D_FMT_R8G8B8AS8
W3D_FMT_B8G8R8AS8

EXAMPLE
ULONG fmt = W3D_GetDestFmt () ;

if (fmt & W3D_FMT_CLUT) printf ("Driver supports 8 bit modes\n");

if (fmt & W3D_R5G5B5) printf ("Driver supports 15 bit RGB modes\n");
NOTES

This function is deprecated and should not be used in future

projects.
BUGS
SEE ALSO

W3D_CreateContext, W3D_Query, W3D_GetDrivers

1.37 Warp3D/W3D_GetDrivers()

NAME
W3D_GetDrivers —-— Get the internal list of drivers (V2)

Warp3D 34 /77

SYNOPSIS
driverarray = W3D_GetDrivers();
DO

W3D_Driver =*W3D_GetDrivers (void);

FUNCTION
This function returns a (NULL-Terminated) Array of pointers
to W3D_Driver structures. You can use these to find a suitable
driver, offer the user a selection of hardware, or activate
one driver for further queries.

INPUTS
RESULT
driverarray - A null-terminated array of pointers to
W3D_Driver structures.
EXAMPLE
NOTES

The returned list is STRICTLY read-only.
BUGS

SEE ALSO
W3D_TestMode

1.38 Warp3D/W3D_GetDriverState()

NAME

W3D_GetDriverState —-- get current state of driver
SYNOPSIS

result = W3D_GetDriverState (context);

do a0

ULONG W3D_GetDriverState (W3D_Context «*);

FUNCTION
Return information about the current state of the driver.
This function can be used to check if the current driver
is able to start rendering now.

INPUTS
context - The context to check the state for
RESULT
One of the following wvalues:
W3D_SUCCESS Success, rendering possible
W3D_NOTVISIBLE Drawing area 1is not currently on

the video card’s memory.

EXAMPLE

Warp3D

35/77

if (W3D_SUCCESS == W3D_GetDriverState (context)
RenderFrame () ;
else
printf ("Error: Bitmap not visible, can’t render\n");
NOTES
BUGS

SEE ALSO
W3D_LockHardware

1.39 Warp3D/W3D_GetDriverTexFmtinfo()

NAME

W3D_GetDriverTexFmtInfo —-- Get information about the texture format
SYNOPSIS

info = W3D_GetDriverTexFmtInfo (driver, format, destfmt);

do a0 do dl

ULONG W3D_GetDriverTexInfo (W3D_Driverx, ULONG, ULONG) ;

FUNCTION
This function is used to get information about the texture
format, i.e. if it‘'s directly supported by the hardware,
or must be converted in some way. Contrary to the similar
function W3d_GetTexFmtInfo, this function does not need a
context to operate, but can be used to query individual drivers
about their texture format capabilities.

INPUTS
driver - A pointer to a W3D_Driver structure
texfmt - The texture format to be queried. Currently,
one of the following:
W3D__CHUNKY palettized
W3D_A1R5G5B5 a rrrrr ggggg bbbbb
W3D_R5G6B5 rrrrr gggggg bbbbb
W3D_R8G8B8 rrrrrrrr gggggggg bbbbbbbb
W3D_A4R4G4B4 aaaa rrrr gggg bbbb
W3D_A8R8G8B8 aaaaaaaa rrrrrrrr gggggggg bbbbbbbb
W3D_R8G8B8AS rrrrrrrr gggggggg bbbbbbbb aaaaaaaa
W3D_AS8 aaaaaaaa
W3D_L8 11111111
W3D_L8AS8 11111111 aaaaaaaa
W3D_1I8 iiiiiiii
See the main documentation for more information.
destfmt - The destination screen format.
RESULT
A bitvector with the following bits
W3D_TEXFMT_FAST Format directly supported by HW
W3D_TEXFMT_CLUTFAST Format directly supported in CLUT modes only
W3D_TEXFMT_ARGBFAST Format directly supported in direct color

modes only

(V2)

Warp3D 36/77

W3D_TEXEFMT_UNSUPPORTED Format not supported, and can’t be emulated
W3D_TEXFMT__SUPPORTED Format is supported, although it may be
internally converted
EXAMPLE
NOTES

Formats that are not directly supported can still be used for textures.
Note, however, that those textures must be converted.

BUGS

SEE ALSO
W3D_GetTexFmtInfo ()

1.40 Warp3D/W3D_GetScreenmodeList()

NAME
W3D_GetScreenmodelist - Return a list of screen modes (V3)

SYNOPSIS
W3D_ScreenMode *W3D_GetScreenmodelList (void)

list = W3D_GetScreenmodelList () ;
FUNCTION
Returns a list of W3D_ScreenMode structures that represent

all modes that are usable by Warp3D’s drivers.

The result is read-only, step through the list by examining
the ’"Next’ field until this is NULL.

INPUTS
None

RESULT
list - A pointer to the first W3D_ScreenMode entry or NULL
if no screenmode was found
EXAMPLE
NOTES
This function also returns screenmodes which are only usable

by software drivers. You should examine the Driver field to
find a mode that matches your desired driver.

You MUST free this list with W3D_FreeScreenmodelist
BUGS

SEE ALSO
W3D_FreeScreenmodelList

Warp3D

37177

1.41 Warp3D/W3D_GetState()

NAME

W3D_GetState —- Get current state of hardware/context

SYNOPSIS

result = W3D_GetState (context, state);

do a0

do

ULONG W3D_GetState (W3D_Context x, ULONG) ;

FUNCTION

This function reads the state of the bits in the
state field of the context structure.

INPUTS
context - pointer to a Warp3D context
state — The bit that is tested. Currently, this may

be one of the following:
W3D_AUTOTEXMANAGEMENT
W3D_SYNCHRON
W3D_INDIRECT
W3D_GLOBALTEXENV
W3D_DOUBLEHEIGHT
W3D_FAST
W3D_TEXMAPPING
W3D_PERSPECTIVE
W3D_GOURAUD
W3D_ZBUFFER
W3D_ZBUFFERUPDATE
W3D_BLENDING
W3D_FOGGING
W3D_ANTI_POINT
W3D_ANTI_LINE
W3D_ANTI_POLYGON
W3D_ANTI_FULLSCREEN
W3D_DITHERING
W3D_LOGICOP
W3D_STENCILBUFFER
W3D_ALPHATEST
W3D_SPECULAR
W3D_TEXMAPPING3D
W3D_CHROMATEST

automatic texture management
wait, until HW is idle
buffer drawings until W3D_Flush()'ed
global texture modes

screen has double height.
Drawing functions may modify passed structures
texmapping state

perspective correction state
gouraud/flat shading
Z-Buffer state

Z-Buffer update state

Alpha blending state

Fogging state

Point antialiasing

Line antialiasing

Polygon antialiasing
Fullscreen antialiasing
dithering state

logical operations state
stencil buffer state

Alpha test state

Specular highlightung state
3D texturemapping state
Chroma test (color keying)

RESULT
One of the following:
W3D_ENABLED the mode is enabled
W3D_DISABLED the mode is disabled/not available
EXAMPLE
if (W3D_ENABLED == W3D_GetState (context, W3D_FOGGING)) {

printf ("Gee, I can'‘t see in all this fog\n");

} else {

printf ("Aha, that'‘s better\n");

}

Warp3D 38/77

NOTES
Don’t use W3D_SYNCHRON, this state might only be useful for
debugging purposes.

The W3D_FAST mode can speed up your application, always use it,
if you don’t care what happens to the values in the drawing
structures (like W3D_Triangle, W3D_Line etc.)

"Indirect drawing’ has the advantage, that the ’locking’ time
is minimized, please provide at least an option for the user to

use it.

For more information about the different states, please refer
to the Warp3D Programmer Documentation.

BUGS

SEE ALSO
W3D_SetState

1.42 Warp3D/W3D_GetTexFmtinfo()

NAME

W3D_GetTexFmtInfo —-— Get information about the texture format
SYNOPSIS

info = W3D_GetTexFmtInfo (context, format, destfmt);

do a0 do dl

ULONG W3D_GetTexInfo (W3D_Context, ULONG, ULONG) ;

FUNCTION
This function is used to get information about the texture
format, i.e. if it‘'s directly supported by the hardware,
or must be converted in some way.

INPUTS
context - A valid context pointer
texfmt - The texture format to be queried. Currently,
one of the following:
W3D__CHUNKY palettized
W3D_A1R5G5B5 a rrrrr ggggg bbbbb
W3D_R5G6B5 rrrrr gggggg bbbbb
W3D_R8G8B8 rrrrrrrr gggggggg bbbbbbbb
W3D_A4R4G4B4 aaaa rrrr gggg bbbb
W3D_AB8R8G8B8 aaaaaaaa rrrrrrrr gggggggg bbbbbbbb
W3D_R8G8B8AS rrrrrrrr gggggggg bbbbbbbb aaaaaaaa
W3D_AS8 aaaaaaaa
W3D_L8 11111111
W3D_L8AS 11111111 aaaaaaaa
W3D_1I8 iiiiiiii

See the main documentation for more information.
destfmt - The destination screen format.

RESULT

Warp3D 39/77

A bitvector with the following bits

W3D_TEXFMT_FAST Format directly supported by HW
W3D_TEXFMT_CLUTFAST Format directly supported in CLUT modes only
W3D_TEXFMT_ARGBFAST Format directly supported in direct color

modes only
W3D_TEXEFMT_UNSUPPORTED Format not supported, and can’t be emulated
W3D_TEXFMT_SUPPORTED Format is supported, although it may be
internally converted

EXAMPLE
ULONG info = W3D_GetTexFmtInfo (NULL, W3D_CHUNKY, W3D_FMT_CLUT);
if (info & W3D_TEXFMT_CLUTFAST) printf ("Supported in CLUT modes\n");

NOTES
Formats that are not directly supported can still be used for textures.
Note, however, that those textures must be converted.

IMPORTANT: Prior to Version 2 of the API, this function could be

called with a NULL context to query the default driver. Although this
is still possible for backward compatibility reasons, a programmer

must not use this feature in new projects, but rather use the new and
improved W3D_GetDriverTexFmtInfo () function instead, which is essential
for multiple driver support. You may still call this function with a
valid context, of course.

BUGS

SEE ALSO
W3D_GetDriverTexFmtInfo ()

1.43 Warp3D/W3D_Hint()

NAME
W3D_Hint -- Hint about rendering quality
SYNOPSIS
result = W3D_Hint (context, mode, quality);
do a0 do dil

ULONG W3D_Hint (W3D_Context, ULONG, ULONG) ;

FUNCTION
Gives Warp3D a hint about the desired quality of some
effects. This can be used to improve rendering speed
at the cost of display quality.

INPUTS
context - The context to hint for
mode — The mode to hint for. One of the following values
W3D_H TEXMAPPING - quality of general texmapping
W3D_H_MIPMAPPING - quality of mipmapping
W3D_H_BILINEARFILTER - quality of bilinear filtering
W3D_H_MMFILTER - quality of depth filter
W3D_H_PERSPECTIVE - quality of perspective correction

W3D_H BLENDING - quality of alpha blending

Warp3D 40/77

W3D_H_FOGGING - quality of fogging
W3D_H_ANTIALIASING - quality of antialiasing
W3D_H_DITHERING - quality of dithering
W3D_H_ZBUFFER - quality of ZBuffering
quality - The desired quality. Possible values are
W3D_H_FAST - fast, low quality
W3D_H_AVERAGE - average speed, average quality
W3D_H_NICE - low speed, high quality
RESULT
A value indicating success or failure:
W3D_SUCCESS Success
W3D_ILLEGALINPUT Failure, illegal input
EXAMPLE
NOTES

This function only gives hints to Warp3D. It is possible
that it doesn’t do anything at all, depending on the
possibility the hardware or driver offers.

BUGS
The ViRGE driver selects it's filter modes when they are set
with W3D_SetFilter, so you have to set the filter modes again

when messing with the W3D_H_ BILINEARFILTER setting.

SEE ALSO

1.44 Warp3D/W3D_LockHardware()

NAME

W3D_LockHardware —-- Gain exclusive hardware access
SYNOPSIS

res = W3D_LockHardware (context) ;

do a0

ULONG W3D_LockHardware (W3D_Context «*);

FUNCTION
This function gains exclusive access to the hardware. It must be
called whenever objects are drawn, except when operating in ’indirect
render’ mode. You should not lock the frame too long, because the
system is freezed in locked state.

INPUTS
context - a pointer to a W3D_Context structure
RESULT
A value indication success or failure:
W3D_SUCCESS — The hardware is locked
W3D_NOTVISIBLE - The bitmap is not visible/swapped out of vmem

EXAMPLE

Warp3D

if (W3D_SUCCESS == W3D_LockHardware (context) {

Render some stuff

W3D_UnLockHardware (context) ;
} else {

printf("Can‘t lock hardware\n");

}

NOTES

This function may forbid multitasking
or even disable interrupts.

BUGS

SEE ALSO

W3D_UnLockHardware, W3D_SetState

1.45 Warp3D/W3D_Query()

NAME

W3D_Query —-- Query capabilities of the driver

SYNOPSIS

res = W3D_Query (context, query, destfmt)

do a0 do

dl

ULONG W3D_Query (W3D_Context %, ULONG, ULONG) ;

FUNCTION

This function is used to query the hardware/driver
capabilities. It takes destination formats into account

(checking compatibility).

INPUTS
context

query

- pointer to a W3D_Context
- a value to be queried.

Currently, the following values are supported:

W3D_Q_DRAW_POINT
W3D_Q_DRAW_LINE
W3D_Q_DRAW_TRIANGLE
W3D_Q DRAW _POINT X
W3D_Q DRAW_LINE_X
W3D_Q DRAW_LINE_ST
W3D_Q_ DRAW_POLY_ST
W3D_Q_TEXMAPPING
W3D_Q_MIPMAPPING
W3D_Q BILINEARFILTER
W3D_Q MMFILTER
W3D_Q_LINEAR_REPEAT
W3D_Q_LINEAR_CLAMP
W3D_Q_PERPESCTIVE
W3D_Q_PERSP_REPEAT
W3D_Q_ PERSP_CLAMP
W3D_Q_ ENV_REPLACE

point drawing

line drawing

triangle drawing

points with size != 1 supported
lines with width != 1 supported
line stippling supported

polygon stippling supported
texmapping in general

mipmapping

bilinear filter

mipmap filter

W3D_REPEAT for linear texmapping
W3D_CLAMP for linear texmapping
perspective correction
W3D_REPEAT for persp. texmapping
W3D_CLAMP for persp. texmapping
texenv REPLACE

(depending on the driver),

Warp3D

42177

W3D_Q_ENV_DECAL
W3D_Q_ENV_MODULATE
W3D_Q_ENV_BLEND
W3D_Q FLATSHADING
W3D_Q_GOURAUDSHADING
W3D_Q_ZBUFFER
W3D_Q_ZBUFFERUPDATE
W3D_Q_ZCOMPAREMODES
W3D_Q ALPHATEST
W3D_Q ALPHATESTMODES
W3D_Q_BLENDING
W3D_Q_SRCFACTORS
W3D_Q_DESTFACTORS
W3D_Q_FOGGING

W3D_Q_ LINEAR

W3D_Q EXPONENTIAL
W3D_Q_S_EXPONENTIAL
W3D_Q_ANTIALIASING
W3D_Q_ANTI_POINT
W3D_Q ANTI_LINE
W3D_Q_ANTI_POLYGON
W3D_Q_ANTI_FULLSCREEN
W3D_Q_DITHERING
W3D_Q_SCISSOR

W3D_Q MAXTEXWIDTH
W3D_Q MAXTEXHEIGHT
W3D_Q_RECTTEXTURES
W3D_Q_LOGICOP
W3D_Q_MASKING
W3D_Q_STENCILBUFFER
W3D_Q_STENCIL_MASK
W3D_Q_STENCIL_FUNC
W3D_Q_STENCIL_SFAIL
W3D_Q_STENCIL_DPFAIL
W3D_Q_STENCIL_DPPASS
W3D_Q_STENCIIL_WRMASK
W3D_Q_ PALETTECONV

8 bit screens
W3D_Q_ DRAW_POINT_FX
W3D_Q_DRAW_POINT_TEX
W3D_Q DRAW_LINE_FX
W3D_Q DRAW_LINE_TEX
W3D_Q_SPECULAR

RESULT

texenv DECAL

texenv MODULATE
texenv BLEND

flat shading

gouraud shading

Z buffer in general

Z buffer update

Z buffer compare modes
alpha test in general
alpha test modes
alpha blending

source factors

destination factors

fogging in general
linear fogging
exponential fogging
square exponential fogging
antialiasing in general
point antialiasing

line antialiasing
polygon antialiasing
fullscreen antialiasing
dithering

scissor test

max. texture width

max. texture height
rectangular textures

logical

operations

color/index masking

stencil

buffer in general

mask value

stencil
stencil
stencil
stencil
stencil

functions

operation SFAIL

operation DPFAIL

operation DPPASS

buffer supports write masking

driver can use texture with a pallette
other than the screen palette on

driver supports point fx (fog, zbuffer)
driver supports points textured

driver supports line fx

driver supports textured lines

driver supports specular reflection
destfmt — The destination format

Depends on the item. With most of the "is this supported"-type
queries, one of the following constants is returned:

W3D_FULLY_SUPPORTED Completely supported by driver
W3D_PARTIALLY_SUPPORTED Only partially supported
W3D_NOT__SUPPORTED Not supported

With "what is the value"-type queries like W3D_Q MAXTEXWIDTH,

an ULONG is returned.

EXAMPLE

Warp3D 43/77

switch (W3D_Query (context, W3D_Q TEXMAPING, destfmt)) {

case W3D_FULLY_SUPPORTED: printf ("Completely supported by driver\n");
break;

case W3D_PARTIALLY_ SUPPORTED: printf ("Only partially supported\n");
break;

case W3D_NOT_SUPPORTED: printf ("Not supported\n");
break;

}

NOTES

Regarding chunky/ARGB combinations:
You are advised that you always use chunky textures with chunky
screens only, and ARGB textures with ARGB screens

IMPORTANT: Prior to Version 2 of the API, the W3D_Query function

could be called with a NULL pointer instead of a context. Although
this possibility is still supported for backward compatibility,

the programmer is strictly encouraged to use the new W3D_QueryDriver
function instead. The W3D_QueryDriver function may be used to directly
query a specific driver for capabilities, which is essential when
working with V2+ and multiple drivers.

BUGS

SEE ALSO
W3D_QueryDriver ()

1.46 Warp3D/W3D_QueryDriver()

NAME

W3D_QueryDriver —-- Query capabilities of any driver (V2)
SYNOPSIS

res = W3D_QueryDriver (driver, query, destfmt)

do ao do di

ULONG W3D_QueryDriver (W3D_Driver %, ULONG, ULONG) ;

FUNCTION
This function is similar to the W3D_Query function, only
that it does not require a context but rather operates on
a driver obtained by W3D_GetDrivers() .

INPUTS
driver - A pointer to a W3D_Driver structure obtained by
W3D_GetDrivers ()
query - The data item to be queried. See W3D_Query () for
a list of available query items.
destfmt - The destination format you intend to use.

RESULT
One of the following values is returned:

W3D_FULLY_SUPPORTED Completely supported by driver

W3D_PARTIALLY_SUPPORTED Only partially supported
W3D_NOT_SUPPORTED Not supported

Warp3D 44 /77

EXAMPLE
NOTES
BUGS

SEE ALSO
W3D_Query (), W3D_GetDrivers()

1.47 Warp3D/W3D_ReadStencilPixel()

NAME

W3D_ReadStencilPixel -- Read a pixel from the stencil buffer
SYNOPSIS

success = W3D_ReadStencilPixel (context, x, y, st);

do a0 d0 dl al

ULONG W3D_ReadStencilPixel (W3D_Context *, ULONG, ULONG, ULONG =*);

FUNCTION
Read the stencil buffer pixel at x,y into the variable pointed
to by st.

This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - The context to use
X,V — Coordinates of point
st - Pointer to a variable to hold the read pixel
RESULT
One of the following wvalues:
W3D_SUCCESS Operation successful
W3D_NOSTENCILBUFFER No stencil buffer present
W3D_NOTVISIBLE The stencil buffer can not be accessed by
the hardware
W3D_NOTVISIBLE Indirect mode only. Locking failed.
EXAMPLE
NOTES

This function is primarly intended for OpenGL implementations,
which might need access to the stencil buffer. This function
is slow and should normally not be called.

Important note: In indirect mode you have to make sure, that
the stencil buffer is up to date, no Flush is internally done
by this function. You have to call W3D_Flush, if the stencil
buffer is not up to date yet.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if

Warp3D 45/77

the corresponding buffer is swapped out.

SEE ALSO
W3D_ReadStencilSpan

1.48 Warp3D/W3D_ReadStencilSpan()

NAME

W3D_ReadStencilSpan —-- Read a range of stencil buffer pixels
SYNOPSIS

success = W3D_ReadStencilSpan (context, x, y, n, st);

do a0 d0 dl d2 al

ULONG W3D_ReadStencilSpan (W3D_Context *, ULONG, ULONG, ULONG,
ULONG [1);

FUNCTION
Read a span of pixel value from the stencil buffer. The resulting
pixels are put into the memory area pointed to by st.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - The context
X,y — Coordinates of span start
n — Number of pixels to read
st - pointer to the array to hold the pixel
RESULT
One of the following wvalues:
W3D_SUCCESS Operation successful
W3D_NOSTENCILBUFFER No stencil buffer found
W3D_NOTVISIBLE The stencil buffer can not be accessed by
the hardware
W3D_NOTVISIBLE Indirect mode only. Locking failed.
EXAMPLE
NOTES

If you need to read more than one consecutive pixel, use this
function instead of calling the single pixel version repeatedly.

This function is primarly intended for OpenGL implementations,
which might need access to the stencil buffer. This function
is slow and should normally not be called.

Important note: In indirect mode you have to make sure, that

the stencil buffer is up to date, no Flush is internally done
by this function. You have to call W3D_Flush, if the stencil

buffer is not up to date yet.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if

46 /77

the corresponding buffer is swapped out.

SEE ALSO

W3D_ReadStencilPixel

1.49 Warp3D/W3D_ReadZPixel()

W3D_ReadZPixel —-- Read a pixel wvalue from the ZBuffer

SYNOPSIS

success = W3D_ReadZPixel (context, x, vy, 2z);
do a0 do dl al

ULONG W3D_ReadZPixel (W3D_Context =, ULONG, ULONG, W3D_Double x);

FUNCTION

Read ZBuffer pixel x,y into variable pointed to by z;
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS

context - pointer to the context
X,y — coordinates of pixel
z - pointer to a W3D_Double

RESULT

One of the following:

W3D_SUCCESS Successful operation

W3D_NOZBUFFER No ZBuffer was allocated

W3D_NOTVISIBLE ZBuffer is not visible
EXAMPLE

NOTES

This function is primarly intended for OpenGL implementations,
which might need access to the Z buffer. This function
is slow and should normally not be called.

* IMPORTANT NOTE: =

For speed reasons, this call is *NOTx compatible with indirect drawing.

To use this call with indirect mode, you have to manually W3D_Flush,
and, should you use any drawing calls, you’ll have to W3D_Flush again.

BUGS

Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if
the corresponding buffer is swapped out.

SEE ALSO

W3D_ReadZSpan

Warp3D

47177

1.50 Warp3D/W3D_ReadZSpan()

NAME
W3D_ReadZSpan ——- read a range of ZBuffer pixels
SYNOPSIS
success = W3D_ReadZSpan (context, x, y, n, z);
do a0 do dl d2 al

ULONG W3D_ReadZSpan (W3D_Context %, ULONG, ULONG, ULONG, W3D_Double

FUNCTION
Read a span of ZBuffer pixels into an array pointed to by the z
parameter.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - Pointer to the context
X,V — Coordinates of pixels
n — Number of pixels to read
z - Array of W3D_Double to fill. Note that the array must

be large enough (i.e. at least n)

RESULT
One of the following wvalues
W3D_SUCCESS Operation successful

W3D_NOZBUFFER No ZBuffer was allocated
W3D_NOTVISIBLE ZBuffer is not visible

EXAMPLE

NOTES
You should use this function instead of W3D_ReadZPixel if you're
going to read more pixels than just one.
This function is primarly intended for OpenGL implementations,
which might need access to the Z buffer. This function

is slow and should normally not be called.

* IMPORTANT NOTE: =

(1)

For speed reasons, this call is x*NOT* compatible with indirect drawing.

To use this call with indirect mode, you have to manually W3D_Flush,
and, should you use any drawing calls, you’ll have to W3D_Flush again.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if
the corresponding buffer is swapped out.

SEE ALSO
W3D_ReadZzPixel

Warp3D 48 /77

1.51 Warp3D/W3D_ReleaseTexture()

NAME
W3D_ReleaseTexture —— Release texture from video ram
SYNOPSIS
W3D_ReleaseTexture (context, texture);
a0 al

void W3D_ReleaseTexture (W3D_Context %, W3D_Texture *);

FUNCTION
Release a texture from video ram. This frees the memory
allocated by that texture.

INPUTS
context — Pointer to a W3D_Context
texture - Pointer to the texture to be released

RESULT
None

EXAMPLE
extern W3D_Texture xtexture;
extern W3D_Context xcontext;
W3D_ReleaseTexture (context, texture);

NOTES
This call does nothing if W3D_AUTOTEXMANAGEMENT is set
in the context'‘s state.

BUGS

SEE ALSO
W3D_UploadTexture

1.52 Warp3D/W3D_RequestMode()

NAME
W3D_RequestMode —- Request a screen mode (V2)
SYNOPSIS
ModeID = W3D_RequestMode (taglist);
DO a0

ULONG W3D_RequestMode (struct Tagltem x);

FUNCTION
This function presents the user with an ASL-Type screen mode
requester. The mode requester will only include those screen modes
that are supported by the specified combination of tag items.

INPUTS
taglist - A taglist of W3D_SMR_#? items. The following items

Warp3D

are defined:
W3D_SMR_SIZEFILTER (BOOL)
If set to TRUE, filter ASLSM_MinWidth, ASLSM_MinHeight,
ASLSM_MaxWidth, ASL_MaxHeight
W3D_SMR_DRIVER (W3D_Driver =)
A pointer to a W3D_Driver structure that you want to use.
If this tag is specified, the screen modes in the
requester will all be compatible with this driver.
W3D_SMR_DESTFMT (W3D_FMT_#7? constants)
The screen/bitmap formats you want to use. If this tag
is active, all screenmodes will be filtered accordingly.
You may specify a bitmask to get more than one format.
W3D_SMR_TYPE (W3D_DRIVER_3DHW/W3D_DRIVER_CPU)
Specifies if you want to filter the screen modes according
to the driver type. If this is set to W3D_DRIVER_CPU,
only the active CPU driver is used for filtering. Otherwise,
all modes of all hardware is filtered, unless the W3D_SMR_DRIVER
tag specifies a special driver.
ASLSM_1?7?7
You may give an arbitrary number of ASLSM_#7? tags that will be
passed to asl.library. Most notably, these include those tags
the localize the requester or modify the look, including position
and size. Most notably, the ASLSM Min#? and ASLSM_Max#? tags
may be used in a special meaning if the W3D_SMR_SIZEFILTER
tag item is present and set to TRUE.

Not all of the combinations make sense, for example, specifiying
W3D_SMR_TYPE together with W3D_SMR_DRIVER.

RESULT

ModeID - The ModeID the user selected, or INVALID_ID if the requester

was cancelled.
EXAMPLE
NOTES
BUGS

SEE ALSO
W3D_SelectDriver ()

1.53 Warp3D/W3D_SetAlphaMode()

NAME
W3D_SetAlpha —-- Set the alpha test mode

SYNOPSIS
success = W3D_SetAlphaMode (context, mode, refval);
do al dl al

ULONG W3D_SetAlphaMode (W3D_Context, ULONG, W3D_Float x);

FUNCTION
This function defines the way the alpha test is performed.

Warp3D 50/77

This test compares the incoming pixel’s alpha value
with the reference value, and decides, depending on the set
mode, if the pixel is discarded or not.

INPUTS
context — The context
mode — The alpha test mode. One of the following:
W3D_A_NEVER Always discard
W3D_A_LESS Draw, if value < refvalue
W3D_A_GEQUAL Draw, if value >= refvalue
W3D_A_LEQUAL Draw, if value <= refvalue
W3D_A_GREATER Draw, if value > refvalue
W3D_A_NOTEQUAL Draw, if wvalue != refvalue
W3D_A_EQUAL Draw, if value == refvalue
W3D_A_ALWAYS always draw

refvalue - Pointer to the alpha reference value. Must be in
the interval [0..1]

RESULT
One of the following:
W3D_SUCCESS Success
W3D_ILLEGALINPUT Illegal alpha mode
W3D_UNSUPPORTEDATEST Alpha test unsupported
W3D_NOTVISIBLE Indirect mode only. Locking failed.
EXAMPLE
NOTES

Alpha testing is probably not supported on older 3D hardware.
BUGS

SEE ALSO

1.54 Warp3D/W3D_SetBlendMode()

NAME
W3D_SetBlendMode -- Set the blending mode

SYNOPSIS
success = W3D_SetBlendMode (context, srcfunc, dstfunc);
do ao do dl

ULONG W3D_SetBlendMode (W3D_Context =, ULONG, ULONG) ;

FUNCTION
Sets the blending mode. Blending has to be enabled using
W3D_SetState. For more information about the blending modes, see
the OpenGL specs.

INPUTS
context - pointer to the W3D_Context
srcfunc - The mode for the source pixel. Values are:
W3D_ZERO

W3D_ONE

51/77

Warp3D
W3D_DST_COLOR
W3D_ONE_MINUS_DST_COLOR
W3D_SRC_ALPHA
W3D_ONE_MINUS_SRC_ALPHA
W3D_DST_ALPHA
W3D_ONE_MINUS_DST_ALPHA
W3D_SRC_ALPHA_SATURATE
W3D_CONSTANT_COLOR
W3D_ONE_MINUS_CONSTANT_COLOR
W3D_CONSTANT_ALPHA
W3D_ONE_MINUS_CONSTANT_ALPHA
dstfunc - Mode for the destination:
W3D_ZERO
W3D_ONE
W3D_SRC_COLOR
W3D_ONE_MINUS_SRC_COLOR
W3D_SRC_ALPHA
W3D_ONE_MINUS_SRC_ALPHA
W3D_DST_ALPHA
W3D_ONE_MINUS_DST_ALPHA
W3D_CONSTANT_COLOR
W3D_ONE_MINUS_CONSTANT_COLOR
W3D_CONSTANT_ALPHA
W3D_ONE_MINUS_CONSTANT_ALPHA

RESULT

W3D_SUCCESS
W3D_ILLEGALINPUT
W3D_UNSUPPORTEDBLEND
W3D_NOTVISIBLE

One of the following:

EXAMPLE

NOTES

BUGS

SEE ALSO

1.55 Warp3D/W3D_SetChromaTestBounds()

W3D_SetState, W3D_GetState

NAME

W3D_SetChromaTestBounds —-- Set range for color keying

SYNOPSIS

res = W3D_SetChromaTestBounds (context,

do

ULONG W3D_SetChromaTestBounds (W3D_Context «*,

ULONG) ;

FUNCTION
Sets the bounds for chroma testing. All colors inside the range defined by

Success
Illegal alpha blend mode
Mode is not supported by current driver

Indirect mode only. Locking failed.

W3D_Texture %, ULONG, ULONG,

H

Warp3D

52/77

bounds are treated normally, while pixels outside the range are not drawn.

INPUTS

context - pointer to a context to use

texture - pointer to a texture

lower - lower bound.

upper — upper bound

mode — chroma test mode
The following values are possible:
W3D_CHROMATEST_NONE disable chroma testing
W3D_CHROMATEST_INCLUSIVE texels within the specified range pass

the test (i.e. get drawn)

W3D_CHROMATEST_EXCLUSIVE only texels outside the specified range

are drawn, others are rejected.
RESULT
One of the following:
W3D_SUCCESS Success
W3D_UNSUPPORTED Chroma keying is not supported on this hardware
EXAMPLE
NOTES

BUGS

SEE ALSO

1.56 Warp3D/W3D_SetColorMask()

NAME
W3D_SetColorMask —-- Set mask for drawing

SYNOPSIS
success = W3D_SetColorMask (context, red, green, blue, alpha);
do ao do dl d2 d3

ULONG W3D_SetColorMask (W3D_Context %, W3D_Bool, W3D_Bool, W3D_Bool,
W3D_Bool) ;

FUNCTION
This function defines the mask for all drawing operations in
direct color mode (15/16/24/32 bit modes) .

INPUTS
context — the context
red
green
blue
alpha - If set to FALSE, the component should be masked out.

RESULT
W3D_SUCCESS Success

W3D_MASKNOTSUPPORTED Masking is not supported by the current driver

W3D_NOTVISIBLE Indirect mode only. Locking failed.

Warp3D 53/77

EXAMPLE
NOTES
BUGS

SEE ALSO
W3D_SetPenMask

1.57 Warp3D/W3D_SetCurrentColor()

NAME

W3D_SetCurrentColor —- Set color for single-color operations
SYNOPSIS

ret = W3D_SetCurrentColor (context, color);

a0 al
ULONG W3D_SetCurrentColor (W3D_Context %, W3D_Color x);

FUNCTION
Defines the color to use for operations where one single color
is used, i.e. flat-shaded opbjects. This color is only used for
RGBA destinations.

INPUTS
context - Context pointer
color — Pointer to a color to use
RESULT
W3D_QUEUFAIL Queueing failed in indirect mode

W3D_NOTVISIBLE Locking failed in indirect mode
EXAMPLE
NOTES
BUGS

SEE ALSO

1.58 Warp3D/W3D_SetCurrentPen()

NAME

W3D_SetCurrentPen —-- Set pen for single-color operations
SYNOPSIS

W3D_SetCurrentPen (context, pen);

a0 dl

void W3D_SetCurrentPen (W3D_Context =x, ULONG) ;

Warp3D 54 /77

FUNCTION
Define the pen to use for single-color operations, such as flat-shaded
objects. The pen setting is olny used for chunky destinations.

INPUTS
context - a context pointer
pen - the pen number to use
RESULT
W3D_QUEUFAIL Queueing failed in indirect mode

W3D_NOTVISIBLE Locking failed in indirect mode
EXAMPLE
NOTES
BUGS

SEE ALSO

1.59 Warp3D/W3D_SetDrawRegion()

NAME
W3D_SetDrawRegion —-—- Set the clipping rectangle

SYNOPSIS
success = W3D_SetDrawRegion (context, bm, yoffset, scissor);
do a0 al dil a2

ULONG W3D_SetDrawRegion (W3D_Context =%, struct BitMap =%, ULONG,
W3D_Scissor *);

FUNCTION
This function defines/changes the current drawing region.
It’s used for multibuffering and clipping.

INPUTS
context - The context
bm — The bitmap to draw to. If NULL, the old bitmap is used
yoffset - The vertical offset for the top-left edge. Used for
multibuffering.
scissor - If not NULL, defines the scissoring region. All values

are taken to be relative to (0, yoffset) in the bitmap.

RESULT
One of the following:
W3D_SUCCESS Success.

W3D_ILLEGALBITMAP Illegal bitmap
W3D_UNSUPPORTEDFMT Unsupported format
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

Warp3D 55/77

NOTES
Due to constraints on bitmap placement in some drivers, bitmap data
must be aligned to 8 byte boundaries

BUGS

SEE ALSO

1.60 Warp3D/W3D_SetDrawRegionWBM()

NAME

W3D_SetDrawRegionWBM ——- Set the clipping rectangle for a W3D_Bitmap
SYNOPSIS

success = W3D_SetDrawRegion (context, bm, scissor);

do al al a2

ULONG W3D_SetDrawRegion (W3D_Context %, W3D_Bitmap *, W3D_Scissor x);

FUNCTION
This function defines/changes the current drawing region.
It’s used for multibuffering and clipping.
The only difference to W3D_SetDrawRegion is the bitmap used.

INPUTS
context - The context
bm — The bitmap to draw to. If NULL, the old bitmap is used
scissor - If not NULL, defines the scissoring region. All values

are taken to be relative to (0, yoffset) in the bitmap.

RESULT
One of the following:
W3D_SUCCESS Success.

W3D_ILLEGALBITMAP Illegal bitmap
W3D_UNSUPPORTEDFMT Unsupported format

EXAMPLE
NOTES
BUGS

SEE ALSO
W3D_SetDrawRegion

1.61 Warp3D/W3D_SetFilter()

NAME
W3D_SetFilter —- Set the filter method

SYNOPSIS
res = W3D_SetFilter (context, texture, MinFilter, MagFilter);

Warp3D 56 /77

do a0 al do dl

ULONG W3D_SetFilter (W3D_Context =+, W3D_Texture x, ULONG,
ULONG) ;

FUNCTION
Set the texture‘'s filter mode. The filter mode used is
texture dependant, so it is possible to set different
filter modes for different texture.

INPUTS

context — Pointer to a W3D_Context

texture — Pointer to the texture to be modified

MinFilter — Minification filter. May be one of the following:
W3D_NEAREST no mipmapping, no filtering
W3D_LINEAR no mipmapping, bilinear filtering
W3D_NEAREST_MIP_NEAREST mippmapping, no filtering
W3D_LINEAR_MIP_NEAREST mipmapping, bilinear filtering
W3D_NEAREST_MIP_LINEAR mipmapping filtered, no filtering on texture
W3D_LINEAR_MIP_LINEAR mippmapping with trilinear filtering

MagFilter — Magnification filter. One of these:
W3D_NEAREST no filtering
W3D_LINEAR Bilinear filtering

RESULT
A value indicating success of failure. May be one of the following:
W3D_SUCCESS Success
W3D_ILLEGALINPUT Illegal values for Min/MagFilter
W3D_UNSUPPORTEDFILTER Desired filter not supported by driver
W3D_WARNING Success, but the filter mode was adjusted,
because »_MIP_»* was given for a texture
without mipmaps
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
Some hardware may ignore the MagFilter. In this case, the MinFilter
is used even if the texture is enlarged.

BUGS

SEE ALSO
W3D_Query, W3D_GetTexFmtInfo

1.62 Warp3D/W3D_SetFogParams()

NAME
W3D_SetFogParams —-- Set fog parameters

SYNOPSIS
success = W3D_SetFogParams (context, fogparams, fogmode);
do ao al dl

ULONG W3D_SetFogParams (W3D_Context «*, W3D_Fog %, ULONG);

Warp3D

57177

FUNCTION

This function

INPUTS
context
fogparams
fogmode

W3D_FOG_
W3D_FOG_EXP
W3D_FOG_EXP_2

RESULT

defines fogging parameters and modes.

The context to be modified

Pointer to a W3D_Fog.

The type of fog.

LINEAR Linear fog

One of the following:

W3D_SUCCESS

W3D_ILLEGALINPUT
W3D_UNSUPPORTEDFOG
W3D_NOTVISIBLE

EXAMPLE

NOTES

BUGS

SEE ALSO

Success
Illegal input

1.63 Warp3D/W3D_SetLogicOp()

NAME
W3D_SetLogicOp —-- Define logical operation
SYNOPSIS
success = W3D_SetLogicOp (context, operation);
do a0 dil
ULONG W3D_SetLogicOp (W3D_Context =, ULONG) ;
FUNCTION
Set the logical operation. For further information,
specs.
INPUTS
context - Same as ever
operation — The logical operation desired. Possible values are:
W3D_LO_CLEAR dest = 0
W3D_LO_AND dest = source & dest
W3D_LO_AND_REVERSE dest = source & !dest
W3D_LO_COPY dest = source
W3D_LO_AND_INVERTED dest = !source & dest
W3D_LO_NOOP dest = dest
W3D_LO_XOR dest = source ” dest
W3D_LO_OR dest = source | dest
W3D_LO_NOR dest = ! (source | dest)

W3D_LO_EQUIV dest

Exponential fog
Square exponential fogging

Fog mode is not supported by current driver
Indirect mode only.

! (source " dest)

Locking failed.

see the OpenGL

Warp3D 58/77

W3D_LO_INVERT dest = !dest
W3D_LO_OR_REVERSE dest = source | !dest
W3D_LO_COPY_INVERTED dest = !source
W3D_LO_OR_INVERTED dest = !source | dest
W3D_LO_NAND dest = ! (source & dest)
W3D_LO_SET dest =1
RESULT
W3D_SUCCESS Success
W3D_ILLEGALINPUT Wrong operation
W3D_UNSUPPORTEDLOGICOP Unsupported by current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.
EXAMPLE
NOTES
BUGS
SEE ALSO

1.64 Warp3D/W3D_SetPenMask()

NAME

W3D_SetPenMask —-- set a pen mask for drawing operations
SYNOPSIS

ret = W3D_SetPenMask (context, indexmask)

do a0 dl

ULONG W3D_SetPenMask (W3D_Context #*, ULONG);

FUNCTION
This function defines the mask for all drawing operations in
chunky modes (8 bit modes) .

INPUTS
context — The context to use
indexmask — A bitmask which is applied to chunky pixels
RESULT
W3D_SUCCESS Success
W3D_MASKNOTSUPPORTED Masking is not supported by the current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.
EXAMPLE
NOTES
BUGS
SEE ALSO

W3D_SetColorMask

Warp3D 59/77

1.65 Warp3D/W3D_SetScissor()

NAME

W3D_SetScissor —— (Re—-) Set the clipping rectangle
SYNOPSIS

W3D_SetScissor (context, scissor);

a0 al

void W3D_SetScissor (W3D_Context* context, W3D_Scissor* scissor);
FUNCTION

This function sets or resets the clipping rectangle while retaining

the current drawing region.
INPUTS

context - The context structure

scissor - A new scissor or NULL for full-screen/no clipping
RESULT
EXAMPLE
NOTES

BUGS

SEE ALSO
W3D_SetDrawRegion ()

1.66 Warp3D/W3D_SetState()

NAME

W3D_SetState —- Enable or disable hardware and context states
SYNOPSIS

success = W3D_SetState (context, state, newstate);

do a0 do dl

ULONG W3D_SetState (W3D_Context *, ULONG, ULONG) ;

FUNCTION
This function is used to enable or disable hardware
effects or context states. Success or failure depends
on the hardware‘s ability to use the effect. Some
hardware may not even be able to switch off some effects.

INPUTS
context - pointer to a W3D_Context
state - state to be changed. Current states are listed here.

For a more detailed description, read the doc files.
W3D_AUTOTEXMANAGEMENT automatic texture management
W3D_SYNCHRON wait, until HW is idle
W3D_INDIRECT buffer drawings until W3D_Flush()’ed

Warp3D

60/77

W3D_GLOBALTEXENV
W3D_DOUBLEHEIGHT
W3D_FAST
W3D_TEXMAPPING
W3D_PERSPECTIVE
W3D_GOURAUD
W3D_ZBUFFER
W3D_ZBUFFERUPDATE
W3D_BLENDING
W3D_FOGGING
W3D_ANTI_POINT
W3D_ANTI_LINE
W3D_ANTI_POLYGON
W3D_ANTI_FULLSCREEN
W3D_DITHERING
W3D_LOGICOP
W3D_STENCILBUFFER
W3D_ALPHATEST
W3D_SPECULAR
W3D_TEXMAPPING3D
W3D_SCISSOR
W3D_CHROMATEST

global texture modes
screen has double height
Drawing functions may modify passed structures
texmapping state
perspective correction state
gouraud/flat shading
Z-Buffer state
Z-Buffer update state
Alpha blending state
Fogging state
Point antialiasing
Line antialiasing
Polygon antialiasing
Fullscreen antialiasing
dithering state
logical operations state
stencil buffer state
alpha test operation
Specular highlightung state
3D texturemapping state
Scissor test

Chroma testing (i.e. color keying)

newstate — indicates what should be done to the state bit:

W3D_ENABLE
W3D_DISABLE

RESULT
One of two constants:
W3D_SUCCESS the
W3D_UNSUPPORTEDSTATE the

EXAMPLE
if (W3D_UNSUPPORTEDSTATE
W3D_ENABLE)) {
printf ("This hardware does
} else {

try to switch this feature on
try to switch it off

operation was successful
operation can not be done

== W3D_SetState (context, W3D_ANTI_FULLSCREEN,

not support fullscreen antialiasing\n");

printf ("Fullscreen antialiasing enabled\n");

}

NOTES

It’s not required to check the return value, however, do not assume <+

anything.
The current hardware may

not have any restrictions on using

i.e. Z buffering, but future h