teklib.doc

teklib.doc

] COLLABORATORS
TITLE :
teklib.doc
ACTION NAME DATE SIGNATURE
WRITTEN BY July 31, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

teklib.doc iii

Contents
1 teklib.doc 1
1.1 teklib.doc L 1
1.2 TCreateTask o e e 2
1.3 TAllocSignal e e e e e 4
1.4 TFreeSignal L 4
1.5 TSignal 5
1.6 TSetSignal e 6
1.7 TWait . . . o e 6
1.8 TTimedWait o o e e e 7
1.9 TInitLock o o e e e 7
110 TLock o e 8
.11 TUnlock o e e 9
1.12 TCreatePort e e 9
LI3 TWaitPort o o e e e 10
1.14 TTimeDelay o e e e 10
1.15 TTimeQuery o e e 11
1.16 TTimeReset e 11
1.17 TGetRandomSeed e e 12
1.18 TTaskAlloc e e 12
1.19 TTaskAllocO o e e 13
1.20 TTaskFree o o e e 14
1.21 TTaskRealloc o o L e 14
1.22 TTaskGetSize o o o e e 15
1.23 TTaskAllocMSg e e 15
1.24 TTaskBaseTask L 16
1.25 TTaskHeapMMU o e e e e e e e e 17
1.26 TTaskMsgMMU e e 17
1.27 TTaskGetData o e e 18
1.28 TTaskSetData e e 18

1.29

TTaskPort e e e 19

teklib.doc iv

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68

TEreeMsg o o e e e e 19
TPUtMSE . . . e e e e e e 20
TPutReplyMSsg o e e e 21
TGEtMSZ . . o e e e e e e e e e e 21
TACKMSZ . . . e e e 22
TReplYyMSE . . . o o e e e 23
TDIopMSZ . . . o o e e e e e e e 23
TSendMSZ e e e e 24
TGetMSGALIS o o o e e e e e e e e 25
TGetMSEStatus o o o e e e e e e e e e e e e e 26
TGetMSZSIzZe e 27
TAddHead 27
TAddTail e 28
TINSEIt o o e e e 28
TRemMOVE e e e e 29
TRemHead 29
TRemTail e 30
TSeekNode o 30
TINItLAst o e e e 31
TFRirstNode e 31
TLastNode o e e e 32
TLIStEMPLy o e e e e e e 32
TGetTagValue o L e e e 33
TGetTaGATITAY o o o e e e e e e e e e e e e e e e 33
TInitTags o . e 34
TAAATag e e e e 34
TGetRandom e e e e 35
TMeEMCOPY . . o o o v o e e e e e e e e e e 36
TMemFill e 36
TMemCOPY32 . . . o o o e e e e e e e e e e e e e 37
TMemFill32 37
TInitMemHead L e 38
TStaticALlOC o e e e e 38
TStaticRealloc e 39
TStaticFree o L e e 40
TStaticGetSize o o e e 40
TCreatePool L e e e 41
TPoolAllOC o e 42
TPooIFree e 42

teklib.doc v

1.69
1.70
1.71
1.72
1.73
1.74
L.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83

TPoolRealloc e 43
TPoolGetSize e 43
TInitMMU . . . L e 44
TMMUALIOC o o e e e e 45
TMMUAIIOCO o o e e e e 46
TMMUEFTee e e 46
TMMURealloc e 47
TMMUGELSIZE o o e 48
TMMUAIllocHandle e 48
TMMUAIllocHandleO e 49
TMMUFreeHandle e e 49
TDESIIOY . . . o o e e e e e e e 50
TAddSockPort o 50
TFindSockPort e e 51

TRemSockPort e 52

teklib.doc

1/52

Chapter 1

teklib.doc

1.1

teklib.doc

TAckMsg
TAddHead
TAddSockPort
TAddTag
TAddTail
TAllocSignal
TCreatePool
TCreatePort
TCreateTask
TDestroy
TDropMsg
TFindSockPort
TFirstNode
TFreeMsg
TFreeSignal
TGetMsg
TGetMsgAttrs
TGetMsgSize
TGetMsgStatus
TGetRandom

TGetRandomSeed

TGetTagArray
TGetTagValue
TInitList
TInitLock
TInitMMU
TInitMemHead
TInitTags
TInsert
TLastNode
TListEmpty
TLock
TMMUAlloc
TMMUAllocO

TMMUAllocHandle
TMMUAllocHandleO

TMMUFree

TMMUFreeHandle

teklib.doc

2/52

TMMUGet Size
TMMURealloc
TMemCopy
TMemCopy32
TMemFill
TMemFi1132
TPoolAlloc
TPoolFree
TPoolGetSize
TPoolRealloc
TPutMsg
TPutReplyMsg
TRemHead
TRemSockPort
TRemTail
TRemove
TReplyMsg
TSeekNode
TSendMsg
TSetSignal
TSignal
TStaticAlloc
TStaticFree

TStaticGetSize
TStaticRealloc

TTaskAlloc
TTaskAllocO
TTaskAllocMsg
TTaskBaseTask
TTaskFree
TTaskGetData
TTaskGetSize
TTaskHeapMMU
TTaskMsgMMU
TTaskPort
TTaskRealloc
TTaskSetData
TTimeDelay
TTimeQuery
TTimeReset
TTimedWait
TUnlock

TWait
TWaitPort

rendered with docco[tm]

1.2 TCreateTask

NAME

SYNO

TCreateTask -

PSIS

task = TCreateTask (parenttask,

TAPTR

create task.

TAPTR

TEKlib document generator (simple amigaguide)

function, taglist);
TTASKFUNC* TTAGITEM=*

teklib.doc

3/52

FUNCTION
laun

appl

for
be T
stru
it’s

ch a task at the given function, or create an
ication’s basetask.

creating a basetask, both parenttask and function must

NULL. all further tasks and most TEKlib internal
ctures will be derived from a basetask in the end, so
usually one of the first objects created in a TEKlib

framework.

for

call
entr
an i
prov
if n
spec

INPUTS
pare

func

tagl

TAGS
TTas

TTas

TTas

TTas

creating a child task, parenttask must refer to the
er’s context, and function usually refers to a task

y function. sometimes it may be desirable to only call
nit function in a new context, so function may be TNULL,
ided that the tag argument TTask_InitFunc is specified.
either a task entry function nor an init function is
ified, TCreateTask returns TNULL.

nttask - parent task. for creating a child task, this must
refer to the current context. TNULL for creating
an application’s base task.

tion — function entry. this must refer to a function
with the prototype TVOID (*xfunction) (TAPTR task),
or may optionally be TNULL when the tag
TTask_InitFunc is specified in the taglist
arguments. TNULL when a basetask is to be created.

ist - pointer to an array of tag items.

k_UserData, TAPTR

pointer to arbitrary user data. a task’s userdata field
can be obtained with TTaskGetData.
default: TNULL

k_InitFunc, TBOOL (xfunction) (TAPTR task)

pointer to a user init function. TCreateTask will initially
call this function inside a newly created context, and enter
the task’s main function entry only if the init function
returns TTRUE. otherwise child task creation is entirely
abandoned, the task entry function is never called, and
TCreateTask returns TNULL. when this argument is specified,
the task’s function entry argument may be TNULL.

default: TNULL

k_CreatePort, TBOOL

create an initial message-port in the child’s context.
TCreateTask will entirely fail and return TNULL when

a childport was requested and could not be established.
by default, any newly created task will be supplied with
a messageport. default: TTRUE

k_MMU, TAPTR
pointer to a memory management unit for allocating the task’s

teklib.doc 4/52

structures. default: the heap MMU of an application’s
basetask, or TNULL if this is the basetask to be created.

TTask_HeapMMU, TAPTR
pointer to a memory management unit. the new task’s heap
memory manager will be put on top of this MMU.
default: the argument or default value to TTask_ MMU

RESULTS
task — task handle, or TNULL if the task could not be
established. a task handle is destroyed with a
call to TDestroy.
SEE ALSO

TDestroy, TTaskGetData, TTaskSetData, TTaskPort,
TTaskBaseTask, TCreatePort, TTaskHeapMMU

1.3 TAllocSignal

NAME

TAllocSignal - allocate a single or a set of signals
SYNOPSIS

signals = TAllocSignal (task, prefsignals)

TUINT TAPTR TUINT
FUNCTION

allocate a signal (or a set of preferred signals) from the
given task. if prefsignals is 0, then this function will try to
reserve any single free signal. if prefsignals is not 0, this
function tries to reserve the exact set specified, and returns
0 if any of the specified signals are already in use.

INPUTS
task - task to which the signal (or signal set) will belong
prefsignals - preferred signals to allocate, or zero

RESULTS
signals — allocated signal mask. zero if out of signals, or
when any of prefsignals are already in use.
NOTES

signals no longer needed should be freed with TFreeSignal.

SEE ALSO
TFreeSignal, TSignal, TSetSignal, TWait

1.4 TFreeSignal

teklib.doc 5/52

NAME
TTaskFreeSignal - free a single or set of task signals

SYNOPSIS
TFreeSignal (task, sigmask)
TAPTR TUINT

FUNCTION
free a single or set of signals and return it to a task’s
pool of allocatable signals.

INPUTS
task - task to which the signal(s) belong.
sigmask - signal mask to be freed. it is safe to pass
0 (no-signal) here.
SEE ALSO
TAllocSignal

1.5 TSignal

NAME
TSignal - submit a set of signals to a task.

SYNOPSIS
TSignal (task, signals);
TAPTR TUINT

FUNCTION
submit signals to a task. when the task was waiting
for the specified signals, it will resume operation.

INPUTS
task - task to be signalled.
signals - a set of signals to be submitted.

RESULTS
the signal will show up in the signalled task’s
context.

EXAMPLE
/* submit the (predefined) abortion signal: =/
TSignal (task, TTASK_SIG_ABORT) ;

NOTES
it is wvalid to apply this function to both the caller’s
own task as well as to foreign tasks.

SEE ALSO
TSetSignal, TWait

teklib.doc

6/52

1.6 TSetSignal

NAME

TSetSignal - set and get a task’s signals.

SYNOPSIS
oldsignals = TSetSignal (task, newsignals, sigmask);
TAPTR TUINT TUINT
FUNCTION

set (and get) task’s signals state

INPUTS

task - task

newsignals - new set of signals

sigmask - signal bits to be affected
EXAMPLES

/* get the current state of all signals,

signals =

TSetSignal (task, 0, 0);

/+ clear the pre-defined abortion signal =/
TSetSignal (task, 0, TTASK_SIG_ABORT) ;

NOTES

it is wvalid to apply this function to the caller’s own task as
well as to another task. note, however, that the results may be
confusing when a foreign context is being addressed:
function it would be possible to wakeup a foreign task with the
affecting signals being removed from its current signal state.

SEE ALSO
TSignal,

1.7 TWait

NAME

TWait

TWait - wait for a set of signals.

SYNOPSIS
signals =
TUINT

FUNCTION

TWait (task, sigmask)
TAPTR TUINT

suspend task until one or more of the specified
signals arrive. those bits will be cleared from
the task’s context when the function returns.

INPUTS

but do not modify them */

with this

task - task, this MUST refer to the caller’s context

sigmask - mask of signals to wait for.

if sigmask is O,

this function will return immediately.

7/52

teklib.doc
RESULTS
signals - signals that caused returning
NOTES
if applied not to the caller’s own task, the results are
entirely undefined, and it will likely break your software.
SEE ALSO

TTimedWait, TWaitPort, TSignal

1.8 TTimedWait

NAME

TTimedWait - wait for a set of signals, with timeout
SYNOPSIS

signals = TTimedWait (task, sigmask, timeout)

TUINT TAPTR TUINT TTIME*
FUNCTION

suspend task to wait for a set of signals, or for a timeout.
any signals causing this function to return will be returned
to the caller and cleared from the task’s set of signals. if
a timeout caused the return, the return value will be 0.

if timeout is TNULL or (timeout—->sec and timeout->usec) are

zero, this function is equivalent to TWait.

INPUTS
task - task, this MUST refer to the caller’s context
sigmask - mask of signals to wait for
timeout - pointer to a TTIME specifier
RESULTS
signals - signals that caused returning, or 0 if timeout
NOTES

if applied to not the caller’s own task, the results are
entirely undefined, and it will likely break your software.

SEE ALSO
TWait, TwaitPort, TSignal

1.9 TinitLock

NAME

TInitLock - initialize a task lock
SYNOPSIS

success = TInitLock (task, lock, tags);

TBOOL TAPTR TLOCKx TTAGITEMx*

teklib.doc 8/52
FUNCTION
initialize a task lock structure. a task lock is an
atomic cross-task protection mechanism. after initialization,
the object has no owner and is in unlocked state.
INPUTS
task - caller’s own task.
lock - pointer to a TLOCK structure.
tags - pointer to an array of tag items.
TAGS
none defined yet.
RESULTS
success — TTRUE if initialization was successful, else TFALSE
NOTES
a lock is destroyed with a call to TDestroy. results are
undefined if a lock is destroyed in locked state. any call to
TLock per calling context must be empaired with exactly
one matching call to TUnlock.
SEE ALSO
TLock, TUnlock, TDestroy
1.10 TLock
NAME
TLock - gain exclusive access to a task lock.
SYNOPSIS
TLock (lock) ;
TLOCK=*
FUNCTION
gain exclusive access to a task lock. if another task is
currenty holding the lock, the caller will block until the
lock is released. if no other task holds the lock, this function
will return immediately with exclusive access to the lock.
this function is recurisve (or ’'nesting’), i.e. it may be called
again in the caller’s context when the lock is already held in
the caller’s context. in that case an internal counter is
increased, and this function will return immediately. each call
per context must be empaired with exactly one matching call
to TUnlock, which will decrease the counter. finally, when
the counter reaches zero, the lock is actually released.
INPUTS
lock - pointer to a TLOCK structure, initialized with
TInitLock

RESULTS

teklib.doc 9/52

none

SEE ALSO
TUnlock, TInitLock

1.11 TUnlock

NAME
TUnlock - release access to a task lock.

SYNOPSIS
TUnlock (lock) ;
TLOCK«*

FUNCTION
release access to a task lock, which was previously obtained with
a call to TLock. see the function description there.

INPUTS
lock - pointer to a TLOCK structure, initialized with
TInitLock
RESULTS
none
SEE ALSO

TLock, TInitLock

1.12 TCreatePort

NAME

TCreatePort - create a messageport.
SYNOPSIS

port = TCreatePort (task, tags)

TPORT % TAPTR TTAGITEMx*
FUNCTION

allocate a signal from the given task, and create and initialize
a port for message communication, which will belong to the
task’s context.

INPUTS
task — task that will be the owner of the messageport.
this should be the caller’s own task context.
taglist - pointer to an array of tag items
TAGS

TTask_MMU, TAPTR
pointer to a memory management unit to allocate the port

teklib.doc 10/52
structures from. default: the task’s heap memory manager.
RESULTS
port - messageport created, or TNULL on failure.
NOTES

- a port is destroyed with a call to TDestroy.

- currently (v0.3) it is valid to create a messageport for a
foreign task, but this should be rarely ever needed, and
may result in a confusing application design. do not rely
on this. future versions might limit this function strictly
to the caller’s own task context.

SEE ALSO

TWaitPort, TPutMsg, TPutReplyMsg, TDestroy

1.13 TWaitPort

NAME
TWaitPort - wait for a port to be non-empty

SYNOPSIS
TWaitPort (msgport)
TPORT *
FUNCTION

suspend a messageport’s owner task until a message is
present at its message queue. when a message is already
present, return immediately.

INPUTS
msgport - messageport. this port must be owned by the
caller’s context.
RESULTS
none
NOTES

if the port does not belong to to the caller’s own task context,

the results are entirely undefined, and it will likely break
your software.

SEE ALSO
TCreatePort, TWait, TGetMsg

1.14 TTimeDelay

NAME
TTimeDelay - sleep

teklib.doc 11/52

SYNOPSIS
TTimeDelay (task, time)
TAPTR TTIMEx*

FUNCTION
suspend the caller’s task and sleep for the specified time.

INPUTS
task - task handle referring to the caller’s context.
time - time structure

SEE ALSO

TTimeQuery, TCreateTask

1.15 TTimeQuery

NAME
TTimeQuery - query task timer

SYNOPSIS
TTimeQuery (task, time)
TAPTR TTIME«x

FUNCTION
this function queries a task’s inbuilt timer and inserts the
time elapsed since task creation into the specified time

structure.

INPUTS
task - task handle to query.
time - time structure.

NOTES

- a task’s timer is initialized to zero when its task is created,
therefore it measures the task’s lifetime.

- it is wvalid to query a foreign task’s timer, i.e. the task
handle does not need to refer to the caller’s context.

SEE ALSO
TTimeReset, TTimeDelay, TCreateTask

1.16 TTimeReset

NAME
TTimeReset - reset task timer

SYNOPSIS
TTimeReset (task)

teklib.doc 12/52
TAPTR
FUNCTION
this function resets the given task’s inbuilt timer to zero.
INPUTS
task - task to reset
SEE ALSO

TTimeQuery, TTimeDelay, TCreateTask

1.17 TGetRandomSeed

NAME
TGetRandomSeed - get a seed value

SYNOPSIS
seed = TGetRandomSeed (task)
TUINT TAPTR
FUNCTION

generate a random seed number.

INPUTS
task - task handle to query

RESULTS
seed - seed value for random number generation

NOTES

currently (v0.3) a seed number is generated from a task’s
individual timer, but the quality of this value may differ
on different hosting environments, and may not be sufficient

for advanced purposes, such as crypto key generation.

SEE ALSO
TGetRandom, TTimeQuery, TCreateTask

1.18 TTaskAlloc

NAME
TTaskAlloc - allocate memory from a task

SYNOPSIS
mem = TTaskAlloc (task, size)
TAPTR TAPTR TUINT
FUNCTION

allocate memory from a task’s inbuilt heap memory manager.

teklib.doc 13/52

INPUTS

task - task handle to allocate from

size - size of the requested block of memory [bytes]
RESULTS

mem - pointer to memory, or TNULL if memory exhausted.
NOTES

- a task’s heap memory manager implements thread-safety and
cleanup handling by default. unless you do not specify a
user MMU upon task creation, you may safely allocate from
foreign tasks, and allocations will be freed automatically
when their respective task exits.

— this function is currently (v0.3) being implemented as
a macro, redirecting the call to TMMUAlloc on a task’s
heap MMU.

SEE ALSO

TTaskFree, TTaskAllocO, TTaskRealloc, TTaskGetSize,
TCreateTask

1.19 TTaskAllocO

NAME
TTaskAllocO - allocate blank memory from a task

SYNOPSIS
mem = TTaskAllocO (task, size)
TAPTR TAPTR TUINT
FUNCTION

allocate blank memory from a task’s inbuilt heap memory manager,
i.e. the allocated block will be cleared with zero-bytes.

INPUTS

task - task handle to allocate from

size - size of the requested block of memory [bytes]
RESULTS

mem - pointer to memory, or TNULL if memory exhausted.
NOTES

- see annotations for TTaskAlloc.

- this function is currently (v0.3) being implemented as
a macro, redirecting the call to TMMUAllocO on a task’s
heap MMU.

SEE ALSO
TTaskFree, TTaskAlloc

teklib.doc 14 /52

1.20 TTaskFree

NAME
TTaskFree - return memory to a task.

SYNOPSIS
TTaskFree (task, mem)
TAPTR TAPTR

FUNCTION
return an allocation to a task’s heap memory manager.

INPUTS
task - task handle to allocate from
mem - pointer to an allocation made from a task

RESULTS
none

NOTES
- see annotations for TTaskAlloc.

— this function is currently (v0.3) being implemented as
a macro, redirecting the call to TMMUFree on a task’s

heap MMU.

SEE ALSO
TTaskAlloc

1.21 TTaskRealloc

NAME

TTaskRealloc - realloc an allocation from a task
SYNOPSIS

newmem = TTaskRealloc(task, oldmem, newsize)

TAPTR TAPTR TAPTR TUINT
FUNCTION

reallocate an allocation previously made from
a task’s heap memory manager.

when the oldmem argument is TNULL, this function tries to
allocate a new block of the given newsize. when newsize is
zero and oldmem is given, the block will be freed, and TNULL
will be returned. when oldmem is TNULL and newsize 1is zero,
this function returns TNULL.

INPUTS
task - task handle
oldmem - pointer to an allocation from the task

newsize - new size for the reallocated block of memory

teklib.doc 15/52

RESULTS
newmem - pointer to memory being reallocated, or TNULL.

NOTES

— reallocation may require that the given block of memory
needs to be moved in memory, i.e. pointers to this area
may become invalid.

- see annotations for TTaskAlloc.
— this function is currently (v0.3) being implemented as
a macro, redirecting the call to TMMURealloc on a task’s

heap MMU.

SEE ALSO
TTaskAlloc

1.22 TTaskGetSize

NAME

TTaskGetSize - get size of an allocation from a task.
SYNOPSIS

size = TTaskGetSize (task, mem)

TUINT TAPTR TAPTR
FUNCTION

return the size of an allocation previously made from
a task’s heap memory manager.

INPUTS

task - task handle

mem - pointer to an allocation made from the task
RESULTS

size - size of the allocation [bytes]
NOTES

- see annotations for TTaskAlloc.
— this function is currently (v0.3) being implemented as
a macro, redirecting the call to TMMUGetSize on a task’s

heap MMU.

SEE ALSO
TTaskAlloc

1.23 TTaskAllocMsg

teklib.doc 16/52

NAME
TTaskAllocMsg - allocate a message.

SYNOPSIS
msg = TTaskAllocMsg(task, size)
TAPTR TAPTR TUINT
FUNCTION

allocate a message of the given size from a task.

INPUTS

task - task handle

size - size of the message [bytes]
RESULTS

msg - pointer to message buffer, or TNULL if out of memory
NOTES

— the message size can be queried with TGetMsgAttrs.

— this function is currently (v0.3) being implemented as
a macro, redirecting the call to TMMUAlloc on a task’s
message MMU.

SEE ALSO

TFreeMsg, TReplyMsg, TAckMsg, TDropMsg, TGetMsgAttrs,
TMMUAlloc, TSendMsg

1.24 TTaskBaseTask

NAME
TTaskBaseTask — get base task handle.

SYNOPSIS
basetask = TTaskBaseTask (task)
TAPTR TAPTR
FUNCTION

return a pointer to the root task context of a TEKlib framework.
the pointer to the base task handle is carried in each of its
childs. it is also valid to apply this function to the basetask
itself.

INPUTS
task - a task handle

RESULTS
basetask - pointer to the application framework’s base task

NOTES
this function is currently (v0.3) being implemented as a macro.

SEE ALSO

teklib.doc 17 /52

TCreateTask

1.25 TTaskHeapMMU

NAME
TTaskHeapMMU - get a task’s heap memory manager.

SYNOPSIS
heapmmu = TTaskHeapMMU (task)
TAPTR TAPTR
FUNCTION

return a pointer to a task’s heap memory manager.

INPUTS

task - task handle
RESULTS

heapmmu - pointer to the task’s heap MMU.
NOTES

this function is currently (v0.3) being implemented as a macro.

SEE ALSO
TCreateTask, TTaskAlloc, TTaskMsgMMU, TInitMMU

1.26 TTaskMsgMMU

NAME

TTaskMsgMMU - get a task’s message memory manager.
SYNOPSIS

msgmmu = TTaskMsgMMU (task)

TAPTR TAPTR
FUNCTION

return a pointer to a task’s message memory manager.

INPUTS

task - task handle
RESULTS

msgmmu - pointer to the task’s message MMU.
NOTES

this function is currently (v0.3) being implemented as a macro.

SEE ALSO
TCreateTask, TTaskAllocMsg, TTaskHeapMMU, TInitMMU

teklib.doc 18 /52

1.27 TTaskGetData

NAME
TTaskGetData - get a task’s userdata pointer.

SYNOPSIS
userdata = TTaskGetData (task)
TAPTR TAPTR
FUNCTION

return a pointer to a task’s userdata.

INPUTS

task - task handle
RESULTS

userdata - pointer to the task’s userdata.
NOTES

this function is currently (v0.3) being implemented as a macro.

SEE ALSO
TTaskSetData, TCreateTask

1.28 TTaskSetData

NAME
TTaskSetData - change a task’s userdata pointer.

SYNOPSIS
TTaskSetData (task, userdata)
TAPTR TAPTR

FUNCTION
change a task’s userdata pointer.

INPUTS
task - task handle
userdata - arbitrary pointer to user data.

NOTES
- if you want to modify and query a task’s userdata pointer from
different task contexts during a task’s lifetime, you will
probably need to implement a locking mechanism to ensure data
integrity. you might find it more reliable to leave the primary
userdata pointer unmodified, and reference userdata indirectly:

struct taskuserdata
{
TLOCK lock;
TAPTR userdata;
}i

teklib.doc 19/52

TVOID taskfunc (TAPTR task)
{
struct taskuserdata xd = TTaskGetData (task);
TLock (&d—->1ock) ;
/* set and get and operate on d->userdata pointer safely =*/
TUnlock (&d->1ock) ;

you can, however, safely set and get a task’s userdata pointer
inside a task’s init function, because the newly created context
is unknown to other task contexts at this time. there is no
locking required in a task’s init function.

- this function is currently (v0.3) being implemented as a macro.

SEE ALSO
TTaskGetData, TCreateTask, TInitLock

1.29 TTaskPort

NAME

TTaskPort - get a task’s messageport.
SYNOPSIS

port = TTaskPort (task)

TPORT % TAPTR
FUNCTION

return a pointer to a task’s messageport.

INPUTS

task - task handle
RESULTS

port - pointer to task’s messageport
NOTES

this function is currently (v0.3) being implemented as a macro.

SEE ALSO
TCreateTask, TCreatePort

1.30 TFreeMsg

NAME
TFreeMsg - free a message.

SYNOPSIS
TFreeMsg (msqg)
TAPTR

teklib.doc 20/52

FUNCTION
free a message and return its memory to the message memory
manager it has been allocated from.

this function may be applied only when a message was allocated
but never sent, or when it has been sent as a two-way message
with TPutReplyMsg, and returned to a replyport.

one-way messages sent with TPutMsg are freed transparently
with either TAckMsg or TReplyMsg at the destination
endpoint.

INPUTS
msg - message to be freed.

NOTES
this function is currently (v0.3) being implemented as a macro.

SEE ALSO
TTaskAllocMsg, TDropMsg, TReplyMsg, TAckMsg, TPutMsg,
TPutReplyMsg, TSendMsg

1.31 TPutMsg

NAME
TPutMsg — send a one—-way message.

SYNOPSIS
TPutMsg (msgport, msg)
TPORT * TAPTR

FUNCTION
put a one-way message to a messageport. one-way messages
do not return to the sender. this function never blocks.

messages sent to messageports in the caller’s local address
space are reliable, whereas messages put to remote ports are
not. you may only assume that a one-way message has been
successfully delivered to a remote port when you receive a
corresponding reply, which in some way needs to be defined
elsewhere in your individual protocols.

when you don’t know whether the addressed messageport
is in your local address space or not, you must consider
message delivery with this function to be unreliable.

INPUTS
msgport - messageport to be addressed.
msg - message to be sent.

NOTES

messages can be sent reliably with TPutReplyMsg.

teklib.doc 21/52

SEE ALSO
TPutReplyMsg, TGetMsg, TAckMsg, TReplyMsg, TDropMsg,
TTaskAllocMsg, TFreeMsg, TSendMsg, TCreatePort

1.32 TPutReplyMsg

NAME
TPutReplyMsg - send a two-way message.

SYNOPSIS
TPutReplyMsg (msgport, replyport, msqg)
TPORT % TPORT % TAPTR
FUNCTION

put a two-way message to a messageport, with a reply

or acknowledgement being delivered to the given replyport.
two-way messages always return to the sender. this function
never blocks.

message delivery to a messageport in local address space
is defined to be reliable, and will always succeed. message
delivery over unreliable transmission paths (such as TCP/IP
network connections), on the other hand, may always fail.

this function ensures that the sender will be informed about
a message’s fate, regardless whether the addressed port is
in local address space or not.

messages that could not be delivered (or failed to return)
over an unreliable connection will appear on the given
replyport with their status set to TMSG_STATUS_FAILED.
successful delivery will be indicated with a status set to
TMSG_STATUS_REPLIED or TMSG_STATUS_ACKD (depending on the
reply method). the message status can be queried with
TGetMsgAttrs.

after the message arrived at its replyport, it usually needs
be freed with TFreeMsg. it is possible, however, to reuse
a message.

INPUTS
msgport - messageport to be addressed.
replyport - replyport to which the message will be returned.
msqg - message to be sent.

SEE ALSO

TPutMsg, TGetMsg, TAckMsg, TReplyMsg, TDropMsg,
TTaskAllocMsg, TFreeMsg, TSendMsg, TCreatePort

1.33 TGetMsg

teklib.doc 22 /52

NAME
TGetMsg — get message.

SYNOPSIS
msg = TGetMsg (msgport)
TAPTR TPORT %

FUNCTION
unlink the next pending message from a messageport’s queue
and return it to the caller. this function does not block.
a message’s status and other attributes can be queried with
TGetMsgAttrs.

INPUTS
msgport — messageport to get next message from.

RESULTS
msg - next pending message, or TNULL if the

messageport queue was empty.
SEE ALSO

TPutMsg, TPutReplyMsg, TAckMsg, TReplyMsg,
TTaskAllocMsg, TFreeMsg, TCreatePort

1.34 TAckMsg

NAME
TAckMsg - acknowledge message.

SYNOPSIS
TAckMsg (msqg)
TAPTR
FUNCTION

acknowledge a two-way message to its sender, i.e. return
it to its sender’s replyport.

it is safe, however, to apply this function to one-way
messages as well; if the message was sent without a reply
or acknowledgement expected, it will be silently freed by
this function.

when a message is returned with this function, the sender

must not rely on any modifications made inside the message body.
if you want to modify data inside the message and send its
modified contents back to the sender, you should use TReplyMsg
instead.

INPUTS
msg - message to be acknowledged to its sender
(or to be freed, transparently)

teklib.doc

23/52

SEE ALSO
TReplyMsg, TFreeMsg, TDropMsg, TPutMsg, TPutReplyMsg,
TFreeMsqg, TTaskAllocMsg, TSendMsg, TCreatePort

1.35 TReplyMsg

NAME
TReplyMsg - reply message.

SYNOPSIS
TReplyMsg (msqg)
TAPTR
FUNCTION

reply a two-way message to its sender, i.e. return its entire
contents back to its sender’s replyport.

it is safe, however, to apply this function to one-way
messages as well; if the message was sent without a reply
or acknowledgement expected, it will be silently freed by
this function.

use this function for transferring a modified message body
back to its sender. if the message was not modified and it is
only required to inform the sender that it has been delivered,
then you should prefer TAckMsg.

INPUTS
msg - message to be replied to its sender.
(or to be freed, transparently)
SEE ALSO

TAckMsg, TFreeMsg, TDropMsg, TPutMsg, TPutReplyMsg,
TFreeMsg, TTaskAllocMsg, TSendMsg, TCreatePort

1.36 TDropMsg

NAME
TDropMsg - abandon a message.

SYNOPSIS
TDropMsg (msg)
TAPTR
FUNCTION

abandon a two-way message, i.e. return it to its replyport with

the message status set to TMSG_STATUS_FAILED. this function is
not guaranteed to return any modifications made inside the
message body, it will only indicate failure.

teklib.doc

it is safe to apply this function to one-way messages as well;
if the message was sent without a reply or acknowledgement
expected, it will be silently freed by this function.

INPUTS
msg - message to be abandoned.
NOTES
currently (v0.3), if applied to a remote messageport, this

function will not only abandon a single message, but the entire
underlying socket proxy. all messages sent after the one being

dropped will fail on this network connection, and pending replies

will fail after their respective timeout.
SEE ALSO

TAckMsg, TReplyMsg, TFreeMsg, TPutMsg, TPutReplyMsg,
TTaskAllocMsg, TSendMsg, TCreatePort

1.37 TSendMsg

NAME

TSendMsg - send a message, synchronized
SYNOPSIS

replymsg = TSendMsg (task, msgport, msg)

TAPTR TAPTR TPORT=* TAPTR
FUNCTION

this function sends a message two-way, synchronized, and waits
for either a reply to return, or for the messageport’s timeout.
this is currently the only messaging function that may block.

the return value will be either set to msg, indicating that the
message has been sent and acknowledged/replied successfully,

or TNULL, when the message could not be sent or did not return
within a remote msgport’s timeout.

INPUTS
task - task, must refer to the caller’s context.
msgport — msgport to address.
msqg - message to be sent.

RETURNS

replymsg — will be set to msg when the message was sent and
returned successfully, otherwise TNULL.

SEE ALSO
TAckMsg, TReplyMsg, TDropMsg, TFreeMsg, TPutMsg,
TPutReplyMsg, TTaskAllocMsg, TCreatePort, TFindSockPort

teklib.doc

25/52

1.38 TGetMsgAtirs

NAME
TGetMsgAttrs - query message attributes.

SYNOPSIS
numattr = TGetMsgAttrs (msg, tags)
TUINT TAPTR TTAGITEM=%
FUNCTION

this function queries a given set of attributes from a message.
the attributes will be filled into the taglist’s respective
variable pointers, and the number of attributes successfully
retrieved will be returned to the caller.

INPUTS
msg - message to be queried.
tags - pointer to an array of tagitems.
RESULTS
numattr - number of attributes filled into their respective
variable pointers.
TAGS

TMsg_Size, TUINT =
the variable being pointed to by the tag value will be filled
with the size of the message in bytes.

TMsg_Status, TUINT x
the variable being pointed to by the tag value will be filled

with the message status,
TMSG_STATUS_UNDEFINED

TMSG_STATUS_SENT

TMSG_STATUS_FAILED

TMSG_STATUS_REPLIED

TMSG_STATUS_ACKD

TMsg_Sender, TSTRPTR x*

which can be

message was never sent.

the message has been sent
successfully.

the message could not be sent or
failed to return within a given
timeout period.

the message has been replied
successfully, and returned to the
sender.

the message has been acknowledged
successfully, and returned to the
sender.

the variable being pointed to by the tag value will be set to

a pointer to a string,
messageport’s unique name

"192.168.0.77:32452".
address space,

which will contain a sender
this name is currently
composed from the sender’s host and port number,

(v0.3)
such as

being

for messages originating from local
this pointer will be set to TNULL.

teklib.doc 26 /52

warning: this string pointer is no longer valid after the
message has been handed over to TReplyMsg, TAckMsg,
TFreeMsg, or TDropMsg.

TMsg_SenderHost, TSTRPTR =*
the variable being pointed to by the tag value will be set to
a pointer to a string containing the sender’s host, e.g.
"192.168.0.77". for messages originating from local address
space, this pointer will be set to TNULL.

warning: this string pointer is no longer valid after the
message has been handed over to TReplyMsg, TAckMsg,
TFreeMsg, or TDropMsg.

TMsg_SenderPort, TUINT =«
the variable being pointed to by the tag value will be set to
the sender messageport’s internet port number, which may range
from 0 to 65535. for messages originating from local address
space, the portnumber will be set to Oxffffffff.

NOTES
it would be unwise to assume a specific format for the strings
returned by TMsg_Sender or TMsg_SenderHost. currently (v0.3), the
string format returned will reflect the ipv4 addressing scheme.

SEE ALSO

TGetMsg, TPutMsg, TPutReplyMsg, TAckMsg, TReplyMsg,
TDropMsg, TFreeMsg, TTaskAllocMsg, TSendMsg, TCreatePort

1.39 TGetMsgStatus

NAME
TGetMsgStatus - get message status.

SYNOPSIS
status = TGetMsgStatus (msqg)
TUINT TAPTR
FUNCTION

get a message’s delivery status.

INPUTS
msg - message to be queried.
RESULTS
status - message’s delivery status, which can be

TMSG_STATUS_UNDEFINED - message was never sent.

TMSG_STATUS_SENT - the message has been sent
successfully.

TMSG_STATUS_FAILED - the message could not be sent or

teklib.doc

27152

failed to return within a given
timeout period.

TMSG_STATUS_REPLIED — the message has been replied
successfully, and returned to the
sender.

TMSG_STATUS_ACKD — the message has been acknowledged

successfully, and returned to the
sender.

NOTES
this function is currently being (v0.3) implemented as a macro.

SEE ALSO
TGetMsgAttrs, TGetMsgSize

1.40 TGetMsgSize

NAME

TGetMsgSize - get message size.
SYNOPSIS

size = TGetMsgSize (msqg)

TUINT TAPTR
FUNCTION

get message size.

INPUTS

msg - message to be queried.
RESULTS

size - size of the message in bytes.
NOTES

this function is currently being (v0.3) implemented as a macro.

SEE ALSO
TGetMsgAttrs, TGetMsgStatus

1.41 TAddHead

NAME
TAddHead - add a node at the head of a list.

SYNOPSIS
TAddHead (1list, node)
TLISTx TNODE*

teklib.doc

28/52

FUNCTION
add a node at the head of a doubly linked list.

INPUTS
list - pointer to a list header.
node - pointer to a node to be inserted.

SEE ALSO
TAddTail, TInitList

1.42 TAddTail

NAME
TAddTail - add a node at the tail of a list.

SYNOPSIS
TAddTail (list, node)
TLIST* TNODE=*

FUNCTION
add a node at the tail of a doubly linked list.

INPUTS
list - pointer to a list header.
node - pointer to a node to be inserted.

SEE ALSO
TAddHead, TInitList

1.43 Tinsert

NAME
TInsert - insert a node into a list.
SYNOPSIS
TInsert (list, node, listnode)
TLIST* TNODE* TNODE =*
FUNCTION
insert a node into a doubly linked list after the given
listnode. if listnode == TNULL, this function is equivalent

to TAddFirst ().

INPUTS
list - pointer to a list header.
node - pointer to a node to be inserted.

listnode - pointer to a node after which to insert.

SEE ALSO
TInitList, TRemove, TAddHead

teklib.doc 29/52

1.44 TRemove

NAME
TRemove - unlink a node from a list.

SYNOPSIS
TRemove (node)
TNODE *
FUNCTION

remove, 1i.e. unlink a node from whatever list it might
be linked into.

INPUTS
list - pointer to a list header.
node - pointer to a node to be removed.

NOTES
calling this function with a node not being part of a list

may be fatal.

SEE ALSO
TRemHead, TRemTail, TInitList

1.45 TRemHead

NAME
TRemHead - unlink the first node of a list.

SYNOPSIS
node = TRemHead (list)
TNODE * TLIST*
FUNCTION

remove, i.e. unlink and return the first node from
a doubly linked list.

INPUTS
list - pointer to a list header.

RESULTS
node - pointer to the node that has been removed, or
TNULL when the list was empty.

SEE ALSO
TRemTail, TRemove, TInitList

teklib.doc

30/52

1.46 TRemTail

NAME
TRemTail - unlink the last node of a list.

SYNOPSIS
node = TRemTail (list)
TNODE * TLIST=
FUNCTION

remove, i.e. unlink and return the last node from
a doubly linked list.

INPUTS
list - pointer to a list header.

RESULTS
node - pointer to the node that has been removed, or

TNULL when the list was empty.

SEE ALSO
TRemHead, TRemove, TInitList

1.47 TSeekNode

NAME
TSeekNode - seek node.

SYNOPSIS
node = TSeekNode (node, numsteps)
TNODE * TNODE* TINT
FUNCTION

starting from node, seek by the given number of steps
either forwards (steps > 0) or backwards (steps < 0).

when steps == 0, the current node is returned. when the
list is seeked past end or before start, TINULL will be
returned.

INPUTS
node - pointer to a node inside a list.
steps - number of steps to be seeked.

RESULTS

node - pointer to the node reached, or TNULL.

SEE ALSO
TInitList

teklib.doc 31/52

1.48 TinitList

NAME
TInitList - prepare a list header structure.

SYNOPSIS
TInitList (list)
TLIST~*
FUNCTION

prepare a list header structure. the list
will be empty and ready for usage.

INPUTS
list - pointer to an uninitialized list structure.

NOTE
this function is currently (v0.3) being implemented as
a macro.

SEE ALSO
TAddHead, TAddTail, TInsert, TRemove, TRemHead,
TRemTail, TSeekNode, TFirstNode, TLastNode,
TListEmpty

1.49 TFirstNode

NAME
TFirstNode - get first node of a list.

SYNOPSIS
node = TFirstNode (list)
TNODE * TLIST*

FUNCTION
return the first node in a list, or TNULL when the list
is empty.

INPUTS
list - pointer to a list header.

RESULTS
node - pointer to the first node in a list, or TNULL.

NOTE
this function is currently (v0.3) being implemented as
a macro.

SEE ALSO
TLastNode, TListEmpty, TInitList

teklib.doc 32/52

1.50 TLastNode

NAME
TLastNode - get last node of a list.

SYNOPSIS
node = TLastNode (list)
TNODE * TLIST*

FUNCTION
return the last node in a list, or TNULL when the list
is empty.

INPUTS
list - pointer to a list header.

RESULTS
node - pointer to the last node in a list, or TNULL.

NOTE
this function is currently (v0.3) being implemented as
a macro.

SEE ALSO
TFirstNode, TListEmpty, TInitList

1.51 TListEmpty

NAME
TListEmpty - test if a list is empty.

SYNOPSIS
isempty = TListEmpty (list)
TBOOL TLIST*
FUNCTION

test if a list is empty.

INPUTS
list - pointer to a list header.
RESULTS
isempty - boolean, TTRUE when there are no nodes linked to
the list.
NOTE
this function is currently (v0.3) being implemented as
a macro.
SEE ALSO

TFirstNode, TInitList

teklib.doc

33/52

1.52 TGetTagValue

NAME
TGetTagValue - get tag value from a tag list

SYNOPSIS
value = TGetTagValue (tag, defaultvalue, taglist)
TTAG TTAG TTAG TTAGITEM=*
FUNCTION

parse a list of tag items and return the matching
tag value. if the specified tag is not contained in
the list, return the default value.

INPUTS
tag - tag to be queried.
defaultvalue - default tag value.
taglist - pointer to a list of tag items.
RESULTS
value - the value associated with the queried tag, if found
in the taglist, otherwise the default wvalue.
SEE ALSO

TGetTagArray, TInitTags, TAddTag

1.53 TGetTagArray

NAME
TGetTagArray — get an array of tag values from a tag list

SYNOPSIS
numtags = TGetTagArray (taglist, tagarray)
TUINT TTAGITEMx TTAG=*
FUNCTION

this function parses an array of tag items and a taglist, and
transfers the values of all matching tags from the taglist into
the variables referenced by pointers in the tag array. both

the tag array and the taglist must be concluded with TTAG_DONE.
the number of tags that have been retrieved will be returned to
the caller.

EXAMPLE
TTAG one = 1; two

2; three = 3; /% default values =/

num = TGetTagArray (taglist,
MYTAG_One, (TTAG) &one,
MYTAG_Two, (TTAG) &two,
MYTAG_Three, (TTAG) &three,
TTAG_DONE) ;

INPUTS

teklib.doc 34 /52

taglist - pointer to a list of tag items.
tagarray - pointer to an array of pairs of
tag and variable pointer each.

RESULTS
numtags - number of tags that have been retrieved
from the taglist, and inserted to their
respective variables.
SEE ALSO

TGetTagValue, TInitTags, TAddTag

1.54 TinitTags

NAME
TInitTags — init an array of tagitems.

SYNOPSIS
TInitTags (taglist)
TTAGITEM=*

FUNCTION
prepare an array of tagitems to be filled with tag
attributes, using TAddTag.

INPUTS
taglist - pointer to an array of tag items

NOTE
this function is currently (v0.3) being implemented as
a macro.

SEE ALSO

TAddTag, TGetTagValue, TGetTagArray

1.55 TAddTag

NAME
TAddTag - add a tag/value pair to a taglist.

SYNOPSIS
TAddTag (taglist, tag, value)
TTAGITEM» TTAG TTAG

FUNCTION
add a single tag/value pair to a list of tag items.

your taglist must be dimensioned to contain at least
one more item than the number of items being added
with this function.

teklib.doc 35/52
INPUTS

taglist - pointer to an array of tag items

tag - tag identifier

value - tag value

NOTE

— this function is currently (v0.3) being implemented as
a macro.

- this is a convenience macro. it may save a few keystrokes,
but it is suboptimal. it is quicker to fill a tag list
manually.

SEE ALSO

TInitTags, TGetTagValue, TGetTagArray

1.56 TGetRandom

NAME
TGetRandom - generate signed random number

SYNOPSIS
random = TGetRandom (seed)
TINT TINT
FUNCTION

generate a 32 bit pseudo random number, which will be
computed from the seed value. the number returned will
be in the range from -2147483648 to 2147483647.

typically the returned number will be fed back to
TGetRandom as the new seed value for the next number

generation cycle.

EXAMPLE
/* generate a random number from 0 to 343 x/

TINT seed, rand_value;

rand_value = (seed = TGetRandom(seed)) % 344;
INPUTS

seed — a seed value for the number generator.
RESULTS

random - a pseudo random number.
NOTES

— the numbers generated by this function are not random.
a number series is always fully determined by its initial
seed value. the series only appears to be random in an
arbitrary short range.

- for useful random numbers the seed variable should be

teklib.doc 36/52

initialized with a hardly deterministic number.

SEE ALSO
TGetRandomSeed

1.57 TMemCopy

NAME
TMemCopy — copy a block of memory.

SYNOPSIS
TMemCopy (source, dest, numbytes)
TAPTR TAPTR TUINT

FUNCTION
copy a block of memory, i.e. the given number of bytes
from source to dest.

INPUTS
source — source address
dest — destination address
numbytes - number of bytes to copy
NOTES

you may not rely on overlapping copies to work with
this function.

SEE ALSO
TMemCopy32, TMemFill

1.58 TMemFill

NAME
TMemFill - fill a block of memory.

SYNOPSIS
TMemFill (start, numbytes, fillval)
TAPTR TUINT TUINT
FUNCTION

fill a range of memory with a character fill value.

INPUTS
start - start address
numbytes - number of bytes to fill
fillval - character to fill in
SEE ALSO

TMemFi1132, TMemCopy

teklib.doc 37 /52

1.59 TMemCopy32

NAME
TMemCopy32 - copy a block of memory, aligned

SYNOPSIS
TMemCopy32 (source, dest, numbytes)
TAPTR TAPTR TUINT

FUNCTION
copy a block of memory, i.e. the given number of bytes
from source to dest. the source and destination address
must be aligned to 32 bit boundaries in memory, and the
number of bytes must be 32 bit aligned as well.

INPUTS
source - source address, 32bit aligned
dest - destination address, 32bit aligned

numbytes - number of bytes to copy, 32bit aligned
NOTES
you may not rely on overlapping copies to work with

this function.

SEE ALSO
TMemCopy, TMemFill32

1.60 TMemFill32

NAME
TMemFill - fill a block of memory, aligned

SYNOPSIS
TMemFi11132 (start, numbytes, fillval)
TAPTR TUINT TUINT
FUNCTION

fill a range of memory with a 32bit fill wvalue. the
start address and the number of bytes must be aligned

to 32 bit.
INPUTS
start - start address, 32bit aligned
numbytes - number of bytes to fill, 32bit aligned
fillval - 32bit value to fill in
SEE ALSO

TMemEFill, TMemCopy32

teklib.doc 38/52

1.61 TInitMemHead

NAME
TInitMemHead - initialize a memheader.

SYNOPSIS
success = TInitMemHead (memhead, mem, size, tags)
TBOOL TMEMHEAD+ TAPTR TUINT TTAGITEM=*
FUNCTION

initialize a memheader. a memheader is a memory range
descriptor that can be used for lowlevel allocation
from a static block of memory.

INPUTS
memhead - pointer to an uninitialized memheader structure
mem - pointer to a block of memory to be used as a
static memory allocation pool
size size of the memory block [bytes]
tags - pointer to an array of tag items
TAGS

none defined yet

RESULTS
success - boolean indicating whether initialization
was successful. TTRUE if the header is ready.
EXAMPLE

/* setup a memheader at the beginning of a memory block x/

TUINT8 memory[100000];

TInitMemHead ((TMEMHEAD %) memory, memory + sizeof (TMEMHEAD),
sizeof (memory) - sizeof (TMEMHEAD), TNULL);

/* now ((TMEMHEAD %) memory) may be passed to functions like
TStaticAlloc and TStaticRealloc. =*/

SEE ALSO

TStaticAlloc, TStaticFree, TStaticRealloc,
TStaticGetSize

1.62 TStaticAlloc

NAME
TStaticAlloc - allocate memory from a static block of memory.

SYNOPSIS
mem = TStaticAlloc (memhead, size)
TAPTR TMEMHEAD* TUINT

FUNCTION

teklib.doc 39/52

allocate from a block of static memory, which is described by
a memhead structure. returns a block of memory of the given size,
or TNULL when the request could not be satisfied.

INPUTS
memhead - pointer to an initialized memheader structure
size - size of the request [bytes]
RESULTS
mem — memory allocated, or TNULL, when there was no
block of memory of the requested size available.
NOTES

it is not allowed to pass TNULL or zero for either memhead
or size. this function is designed for low overhead.

SEE ALSO

TInitMemHeadA (), TStaticFree, TStaticRealloc,
TStaticGetSize

1.63 TStaticRealloc

NAME

TStaticRealloc - reallocate an allocation from static memory.
SYNOPSIS

newmem = TStaticRealloc (memhead, oldmem, newsize)

TAPTR TMEMHEAD* TAPTR TUINT
FUNCTION

resize a block of memory from a static memory allocation to the
specified size, and return a pointer to the resized block of
memory, or TNULL when the memory block could not be resized.

when a memory block is supplied, and newsize is zero, then
the memory block will be returned to the static block of

memory, and the result of this function is TNULL.

when newsize is nonzero, and the memory block is TNULL, this
function will try to allocate a new block of the given size.

if mem is TNULL and size is zero, this function will return

TNULL.

INPUTS
memhead - pointer to an initialized memheader structure
oldmem - pointer to a block of memory to be resized

newsize - new size of the block [bytes]
RESULTS
mem — resized (or freshly allocated) block of memory,

or TNULL.

NOTES

teklib.doc 40/52

— it is not allowed to pass TNULL for the memhead argument.

— reallocation may require that the given block of memory
needs to be moved in memory, i.e. pointers to this area
may become invalid.

SEE ALSO
TInitMemHeadA (), TStaticAlloc, TStaticFree,
TStaticGetSize

1.64 TStaticFree

NAME
TStaticFree - return memory to a static block of memory.

SYNOPSIS
TStaticFree (memhead, mem)
TMEMHEAD* TAPTR

FUNCTION
free a block of memory and return it to the static block
of memory it was allocated from.

INPUTS
memhead - pointer to an initialized memheader structure
mem — pointer to a block of memory to be freed
NOTES

it is not allowed to pass TNULL or zero for either memhead
or mem. this function is designed for low overhead.

SEE ALSO

TInitMemHeadA (), TStaticAlloc, TStaticRealloc,
TStaticGetSize

1.65 TStaticGetSize

NAME
TStaticGetSize - get size of an allocation from static memory.

SYNOPSIS
size = TStaticGetSize (memhead, mem)
TUINT TMEMHEAD+ TAPTR
FUNCTION

this function returns the size of an allocation made
with TStaticAlloc or TStaticRealloc.

INPUTS
memhead - pointer to an initialized memheader structure

teklib.doc 41 /52

mem — previously allocated block of memory, or TNULL
RESULTS
size - size of the allocation [bytes].

NOTE
it is not allowed to pass TNULL or zero for either memhead
or mem. this function is designed for low overhead.

SEE ALSO
TInitMemHeadA (), TStaticAlloc, TStaticRealloc

1.66 TCreatePool

NAME
TCreatePool - create pooled allocator.
SYNOPSIS
pool = TCreatePool (mmu, chunksize, thressize, tags)
TAPTR TAPTR TUINT TUINT TTAGITEM=*
FUNCTION

create and initialize a pooled memory allocator.

pools can automatically expand and shrink on demand. many
individual allocations may fit into chunks which are being
maintained internally by the pooled allocator.

there is no need to free individual allocations requested
from a pooled allocator; they will be freed automatically
when the pool is destroyed with TDestroy.

chunksize is the size of new chunks to be allocated from
a parent memory manager, when a new allocation cannot be
satisfied from the current set of chunks.

thressize is the maximum size of allocations that will be
allocated from regular chunks. allocations larger than
thressize will request new chunks of their own.

pools created with ’‘dynamic growth’ will automatically adapt
their chunksize, and always allocate new chunks larger than
required by a single allocation. TPoolRealloc will utilize
this prefetch memory to allow rapidly growing reallocations
with very few overhead. with dynamic growth enabled, chunksize
divided by thressize will be used as the pool’s prefetch ratio.

INPUTS
mmu — parent memory manager
chunksize - size of chunks to be allocated from parent

memory manager
thressize - maximum size of allocations that will be
requested from chunks of their own
pointer to an array of tag items

taglist

teklib.doc 42 /52

TAGS
TMem_DynGrow, TBOOL
when this argument is set to TTRUE, chunksize/threshold
are interpreted as an initial ratio for dynamic pool
growth. default: TTRUE
RESULTS
pool - an initialized memory pool, or TNULL if something
went wrong.
SEE ALSO
TPoolAlloc, TPoolRealloc, TPoolFree, TPoolGetSize,
TDestroy

1.67 TPoolAlloc

NAME

TPoolAlloc - allocate memory from a pool.
SYNOPSIS

mem = TPoolAlloc (pool, size)

TAPTR TAPTR TUINT
FUNCTION

allocate a block of memory of the given size from a pool.

INPUTS
pool - an object created with TCreatePool
size - size of the allocation [bytes]
RESULTS

mem - pointer to a block of memory, or TNULL when the request
could not be satisfied.

SEE ALSO
TCreatePool, TPoolFree, TPoolRealloc, TPoolGetSize

1.68 TPoolFree

NAME
TPoolFree - return memory to a pool.

SYNOPSIS
TPoolFree (pool, mem)
void TAPTR TAPTR

FUNCTION
return a block of memory to a pool.

teklib.doc 43/52
INPUTS
pool - a pooled allocator created with TCreatePool.
mem - pointer to a block of memory allocated with
TPoolAllloc() .
SEE ALSO

TCreatePool, TPoolAlloc, TPoolRealloc, TPoolGetSize

1.69 TPoolRealloc

NAME

TPoolRealloc - resize a block of memory in a pool.
SYNOPSIS

mem = TPoolRealloc (pool, oldmem, size)

TAPTR TAPTR TAPTR TUINT
FUNCTION

resizes a memory block that was allocated from a pool to the
specified size, and returns a valid pointer to the resized block
of memory, or TNULL when the memory block could not be resized.

when a memory block is passed, but the specified size is =zero,
the memory block will be returned to the pool, and the result of
this function is TNULL.

when a size is specified, and the memory block is TNULL, this
function will try to allocate a new block of the given size.

if mem is TNULL and size is zero, this function will return
TNULL.

INPUTS
pool - an object created with TCreatePool.
oldmem - pointer to a block of memory to be resized.
size - new size of the memory block.
RESULTS
mem — resized (or freshly allocated) block of memory,
or TNULL.
NOTES

SEE

reallocation may require that the given block of memory
needs to be moved in memory, i.e. pointers to this area
may become invalid.

ALSO
TPoolAlloc, TPoolFree, TCreatePool, TPoolGetSize

1.70 TPoolGetSize

teklib.doc 44 /52
NAME
TPoolGetSize - get size of an allocation from a pool.
SYNOPSIS
size = TPoolGetSize (TAPTR pool, mem)
TUINT TAPTR TAPTR
FUNCTION
this function returns the size of an allocation made
with TPoolAlloc or TPoolRealloc. if mem is TNULL,
this function returns 0.
INPUTS
mem - previously allocated block of memory, or TNULL.
RESULTS
size - size of the allocation [bytes].
SEE ALSO

TPoolAlloc, TPoolRealloc

1.71 TInitMMU

NAME

TInitMMU - initialize a memory management unit.
SYNOPSIS

success = TInitMMU (mmu, allocator, mmutype, tags)

TBOOL TMMU* TAPTR TUINT TTAGITEM»*
FUNCTION

initialize a TMMU structure and prepare it for being
used as a memory management unit.

INPUTS
mmu — pointer to a TMMU structure
allocator - allocator underlying the MMU to be created
mmutype - type of MMU to be created.

TMMUT_Kernel

setup a kernel MMU. allocator must be TNULL. the
newly created MMU will allocate from the kernel.

TMMUT_Static
setup a static memory MMU. allocator must point
to a memheader initialized with TInitMemHead.

TMMUT_Pooled
setup a pooled MMU. allocator must point to a
pooled allocator created with TCreatePool.

TMMUT_MMU
setup a MMU on top of another MMU, implementing

no additional functionality. allocator must point

teklib.doc 45/52
to another MMU.
TMMUT_Tracking
setup a tracking MMU on top of another MMU. allocator
must point to another MMU, or TNULL (which is equivalent
to a kernel allocator). the resulting MMU will return all
pending allocations to its parent MMU when it is
destroyed.
TMMUT_TaskSafe
setup a MMU on top of another MMU, implementing safe
multitasking accesses across tasks, i.e. multiple tasks
are allowed to operate on the resulting MMU in parallel.
allocator must point to another MMU, (which is
equivalent to a kernel MMU).
TMMUT_Message
setup a special MMU for being used as a message
allocator. allocator must point to another message MMU,
or TNULL. aside from special precautions for allocating
messages, message MMUs also implement multitasking
safety and tracking capabilities.
some MMU types may be combined, currently it is possible to
initialize a MMU implementing TMMUT_TaskSafe|TMMUT_Tracking
and TMMUT_TaskSafe|TMMUT_Pooled.
tags - pointer to an array of tag items
TAGS
none defined yet
RESULTS
success — boolean. TFALSE if an invalid combination of a MMU’s
capabilities was specified.
NOTES
a MMU is destroyed with a call to TDestroy.
SEE ALSO
TDestroy, TMMUAlloc, TMMUAllocO, TMMURealloc, TMMUFree,
TMMUGetSize

1.72 TMMUAIloc

NAME
TMMUAlloc - allocate memory via MMU.

SYNOPSIS
mem = TMMUAlloc (mmu, size)
TAPtR TAPTR TUINT
FUNCTION

allocate a block of memory via a MMU. returns TNULL when

teklib.doc

46 /52

the request could not be satisfied.

INPUTS
mmu - pointer to a memory management unit.
size - size of the allocation [bytes].
RESULTS
mem - pointer to a block of memory, or TNULL.
SEE ALSO
TMMUFree, TMMUAllocO, TMMURealloc, TMMUGetSize,
TInitMMU

1.73 TMMUAIllocO

NAME
TMMUAllocO - allocate blank memory via MMU.

SYNOPSIS
mem = TMMUAllocO (mmu, size)
TAPTR TAPTR TUINT
FUNCTION

allocate a blank block of memory via a MMU, i.e. a block
of memory that is filled with zero-bytes. returns TNULL
when the request could not be satisfied.

INPUTS
mmu - pointer to a memory management unit.
size - size of the allocation [bytes].
RESULTS
mem - pointer to a block of memory, or TNULL.
SEE ALSO
TMMUAlloc(O, TMMUFree, TMMURealloc, TMMUGetSize,
TInitMMU

1.74 TMMUFree

NAME
TMMUFree - free memory via MMU.

SYNOPSIS
TMMUF ree (mmu, mem)
TAPTR TAPTR

FUNCTION
free a block of memory via MMU.

teklib.doc

47 /52

INPUTS
mmu - pointer to a memory management unit.
mem - block of memory to be freed.
SEE ALSO
TMMUAlloc, TMMUAllocO, TMMURealloc, TMMUGetSize,
TInitMMU

1.75 TMMURealloc

NAME

TMMURealloc - resize a block of memory via MMU.
SYNOPSIS

newmem = TMMURealloc (mmu, oldmem, size)

TAPTR TAPTR TAPTR TUINT32
FUNCTION

resizes a memory block that was previously allocated from a MMU
to the specified size, and returns a valid pointer to the resized

block of memory, or TNULL when the memory block could not be
resized.

when a memory block is passed, and the specified size is zero,

the memory block will be returned to the pool, and the result of

this function is TNULL.

when a size 1is specified, and the memory block is TNULL, this
function will try to allocate a new block of the given size.

if mem is TNULL and size is zero, this function will return

TNULL.
INPUTS
mmu - pointer to a memory management unit.
oldmem - block of memory to be resized.
size - new size of the memory block.
NOTES

reallocation may require that the given block of memory
needs to be moved in memory, i.e. pointers to this area
may become invalid.

RESULTS
mem - pointer to a resized (or freshly allocated) block of
memory, or TNULL.
SEE ALSO

TMMUAlloc, TMMUAlloc(O, TMMUFree, TMMUGetSize,
TInitMMU

teklib.doc 48 /52

1.76 TMMUGetSize

NAME
TMMUGetSize — get size of an allocation from a MMU.

SYNOPSIS
size = TMMUGetSize (mmu, mem)
TUINT TAPTR TAPTR
FUNCTION

this function returns the size of an allocation made
with TMMUAlloc, TMMUAllocO, or TMMURealloc.

INPUTS

mem - previously allocated block of memory, or TNULL.
RESULTS

size - size of the allocation [bytes].
SEE ALSO

TMMUAlloc, TMMUAlloc(O, TMMURealloc, TMMUFree,

TInitMMU

1.77 TMMUAIllocHandle

NAME
TMMUAllocHandle - allocate a handle.

SYNOPSIS
mem = TMMUAllocHandle (mmu, destructor, size)
TUINT TAPTR TDESTROYFUNC TUINT
FUNCTION

allocate a generic handle with destructor. this function
expects and initializes a heading THNDL structure in the
allocated block of memory.

a handle allocated with this function can be destroyed
with TDestroy, which will call the supplied destructor
before the allocated memory is returned to its MMU.

INPUTS
mmu - memory manager
destructor - destructor function being invoked with
TDestroy, or TNULL
size - total size of the allocation, including
the heading THNDL structure
RESULTS
mem - handle, or TNULL
SEE ALSO

TDestroy, TMMUAllocHandleO, TMMUFreeHandle, TInitMMU

teklib.doc 49 /52

1.78 TMMUAIllocHandle0O

NAME
TMMUAllocHandleO - allocate a handle with blank memory.

SYNOPSIS
mem = TMMUAllocHandleO (mmu, destructor, size)
TUINT TAPTR TDESTROYFUNC TUINT
FUNCTION

allocate a generic handle with destructor. this function
expects and initializes a heading THNDL structure in the
allocated block of memory.

a handle allocated with this function can be destroyed
with TDestroy, which will call the supplied destructor
before the allocated memory is returned to its MMU.

unlike TMMUAllocHandle, this function will zero out
the memory followed by the heading THNDL structure.

INPUTS
mmu - memory manager
destructor - destructor function being invoked with
Thestroy, or TNULL
size - total size of the allocation, including
the heading THNDL structure

RESULTS
mem - handle, or TNULL

SEE ALSO
TDestroy, TMMUAllocHandle, TMMUFreeHandle, TInitMMU

1.79 TMMUFreeHandle

NAME
TMMUFreeHandle - free a handle

SYNOPSIS
TMMUFreeHandle (handle)
TAPTR
FUNCTION

free a handle and return its memory to the MMU it was
allocated from. unlike TDestroy, this function will not
call a handle’s destructor.

INPUTS

teklib.doc 50/52

handle — handle allocated with TMMUAllocHandle or
TMMUAllocHandleO

SEE ALSO
TMMUAllocHandle, TDestroy, TInitMMU

1.80 TDestroy

NAME
TDestroy - destroy a generic handle

SYNOPSIS
result = TDestroy (handle)
TINT TAPTR
FUNCTION

call a handle’s destroy function.

the destroy function’s object-specific return value will
be returned to the caller.

if handle is TNULL, this function returns 0.

INPUTS
handle — generic handle such as allocated with
TMMUAllocHandle or TMMUAllocHandleO.
it is safe to pass TNULL here.
RESULTS
result - return value, as returned by the handle’s
destroy function. 0 if handle is TNULL or
when a handle’s destroy function is TNULL.
SEE ALSO

TMMUAllocHandle, TMMUFreeHandle, TInitMMU

1.81 TAddSockPort

NAME

TAddSockPort - make msgport available in internet namespace
SYNOPSIS

portnr = TAddSockPort (msgport, portnr, tags)

TUINT TPORT % TUINT TTAGITEM=*
FUNCTION

add a messageport to the internet namespace and make it
available on the given internet port number. if portnr is
zero, this function will try to allocate a new port number
and bind the messageport to it. in either case, the internet

teklib.doc 51/52

port number will be returned to the caller. a return value
of zero indicates failure.

INPUTS
msgport - messageport to be added to the internet namespace
portnr - dedicated internet port number to add the messageport
to, or zero for no preference
tags - pointer to a list of tag items
TAGS

TSock_TIdleTimeout, TTIME =*
pointer to a time structure holding a timeout for idle
internet connections to this messageport. when this timeout
expires, the respective connection will be dropped without
further notice, and further communication with that peer
will be rejected unless the peer reconnects to this
messageport.
default: 128 seconds

TSock_MaxMsgSize, TUINT
maximum size allowed for a single message incoming via
network, in bytes. a peer sending larger messages will be
silently dropped without further notice, and further
communication with that peer will be rejected unless it
reconnects to this messageport.
default: -1 (no limit)

RESULTS
portnr - actual internet port number to which the messageport
was added, or zero for failure.
SEE ALSO

TFindSockPort, TRemSockPort, TCreatePort

1.82 TFindSockPort

NAME
TFindockPort - find a remote message port.
SYNOPSIS
msgport = TFindSockPort (task, ipname, portnr, tags)
TPORT % TAPTR TSTRPTR TUINT16 TTAGITEM=*
FUNCTION

find a remote messageport that has been announced to
the internet namespace with TAddSockPort. a proxy
to the remote messageport will be returned.

INPUTS
task - task, referring to the caller’s current context
ipname - ip name string
portnr - internet port number

tags - pointer to a list of tag items

teklib.doc 52 /52

TAGS
TSock_ReplyTimeout, TTIME =

pointer to a time structure holding a timeout for
replies pending over remote connections. when the
timeout expires, the message port will fall into a
"broken’ state, and reject further communication with
the remote peer.
default: 32 seconds

RESULTS
msgport — proxy to the remote msgport, or TNULL on failure.

SEE ALSO
TFindSockPort, TRemSockPort, TCreatePort

1.83 TRemSockPort

NAME
TRemSockPort - remove a message port from publicity.

SYNOPSIS
TRemSockPort (msgport)
TPORT %

FUNCTION
remove a messageport from the internet namespace.

INPUTS
msgport - msgport that has previously been added to the
internet namespace with TAddSockPort.

SEE ALSO
TFindSockPort, TAddSockPort, TCreatePort

	teklib.doc
	teklib.doc
	TCreateTask
	TAllocSignal
	TFreeSignal
	TSignal
	TSetSignal
	TWait
	TTimedWait
	TInitLock
	TLock
	TUnlock
	TCreatePort
	TWaitPort
	TTimeDelay
	TTimeQuery
	TTimeReset
	TGetRandomSeed
	TTaskAlloc
	TTaskAlloc0
	TTaskFree
	TTaskRealloc
	TTaskGetSize
	TTaskAllocMsg
	TTaskBaseTask
	TTaskHeapMMU
	TTaskMsgMMU
	TTaskGetData
	TTaskSetData
	TTaskPort
	TFreeMsg
	TPutMsg
	TPutReplyMsg
	TGetMsg
	TAckMsg
	TReplyMsg
	TDropMsg
	TSendMsg
	TGetMsgAttrs
	TGetMsgStatus
	TGetMsgSize
	TAddHead
	TAddTail
	TInsert
	TRemove
	TRemHead
	TRemTail
	TSeekNode
	TInitList
	TFirstNode
	TLastNode
	TListEmpty
	TGetTagValue
	TGetTagArray
	TInitTags
	TAddTag
	TGetRandom
	TMemCopy
	TMemFill
	TMemCopy32
	TMemFill32
	TInitMemHead
	TStaticAlloc
	TStaticRealloc
	TStaticFree
	TStaticGetSize
	TCreatePool
	TPoolAlloc
	TPoolFree
	TPoolRealloc
	TPoolGetSize
	TInitMMU
	TMMUAlloc
	TMMUAlloc0
	TMMUFree
	TMMURealloc
	TMMUGetSize
	TMMUAllocHandle
	TMMUAllocHandle0
	TMMUFreeHandle
	TDestroy
	TAddSockPort
	TFindSockPort
	TRemSockPort

