
MCC_NListtree

MCC_NListtree ii

COLLABORATORS

TITLE :

MCC_NListtree

ACTION NAME DATE SIGNATURE

WRITTEN BY August 25, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

MCC_NListtree iii

Contents

1 MCC_NListtree 1

1.1 MCC_NListtree.doc . 1

1.2 NListtree.mcc/background (information) . 1

1.3 NListtree.mcc/MUIA_NListtree_Active . 3

1.4 NListtree.mcc/MUIA_NListtree_ActiveList . 4

1.5 NListtree.mcc/MUIA_NListtree_AutoVisible . 4

1.6 NListtree.mcc/MUIA_NListtree_CloseHook . 5

1.7 NListtree.mcc/MUIA_NListtree_CompareHook . 6

1.8 NListtree.mcc/MUIA_NListtree_ConstructHook . 7

1.9 NListtree.mcc/MUIA_NListtree_CopyToClipHook . 8

1.10 NListtree.mcc/MUIA_NListtree_DestructHook . 9

1.11 NListtree.mcc/MUIA_NListtree_DisplayHook . 9

1.12 NListtree.mcc/MUIA_NListtree_DoubleClick . 10

1.13 NListtree.mcc/MUIA_NListtree_DragDropSort . 11

1.14 NListtree.mcc/MUIA_NListtree_DropTarget . 12

1.15 NListtree.mcc/MUIA_NListtree_DropTargetPos . 12

1.16 NListtree.mcc/MUIA_NListtree_DropType . 13

1.17 NListtree.mcc/MUIA_NListtree_DupNodeName . 13

1.18 NListtree.mcc/MUIA_NListtree_EmptyNodes . 14

1.19 NListtree.mcc/MUIA_NListtree_FindNameHook . 14

1.20 NListtree.mcc/MUIA_NListtree_FindUserDataHook . 15

1.21 NListtree.mcc/MUIA_NListtree_Format . 16

1.22 NListtree.mcc/MUIA_NListtree_MultiSelect . 16

1.23 NListtree.mcc/MUIA_NListtree_MultiTestHook . 17

1.24 NListtree.mcc/MUIA_NListtree_OpenHook . 18

1.25 NListtree.mcc/MUIA_NListtree_Quiet . 18

1.26 NListtree.mcc/MUIA_NListtree_ShowTree . 19

1.27 NListtree.mcc/MUIA_NListtree_Title . 19

1.28 NListtree.mcc/MUIA_NListtree_TreeColumn . 20

1.29 NListtree.mcc/MUIM_NListtree_Active . 20

MCC_NListtree iv

1.30 NListtree.mcc/MUIM_NListtree_Clear . 21

1.31 NListtree.mcc/MUIM_NListtree_Close . 22

1.32 NListtree.mcc/MUIM_NListtree_Copy . 23

1.33 NListtree.mcc/MUIM_NListtree_CopyToClip . 25

1.34 NListtree.mcc/MUIM_NListtree_DoubleClick . 26

1.35 NListtree.mcc/MUIM_NListtree_Exchange . 26

1.36 NListtree.mcc/MUIM_NListtree_FindName . 28

1.37 NListtree.mcc/MUIM_NListtree_FindUserData . 30

1.38 NListtree.mcc/MUIM_NListtree_GetEntry . 31

1.39 NListtree.mcc/MUIM_NListtree_GetNr . 33

1.40 NListtree.mcc/MUIM_NListtree_Insert . 34

1.41 NListtree.mcc/MUIM_NListtree_InsertStruct . 36

1.42 NListtree.mcc/MUIM_NListtree_Move . 37

1.43 NListtree.mcc/MUIM_NListtree_MultiTest . 39

1.44 NListtree.mcc/MUIM_NListtree_NextSelected . 40

1.45 NListtree.mcc/MUIM_NListtree_Open . 41

1.46 NListtree.mcc/MUIM_NListtree_PrevSelected . 42

1.47 NListtree.mcc/MUIM_NListtree_Redraw . 44

1.48 NListtree.mcc/MUIM_NListtree_Remove . 45

1.49 NListtree.mcc/MUIM_NListtree_Rename . 46

1.50 NListtree.mcc/MUIM_NListtree_Select . 47

1.51 NListtree.mcc/MUIM_NListtree_Sort . 49

1.52 NListtree.mcc/MUIM_NListtree_TestPos . 50

MCC_NListtree 1 / 51

Chapter 1

MCC_NListtree

1.1 MCC_NListtree.doc

NListtree.mcc

background

MUIA_NListtree_Active MUIA_NListtree_ActiveList
MUIA_NListtree_AutoVisible MUIA_NListtree_CloseHook
MUIA_NListtree_CompareHook MUIA_NListtree_ConstructHook
MUIA_NListtree_CopyToClipHook MUIA_NListtree_DestructHook
MUIA_NListtree_DisplayHook MUIA_NListtree_DoubleClick
MUIA_NListtree_DragDropSort MUIA_NListtree_DropTarget
MUIA_NListtree_DropTargetPos MUIA_NListtree_DropType
MUIA_NListtree_DupNodeName MUIA_NListtree_EmptyNodes
MUIA_NListtree_FindNameHook MUIA_NListtree_FindUserDataHook
MUIA_NListtree_Format MUIA_NListtree_MultiSelect
MUIA_NListtree_MultiTestHook MUIA_NListtree_OpenHook
MUIA_NListtree_Quiet MUIA_NListtree_ShowTree
MUIA_NListtree_Title MUIA_NListtree_TreeColumn
MUIM_NListtree_Active MUIM_NListtree_Clear
MUIM_NListtree_Close MUIM_NListtree_Copy
MUIM_NListtree_CopyToClip MUIM_NListtree_DoubleClick
MUIM_NListtree_Exchange MUIM_NListtree_FindName
MUIM_NListtree_FindUserData MUIM_NListtree_GetEntry
MUIM_NListtree_GetNr MUIM_NListtree_Insert
MUIM_NListtree_InsertStruct MUIM_NListtree_Move
MUIM_NListtree_MultiTest MUIM_NListtree_NextSelected
MUIM_NListtree_Open MUIM_NListtree_PrevSelected
MUIM_NListtree_Redraw MUIM_NListtree_Remove
MUIM_NListtree_Rename MUIM_NListtree_Select
MUIM_NListtree_Sort MUIM_NListtree_TestPos

1.2 NListtree.mcc/background (information)

There are two possible entry-types in a NListtree class list:
Leaves and nodes. Leaves are simple entries which have no special
features except they are holding some data. Nodes are almost

MCC_NListtree 2 / 51

the same type, holding data too, but having a list attached
where you can simply add other entries which can be again leaves
or nodes.

Every node is structured as follows:

struct MUI_NListtree_TreeNode {

struct MinNode tn_Node;
STRPTR tn_Name;
UWORD tn_Flags;
APTR tn_User;

};

It contains a name field tn_Name, flags tn_Flags and a pointer to
user data tn_User.

The tn_Flags field can hold the following flags:

TNF_LIST The node contains a list where other nodes
can be inserted.

TNF_OPEN The list node is open, sub nodes are displayed.

TNF_FROZEN The node doesn’t react on doubleclick or
open/close by the user.

TNF_NOSIGN The indicator of list nodes isn’t shown.

TNF_SELECTED The entry is currently selected.

These flags, except TNF_SELECTED, can be used in
MUIM_NListtree_Insert at creation time. They will be passed to
the newly created entry. Also you can do a quick check about the
state and kind of each entry. But - NEVER EVER - modify any flag
yourself or NListtree will crash. Be warned!

THE ABOVE STRUCT IS READ-ONLY!! NEVER CHANGE ANY ENTRY OF THIS
STRUCTURE DIRECTLY NOR THINK ABOUT THE CONTENTS OF ANY PRIVATE

FIELD OR YOU WILL DIE IN HELL!

You can create very complex tree structures. NListtree only uses
one list which holds all information needed and has no extra
display list like other list tree classes ;-)

The tree nodes can be inserted and removed, sorted, moved, exchanged,
renamed or multi selected. To sort you can also drag&drop them.
Modifications can be made in relation to the whole tree, to only one
level, to a sub-tree or to only one tree node.

The user can control the listtree by the MUI keys, this means a node
is opened with "Right" and closed with "Left". Check your MUI prefs
for the specified keys.

MCC_NListtree 3 / 51

You can define which of the columns will react on double-clicking.
The node toggles its status from open or closed and vice versa.

Drag&Drop capabilities:

If you set MUIA_NList_DragSortable to TRUE, the list tree will
become active for Drag&Drop. This means you can drag and drop
entries on the same list tree again. While dragging an indicator
shows where to drop.

Drag a Drop on Result

leaf leaf Exchange leaves.
node leaf Nothing happens.
entry closed node Move entry, the compare hook is used.
entry open node Move entry to defined position.

You can not drop an entry on itself, nor can you drop an opened node on
any of its members.

To exchange data with other objects, you have to create your own
subclass of NListtree class and react on the drag methods.

Author: Carsten Scholling (c)1999-2000 email: cs@@aphaso.de

1.3 NListtree.mcc/MUIA_NListtree_Active

NAME

MUIA_NListtree_Active -- [.SG], struct MUI_NListtree_TreeNode *

SPECIAL VALUES

MUIV_NListtree_Active_Off
MUIV_NListtree_Active_Parent
MUIV_NListtree_Active_First
MUIV_NListtree_Active_FirstVisible
MUIV_NListtree_Active_LastVisible

FUNCTION

Setting this attribute will move the cursor to the defined tree node
if it is visible. If the node is in an opened tree the listview is
scrolling into the visible area. Setting MUIV_NListtree_Active_Off will
vanish the cursor.

MUIV_NListtree_Active_First/FirstVisible/LastVisible are special values
for activating the lists first or the top/bottom visible entry.

See MUIA_NListtree_AutoVisible for special activation features.

MCC_NListtree 4 / 51

If this attribute is read it returns the active tree node. The result
is MUIV_NListtree_Active_Off if there is no active entry.

NOTIFICATIONS

You can create a notification on MUIA_NListtree_Active. The
TriggerValue is the active tree node.

SEE ALSO

MUIA_NListtree_AutoVisible, MUIA_NList_First, MUIA_NList_Visible,
MUIA_NListtree_ActiveList

1.4 NListtree.mcc/MUIA_NListtree_ActiveList

NAME

MUIA_NListtree_ActiveList -- [..G], struct MUI_NListtree_TreeNode *

SPECIAL VALUES

MUIV_NListtree_ActiveList_Off

FUNCTION

If this attribute is read it returns the active list node. The
active list node is always the parent of the active entry.
The result is MUIV_NListtree_ActiveList_Off if there is no
active list (when there is no active entry).

NOTIFICATIONS

You can create notifications on MUIA_NListtree_ActiveList. The
TriggerValue is the active list node.

SEE ALSO

MUIA_NListtree_Active

1.5 NListtree.mcc/MUIA_NListtree_AutoVisible

NAME

MCC_NListtree 5 / 51

MUIA_NListtree_AutoVisible -- [ISG], struct MUI_NListtree_TreeNode *

SPECIAL VALUES

MUIV_NListtree_AutoVisible_Off
MUIV_NListtree_AutoVisible_Normal
MUIV_NListtree_AutoVisible_FirstOpen
MUIV_NListtree_AutoVisible_Expand

FUNCTION

Set this to make your list automatically jump to the active
entry.

MUIV_NListtree_AutoVisible_Off:
The display does NOT scroll the active entry into the
visible area.

MUIV_NListtree_AutoVisible_Normal:
This will scroll the active entry into the visible area
if it is visible (entry is a member of an open node).
This is the default.

MUIV_NListtree_AutoVisible_FirstOpen:
Nodes are not opened, but the first open parent node of
the active entry is scrolled into the visible area if the
active entry is not visible.

MUIV_NListtree_AutoVisible_Expand:
All parent nodes are opened until the first open node is
reached and the active entry will be scrolled into the
visible area.

NOTIFICATIONS

SEE ALSO

MUIA_NListtree_Active, MUIA_NList_AutoVisible

1.6 NListtree.mcc/MUIA_NListtree_CloseHook

NAME

MUIA_NListtree_CloseHook -- [IS.], struct Hook *

SPECIAL VALUES

FUNCTION

MCC_NListtree 6 / 51

The close hook is called after a list node is closed, then you can
change the list.

The close hook will be called with the hook in A0, the object in A2
and a MUIP_NListtree_CloseMessage struct in A1 (see nlisttree_mcc.h).

To remove the hook set this to NULL.

NOTIFICATION

SEE ALSO

MUIA_NListtree_Open, MUIA_NListtree_CloseHook

1.7 NListtree.mcc/MUIA_NListtree_CompareHook

NAME

MUIA_NListtree_CompareHook -- [IS.], struct Hook *

SPECIAL VALUES

MUIV_NListtree_CompareHook_Head
MUIV_NListtree_CompareHook_Tail
MUIV_NListtree_CompareHook_LeavesTop
MUIV_NListtree_CompareHook_LeavesMixed
MUIV_NListtree_CompareHook_LeavesBottom

FUNCTION

Set this attribute to your own hook if you want to sort the entries in
the list tree by your own way.

When you sort your list or parts of your list via MUIM_NListtree_Sort,
using the insert method with MUIV_NListtree_Insert_Sort or dropping an
entry on a closed node, this compare hook is called.

There are some builtin compare hooks available, called:

MUIV_NListtree_CompareHook_Head
Any entry is inserted at head of the list.

MUIV_NListtree_CompareHook_Tail
Any entry is inserted at tail of the list.

MUIV_NListtree_CompareHook_LeavesTop
Leaves are inserted at top of the list, nodes at bottom. They are
alphabetically sorted.

MCC_NListtree 7 / 51

MUIV_NListtree_CompareHook_LeavesMixed
The entries are only alphabetically sorted.

MUIV_NListtree_CompareHook_LeavesBottom
Leaves are inserted at bottom of the list, nodes at top. They are
alphabetically sorted. This is default.

The hook will be called with the hook in A0, the object in A2 and
a MUIP_NListtree_CompareMessage struct in A1 (see nlisttree_mcc.h). You
should return something like:

<0 (TreeNode1 < TreeNode2)
0 (TreeNode1 == TreeNode2)
>0 (TreeNode1 > TreeNode2)

NOTIFICATION

SEE ALSO

MUIA_NListtree_Insert, MUIM_DragDrop,
MUIA_NList_CompareHook

1.8 NListtree.mcc/MUIA_NListtree_ConstructHook

NAME

MUIA_NListtree_ConstructHook -- [IS.], struct Hook *

SPECIAL VALUES

MUIV_NListtree_ConstructHook_String

MUIV_NListtree_ConstructHook_Flag_AutoCreate
If using the KeepStructure feature in MUIM_NListtree_Move or
MUIM_NListtree_Copy, this flag will be set when calling your
construct hook. Then you can react if your hook is not simply
allocating memory.

FUNCTION

The construct hook is called whenever you add an entry to your
listtree. The pointer isn’t inserted directly, the construct hook is
called and its result code is added.

When an entry shall be removed the corresponding destruct hook is
called.

The construct hook will be called with the hook in A0, the object in
A2 and a MUIP_NListtree_ConstructMessage struct in A1 (see
nlisttree_mcc.h).

MCC_NListtree 8 / 51

The message holds a standard kick 3.x memory pool pointer. If you want,
you can use the exec or amiga.lib functions for allocating memory
within this pool, but this is only an option.

If the construct hook returns NULL, nothing will be added to the list.

There is a builtin construct hook available called
MUIV_NListtree_ConstructHook_String. This expects that the field
’tn_User’ in the treenode is a string pointer (STRPTR), which’s
string is copied.
Of course you have to use MUIV_NListtree_DestructHook_String in
this case!

To remove the hook set this to NULL.

NEVER pass a NULL pointer when you have specified the internal string
construct/destruct hooks or NListtree will die!

NOTIFICATION

SEE ALSO

MUIA_NList_ConstructHook, MUIA_NListtree_DestructHook,
MUIA_NListtree_DisplayHook

1.9 NListtree.mcc/MUIA_NListtree_CopyToClipHook

NAME

MUIA_NListtree_CopyToClipHook -- [IS.],

SPECIAL VALUES

MUIV_NListtree_CopyToClipHook_Default

FUNCTION

This thing works near like MUIA_NListtree_DisplayHook, but is
called when the NListtree object want to make a clipboard copy.

You can return only one string pointer. If you return NULL,
nothing will be copied. If you return -1, the entry will be
handled as a normal string and the name field is used.

The builtin hook skips all ESC sequences and adds a tab char
between columns.

NOTIFICATION

MCC_NListtree 9 / 51

SEE ALSO

MUIM_NListtree_CopyToClip

1.10 NListtree.mcc/MUIA_NListtree_DestructHook

NAME

MUIA_NListtree_DestructHook -- [IS.], struct Hook *

SPECIAL VALUES

MUIV_NListtree_DestructHook_String

FUNCTION

Set up a destruct hook for your listtree. The destruct hook is called
whenevere you remove an entry from the listtree. Here you can free memory
which was allocated by the construct hook before.

The destruct hook will be called with the hook in A0, the object
in A2 and a MUIP_NListtree_DestructMessage struct in A1 (see
nlisttree_mcc.h).
The message holds a standard kick 3.x memory pool pointer. You must
use this pool when you have used it inside the construct hook to
allocate pooled memory.

There is a builtin destruct hook available called
MUIV_NListtree_DestructHook_String. This expects that the ’User’ data
in the treenode is a string and you have used
MUIV_NListtree_ConstructHook_String in the construct hook!

To remove the hook set this to NULL.

NOTIFICATION

SEE ALSO

MUIA_NList_ConstructHook, MUIA_NListtree_ConstructHook,
MUIA_NListtree_DisplayHook

1.11 NListtree.mcc/MUIA_NListtree_DisplayHook

NAME

MCC_NListtree 10 / 51

MUIA_NListtree_DisplayHook -- [IS.],

SPECIAL VALUES

FUNCTION

You have to supply a display hook to specify what should be shown in
the listview, otherwise only the name of the nodes is displayed.

The display hook will be called with the hook in A0, the object in
A2 and a MUIP_NListtree_DisplayMessage struct in A1 (see nlisttree_mcc ←↩

.h)
.

The structure holds a pointer to a string array containing as many
entries as your listtree may have columns. You have to fill this
array with the strings you want to display. Check out that the array
pointer of the tree column is set to NULL, if the normal name of the
node should appear.
You can set a preparse string in Preparse for the corresponding col
element. Using it you’ll be able to avoid copying the string in a
buffer to add something in the beginning of the col string.

The display hook also gets the position of the current entry as
additional parameter. It is stored in the longword preceding the col
array (don’t forget it’s a LONG).

You can set the array pointer of the tree column to a string, which is
diplayed instead of the node name. You can use this to mark nodes.

See MUIA_NList_Format for details about column handling.

To remove the hook and use the internal default display hook set this
to NULL.

NOTIFICATION

SEE ALSO

MUIA_NList_Format, MUIA_Text_Contents

1.12 NListtree.mcc/MUIA_NListtree_DoubleClick

NAME

MUIA_NListtree_DoubleClick -- [ISG], ULONG

SPECIAL VALUES

MCC_NListtree 11 / 51

MUIV_NListtree_DoubleClick_Off
MUIV_NListtree_DoubleClick_All
MUIV_NListtree_DoubleClick_Tree
MUIV_NListtree_DoubleClick_NoTrigger

FUNCTION

A doubleclick opens a node if it was closed, it is closed if the node
was open. You have to set the column which should do this.

Normally only the column number is set here, but there are special
values:

MUIV_NListtree_DoubleClick_Off:
A doubleclick is not handled.

MUIV_NListtree_DoubleClick_All:
All columns react on doubleclick.

MUIV_NListtree_DoubleClick_Tree
Only a doubleclick on the defined tree column is recognized.

MUIV_NListtree_DoubleClick_NoTrigger:
A doubleclick is not handled and not triggered!

NOTIFICATION

The TriggerValue of the notification is the tree node you have double-
clicked, you can GetAttr() MUIA_NListtree_DoubleClick for the column
number. The struct ’MUI_NListtree_TreeNode *’~is used for trigger.

The notification is done on leaves and on node columns, which are not
set in MUIA_NListtree_DoubleClick.

SEE ALSO

1.13 NListtree.mcc/MUIA_NListtree_DragDropSort

NAME

MUIA_NListtree_DragDropSort -- [IS.], BOOL

SPECIAL VALUES

FUNCTION

Setting this attribute to FALSE will disable the ability to sort the
list tree by drag & drop. Defaults to TRUE.

MCC_NListtree 12 / 51

NOTIFICATION

SEE ALSO

1.14 NListtree.mcc/MUIA_NListtree_DropTarget

NAME

MUIA_NListtree_DropTarget -- [..G], ULONG

SPECIAL VALUES

FUNCTION

After a successfull drop operation, this value holds the entry where
the entry was dropped. The relative position (above etc.) can be
obtained by reading the attribute MUIA_NListtree_DropType.

NOTIFICATION

SEE ALSO

MUIA_NListtree_DropTargetPos, MUIA_NListtree_DropType

1.15 NListtree.mcc/MUIA_NListtree_DropTargetPos

NAME

MUIA_NListtree_DropTargetPos -- [..G], ULONG

SPECIAL VALUES

FUNCTION

After a successfull drop operation, this value holds the integer
position of the entry where the dragged entry was dropped. The
entry itself can be obtained by reading MUIA_NListtree_DropTarget,
the relative position (above etc.) can be obtained by reading the
attribute MUIA_NListtree_DropType.

NOTIFICATION

SEE ALSO

MCC_NListtree 13 / 51

MUIA_NListtree_DropTarget, MUIA_NListtree_DropType

1.16 NListtree.mcc/MUIA_NListtree_DropType

NAME

MUIA_NListtree_DropType -- [..G], ULONG

SPECIAL VALUES

MUIV_NListtree_DropType_None
MUIV_NListtree_DropType_Above
MUIV_NListtree_DropType_Below
MUIV_NListtree_DropType_Onto

FUNCTION

After a successfull drop operation, this value holds the position
relative to the value of MUIA_NListtree_DropTarget/DropTargetPos.

NOTIFICATION

SEE ALSO

MUIA_NListtree_DropTarget, MUIA_NListtree_DropTargetPos

1.17 NListtree.mcc/MUIA_NListtree_DupNodeName

NAME

MUIA_NListtree_DupNodeName -- [IS.], BOOL

SPECIAL VALUES

FUNCTION

If this attribute is set to FALSE the names of the node will not be
duplicated, only the string pointers are used. Be careful the strings
have to be valid everytime.

NOTIFICATION

MCC_NListtree 14 / 51

SEE ALSO

1.18 NListtree.mcc/MUIA_NListtree_EmptyNodes

NAME

MUIA_NListtree_EmptyNodes -- [IS.], BOOL

SPECIAL VALUES

FUNCTION

Setting this attribute to TRUE will display all empty nodes as leaves,
this means no list indicator is shown. Nevertheless the entry is
handled like a node.

NOTIFICATION

SEE ALSO

1.19 NListtree.mcc/MUIA_NListtree_FindNameHook

NAME

MUIA_NListtree_FindNameHook -- [IS.],

SPECIAL VALUES

MUIV_NListtree_FindNameHook_CaseSensitive
Search for the complete string, case sensitive.

MUIV_NListtree_FindNameHook_CaseInsensitive
Search for the complete string, case insensitive.

MUIV_NListtree_FindNameHook_Part
Search for the first part of the string, case sensitive.

MUIV_NListtree_FindNameHook_PartCaseInsensitive
Search for the first part of the string, case insensitive.

MUIV_NListtree_FindNameHook_PointerCompare
Do only a pointer comparision. Note, that this is in fact
a pointer subtraction to fit into the rules. It returns
the difference (~0) of the two fields if no match.

MCC_NListtree 15 / 51

FUNCTION

You can install a FindName hook to specify your own search
criteria.

The find name hook will be called with the hook in A0, the object in
A2 and a MUIP_NListtree_FindNameMessage struct in A1
(see nlisttree_mcc.h). It should return ~ 0 for entries which are
not matching the pattern and a value of 0 if a match.

The find name message structure holds a pointer to a string
containing the name to search for and pointers to the name- and user-
field of the node which is currently processed.

The MUIV_NListtree_FindNameHook_CaseSensitive will be used as default.

NOTIFICATION

SEE ALSO

1.20 NListtree.mcc/MUIA_NListtree_FindUserDataHook

NAME

MUIA_NListtree_FindUserDataHook -- [IS.],

SPECIAL VALUES

MUIV_NListtree_FindUserDataHook_CaseSensitive
Search for the complete string, case sensitive.

MUIV_NListtree_FindUserDataHook_CaseInsensitive
Search for the complete string, case insensitive.

MUIV_NListtree_FindUserDataHook_Part
Search for the first part of the string, case sensitive.

MUIV_NListtree_FindUserDataHook_PartCaseInsensitive
Search for the first part of the string, case insensitive.

MUIV_NListtree_FindUserDataHook_PointerCompare
Do only a pointer comparision. Note, that this is in fact
a pointer subtraction to fit into the rules. It returns
the difference (~0) of the two user fields if no match.

FUNCTION

You can install a FindUserData hook to specify your own search
criteria.

MCC_NListtree 16 / 51

The find user data hook will be called with the hook in A0, the object
in A2 and a MUIP_NListtree_FindUserDataMessage struct in A1
(see nlisttree_mcc.h). It should return ~ 0 for entries which are
not matching the pattern and a value of 0 if a match.

The find user data message structure holds a pointer to a string
containing the data to search for and pointers to the user- and name-
field of the node which is currently processed.

MUIV_NListtree_FindUserDataHook_CaseSensitive will be used as
default.

NOTIFICATION

SEE ALSO

1.21 NListtree.mcc/MUIA_NListtree_Format

NAME

MUIA_NListtree_Format -- [IS.], STRPTR

SPECIAL VALUES

FUNCTION

Same as MUIA_NList_Format, but one column is reserved for the tree
indicators and the names of the nodes.

For further detailed information see MUIA_NList_Format!

NOTIFICATION

SEE ALSO

MUIA_NList_Format, MUIA_NListtree_DisplayHook,
MUIA_Text_Contents

1.22 NListtree.mcc/MUIA_NListtree_MultiSelect

NAME

MUIA_NListtree_MultiSelect -- [I..],

MCC_NListtree 17 / 51

SPECIAL VALUES

MUIV_NListtree_MultiSelect_None
MUIV_NListtree_MultiSelect_Default
MUIV_NListtree_MultiSelect_Shifted
MUIV_NListtree_MultiSelect_Always

FUNCTION

Four possibilities exist for a listviews multi select
capabilities:

MUIV_NListtree_MultiSelect_None:
The list tree cannot multiselect at all.

MUIV_NListtree_MultiSelect_Default:
The multi select type (with or without shift)
depends on the users preferences setting.

MUIV_NListtree_MultiSelect_Shifted:
Overrides the users prefs, multi selecting only
together with shift key.

MUIV_NListtree_MultiSelect_Always:
Overrides the users prefs, multi selecting
without shift key.

NOTIFICATION

NOTES

SEE ALSO

MUIA_NListtree_MultiTestHook, MUIM_NListtree_MultiSelect

1.23 NListtree.mcc/MUIA_NListtree_MultiTestHook

NAME

MUIA_NListtree_MultiTestHook -- [IS.], struct Hook *

SPECIAL VALUES

FUNCTION

If you plan to have a multi selecting list tree but not
all of your entries are actually multi selectable, you
can supply a MUIA_NListtree_MultiTestHook.

The multi test hook will be called with the hook in A0, the object

MCC_NListtree 18 / 51

in A2 and a MUIP_NListtree_MultiTestMessage struct in A1 (see
nlisttree_mcc.h) and should return TRUE if the entry is multi
selectable, FALSE otherwise.

To remove the hook set this to NULL.

NOTIFICATION

SEE ALSO

MUIA_NListtree_ConstructHook, MUIA_NListtree_DestructHook

1.24 NListtree.mcc/MUIA_NListtree_OpenHook

NAME

MUIA_NListtree_OpenHook -- [IS.], struct Hook *

SPECIAL VALUES

FUNCTION

The open hook is called whenever a list node will be opened, so you
can change the list before the node is open.

The open hook will be called with the hook in A0, the object in A2
and a MUIP_NListtree_OpenMessage struct in A1 (see nlisttree_mcc.h).

To remove the hook set this to NULL.

NOTIFICATION

SEE ALSO

MUIA_NListtree_Open, MUIA_NListtree_CloseHook

1.25 NListtree.mcc/MUIA_NListtree_Quiet

NAME

MUIA_NListtree_Quiet -- [.S.], QUIET

SPECIAL VALUES

MCC_NListtree 19 / 51

FUNCTION

If you add/remove lots of entries to/from a listtree, this will cause
lots of screen action and slow down the operation. Setting
MUIA_NListtree_Quiet to TRUE will temporarily prevent the listtree from
being refreshed, this refresh will take place only once when you set
it back to FALSE again.

MUIA_NListtree_Quiet holds a nesting count to avoid trouble with
multiple setting/unsetting this attribute. You are encoraged to
always use TRUE/FALSE pairs here or you will went in trouble.

DO NOT USE MUIA_NList_Quiet here!

NOTIFICATION

SEE ALSO

MUIM_NListtree_Insert, MUIM_NListtree_Remove

1.26 NListtree.mcc/MUIA_NListtree_ShowTree

NAME

MUIA_NListtree_ShowTree -- [ISG], ULONG

SPECIAL VALUES

FUNCTION

Specify FALSE here if you want the whole tree to be disappear.
Defaults to TRUE;

NOTIFICATION

SEE ALSO

1.27 NListtree.mcc/MUIA_NListtree_Title

NAME

MUIA_NListtree_Title -- [IS.], BOOL

MCC_NListtree 20 / 51

SPECIAL VALUES

FUNCTION

Specify a title for the current listtree.

For detailed information see MUIA_NList_Title!

NOTIFICATION

BUGS

The title should not be a string as for single column listviews. This
attribute can only be set to TRUE or FALSE.

SEE ALSO

1.28 NListtree.mcc/MUIA_NListtree_TreeColumn

NAME

MUIA_NListtree_TreeColumn -- [ISG], ULONG

SPECIAL VALUES

FUNCTION

Specify the column of the list tree, the node indicator and the name
of the node are displayed in.

NOTIFICATION

SEE ALSO

MUIA_NListtree_DisplayHook, MUIA_NListtree_Format

1.29 NListtree.mcc/MUIM_NListtree_Active

NAME

MUIM_NListtree_Active -- Called for every active change. (V1)

MCC_NListtree 21 / 51

SYNOPSIS

DoMethodA(obj, MUIM_NListtree_Active,
struct MUIP_NListtree_Active *activemessage);

FUNCTION

This method must not be called directly. It will be called by
NListtree if the active entry changes. This is an addition to
MUIA_NListtree_Active

INPUTS

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

MUIA_NListtree_Active

1.30 NListtree.mcc/MUIM_NListtree_Clear

NAME

MUIM_NListtree_Clear -- Clear the complete listview. (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_Clear, NULL, 0)

FUNCTION

Clear the complete listview, calling destruct hook for each entry.

INPUTS

RESULT

EXAMPLE

// Clear the listview!
DoMethod(nlisttree, MUIM_NListtree_Clear, NULL, 0);

MCC_NListtree 22 / 51

NOTES

For now, when using this method, you MUST supply NULL for the list
node and 0 for flags for future compatibility.
This will definitely change!

BUGS

SEE ALSO

MUIM_NListtree_Remove, MUIA_NListtree_DestructHook,

1.31 NListtree.mcc/MUIM_NListtree_Close

NAME

MUIM_NListtree_Close -- Close the specified list node. (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_Close,
struct MUI_NListtree_TreeNode *listnode,
struct MUI_NListtree_TreeNode *treenode,
ULONG flags);

FUNCTION

Close a node or nodes of a listtree. It is checked if the tree node
is a node, not a leaf!

When the active entry was a child of the closed node, the closed node
will become active.

INPUTS

listnode - Specify the node which list is used to find the entry. The
search is started at the head of this list.

MUIV_NListtree_Close_ListNode_Root
The root list is used.

MUIV_NListtree_Close_ListNode_Parent
The list which is the parent of the active list is used.

MUIV_NListtree_Close_ListNode_Active
The list of the active node is used.

treenode - The node which should be closed. If there are children
of the node, they are also closed.

MCC_NListtree 23 / 51

MUIV_NListtree_Close_TreeNode_Head
The head of the list defined in ’listnode’ is closed.

MUIV_NListtree_Close_TreeNode_Tail:
Closes the tail of the list defined in ’listnode’.

MUIV_NListtree_Close_TreeNode_Active:
Closes the active node.

MUIV_NListtree_Close_TreeNode_All:
Closes all nodes of the list which is specified in
’listnode’.

RESULT

EXAMPLE

// Close the active list.
DoMethod(obj, MUIM_NListtree_Close,

MUIV_NListtree_Close_ListNode_Active,
MUIV_NListtree_Close_TreeNode_Active, 0);

NOTES

BUGS

SEE ALSO
MUIM_NListtree_Open

1.32 NListtree.mcc/MUIM_NListtree_Copy

NAME

MUIM_NListtree_Copy -- Copy an entry (create it) to the spec. pos. (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_Copy,
struct MUI_NListtree_TreeNode *srclistnode,
struct MUI_NListtree_TreeNode *srctreenode,
struct MUI_NListtree_TreeNode *destlistnode,
struct MUI_NListtree_TreeNode *desttreenode,
ULONG flags);

FUNCTION

Copy an entry to the position after a defined node. The complete
child structure will be copied.

MCC_NListtree 24 / 51

INPUTS

srclistnode - Specify the node which list is used to find the
entry. The search is started at the head of this
list.

MUIV_NListtree_Copy_SourceListNode_Root
The root list is used as the starting point.

MUIV_NListtree_Copy_SourceListNode_Active
The active list (the list of the active node) is used as
the starting point.

srctreenode - Specifies the node which should be copied.

MUIV_NListtree_Copy_SourceTreeNode_Head
The head of the list defined in ’srclistnode’ is copied.

MUIV_NListtree_Copy_SourceTreeNode_Tail
The tail of the list defined in ’srclistnode’ is copied.

MUIV_NListtree_Copy_SourceTreeNode_Active
The active node is copied.

destlistnode - Specify the node which list is used to find the
entry. The search is started at the head of this
list.

MUIV_NListtree_Copy_DestListNode_Root
The root list.

MUIV_NListtree_Copy_DestListNode_Active
The list of the active node.

desttreenode - This node is the predecessor of the entry which is
inserted.

MUIV_NListtree_Copy_DestTreeNode_Head
The node is copied to the head of the list defined in
’destlistnode’.

MUIV_NListtree_Copy_DestTreeNode_Tail
The node is copied to the tail of the list defined in
’destlistnode’.

MUIV_NListtree_Copy_DestTreeNode_Active:
The node is copied to one entry after the active node.

MUIV_NListtree_Copy_DestTreeNode_Sorted:
The node is copied to the list using the sort hook.

flags - Some flags to adjust moving.

MUIV_NListtree_Copy_Flag_KeepStructure
The full tree structure from the selected entry to
the root list is copied (created) at destination.

MCC_NListtree 25 / 51

RESULT

EXAMPLE

// Copy the active entry to the head of
// another list node.
DoMethod(obj,

MUIV_NListtree_Copy_SourceListNode_Active,
MUIV_NListtree_Copy_SourceTreeNode_Active,
anylistnode,
MUIV_NListtree_Copy_DestTreeNode_Head,
0);

NOTES

BUGS

SEE ALSO

MUIM_NListtree_Insert, MUIM_NListtree_Remove,
MUIM_NListtree_Exchange, MUIA_NListtree_CompareHook,
MUIM_NListtree_Move

1.33 NListtree.mcc/MUIM_NListtree_CopyToClip

NAME

MUIM_NListtree_CopyToClip -- Called for every clipboard copy action. (V1)

SYNOPSIS

DoMethodA(obj, MUIM_NListtree_CopyToClip,
struct MUIP_NListtree_CopyToClip *ctcmessage);

FUNCTION

Do a copy to clipboard from an entry/entry content.

INPUTS

TreeNode - Tree node to copy contents from. Use
MUIV_NListtree_CopyToClip_Active to copy the
active entry.

Pos - Entry position.

Unit - Clipboard unit to copy entry contents to.

MCC_NListtree 26 / 51

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

MUIA_NListtree_CopyToClipHook

1.34 NListtree.mcc/MUIM_NListtree_DoubleClick

NAME

MUIM_NListtree_DoubleClick -- Called for every double click. (V1)

SYNOPSIS

DoMethodA(obj, MUIM_NListtree_DoubleClick,
struct MUIP_NListtree_DoubleClick *doubleclickmsg);

FUNCTION

This method must not be called directly. It will be called by
NListtree if an double click event occurs. This is an addition to
MUIA_NListtree_DoubleClick

INPUTS

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

MUIA_NListtree_DoubleClick

1.35 NListtree.mcc/MUIM_NListtree_Exchange

NAME

MCC_NListtree 27 / 51

MUIM_NListtree_Exchange -- Exchanges two tree nodes. (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_Exchange,
struct MUI_NListtree_TreeNode *listnode1,
struct MUI_NListtree_TreeNode *treenode1,
struct MUI_NListtree_TreeNode *listnode2,
struct MUI_NListtree_TreeNode *treenode2,
ULONG flags);

FUNCTION

Exchange two tree nodes.

INPUTS

listnode1 - Specify the list node of the entry which
should be exchanged.

MUIV_NListtree_Exchange_ListNode1_Root
The root list is used.

MUIV_NListtree_Exchange_ListNode1_Active
The active list (the list of the active node) is used.

treenode1 - Specify the node which should be exchanged.

MUIV_NListtree_Exchange_TreeNode1_Head
The head of the list defined in ’listnode1’ is
exchanged.

MUIV_NListtree_Exchange_TreeNode1_Tail
The tail of the list defined in ’listnode1’ is
exchanged.

MUIV_NListtree_Exchange_TreeNode1_Active
The active node is exchanged.

listnode2 - Specify the second list node which is used for exchange.

MUIV_NListtree_Exchange_ListNode2_Root
The root list.

MUIV_NListtree_Exchange_ListNode2_Active
The list of the active node.

treenode2 - This node is the second entry which is exchanged.

MUIV_NListtree_Exchange_TreeNode2_Head
The node ’treenode1’ is exchanged with the head of the
list defined in ’listnode2’.

MCC_NListtree 28 / 51

MUIV_NListtree_Exchange_TreeNode2_Tail
The node ’treenode1’ is exchanged with the tail of the
list defined in ’ln2’.

MUIV_NListtree_Exchange_TreeNode2_Active:
The node ’treenode1’ is exchanged with the active node.

MUIV_NListtree_Exchange_TreeNode2_Up:
The node ’treenode1’ is exchanged with the entry
previous to the one specified in ’treenode1’.

MUIV_NListtree_Exchange_TreeNode2_Down:
The node ’treenode1’ is exchanged with the entry next
(the successor) to the one specified in ’treenode1’.

RESULT

EXAMPLE

// Exchange the active entry with the successor.
DoMethod(obj,

MUIV_NListtree_Exchange_ListNode1_Active,
MUIV_NListtree_Exchange_TreeNode1_Active,
MUIV_NListtree_Exchange_ListNode2_Active,
MUIV_NListtree_Exchange_TreeNode2_Down,
0);

NOTES

BUGS

SEE ALSO

MUIM_NListtree_Move, MUIM_NListtree_Insert,
MUIM_NListtree_Remove

1.36 NListtree.mcc/MUIM_NListtree_FindName

NAME

MUIM_NListtree_FindName -- Find node using name match. (V1)

SYNOPSIS

struct MUI_NListtree_TreeNode *treenode =
DoMethod(obj, MUIM_NListtree_FindName,

struct MUI_NListtree_TreeNode *listnode,
STRPTR name, ULONG flags);

FUNCTION

MCC_NListtree 29 / 51

Find a node which name matches the specified one using the list node as
start point..

INPUTS
listnode - Specify the node which list is used to find the name.

MUIV_NListtree_FindName_ListNode_Root
Use the root list as the base list.

MUIV_NListtree_FindName_ListNode_Active
Use the list of the active node as the base.

name - Specify the name of the node to find. But you can search
for anything in tn_Name or tn_User field here by simply
supplying the searched data and handling it in your
own FindNameHook.

flags:

MUIV_NListtree_FindName_Flag_SameLevel
Only nodes on the same level are affected.

MUIV_NListtree_FindName_Flag_Visible
The node is only returned if it is visible (only visible
entries are checked).

MUIV_NListtree_FindName_Flag_Activate
If found, the entry will be activated.

MUIV_NListtree_FindName_Flag_Selected
Find only selected nodes.

MUIV_NListtree_FindName_Flag_StartNode
The specified entry in listnode is the start point for
search and must not be a list node. It can also be a
normal entry.

RESULT

Returns the found node if available, NULL otherwise.

EXAMPLE

// Find 2nd node by name.
struct MUI_NListtree_TreeNode *treenode =

DoMethod(obj, MUIM_NListtree_FindName,
listnode, "2nd node",
MUIV_NListtree_FindName_SameLevel|
MUIV_NListtree_FindName_Visible);

if (treenode == NULL)
{

PrintToUser("No matching entry found.");
}

MCC_NListtree 30 / 51

NOTES

BUGS

SEE ALSO

MUIM_NListtree_FindUserData, MUIM_NListtree_GetEntry,
MUIA_NListtree_FindNameHook

1.37 NListtree.mcc/MUIM_NListtree_FindUserData

NAME

MUIM_NListtree_FindUserData -- Find node upon user data. (V1)

SYNOPSIS

struct MUI_NListtree_TreeNode *treenode =
DoMethod(obj, MUIM_NListtree_FindUserData,

struct MUI_NListtree_TreeNode *listnode,
APTR userdata, ULONG flags);

FUNCTION

Find a node which user data matches the specified one using the list
node as start point..
This method is designed as a second possibility for searching.
Because you are able to search for anything, you may set special
hooks for searching two different fields in two different hooks with
these two methods.

INPUTS
listnode - Specify the node which list is used to find the user data.

MUIV_NListtree_FindUserData_ListNode_Root
Use the root list as the base list.

MUIV_NListtree_FindUserData_ListNode_Active
Use the list of the active node as the base.

userdata - Specify the user data of the node to find. You can search
for anything in tn_Name or tn_User field here by simply
supplying the searched data and handling it in your
own FindUserDataHook.

flags:

MUIV_NListtree_FindUserData_Flag_SameLevel
Only nodes on the same level are affected.

MCC_NListtree 31 / 51

MUIV_NListtree_FindUserData_Flag_Visible
The node is only returned if it is visible (only visible
entries are checked).

MUIV_NListtree_FindUserData_Flag_Activate
If found, the entry will be activated.

MUIV_NListtree_FindUserData_Flag_Selected
Find only selected nodes.

MUIV_NListtree_FindUserData_Flag_StartNode
The specified entry in listnode is the start point for
search and must not be a list node. It can also be a
normal entry.

RESULT

Returns the found node if available, NULL otherwise.

EXAMPLE

// Find node by user data.
struct MUI_NListtree_TreeNode *treenode =

DoMethod(obj, MUIM_NListtree_FindUserData,
listnode, "my data",
MUIV_NListtree_FindUserData_SameLevel|
MUIV_NListtree_FindUserData_Visible);

if (treenode == NULL)
{

PrintToUser("No matching entry found.");
}

NOTES

BUGS

SEE ALSO

MUIM_NListtree_FindName, MUIM_NListtree_GetEntry,
MUIA_NListtree_FindUserDataHook

1.38 NListtree.mcc/MUIM_NListtree_GetEntry

NAME

MUIM_NListtree_GetEntry -- Get another node in relation to this. (V1)

SYNOPSIS

MCC_NListtree 32 / 51

struct MUI_NListtree_TreeNode *rettreenode =
DoMethod(obj, MUIM_NListtree_GetEntry,

struct MUI_NListtree_TreeNode *treenode,
LONG pos, ULONG flags);

FUNCTION

Get another node in relation to the specified list or node.

INPUTS

treenode - Define the node which is used to find another one.
This can also be a list node, if the position is
related to a list.

MUIV_NListtree_GetEntry_ListNode_Root
The root list is used.

MUIV_NListtree_GetEntry_ListNode_Active:
The list with the active entry is used.

pos - The relative position of the node ’treenode’.

MUIV_NListtree_GetEntry_Position_Head
The head of the list is returned.

MUIV_NListtree_GetEntry_Position_Tail
The tail of the list is returned.

MUIV_NListtree_GetEntry_Position_Active
The active node is returned. If there is no active entry,
NULL is returned.

MUIV_NListtree_GetEntry_Position_Next
The node next to the specified node is returned. Returns NULL
if there is no next entry.

MUIV_NListtree_GetEntry_Position_Previous
The node right before the specified node is returned.
Returns NULL if there is no previous entry (if ’treenode’
is the head of the list.

MUIV_NListtree_GetEntry_Position_Parent
The list node of the specified ’treenode’ is returned.

flags:

MUIV_NListtree_GetEntry_Flag_SameLevel:
Only nodes in the same level are affected.

MUIV_NListtree_GetEntry_Flag_Visible:
The position is counted on visible entries only.

RESULT

MCC_NListtree 33 / 51

Returns the requested node if available, NULL otherwise.

EXAMPLE

// Get the next entry.
struct MUI_NListtree_TreeNode *treenode =

DoMethod(obj, MUIM_NListtree_GetEntry, treenode,
MUIV_NListtree_GetEntry_Position_Next, 0);

if (treenode != NULL)
{

PrintToUser("Next entry found!");
}

NOTES

BUGS

SEE ALSO

MUIM_NList_GetEntry

1.39 NListtree.mcc/MUIM_NListtree_GetNr

NAME

MUIM_NListtree_GetNr -- Get the position number of a tree node. (V1)

SYNOPSIS

ULONG number = DoMethod(obj, MUIM_NListtree_GetNr,
struct MUI_NListtree_TreeNode *treenode, ULONG flags);

FUNCTION

Get the position number of the specified tree node.

INPUTS

treenode - Specify the node to count the position of.

MUIV_NListtree_GetNr_TreeNode_Active:
The position is counted related to the active node.

flags:

MUIV_NListtree_GetNr_Flag_CountAll
Returns the number of all entries.

MCC_NListtree 34 / 51

MUIV_NListtree_GetNr_Flag_CountLevel
Returns the number of entries of the list the
specified node is in.

MUIV_NListtree_GetNr_Flag_CountList
Returns the number of the entries of the active list node
(the specified node is in).

MUIV_NListtree_GetNr_Flag_ListEmpty
Returns TRUE if the specified list node is empty.

MUIV_NListtree_GetNr_Flag_Visible
Returns the position number of an visible entry. -1 if the
entry is invisible. The position is counted on visible entries
only.

RESULT

EXAMPLE

// Check if the active (list) node is empty.
ULONG empty = DoMethod(obj, MUIM_NListtree_GetNr,

MUIV_NListtree_GetNr_TreeNode_Active,
MUIV_NListtree_GetNr_Flag_ListEmpty);

if (empty == TRUE)
{

AddThousandEntries();
}

NOTES

BUGS

SEE ALSO

MUIM_NListtree_GetEntry

1.40 NListtree.mcc/MUIM_NListtree_Insert

NAME

MUIM_NListtree_Insert -- Insert an entry at the specified position. (V1)

SYNOPSIS

struct MUI_NListtree_TreeNode *treenode =
DoMethod(obj, MUIM_NListtree_Insert,

STRPTR name, APTR userdata,
struct MUI_NListtree_TreeNode *listnode,
struct MUI_NListtree_TreeNode *prevtreenode,

MCC_NListtree 35 / 51

ULONG flags);

FUNCTION

Insert an entry at the position, which is defined in ’listnode’
and ’prevtreenode’. Name contains the name of the entry as string
which is buffered. The user entry can be used as you like.

INPUTS

name/userdata - What the names say ;-)

listnode - Specify the node which list is used to insert
the entry.

MUIV_NListtree_Insert_ListNode_Root
Use the root list.

MUIV_NListtree_Insert_ListNode_Active
Use the list of the active node.

MUIV_NListtree_Insert_ListNode_ActiveFallback
Use the list of the active node. If no list is active,
an automatic fallback to the root list is done.

MUIV_NListtree_Insert_ListNode_LastInserted
Insert entry in the list the last entry was inserted.

prevtreenode - The node which is the predecessor of the node
to insert.

MUIV_NListtree_Insert_PrevNode_Head
The entry will be inserted at the head of the list.

MUIV_NListtree_Insert_PrevNode_Tail
The entry will be inserted at the tail of the list.

MUIV_NListtree_Insert_PrevNode_Active
The entry will be inserted after the active node of
the list. If no entry is active, the entry will be
inserted at the tail.

MUIV_NListtree_Insert_PrevNode_Sorted:
The entry will be inserted using the defined sort hook.

flags:

MUIV_NListtree_Insert_Flag_Active
The inserted entry will be set to active. This means the
cursor is moved to the newly inserted entry. If the entry
was inserted into a closed node, it will be opened.

MUIV_NListtree_Insert_Flag_NextNode

MCC_NListtree 36 / 51

’prevtreenode’ is the successor, not the predecessor.

RESULT

A pointer to the newly inserted entry.

EXAMPLE

// Insert an entry after the active one and make it active.
DoMethod(obj, MUIM_NListtree_Insert, "Hello", NULL,

MUIV_NListtree_Insert_ListNode_Active,
MUIV_NListtree_Insert_PrevNode_Active,
MUIV_NListtree_Insert_Flag_Active);

NOTES

BUGS

Not implemented yet:
MUIV_NListtree_Insert_Flag_NextNode

SEE ALSO

MUIA_NListtree_ConstructHook, MUIA_NListtree_CompareHook

1.41 NListtree.mcc/MUIM_NListtree_InsertStruct

NAME

MUIM_NListtree_InsertStruct -- Insert a structure such as a path
using a delimiter. (V1)

SYNOPSIS

struct MUI_NListtree_TreeNode *treenode =
DoMethod(obj, MUIM_NListtree_InsertStruct,

STRPTR name, APTR userdata,
STRPTR delimiter, ULONG flags);

FUNCTION

Insert a structure into the list such as a path or
something similar (like ListtreeName.mcc does). The name is
splitted using the supplied delimiter. For each name part a
new tree entry is generated. If you have Images/aphaso/Image.mbr,
the structure will be build es follows:

+ Images

MCC_NListtree 37 / 51

+ aphaso
- Image.mbr

If a part of the structure is already present, it will be used to
insert.

INPUTS

name - Data containing (must not) one or more delimiters as
specified in delimiter (Images/aphaso/Image.mbr for
example).

userdata - Your personal data.

delimiter - The delimiter(s) used in the name field (":/" or
something).

flags:

Use normal insert flags here (see there).

RESULT

A pointer to the last instance of newly inserted entries.

EXAMPLE

// Insert a directory path.
path = MyGetPath(lock);

DoMethod(obj, MUIM_NListtree_InsertStruct,
path, NULL, ":/", 0);

NOTES

BUGS

SEE ALSO

MUIA_NListtree_Insert

1.42 NListtree.mcc/MUIM_NListtree_Move

NAME

MUIM_NListtree_Move -- Move an entry to the specified position. (V1)

SYNOPSIS

MCC_NListtree 38 / 51

DoMethod(obj, MUIM_NListtree_Move,
struct MUI_NListtree_TreeNode *oldlistnode,
struct MUI_NListtree_TreeNode *oldtreenode,
struct MUI_NListtree_TreeNode *newlistnode,
struct MUI_NListtree_TreeNode *newtreenode,
ULONG flags);

FUNCTION

Move an entry to the position after a defined node.

INPUTS

oldlistnode - Specify the node which list is used to find the
entry. The search is started at the head of this
list.

MUIV_NListtree_Move_OldListNode_Root
The root list is used as the starting point.

MUIV_NListtree_Move_OldListNode_Active
The active list (the list of the active node) is used as
the starting point.

oldtreenode - Specify the node which should be moved.

MUIV_NListtree_Move_OldTreeNode_Head
The head of the list defined in ’oldlistnode’ is moved.

MUIV_NListtree_Move_OldTreeNode_Tail
The tail of the list defined in ’oldlistnode’ is moved.

MUIV_NListtree_Move_OldTreeNode_Active
The active node is moved.

newlistnode - Specify the node which list is used to find the
entry. The search is started at the head of this
list.

MUIV_NListtree_Move_NewListNode_Root
The root list.

MUIV_NListtree_Move_NewListNode_Active
The list of the active node.

newtreenode - This node is the predecessor of the entry which is
inserted.

MUIV_NListtree_Move_NewTreeNode_Head
The node is moved to the head of the list defined in
’newlistnode’.

MUIV_NListtree_Move_NewTreeNode_Tail
The node is moved to the tail of the list defined in
’newlistnode’.

MCC_NListtree 39 / 51

MUIV_NListtree_Move_NewTreeNode_Active:
The node is moved to one entry after the active node.

MUIV_NListtree_Move_NewTreeNode_Sorted:
The node is moved to the list using the sort hook.

flags - Some flags to adjust moving.

MUIV_NListtree_Move_Flag_KeepStructure
The full tree structure from the selected entry to
the root list is moved (created at destination).

RESULT

EXAMPLE

// Move an entry to the head of another list-node.
DoMethod(obj,

MUIV_NListtree_Move_OldListNode_Active,
MUIV_NListtree_Move_OldTreeNode_Active,
somelistmode,
MUIV_NListtree_Move_NewTreeNode_Head,
0);

NOTES

BUGS

SEE ALSO

MUIM_NListtree_Insert, MUIM_NListtree_Remove,
MUIM_NListtree_Exchange, MUIA_NListtree_CompareHook,
MUIM_NListtree_Copy

1.43 NListtree.mcc/MUIM_NListtree_MultiTest

NAME

MUIM_NListtree_MultiTest -- Called for every selection. (V1)

SYNOPSIS

DoMethodA(obj, MUIM_NListtree_MultiTest,
struct MUIP_NListtree_MultiTest *multimessage);

FUNCTION

This method must not be called directly. It will be called by
NListtree just before multiselection. You can overload it and

MCC_NListtree 40 / 51

return TRUE or FALSE whether you want the entry to be multi-
selectable or not.

INPUTS

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

MUIM_NListtree_Select, MUIA_NListtree_MultiTest

1.44 NListtree.mcc/MUIM_NListtree_NextSelected

NAME

MUIM_NListtree_NextSelected -- Get next selected tree node. (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_NextSelected,
struct MUI_NListtree_TreeNode **treenode);

FUNCTION

Iterate through the selected entries of a tree. This method steps
through the contents of a (multi select) list tree and returns
every entry that is currently selected. When no entry is selected
but an entry is active, only the active entry will be returned.

This behaviour will result in not returning the active entry when
you have some other selected entries somewhere in your list. Since
the active entry just acts as some kind of cursor mark, this seems
to be the only sensible possibility to handle multi selection
together with keyboard control.

INPUTS

treenode - A pointer to a pointer of struct MUI_NListtree_TreeNode
that will hold the returned entry. Must be set to
MUIV_NListtree_NextSelected_Start at start of iteration
and is set to MUIV_NListtree_NextSelected_End when
iteration is finished.

MUIV_NListtree_NextSelected_Start Set this to start iteration.

MCC_NListtree 41 / 51

MUIV_NListtree_NextSelected_End Will be set to this, if
last selected entry reached.

RESULT

EXAMPLE

// Iterate through a list
struct MUI_NListtree_TreeNode *treenode;

treenode = MUIV_NListtree_NextSelected_Start;

for (;;)
{

DoMethod(listtree, MUIM_NListtree_NextSelected, &treenode);

if (treenode==MUIV_NListtree_NextSelected_End)
break;

printf("selected: %s\n", treenode->tn_Name);
}

NOTES

BUGS

SEE ALSO

MUIM_NListtree_PrevSelected, MUIM_NListtree_Select

1.45 NListtree.mcc/MUIM_NListtree_Open

NAME

MUIM_NListtree_Open -- Open the specified tree node. (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_Open,
struct MUI_NListtree_TreeNode *listnode,
struct MUI_NListtree_TreeNode *treenode,
ULONG flags);

FUNCTION

Opens a node in the listtree. To open a child, which isn’t displayed,
use ’MUIV_NListtree_Open_ListNode_Parent’ to open all its parents, too.

Only nodes can be opened.

MCC_NListtree 42 / 51

INPUTS

listnode - Specify the node which list is used to open the node.

MUIV_NListtree_Open_ListNode_Root
The root list is used.

MUIV_NListtree_Open_ListNode_Parent
Indicates, that all the parents of the node specified in
’treenode’ should be opened too.

MUIV_NListtree_Open_ListNode_Active
The list of the active node is used.

treenode - The node to open.

MUIV_NListtree_Open_TreeNode_Head
Opens the head node of the list.

MUIV_NListtree_Open_TreeNode_Tail
Opens the tail node of the list.

MUIV_NListtree_Open_TreeNode_Active
The active node will be opened.

MUIV_NListtree_Open_TreeNode_All:
All the nodes of the list are opened.

RESULT

EXAMPLE
// Open the active list.
DoMethod(obj, MUIM_NListtree_Open,

MUIV_NListtree_Open_ListNode_Active,
MUIV_NListtree_Open_TreeNode_Active, 0);

NOTES

BUGS

SEE ALSO
MUIM_NListtree_Close

1.46 NListtree.mcc/MUIM_NListtree_PrevSelected

NAME

MUIM_NListtree_PrevSelected -- Get previous selected tree node. (V1)

SYNOPSIS

MCC_NListtree 43 / 51

DoMethod(obj, MUIM_NListtree_PrevSelected,
struct MUI_NListtree_TreeNode **treenode);

FUNCTION

Iterate reverse through the selected entries of a tree. This method
steps through the contents of a (multi select) list tree and returns
every entry that is currently selected. When no entry is selected
but an entry is active, only the active entry will be returned.

This behaviour will result in not returning the active entry when
you have some other selected entries somewhere in your list. Since
the active entry just acts as some kind of cursor mark, this seems
to be the only sensible possibility to handle multi selection
together with keyboard control.

INPUTS

treenode - A pointer to a pointer of struct MUI_NListtree_TreeNode
that will hold the returned entry. Must be set to
MUIV_NListtree_PrevSelected_Start at start of iteration
an the end and is set to MUIV_NListtree_PrevSelected_End
when first selected entry is reached and iteration is
finished.

MUIV_NListtree_PrevSelected_Start Set this to start iteration.
MUIV_NListtree_PrevSelected_End Will be set to this, if

last selected entry reached.

RESULT

EXAMPLE

// Iterate through a list (reverse)
struct MUI_NListtree_TreeNode *treenode;

treenode = MUIV_NListtree_PrevSelected_Start;

for (;;)
{

DoMethod(listtree, MUIM_NListtree_PrevSelected, &treenode);

if (treenode==MUIV_NListtree_PrevSelected_End)
break;

printf("selected: %s\n", treenode->tn_Name);
}

NOTES

BUGS

MCC_NListtree 44 / 51

SEE ALSO

MUIM_NListtree_NextSelected, MUIM_NListtree_Select

1.47 NListtree.mcc/MUIM_NListtree_Redraw

NAME

MUIM_NListtree_Redraw -- Redraw the specified tree node. (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_Redraw,
struct MUI_NListtree_TreeNode *treenode, ULONG flags);

FUNCTION

Redraw the specified entry. See special values for completeness.

INPUTS

treenode - The tree node to be redrawn.

MUIV_NListtree_Redraw_Active
Redraw the active entry.

MUIV_NListtree_Redraw_All
Redraw the complete visible tree.

flags:

MUIV_NListtree_Redraw_Flag_Nr
The data specified in ’treenode’ is the entry number,
not the tree node itself.

RESULT

EXAMPLE

// Redraw the active entry.
DoMethod(obj, MUIM_NListtree_Redraw,

MUIV_NListtree_Redraw_Active, 0);

NOTES

BUGS

SEE ALSO

MCC_NListtree 45 / 51

MUIM_NList_TestPos

1.48 NListtree.mcc/MUIM_NListtree_Remove

NAME

MUIM_NListtree_Remove -- Remove the specified entry(ies). (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_Remove,
struct MUI_NListtree_TreeNode *listnode,
struct MUI_NListtree_TreeNode *treenode,
ULONG flags);

FUNCTION

Removes a node or nodes from the listtree. When the active entry
is removed, the successor will become active.

INPUTS

listnode - Specify the node which list is used to find the entry
which should be removed. The search is started at the
begin of this list.

MUIV_NListtree_Remove_ListNode_Root
The root list is used.

MUIV_NListtree_Remove_ListNode_Active
The list of the active node is used.

treenode - The node which should be removed. If there are children
of this node, they are also removed.

MUIV_NListtree_Remove_TreeNode_Head
The head of the list defined in ’listnode’ is removed.

MUIV_NListtree_Remove_TreeNode_Tail
The tail of the list defined in ’listnode’ is removed.

MUIV_NListtree_Remove_TreeNode_Active
Removes the active node.

MUIV_NListtree_Remove_TreeNode_All
All nodes of the list which is specified in ’listnode’,
are removed. Other nodes of parent lists are not
affected.

MCC_NListtree 46 / 51

MUIV_NListtree_Remove_TreeNode_Selected
All selected nodes are removed.

RESULT

EXAMPLE

// Remove the active entry if delete is pressed!
DoMethod(bt_delete, MUIM_Notify, MUIA_Pressed, FALSE,

lt_list, 4, MUIM_NListtree_Remove,
MUIV_NListtree_Remove_ListNode_Active,
MUIV_NListtree_Remove_TreeNode_Active, 0);

NOTES

BUGS

SEE ALSO

MUIM_NListtree_Insert, MUIA_NListtree_DestructHook,
MUIM_NList_Active

1.49 NListtree.mcc/MUIM_NListtree_Rename

NAME

MUIM_NListtree_Rename -- Rename the specified node. (V1)

SYNOPSIS

struct MUI_NListtree_TreeNode *treenode =
DoMethod(obj, MUIM_NListtree_Rename,

struct MUI_NListtree_TreeNode *treenode,
STRPTR newname, ULONG flags);

FUNCTION

Rename the specified node.

If you want to rename the tn_User field (see flags below), the construct
and destruct hooks are used!
If you have not specified these hooks, only the pointers will be copied.

INPUTS

treenode - Specifies the node which should be renamed.

MUIV_NListtree_Rename_TreeNode_Active:
Rename the active tree node.

MCC_NListtree 47 / 51

newname - The new name or pointer.

flags:

MUIV_NListtree_Rename_Flag_User
The tn_User field is renamed.

MUIV_NListtree_Rename_Flag_NoRefresh
The list entry will not be refreshed.

RESULT

Returns the pointer of the renamed tree node.

EXAMPLE

// Rename the active tree node.
DoMethod(obj, MUIM_NListtree_Rename,

MUIV_NListtree_Rename_TreeNode_Active,
"Very new name", 0);

NOTES

BUGS

SEE ALSO

MUIA_NListtree_ConstructHook, MUIA_NListtree_DestructHook

1.50 NListtree.mcc/MUIM_NListtree_Select

NAME

MUIM_NListtree_Select -- Select the specified tree node. (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_Select,
struct MUI_NListtree_TreeNode *treenode, LONG seltype,
LONG selflags, LONG *state);

FUNCTION

Select or unselect a tree entry or ask an entry about its state.
See special values for completeness.

INPUTS

MCC_NListtree 48 / 51

treenode - The tree node to be selected/unselected/asked.

MUIV_NListtree_Select_Active For the active entry.
MUIV_NListtree_Select_All For all entries.
MUIV_NListtree_Select_Visible For all visible entries.

seltype - Type of selection/unselection/ask

MUIV_NListtree_Select_Off Unselect entry.
MUIV_NListtree_Select_On Select entry.
MUIV_NListtree_Select_Toggle Toggle entries state.
MUIV_NListtree_Select_Ask Just ask about the state.

selflags - Some kind of specials.

MUIV_NListtree_Select_Flag_Force
Adding this flag to seltype forces the selection by
bypassing the multi test hook.

state - Pointer to a longword. If not NULL, it will be filled
with the current selection state of the entry.

RESULT

EXAMPLE

// Select the active entry.
LONG retstate;

DoMethod(obj, MUIM_NListtree_Select,
MUIV_NListtree_Select_Active, MUIV_NListtree_Select_On,
0, &retstate);

// We must check this, because the multi test hook may
// cancel our selection.
if (retstate == MUIV_NListtree_Select_On) {

...
}

NOTES

If (treenode == MUIV_NListtree_Select_All) and
(seltype == MUIV_NListtree_Select_Ask), state will be filled
with the total number of selected entries.

NEW for final 18.6:
If (treenode == MUIV_NListtree_Select_Active) and
(seltype == MUIV_NListtree_Select_Ask), state will be the
active entry, if any, or NULL.

If only the active entry is selected, has a cursor mark (see
MUIM_NListtree_NextSelected for that), you will receive 0 as
the number of selected entries.

MCC_NListtree 49 / 51

BUGS

SEE ALSO

MUIA_NListtree_MultiTestHook

1.51 NListtree.mcc/MUIM_NListtree_Sort

NAME

MUIM_NListtree_Sort -- Sort the specified list node. (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_Sort,
struct MUI_NListtree_TreeNode *listnode,
ULONG flags);

FUNCTION

Sort the specified list node using the sort hook.

INPUTS

listnode - List node to sort.

MUIV_NListtree_Sort_ListNode_Root
Sort the root list.

MUIV_NListtree_Sort_ListNode_Active
Sort the list node of the active entry.

MUIV_NListtree_Sort_TreeNode_Active
Sorts the childs of the active entry if a list.

flags - Control the part where sorting is done.

MUIV_NListtree_Sort_Flag_RecursiveOpen
Sort the list recursive. All open child nodes of the
node specified in ’listnode’ will be sorted too.

MUIV_NListtree_Sort_Flag_RecursiveAll
Sort the list recursive with ALL child nodes of the
node specified in ’listnode’.

RESULT

EXAMPLE

// Sort the list of the active node.
DoMethod(obj, MUIM_NListtree_Sort,

MCC_NListtree 50 / 51

MUIV_NListtree_Sort_ListNode_Active, 0);

NOTES

BUGS

SEE ALSO

MUIA_NListtree_SortHook

1.52 NListtree.mcc/MUIM_NListtree_TestPos

NAME

MUIM_NListtree_TestPos -- Get information about entry at x/y pos. (V1)

SYNOPSIS

DoMethod(obj, MUIM_NListtree_TestPos, LONG xpos, LONG ypos,
struct MUI_NListtree_TestPos_Result *testposresult);

FUNCTION

Find out some information about the currently displayed entry at a
certain position (x/y-pos).

This is very useful for Drag&Drop operations.

INPUTS

xpos - X-position.
ypos - Y-position.
testposresult - Pointer to a valid MUI_NListtree_TestPos_Result

structure.

RESULT

tpr_TreeNode - The tree node under the requested position or NULL
if there is no entry displayed.

The tpr_Type field contains detailed information about the relative
position:

MUIV_NListtree_TestPos_Result_Above
MUIV_NListtree_TestPos_Result_Below
MUIV_NListtree_TestPos_Result_Onto
MUIV_NListtree_TestPos_Result_Sorted

tpr_Column - The column unter the specified position or -1 if
no valid column.

MCC_NListtree 51 / 51

EXAMPLE

// Entry under the cursor?
struct MUI_NListtree_TestPos_Result tpres;

DoMethod(obj, MUIM_NListtree_TestPos, msg->imsg->MouseX,
msg->imsg->MouseY, &tpres);

if (tpres.tpr_Entry != NULL)
{

// Do something very special here...
}

NOTES

BUGS

SEE ALSO

MUIM_NList_TestPos

	MCC_NListtree
	MCC_NListtree.doc
	NListtree.mcc/background (information)
	NListtree.mcc/MUIA_NListtree_Active
	NListtree.mcc/MUIA_NListtree_ActiveList
	NListtree.mcc/MUIA_NListtree_AutoVisible
	NListtree.mcc/MUIA_NListtree_CloseHook
	NListtree.mcc/MUIA_NListtree_CompareHook
	NListtree.mcc/MUIA_NListtree_ConstructHook
	NListtree.mcc/MUIA_NListtree_CopyToClipHook
	NListtree.mcc/MUIA_NListtree_DestructHook
	NListtree.mcc/MUIA_NListtree_DisplayHook
	NListtree.mcc/MUIA_NListtree_DoubleClick
	NListtree.mcc/MUIA_NListtree_DragDropSort
	NListtree.mcc/MUIA_NListtree_DropTarget
	NListtree.mcc/MUIA_NListtree_DropTargetPos
	NListtree.mcc/MUIA_NListtree_DropType
	NListtree.mcc/MUIA_NListtree_DupNodeName
	NListtree.mcc/MUIA_NListtree_EmptyNodes
	NListtree.mcc/MUIA_NListtree_FindNameHook
	NListtree.mcc/MUIA_NListtree_FindUserDataHook
	NListtree.mcc/MUIA_NListtree_Format
	NListtree.mcc/MUIA_NListtree_MultiSelect
	NListtree.mcc/MUIA_NListtree_MultiTestHook
	NListtree.mcc/MUIA_NListtree_OpenHook
	NListtree.mcc/MUIA_NListtree_Quiet
	NListtree.mcc/MUIA_NListtree_ShowTree
	NListtree.mcc/MUIA_NListtree_Title
	NListtree.mcc/MUIA_NListtree_TreeColumn
	NListtree.mcc/MUIM_NListtree_Active
	NListtree.mcc/MUIM_NListtree_Clear
	NListtree.mcc/MUIM_NListtree_Close
	NListtree.mcc/MUIM_NListtree_Copy
	NListtree.mcc/MUIM_NListtree_CopyToClip
	NListtree.mcc/MUIM_NListtree_DoubleClick
	NListtree.mcc/MUIM_NListtree_Exchange
	NListtree.mcc/MUIM_NListtree_FindName
	NListtree.mcc/MUIM_NListtree_FindUserData
	NListtree.mcc/MUIM_NListtree_GetEntry
	NListtree.mcc/MUIM_NListtree_GetNr
	NListtree.mcc/MUIM_NListtree_Insert
	NListtree.mcc/MUIM_NListtree_InsertStruct
	NListtree.mcc/MUIM_NListtree_Move
	NListtree.mcc/MUIM_NListtree_MultiTest
	NListtree.mcc/MUIM_NListtree_NextSelected
	NListtree.mcc/MUIM_NListtree_Open
	NListtree.mcc/MUIM_NListtree_PrevSelected
	NListtree.mcc/MUIM_NListtree_Redraw
	NListtree.mcc/MUIM_NListtree_Remove
	NListtree.mcc/MUIM_NListtree_Rename
	NListtree.mcc/MUIM_NListtree_Select
	NListtree.mcc/MUIM_NListtree_Sort
	NListtree.mcc/MUIM_NListtree_TestPos

