
ResEdit:
A Macintosh Resource Editor

© 1985 Apple Computer Inc.

This document describes the 1.0A1 release of ResEdit.

Contents:

1 About ResEdit
2 Using ResEdit
2 Working with Files
3 Working within a File
4 Working within a Resource Type

Changing a Resource's Type
5 Editing Individual Resources

CURS Resources
DITL Resources
FONT Resources
ICN# Resources
WIND Resources

8 Creating a Resource Template

Note: As in Inside Macintosh, resource type names are shown within single quotes; for example, 'STR '. The quotes are
not part of the name.

About ResEdit

ResEdit is an interactive, graphically based tool for manipulating the various resources in a Macintosh application. It lets
you create and edit all resource types except 'CODE', and to copy and paste all resource types (including 'CODE'). ResEdit
actually includes a number of individual resource editors: these include a general resource editor, for editing any resource
in hex format, and several individual resource editors for specific types of resources. You can also write your own resource
editors to use with ResEdit.

ResEdit is especially useful for creating and changing graphic resources such as dialogs or icons. For example, you can use
ResEdit to put together a quick prototype of a user interface and try out different formats and presentations of resources.
ResEdit is also useful for translating resources into a foreign language without having to recompile the program.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

You can also extend ResEdit by creating templates for your own resource types. The generic way of editing a resource is to
fill in the fields of a dialog box—this is the way you currently edit 'BNDL's, 'FREF's, 'APPL's, etc. The layout of these
dialog boxes is determined from a template in ResEdit's resource file—you can add templates to edit new resource types.

Using ResEdit

To start ResEdit from the Finder, select and open the ResEdit icon. ResEdit displays a window that lists the files for each
disk volume currently mounted.

Working with Files

To list the resource types for a file, select and open the file name from the list. (You can select a name by clicking it or by
typing one or more characters of the name.)

When a disk volume window is the active window, the File menu commands act as follows:

New Creates a new file.

Open Opens the selected file (this is the same as double-
clicking on the file name).

Get Info Displays file information and allows you to change it.

Close Closes the volume window (this is the same as clicking
the close box). If it's a 3 1/2-inch disk, the disk will be ejected.

Caution: You can edit any file shown in the window, including the System file and ResEdit itself. However, it's
dangerous to edit a file that's currently running. Edit a copy of the file instead (for example, the System file on a non-
boot volume).

Note that ResEdit will recognize a new disk when it's inserted and also handles more than one drive.

Note also that you can use ResEdit to copy or delete files.

Working within a File

When you open a file, a window displays a list of all the resource types in that file. While this window is the active
window, you can create new resources, copy or delete existing resources, and paste resources from other files.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

(picture)†(picture)(picture)–@ò4@(picture)†@(picture)†@(picture)†¯Œ‡Œ¿ŒÄ¿—Ä(picture)Ä—
(picture)3(picture)3⁄‡(picture)Ä0⁄3(picture)ÅÛ<⁄¿33(picture)É3⁄¿33(picture)„3⁄3?

(picture)É3⁄30(picture)É3⁄‡31(picture)É3⁄¿3(picture)ÒÛ⁄ÕÕÕÕÕÕˇÕ™ÕUÕ™ÕUÕ™ÕU´ËˇÁ™
VÈ(picture)(picture)’ËU™È(picture)Á™ VÈ(picture)(picture)’ËU™È(picture)Á™VˆœÄ˜(picture)

(picture)’ËU™ˆÃ¿˜(picture)Á™VˆÃ¿˜(picture)(picture)’ËU™ˆÃ¿˜(picture)Á™VˆÃ¿˜(picture)
(picture)’ËU™ˆÃ¿˜(picture)Á™VˆÃ¿˜(picture)(picture)’ËU™ˆÃ¿˜(picture)Á™VˆœÄ˜(picture)

(picture)’ËU™È(picture)Á™ VÈ(picture)(picture)’ËU™È(picture)Á™ VÈ(picture)(picture)’ËU´ËˇÁ™
VÈ(picture)(picture)’ËU™?Èˇ˙Í™V ÈÍU™~ ÈÍ™VC‡ÈÍU™CÄ ÈÍ™V@Ä ˙(picture)ôÄ`¿˜ÍU™@Ä

˙(picture)ôÄ`¿˜Í™V@Ä ˙(picture)ôèf8¯x¯˘ÍU™@Ä ˙(picture)ôôúld˛Ã˘Í™V@Ä
˙(picture)ôôòxp˛Ã˘ÍU™@Ä†˙(picture)ôôòp8˛Ã˘Í™V�Ä`˙(picture)ôôòx˛Ã˘ÍU™ ˙(picture)ôòlL˛Ã˘Í™V

˙(picture)˛f8Ãx¯˘ÍU™ Ú¿˘Í™V Ú¿˘ÍU™ ÈÍ™V ÈÍUò4@Ä(picture)†@Ä(picture)†@Ä(picture)†™?Èˇ˙Í™V<
ÈÍU™C‡ ËˇÏ™V@ È(picture)(picture)’ÌU

™@ È(picture)Ï™V@c¿È(picture)(picture)’ÌU™@d>˝ˇfl˛ˇ‡ˆ?¸ˇ˝Ï™V@‰(picture)(picture)@˝ ¿ı(picture)
(picture)’ÌU™@§(picture)˝_˛ˇ‡00`˚?¸ˇ˝Ï™V�§(picture)(picture)@˝8q·∆fœõ<�¿˚(picture)(picture)’ÌU ™$

(picture)˝_˛ˇ‡<Ú3&gôúFf`?¸ˇ˝Ï™V$(picture)(picture)@˝/±Û∆ôò>f`˚(picture)(picture)’ÌU ™$(picture)˝_˛ˇ‡'33ôòff`?
¸ˇ˝Ï™V'ˇ(picture)@˝"33ôòff`˚(picture)(picture)’ÌU ™ ˝_˛ˇ‡ 33&ôòff`?¸ˇ˝Ï™V (picture)@˝ 1Ò∆ò>f`˚(picture)

(picture)’ÌU™~ ˝ˇfl˛ˇ‡˚(picture)(picture)Ä˛?¸ˇ˝Ï™VC‡Ù(picture)Ä¯(picture)
(picture)’ÌU™CÄ†Ù˜(picture)Ï™V@Ä†È(picture)(picture)’ÌU™@Ä†ËˇÏ™V@Ä£

¿ÍÄ(picture)’ÌU™@Ä§>Í(picture)Å(picture)Ï™V@Ä§(picture)ÍÇÅ’ÌU ™@Ä§(picture)åOÓ(picture)ÑAÏ™
V�Ä‰(picture)LHàÓà!’ÌU ™$(picture)JHHÓ(picture)êÏ™ V$(picture)äHHÓ† ’ÌU ™$

(picture)IHHÓ(picture)¯=Ï™ V'ˇIHHÓà!’ÌU ™ H»HÓ(picture)à!Ï™ V H»àÓà!’ÌU™~
àOÄÔ(picture)è·Ï™VC†ÍÄ(picture)’ÌU™CÄ†Í(picture)Ä(picture)Ï™V@Ä†Íˇˇ’ÌU™@Äß‡Í(picture)Ä(picture)Ï™V@Ä

‰0ÍÄ(picture)’ÌU™@Ä§8Í(picture)Ä(picture)Ï™V@Ä§ÍÄ(picture)’ÌU™@Ä§áèÄÔ(picture)Ä(picture)Ï™
V�Ä§HHàÓÄ(picture)’ÌU ™$HHÓ(picture)Ä(picture)Ï™ V$HHÓÄ(picture)’ÌU

™$HOÓ(picture)Ä(picture)Ï™ V'¯HHÓÄ(picture)’ÌU ™ HHÓ(picture)Ä(picture)Ï™ V
HHàÓÄ(picture)’ÌU™

áèÄÔ(picture)Ä(picture)Ï™V<†ÍÄ(picture)’ÌU™C‡‡Í(picture)Ä(picture)Ï™V@†ÍÄ(picture)’ÌU™@ß‡Í(picture)Ä(pict
ure)Ï™V@§0ÍÄ(picture)’ÌU™@§8Í(picture)Ä(picture)Ï™V@§ÍÄ(picture)’ÌU ™@§˛@Ó(picture)Ä(picture)Ï™

V�§Ñ@ÓÄ(picture)’ÌU ™$D@Ó(picture)Ä(picture)Ï™ V$D@ÓÄ(picture)’ÌU
™$D@Ó(picture)Ä(picture)Ï™ V'¯D@ÓÄ(picture)’ÌU ™ D@Ó(picture)Ä(picture)Ï™ V

Ñ@ÓÄ(picture)’ÌUò4Ä¿(picture)†Ä¿(picture)†Ä¿(picture)† ™~ |
Ó(picture)Ä(picture)Ï™VC`ÍÄ(picture)’ÌU™CÄ†Í(picture)Ä(picture)Ï™V@Ä†

ÍÄ(picture)’ÌU™@Ä†PÍ(picture)Ä(picture)Ï™V@Ä`àÍÄ(picture)’ÌU™@Ä!Í(picture)Ä(picture)Ï™V@Ä"ÍÄ(picture)’ÌU
™@Ä§%Ó(picture)Ä(picture)Ï™V�ÄbzàêÄÔÄ(picture)’ÌU ™!HêÓ(picture)Ä(picture)Ï™ V

èHêÓÄ(picture)’ÌU™ SHìÄÔ(picture)Ä(picture)Ï™V HêÄÔÄ(picture)’ÌU™ HêÄÔ(picture)Ä(picture)Ï™V
àêÄÔÄ(picture)’ÌU ™~ èÓ(picture)Ä(picture)Ï™VC ÍÄ(picture)’ÌU™CÄ Í(picture)Ä(picture)Ï™V@Ä`

ÍÄ(picture)’ÌU™@Ä†PÍ(picture)Ä(picture)Ï™V@Ä†àÍÄ(picture)’ÌU™@ÄaÍ(picture)Ä(picture)Ï™V@Ä"ÍÄ(picture)’Ì
U ™@Ä§%ü>Ó(picture)Ä(picture)Ï™ V�Äbzê ÓÄ(picture)’ÌU ™!ê Ó(picture)Ä(picture)Ï™ V

èê ÓÄ(picture)’ÌU ™ S<Ó(picture)Ä(picture)Ï™ V ÓÄ(picture)’ÌU ™ Ó(picture)Ä(picture)Ï™ V
ÓÄ(picture)’ÌU ™ ü

Ó(picture)Ä(picture)Ï™V<`ÍÄ(picture)’ÌU™C‡†Í(picture)Ä(picture)Ï™V@†ÍÄ(picture)’ÌU™@ß‡Í(picture)Ä(picture)Ï
™V@d0ÍÄ(picture)’ÌU™@$8Í(picture)Ä(picture)Ï™V@$ÍÄ(picture)’ÌU ™@§<bÓ(picture)Ä(picture)Ï™

V�dBb?ÓÄ(picture)’ÌU ™$@RÓ(picture)Ä(picture)Ï™ V$@R~ÓÄ(picture)’ÌU
™$@J(Ó(picture)Ä(picture)Ï™V'¯@JÌÄ(picture)’ÌU™ @FÌ(picture)Ä(picture)Ï™V BFÌÄ(picture)’ÌU™

<BÌ(picture)Ä(picture)Ï™V<†ÍÄ(picture)’ÌU™C‡†Í(picture)Ä(picture)Ï™V@†ÍÄ(picture)’ÌU™@`Í(picture)Ä(picture)
Ï™V@c¿ÍÄ(picture)’ÌU™@d>ˆ(picture)ˆ(picture)Ä(picture)Ï™V@$(picture)ˆ(picture)(picture)Ä˜Ä(picture)’ÌU

™@$(picture)'√¿˙(picture)(picture)¿˜(picture)Ä(picture)Ï™ V�$(picture)d$ ˙(picture)
(picture)‡˜Ä(picture)’ÌU™$(picture)§$˘(picture)(picture)˜(picture)Ä(picture)Ï™V$(picture) $$˘(picture)

(picture)¯˜Ä(picture)’ÌU ™$(picture)'√¿˙(picture)(picture)¸˜(picture)Ä(picture)Ï™ V'ˇ$ ˙(picture)
(picture)˛˜Ä(picture)’ÌU ™ $ ˙(picture)(picture)˜(picture)Ä(picture)Ï™ V $ ˙(picture)

(picture)∞˜Ä(picture)’ÌUò4¿(picture)†¿(picture)†¿(picture)† ™ $¿˙(picture)
(picture)˜(picture)Ä(picture)Ï™V<†ı˜Ä(picture)’ÌU™C‡†ı˜(picture)Ä(picture)Ï™V@†ı˜Ä(picture)’ÌU™@`Í(picture)Ä(

picture)Ï™V@c¿ÍÄ(picture)’ÌU™@d>Í(picture)Ä(picture)Ï™V@$(picture)ÍÄ(picture)’ÌU™@$

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

(picture)üœÅ@Ô(picture)Ä(picture)Ï™V�$(picture)BG‡ÔÄ(picture)’ÌU™$(picture)BÄÔ(picture)Ä(picture)Ï™V$
(picture)O¿ÔÄ(picture)’ÌU ™$(picture)ÇÖÓ(picture)Ä(picture)Ï™WˇˇÁˇBÌÄ(picture)’ÌU´ˇˇ‡B

Ì(picture)Ä(picture)Ï™˛U`BÄÓÄ(picture)’ÌU˛™†Ç@Ó(picture)Ä(picture)Ï™˛U`ÍÄ(picture)’ÌU
˛™†Í(picture)Ä(picture)Ï™˛U`ÍÄ(picture)’ÌU

˛™†Í(picture)Ä(picture)Ï™˛Uc¿ÍÄ(picture)’ÌU
˛™§>Í(picture)Ä(picture)Ï™˛Ud(picture)ÍÄ(picture)’ÌU

˛™§(picture)Í(picture)Ä(picture)Ï™˛Ud(picture)ÍÄ(picture)’ÌU
˛™§(picture)Í(picture)Ä(picture)Ï™˛Ud(picture)ÍÄ(picture)’ÌU

˛™§(picture)Í(picture)Ä(picture)Ï™˛UgˇÍÄ(picture)’ÌU
˛™†Í(picture)Ä(picture)Ï™˛U`ÍÄ(picture)’ÌU

˛™†Í(picture)Ä(picture)Ï™˛U�ˇ˛ÍÄ(picture)’ÌU
˛™øˇ˛Í(picture)Ä(picture)Ï™¸UVÍÄ(picture)’ÌU ˚™Í(picture)Ä(picture)Ï™¸UVÍÄ(picture)’ÌU

˚™Í(picture)ˇˇÏ™¸UVÍÄ(picture)’ÌU ˚™Í(picture)Ä(picture)Ï™¸UVÍè·’ÌU ˚™Í(picture)à!Ï™¸UVÍà!’ÌU
˚™Í(picture)à!Ï™¸UVÍ¯=’ÌU ˚™Í(picture)† Ï™¸UVÍê’ÌUˇ

Figure 2 A File Window

When a file window is the active window, the File menu commands have the following effects:

New Creates a new resource in the open file.

Open Opens a window displaying all resources of the
resource type selected (select the resource type by clicking it or by typing its first character).

Note: The resources are displayed by a resource
picker—the general resource picker displays the resources by type, name, and ID number; there are also special resource
pickers for some resource types (for example, the 'ICON' resource picker displays the icons graphically). If you hold down
the Option key while opening, the resource window will open with the general resource picker.

Open General Opens the general resource picker.

Close Closes the file window and asks if you want to
save the changes you made. Never reboot before closing! If you have made any changes, rebooting before closing all file
windows can leave the resource files in an inconsistent state.

Revert Changes the resource file back to the version that
was last saved to disk.

The Edit menu commands have the following effects:

Cut Removes all resources of the resource types
selected, placing them in the ResEdit scrap.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

Copy Copies all resources of the resource types
selected into the ResEdit scrap.

Paste Copies the resources from the ResEdit scrap into
the file window's resource type list.

Clear Removes all resources of the resource type
selected, without placing them in the ResEdit scrap.

Duplicate Creates duplicates of all resources of the
resource types selected, and assigns a unique resource ID number to each new resource.

Working within a Resource Type

Opening a resource type produces a window that lists each resource of that type in the file. (This list will take different
forms, depending on the underlying resource picker that's invoked; if you hold down the Option key during the open, the
general resource picker is invoked.)

Ü(picture)†(picture)(picture)–@ò4@(picture)†@(picture)†@(picture)†¯Œ‡Œ¿ŒÄ¿—Ä(picture)Ä—
(picture)3(picture)3⁄‡(picture)Ä0⁄3(picture)ÅÛ<⁄¿33(picture)É3⁄¿33(picture)„3⁄3?

(picture)É3⁄30(picture)É3⁄‡31(picture)É3⁄¿3(picture)ÒÛ⁄ÕÕÕÕÕÕˇÕ™ÕUÕ™ÕUÕ™ÕU´ËˇÁ™
VÈ(picture)(picture)’ËU™È(picture)Á™ VÈ(picture)(picture)’ËU™È(picture)Á™VˆœÄ˜(picture)

(picture)’ËU™ˆÃ¿˜(picture)Á™VˆÃ¿˜(picture)(picture)’ËU™ˆÃ¿˜(picture)Á™VˆÃ¿˜(picture)
(picture)’ËU™ˆÃ¿˜(picture)Á™VˆÃ¿˜(picture)(picture)’ËU™ˆÃ¿˜(picture)Á™VˆœÄ˜(picture)

(picture)’ËU™È(picture)Á™ VÈ(picture)(picture)’ËU™È(picture)Á™ VÈ(picture)(picture)’ËU´ËˇÁ™
VÈ(picture)(picture)’ËU™?Èˇ˙Í™V ÈÍU™~ ÈÍ™VC‡ÈÍU™CÄ ÈÍ™V@Ä ˙(picture)ôÄ`¿˜ÍU™@Ä

˙(picture)ôÄ`¿˜Í™V@Ä ˙(picture)ôèf8¯x¯˘ÍU™@Ä ˙(picture)ôôúld˛Ã˘Í™V@Ä
˙(picture)ôôòxp˛Ã˘ÍU™@Ä†˙(picture)ôôòp8˛Ã˘Í™V�Ä`˙(picture)ôôòx˛Ã˘ÍU™ ˙(picture)ôòlL˛Ã˘Í™V

˙(picture)˛f8Ãx¯˘ÍU™ Ú¿˘Í™V Ú¿˘ÍU™ ÈÍ™V ÈÍUò4@Ä(picture)†@Ä(picture)†@Ä(picture)†™?Èˇ˙Í™V<
ÈÍU™C‡ ËˇÏ™V@ È(picture)(picture)’ÌU

™@ È(picture)Ï™V@c¿È(picture)(picture)’ÌU
™@d>È(picture)Ï™V@‰(picture)˙ ¿ı(picture)

(picture)’ÌU™@§(picture)˙00`ı(picture)Ï™V�§(picture)˙8q·∆fœõ<�¿˚(picture)(picture)’ÌU™$
(picture)˙<Ú3&gôúFf`˚(picture)Ï™V$(picture)˙/±Û∆ôò>f`˚(picture)(picture)’ÌU™$

(picture)˙'33ôòff`˚(picture)Ï™V'ˇ˙"33ôòff`˚(picture)(picture)’ÌU™ ˙ 33&ôòff`˚(picture)Ï™V ˙ 1Ò∆ò>f`˚(picture)
(picture)’ÌU™~ Ù(picture)(picture)Ä¯(picture)Ï™VC‡Ù(picture)Ä¯(picture)

(picture)’ÌU™CÄ†Ù˜(picture)Ï™V@Ä†È(picture)(picture)’ÌU™@Ä†ËˇÏ™V@Ä£¿È(picture)(picture)’ÌU™@Ä§>?
Ëˇ˛™V@Ä§(picture) ËU™@Ä§(picture)å`Ë™V�Ä‰(picture)L`ËU™$

(picture)Jofl˝˛(picture)ÄÒ(picture)˚™"V$(picture)ä`<Aà˛(picture)|˙U#™$(picture)Io–
ba»˛f˚(picture)˚™&"V'ˇI``q ‡<Ÿ„˛áfl˘≥«¸U&"™ HÔ–`y (picture)ê„33œ#2fqôôƒff˚™&"V H‡`]?

Å¿√33˚0|aôôÉÊfU&"™~ ào–`O‡√33s30`aôôÜff˚™&"VC† `Gp√33#30`aôôÜffU&"™CÄ†/–
bC(picture)0√3332`aôôÜff˚™&"V@Ä† <A‡¡„3``˘ÉÊfU™@Äß‡/fl˝˛(picture)˚™V@Ä‰0 Ó(picture)

(picture)˝U™@Ä§8 Ì˝™V@Ä§
ËU™@Ä§áøÁˇ™V�Ä§H`Í(picture)U™$`Í(picture)™V$`Í(picture)U™$`Í(picture)É™V'¯`Í(picture)CU

™ `Í(picture) #™V H`Í(picture)@U™ á†Í(picture){™V<† Í(picture)CU™C‡‡ Í(picture)C™V@†
Í(picture)CU™@ß‡ Í(picture)√™V@§0 Í(picture)U™@§8 Í(picture)™V@§

Í(picture)ˇˇU™@§‡Í(picture)™$
V�§Ñ ˇˇÄ˝(picture)ˇˇ¿˝ˇ¿˛(picture)U$

™$D ¿˝(picture)`˝ ˛(picture)™$
V$D †˝(picture)P˝ˇ ˛(picture)U$

™$D ê˝(picture)H˝†˛(picture)™$
V'¯D à˝(picture)D˝†˛(picture)U$

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

™ D Ñ˝(picture)B˝†˛(picture)™$
V Ñ ˛˝(picture)�˝†˛(picture)Uò4Ä¿(picture)†Ä¿(picture)†Ä¿(picture)†$

™~ ˝(picture)ˇ(picture)˝†˛(picture)™$
VC` !˝(picture)(picture)˝†˛(picture)U$

™CÄ† c˝(picture)˛(picture)˝†˛(picture)™$
V@Ä† !˝(picture)(picture)˝ˇ ˛(picture)U$

™@Ä†P sÇ˝(picture)(picture)ˇ(picture)˝ ˛(picture)™$
V@Ä`à ˝(picture)(picture)˝ ˛(picture)U$

™@Ä! ˝(picture)ˇ(picture)˝ø‡(picture)™$
V@Ä" aÇ˝(picture)(picture)˝`(picture)U$

™@Ä§% íB˝(picture)˛(picture)˝Ä¿(picture)™$
V�Äbzà íB˝(picture)(picture)˝(picture)(picture)¿(picture)U$
™!H aÇ˝(picture)(picture)ˇ(picture)˝f(picture)¿(picture)™$

V èH ˝(picture)(picture)˝¸ò(picture)¿(picture)U#
™ SH ˝(picture)ˇ(picture)¸ (picture)¿(picture)™"

V H !Ç˝(picture)(picture)˚Á˘¿(picture)U"
™ H bB˝(picture)˛(picture)˚¿(picture)™!

V à "B˝(picture)(picture)˙(picture)¿(picture)U$
™~ †qÇ˝(picture)ˇ(picture)˝ˇˇ·¿(picture)™$

VC ˝(picture)(picture)˝(picture)U$
™CÄ ˝(picture)(picture)˝UUH(picture)™$
V@Ä` ˝(picture)(picture)˝™™§(picture)U$

™@Ä†P ˝(picture)(picture)˝UUR(picture)™$
V@Ä†à ˝(picture)(picture)˝

(picture)(picture)U$
™@Äa ˝(picture)(picture)˝˛ˇÄ(picture)™$
V@Ä" ˝(picture)(picture)˝ ˛Ä(picture)U#

™@Ä§%ü ˇˇ˛˝(picture)˛ˇ˝˛ˇÄ(picture)™V�Äbz†Í(picture)U™!†Í(picture)™V è†Í(picture)U™ S
Í(picture)™V Í(picture)U™ Í(picture)™V Í(picture)U™ †Í(picture)™V<` Í(picture)U™C‡†

Í(picture)™V@† Í(picture)U™@ß‡ Í(picture)™V@d0 Í(picture)U™@$8 Í(picture)™V@$
Í(picture)U™@§<`Í(picture)™V�dB`Í(picture)U™$@`Í(picture)™V$@`Í(picture)U™$@`Í(picture)™V'
¯@`Í(picture)U™ @`˚Ò(picture)™V B`˚Ò(picture)U™ <`˚Ò(picture)™V<† ˚(picture)ÄÚ(picture)U™C‡†

˚(picture)¿Ú(picture)™V@† ˚(picture)‡Ú(picture)U™@`
˚(picture)Ú(picture)™V@c¿ ˚(picture)¯Ú(picture)U™@d> ˚(picture)¿Ú(picture)™V@$(picture) ˚(picture)

¿Ú(picture)U™@$(picture)'‡˚(picture)`Ú(picture)™V�$(picture)d ˙`Ú(picture)U™$(picture)§
˙0Ú(picture)™V$(picture)$ ˙0Ú(picture)U™$(picture)'‡Í(picture)™V'ˇ$ Í(picture)U™ $ Í(picture)™V $

Í(picture)Uò4¿(picture)†¿(picture)†¿(picture)†™ $ Í(picture)™V<† Í(picture)U™C‡† Í(picture)™V@†
Í(picture)U™@` Í(picture)™V@c¿ Í(picture)U™@d> Í(picture)™V@$(picture) Í(picture)U™@$

(picture)ü‡Í(picture)™V�$(picture)B Í(picture)U™$(picture) Í(picture)™V$(picture) Í(picture)U™$
(picture)Ç Í(picture)™WˇˇÁˇB Í(picture)U´ˇˇ‡B Í(picture)™˛U`B Í(picture)U˛™†Ç Í(picture)™˛U`

Í(picture)U˛™† Í(picture)™˛U` Í(picture)U˛™† Í(picture)™˛Uc¿ Í(picture)U˛™§>
Í(picture)™˛Ud(picture) Í(picture)U˛™§(picture) Í(picture)™˛Ud(picture) Í(picture)U˛™§(picture)

Í(picture)ˇˇ™˛Ud(picture) Í(picture)U˛™§(picture) Í(picture)™˛Ugˇ Í(picture)√U˛™† Í(picture)C™˛U`
Í(picture)CU˛™† Í(picture)C™˛U�ˇ˛ Í(picture){U˛™øˇ˛ Í(picture)@™¸UV Í(picture) #U˚™

Í(picture)C™¸UV Í(picture)ÉU˚™ Í(picture)™¸UV Í(picture)U˚™ Í(picture)™¸UV?
ÁˇU˚™Áˇ™¸UVÈ(picture)(picture)’ÌU˚™È(picture)Ï™¸UVÈ(picture)(picture)’ÌU˚™È(picture)Ï™¸UVÈ(picture)

(picture)’ÌUˇ
Figure 3. A Resource Type Window

When a resource type window is the active window, the File menu commands have the following effects:

New Creates a new resource and opens its editor. A selection
window is presented to allow you to select the resource type to create.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

Open Opens the appropriate editor for the resource you
selected.

Open General Opens the general (hexadecimal) resource editor.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

Close Closes the resource type window.

Revert Changes the entire file back to what it was before
opening the resource type window.

The Edit menu commands have the following effects:

Undo May or may not be selectable, depending on the specific
editor in use.

Cut Removes the resources that are selected, placing them in
the ResEdit scrap.

Copy Copies all the resources that are selected into the
ResEdit scrap.

Paste Copies the resources from ResEdit scrap into the
resource type window's resource list.

Clear Removes the resources that are selected, without placing
them in the ResEdit scrap.

Duplicate Creates a duplicate of the selected resources and assigns
a unique resource ID number to each new resource.

Changing a Resource's Type

If you hold down the Option key when copying or duplicating a resource, a dialog box with a list of resource types will be
presented. You may choose any of these types, or type in your own type name that the copy/duplicate will be forced to
become—that is, you may coerce the copy to a new resource type. (BE CAREFUL!!! —know what you are doing before
trying this.)

Editing Individual Resources

To open an editor for a particular resource, either double-click on the resource or select it and choose Open from the File
menu. One or more auxiliary menus may appear, depending on the type of resource being edited. Some editors, such as the
'DITL' editor, allow you to open additional editors for the elements within the resource. All the editors use File and Edit
menus similar to those described above, but operate on individual resources or individual elements of a resource.

If you hold down the Option key when opening a resource, the general data editor is invoked—this allows you to edit the
resource as hexadecimal data. If you hold down the Shift and the Option keys while opening, ResEdit shows you a list of
all editors and templates.

Caution: Individual editors may not be appropriate for all resource types.

The menus for some of the editors are discussed below. The use of the remaining editors should be apparent when you run
them.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

Note: The general data editor will not edit resources larger than 16K bytes in length; however, you can move
larger resources with the Cut, Copy, Paste, and Clear commands as described above.

CURS Resources

For 'CURS' resources, the editor displays three images of the cursor. All three images may be manipulated with the mouse.

The left image shows how the cursor will appear. The middle image is the mask for the cursor, which affects how the
cursor appears on various backgrounds. The right image shows a gray picture of the cursor with a single point in black—
this point is the cursor's hot spot.

The Cursor menu contains the following commands:

Try Cursor /
Restore Arrow Try Cursor lets you try out the cursor by

having it become the cursor in use. Restore Arrow restores the standard arrow cursor.

Data –>Mask Copies the cursor image to the mask
editing area.

DITL Resources

For 'DITL' resources, the editor displays an image of the item list as your program would display it in a dialog or alert box.
When you select an item, a size box appears in the bottom right corner of its enclosing rectangle so that you can change the
size of the rectangle. You can move an item by dragging it with the mouse.

If you open an item within the dialog box, the editor associated with the item is invoked; for an 'ICON', for example, the
icon editor is invoked. If you hold down the Shift and Option keys while opening, the 'DITM' editor is invoked instead—
this is a special-purpose editor for editing items in an item list. If you hold down just the Option key while opening, the
general data editor is invoked.

The DITL menu contains the following commands:

Bring to Front Allows you to change the order of items
in the item list. Bring to Front causes the selected item to become the last (highest numbered) item in the list. The actual
number of the item is shown by the 'DITM' editor.

Send to Back Like Bring to Front, except that it makes
the selected item the first item in the list—that is, item #1.

Grid Aligns the item on an invisible 8 pixel by 8 pixel
grid. If you change the item location while Grid is on, the location will be adjusted such that the top left corner lies
on the nearest grid point above and to the left of the location you gave it. If you change the size, it will be made a multiple
of 8 pixels in both dimensions.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

Use RSRC Rect Restores the enclosing rectangle
to the rectangle size stored in the underlying resource. Note that this works on 'ICON', 'PICT', and 'CNTL' items only; the
other items have no underlying resources.

Resize Window Adjusts the window size so that
all items in the item list are visible in the window.

FONT Resources

For 'FONT' resources, the editor window is divided into three panes: a sample text pane, a character selection pane, and a
character editing pane. These are shown in Figure 5.

@\6(picture)L(picture)÷(picture)(picture)–
@ò4\6ú(picture)÷\6ú(picture)÷\6ú(picture)÷(picture)˝˝»(picture)Ä˚Ë™(picture)˝86xˇÄ¡ò„«è¯˝ËU(picture)˘˝ôåd8ÃÃ

¿·ôëåÃÃ˝Ë™(picture) ˝ôåp0ÃÃ¿qô¡åÃÃ˝ËU(picture)

¯˝ôå80ÃÃ¿9ò·èÃÃ˝Ë™(picture)˝ôå0ÃÃ¿òqåÃ˝ËU(picture)˝ôåL0ÃÃ¿ôô1åLÃ˝Ë™(picture)˝Ü80xÃ¿p¯‡«åÃ˝ËU
(picture)Ú˘Ë™(picture)Û(picture)(picture)˘ËU

(picture)Ú˘Ë™ (picture)ÈËU (picture)„Èˇ˛Ë™ (picture)ÈËU
ò“ˇÍ‚òÄ”uXÄ”jXÄ”u8ø�˜Úˇ¯¯Ôˇj8Ä@Òå˝(picture)`Óu‚ø@Úˇ¯L¸·ÔˇjÄ@Òåp¯`Óu?àø@Úˇ¯Ã…ôò`Ôˇj

àÄ@ÒÃ¿˘ôò`0Óu Üø@Úˇ¯Ã¡ôôò``ÔˇjÄ@ÒÃ¡ôôò`¿Óuø@Úˇ¯LÃ…
ôôòaÄÔˇjÄ@ÒåÃp¯¯a¯Óu„»ø�˜Úˇ¯¸˛Ôˇj(ÄÎ(picture)(picture)ÎuÄÍÎjÄ”u “ˇÍ! Ä”u ,Ä”j(2Ä”u„» "Ä”j "Ä”u

"Ä”j!"Ä”u"Ä”jÄ”uÄ”jÄ”u‚Ä”jÄ‚ıˇ¯uÄ‚ıjÄ‚ıuÄ‚ıj!Ä‚ıu Ä‚ıj "Ä‚ıu·Ë "Ä‚?`˛¿˝j "Ä‚`¸¿˝u "Ä‚|
<Êf8Ã˝j!"Ä‚ffffdÿ˝uÄ‚ffff`˝jÄ‚f~ff`‡˝uÄ‚f`ff`˝jÄ‚fbffdÿ˝u¡8Ä‚f<„Ê8Ã˝j!

Ä‚˝`˙uÄ‚˝`˙jÄ‚ıuò4ú6‹(picture)÷ú6‹(picture)÷ú6‹(picture)÷Ä‚ıj!Ä‚ıu Ä‚ıj! "Ä‚ıu¡ "Ä‚(picture)¸¸j "Ä‚(picture)¸0¸u "Ä‚
<fg¿xÒò˛j!"Ä‚ú˛f`1ôò˛uÄ‚ò˛f`1ôò˛jÄ‚ò˛f`1ò˛uÄ‚ò˛f`1ôò˛jÄ‚ òffF`1ôò˛u¬Ä‚

<�Ü`0Òò˛j"Ä‚ıuÄ‚ıjÄ‚ıuÄ‚ıj!Ä‚ıu Ä‚ıj" "Ä‚ıu√Ë "Ä‚(picture)ˆj "Ä‚ıu
"Ä‚f�«√ÄxÃxÿj!"Ä‚(picture)˝f@˛Ã‡uÄ‚(picture)˛f(picture)g˛Ã¿jÄ‚(picture)˛fcÄÃÃ¸¿uÄ‚(picture)˛fa¿ÃÃ¿¿jÄ‚(picture)˛

fd¿Ã»ƒ¿u√Ëê‚>fg√Äxx¿j"ò‚˘uú‚&˘jû‚(picture)ˆuËü‚ıjà!üÄ„ıuH ü‚ıj"("û‚ıu¬ "ú‚`˝`˛j "ò‚`˝`˛u "ê‚|
<<~f„√‡j!"Ä‚ffFfff`uÄ‚ff>fff`jÄ‚f~ffff`uÄ‚f`f0fff`jÄ‚fbf`f˛fu¡ËÄ‚f<>~>„√Êj"Ä‚˚˛`uÄ‚˚F`jÄ‚˚<¿uËÄ‚ıj!Ä‚ıu Ä‚ıj" "Ä‚ıu¡Ë "Ä‚ıj
"Ä‚ıu "Ä‚ıj!"Ä‚ıuÄ‚ıjÄ‚ıuÄÙ?˛øÄÙıjÄÙ?˛øÄÙıu‰(ÄÙ?˛øÄÙıjHÄÙ?˛øÄÙıuàÄÙ?˛øÄÙıjÄÙ?˛øÄÙıuò4‹6(picture)

(picture)÷‹6(picture)(picture)÷‹6(picture)(picture)÷∆ÄÙ?˛øÄÙıj!Ä‚ıuà Äı?øÄ?øÄııjH "Äı?øÄ?øÄııu("Äı?øÄ?øÄııj
"Äı?øÄ?øÄııu "Äı?øÄ?øÄııj!"Äı?øÄ?øÄııuÄı?øÄ?øÄııjÄ‚ıuÄı?øÄ?øÄııjÄı?øÄ?øÄııu„»Äı?øÄ?øÄııj(Äı?øÄ?

øÄııu(Äı?øÄ?øÄııj(Äı?øÄ?øÄııuƒ(Äı?øÄ?øÄııj(!Ä‚ıu(Äı?øÄ?øÄııj("Äı?øÄ?øÄııu»'"Äı?øÄ?øÄııj!>Äı?øÄ?øÄııu!
Äı?øÄ?øÄııj!"Äı?øÄ?øÄııuÄı?øÄ?øÄ˜ıjˇ¯ÄÌ˜ıuˇ¯Äı?¸øÄ˜ıjUXÄı?¸øÄ˜ıu™®Äı?¸øÄÄ¯ıjUXÄı?¸øÄ¿¯ıu™®Äı?

¸øÄ‡¯ıjUXÄı?¸øÄ¯ıu™®Äı?¸øÄÄ¯ıjUX!ÄÌ(picture)
Ä¯ıu™® Äı ?øÄ?øÄ¿¯ıjUX "Äı ?øÄ?øÄ¿¯ıu™®'"Äı?øÄ?øÄ`¯ıjUX!>Äı ?øÄ?øÄ`¯ıu™®! Äı?øÄ?øÄııjUX!"Äı?

øÄ?øÄııu™®Äı?øÄ?øÄııjUXÄ‚ıu™®Äı ?øÄ?øÄ?øÄ¯ıjUXÄı?øÄ?øÄ?øÄ¯ıu™®Äı ?øÄ?øÄ?øÄ¯ıjU_ˇˇÄı
?øÄ?øÄ?øÄ¯ıu™ØˇˇÄı ?øÄ?øÄ?øÄ¯ıj˝UÄı ?øÄ?øÄ?øÄ¯ıu˝™Äı ?øÄ?øÄ?øÄ¯ıj˝UÄ‚ıu˝™Äı ?

øÄ?øÄ?Ä¯ıj˝UÄı ?øÄ?øÄ?Ä¯ıu˝™Äı ?øÄ?øÄ?Ä¯ıj˝UÄı ?øÄ?øÄ?Ä¯ıu˝™Äı ?øÄ?øÄ?Ä¯ıj˝UÄı ?øÄ?øÄ?
Ä¯ıu˝™Äı ?øÄ?øÄ?Ä¯ıj˝UÄ‚ıu˝™Äı?øÄ?˝øÄ¯ıj˝UÄı?øÄ?˝øÄ¯ıu˝™êı?øÄ?˝øÄ¯ıj˝Uòı?øÄ?˝øÄ¯ıu˝™úı?øÄ?

˝øÄ¯ıj˝Uûı?øÄ?
˝øÄ¯ıuò4(picture)6(picture)L(picture)÷(picture)6(picture)L(picture)÷(picture)6(picture)L(picture)÷˝™üı?øÄ?

˝øÄ¯ıj˝U(picture)üÄ„ıu˝™ü‚ıj˝Uû‚ıu˝™ú‚ıˇ¯j˝Uò”u˝™ê”j˝UÄ”u˝™Ä”j˝UÄ”u˝™Ä”j˝UÄ”u˝™Ä”j˝UÄ‚ıˇ¯u˝™Ä‚ıj˝UÄ‚ıu˝™
Ä‚ıj˝UÄ‚ıu˝™Ä‚ıj˝UÄ‚ıu˝™ê‚ıj˝Uò‚ıu˝™ú‚ıj˝Uû‚ıu˝™ü‚ıj˝U(picture)üÄ„ıu˝™ü‚ıj˝Uû‚ıu˝™ú‚ıj˝Uò‚ıu˝™ê‚ıj˝UÄ‚ıu˝™Ä‚ıj˝U

Ä‚ıu˝™Ä‚ıj˝UÄ‚ıu˝™Ä‚ıj˝UÄ‚¸ (picture)‡‡u˝™Ä‚‡00j˝UÄ‚00u˝™Ä‚ »00j˝UÄ‚H‡u˝™Ä‚H00j˝UÄ‚
∞60u˝™Ä‚˛ 20j˝UÄ‚‡>‡u˝™Ä‚ıj˝UÄ‚ıuˇ

Figure 5. FONT Editor Window

The sample text pane, at the upper right, displays a sample of text in the font being edited. (You can change this text by
clicking in the text pane and using normal Macintosh editing techniques.)

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

The character selection pane is below the text pane. You can select a character to edit by typing it (using the Shift and
Option keys if necessary), or by clicking on it in the row of three characters shown. (Click on the right character in the row
to move upward through the ASCII range; click on the left character to move downward.) The character you select is boxed
in the center of the row with its ASCII value shown below it.

The character editing pane on the left side of the window shows an enlargement of the selected character. Like FatBits in
MacPaint, it's edited by clicking bits on and off. The black triangles at the bottom of the character editing pane set the left
and right bounds (i.e., the character width). The three triangles at the left of the pane control the ascent, baseline, and
descent.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

Caution: Changing the ascent or descent of a character changes the ascent or descent for the entire font.

Any changes you make in the character editing pane are reflected in the text pane and the character selection pane.
Remember that you cannot save the changes until you quit.

You can also change the name of a font. The font name is stored as the name of the resource of that font family with size 0.
This resource does not show up in the normal display of all fonts in a file. To display it, hold down the Option key when
you open FONT from the file window. This will bring up the generic list of fonts. Select the font with the name you wish
to change and choose Get Info.

ICN# Resources

For 'ICN#' resources, the editor displays two panes in the window. The upper pane is used to edit the icon. It contains an
enlargement of the icon on the left and an enlargement of the icon's mask on the right. The lower pane shows, from left to
right, how the icon will look unselected, selected, and open on both a white a gray background.

To install a new icon for your application when you already have an old one in the Finder's desktop file:

1.Open the file called DeskTop.

2.Open type 'BNDL' and find the bundle that is your application's. (This is the one that has your owner name in it.)
Look through the bundle and mark down the type and resource ID of all resources bundled together by the bundle (i.e.,
the 'ICN#'s and 'FREF's).

3.Go back to the DeskTop window and remove these resources along with your 'BNDL' and signature resource (the
resource whose type name = your creator type).

4.Now close the DeskTop window, save changes, and quit ResEdit. Your new icon will be installed.

Creating a Resource Template

You can customize ResEdit by creating new templates for your own resource types. The generic way of editing a resource
is to fill in the fields of a dialog box—this is the way you currently edit 'FREF's, 'BNDL's, 'STR#'s, etc. The layout of these
dialog boxes is set by a template in ResEdit's resource file. The template specifies the format of the resource and also
specifies what labels should be put beside the editText items in the dialog box that's used for editing the resource. You can
find these templates by opening the ResEdit file and then opening the type window for 'TMPL's. For example, if you open
the template for 'WIND' resources (this is the 'TMPL' with name "WIND"), you'll see that they consist of the following, in
the order listed:

• a RECT (4 words) specifying the boundary of the window

• a word that is the procID for the window (DWRD tells ResEdit to display the word in decimal as opposed to
hex)

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

• a Boolean indicating whether or not the window is visible (BOOL is 2 bytes in the resource but is displayed
as a radio button in the dialog window used for editing)

• another Boolean indicating whether or not the window has a close box

• a long that is the refCon for the window (DLNG indicates that it should be displayed in the editor as a
decimal number)

• a Pascal string; the title of the window (PSTR)

You can look through the other templates and compare them with the structure of those resources to get a feeling for how
you might define your own resource template.

The types you have to choose from for your editable data fields are:

DBYT, DWRD, DLNG — decimal byte, word, long

HBYT, HWRD, HLNG — hex byte, word, long

HEXD — hex dump of remaining bytes in resource

PSTR — a Pascal string (length byte followed by the characters)

LSTR — long string (length long followed by the characters)

WSTR — same as LSTR, but a word rather than a long

ESTR, OSTR — Pascal string padded to even or odd length (needed for DITLs)

CSTR — a C string

ECST — even-padded C string

OCST — odd-padded C string (padded with nulls)

BOOL — Boolean

BBIT — binary bit

TNAM — type name (like OSType and ResType, i.e., 4 characters)

CHAR — a single character

Hnnn — 3-digit hex number (where nnn < $900); displays nnn bytes in hex format.

ResEdit will do the appropriate type checking for you when you put the editing dialog window away.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

The template mechanism is flexible enough to describe a repeating sequence of items within a resource, as in 'STR#'s,
'DITL's, and 'MENU's. You can also have repeating sequences within repeating sequences as in 'BNDL's. To terminate a
repeating sequence, put the appropriate code in the template as follows:

LSTZ-LSTE terminated by a 0 byte (as in 'MENU's)

ZCNT/LSTC-LSTE terminated by a zero-based count
that starts the sequence (as in 'DITL's)

OCNT/LSTC-LSTE terminated by a one-based count
that starts the sequence (as in 'STR#'s)

LSTB-LSTE ends at the end of the resource (no
example exists in the given templates)

To create your own template:

1. Open the ResEdit file window.

2. Open the 'TMPL' type window.

3. Choose New from the File menu.

4. Select the list separator.

5. Choose New from the File menu. You may now begin entering the label,type pairs that define the template.
Before closing the template editing window, choose Get Info from the File menu and set the name of the template to the
name of your resource type.

6. Close the ResEdit file window and save changes.

The next time you try to edit or create a resource of this new type, you'll get the dialog box in the format you have specified.

How to Write an Add-on Editor

This section describes how to add an editor of your own type to ResEdit. It includes an outline for a sample editor, a
description of the ResEd interface file, and explanations of the ResEd Resource Editor routines that you can use in your
code.

There are two types of drivers: pickers and editors. The picker is the code that displays all the resources of one type in the
resource type window. Pickers are given a resource type and should display all resources of that type in the current resource
file, using a suitable display format. If the picker is given an open call and there’s a suitable editor, it should launch the
editor. The editor is the code that displays and allows you to edit a particular resource. The editor is given a handle to the
resource object and should open an edit window (or windows) for the user. Pickers and editors are separate from the main
code of ResEdit.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

Note that pickers and editors can be opened from anywhere: For instance, a dialog editor might open an icon picker so that
the user can choose an appropriate icon. And the user could, while in the icon picker, open the icon editor to create a new
icon if desired.

Outline for a Sample Editor

The basic structure your editor should have is outlined below.

Note: Routines defined in the ResEd interface file are shown in bold. 'XXXX' represents your resource type.

The philosophy of the sample editor is that you will first call the “EditBirth” routine when a new instance of your editor is
needed. This routine is passed two handles: a handle to the resource to be edited (the same handle that would be received
by using a GetResource call), and a handle back to the picker that has launched this editor. The editor should then create a
window and set up any data structures needed to operate. Because the editor will be loaded in and out of memory during
any given session and because the editor doesn’t have access to global variables, you should create a handle to a data
structure to hold all data that needs to be preserved between calls and store its handle in the edit data structure (rXXXXrec
in the example). Note that the handle to the edit data structure is stored in the window’s refCon parameter. The main
program uses this to identify which subprogram is to receive a given call. The main program will determine which editor
should receive which events, so you need to do very little event decoding in your editor. Also, during an update event, the
BeginUpdate and EndUpdate calls are done by the main program, so don’t do them in your editor.

There are several points to consider:

•When writing your editor, always know which resource you are requesting and where it will come from. Many
resource files may be open at any given time, and you should always make sure which resource file you are accessing
by using UseResFile or similar operations whenever a resource is needed.

•Remember that your editor may be called with an empty handle in order to create an entirely new instance of the
type you edit.

After creating your editor, compile and link. Then use ResEdit to copy the 'RSSC' resource (and any other resources you
have created for use by your editor) from the newly created file into ResEdit itself. ResEdit will then be able to edit using
the new editor. When copying the resource across, be certain to check for and avoid conflicting resource ID numbers—it’s
a simple matter to check the ResEdit file (using ResEdit itself) to see which ID numbers (and 'RSSC' types) are already
taken.

Note: In the following sample editor, routines defined in the ResEd interface file appear in bold.

UNIT ResXXXXEd;

{XXXX Editor}
INTERFACE
USES {$U-}

{$U obj/MemTypes } MemTypes,
{$U obj/QuickDraw } QuickDraw,

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

{$U obj/OSIntf } OSIntf,
{$U obj/ToolIntf } ToolIntf,
{$U obj/PackIntf } PackIntf,
{$U obj/ListIntf } ListIntf,
{$U obj/ResEd } ResEd;

{$OV-}{Overflow check off }
{$R-} {Range checking off }
{$U-} {Lisa Libraries off }
{$X-} {Stack expansion off}
{$M+} {Do this for Mac }

TYPE
rXXXXPtr = ^rXXXXRec;
rXXXXHandle = ^rXXXXptr;

 rXXXXRec =
RECORD

father: ParentHandle; {Back ptr to dad } {normal}
name: Str64;
windPtr: WindowPtr; {This view's window} {normal}

 rebuild: BOOLEAN; {Set TRUE if things have been }
{ changed} {normal}

hXXXX: Handle; {The resource we are working on}
menuXXXX: MenuHandle; {our menu}

END; {rXXXXRec}

PROCEDURE EditBirth (Thing:Handle; Dad:ParentHandle);
PROCEDURE PickBirth (t:ResType; Dad:ParentHandle);
PROCEDURE DoEvent (VAR Evt:EventRecord; MyXXXX:rXXXXHandle);
PROCEDURE DoInfoUpdate (oldID,newID:INTEGER; MyXXXX:rXXXXHandle);
PROCEDURE DoMenu (Menu,Item:INTEGER; MyXXXX:rXXXXHandle);

IMPLEMENTATION

CONST
forever = FALSE;

TYPE
dummy = INTEGER;

VAR
dummy: INTEGER;

PROCEDURE EditBirth {Thing:Handle; Dad:ParentHandle};
VAR

MyXXXX: rXXXXHandle;
w: WindowPtr;
s: Str255;

Begin {EditBirth}
{ Prepare window title and request creation of a new window }
s := 'Window';
SetETitle (Handle (thing), s);
ConcatStr (s,' from ');
w := WindSetup (100,100,s,dad^^.name);
{If we got a new window, then start up the editor}
IF ORD(w) <> 0

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

THEN
BEGIN

 FixHand (SIZEOF(WindowRecord),Handle (thing));
{Make sure we have enough room in the handle for a complete }
{ window record. (later this will be assigned to MyXXXX^^.hXXXX) }

 {Get memory for and handle to our instance record}

MyXXXX := rXXXXHandle (NewHandle(SIZEOF(rXXXXRec)));

 HLock(Handle (MyXXXX));
 WITH MyXXXX^^ DO

BEGIN
{Put information about this incarnation of the editor and }
{ the window it is serving into our record. }
{ (always passed around in the handle MyXXXX).}
windPtr := w;
father := dad;
hXXXX := thing;
{Let the main program know who is to manage this window by }
{ giving it both our resource ID number and our instance }
{record handle. }
WITH WindowPeek (w)^ DO

BEGIN
windowKind := ResEdID;
refCon := ORD(MyXXXX);
END; {WITH}

END;{WITH}
 { Set up menus,the view, etc. for this window }

HUnlock (Handle (MyXXXX));
 END; {IF ORD(w)<>0}
END; {EditBirth}

PROCEDURE PickBirth {t:ResType; Dad:ParentHandle};
BEGIN {PickBirth}
END; {PickBirth}

PROCEDURE DoEvent {VAR Evt:EventRecord; MyXXXX:rXXXXHandle};
VAR

MousePoint: Point;
act: BOOLEAN;

BEGIN {DoEvent}
BubbleUp (Handle (MyXXXX)); {Move our item up im memory}
HLock (Handle (MyXXXX)); {Lock it down}
WITH MyXXXX^^ DO

BEGIN
{Handle event passed to us by main program. Just like a 'real' }
{ event loop, except there is no loop and we don't have to }
{ handle as much because the main program will do all the stuff }
{ that doesn't apply to us. }
mousePoint := evt.where; {Point at which the event occured}
SetPort (windPtr); {Set the port to our window}
GlobalToLocal (mousePoint); {Convert event location to local coords}

 CASE evt.what OF
mouseDown: BEGIN

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

END; {mouseDown}
activateEvt:BEGIN

 AbleMenu (fileMenu,filetop);
 act := ODD(evt.modifiers);
 IF act

THEN
BEGIN {Activate event}
END {Activate event}

ELSE
BEGIN {Deactivate event}

 END; {Deactivate event}
END {activateEvt};

updateEvt: BEGIN
END; {updateEvt}

keyDown: BEGIN
END; {keyDown}

END; {CASE evt.what}
END; {WITH MyXXXX^^}

HUnlock (Handle (MyXXXX));
END; {DoEvent}

PROCEDURE DoInfoUpdate {oldID,newID: INTEGER; MyXXXX: rXXXXHandle};
VAR

s: Str255;

BEGIN {DoInfoUpdate}
WITH MyXXXX^^ DO

BEGIN {Since our ID has changed, we need to change our window title}
 s := 'Window';

SetETitle (Handle (hXXXX), s);
ConcatStr (s,' from ');
ConcatStr (s,father^^.name);
SetWTitle (windPtr,s);

 {Now, let our father object know that our ID has been changed}
CallInfoUpdate (oldID,newID,father^^.wind^.refCon,

father^^.wind^.windowkind);
 END; {WITH MyXXXX^^}
END; {DoInfoUpdate}

PROCEDURE DoMenu {Menu,Item: INTEGER; MyXXXX: rXXXXHandle};
VAR

saveRefNum: INTEGER;

PROCEDURE DoClose;
BEGIN
WITH MyXXXX^^ DO

BEGIN
CloseWindow (windPtr); {Close the window}
WindFree (windPtr); {Mark the window record as being available}
InitCursor; {Make sure the cursor is the arrow cursor }
{Delete any menus that we added and redraw menu bar. }

 { Be sure to dispose of any handles you are done with.}
 END; {WITH MyXXXX^^}

DisposHandle (Handle(MyXXXX));

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

END; {DoClose}

BEGIN {DoMenu}
BubbleUp (Handle (MyXXXX));
HLock (Handle (MyXXXX));
WITH MyXXXX^^ DO

BEGIN
SetPort (windPtr); {Set the port to our window}
{Again, we handle the menu stuff just as we would in a 'real' }
{ application except that we only have to handle those items }
{ that apply to ourselves. }
CASE Menu OF

fileMenu: CASE Item OF
 CloseItem: BEGIN

DoClose; {Close our window}
EXIT (DoMenu); {Return to main program}
END; {CloseItem}

RevertItem: BEGIN
{The area under window will need to be updated}
InvalRect (windPtr^.portrect);
{We'll need to restore the cur resource file }
{ reference number when we're done here.}

 saveRefNum := CurrentRes;
{We're going to be using the resource file we }

 { came from.}
UseResFile (HomeResFile (Handle(hXXXX)));
{Read in the old copy from disk (see documentation }
{ for revertResource). Clear it out unless this }
{ was a newly created resource, in which case don't.}
IF NOT RevertResource (Handle(hXXXX))
THEN

BEGIN
RmveResource (Handle(hXXXX));
MyXXXX^^.father^^.rebuild := TRUE;
DoClose;
EXIT (DoMenu);
END; {IF NOT RevertResource… }

 {Go back to using old resource file.}
 UseResFile(saveRefNum);

END; {RevertItem}
GetInfoItem:

BEGIN
ShowInfo (Handle(hXXXX),ParentHandle(MyXXXX));

 END; {GetInfoItem}
END; {FileMenu: CASE Item OF}

EditMenu: CASE Item OF
CutItem :;
CopyItem :;
PasteItem:;
ClearItem:;

 END; {EditMenu: CASE Item OF}
END; {CASE Menu OF }

END; {WITH MyXXXX^^}
END; {DoMenu}
END.

Resource Compiler Input File

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

* Resource Compiler input file for a resource editor

RSRC/ResXXXX.rsrc

type RSSC= DRVR
 obj/resXXXXed!@XXXX, nnn {Substitute an appropriate ID for nnn}

ResEd Interface File

The ResEd file should be USEd by any Pascal implementation of an add-on picker or editor. The companion file ResEd68k
should be linked with the Pascal to realize the partially linked object file for inclusion in the ResEdit.RSRC file.

Resource Editor Routines from ResEd

The following two routines are used to launch resource type pickers and editors.

PROCEDURE CallPBirth (theType: ResType; parent: ParentHandle; id: INTEGER);

Launches a picker for a given resource. An editor will have little use for this routine unless you want your user to be
able to choose other resources to edit from within your editor. Notice that there is no communication back to the caller as to
which item was chosen, as it is the job of a picker to launch the editor for the item chosen.

PROCEDURE CallEBirth (theResource: Handle; parent: ParentHandle; id: INTEGER);

Launches an editor for a specific resource. theResource is the handle to that resource as returned by GetResource and
parent is the handle to your own picker record. id is the resource ID of the resource being edited. This can be a handy
routine to call if your editor also needs to edit other types (for instance, to edit an ICON from within a DITL). If you use
this routine, your editor must also act like a picker—this means that the first portion of your record must be in the format of
a picker record (defined in the ResEd interface file), and that you must respond to the changed status passed back from the
editor.

The following routines are used to feed events and menu calls to the appropriate code segments.

PROCEDURE CallInfoUpdate (oldID,newID: INTEGER; object: LONGINT; ID: INTEGER);

Tells the picker that launched your editor that something has changed that makes it necessary to rebuild the picker list
(that is, an ID or name has been changed, added, or deleted).

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

PROCEDURE PassMenu (menu, item: INTEGER; father: ParentHandle);

Passes menu selections on to any son pickers or editors that you have launched with CallEBirth or CallPBirth. Here is
an example of its use:

PassMenu(file,close,myObj); { Tell all subsidiary processes }
{ to close}

Note: Most editors won’t use the following event- and menu-handling routines.

PROCEDURE CallEvent (VAR evt: EventRecord; object: LONGINT; id: INTEGER);

Passes events on to pickers or editors that you have launched with CallEBirth or CallPBirth. object identifies the
resource and editor; id identifies the resource ID of the object.

PROCEDURE CallMenu (menu, item: INTEGER; object: LONGINT; ID: INTEGER);

Passes menu selections on to pickers or editors that you have launched with CallEBirth or CallPBirth.

Common Utilities Exported by ResEdit

These routines are used for handling windows.

FUNCTION WindAlloc: WindowPtr;

Returns a pointer to a window record (actually a dialog record) to be used by your editor. Using this routine instead of
allocating your own window pointer can help to reduce heap fragmentation.

PROCEDURE WindFree (w: WindowPtr);

Releases the window pointer allocated by WindAlloc. Use this when your editor is quitting and you are done with the
window.

FUNCTION WindList (w: WindowPtr; nAcross: INTEGER; pt:Point; drawProc:INTEGER): ListHandle;

Creates a new empty list and returns a handle to that list. (For more information on lists, see the “List Manager” chapter
in Volume IV of Inside Macintosh.)

PROCEDURE WindOrigin (w: WindowPtr);

Places the window pointed to by w at an offset down and to the right of the current front window.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

FUNCTION WindSetup (width,height: INTEGER; t,s: STR255): WindowPtr;

Creates and automatically positions a new window with the given width and height, and with the title of ConcatStr(t,s);

Extended Resource Manager Routines which Act on a Single Resource File

The following five routines are the same as their corresponding routines described in Inside Macintosh, except that they
operate only on the currently selected resource file and they always load the resource into the application heap. (They are
selected by UseResFile, etc.)

Note: These routines are provided in the 128K ROM; they are provided here for compatibility with 64K ROMs.

FUNCTION Count1Type: INTEGER;

PROCEDURE Get1IndType (VAR theType: ResType; index: INTEGER);

FUNCTION Count1Res (theType: ResType): INTEGER;

FUNCTION Get1IndResource (theType: ResType; index: INTEGER): Handle;

FUNCTION Get1Resource (theType: ResType; id: INTEGER): Handle;

FUNCTION GetResLoad: BOOLEAN;

Returns the current state of SetResLoad.

PROCEDURE Get1MapEntry (VAR theEntry: ResMapEntry; t: ResType; id: INTEGER);

Note: Map entry is the same as "resource reference" in I.M.

PROCEDURE Get1IMapEntry (VAR theEntry: ResMapEntry; t:ResType; index: INTEGER);

PROCEDURE GiveEBirth (h: Handle; pick: PickHandle);

FUNCTION RevertResource (h: Handle): BOOLEAN;

Given a handle to a resource that you are editing, this routine restores it to the state it was in before the editing started.

Miscellaneous Routines

PROCEDURE AbleMenu (menu: INTEGER; enable: LONGINT);

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

Given a menu in menu and a mask in enable (see the interface file) this routine enables and disables menu items.
(AbleMenu differs from the Resource Manager routines EnableItem and DisableItem in that it acts on the entire menu.)

PROCEDURE AppRes;

This routine does a UseResFile on the Resource editor itself. This routine is useful if you need to get a resource from
the resource editor, such as an ICON or DITL, for your editor to use.

FUNCTION AddNewRes (hNew: Handle; t: ResType; idNew: INTEGER; s: Str255) :BOOLEAN;

Adds a new resource. AddNewRes returns TRUE if successful, and reports an error to the user if it fails. This is the
same as calling AddResource + ResError.

PROCEDURE BubbleUp (h: Handle);

Performs the Memory Manager routine MoveHHi with additional error reporting.

FUNCTION BuildType (t: ResType; l: ListHandle): INTEGER;

Given a list that has been initialized with no rows (see the WindList routine above), this routine builds a list of all
resources of type t from the current resource file. If SetResLoad(TRUE) has been called, all the resources will be loaded in
also. It returns a count of the number of instances now in the list.

PROCEDURE ClearHand (h: Handle);

Clears the data indicated by the handle h to all zeros.

FUNCTION CopyRes (VAR h: Handle; makeID: BOOLEAN; refNum: INTEGER) :Handle;

Given a handle to a resource, CopyRes makes a copy of the resource to the resource file specified by refNum. Note that
the handle h is changed, so don’t keep track of your resource by saving its handle before using this call. If makeID is true,
then a unique ID will be assigned to the copy; otherwise it retains the ID of the original. CopyRes returns a handle to the
new copy (in the new file).

PROCEDURE ConcatStr (VAR str1: Str255; str2: Str255);

Concatenates str2 to str1.

PROCEDURE DoListEvt (theEvent: EventRecord; l: ListHandle);

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

Given an event, this routine does the standard dispatch to the List Manager (see Volume IV of Inside Macintosh). The
port must be set to the window that owns the event. DoListEvt also enables the File menu and draws controls in the
window.

FUNCTION DupPick (h: Handle; c: cell; pick: PickHandle): Handle;

Takes a resource and duplicates it; adds it to the picker list handle passed; and does an InvalRect on thePort for the new
cell. It also makes the new cell the selection.

FUNCTION ErrorCheck (err,msgID: INTEGER): BOOLEAN;

Given a result code and a message ID, this routine brings up an error dialog if the result code is nonzero. If msgID is
negative, it is a fatal error message and is retrieved from 'STR#' resource ID = 128; otherwise it is retrieved from 'STR#'
resource ID = 129. Be sure to add your new strings to the end of the existing list of the 'STR#'.

FUNCTION FileNewType (types: ListHandle; VAR s: Str255): BOOLEAN;

Puts up a dialog with a list of the types of resources that can be edited. The routine returns TRUE if a type is being
returned, FALSE if Cancel was clicked. The type is returned in s.

PROCEDURE FixHand (s: LONGINT; h: Handle);

Makes sure the object that h to which is a handle is s bytes long. If it’s longer, FixHand shrinks it; if it’s shorter,
FixHand expands it and fills the new part with zeros.

FUNCTION HandleCheck (h: Handle; msgID: INTEGER): BOOLEAN;

Checks to see if the handle is nil or empty. If it is either, HandleCheck returns error msgID to the user. It returns TRUE
if the handle is OK, and FALSE if there’s an error.

PROCEDURE MetaKeys (VAR cmd, shift, opt: BOOLEAN);

Returns the modifier flags for the last event.

FUNCTION NewRes (s: LONGINT; t: ResType; l: ListHandle; VAR n: INTEGER) :Handle;

Given a size s, this routine allocates a new handle, clears it, adds it to the current resource file as a resource of type t,
adds it to the list l, and returns the handle to the new resource.

PROCEDURE PickEvent (VAR evt: EventRecord; pick: PickHandle);

Handles all events for standard pickers. Call it from your picker’s event procedure.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

PROCEDURE PickInfoUp (oldID,newID: INTEGER; pick: PickHandle);

Handles all info updates for standard pickers. Call it from your picker’s doInfoUpdate procedure.

PROCEDURE PickMenu (menu, item: INTEGER; pick: PickHandle);

Handles all menu selections for standard pickers. Call it from your picker’s DoMenu procedure.

FUNCTION ResEdID: INTEGER;

Returns the resource ID of the editor/picker that is calling this routine.

PROCEDURE ResEverest;

Sets the current resource file to the last one opened.

PROCEDURE ScrapCopy (VAR h: Handle);

Copies the resource identified by h from the ResEdit scrap.

PROCEDURE ScrapEmpty;

Empties the ResEdit scrap. Call this before doing a paste.

PROCEDURE ScrapPaste (resFile: INTEGER);

Copies the resource identified by h to the ResEdit scrap.

PROCEDURE SetResChanged (h: Handle);

Marks the resource h as changed so that it will be updated when quitting.

PROCEDURE SetETitle (h: Handle; VAR str: STR255);

Given a handle to a resource, this routine places its ID and name into str (concatenating them).

FUNCTION ResEditRes: INTEGER;

Returns the resource ID of the resource editor.

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

PROCEDURE ShowInfo (h: Handle; dad: ParentHandle);

Puts up a GetInfo window for the given resource that belongs to the given father object.

PROCEDURE SeedFill (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words: INTEGER; seedH,seedV:
INTEGER);

Given a source and a destination bit image along with a seed location, this routine fills the bits in the destination with
black.

PROCEDURE CalcMask (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words: INTEGER);

Calculates a mask for the given source bit image and puts it into the destination.

Constants

CONST
{Standard menus exported by the resource editor shell}

FileMenu = 2;
NewItem = 1;
OpenItem = 2;
OpnOther = 3;
OpnGnrl = 4;
CloseItem = 5;
RevertItem = 6;
GetInfoItem = 7;
QuitItem = 9;

EditMenu = 3;
 UndoItem = 1;

CutItem = 3;
CopyItem = 4;
PasteItem = 5;
ClearItem = 6;
DupItem = 8;

fileAll = $FFFFFEBF; { All enabled }
fileNoOpen = $FFFFFEE3; { open disabled - for when editor on top}
fileTop = $FFFFFEE1; { Close, GetInfo, Revert, Quit enabled }
fileClose = $FFFFFE21; { Close, Quit enabled }
fileNoRevert = $FFFFFEBF; { No revert }
fileNoInfo = $FFFFFE7F; { No get info }
fileOpQuOnly = $FFFFFE1D; { Open and Quit enable }
fileQuit = $FFFFFE01; { Only Quit enabled }
fileNoAsMask = $FFFFFFF7; { Mask off the Open as… selection }

editAll = $FFFFFF7B; { All enabled }
editNoUndo = $FFFFFF79; { All enabled except undo }
editNoDup = $FFFFFE79; { All enabled except undo and dup. } editNone =

$FFFFFE01; { None enabled }
editAcc = $0000007B; { Common enabled for desk acc. }
editCopy = $FFFFFE11; { Only copy enabled }

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

Data Types

TYPE
STR64 = STRING[64];

 {map entry def for new resource manager call}
ResMapEntry =

RECORD
rID: INTEGER;
rNameOff: INTEGER;
rLocn: LongInt;
rHndl: Handle;

END; {ResMapEntry}

Each driver has its own object handle. This handle has to start with a handle to its parent’s object, followed by the name
distinguishing the father. This name will be part of the son’s window title. The next field should be the window of the
object, which may be used by son to get back to the father (through the refCon in the windowRec). The rest of the handle
can be of any format.

ParentPtr = ^ParentRec;
ParentHandle = ^ParentPtr;

 ParentRec =
RECORD

father: ParentHandle;
name: Str64;
wind: WindowPeek;
rebuild: BOOLEAN; {flag set by son to indicate that world}

{ has changed so father should rebuild } { list }
END;

The standard picker record is shown below:

 PickPtr = ^PickRec; {Any type is OK here }
PickHandle = ^PickPtr;

 PickRec =
RECORD

father: ParentHandle; {Back ptr to dad}
fName: Str64;
wind: WindowPtr; {Picker window}
rebuild: BOOLEAN;
pickID: INTEGER; {Resource ID of this picker}
rType: ResType; {Type for picker}
rNum: INTEGER; {resfile number}
rSize: LONGINT; {size of a null resource}
nInsts: INTEGER; {Number of instances}
instances: ListHandle; {List of instances}
drawProc: Ptr; {List draw proc.}
scroll: ControlHandle; {Scroll bar}

END;

Summary of ResEd Routines

Routines used to give birth to resource pickers and editors:

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

PROCEDURE CallPBirth (t: ResType; parent: ParentHandle; id: INTEGER);
PROCEDURE CallEBirth (thing: Handle; parent: ParentHandle; id: INTEGER);

Routines used to feed events and menu calls to the appropriate code segments:

PROCEDURE CallEvent (VAR evt: EventRecord; object: LONGINT; id: INTEGER);
PROCEDURE CallMenu (menu, item: INTEGER; object: LONGINT; id: INTEGER);
PROCEDURE CallInfoUpdate (oldID,newID: INTEGER; object: LONGINT; id: INTEGER);
PROCEDURE PassMenu (menu, item: INTEGER; father: ParentHandle);

Common utilities exported by ResEdit:

FUNCTION WindAlloc: WindowPtr;
PROCEDURE WindFree (w: WindowPtr);
FUNCTION WindList (w: WindowPtr; nAcross: INTEGER; pt:Point; drawProc: INTEGER):

ListHandle;
PROCEDURE WindOrigin (w: WindowPtr);
FUNCTION WindSetup (width, height: INTEGER; t, s: STR255): WindowPtr;

Extended Resource Manager routines which act only on one resource file:

FUNCTION CurrentRes: INTEGER;
FUNCTION Count1Res (t: ResType): INTEGER;
FUNCTION Count1Type: INTEGER;
FUNCTION Get1Index (t: ResType; index: INTEGER): Handle;
FUNCTION Get1Resource (t: ResType; id: INTEGER): Handle;
PROCEDURE Get1IndType (VAR theType: ResType; i: INTEGER);
FUNCTION GetResLoad: BOOLEAN;
PROCEDURE Get1MapEntry (VAR theEntry: ResMapEntry; t: ResType; id: INTEGER);
PROCEDURE Get1IMapEntry (VAR theEntry: ResMapEntry; t: ResType; index: INTEGER);

PROCEDURE GiveEBirth (h: Handle; pick: PickHandle);
FUNCTION RevertResource (h: Handle): BOOLEAN;

Miscellany:

PROCEDURE AbleMenu (menu: INTEGER; enable: LONGINT);
PROCEDURE AppRes;
FUNCTION AddNewRes (hNew: Handle; t: ResType; idNew: INTEGER; s: str255): BOOLEAN;
PROCEDURE BubbleUp (h: Handle);

FUNCTION BuildType (t: ResType; l: ListHandle): INTEGER;
PROCEDURE ClearHand (h: Handle);
FUNCTION CopyRes (VAR h: Handle; makeID: BOOLEAN; resNew: INTEGER): Handle;
PROCEDURE ConcatStr (VAR str1: STR255; str2: STR255);

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

PROCEDURE DoListEvt (e: EventRecord; l: ListHandle);
FUNCTION DupPick (h: Handle; c: cell; pick: PickHandle): Handle;
FUNCTION ErrorCheck (err, msgID: INTEGER): BOOLEAN;
FUNCTION FileNewType (types: ListHandle; VAR s: str255): BOOLEAN;

PROCEDURE FixHand (s: LONGINT; h: Handle);
PROCEDURE GetStr (num, list: INTEGER; VAR str: STR255);
FUNCTION GetThePort: GrafPtr;
FUNCTION HandleCheck (h: Handle; msgID: INTEGER): BOOLEAN;

PROCEDURE MetaKeys (VAR cmd, shift, opt: BOOLEAN);
FUNCTION NewRes (s: LONGINT; t: ResType; l: ListHandle; VAR n: INTEGER): Handle;
PROCEDURE PickEvent (VAR evt: EventRecord; pick: PickHandle);
PROCEDURE PickInfoUp (oldID,newID: INTEGER; pick: PickHandle);

PROCEDURE PickMenu (menu, item: INTEGER; pick: PickHandle);
FUNCTION ResEdID: INTEGER;
PROCEDURE ResEverest;
PROCEDURE ScrapCopy (VAR h: Handle);

PROCEDURE ScrapEmpty;
PROCEDURE ScrapPaste (resFile: INTEGER);
PROCEDURE SetResChanged (h: Handle);
PROCEDURE SetETitle (h: Handle; VAR str: STR255);

FUNCTION ResEditRes: INTEGER;
PROCEDURE ShowInfo (h: Handle; dad: ParentHandle);
PROCEDURE SeedFill (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words: INTEGER; seedH,seedV:

INTEGER);
PROCEDURE CalcMask (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words: INTEGER);

ResEdit: A Macintosh Resource Editor
The Software Supplement - Volume I, Issue 3 Page 13-

(picture)

