
sdbm — Substitute DBM
or

Berkeley ndbm for Every UN*X1 Made Simple

Ozan (oz) Yigit

The Guild of PD Software Toolmakers
Toronto - Canada

oz@nexus.yorku.ca

Implementation is the sincerest form of flattery. — L. Peter Deutsch

A The Clone of the ndbm library

The sources accompanying this notice — sdbm — constitute the first public release (Dec. 1990) of a
complete clone of the Berkeley UN*X ndbm library. The sdbm library is meant to clone the proven func-
tionality of ndbm as closely as possible, including a few improvements. It is practical, easy to understand,
and compatible. The sdbm library is not derived from any licensed, proprietary or copyrighted software.

The sdbm implementation is based on a 1978 algorithm [Lar78] by P.-A. (Paul) Larson known as
‘‘Dynamic Hashing’’. In the course of searching for a substitute for ndbm, I prototyped three different
external-hashing algorithms [Lar78, Fag79, Lit80] and ultimately chose Larson’s algorithm as a basis of
the sdbm implementation. The Bell Labs dbm (and therefore ndbm) is based on an algorithm invented by
Ken Thompson, [Tho90, Tor87] and predates Larson’s work.

The sdbm programming interface is totally compatible with ndbm and includes a slight improvement
in database initialization. It is also expected to be binary-compatible under most UN*X versions that sup-
port the ndbm library.

The sdbm implementation shares the shortcomings of the ndbm library, as a side effect of various
simplifications to the original Larson algorithm. It does produce holes in the page file as it writes pages past
the end of file. (Larson’s paper include a clever solution to this problem that is a result of using the hash
value directly as a block address.) On the other hand, extensive tests seem to indicate that sdbm creates
fewer holes in general, and the resulting pagefiles are smaller. The sdbm implementation is also faster than
ndbm in database creation. Unlike the ndbm, the sdbm store operation will not ‘‘wander away’’ trying
to split its data pages to insert a datum that cannot (due to elaborate worst-case situations) be inserted. (It
will fail after a pre-defined number of attempts.)

Important Compatibility Warning

The sdbm and ndbm libraries cannot share databases: one cannot read the (dir/pag) database created
by the other. This is due to the differences between the ndbm and sdbm algorithms2, and the hash functions
used. It is easy to convert between the dbm/ndbm databases and sdbm by ignoring the index completely:
see dbd, dbu etc.

Notice of Intellectual Property

The entire sdbm library package, as authored by me, Ozan S. Yigit, is hereby placed in the public domain.
As such, the author is not responsible for the consequences of use of this software, no matter how awful,
even if they arise from defects in it. There is no expressed or implied warranty for the sdbm library.

hhhhhhhhhhhhhhhhhh
1 UN*X is not a trademark of any (dis)organization.
2 Torek’s discussion [Tor87] indicates that dbm/ndbm implementations use the hash value to traverse the radix trie dif-

ferently than sdbm and as a result, the page indexes are generated in different order. For more information, send e-mail to
the author.

- 2 -

Since the sdbm library package is in the public domain, this original release or any additional
public-domain releases of the modified original cannot possibly (by definition) be withheld from you. Also
by definition, You (singular) have all the rights to this code (including the right to sell without permission,
the right to hoard3 and the right to do other icky things as you see fit) but those rights are also granted to
everyone else.

Please note that all previous distributions of this software contained a copyright (which is now
dropped) to protect its origins and its current public domain status against any possible claims and/or chal-
lenges.

Acknowledgments

Many people have been very helpful and supportive. A partial list would necessarily include Rayan
Zacherissen (who contributed the man page, and also hacked a MMAP version of sdbm), Arnold Robbins,
Chris Lewis, Bill Davidsen, Henry Spencer, Geoff Collyer, Rich Salz (who got me started in the first
place), Johannes Ruschein (who did the minix port) and David Tilbrook. I thank you all.

Distribution Manifest and Notes

This distribution of sdbm includes (at least) the following:

CHANGES change log
README this file.
biblio a small bibliography on external hashing
dba.c a crude (n/s)dbm page file analyzer
dbd.c a crude (n/s)dbm page file dumper (for conversion)
dbe.1 man page for dbe.c
dbe.c Janick’s database editor
dbm.c a dbm library emulation wrapper for ndbm/sdbm
dbm.h header file for the above
dbu.c a crude db management utility
hash.c hashing function
makefile guess.
pair.c page-level routines (posted earlier)
pair.h header file for the above
readme.ms troff source for the README file
sdbm.3 man page
sdbm.c the real thing
sdbm.h header file for the above
tune.h place for tuning & portability thingies
util.c miscellaneous

dbu is a simple database manipulation program4 that tries to look like Bell Labs’ cbt utility. It is
currently incomplete in functionality. I use dbu to test out the routines: it takes (from stdin) tab separated
key/value pairs for commands like build or insert or takes keys for commands like delete or
look.

dbu <build|creat|look|insert|cat|delete> dbmfile

dba is a crude analyzer of dbm/sdbm/ndbm page files. It scans the entire page file, reporting page
level statistics, and totals at the end.

dbd is a crude dump program for dbm/ndbm/sdbm databases. It ignores the bitmap, and dumps the
data pages in sequence. It can be used to create input for the dbu utility. Note that dbd will skip any
hhhhhhhhhhhhhhhhhh

3 You cannot really hoard something that is available to the public at large, but try if it makes you feel any better.
4 The dbd, dba, dbu utilities are quick hacks and are not fit for production use. They were developed late one night,

just to test out sdbm, and convert some databases.

- 3 -

NULLs in the key and data fields, thus is unsuitable to convert some peculiar databases that insist in includ-
ing the terminating null.

I have also included a copy of the dbe (ndbm DataBase Editor) by Janick Bergeron
[janick@bnr.ca] for your pleasure. You may find it more useful than the little dbu utility.

dbm.[ch] is a dbm library emulation on top of ndbm (and hence suitable for sdbm). Written by
Robert Elz.

The sdbm library has been around in beta test for quite a long time, and from whatever little feedback
I received (maybe no news is good news), I believe it has been functioning without any significant prob-
lems. I would, of course, appreciate all fixes and/or improvements. Portability enhancements would espe-
cially be useful.

Implementation Issues

Hash functions: The algorithm behind sdbm implementation needs a good bit-scrambling hash func-
tion to be effective. I ran into a set of constants for a simple hash function that seem to help sdbm perform
better than ndbm for various inputs:

/*
* polynomial conversion ignoring overflows
* 65599 nice. 65587 even better.
*/
long
dbm_hash(char *str, int len) {

register unsigned long n = 0;

while (len--)
n = n * 65599 + *str++;

return n;
}

There may be better hash functions for the purposes of dynamic hashing. Try your favorite, and
check the pagefile. If it contains too many pages with too many holes, (in relation to this one for example)
or if sdbm simply stops working (fails after SPLTMAX attempts to split) when you feed your NEWS
history file to it, you probably do not have a good hashing function. If you do better (for different types
of input), I would like to know about the function you use.

Block sizes: It seems (from various tests on a few machines) that a page file block size PBLKSIZ of
1024 is by far the best for performance, but this also happens to limit the size of a key/value pair. Depend-
ing on your needs, you may wish to increase the page size, and also adjust PAIRMAX (the maximum size
of a key/value pair allowed: should always be at least three words smaller than PBLKSIZ.) accordingly.
The system-wide version of the library should probably be configured with 1024 (distribution default), as
this appears to be sufficient for most common uses of sdbm.

Portability

This package has been tested in many different UN*Xes even including minix, and appears to be rea-
sonably portable. This does not mean it will port easily to non-UN*X systems.

Notes and Miscellaneous

The sdbm is not a very complicated package, at least not after you familiarize yourself with the
literature on external hashing. There are other interesting algorithms in existence that ensure (approxi-
mately) single-read access to a data value associated with any key. These are directory-less schemes such
as linear hashing [Lit80] (+ Larson variations), spiral storage [Mar79] or directory schemes such as exten-
sible hashing [Fag79] by Fagin et al. I do hope these sources provide a reasonable playground for experi-
mentation with other algorithms. See the June 1988 issue of ACM Computing Surveys [Enb88] for an
excellent overview of the field.

- 4 -

References

[Lar78] P.-A. Larson, ‘‘Dynamic Hashing’’, BIT, vol. 18, pp. 184-201, 1978.

[Tho90] Ken Thompson, private communication, Nov. 1990

[Lit80] W. Litwin, ‘‘ Linear Hashing: A new tool for file and table addressing’’, Proceedings of the 6th
Conference on Very Large Dabatases (Montreal), pp. 212-223, Very Large Database Founda-
tion, Saratoga, Calif., 1980.

[Fag79] R. Fagin, J. Nievergelt, N. Pippinger, and H. R. Strong, ‘‘Extendible Hashing - A Fast Access
Method for Dynamic Files’’, ACM Trans. Database Syst., vol. 4, no.3, pp. 315-344, Sept. 1979.

[Wal84] Rich Wales, ‘‘Discussion of "dbm" data base system’’, USENET newsgroup unix.wizards, Jan.
1984.

[Tor87] Chris Torek, ‘‘Re: dbm.a and ndbm.a archives’’, USENET newsgroup comp.unix, 1987.

[Mar79] G. N. Martin, ‘‘Spiral Storage: Incrementally Augmentable Hash Addressed Storage’’, Techni-
cal Report #27, University of Varwick, Coventry, U.K., 1979.

[Enb88] R. J. Enbody and H. C. Du, ‘‘Dynamic Hashing Schemes’’,ACM Computing Surveys, vol. 20,
no. 2, pp. 85-113, June 1988.

