
badnodes

badnodes ii

COLLABORATORS

TITLE :

badnodes

ACTION NAME DATE SIGNATURE

WRITTEN BY December 11, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

badnodes iii

Contents

1 badnodes 1

1.1 BadLinks v1.15 ©1993 by Roger Nedel . 1

1.2 BadLinks v1.15 ©1993 by Roger Nedel . 1

1.3 BadLinks v1.15 ©1993 by Roger Nedel . 2

1.4 BadLinks v1.15 ©1993 by Roger Nedel . 2

1.5 BadLinks v1.15 ©1993 by Roger Nedel . 2

1.6 BadLinks v1.15 ©1993 by Roger Nedel . 3

1.7 BadLinks v1.15 ©1993 by Roger Nedel . 4

1.8 BadLinks v1.15 ©1993 by Roger Nedel . 4

badnodes 1 / 6

Chapter 1

badnodes

1.1 BadLinks v1.15 ©1993 by Roger Nedel

BadLinks:
========

Legal Crap

Concept

Installation

Operation

1.2 BadLinks v1.15 ©1993 by Roger Nedel

Written By

Roger E. Nedel
3635 East Avondale Dr

Salt Lake City, Utah 84121-5504
U.S.A.

(801) 944-4352

©1993 by Roger E. Nedel
All rights reserved.

This program and all it’s associated files
are the posession of Roger E. Nedel. This
program IS NOT released into the public
domain, however, you are free to distribute
it so long as you charge only a minimal fee
(not more than $3.00 U.S.) for disk copying.

If you distribute this program, you are bound

badnodes 2 / 6

to distribute it in its original form. All
original files must be included in their
unaltered state. You are free to include
this archive as an integral portion of another
archive, provided all files are included in
their unaltered state.

You may NOT include this program in another
program or archive if that program or archive
is for profit.

1.3 BadLinks v1.15 ©1993 by Roger Nedel

Concept:
=======

I just finished authoring a HUGE amigaguide file, and was faced
with the unenviable task of testing each and every button in the
guide.

I was concerned that I might have mistyped some of the links. If
that had occurred, then some unsuspecting user would attempt to
access a node, only to find that the button wasn’t linked properly.

After about 15 minutes of button pressing, I decided to write a
program to do the checking for me...after all, I’m pretty smart,
aren’t I???

1.4 BadLinks v1.15 ©1993 by Roger Nedel

Installation:
============

There’s not much to it. Just place it in the desired drawer
and you’re ready to go.

1.5 BadLinks v1.15 ©1993 by Roger Nedel

Operation:
=========

BadLinks will run from the CLI only. I’ll break program
operation down into two sections.

Testing a file with NO external links
Testing a file with external links

badnodes 3 / 6

What is an external link?
========================

In case you’re scratching your head, wondering what the
heck an external link is...

Amigaguide files generally access nodes which lay solely
inside their own files. If this is true of your amigaguide
file, then you don’t have any external links.

An amigaguide file can access a node inside another
amigaguide file. If this is the case, then your file
contains external links.

1.6 BadLinks v1.15 ©1993 by Roger Nedel

Testing a file with NO external links:
=====================================

If your file contains NO exernal links, then operation of
"badlinks" is very simple. The syntax of it’s CLI command
is as follows:

badlinks <file>

where: file = amigaguide pathname.

Badlinks will verify that every "link" attempt has a matching
"node". You can expect badlinks to generate the following
files:

Ram:NodeNames
Ram:InvalidLinks

Ram:NodeNames:
=============

This file is created only if your amigaguide file contains
one or more valid nodes. If it doesn’t contain any nodes,
then "badlinks" will tell you so, and will refrain from
creating this file.

If this file is created, it will contain an alphabetical
listing of each node name found in your amigaguide file.

Ram:InvalidLinks:
================

This file is created only if your amigaguide file contains
one or more invalid links. If "badlinks" can’t find any
invalid links, it will inform you of that fact, and will

badnodes 4 / 6

refrain from creating this file.

1.7 BadLinks v1.15 ©1993 by Roger Nedel

Testing a file with external links:
==================================

If your file contains exernal links, then operation of "badlinks"
is a bit more difficult. The syntax of it’s CLI command is as
follows:

badlinks <file1> [<file2> <prefix2>] [<file3> <prefix3>]...

where: file = amigaguide filename(s)
prefix = path to add to beginning of external links

<> = required argument
[] = optional argument

Badlinks will verify that every "link" attempt has a matching
"node". You can expect badlinks to generate the following
files:

Ram:NodeNames
Ram:InvalidLinks

Ram:NodeNames:
=============

This file is created only if your amigaguide file contains
one or more valid nodes. If it doesn’t contain any nodes,
then "badlinks" will tell you so, and will refrain from
creating this file.

If this file is created, it will contain an alphabetical
listing of each node name found in your amigaguide file.

Ram:InvalidLinks:
================

This file is created only if your amigaguide file contains
one or more invalid links. If "badlinks" can’t find any
invalid links, it will inform you of that fact, and will
refrain from creating this file.

1.8 BadLinks v1.15 ©1993 by Roger Nedel

badnodes 5 / 6

Prefix:
======

The most difficult thing to understand about "badlinks" is
the "prefix" concept. To be honest though, if you’ve created
external links in an amigaguide, it won’t be tough at all.

If you have a node in file1 labelled <@node "internal node">,
then the following link will tie into it:

a{" Go internal " link "internal node"}

Now taking it one step further, lets say you want to link into
a node from ANOTHER FILE (file2). Let say that the node in
file2 is called <@node "external node">. To link into this
node, the following WILL NOT suffice:

a{" Go external " link "external node"}

Why won’that suffice. Because amigaguide needs to have some
sort of a path telling it which file the node belongs in. For
example, the following would work if both file1 and file2
resided in the same drawer:

a{" Go external " link "file2/external node"}

This illustrates the prefix concept.

a{" Go external " link "PREFIX/nodename"}

Examples:
========

Prim File: work:help.guide

Link: a{" Mystuff " link "MY.GUIDE/main"}

2nd File: work:myguide

CLI: badlinks work:help.guide work:my.guide MY.GUIDE

===

Prim File: work:help.guide

Link: a{" Mystuff " link "WORK:MY.GUIDE/main"}

2nd File: work:my.guide

badnodes 6 / 6

CLI: badlinks work:help.guide work:my.guide WORK:MY.GUIDE

===

Prim File: ram:file1

Links: a{" Index " link "Index"} /* internal link */
a{" Go 2 " link "FILE2/main"} /* external link */
a{" Go 3 " link "WORK:FILE3/main"} /* external link */

2nd File: ram:file2
3rd File: work:file3

CLI: badlinks ram:file1 ram:file2 FILE2 work:file3 WORK:FILE3

	badnodes
	BadLinks v1.15 ©1993 by Roger Nedel
	BadLinks v1.15 ©1993 by Roger Nedel
	BadLinks v1.15 ©1993 by Roger Nedel
	BadLinks v1.15 ©1993 by Roger Nedel
	BadLinks v1.15 ©1993 by Roger Nedel
	BadLinks v1.15 ©1993 by Roger Nedel
	BadLinks v1.15 ©1993 by Roger Nedel
	BadLinks v1.15 ©1993 by Roger Nedel

