
gnu:guide/fileutils

gnu:guide/fileutils ii

COLLABORATORS

TITLE :

gnu:guide/fileutils

ACTION NAME DATE SIGNATURE

WRITTEN BY December 11, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

gnu:guide/fileutils iii

Contents

1 gnu:guide/fileutils 1

1.1 gnu:guide/fileutils.guide . 1

1.2 fileutils.guide/Introduction . 1

1.3 fileutils.guide/Common options . 2

1.4 fileutils.guide/Backup options . 2

1.5 fileutils.guide/File permissions . 3

1.6 fileutils.guide/Mode Structure . 3

1.7 fileutils.guide/Symbolic Modes . 4

1.8 fileutils.guide/Setting Permissions . 5

1.9 fileutils.guide/Copying Permissions . 6

1.10 fileutils.guide/Changing Special Permissions . 7

1.11 fileutils.guide/Conditional Executability . 8

1.12 fileutils.guide/Multiple Changes . 8

1.13 fileutils.guide/Umask and Protection . 9

1.14 fileutils.guide/Numeric Modes . 10

1.15 fileutils.guide/Directory listing . 11

1.16 fileutils.guide/ls invocation . 11

1.17 fileutils.guide/Which files are listed . 12

1.18 fileutils.guide/What information is listed . 12

1.19 fileutils.guide/Sorting the output . 14

1.20 fileutils.guide/General output formatting . 15

1.21 fileutils.guide/Formatting the filenames . 16

1.22 fileutils.guide/dir invocation . 17

1.23 fileutils.guide/vdir invocation . 17

1.24 fileutils.guide/Basic operations . 17

1.25 fileutils.guide/cp invocation . 17

1.26 fileutils.guide/dd invocation . 20

1.27 fileutils.guide/install invocation . 21

1.28 fileutils.guide/mv invocation . 22

1.29 fileutils.guide/rm invocation . 24

gnu:guide/fileutils iv

1.30 fileutils.guide/Special file types . 25

1.31 fileutils.guide/ln invocation . 25

1.32 fileutils.guide/mkdir invocation . 27

1.33 fileutils.guide/mkfifo invocation . 27

1.34 fileutils.guide/mknod invocation . 28

1.35 fileutils.guide/rmdir invocation . 29

1.36 fileutils.guide/Changing file attributes . 29

1.37 fileutils.guide/chown invocation . 30

1.38 fileutils.guide/chgrp invocation . 31

1.39 fileutils.guide/chmod invocation . 31

1.40 fileutils.guide/touch invocation . 32

1.41 fileutils.guide/Disk usage . 33

1.42 fileutils.guide/df invocation . 34

1.43 fileutils.guide/du invocation . 36

1.44 fileutils.guide/sync invocation . 37

1.45 fileutils.guide/Index . 37

gnu:guide/fileutils 1 / 47

Chapter 1

gnu:guide/fileutils

1.1 gnu:guide/fileutils.guide

GNU file utilities

This manual minimally documents version GNU fileutils 3.12 of the
GNU file utilities.

Introduction Caveats, overview, and authors.
Common options Common options.
File permissions Access modes.
Directory listing ls dir vdir d v
Basic operations cp dd install mv rm
Special file types ln mkdir rmdir mkfifo mknod
Changing file attributes chgrp chmod chown touch
Disk usage df du sync
Index General index.

1.2 fileutils.guide/Introduction

Introduction

This manual is incomplete: No attempt is made to explain basic file
concepts in a way suitable for novices. Thus, if you are interested,
please get involved in improving this manual. The entire GNU community
will benefit.

The GNU file utilities are mostly compatible with the POSIX.2
standard.

Please report bugs to ‘bug-gnu-utils@prep.ai.mit.edu’. Remember to
include the version number, machine architecture, input files, and any
other information needed to reproduce the bug. See Bugs.

gnu:guide/fileutils 2 / 47

This manual is based on the Unix man pages in the distribution, which
were originally written by David MacKenzie and updated by Jim Meyering.
Franc,ois Pinard did the initial conversion to Texinfo format. Karl
Berry did the indexing, some reorganization, and editing of the results.
Richard Stallman contributed his usual invaluable insights to the
overall process.

1.3 fileutils.guide/Common options

Common options

Certain options are available in all these programs. Rather than
writing identical descriptions for each of the programs, they are
described here. (In fact, every GNU program accepts (or should accept)
these options.)

‘--help’
Print a usage message listing all available options, then exit
successfully.

‘--version’
Print the version number, then exit successfully.

Backup options -b -S -V, in some programs.

1.4 fileutils.guide/Backup options

Backup options
==============

Some GNU programs (at least ‘cp’, ‘mv’, and ‘ln’) optionally make
backups of files before writing new versions. These options control
the details of these backups. The options are also briefly mentioned
in the descriptions of the particular programs.

‘-b’
‘--backup’

Make backups of files that are about to be overwritten or removed.
Without this option, the original versions are destroyed.

‘-S SUFFIX’
‘--suffix=SUFFIX’

Append SUFFIX to each backup file made with ‘-b’. If this option
is not specified, the value of the ‘SIMPLE_BACKUP_SUFFIX’
environment variable is used. And if ‘SIMPLE_BACKUP_SUFFIX’ is not
set, the default is ‘~’, just as in Emacs.

‘-V METHOD’

gnu:guide/fileutils 3 / 47

‘--version-control=METHOD’
Use METHOD to determine the type of backups made with ‘-b’. If
this option is not specified, the value of the ‘VERSION_CONTROL’
environment variable is used. And if ‘VERSION_CONTROL’ is not set,
the default backup type is ‘existing’.

This option corresponds to the Emacs variable ‘version-control’;
the same values for METHOD are accepted as in Emacs. This options
also more descriptive name. The valid METHODs (unique
abbreviations are accepted):

‘t’
‘numbered’

Always make numbered backups.

‘nil’
‘existing’

Make numbered backups of files that already have them, simple
backups of the others.

‘never’
‘simple’

Always make simple backups.

1.5 fileutils.guide/File permissions

File permissions

Each file has a set of "permissions" that control the kinds of
access that users have to that file. The permissions for a file are
also called its "access mode". They can be represented either in
symbolic form or as an octal number.

Mode Structure Structure of file permissions.
Symbolic Modes Mnemonic permissions representation.
Numeric Modes Permissions as octal numbers.

1.6 fileutils.guide/Mode Structure

Structure of File Permissions
=============================

There are three kinds of permissions that a user can have for a file:

1. permission to read the file. For directories, this means
permission to list the contents of the directory.

2. permission to write to (change) the file. For directories, this

gnu:guide/fileutils 4 / 47

means permission to create and remove files in the directory.

3. permission to execute the file (run it as a program). For
directories, this means permission to access files in the
directory.

There are three categories of users who may have different
permissions to perform any of the above operations on a file:

1. the file’s owner;

2. other users who are in the file’s group;

3. everyone else.

Files are given an owner and group when they are created. Usually
the owner is the current user and the group is the group of the
directory the file is in, but this varies with the operating system, the
filesystem the file is created on, and the way the file is created. You
can change the owner and group of a file by using the ‘chown’ and
‘chgrp’ commands.

In addition to the three sets of three permissions listed above, a
file’s permissions have three special components, which affect only
executable files (programs) and, on some systems, directories:

1. set the process’s effective user ID to that of the file upon
execution (called the "setuid bit"). No effect on directories.

2. set the process’s effective group ID to that of the file upon
execution (called the "setgid bit"). For directories on some
systems, put files created in the directory into the same group as
the directory, no matter what group the user who creates them is
in.

3. save the program’s text image on the swap device so it will load
more quickly when run (called the "sticky bit"). For directories
on some systems, prevent users from removing files that they do
not own in the directory; this is called making the directory
"append-only".

1.7 fileutils.guide/Symbolic Modes

Symbolic Modes
==============

"Symbolic modes" represent changes to files’ permissions as
operations on single-character symbols. They allow you to modify either
all or selected parts of files’ permissions, optionally based on their
previous values, and perhaps on the current ‘umask’ as well (see
Umask and Protection).

The format of symbolic modes is:

gnu:guide/fileutils 5 / 47

[ugoa...][[+-=][rwxXstugo...]...][,...]

The following sections describe the operators and other details of
symbolic modes.

Setting Permissions Basic operations on permissions.
Copying Permissions Copying existing permissions.
Changing Special Permissions Special permissions.
Conditional Executability Conditionally affecting executability.
Multiple Changes Making multiple changes.
Umask and Protection The effect of the umask.

1.8 fileutils.guide/Setting Permissions

Setting Permissions

The basic symbolic operations on a file’s permissions are adding,
removing, and setting the permission that certain users have to read,
write, and execute the file. These operations have the following
format:

USERS OPERATION PERMISSIONS

The spaces between the three parts above are shown for readability only;
symbolic modes can not contain spaces.

The USERS part tells which users’ access to the file is changed. It
consists of one or more of the following letters (or it can be empty;
see Umask and Protection, for a description of what happens then). When
more than one of these letters is given, the order that they are in does
not matter.

‘u’
the user who owns the file;

‘g’
other users who are in the file’s group;

‘o’
all other users;

‘a’
all users; the same as ‘ugo’.

The OPERATION part tells how to change the affected users’ access to
the file, and is one of the following symbols:

‘+’
to add the PERMISSIONS to whatever permissions the USERS already
have for the file;

‘-’

gnu:guide/fileutils 6 / 47

to remove the PERMISSIONS from whatever permissions the USERS
already have for the file;

‘=’
to make the PERMISSIONS the only permissions that the USERS have
for the file.

The PERMISSIONS part tells what kind of access to the file should be
changed; it is zero or more of the following letters. As with the
USERS part, the order does not matter when more than one letter is
given. Omitting the PERMISSIONS part is useful only with the ‘=’
operation, where it gives the specified USERS no access at all to the
file.

‘r’
the permission the USERS have to read the file;

‘w’
the permission the USERS have to write to the file;

‘x’
the permission the USERS have to execute the file.

For example, to give everyone permission to read and write a file,
but not to execute it, use:

a=rw

To remove write permission for from all users other than the file’s
owner, use:

go-w

The above command does not affect the access that the owner of the file
has to it, nor does it affect whether other users can read or execute
the file.

To give everyone except a file’s owner no permission to do anything
with that file, use the mode below. Other users could still remove the
file, if they have write permission on the directory it is in.

go=

Another way to specify the same thing is:

og-rxw

1.9 fileutils.guide/Copying Permissions

Copying Existing Permissions

You can base part of a file’s permissions on part of its existing
permissions. To do this, instead of using ‘r’, ‘w’, or ‘x’ after the

gnu:guide/fileutils 7 / 47

operator, you use the letter ‘u’, ‘g’, or ‘o’. For example, the mode

o+g

adds the permissions for users who are in a file’s group to the
permissions that other users have for the file. Thus, if the file
started out as mode 664 (‘rw-rw-r--’), the above mode would change it
to mode 666 (‘rw-rw-rw-’). If the file had started out as mode 741
(‘rwxr----x’), the above mode would change it to mode 745
(‘rwxr--r-x’). The ‘-’ and ‘=’ operations work analogously.

1.10 fileutils.guide/Changing Special Permissions

Changing Special Permissions

In addition to changing a file’s read, write, and execute
permissions, you can change its special permissions. See
Mode Structure, for a summary of these permissions.

To change a file’s permission to set the user ID on execution, use
‘u’ in the USERS part of the symbolic mode and ‘s’ in the PERMISSIONS
part.

To change a file’s permission to set the group ID on execution, use
‘g’ in the USERS part of the symbolic mode and ‘s’ in the PERMISSIONS
part.

To change a file’s permission to stay permanently on the swap device,
use ‘o’ in the USERS part of the symbolic mode and ‘t’ in the
PERMISSIONS part.

For example, to add set user ID permission to a program, you can use
the mode:

u+s

To remove both set user ID and set group ID permission from it, you
can use the mode:

ug-s

To cause a program to be saved on the swap device, you can use the
mode:

o+t

Remember that the special permissions only affect files that are
executable, plus, on some systems, directories (on which they have
different meanings; see Mode Structure). Using ‘a’ in the USERS part
of a symbolic mode does not cause the special permissions to be
affected; thus,

a+s

gnu:guide/fileutils 8 / 47

has *no effect*. You must use ‘u’, ‘g’, and ‘o’ explicitly to affect
the special permissions. Also, the combinations ‘u+t’, ‘g+t’, and
‘o+s’ have no effect.

The ‘=’ operator is not very useful with special permissions; for
example, the mode:

o=t

does cause the file to be saved on the swap device, but it also removes
all read, write, and execute permissions that users not in the file’s
group might have had for it.

1.11 fileutils.guide/Conditional Executability

Conditional Executability

There is one more special type of symbolic permission: if you use
‘X’ instead of ‘x’, execute permission is affected only if the file
already had execute permission or is a directory. It affects
directories’ execute permission even if they did not initially have any
execute permissions set.

For example, this mode:

a+X

gives all users permission to execute files (or search directories) if
anyone could before.

1.12 fileutils.guide/Multiple Changes

Making Multiple Changes

The format of symbolic modes is actually more complex than described
above (see Setting Permissions). It provides two ways to make multiple
changes to files’ permissions.

The first way is to specify multiple OPERATION and PERMISSIONS parts
after a USERS part in the symbolic mode.

For example, the mode:

og+rX-w

gives users other than the owner of the file read permission and, if it
is a directory or if someone already had execute permission to it,

gnu:guide/fileutils 9 / 47

gives them execute permission; and it also denies them write permission
to it file. It does not affect the permission that the owner of the
file has for it. The above mode is equivalent to the two modes:

og+rX
og-w

The second way to make multiple changes is to specify more than one
simple symbolic mode, separated by commas. For example, the mode:

a+r,go-w

gives everyone permission to read the file and removes write permission
on it for all users except its owner. Another example:

u=rwx,g=rx,o=

sets all of the non-special permissions for the file explicitly. (It
gives users who are not in the file’s group no permission at all for
it.)

The two methods can be combined. The mode:

a+r,g+x-w

gives all users permission to read the file, and gives users who are in
the file’s group permission to execute it, as well, but not permission
to write to it. The above mode could be written in several different
ways; another is:

u+r,g+rx,o+r,g-w

1.13 fileutils.guide/Umask and Protection

The Umask and Protection

If the USERS part of a symbolic mode is omitted, it defaults to ‘a’
(affect all users), except that any permissions that are *set* in the
system variable ‘umask’ are *not affected*. The value of ‘umask’ can
be set using the ‘umask’ command. Its default value varies from system
to system.

Omitting the USERS part of a symbolic mode is generally not useful
with operations other than ‘+’. It is useful with ‘+’ because it
allows you to use ‘umask’ as an easily customizable protection against
giving away more permission to files than you intended to.

As an example, if ‘umask’ has the value 2, which removes write
permission for users who are not in the file’s group, then the mode:

+w

adds permission to write to the file to its owner and to other users who

gnu:guide/fileutils 10 / 47

are in the file’s group, but *not* to other users. In contrast, the
mode:

a+w

ignores ‘umask’, and *does* give write permission for the file to all
users.

1.14 fileutils.guide/Numeric Modes

Numeric Modes
=============

File permissions are stored internally as 16 bit integers. As an
alternative to giving a symbolic mode, you can give an octal (base 8)
number that corresponds to the internal representation of the new mode.
This number is always interpreted in octal; you do not have to add a
leading 0, as you do in C. Mode 0055 is the same as mode 55.

A numeric mode is usually shorter than the corresponding symbolic
mode, but it is limited in that it can not take into account a file’s
previous permissions; it can only set them absolutely.

The permissions granted to the user, to other users in the file’s
group, and to other users not in the file’s group are each stored as
three bits, which are represented as one octal digit. The three special
permissions are also each stored as one bit, and they are as a group
represented as another octal digit. Here is how the bits are arranged
in the 16 bit integer, starting with the lowest valued bit:

Value in Corresponding
Mode Permission

Other users not in the file’s group:
1 Execute
2 Write
4 Read

Other users in the file’s group:
10 Execute
20 Write
40 Read

The file’s owner:
100 Execute
200 Write
400 Read

Special permissions:
1000 Save text image on swap device
2000 Set group ID on execution
4000 Set user ID on execution

For example, numeric mode 4755 corresponds to symbolic mode

gnu:guide/fileutils 11 / 47

‘u=rwxs,go=rx’, and numeric mode 664 corresponds to symbolic mode
‘ug=rw,o=r’. Numeric mode 0 corresponds to symbolic mode ‘ugo=’.

1.15 fileutils.guide/Directory listing

Directory listing

This chapter describes the ‘ls’ command and its variants ‘dir’ and
‘vdir’, which list information about files.

ls invocation List directory contents.
dir invocation Briefly ls.
vdir invocation Verbosely ls.

1.16 fileutils.guide/ls invocation

‘ls’: List directory contents
=============================

The ‘ls’ program lists information about files (of any type,
including directories). Options and file arguments can be intermixed
arbitrarily, as usual.

For non-option command-line arguments that are directories, by
default ‘ls’ lists the contents of directories, not recursively, and
omitting files with names beginning with ‘.’. For other non-option
arguments, by default ‘ls’ lists just the filename. If no non-option
arguments are specified, ‘ls’ lists the contents of the current
directory.

By default, the output is sorted alphabetically. If standard output
is a terminal, the output is in columns (sorted vertically); otherwise,
they are listed one per line.

Because ‘ls’ is such a fundamental program, it has accumulated many
options over the years. They are described in the subsections below;
within each section, options are listed alphabetically (ignoring case).
The division of options into the subsections is not absolute, since some
options affect more than one aspect of ‘ls’’s operation.

Also, the ‘-g’ option is accepted but ignored, for compatibility
with Unix. Also see See Common options.

Which files are listed
What information is listed
Sorting the output
General output formatting

gnu:guide/fileutils 12 / 47

Formatting the filenames

1.17 fileutils.guide/Which files are listed

Which files are listed

These options determine which files ‘ls’ lists information for. By
default, any files and the contents of any directories on the command
line are shown.

‘-a’
‘--all’

List all files in directories, including files that start with ‘.’.

‘-A’
‘--almost-all’

List all files in directories except for ‘.’ and ‘..’.

‘-B’
‘--ignore-backups’

Do not list files that end with ‘~’, unless they are given on the
command line.

‘-d’
‘--directory’

List just the names of directories, as with other types of files,
rather than listing their contents.

‘-I’
‘--ignore’

Do not list files whose names match the shell pattern (not regular
expression) PATTERN unless they are given on the command line. As
in the shell, an initial ‘.’ in a filename does not match a
wildcard at the start of PATTERN.

‘-L’
‘--dereference’

List the files linked to by symbolic links instead of listing the
contents of the links.

‘-R’
‘--recursive’

List the contents of all directories recursively.

1.18 fileutils.guide/What information is listed

What information is listed

gnu:guide/fileutils 13 / 47

These options affect the information that ‘ls’ displays. By
default, only filenames are shown.

‘-D’
‘--dired’

With the long listing (‘-l’) format, print an additional line after
the main output:

//DIRED// BEG1 END1 BEG2 END2 ...

The BEGN and ENDN are unsigned integers which record the byte
position of the beginning and end of each filename in the output.
This makes it easy for Emacs to find the names, even when they
contain unusual characters such as space or newline, without fancy
searching.

If directories are being listed recursively (‘-R’), output a
similar line after each subdirectory:

//SUBDIRED// BEG1 END1 ...

‘-G’
‘--no-group’

Inhibit display of group information in a long format directory
listing. (This is the default in some non-GNU versions of ‘ls’,
so we provide this option for compatibility.)

‘-i’
‘--inode’

Print the inode number (also called the file serial number and
index number) of each file to the left of the filename. (This
number uniquely identifies each file within a particular
filesystem.)

‘-l’
‘--format=long’
‘--format=verbose’

In addition to the name of each file, print the file type,
permissions, number of hard links, owner name, group name, size in
bytes, and timestamp (by default, the modification time). For
files with a time more than 6 months old or more than 1 hour into
the future, the timestamp contains the year instead of the time of
day.

For each directory that is listed, preface the files with a line
‘total BLOCKS’, where BLOCKS is the total disk space used by all
files in that directory. By default, 1024-byte blocks are used;
if the environment variable ‘POSIXLY_CORRECT’ is set, 512-byte
blocks are used (unless the ‘-k’ option is given). The BLOCKS
computed counts each hard link separately; this is arguably a bug.

This output format is the default for the GNU ‘v’ and ‘vdir’
programs.

‘-s’
‘--size’

Print the size of each file in 1024-byte blocks to the left of the

gnu:guide/fileutils 14 / 47

filename. If the environment variable ‘POSIXLY_CORRECT’ is set,
512-byte blocks are used instead, unless the ‘-k’ option is given
(see General output formatting).

For files that are NFS-mounted from an HP-UX system to a BSD
system, this option reports sizes that are half the correct
values. On HP-UX systems, it reports sizes that are twice the
correct values for files that are NFS-mounted from BSD systems.
This is due to a flaw in HP-UX; it also affects the HP-UX ‘ls’
program.

1.19 fileutils.guide/Sorting the output

Sorting the output

These options change the order in which ‘ls’ sorts the information
it outputs. By default, sorting is done by character code (e.g., ASCII
order).

‘-c’
‘--time=ctime’
‘--time=status’

Sort according to the status change time (the ‘ctime’ in the
inode). If the long listing format (‘-l’) is being used, print the
status change time instead of the modification time.

‘-f’
Primarily, like ‘-U’--do not sort; list the files in whatever
order they are stored in the directory. But also enable ‘-a’ (list
all files) and disable ‘-l’ and ‘-s’ (if they were specified
before the ‘-f’).

‘-r’
‘--reverse’

Reverse whatever the sorting method is--e.g., list files in reverse
alphabetical order, youngest first, smallest first, or whatever.

‘-S’
‘--sort=size’

Sort by file size, largest first.

‘-t’
‘--sort=time’

Sort by modification time (the ‘mtime’ in the inode), newest first.

‘-u’
‘--time=atime’
‘--time=access’
‘--time=use’

Sort by access time (the ‘atime’ in the inode). If the long
listing format is being used, print the last access time.

‘-U’

gnu:guide/fileutils 15 / 47

‘--sort=none’
Do not sort; list the files in whatever order they are stored in
the directory. (Do not do any of the other unrelated things that
‘-f’ does.) This is especially useful when listing very large
directories, since not doing any sorting can be noticeably faster.

‘-X’
‘--sort=extension’

Sort directory contents alphabetically by file extension
(characters after the last ‘.’); files with no extension are
sorted first.

1.20 fileutils.guide/General output formatting

General output formatting

These options affect the appearance of the overall output.

‘-1’
‘--format=single-column’

List one file per line. This is the default for ‘ls’ when standard
output is not a terminal.

‘-C’
‘--format=vertical’

List files in columns, sorted vertically. This is the default for
‘ls’ if standard output is a terminal. It is always the default
for the ‘dir’ and ‘d’ programs.

‘-F’
‘--classify’

Append a character to each filename indicating the file type.
Also, for regular files that are executable, append ‘*’. The file
type indicators are ‘/’ for directories, ‘@’ for symbolic links,
‘|’ for FIFOs, ‘=’ for sockets, and nothing for regular files.

‘--full-time’
List times in full, rather than using the standard abbreviation
heuristics. The format is the same as ‘date’’s default; it’s not
possible to change this, but you can extract out the date string
with ‘cut’ and then pass the result to ‘date -d’. See
‘date’ invocation.

This is most useful because the time output includes the seconds.
(Unix filesystems store file timestamps only to the nearest
second, so this option shows all the information there is.) For
example, this can help when you have a Makefile that is not
regenerating files properly.

‘-k’
‘--kilobytes’

If file sizes are being listed, print them in kilobytes. This
overrides the environment variable ‘POSIXLY_CORRECT’.

gnu:guide/fileutils 16 / 47

‘-m’
‘--format=commas’

List files horizontally, with as many as will fit on each line,
separated by ‘, ’ (a comma and a space).

‘-n’
‘--numeric-uid-gid’

List the numeric UID and GID instead of the names.

‘-p’
Append a character to each filename indicating the file type. This
is like ‘-F’, except that executables are not marked.

‘-x’
‘--format=across’
‘--format=horizontal’

List the files in columns, sorted horizontally.

‘-T’
‘--tabsize=COLS’

Assume that each tabstop is COLS columns wide. The default is 8.
‘ls’ uses tabs where possible in the output, for efficiency.

‘-w’
‘--width=COLS’

Assume the screen is COLS columns wide. The default is taken from
the terminal settings if possible; otherwise the environment
variable ‘COLUMNS’ is used if it is set; otherwise the default is
80.

1.21 fileutils.guide/Formatting the filenames

Formatting the filenames

These options change how filenames themselves are printed.

‘-b’
‘--escape’

Quote nongraphic characters in filenames using alphabetic and octal
backslash sequences like those used in C.

‘-N’
‘--literal’

Do not quote filenames.

‘-q’
‘--hide-control-chars’

Print question marks instead of nongraphic characters in filenames.
This is the default.

‘-Q’
‘--quote-name’

gnu:guide/fileutils 17 / 47

Enclose filenames in double quotes and quote nongraphic characters
as in C.

1.22 fileutils.guide/dir invocation

‘dir’: Briefly list directory contents
======================================

The ‘dir’ program (also installed as ‘d’) is equivalent to ‘ls -C’;
that is, files are by default always listed in columns, sorted
vertically.

See ‘ls’.

1.23 fileutils.guide/vdir invocation

‘vdir’: Verbosely list directory contents
===

The ‘vdir’ program (also installed ‘v’)is equivalent to ‘ls -l’;
that is, files are by default listed in long format.

1.24 fileutils.guide/Basic operations

Basic operations

This chapter describes the commands for basic file manipulation:
copying, moving (renaming), and deleting (removing).

cp invocation Copy files.
dd invocation Convert and copy a file.
install invocation Copy files and set attributes.
mv invocation Move (rename) files.
rm invocation Remove files or directories.

1.25 fileutils.guide/cp invocation

‘cp’: Copy files and directories
================================

‘cp’ copies files (or, optionally, directories). The copy is

gnu:guide/fileutils 18 / 47

completely independent of the original. You can either copy one file to
another, or copy arbitrarily many files to a destination directory.
Synopsis:

cp [OPTION]... SOURCE DEST
cp [OPTION]... SOURCE... DIRECTORY

If the last argument names an existing directory, ‘cp’ copies each
SOURCE file into that directory (retaining the same name). Otherwise,
if only two files are given, it copies the first onto the second. It
is an error if the last argument is not a directory and more than two
non-option arguments are given.

If the source file contains holes, ‘cp’ copies them and other blocks
of zero bytes as holes. Otherwise, files are written just as they are
read. (A "hole" is a sequence of zero bytes that does not occupy any
physical disk blocks; the ‘read’ system call reads these as zeroes.)

By default, ‘cp’ does not copy directories. It also refuses to copy
a file onto itself.

The program accepts the following options. Also see See
Common options.

‘-a’
‘--archive’

Preserve as much as possible of the structure and attributes of the
original files in the copy. Equivalent to ‘-dpR’.

‘-b’
‘--backup’

Make backups of files that are about to be overwritten or removed.
See Backup options.

‘-d’
‘--no-dereference’

Copy symbolic links as symbolic links rather than copying the
files that they point to, and preserve hard links between source
files in the copies.

‘-f’
‘--force’

Remove existing destination files.

‘-i’
‘--interactive’

Prompt whether to overwrite existing regular destination files.

‘-l’
‘--link’

Make hard links instead of copies of non-directories.

‘-p’
‘--preserve’

Preserve the original files’ owner, group, permissions, and
timestamps.

gnu:guide/fileutils 19 / 47

‘-P’
‘--parents’

Form the name of each destination file by appending to the target
directory a slash and the specified name of the source file. The
last argument given to ‘cp’ must be the name of an existing
directory. For example, the command:

cp --parents a/b/c existing_dir

copies the file ‘a/b/c’ to ‘existing_dir/a/b/c’, creating any
missing intermediate directories.

‘-r’
Copy directories recursively, copying any non-directories and
non-symbolic links (that is, FIFOs and special files) as if they
were regular files. This means trying to read the data in each
source file and writing it to the destination. Thus, with this
option, ‘cp’ may well hang indefinitely reading a FIFO, unless
something else happens to be writing it.

‘-R’
‘--recursive’

Copy directories recursively, preserving non-directories (see ‘-r’
just above).

‘-s’
‘--symbolic-link’

Make symbolic links instead of copies of non-directories. All
source filenames must be absolute (starting with ‘/’) unless the
destination files are in the current directory. This option merely
results in an error message on systems that do not support
symbolic links.

‘-S SUFFIX’
‘--suffix=SUFFIX’

Append SUFFIX to each backup file made with ‘-b’. See
Backup options.

‘-u’
‘--update’

Do not copy a nondirectory that has an existing destination with
the same or newer modification time.

‘-v’
‘--verbose’

Print the name of each file before copying it.

‘-V METHOD’
‘--version-control=METHOD’

Change the type of backups made with ‘-b’. The METHOD argument
can be ‘numbered’ (or ‘t’), ‘existing’ (or ‘nil’), or ‘never’ (or
‘simple’). See Backup options.

‘-x’
‘--one-file-system’

Skip subdirectories that are on different filesystems from the one
that the copy started on.

gnu:guide/fileutils 20 / 47

1.26 fileutils.guide/dd invocation

‘dd’: Convert and copy a file
=============================

‘dd’ copies a file (from standard input to standard output, by
default) with a changeable I/O blocksize, while optionally performing
conversions on it. Synopsis:

dd [OPTION]...

The program accepts the following options. Also see See
Common options.

The numeric-valued options below (BYTES and BLOCKS) can be followed
by a multiplier: ‘b’=512, ‘c’=1, ‘k’=1024, ‘w’=2, ‘xM’=M.

‘if=FILE’
Read from FILE instead of standard input.

‘of=FILE’
Write to FILE instead of standard output. Unless ‘conv=notrunc’
is given, ‘dd’ truncates FILE to zero bytes (or the size specified
with ‘seek=’).

‘ibs=BYTES’
Read BYTES bytes at a time.

‘obs=BYTES’
Write BYTES bytes at a time.

‘bs=BYTES’
Both read and write BYTES bytes at a time. This overrides ‘ibs’
and ‘obs’.

‘cbs=BYTES’
Convert BYTES bytes at a time.

‘skip=BLOCKS’
Skip BLOCKS ‘ibs’-byte blocks in the input file before copying.

‘seek=BLOCKS’
Skip BLOCKS ‘obs’-byte blocks in the output file before copying.

‘count=BLOCKS’
Copy BLOCKS ‘obs’-byte blocks from the input file, instead of
everything until the end of the file.

‘conv=CONVERSION[,CONVERSION]...’
Convert the file as specified by the CONVERSION argument(s). (No
spaces around any comma(s).)

Conversions:

gnu:guide/fileutils 21 / 47

‘ascii’
Convert EBCDIC to ASCII.

‘ebcdic’
Convert ASCII to EBCDIC.

‘ibm’
Convert ASCII to alternate EBCDIC.

‘block’
For each line in the input, output ‘cbs’ bytes, replacing the
input newline with a space and padding with spaces as
necessary.

‘unblock’
Replace trailing spaces in each ‘cbs’-sized input block with a
newline.

‘lcase’
Change uppercase letters to lowercase.

‘ucase’
Change lowercase letters to uppercase.

‘swab’
Swap every pair of input bytes. GNU ‘dd’, unlike others,
works when an odd number of bytes are read--the last byte is
simply copied (since there is nothing to swap it with).

‘noerror’
Continue after read errors.

‘notrunc’
Do not truncate the output file.

‘sync’
Pad every input block to size of ‘ibs’ with trailing zero
bytes.

1.27 fileutils.guide/install invocation

‘install’: Copy files and set attributes
==

‘install’ copies files while setting their permission modes and, if
possible, their owner and group. Synopses:

install [OPTION]... SOURCE DEST
install [OPTION]... SOURCE... DIRECTORY
install -d [OPTION]... DIRECTORY...

In the first of these, the SOURCE file is copied to the DEST target
file. In the second, each of the SOURCE files are copied to the

gnu:guide/fileutils 22 / 47

destination DIRECTORY. In the last, each DIRECTORY (and any missing
parent directories) is created.

‘install’ is similar to ‘cp’, but allows you to control the
attributes of destination files. It is typically used in Makefiles to
copy programs into their destination directories. It refuses to copy
files onto themselves.

The program accepts the following options. Also see See
Common options.

‘-c’
Ignored; for compatibility with old Unix versions of ‘install’.

‘-d’
‘--directory’

Create each given directory and any missing parent directories,
setting the owner, group and mode as given on the command line or
to the defaults. It also gives any parent directories it creates
those attributes. (This is different from the SunOS 4.x
‘install’, which gives directories that it creates the default
attributes.)

‘-g GROUP’
‘--group=GROUP’

Set the group ownership of installed files or directories to
GROUP. The default is the process’s current group. GROUP may be
either a group name or a numeric group id.

‘-m MODE’
‘--mode=MODE’

Set the permissions for the installed file or directory to MODE,
which can be either an octal number, or a symbolic mode as in
‘chmod’, with 0 as the point of departure (see File permissions).
The default mode is 0755--read, write, and execute for the owner,
and read and execute for group and other.

‘-o OWNER’
‘--owner=OWNER’

If ‘install’ has appropriate privileges (is run as root), set the
ownership of installed files or directories to OWNER. The default
is ‘root’. OWNER may be either a user name or a numeric user ID.

‘-s’
‘--strip’

Strip the symbol tables from installed binary executables.

1.28 fileutils.guide/mv invocation

‘mv’: Move (rename) files
=========================

‘mv’ moves or renames files (or directories). Synopsis:

gnu:guide/fileutils 23 / 47

mv [OPTION]... SOURCE DEST
mv [OPTION]... SOURCE... DIRECTORY

If the last argument names an existing directory, ‘mv’ moves each
other given file into a file with the same name in that directory.
Otherwise, if only two files are given, it renames the first as the
second. It is an error if the last argument is not a directory and
more than two files are given.

‘mv’ can move only regular files across filesystems.

If a destination file exists but is normally unwritable, standard
input is a terminal, and the ‘-f’ or ‘--force’ option is not given,
‘mv’ prompts the user for whether to replace the file. (You might own
the file, or have write permission on its directory.) If the response
does not begin with ‘y’ or ‘Y’, the file is skipped.

The program accepts the following options. Also see See
Common options.

‘-b’
‘--backup’

Make backups of files that are about to be overwritten or removed.
See Backup options.

‘-f’
‘--force’

Remove existing destination files and never prompt the user.

‘-i’
‘--interactive’

Prompt whether to overwrite each existing destination file,
regardless of its permissions. If the response does not begin
with ‘y’ or ‘Y’, the file is skipped.

‘-u’
‘--update’

Do not move a nondirectory that has an existing destination with
the same or newer modification time.

‘-v’
‘--verbose’

Print the name of each file before moving it.

‘-S SUFFIX’
‘--suffix=SUFFIX’

Append SUFFIX to each backup file made with ‘-b’. See
Backup options.

‘-V METHOD’
‘--version-control=METHOD’

Change the type of backups made with ‘-b’. The METHOD argument
can be ‘numbered’ (or ‘t’), ‘existing’ (or ‘nil’), or ‘never’ (or
‘simple’). See Backup options.

gnu:guide/fileutils 24 / 47

1.29 fileutils.guide/rm invocation

‘rm’: Remove files or directories
=================================

‘rm’ removes each given FILE. By default, it does not remove
directories. Synopsis:

rm [OPTION]... [FILE]...

If a file is unwritable, standard input is a terminal, and the ‘-f’
or ‘--force’ option is not given, or the ‘-i’ or ‘--interactive’ option

is given, ‘rm’ prompts the user for whether to remove the file. If
the response does not begin with ‘y’ or ‘Y’, the file is skipped.

The program accepts the following options. Also see See
Common options.

‘-d’
‘--directory’

Remove directories with ‘unlink’ instead of ‘rmdir’, and don’t
require a directory to be empty before trying to unlink it. Only
works if you have appropriate privileges. Because unlinking a
directory causes any files in the deleted directory to become
unreferenced, it is wise to ‘fsck’ the filesystem after doing this.

‘-f’
‘--force’

Ignore nonexistent files and never prompt the user.

‘-i’
‘--interactive’

Prompt whether to remove each file. If the response does not begin
with ‘y’ or ‘Y’, the file is skipped.

‘-r’
‘-R’
‘--recursive’

Remove the contents of directories recursively.

‘-v’
‘--verbose’

Print the name of each file before removing it.

One common question is how to remove files whose names being with a
‘-’. GNU ‘rm’, like every program that uses the ‘getopt’ function to
parse its arguments, lets you use the ‘--’ option to indicate that all
following arguments are non-options. To remove a file called ‘-f’ in
the current directory, you could type either:

rm -- -f

or:

rm ./-f

gnu:guide/fileutils 25 / 47

The Unix ‘rm’ program’s use of a single ‘-’ for this purpose
predates the development of the getopt standard syntax.

1.30 fileutils.guide/Special file types

Special file types

This chapter describes commands which create special types of files
(and ‘rmdir’, which removes directories, one special file type).

Although Unix-like operating systems have markedly fewer special file
types than others, not *everything* can be treated only as the
undifferentiated byte stream of "normal files". For example, when a
file is created or removed, the system must record this information,
which it does in a "directory"--a special type of file. Although you
can read directories as normal files, if you’re curious, in order for
the system to do its job it must impose a structure, a certain order,
on the bytes of the file. Thus it is a "special" type of file.

Besides directories, other special file types include named pipes
(FIFOs), symbolic links, sockets, and so-called "special files".

ln invocation Make links between files.
mkdir invocation Make directories.
mkfifo invocation Make FIFOs (named pipes).
mknod invocation Make block or character special files.
rmdir invocation Remove empty directories.

1.31 fileutils.guide/ln invocation

‘ln’: Make links between files
==============================

‘ln’ makes links between files. By default, it makes hard links;
with the ‘-s’ option, it makes symbolic (or "soft") links. Synopses:

ln [OPTION]... SOURCE [DEST]
ln [OPTION]... SOURCE... DIRECTORY

If the last argument names an existing directory, ‘ln’ links each
SOURCE file into a file with the same name in that directory. (But see
the description of the ‘--no-dereference’ option below.) If only one
file is given, it links that file into the current directory.
Otherwise, if only two files are given, it links the first onto the
second. It is an error if the last argument is not a directory and more
than two files are given. By default, it does not remove existing
files.

gnu:guide/fileutils 26 / 47

A "hard link" is another name for an existing file; the link and the
original are indistinguishable. (Technically speaking, they share the
same inode, and the inode contains all the information about a
file--indeed, it is not incorrect to say that the inode *is* the file.)
On all existing implementations, you cannot make a hard links to
directories, and hard links cannot cross filesystem boundaries. (These
restrictions are not mandated by POSIX, however.)

"Symbolic links" ("symlinks" for short), on the other hand, are a
special file type (which not all kernels support; in particular, system
V release 3 (and older) systems lack symlinks) in which the link file
actually refers to a different file, by name. When most operations
(opening, reading, writing, and so on) are passed the symbolic link
file, the kernel automatically "dereferences" the link and operates on
the target of the link. But some operations (e.g., removing) work on
the link file itself, rather than on its target. See Symbolic Links.

The program accepts the following options. Also see See
Common options.

‘-b’
‘--backup’

Make backups of files that are about to be overwritten or removed.
See Backup options.

‘-d’
‘-F’
‘--directory’

Allow the super-user to make hard links to directories.

‘-f’
‘--force’

Remove existing destination files.

‘-i’
‘--interactive’

Prompt whether to remove existing destination files.

‘-n’
‘--no-dereference’

When used with ‘--force’ and an explicit destination that is a
symlink to a directory, remove (or move it with ‘--backup’) that
symlink before making any link.

When the destination is an actual directory (not a symlink to one),
there is no ambiguity. The link is created in that directory.
But when the specified destination is a symlink to a directory,
there are two ways to treat the user’s request. ‘ln’ can treat
the destination just as it would a normal directory and create the
link in it. On the other hand, the destination can be viewed as a
non-directory--as the symlink itself. In that case, ‘ln’ must
delete or backup that symlink before creating the new link. The
default is to treat a destination that is a symlink to a directory
just like a directory.

‘-s’
‘--symbolic’

gnu:guide/fileutils 27 / 47

Make symbolic links instead of hard links. This option merely
produces an error message on systems that do not support symbolic
links.

‘-v’
‘--verbose’

Print the name of each file before linking it.

‘-S SUFFIX’
‘--suffix=SUFFIX’

Append SUFFIX to each backup file made with ‘-b’. See
Backup options.

‘-V METHOD’
‘--version-control=METHOD’

Change the type of backups made with ‘-b’. The METHOD argument
can be ‘numbered’ (or ‘t’), ‘existing’ (or ‘nil’), or ‘never’ (or
‘simple’). See Backup options.

1.32 fileutils.guide/mkdir invocation

‘mkdir’: Make directories
=========================

‘mkdir’ creates directories with the specified names. Synopsis:

mkdir [OPTION]... NAME...

It is not an error if a NAME is already a directory; ‘mkdir’ simply
proceeds. But if a NAME is an existing file and is anything but a
directory, ‘mkdir’ complains.

The program accepts the following options. Also see See
Common options.

‘-m MODE’
‘--mode=MODE’

Set the mode of created directories to MODE, which is symbolic as
in ‘chmod’ and uses 0777 (read, write and execute allowed for
everyone) minus the bits set in the umask for the point of the
departure. See File permissions.

‘-p’
‘--parents’

Make any missing parent directories for each argument. The mode
for parent directories is set to the umask modified by ‘u+wx’.
Ignore arguments corresponding to existing directories.

1.33 fileutils.guide/mkfifo invocation

gnu:guide/fileutils 28 / 47

‘mkfifo’: Make FIFOs (named pipes)
==================================

‘mkfifo’ creates FIFOs (also called "named pipes") with the
specified names. Synopsis:

mkfifo [OPTION] NAME...

A "FIFO" is a special file type that permits independent processes
to communicate. One process opens the FIFO file for writing, and
another for reading, after which data can flow as with the usual
anonymous pipe in shells or elsewhere.

The program accepts the following option. Also see See
Common options.

‘-m MODE’
‘--mode=MODE’

Set the mode of created FIFOs to MODE, which is symbolic as in
‘chmod’ and uses 0666 (read and write allowed for everyone) minus
the bits set in the umask for the point of departure. See
File permissions.

1.34 fileutils.guide/mknod invocation

‘mknod’: Make block or character special files
==

‘mknod’ creates a FIFO, character special file, or block special
file with the specified name. Synopsis:

mknod [OPTION]... NAME TYPE [MAJOR MINOR]

Unlike the phrase "special file type" above, the term "special file"
has a technical meaning on Unix: something that can generate or receive
data. Usually this corresponds to a physical piece of hardware, e.g.,
a printer or a disk. (These files are typically created at
system-configuration time.) The ‘mknod’ command is what creates files
of this type. Such devices can be read either a character at a time or
a "block" (many characters) at a time, hence we say there are "block
special" files and "character special" files.

The arguments after NAME specify the type of file to make:

‘p’
for a FIFO

‘b’
for a block (buffered) special file

‘c’
for a character (buffered) special file

gnu:guide/fileutils 29 / 47

‘u’
for a character (unbuffered) special file

When making a block or character special file, the major and minor
device numbers must be given after the file type.

The program accepts the following option. Also see See
Common options.

‘-m MODE’
‘--mode=MODE’

Set the mode of created files to MODE, which is symbolic as in
‘chmod’ and uses 0666 minus the bits set in the umask as the point
of departure. See File permissions.

1.35 fileutils.guide/rmdir invocation

‘rmdir’: Remove empty directories
=================================

‘rmdir’ removes empty directories. Synopsis:

rmdir [OPTION]... DIRECTORY...

If any DIRECTORY argument does not refer to an existing empty
directory, it is an error.

The program accepts the following option. Also see See
Common options.

‘-p’
‘--parents’

Remove any parent directories that become empty after an argument
DIRECTORY is removed.

See rm invocation, for how to remove non-empty directories
(recursively).

1.36 fileutils.guide/Changing file attributes

Changing file attributes

Files are not merely contents, a name, and a file type (see
Special file types). They also have an owner (a userid), a group (a
group id), permissions (what the owner can do with the file, what
people in the group can do, and what everyone else can do), various
timestamps, and other information. Collectively, we call all this a
file’s "attributes".

gnu:guide/fileutils 30 / 47

These commands change file attributes.

chown invocation Change file owners and groups.
chgrp invocation Change file groups.
chmod invocation Change access permissions.
touch invocation Change file timestamps.

1.37 fileutils.guide/chown invocation

‘chown’: Change file owner and group
====================================

‘chown’ changes the user and/or group ownership of each given file.
Synopsis:

chown [OPTION]... NEW-OWNER FILE...

The first non-option argument, NEW-OWNER, specifies the new owner
and/or group, as follows (with no embedded white space):

[OWNER] [[:.] [GROUP]]

Specifically:

OWNER
If only an OWNER (a user name or numeric user id) is given, that
user is made the owner of each given file, and the files’ group is
not changed.

OWNER‘.’GROUP
OWNER‘:’GROUP

If the OWNER is followed by a colon or dot and a GROUP (a group
name or numeric group id), with no spaces between them, the group
ownership of the files is changed as well (to GROUP).

OWNER‘.’
OWNER‘:’

If a colon or dot but no group name follows OWNER, that user is
made the owner of the files and the group of the files is changed
to OWNER’s login group.

‘.’GROUP
‘:’GROUP

If the colon or dot and following GROUP are given, but the owner
is omitted, only the group of the files is changed; in this case,
‘chown’ performs the same function as ‘chgrp’.

The program accepts the following options. Also see See
Common options.

‘-c’
‘--changes’

Verbosely describe the action for each FILE whose ownership

gnu:guide/fileutils 31 / 47

actually changes.

‘-f’
‘--silent’
‘--quiet’

Do not print error messages about files whose ownership cannot be
changed.

‘-v’
‘--verbose’

Verbosely describe the action (or non-action) taken for every FILE.

‘-R’
‘--recursive’

Recursively change ownership of directories and their contents.

1.38 fileutils.guide/chgrp invocation

‘chgrp’: Change group ownership
===============================

‘chgrp’ changes the group ownership of each given FILE to GROUP,
which can be either a group name or a numeric group id. Synopsis:

chgrp [OPTION]... GROUP FILE...

The program accepts the following options. Also see See
Common options.

‘-c’
‘--changes’

Verbosely describe the action for each FILE whose group actually
changes.

‘-f’
‘--silent’
‘--quiet’

Do not print error messages about files whose group cannot be
changed.

‘-v’
‘--verbose’

Verbosely describe the action or non-action taken for every FILE.

‘-R’
‘--recursive’

Recursively change the group ownership of directories and their
contents.

1.39 fileutils.guide/chmod invocation

gnu:guide/fileutils 32 / 47

‘chmod’: Change access permissions
==================================

‘chmod’ changes the access permissions of the named files. Synopsis:

chmod [OPTION]... MODE FILE...

‘chmod’ never changes the permissions of symbolic links, since the
‘chmod’ system call cannot change their permissions. This is not a
problem since the permissions of symbolic links are never used.
However, for each symbolic link listed on the command line, ‘chmod’
changes the permissions of the pointed-to file. In contrast, ‘chmod’
ignores symbolic links encountered during recursive directory
traversals.

The first non-option argument, MODE, specifies the new permissions.
See the section below for details.

The program accepts the following options. Also see See
Common options.

‘-c’
‘--changes’

Verbosely describe the action for each FILE whose permissions
actually changes.

‘-f’
‘--silent’
‘--quiet’

Do not print error messages about files whose permissions cannot be
changed.

‘-v’
‘--verbose’

Verbosely describe the action or non-action taken for every FILE.

‘-R’
‘--recursive’

Recursively change permissions of directories and their contents.

1.40 fileutils.guide/touch invocation

‘touch’: Change file timestamps
===============================

‘touch’ changes the access and/or modification times of the
specified files. Synopsis:

touch [OPTION]... FILE...

If the first FILE would be a valid argument to the ‘-t’ option and
no timestamp is given with any of the ‘-d’, ‘-r’, or ‘-t’ options and
the ‘--’ argument is not given, that argument is interpreted as the

gnu:guide/fileutils 33 / 47

time for the other files instead of as a filename.

Any FILE that does not exist is created empty.

If changing both the access and modification times to the current
time, ‘touch’ can change the timestamps for files that the user running
it does not own but has write permission for. Otherwise, the user must
own the files.

The program accepts the following options. Also see See
Common options.

‘-a’
‘--time=atime’
‘--time=access’
‘--time=use’

Change the access time only.

‘-c’
‘--no-create’

Do not create files that do not exist.

‘-d’
‘--date=time’

Use TIME instead of the current time. It can contain month names,
timezones, ‘am’ and ‘pm’, etc. See ‘date’ invocation.

‘-f’
Ignored; for compatibility with BSD versions of ‘touch’.

‘-m’
‘--time=mtime’
‘--time=modify’

Change the modification time only.

‘-r REFERENCE-FILE’
‘--file=REFERENCE-FILE’

Use the times of REFERENCE-FILE instead of the current time.

‘-t MMDDhhmm[[CC]YY][.ss]’
Use the argument (months, days, hours, minutes, optional century
and years, optional seconds) instead of the current time.

1.41 fileutils.guide/Disk usage

Disk usage

No disk can hold an infinite amount of data. These commands report
on how much disk storage is in use or available. (This has nothing
much to do with how much *main memory*, i.e., RAM, a program is using
when it runs; for that, you want ‘ps’ or ‘pstat’ or ‘swap’ or some such
command.)

gnu:guide/fileutils 34 / 47

df invocation Report filesystem disk space usage.
du invocation Estimate file space usage.
sync invocation Synchronize memory and disk.

1.42 fileutils.guide/df invocation

‘df’: Report filesystem disk space usage
==

‘df’ reports the amount of disk space used and available on
filesystems. Synopsis:

df [OPTION]... [FILE]...

With no arguments, ‘df’ reports the space used and available on all
currently mounted filesystems (of all types). Otherwise, ‘df’ reports
on the filesystem containing each argument FILE.

Disk space is shown in 1024-byte blocks by default, unless the
environment variable ‘POSIXLY_CORRECT’ is set, in which case 512-byte
blocks are used (unless the ‘-k’ option is given).

If an argument FILE is a disk device file containing a mounted
filesystem, ‘df’ shows the space available on that filesystem rather
than on the filesystem containing the device node (i.e., the root
filesystem). GNU ‘df’ does not attempt to determine the disk usage on
unmounted filesystems, because on most kinds of systems doing so
requires extremely nonportable intimate knowledge of filesystem
structures.

The program accepts the following options. Also see See
Common options.

‘-a’
‘--all’

Include in the listing filesystems that have 0 blocks, which are
omitted by default. Such filesystems are typically special-purpose
pseudo-filesystems, such as automounter entries. Filesystems of
type "ignore" or "auto", supported by some operating systems, are
only included in the listing if this option is specified.

‘-i’
‘--inodes’

List inode usage information instead of block usage. An inode
(short for index node) is contains information about a file such
as its owner, permissions, timestamps, and location on the disk.

‘-k’
‘--kilobytes’

Print sizes in 1024-byte blocks. This overrides the environment
variable ‘POSIXLY_CORRECT’.

‘--no-sync’

gnu:guide/fileutils 35 / 47

Do not invoke the ‘sync’ system call before getting any usage data.
This may make ‘df’ run significantly faster on systems with many
disks, but on some systems the results may be slightly out of date.

‘-P’
‘--portability’

Use the POSIX output format. This is like the default format
except that the information about each filesystem is always
printed on exactly one line; a mount device is never put on a line
by itself. This means that if the mount device name is more than
20 characters long (e.g., for some network mounts), the columns
are misaligned.

‘--sync’
Invoke the ‘sync’ system call before getting any usage data. On
some systems, doing this yields more up to date results, but in
general this option makes ‘df’ much slower, especially when there
are many or very busy filesystems.

‘-t FSTYPE’
‘--type=FSTYPE’

Limit the listing to filesystems of type FSTYPE. Multiple
filesystem types can be specified by giving multiple ‘-t’ options.
By default, nothing is omitted.

‘-T’
‘--print-type’

Print each filesystem’s type. The types printed here are the same
ones you can include or exclude with ‘-t’ and ‘-x’. The particular
types printed are whatever is supported by the system. Here are
some of the common names (this list is certainly not exhaustive):

‘nfs’
An NFS filesystem, i.e., one mounted over a network from
another machine. This is the one type name which seems to be
used uniformly by all systems.

‘4.2, ufs, efs...’
A filesystem on a locally-mounted hard disk. (The system
might even support more than one type here; Linux does.)

‘hsfs, cdfs’
A filesystem on a CD-ROM drive. HP-UX uses ‘cdfs’, most other
systems use ‘hsfs’ (‘hs’ for ‘High Sierra’).

‘pcfs’
An MS-DOS filesystem, usually on a diskette.

‘-x FSTYPE’
‘--exclude-type=FSTYPE’

Limit the listing to filesystems not of type FSTYPE. Multiple
filesystem types can be eliminated by giving multiple ‘-x’
options. By default, no filesystem types are omitted.

‘-v’
Ignored; for compatibility with System V versions of ‘df’.

gnu:guide/fileutils 36 / 47

1.43 fileutils.guide/du invocation

‘du’: Estimate file space usage
===============================

‘du’ reports the amount of disk space used by the specified files
and for each subdirectory (of directory arguments). Synopsis:

du [OPTION]... [FILE]...

With no arguments, ‘du’ reports the disk space for the current
directory. The output is in 1024-byte units by default, unless the
environment variable ‘POSIXLY_CORRECT’ is set, in which case 512-byte
blocks are used (unless ‘-k’ is specified).

The program accepts the following options. Also see See
Common options.

‘-a’
‘--all’

Show counts for all files, not just directories.

‘-b’
‘--bytes’

Print sizes in bytes, instead of kilobytes.

‘-c’
‘--total’

Print a grand total of all arguments after all arguments have been
processed. This can be used to find out the total disk usage of a
given set of files or directories.

‘-D’
‘--dereference-args’

Dereference symbolic links that are command line arguments. Does
not affect other symbolic links. This is helpful for finding out
the disk usage of directories, such as ‘/usr/tmp’, which are often
symbolic links.

‘-k’
‘--kilobytes’

Print sizes in kilobytes. This overrides the environment variable
‘POSIXLY_CORRECT’.

‘-l’
‘--count-links’

Count the size of all files, even if they have appeared already
(as a hard link).

‘-L’
‘--dereference’

Dereference symbolic links (show the disk space used by the file
or directory that the link points to instead of the space used by

gnu:guide/fileutils 37 / 47

the link).

‘-s’
‘--summarize’

Display only a total for each argument.

‘-S’
‘--separate-dirs’

Report the size of each directory separately, not including the
sizes of subdirectories.

‘-x’
‘--one-file-system’

Skip directories that are on different filesystems from the one
that the argument being processed is on.

On BSD systems, ‘du’ reports sizes that are half the correct values
for files that are NFS-mounted from HP-UX systems. On HP-UX systems,
it reports sizes that are twice the correct values for files that are
NFS-mounted from BSD systems. This is due to a flaw in HP-UX; it also
affects the HP-UX ‘du’ program.

1.44 fileutils.guide/sync invocation

‘sync’: Synchronize data on disk with memory
==

‘sync’ writes any data buffered in memory out to disk. This can
include (but is not limited to) modified superblocks, modified inodes,
and delayed reads and writes. This must be implemented by the kernel;
The ‘sync’ program does nothing but exercise the ‘sync’ system call.

The kernel keeps data in memory to avoid doing (relatively slow) disk
reads and writes. This improves performance, but if the computer
crashes, data may be lost or the filesystem corrupted as a result.
‘sync’ ensures everything in memory is written to disk.

Any arguments are ignored, except for a lone ‘--help’ or ‘--version’
(see Common options).

1.45 fileutils.guide/Index

Index

- and Unix rm rm invocation
-all df invocation
-all Which files are listed

gnu:guide/fileutils 38 / 47

-all du invocation
-almost-all Which files are listed
-archive cp invocation
-backup cp invocation
-backup Backup options
-backup mv invocation
-backup ln invocation
-bytes du invocation
-changes chgrp invocation
-changes chown invocation
-changes chmod invocation
-classify General output formatting
-count-links du invocation
-date touch invocation
-dereference du invocation
-dereference Which files are listed
-dereference-args du invocation
-directory install invocation
-directory Which files are listed
-directory rm invocation
-directory ln invocation
-dired What information is listed
-escape Formatting the filenames
-exclude-type df invocation
-file touch invocation
-force ln invocation
-force rm invocation
-force mv invocation
-force cp invocation
-format General output formatting
-format What information is listed
-format General output formatting
-format General output formatting
-format General output formatting
-full-time General output formatting
-group install invocation
-help Common options
-hide-control-chars Formatting the filenames
-ignore-backups Which files are listed
-ignore=PATTERN Which files are listed
-inode What information is listed
-inodes df invocation
-interactive cp invocation
-interactive ln invocation
-interactive rm invocation
-interactive mv invocation
-kilobytes df invocation
-kilobytes du invocation
-kilobytes General output formatting
-link cp invocation
-literal Formatting the filenames
-mode mkdir invocation
-mode mknod invocation
-mode install invocation
-mode mkfifo invocation
-no-create touch invocation
-no-dereference cp invocation

gnu:guide/fileutils 39 / 47

-no-dereference ln invocation
-no-group What information is listed
-no-sync df invocation
-numeric-uid-gid General output formatting
-one-file-system du invocation
-one-file-system cp invocation
-owner install invocation
-parents cp invocation
-parents rmdir invocation
-parents mkdir invocation
-portability df invocation
-preserve cp invocation
-print-type df invocation
-quiet chgrp invocation
-quiet chown invocation
-quiet chmod invocation
-quote-name Formatting the filenames
-recursive Which files are listed
-recursive rm invocation
-recursive chmod invocation
-recursive chgrp invocation
-recursive cp invocation
-recursive chown invocation
-reverse Sorting the output
-separate-dirs du invocation
-silent chown invocation
-silent chgrp invocation
-silent chmod invocation
-size What information is listed
-sort Sorting the output
-sort Sorting the output
-sort Sorting the output
-sort Sorting the output
-strip install invocation
-suffix ln invocation
-suffix cp invocation
-suffix Backup options
-suffix mv invocation
-summarize du invocation
-symbolic ln invocation
-symbolic-link cp invocation
-sync df invocation
-tabsize General output formatting
-time Sorting the output
-time Sorting the output
-time touch invocation
-time touch invocation
-total du invocation
-type df invocation
-update cp invocation
-update mv invocation
-verbose mv invocation
-verbose chown invocation
-verbose chmod invocation
-verbose rm invocation
-verbose chgrp invocation
-verbose ln invocation

gnu:guide/fileutils 40 / 47

-verbose cp invocation
-version Common options
-version-control cp invocation
-version-control Backup options
-version-control ln invocation
-version-control mv invocation
-width General output formatting
-1 General output formatting
-A Which files are listed
-a Which files are listed
-a touch invocation
-a du invocation
-a cp invocation
-a df invocation
-B Which files are listed
-b Formatting the filenames
-b ln invocation
-b Backup options
-b cp invocation
-b du invocation
-b mv invocation
-c chgrp invocation
-c du invocation
-c touch invocation
-c install invocation
-c chmod invocation
-c chown invocation
-c Sorting the output
-C General output formatting
-d ln invocation
-d touch invocation
-D du invocation
-d Which files are listed
-d cp invocation
-D What information is listed
-d install invocation
-d rm invocation
-f chgrp invocation
-f ln invocation
-f cp invocation
-f mv invocation
-f chmod invocation
-f rm invocation
-f Sorting the output
-F ln invocation
-f chown invocation
-F General output formatting
-g install invocation
-G What information is listed
-g ls invocation
-i cp invocation
-I Which files are listed
-i mv invocation
-i rm invocation
-i ln invocation
-i What information is listed
-i df invocation

gnu:guide/fileutils 41 / 47

-k General output formatting
-k du invocation
-k df invocation
-L Which files are listed
-L du invocation
-l cp invocation
-l du invocation
-l What information is listed
-m mkfifo invocation
-m General output formatting
-m touch invocation
-m mkdir invocation
-m mknod invocation
-m install invocation
-n General output formatting
-N Formatting the filenames
-n ln invocation
-o install invocation
-p mkdir invocation
-p rmdir invocation
-P df invocation
-P cp invocation
-p cp invocation
-q Formatting the filenames
-Q Formatting the filenames
-r Sorting the output
-r touch invocation
-r rm invocation
-R cp invocation
-R chgrp invocation
-R rm invocation
-R Which files are listed
-R chown invocation
-R chmod invocation
-s cp invocation
-S ln invocation
-S Sorting the output
-S Backup options
-s What information is listed
-s du invocation
-S cp invocation
-S du invocation
-S mv invocation
-s ln invocation
-s install invocation
-T General output formatting
-t df invocation
-T df invocation
-t Sorting the output
-u cp invocation
-U Sorting the output
-u mv invocation
-u Sorting the output
-v rm invocation
-V cp invocation
-V ln invocation
-v cp invocation

gnu:guide/fileutils 42 / 47

-V Backup options
-v chgrp invocation
-v ln invocation
-v chown invocation
-v chmod invocation
-v mv invocation
-V mv invocation
-w General output formatting
-x df invocation
-x du invocation
-x General output formatting
-x cp invocation
-X Sorting the output
4.2 filesystem type df invocation
-, removing files beginning with rm invocation
access time, changing touch invocation
access permissions, changing chmod invocation
access time, sorting files by Sorting the output
across, listing files General output formatting
adding permissions Setting Permissions
alternate ebcdic, converting to dd invocation
append-only directories Mode Structure
appropriate privileges install invocation
ascii, converting to dd invocation
atime, changing touch invocation
atime, sorting files by Sorting the output
attributes, file Changing file attributes
automounter filesystems df invocation
b for block special file mknod invocation
backslash sequences for filenames Formatting the filenames
backup files, ignoring Which files are listed
backup files, type made Backup options
backup options Backup options
backup suffix Backup options
backups, making Backup options
backups, making mv invocation
backups, making ln invocation
backups, making cp invocation
block (space-padding) dd invocation
block size dd invocation
block size of conversion dd invocation
block size of input dd invocation
block size of output dd invocation
block special files mknod invocation
block special files, creating mknod invocation
bs dd invocation
buffered character file mknod invocation
bugs, reporting Introduction
byte-swapping dd invocation
c for character special file mknod invocation
cbs dd invocation
CD-ROM filesystem type df invocation
cdfs filesystem type df invocation
changed files, verbosely describing chgrp invocation
changed owners, verbosely describing chown invocation
changing access permissions chmod invocation
changing file attributes Changing file attributes

gnu:guide/fileutils 43 / 47

changing file ownership chown invocation
changing file timestamps touch invocation
changing group ownership chown invocation
changing group ownership chgrp invocation
changing special permissions Changing Special Permissions
character special files mknod invocation
character special files, creating mknod invocation
chgrp chgrp invocation
chmod chmod invocation
chown chown invocation
COLUMNS General output formatting
commas, outputting between files General output formatting
common options Common options
conditional executability Conditional Executability
conv dd invocation
converstion block size dd invocation
converting while copying a file dd invocation
copying directories recursively cp invocation
copying existing permissions Copying Permissions
copying files and directories cp invocation
copying files and setting attributes install invocation
count dd invocation
cp cp invocation
crashes and corruption sync invocation
creating directories mkdir invocation
creating FIFOs (named pipes) mkfifo invocation
creating links (hard or soft) ln invocation
ctime, sorting by Sorting the output
dd dd invocation
dereferencing symbolic links ln invocation
device file, disk df invocation
df df invocation
dir dir invocation
directories, copying cp invocation
directories, copying recursively cp invocation
directories, creating mkdir invocation
directories, creating with given attributes install invocation
directories, removing (recursively) rm invocation
directories, removing empty rmdir invocation
directories, removing with unlink rm invocation
directory listing ls invocation
directory listing, brief dir invocation
directory listing, recursive Which files are listed
directory listing, verbose vdir invocation
dired Emacs mode support What information is listed
disk device file df invocation
disk usage Disk usage
disk usage by filesystem df invocation
disk usage for files du invocation
diskette filesystem df invocation
DOS filesystem df invocation
du du invocation
ebcdic, converting to dd invocation
efs filesystem type df invocation
empty files, creating touch invocation
error messages, omitting chgrp invocation
error messages, omitting chown invocation

gnu:guide/fileutils 44 / 47

error messages, omitting chmod invocation
executables and file type, marking General output formatting
execute permission Mode Structure
execute permission, symbolic Setting Permissions
existing backup method Backup options
extension, sorting files by Sorting the output
FIFOs, creating mkfifo invocation
file attributes, changing Changing file attributes
file information, preserving cp invocation
file ownership, changing chown invocation
file permissions File permissions
file permissions, numeric Numeric Modes
file space usage du invocation
file timestamps, changing touch invocation
file type and executables, marking General output formatting
file type, marking General output formatting
file types Special file types
file types, special Special file types
file utilities Top
files beginning with -, removing rm invocation
files, copying cp invocation
filesystem disk usage df invocation
filesystem space, retrieving current data more slowly df invocation
filesystem space, retrieving old data more quickly df invocation
filesystem types, limiting output to certain df invocation
filesystem types, printing df invocation
filesystems and hard links ln invocation
filesystems, omitting copying to different cp invocation
fsck rm invocation
giving away permissions Umask and Protection
grand total of disk space du invocation
group owner, default Mode Structure
group ownership of installed files, setting install invocation
group ownership, changing chgrp invocation
group ownerships, changing chown invocation
group, permissions for Setting Permissions
hard links to directories ln invocation
hard links, creating ln invocation
hard links, preserving cp invocation
help, online Common options
High Sierra filesystem df invocation
history Introduction
holes, copying cp invocation
horizontal, listing files General output formatting
hsfs filesystem type df invocation
ibs dd invocation
if dd invocation
ignore filesystems df invocation
inode number, printing What information is listed
inode usage df invocation
inodes, written buffered sync invocation
input block size dd invocation
install install invocation
introduction Introduction
lcase, converting to dd invocation
leading directories, creating missing install invocation
links, creating ln invocation

gnu:guide/fileutils 45 / 47

Linux filesystem types df invocation
ln ln invocation
local filesystem types df invocation
long ls format What information is listed
ls ls invocation
Makefiles, installing programs in install invocation
manipulating files Basic operations
mkdir mkdir invocation
mkfifo mkfifo invocation
mknod mknod invocation
modes and umask Umask and Protection
modes of created directories, setting mkdir invocation
modes of created FIFOs, setting mkfifo invocation
modification time, sorting files by Sorting the output
modify time, changing touch invocation
MS-DOS filesystem df invocation
mtime, changing touch invocation
multiple changes to permissions Multiple Changes
multipliers after numbers dd invocation
mv mv invocation
named pipes, creating mkfifo invocation
newer files, copying only cp invocation
newer files, moving only mv invocation
NFS filesystem type df invocation
NFS mounts from BSD to HP-UX What information is listed
NFS mounts from BSD to HP-UX du invocation
noerror dd invocation
non-directories, copying as special files cp invocation
none, sorting option for ls Sorting the output
notrunc dd invocation
numbered backup method Backup options
numeric modes Numeric Modes
numeric uid and gid General output formatting
obs dd invocation
octal numbers for file modes Numeric Modes
of dd invocation
one filesystem, restricting du to du invocation
one-line output format df invocation
other permissions Setting Permissions
output block size dd invocation
output format, portable df invocation
owner of file, permissions for Setting Permissions
owner, default Mode Structure
ownership of installed files, setting install invocation
p for FIFO file mknod invocation
parent directories and cp cp invocation
parent directories, creating mkdir invocation
parent directories, creating missing install invocation
parent directories, removing rmdir invocation
PC filesystem df invocation
pcfs df invocation
permissions of files File permissions
permissions of installed files, setting install invocation
permissions, changing access chmod invocation
permissions, copying existing Copying Permissions
permissions, for changing file timestamps touch invocation
portable output format df invocation

gnu:guide/fileutils 46 / 47

POSIX output format df invocation
POSIX.2 Introduction
POSIXLY_CORRECT df invocation
POSIXLY_CORRECT, overridden by df -k df invocation
POSIXLY_CORRECT, overridden by du -k du invocation
POSIXLY_CORRECT, overridden by ls -k General output formatting
POSIXLY_CORRECT, overrides ls -s What information is listed
prompting, and ln ln invocation
prompting, and mv mv invocation
prompting, and rm rm invocation
prompts, forcing mv invocation
prompts, omitting mv invocation
read system call, and holes cp invocation
read errors, ignoring dd invocation
read permission Mode Structure
read permission, symbolic Setting Permissions
recursive directory listing Which files are listed
recursively changing access permissions chmod invocation
recursively changing file ownership chown invocation
recursively changing group ownership chgrp invocation
recursively copying directories cp invocation
removing empty directories rmdir invocation
removing files or directories rm invocation
removing permissions Setting Permissions
reverse sorting Sorting the output
rm rm invocation
rmdir rmdir invocation
root as default owner install invocation
seek dd invocation
setgid Mode Structure
setting permissions Setting Permissions
setuid Mode Structure
simple backup method Backup options
SIMPLE_BACKUP_SUFFIX Backup options
single-column output of files General output formatting
size of files, reporting What information is listed
size of files, sorting files by Sorting the output
skip dd invocation
sorting ls output Sorting the output
special file types Special file types
special file types Special file types
special files mknod invocation
status time, sorting by Sorting the output
sticky Mode Structure
stripping symbol table information install invocation
subtracting permissions Setting Permissions
superblock, writing sync invocation
swab (byte-swapping) dd invocation
swap space, saving text image in Mode Structure
symbol table information, stripping install invocation
symbolic (soft) links, creating ln invocation
symbolic links, copying cp invocation
symbolic links, copying with cp invocation
symbolic links, dereferencing Which files are listed
symbolic links, permissions of chmod invocation
symbolic modes Symbolic Modes
sync sync invocation

gnu:guide/fileutils 47 / 47

sync (padding with nulls) dd invocation
synchronize disk and memory sync invocation
text image, saving in swap space Mode Structure
time touch invocation
timestamps, changing file touch invocation
touch touch invocation
truncating output file, avoiding dd invocation
u for unbuffered character special file mknod invocation
ucase, converting to dd invocation
ufs filesystem type df invocation
umask and modes Umask and Protection
unblock dd invocation
unbuffered character special file mknod invocation
unlink rm invocation
use time, changing touch invocation
use time, sorting files by Sorting the output
utilities for file handling Top
vdir vdir invocation
verbose ls format What information is listed
version number, finding Common options
version-control Emacs variable Backup options
VERSION_CONTROL Backup options
vertical sorted files in columns General output formatting
write permission Mode Structure
write permission, symbolic Setting Permissions

	gnu:guide/fileutils
	gnu:guide/fileutils.guide
	fileutils.guide/Introduction
	fileutils.guide/Common options
	fileutils.guide/Backup options
	fileutils.guide/File permissions
	fileutils.guide/Mode Structure
	fileutils.guide/Symbolic Modes
	fileutils.guide/Setting Permissions
	fileutils.guide/Copying Permissions
	fileutils.guide/Changing Special Permissions
	fileutils.guide/Conditional Executability
	fileutils.guide/Multiple Changes
	fileutils.guide/Umask and Protection
	fileutils.guide/Numeric Modes
	fileutils.guide/Directory listing
	fileutils.guide/ls invocation
	fileutils.guide/Which files are listed
	fileutils.guide/What information is listed
	fileutils.guide/Sorting the output
	fileutils.guide/General output formatting
	fileutils.guide/Formatting the filenames
	fileutils.guide/dir invocation
	fileutils.guide/vdir invocation
	fileutils.guide/Basic operations
	fileutils.guide/cp invocation
	fileutils.guide/dd invocation
	fileutils.guide/install invocation
	fileutils.guide/mv invocation
	fileutils.guide/rm invocation
	fileutils.guide/Special file types
	fileutils.guide/ln invocation
	fileutils.guide/mkdir invocation
	fileutils.guide/mkfifo invocation
	fileutils.guide/mknod invocation
	fileutils.guide/rmdir invocation
	fileutils.guide/Changing file attributes
	fileutils.guide/chown invocation
	fileutils.guide/chgrp invocation
	fileutils.guide/chmod invocation
	fileutils.guide/touch invocation
	fileutils.guide/Disk usage
	fileutils.guide/df invocation
	fileutils.guide/du invocation
	fileutils.guide/sync invocation
	fileutils.guide/Index

