
flex.info

flex.info ii

COLLABORATORS

TITLE :

flex.info

ACTION NAME DATE SIGNATURE

WRITTEN BY December 11, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

flex.info iii

Contents

1 flex.info 1

1.1 flex.info . 1

1.2 flex.info/Introduction . 1

1.3 flex.info/Text-Substitution . 2

1.4 flex.info/Counter . 2

1.5 flex.info/Toy . 3

1.6 flex.info/Files . 4

1.7 flex.info/Input Format . 4

1.8 flex.info/Patterns . 6

1.9 flex.info/Matching . 9

1.10 flex.info/Actions . 9

1.11 flex.info/Scanner . 13

1.12 flex.info/Start . 14

1.13 flex.info/Multiple Input . 17

1.14 flex.info/EOF . 19

1.15 flex.info/Misc . 20

1.16 flex.info/Parsers . 20

1.17 flex.info/Translation . 21

1.18 flex.info/Invoking . 21

1.19 flex.info/Performance . 25

1.20 flex.info/Incompatibilities . 30

1.21 flex.info/Diagnostics . 33

1.22 flex.info/Bugs . 34

1.23 flex.info/Acknowledgements . 35

flex.info 1 / 35

Chapter 1

flex.info

1.1 flex.info

FLEX--fast lexical analyzer generator

This product includes software developed by the University of
California, Berkeley and its contributors.

Introduction An Overview of ‘flex’, with Examples
Files Input and Output Files
Invoking Command-line Options
Performance Performance Considerations
Incompatibilities Incompatibilities with ‘lex’ and POSIX
Diagnostics Diagnostic Messages
Bugs Deficiencies and Bugs
Acknowledgements Contributors to flex

1.2 flex.info/Introduction

An Overview of ‘flex’, with Examples

‘flex’ is a tool for generating scanners: programs which recognize
lexical patterns in text. ‘flex’ reads the given input files (or its
standard input if no file names are given) for a description of the
scanner to generate. The description is in the form of pairs of regular
expressions and C code, called "rules". ‘flex’ generates as output a C
source file, ‘lex.yy.c’, which defines a routine ‘yylex’. Compile and
link this file with the ‘-lfl’ library to produce an executable. When
the executable runs, it analyzes its input for occurrences of the
regular expressions. Whenever it finds one, it executes the
corresponding C code.

Some simple examples follow, to give you the flavor of using ‘flex’.

flex.info 2 / 35

Text-Substitution Trivial Text-Substitution
Counter Count Lines and Characters
Toy Simplified Pascal-like Language

1.3 flex.info/Text-Substitution

Text-Substitution Scanner
=========================

The following ‘flex’ input specifies a scanner which, whenever it
encounters the string ‘username’, will replace it with the user’s login
name:

%%
username printf("%s", getlogin());

By default, any text not matched by a ‘flex’ scanner is copied to
the output, so the net effect of this scanner is to copy its input file
to its output with each occurrence of ‘username’ expanded. In this
input, there is just one rule. ‘username’ is the pattern and the
‘printf’ is the action. The ‘%%’ marks the beginning of the rules.

1.4 flex.info/Counter

A Scanner to Count Lines and Characters
=======================================

Here’s another simple example:

int num_lines = 0, num_chars = 0;

%%
\n ++num_lines; ++num_chars;
. ++num_chars;

%%
main()

{
yylex();
printf("# of lines = %d, # of chars = %d\n",

num_lines, num_chars);
}

This scanner counts the number of characters and the number of
lines in its input (it produces no output other than the final report
on the counts). The first line declares two globals, ‘num_lines’
and ‘num_chars’, which are accessible both inside ‘yylex’ and in the
‘main’ routine declared after the second ‘%%’. There are two rules,
one which matches a newline (‘\n’) and increments both the line count

flex.info 3 / 35

and the character count, and one which matches any character other
than a newline (indicated by the ‘.’ regular expression).

1.5 flex.info/Toy

Simplified Pascal-like Language Scanner
=======================================

A somewhat more complicated example:

/* scanner for a toy Pascal-like language */

%{
/* need this for the call to atof() below */
#include <math.h>
%}

DIGIT [0-9]
ID [a-z][a-z0-9]*

%%

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,

atoi(yytext));
}

{DIGIT}+"."{DIGIT}* {
printf("A float: %s (%g)\n", yytext,

atof(yytext));
}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);
}

{ID} printf("An identifier: %s\n", yytext);

"+"|"-"|"*"|"/" printf("An operator: %s\n", yytext);

"{"[^}\n]*"}" /* eat up one-line comments */

[\t\n]+ /* eat up whitespace */

. printf("Unrecognized character: %s\n", yytext);

%%

main(argc, argv)
int argc;
char **argv;

{
++argv, --argc; /* skip over program name */
if (argc > 0)

flex.info 4 / 35

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();
}

This is the beginnings of a simple scanner for a language like
Pascal. It identifies different types of tokens and reports on what it
has seen.

The details of this example are explained in the following chapters.

1.6 flex.info/Files

Input and Output Files

‘flex’’s actions are specified by definitions (which may include
embedded C code) in one or more input files. The primary output file
is ‘lex.yy.c’. You can also use some of the command-line options to
get diagnostic output (see Command-line options). This chapter gives
the details of how to structure your input to define the scanner you
need.

Input Format Format of the Input File
Scanner The Generated Scanner
Start Start Conditions
Multiple Input Multiple Input Buffers
EOF End-of-File Rules
Misc Miscellaneous Macros
Parsers Interfacing with Parser Generators
Translation Translation Table

1.7 flex.info/Input Format

Format of the Input File
========================

The ‘flex’ input file consists of three sections, separated by a
line with just ‘%%’ in it:

DEFINITIONS
%%
RULES
%%
USER CODE

The DEFINITIONS section contains declarations of simple name

flex.info 5 / 35

definitions to simplify the scanner specification, and declarations of
start conditions, which are explained in a later section.

Name definitions have the form:

NAME DEFINITION

The NAME is a word beginning with a letter or an underscore (‘_’)
followed by zero or more letters, digits, ‘_’, or ‘-’ (dash). The
definition is taken to begin at the first non-whitespace character
following the name, and continuing to the end of the line. The
definition can subsequently be referred to using ‘{NAME}’, which will
expand to ‘(DEFINITION)’. For example,

DIGIT [0-9]
ID [a-z][a-z0-9]*

defines ‘DIGIT’ to be a regular expression which matches a single
digit, and ‘ID’ to be a regular expression which matches a letter
followed by zero or more letters or digits. A subsequent reference to

{DIGIT}+"."{DIGIT}*

is identical to

([0-9])+"."([0-9])*

and matches one or more digits followed by a ‘.’ followed by zero or
more digits.

The rules section of the ‘flex’ input contains a series of rules of
the form:

PATTERN ACTION

where the PATTERN must be unindented and the ACTION must begin on the
same line.

See below for a further description of patterns and actions.

Finally, the user code section is simply copied to ‘lex.yy.c’
verbatim. It is used for companion routines which call or are called by
the scanner. The presence of this section is optional; if it is
missing, the second ‘%%’ in the input file may be skipped, too.

In the definitions and rules sections, any indented text or text
enclosed in ‘%{’ and ‘%}’ is copied verbatim to the output (with the
‘%{}’ removed). The ‘%{}’ must appear unindented on lines by
themselves.

In the rules section, any indented or ‘%{}’ text appearing before
the first rule may be used to declare variables which are local to the
scanning routine and (after the declarations) code which is to be
executed whenever the scanning routine is entered. Other indented or
‘%{}’ text in the rule section is still copied to the output, but its
meaning is not well defined and it may well cause compile-time errors
(this feature is present for POSIX compliance; see below for other such

flex.info 6 / 35

features).

In the definitions section, an unindented comment (i.e., a line
beginning with ‘/*’) is also copied verbatim to the output up to the
next ‘*/’. Also, any line in the definitions section beginning with
‘#’ is ignored, though this style of comment is deprecated and may go
away in the future.

Patterns Patterns in the input
Matching How the input is matched
Actions Actions

1.8 flex.info/Patterns

Patterns in the Input

The patterns in the input are written using an extended set of
regular expressions. These are:

‘X’
match the character ‘X’

‘.’
any character except newline

‘[xyz]’
a "character class"; in this case, the pattern matches either an
‘x’, a ‘y’, or a ‘z’

‘[abj-oZ]’
a "character class" with a range in it; matches an ‘a’, a ‘b’, any
letter from ‘j’ through ‘o’, or a ‘Z’

‘[^A-Z]’
a "negated character class", i.e., any character but those in the
class. In this case, any character *except* an uppercase letter.

‘[^A-Z\n]’
any character *except* an uppercase letter or a newline

‘R*’
zero or more R’s, where R is any regular expression

‘R+’
one or more R’s

‘R? zero or one R’s (that is, ‘‘an optional R’’)’
‘R{2,5}’

anywhere from two to five R’s

‘R{2,}’
two or more R’s

flex.info 7 / 35

‘R{4}’
exactly 4 R’s

‘{NAME}’
the expansion of the NAME definition (see above)

‘"[xyz]\"foo"’
the literal string: ‘[xyz]"foo’

‘\X’
if X is an ‘a’, ‘b’, ‘f’, ‘n’, ‘r’, ‘t’, or ‘v’, then the ANSI C
interpretation of ‘\X’. Otherwise, a literal ‘X’ (used to escape
operators such as ‘*’)

‘\123’
the character with octal value ‘123’

‘\x2a’
the character with hexadecimal value ‘2a’

‘(R)’
match an R; parentheses are used to override precedence (see below)

‘RS’
the regular expression R followed by the regular expression S;
called "concatenation"

‘R|S’
either an R or an S

‘R/S’
an R but only if it is followed by an S. The S is not part of the
matched text. This type of pattern is called "trailing context".

‘^R’
an R, but only at the beginning of a line

‘R$’
an R, but only at the end of a line. Equivalent to ‘r/\n’.

‘<S>R’
an R, but only in start condition S (see below for discussion of
start conditions)

‘<S1,S2,S3>R’
same, but in any of start conditions S1, S2, or S3

‘<<EOF>>’
an end-of-file

‘<S1,S2><<EOF>>’
an end-of-file when in start condition S1 or S2

The regular expressions listed above are grouped according to
precedence, from highest precedence at the top to lowest at the bottom.
Those grouped together have equal precedence. For example,

flex.info 8 / 35

foo|bar*

is the same as

(foo)|(ba(r*))

since the ‘*’ operator has higher precedence than concatenation, and
concatenation higher than alternation (‘|’). This pattern therefore
matches either the string ‘foo’ or the string ‘ba’ followed by zero or
more instances of ‘r’. To match ‘foo’ or zero or more instances of
‘bar’, use:

foo|(bar)*

and to match zero or more instances of either ‘foo’ or ‘bar’:

(foo|bar)*

Some notes on patterns:

* A negated character class such as the example ‘[^A-Z]’ above will
match a newline unless ‘\n’ (or an equivalent escape sequence) is
one of the characters explicitly present in the negated character
class (e.g., ‘[^A-Z\n]’). This is unlike how many other regular
expression tools treat negated character classes, but
unfortunately the inconsistency is historically entrenched.
Matching newlines means that a pattern like ‘[^"]*’ can match an
entire input (overflowing the scanner’s input buffer) unless
there’s another quote in the input.

* A rule can have at most one instance of trailing context (the ‘/’
operator or the ‘$’ operator). The start condition, ‘^’, and
‘<<EOF>>’ patterns can only occur at the beginning of a pattern,
and, as well as with ‘/’ and ‘$’, cannot be grouped inside
parentheses. A ‘^’ which does not occur at the beginning of a rule
or a ‘$’ which does not occur at the end of a rule loses its
special properties and is treated as a normal character.

The following are illegal:

foo/bar$
<sc1>foo<sc2>bar

You can write the first of these instead as ‘foo/bar\n’.

In the following examples, ‘$’ and ‘^’ are treated as normal
characters:

foo|(bar$)
foo|^bar

If what you want to specify is "either ‘foo’, or ‘bar’ followed by a
newline" you can use the following (the special ‘|’ action is explained
below):

foo |

flex.info 9 / 35

bar$ /* action goes here */

A similar trick will work for matching "either ‘foo’, or ‘bar’ at
the beginning of a line."

1.9 flex.info/Matching

How the Input is Matched

When the generated scanner runs, it analyzes its input looking for
strings which match any of its patterns. If it finds more than one
match, it takes the one matching the most text (for trailing context
rules, this includes the length of the trailing part, even though it
will then be returned to the input). If it finds two or more matches of
the same length, the rule listed first in the ‘flex’ input file is
chosen.

Once the match is determined, the text corresponding to the match
(called the "token") is made available in the global character pointer
‘yytext’, and its length in the global integer ‘yyleng’. The action
corresponding to the matched pattern is then executed (a more detailed
description of actions follows), and then the remaining input is
scanned for another match.

If no match is found, then the default rule is executed: the next
character in the input is considered matched and copied to the standard
output. Thus, the simplest legal ‘flex’ input is:

%%

which generates a scanner that simply copies its input (one character at
a time) to its output.

1.10 flex.info/Actions

Actions

Each pattern in a rule has a corresponding action, which can be any
arbitrary C statement. The pattern ends at the first non-escaped
whitespace character; the remainder of the line is its action. If the
action is empty, then when the pattern is matched the input token is
simply discarded. For example, here is the specification for a program
which deletes all occurrences of ‘zap me’ from its input:

%%
"zap me"

(It will copy all other characters in the input to the output since they

flex.info 10 / 35

will be matched by the default rule.)

Here is a program which compresses multiple blanks and tabs down to a
single blank, and throws away whitespace found at the end of a line:

%%
[\t]+ putchar(’ ’);
[\t]+$ /* ignore this token */

If the action contains a ‘{’, then the action spans till the
balancing ‘}’ is found, and the action may cross multiple lines.
‘flex’ knows about C strings and comments and won’t be fooled by braces
found within them, but also allows actions to begin with ‘%{’ and will
consider the action to be all the text up to the next ‘%}’ (regardless
of ordinary braces inside the action).

An action consisting solely of a vertical bar (‘|’) means "same as
the action for the next rule." See below for an illustration.

Actions can include arbitrary C code, including return statements to
return a value to whatever routine called ‘yylex’. Each time ‘yylex’ is
called it continues processing tokens from where it last left off until
it either reaches the end of the file or executes a return. Once it
reaches an end-of-file, however, then any subsequent call to ‘yylex’
will simply immediately return, unless ‘yyrestart’ is first called (see
below).

Actions are not allowed to modify ‘yytext’ or ‘yyleng’.

There are a number of special directives which can be included
within an action:

‘ECHO’
copies ‘yytext’ to the scanner’s output.

‘BEGIN’
followed by the name of a start condition places the scanner in the
corresponding start condition (see below).

‘REJECT’
directs the scanner to proceed on to the "second best" rule which
matched the input (or a prefix of the input). The rule is chosen
as described above in See How the Input is Matched, and ‘yytext’
and ‘yyleng’ set up appropriately. It may either be one which
matched as much text as the originally chosen rule but came later
in the ‘flex’ input file, or one which matched less text. For
example, the following will both count the words in the input and
call the routine ‘special’ whenever ‘frob’ is seen:

int word_count = 0;
%%

frob special(); REJECT;
[^ \t\n]+ ++word_count;

Without the ‘REJECT’, any ‘frob’ in the input would not be counted
as a word, since the scanner normally executes only one action per

flex.info 11 / 35

token. Multiple ‘REJECT’ actions are allowed, each one finding
the next best choice to the currently active rule. For example,
when the following scanner scans the token ‘abcd’, it will write
‘abcdabcaba’ to the output:

%%
a |
ab |
abc |
abcd ECHO; REJECT;
.|\n /* eat up any unmatched character */

(The first three rules share the fourth’s action, since they use
the special ‘|’ action.) ‘REJECT’ is a particularly expensive
feature in terms of scanner performance; if it is used in any of
the scanner’s actions, it will slow down all of the scanner’s
matching. Furthermore, ‘REJECT’ cannot be used with the ‘-f’ or
‘-F’ options (see below).

Note also that unlike the other special actions, ‘REJECT’ is a
branch; code immediately following it in the action will not be
executed.

‘yymore()’
tells the scanner that the next time it matches a rule, the
corresponding token should be appended onto the current value of
‘yytext’ rather than replacing it. For example, given the input
‘mega-kludge’ the following will write ‘mega-mega-kludge’ to the
output:

%%
mega- ECHO; yymore();
kludge ECHO;

First ‘mega-’ is matched and echoed to the output. Then ‘kludge’
is matched, but the previous ‘mega-’ is still hanging around at
the beginning of yytext so the ECHO for the ‘kludge’ rule will
actually write ‘mega-kludge’. The presence of ‘yymore’ in the
scanner’s action entails a minor performance penalty in the
scanner’s matching speed.

‘yyless(N)’
returns all but the first N characters of the current token back
to the input stream, where they will be rescanned when the scanner
looks for the next match. ‘yytext’ and ‘yyleng’ are adjusted
appropriately (e.g., ‘yyleng’ will now be equal to N). For
example, on the input ‘foobar’ the following will write out
‘foobarbar’:

%%
foobar ECHO; yyless(3);
[a-z]+ ECHO;

‘yyless(0)’ will cause the entire current input string to be
scanned again. Unless you’ve changed how the scanner will
subsequently process its input (using ‘BEGIN’, for example), this
will result in an endless loop.

flex.info 12 / 35

‘unput(C)’
puts the character C back onto the input stream. It will be the
next character scanned. The following action will take the current
token and cause it to be rescanned enclosed in parentheses.

{
int i;
unput(’)’);
for (i = yyleng - 1; i >= 0; --i)

unput(yytext[i]);
unput(’(’);
}

Note that since each ‘unput’ puts the given character back at
the beginning of the input stream, pushing back strings must be
done back-to-front.

‘input()’
reads the next character from the input stream. For example, the
following is one way to eat up C comments:

%%
"/*" {

register int c;

for (; ;)
{
while ((c = input()) != ’*’ &&

c != EOF)
; /* eat up text of comment */

if (c == ’*’)
{
while ((c = input()) == ’*’)

;
if (c == ’/’)

break; /* found the end */
}

if (c == EOF)
{
error("EOF in comment");
break;
}

}
}

(Note that if the scanner is compiled using C++, then ‘input’ is
instead referred to as ‘yyinput’, in order to avoid a name clash
with the C++ stream named ‘input’.)

‘yyterminate()’
can be used in lieu of a ‘return’ statement in an action. It
terminates the scanner and returns a 0 to the scanner’s caller,
indicating ‘all done’. Subsequent calls to the scanner will
immediately return unless preceded by a call to ‘yyrestart’ (see

flex.info 13 / 35

below). By default, ‘yyterminate’ is also called when an
end-of-file is encountered. It is a macro and may be redefined.

1.11 flex.info/Scanner

The Generated Scanner
=====================

The output of ‘flex’ is the file ‘lex.yy.c’, which contains the
scanning routine ‘yylex’, a number of tables used by it for matching
tokens, and a number of auxiliary routines and macros. By default,
‘yylex’ is declared as follows:

int yylex()
{
... various definitions and the actions in here ...
}

(If your environment supports function prototypes, then it will be ‘int
yylex(void)’.) This definition may be changed by redefining the
‘YY_DECL’ macro. For example, you could use:

#undef YY_DECL
#define YY_DECL float lexscan(a, b) float a, b;

to give the scanning routine the name ‘lexscan’, returning a ‘float’,
and taking two ‘float’ values as arguments. Note that if you give
arguments to the scanning routine using a K&R-style/non-prototyped
function declaration, you must terminate the definition with a
semicolon (‘;’).

Whenever ‘yylex’ is called, it scans tokens from the global input
file ‘yyin’ (which defaults to ‘stdin’). It continues until it either
reaches an end-of-file (at which point it returns the value 0) or one
of its actions executes a return statement. In the former case, when
called again the scanner will immediately return unless ‘yyrestart’ is
called to point ‘yyin’ at the new input file. (‘yyrestart’ takes one
argument, a ‘FILE *’ pointer.) In the latter case (i.e., when an action
executes a return), the scanner may then be called again and it will
resume scanning where it left off.

By default (and for efficiency), the scanner uses block-reads rather
than simple ‘getc’ calls to read characters from ‘yyin’. You can
control how it gets input by redefining the ‘YY_INPUT’ macro.
‘YY_INPUT’’s calling sequence is ‘YY_INPUT(BUF,RESULT,MAX_SIZE)’. Its
action is to place up to MAX_SIZE characters in the character array BUF
and return in the integer variable result either the number of
characters read or the constant ‘YY_NULL’ (0 on Unix systems) to
indicate EOF. The default ‘YY_INPUT’ reads from the global
file-pointer ‘yyin’.

A sample redefinition of ‘YY_INPUT’ (in the definitions section of
the input file):

flex.info 14 / 35

%{
#undef YY_INPUT
#define YY_INPUT(buf,result,max_size) \

{ \
int c = getchar(); \
result = (c == EOF) ? YY_NULL : (buf[0] = c, 1); \
}

%}

This definition will change the input processing to occur one
character at a time.

You also can add in things like keeping track of the input line
number this way; but don’t expect your scanner to go very fast.

When the scanner receives an end-of-file indication from ‘YY_INPUT’,
it then checks the ‘yywrap’ function. If ‘yywrap’ returns false
(zero), then it is assumed that the function has gone ahead and set up
‘yyin’ to point to another input file, and scanning continues. If it
returns true (non-zero), then the scanner terminates, returning 0 to
its caller.

The default ‘yywrap’ always returns 1. At present, to redefine it
you must first ‘#undef yywrap’, as it is currently implemented as a
macro. As indicated by the hedging in the previous sentence, it may be
changed to a true function in the near future.

The scanner writes its ‘ECHO’ output to the ‘yyout’ global
(default, ‘stdout’), which may be redefined by the user simply by
assigning it to some other ‘FILE’ pointer.

1.12 flex.info/Start

Start Conditions
================

‘flex’ provides a mechanism for conditionally activating rules. Any
rule whose pattern is prefixed with ‘<SC>’ will only be active when the
scanner is in the start condition named SC. For example,

<STRING>[^"]* { /* eat up the string body ... */
...
}

will be active only when the scanner is in the ‘STRING’ start
condition, and

<INITIAL,STRING,QUOTE>\. { /* handle an escape ... */
...
}

will be active only when the current start condition is either
‘INITIAL’, ‘STRING’, or ‘QUOTE’.

flex.info 15 / 35

Start conditions are declared in the definitions (first) section of
the input using unindented lines beginning with either ‘%s’ or ‘%x’
followed by a list of names. The former declares *inclusive* start
conditions, the latter *exclusive* start conditions. A start condition
is activated using the ‘BEGIN’ action. Until the next ‘BEGIN’ action
is executed, rules with the given start condition will be active and
rules with other start conditions will be inactive. If the start
condition is inclusive, then rules with no start conditions at all will
also be active. If it is exclusive, then only rules qualified with the
start condition will be active. A set of rules contingent on the same
exclusive start condition describe a scanner which is independent of
any of the other rules in the ‘flex’ input. Because of this, exclusive
start conditions make it easy to specify "miniscanners" which scan
portions of the input that are syntactically different from the rest
(e.g., comments).

If the distinction between inclusive and exclusive start conditions
is still a little vague, here’s a simple example illustrating the
connection between the two. The set of rules:

%s example
%%
<example>foo /* do something */

is equivalent to

%x example
%%
<INITIAL,example>foo /* do something */

The default rule (to ECHO any unmatched character) remains active in
start conditions.

‘BEGIN(0)’ returns to the original state where only the rules with
no start conditions are active. This state can also be referred to as
the start-condition ‘INITIAL’, so ‘BEGIN(INITIAL)’ is equivalent to
‘BEGIN(0)’. (The parentheses around the start condition name are not
required but are considered good style.)

‘BEGIN’ actions can also be given as indented code at the beginning
of the rules section. For example, the following will cause the scanner
to enter the ‘SPECIAL’ start condition whenever ‘yylex’ is called and
the global variable enter_special is true:

int enter_special;

%x SPECIAL
%%

if (enter_special)
BEGIN(SPECIAL);

<SPECIAL>blahblahblah
... more rules follow ...

To illustrate the uses of start conditions, here is a scanner which
provides two different interpretations of a string like ‘123.456’. By
default this scanner will treat the string as three tokens: the integer

flex.info 16 / 35

‘123’, a dot ‘.’, and the integer ‘456’. But if the string is preceded
earlier in the line by the string ‘expect-floats’ it will treat it as a
single token, the floating-point number ‘123.456’:

%{
#include <math.h>
%}
%s expect

%%
expect-floats BEGIN(expect);

<expect>[0-9]+"."[0-9]+ {
printf("found a float, = %f\n",

atof(yytext));
}

<expect>\n {
/* that’s the end of the line, so

* we need another "expect-number"

* before we’ll recognize any more

* numbers

*/
BEGIN(INITIAL);
}

[0-9]+ {
printf("found an integer, = %d\n",

atoi(yytext));
}

"." printf("found a dot\n");

Here is a scanner which recognizes (and discards) C comments while
maintaining a count of the current input line.

%x comment
%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[^*\n]* /* eat anything that’s not a ’*’ */
<comment>"*"+[^*/\n]* /* eat up ’*’s not followed by ’/’s */
<comment>\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

Note that start-conditions names are really integer values and can be
stored as such. Thus, the above could be extended in the following
fashion:

%x comment foo
%%

int line_num = 1;
int comment_caller;

"/*" {
comment_caller = INITIAL;

flex.info 17 / 35

BEGIN(comment);
}

...

<foo>"/*" {
comment_caller = foo;
BEGIN(comment);
}

<comment>[^*\n]* /* eat anything that’s not a ’*’ */
<comment>"*"+[^*/\n]* /* eat up ’*’s not followed by ’/’s */
<comment>\n ++line_num;
<comment>"*"+"/" BEGIN(comment_caller);

One can then implement a "stack" of start conditions using an array
of integers. (It is likely that such stacks will become a full-fledged
‘flex’ feature in the future.) Note, though, that start conditions do
not have their own namespace; ‘%s’ and ‘%x’ declare names in the same
fashion as ‘#define’.

1.13 flex.info/Multiple Input

Multiple Input Buffers
======================

Some scanners (such as those which support "include" files) require
reading from several input streams. As ‘flex’ scanners do a large
amount of buffering, one cannot control where the next input will be
read from by simply writing a ‘YY_INPUT’ which is sensitive to the
scanning context. ‘YY_INPUT’ is only called when the scanner reaches
the end of its buffer, which may be a long time after scanning a
statement such as an "include" which requires switching the input
source.

To negotiate these sorts of problems, ‘flex’ provides a mechanism
for creating and switching between multiple input buffers. An input
buffer is created by using:

YY_BUFFER_STATE yy_create_buffer(FILE *FILE, int SIZE)

which takes a ‘FILE’ pointer and a size and creates a buffer associated
with the given file and large enough to hold SIZE characters (when in
doubt, use ‘YY_BUF_SIZE’ for the size). It returns a ‘YY_BUFFER_STATE’
handle, which may then be passed to other routines:

void yy_switch_to_buffer(YY_BUFFER_STATE NEW_BUFFER)

switches the scanner’s input buffer so subsequent tokens will come from
NEW_BUFFER. Note that ‘yy_switch_to_buffer’ may be used by ‘yywrap’ to
sets things up for continued scanning, instead of opening a new file
and pointing ‘yyin’ at it.

void yy_delete_buffer(YY_BUFFER_STATE BUFFER)

flex.info 18 / 35

is used to reclaim the storage associated with a buffer.

‘yy_new_buffer’ is an alias for ‘yy_create_buffer’, provided for
compatibility with the C++ use of ‘new’ and ‘delete’ for creating and
destroying dynamic objects.

Finally, the ‘YY_CURRENT_BUFFER’ macro returns a ‘YY_BUFFER_STATE’
handle to the current buffer.

Here is an example of using these features for writing a scanner
which expands include files (the ‘<<EOF>>’ feature is discussed below):

/* the "incl" state is used for picking up the name

* of an include file

*/
%x incl

%{
#define MAX_INCLUDE_DEPTH 10
YY_BUFFER_STATE include_stack[MAX_INCLUDE_DEPTH];
int include_stack_ptr = 0;
%}

%%
include BEGIN(incl);

[a-z]+ ECHO;
[^a-z\n]*\n? ECHO;

<incl>[\t]* /* eat the whitespace */
<incl>[^ \t\n]+ { /* got the include file name */

if (include_stack_ptr >= MAX_INCLUDE_DEPTH)
{
fprintf(stderr, "Includes nested too deeply");
exit(1);
}

include_stack[include_stack_ptr++] =
YY_CURRENT_BUFFER;

yyin = fopen(yytext, "r");

if (! yyin)
error(...);

yy_switch_to_buffer(
yy_create_buffer(yyin, YY_BUF_SIZE));

BEGIN(INITIAL);
}

<<EOF>> {
if (--include_stack_ptr < 0)

{
yyterminate();
}

flex.info 19 / 35

else
yy_switch_to_buffer(

include_stack[include_stack_ptr]);
}

1.14 flex.info/EOF

End-of-File Rules
=================

The special rule ‘<<EOF>>’ indicates actions which are to be taken
when an end-of-file is encountered and ‘yywrap’ returns non-zero (i.e.,
indicates no further files to process). The action must finish by
doing one of four things:

* the special ‘YY_NEW_FILE’ action, if ‘yyin’ has been pointed at a
new file to process;

* a return statement;

* the special ‘yyterminate’ action;

* or switching to a new buffer using ‘yy_switch_to_buffer’ as shown
in the example above.

‘<<EOF>>’ rules may not be used with other patterns; they may only
be qualified with a list of start conditions. If an unqualified
‘<<EOF>>’ rule is given, it applies to all start conditions which do
not already have ‘<<EOF>>’ actions. To specify an ‘<<EOF>>’ rule for
only the initial start condition, use

<INITIAL><<EOF>>

These rules are useful for catching things like unclosed comments.
An example:

%x quote
%%

... other rules for dealing with quotes ...

<quote><<EOF>> {
error("unterminated quote");
yyterminate();
}

<<EOF>> {
if (*++filelist)

{
yyin = fopen(*filelist, "r");
YY_NEW_FILE;
}

else
yyterminate();

flex.info 20 / 35

}

1.15 flex.info/Misc

Miscellaneous Macros
====================

The macro ‘YY_USER_ACTION’ can be redefined to provide an action
which is always executed prior to the matched rule’s action. For
example, it could be ‘#define’d to call a routine to convert ‘yytext’
to lower-case.

The macro ‘YY_USER_INIT’ may be redefined to provide an action which
is always executed before the first scan (and before the scanner’s
internal initializations are done). For example, it could be used to
call a routine to read in a data table or open a logging file.

In the generated scanner, the actions are all gathered in one large
switch statement and separated using ‘YY_BREAK’, which may be
redefined. By default, it is simply a ‘break’, to separate each rule’s
action from the following rule’s. Redefining ‘YY_BREAK’ allows, for
example, C++ users to ‘#define YY_BREAK’ to do nothing (while being
very careful that every rule ends with a ‘break’ or a ‘return’!) to
avoid suffering from unreachable statement warnings where because a
rule’s action ends with ‘return’, the ‘YY_BREAK’ is inaccessible.

1.16 flex.info/Parsers

Interfacing with Parser Generators
==================================

One of the main uses of ‘flex’ is as a companion to parser
generators like ‘yacc’. ‘yacc’ parsers expect to call a routine named
‘yylex’ to find the next input token. The routine is supposed to
return the type of the next token as well as putting any associated
value in the global ‘yylval’. To use ‘flex’ with ‘yacc’, specify the
‘-d’ option to ‘yacc’ to instruct it to generate the file ‘y.tab.h’
containing definitions of all the ‘%token’s appearing in the ‘yacc’
input. Then include this file in the ‘flex’ scanner. For example, if
one of the tokens is ‘TOK_NUMBER’, part of the scanner might look like:

%{
#include "y.tab.h"
%}

%%

[0-9]+ yylval = atoi(yytext); return TOK_NUMBER;

flex.info 21 / 35

1.17 flex.info/Translation

Translation Table
=================

In the name of POSIX compliance, ‘flex’ supports a translation table
for mapping input characters into groups. The table is specified in
the first section, and its format looks like:

%t
1 abcd
2 ABCDEFGHIJKLMNOPQRSTUVWXYZ
52 0123456789
6 \t\ \n
%t

This example specifies that the characters ‘a’, ‘b’, ‘c’, and ‘d’
are to all be lumped into group #1, upper-case letters in group #2,
digits in group #52, tabs, blanks, and newlines into group #6, and no
other characters will appear in the patterns. The group numbers are
actually disregarded by ‘flex’; ‘%t’ serves, though, to lump characters
together. Given the above table, for example, the pattern ‘a(AA)*5’ is
equivalent to ‘d(ZQ)*0’. They both say, "match any character in group
#1, followed by zero or more pairs of characters from group #2,
followed by a character from group #52." Thus ‘%t’ provides a crude way
for introducing equivalence classes into the scanner specification.

Note that the ‘-i’ option (see below) coupled with the
equivalence classes which ‘flex’ automatically generates take care of
virtually all the instances when one might consider using ‘%t’. But
what the hell, it’s there if you want it.

1.18 flex.info/Invoking

Command-line Options

You can call ‘flex’ with the following command-line options:

‘-b’
Generate backtracking information to ‘lex.backtrack’. This is a
list of scanner states which require backtracking and the input
characters on which they do so. By adding rules one can remove
backtracking states. If all backtracking states are eliminated and
‘-f’ or ‘-F’ is used, the generated scanner will run faster (see
the ‘-p’ flag). Only users who wish to squeeze every last cycle
out of their scanners need worry about this option. (See
Performance Considerations.)

‘-c’
is a do-nothing, deprecated option included for POSIX compliance.

Note: in previous releases of ‘flex’, you could use ‘-c’ to

flex.info 22 / 35

specify table-compression options. This functionality is now
given by the ‘-C’ flag. To ease the the impact of this change,
when ‘flex’ encounters ‘-c’, it currently issues a warning message
and assumes that ‘-C’ was desired instead. In the future this
"promotion" of ‘-c’ to ‘-C’ will go away in the name of full POSIX
compliance (unless the POSIX meaning is removed first).

‘-d’
makes the generated scanner run in debug mode. Whenever a pattern
is recognized and the global ‘yy_flex_debug’ is non-zero (which is
the default), the scanner will write to ‘stderr’ a line of the
form:

--accepting rule at line 53 ("the matched text")

The line number refers to the location of the rule in the file
defining the scanner (i.e., the file that was fed to ‘flex’).
Messages are also generated when the scanner backtracks, accepts
the default rule, reaches the end of its input buffer (or
encounters a ‘NUL’; at this point, the two look the same as far as
the scanner’s concerned), or reaches an end-of-file.

‘-f’
specifies (take your pick) full table or fast scanner. No table
compression is done. The result is large but fast. This option is
equivalent to ‘-Cf’ (see below).

‘-i’
instructs ‘flex’ to generate a case-insensitive scanner. The case
of letters given in the ‘flex’ input patterns will be ignored, and
tokens in the input will be matched regardless of case. The
matched text given in ‘yytext’ will have the preserved case (i.e.,
it will not be folded).

‘-n’
is another do-nothing, deprecated option included only for POSIX
compliance.

‘-p’
generates a performance report to ‘stderr’. The report consists of
comments regarding features of the ‘flex’ input file which will
cause a loss of performance in the resulting scanner. Note that
the use of ‘REJECT’ and variable trailing context (see
Deficiencies and Bugs) entails a substantial performance penalty;
use of ‘yymore’, the ‘^’ operator, and the ‘-I’ flag entail minor
performance penalties.

‘-s’
causes the default rule (that unmatched scanner input is echoed to
‘stdout’) to be suppressed. If the scanner encounters input that
does not match any of its rules, it aborts with an error. This
option is useful for finding holes in a scanner’s rule set.

‘-t’
instructs ‘flex’ to write the scanner it generates to standard
output instead of ‘lex.yy.c’.

flex.info 23 / 35

‘-v’
specifies that ‘flex’ should write to ‘stderr’ a summary of
statistics regarding the scanner it generates. Most of the
statistics are meaningless to the casual ‘flex’ user, but the
first line identifies the version of ‘flex’, which is useful for
figuring out where you stand with respect to patches and new
releases, and the next two lines give the date when the scanner
was created and a summary of the flags which were in effect.

‘-F’
specifies that the fast scanner table representation should be
used. This representation is about as fast as the full table
representation (‘-f’), and for some sets of patterns will be
considerably smaller (and for others, larger). In general, if the
pattern set contains both "keywords" and a catch-all, "identifier"
rule, such as in the set:

"case" return TOK_CASE;
"switch" return TOK_SWITCH;
...
"default" return TOK_DEFAULT;
[a-z]+ return TOK_ID;

then you’re better off using the full table representation. If
only the "identifier" rule is present and you then use a hash
table or some such to detect the keywords, you’re better off using
‘-F’.

This option is equivalent to ‘-CF’ (see below).

‘-I’
instructs ‘flex’ to generate an interactive scanner. Normally,
scanners generated by ‘flex’ always look ahead one character before
deciding that a rule has been matched. At the cost of some
scanning overhead, ‘flex’ will generate a scanner which only looks
ahead when needed. Such scanners are called interactive because
if you want to write a scanner for an interactive system such as a
command shell, you will probably want the user’s input to be
terminated with a newline, and without ‘-I’ the user will have to
type a character in addition to the newline in order to have the
newline recognized. This leads to dreadful interactive
performance.

If all this seems too confusing, here’s the general rule: if
a human will be typing in input to your scanner, use ‘-I’,
otherwise don’t; if you don’t care about squeezing the
utmost performance from your scanner and you don’t want to
make any assumptions about the input to your scanner, use ‘-I’.

Note: ‘-I’ cannot be used in conjunction with full or fast
tables, i.e., the ‘-f’, ‘-F’, ‘-Cf’, or ‘-CF’ flags.

‘-L’
instructs ‘flex’ not to generate ‘#line’ directives. Without this
option, ‘flex’ peppers the generated scanner with ‘#line’
directives so error messages in the actions will be correctly
located with respect to the original ‘flex’ input file, and not to

flex.info 24 / 35

the fairly meaningless line numbers of ‘lex.yy.c’. (Unfortunately
‘flex’ does not presently generate the necessary directives to
"retarget" the line numbers for those parts of ‘lex.yy.c’ which it
generated. So if there is an error in the generated code, a
meaningless line number is reported.)

‘-T’
makes ‘flex’ run in trace mode. It will generate a lot of messages
to ‘stdout’ concerning the form of the input and the resultant
non-deterministic and deterministic finite automata. This option
is mostly for use in maintaining ‘flex’.

‘-8’
instructs ‘flex’ to generate an 8-bit scanner, i.e., one which can
recognize 8-bit characters. On some sites, ‘flex’ is installed
with this option as the default. On others, the default is 7-bit
characters. To see which is the case, check the verbose (‘-v’)
output for ‘equivalence classes created’. If the denominator of
the number shown is 128, then by default ‘flex’ is generating 7-bit
characters. If it is 256, then the default is 8-bit characters
and the ‘-8’ flag is not required (but may be a good idea to keep
the scanner specification portable). Feeding a 7-bit scanner 8-bit
characters will result in infinite loops, bus errors, or other such
fireworks, so when in doubt, use the flag. Note that if
equivalence classes are used, 8-bit scanners take only slightly
more table space than 7-bit scanners (128 bytes, to be exact); if
equivalence classes are not used, however, then the tables may
grow up to twice their 7-bit size.

‘-C[efmF]’
controls the degree of table compression.

‘-Ce’ directs ‘flex’ to construct equivalence classes, i.e., sets
of characters which have identical lexical properties (for example,
if the only appearance of digits in the ‘flex’ input is in the
character class ‘[0-9]’ then the digits ‘0’, ‘1’, ..., ‘9’ will
all be put in the same equivalence class). Equivalence classes
usually give dramatic reductions in the final table/object file
sizes (typically a factor of 2-5) and are pretty cheap
performance-wise (one array look-up per character scanned).

‘-Cf’ specifies that the full scanner tables should be generated;
‘flex’ will not compress the tables by taking advantages of
similar transition functions for different states.

‘-CF’ specifies that the alternate fast scanner representation
(described above under the ‘-F’ flag) should be used.

‘-Cm’ directs ‘flex’ to construct meta-equivalence classes, which
are sets of equivalence classes (or characters, if equivalence
classes are not being used) that are commonly used together.
Meta-equivalence classes are often a big win when using compressed
tables, but they have a moderate performance impact (one or two
‘if’ tests and one array look-up per character scanned).

A lone ‘-C’ specifies that the scanner tables should be compressed,
but ‘flex’ is not to use either equivalence classes nor

flex.info 25 / 35

meta-equivalence classes.

The options ‘-Cf’ or ‘-CF’ and ‘-Cm’ do not make sense together.
There is no opportunity for meta-equivalence classes if the table
is not compressed. Otherwise the options may be freely mixed.

The default setting is ‘-Cem’, which specifies that ‘flex’ should
generate equivalence classes and meta-equivalence classes. This
setting provides the highest degree of table compression. You can
trade off faster-executing scanners at the cost of larger tables
with the following generally being true:

slowest and smallest
-Cem
-Cm
-Ce
-C
-C{f,F}e
-C{f,F}

fastest and largest

Note that scanners with the smallest tables are usually generated
and compiled the quickest, so during development you will usually
want to use the default, maximal compression.

‘-Cfe’ is often a good compromise between speed and size for
production scanners.

‘-C’ options are not cumulative; whenever the flag is
encountered, the previous ‘-C’ settings are forgotten.

‘-SSKELETON_FILE’
overrides the default skeleton file from which ‘flex’
constructs its scanners. You’ll never need this option unless you
are doing ‘flex’ maintenance or development.

1.19 flex.info/Performance

Performance Considerations

The main design goal of ‘flex’ is that it generate high performance
scanners. It has been optimized for dealing well with large sets of
rules. Aside from the effects of table compression on scanner speed
outlined above, there are a number of options/actions which degrade
performance. These are, from most expensive to least:

‘REJECT’

pattern sets that require backtracking
arbitrary trailing context

‘^’ beginning-of-line operator
‘yymore’

flex.info 26 / 35

with the first three all being quite expensive and the last two being
quite cheap.

‘REJECT’ should be avoided at all costs when performance is
important. It is a particularly expensive option.

Getting rid of backtracking is messy and often may be an enormous
amount of work for a complicated scanner. In principle, one begins by
using the ‘-b’ flag to generate a ‘lex.backtrack’ file. For example,
on the input

%%
foo return TOK_KEYWORD;
foobar return TOK_KEYWORD;

the file looks like:

State #6 is non-accepting -
associated rule line numbers:

2 3
out-transitions: [o]
jam-transitions: EOF [\001-n p-\177]

State #8 is non-accepting -
associated rule line numbers:

3
out-transitions: [a]
jam-transitions: EOF [\001-‘ b-\177]

State #9 is non-accepting -
associated rule line numbers:

3
out-transitions: [r]
jam-transitions: EOF [\001-q s-\177]

Compressed tables always backtrack.

The first few lines tell us that there’s a scanner state in which it
can make a transition on an ‘o’ but not on any other character, and
that in that state the currently scanned text does not match any rule.
The state occurs when trying to match the rules found at lines 2 and 3
in the input file. If the scanner is in that state and then reads
something other than an ‘o’, it will have to backtrack to find a rule
which is matched. With a bit of headscratching one can see that this
must be the state it’s in when it has seen ‘fo’. When this has
happened, if anything other than another ‘o’ is seen, the scanner will
have to back up to simply match the ‘f’ (by the default rule).

The comment regarding State #8 indicates there’s a problem when
‘foob’ has been scanned. Indeed, on any character other than a ‘b’,
the scanner will have to back up to accept ‘foo’. Similarly, the
comment for State #9 concerns when ‘fooba’ has been scanned.

The final comment reminds us that there’s no point going to all the
trouble of removing backtracking from the rules unless we’re using ‘-f’
or ‘-F’, since there’s no performance gain doing so with compressed

flex.info 27 / 35

scanners.

The way to remove the backtracking is to add "error" rules:

%%
foo return TOK_KEYWORD;
foobar return TOK_KEYWORD;

fooba |
foob |
fo {

/* false alarm, not really a keyword */
return TOK_ID;
}

Eliminating backtracking among a list of keywords can also be done
using a "catch-all" rule:

%%
foo return TOK_KEYWORD;
foobar return TOK_KEYWORD;

[a-z]+ return TOK_ID;

This is usually the best solution when appropriate.

Backtracking messages tend to cascade. With a complicated set of
rules it’s not uncommon to get hundreds of messages. If one can
decipher them, though, it often only takes a dozen or so rules to
eliminate the backtracking (though it’s easy to make a mistake and have
an error rule accidentally match a valid token. A possible future
‘flex’ feature will be to automatically add rules to eliminate
backtracking).

Variable trailing context (where both the leading and trailing parts
do not have a fixed length) entails almost the same performance loss as
‘REJECT’ (i.e., substantial). So when possible a rule like:

%%
mouse|rat/(cat|dog) run();

is better written:

%%
mouse/cat|dog run();
rat/cat|dog run();

or as

%%
mouse|rat/cat run();
mouse|rat/dog run();

Note that here the special ‘|’ action does not provide any savings,
and can even make things worse (see Deficiencies and Bugs).

Another area where the user can increase a scanner’s performance (and

flex.info 28 / 35

one that’s easier to implement) arises from the fact that the longer the
tokens matched, the faster the scanner will run. This is because with
long tokens the processing of most input characters takes place in the
(short) inner scanning loop, and does not often have to go through the
additional work of setting up the scanning environment (e.g., ‘yytext’)
for the action. Recall the scanner for C comments:

%x comment
%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[^*\n]*
<comment>"*"+[^*/\n]*
<comment>\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

This could be sped up by writing it as:

%x comment
%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[^*\n]*
<comment>[^*\n]*\n ++line_num;
<comment>"*"+[^*/\n]*
<comment>"*"+[^*/\n]*\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

Now instead of each newline requiring the processing of another
action, recognizing the newlines is "distributed" over the other rules
to keep the matched text as long as possible. Note that adding rules
does not slow down the scanner! The speed of the scanner is
independent of the number of rules or (modulo the considerations given
at the beginning of this section) how complicated the rules are with
regard to operators such as ‘*’ and ‘|’.

A final example in speeding up a scanner: suppose you want to scan
through a file containing identifiers and keywords, one per line and
with no other extraneous characters, and recognize all the keywords. A
natural first approach is:

%%
asm |
auto |
break |
... etc ...
volatile |
while /* it’s a keyword */

.|\n /* it’s not a keyword */

To eliminate the back-tracking, introduce a catch-all rule:

flex.info 29 / 35

%%
asm |
auto |
break |
... etc ...
volatile |
while /* it’s a keyword */

[a-z]+ |
.|\n /* it’s not a keyword */

Now, if it’s guaranteed that there’s exactly one word per line, then
we can reduce the total number of matches by a half by merging in the
recognition of newlines with that of the other tokens:

%%
asm\n |
auto\n |
break\n |
... etc ...
volatile\n |
while\n /* it’s a keyword */

[a-z]+\n |
.|\n /* it’s not a keyword */

One has to be careful here, as we have now reintroduced backtracking
into the scanner. In particular, while we know that there will never be
any characters in the input stream other than letters or newlines,
‘flex’ can’t figure this out, and it will plan for possibly needing
backtracking when it has scanned a token like ‘auto’ and then the next
character is something other than a newline or a letter. Previously it
would then just match the ‘auto’ rule and be done, but now it has no
‘auto’ rule, only a ‘auto\n’ rule. To eliminate the possibility of
backtracking, we could either duplicate all rules but without final
newlines, or, since we never expect to encounter such an input and
therefore don’t how it’s classified, we can introduce one more
catch-all rule, this one which doesn’t include a newline:

%%
asm\n |
auto\n |
break\n |
... etc ...
volatile\n |
while\n /* it’s a keyword */
[a-z]+\n |
[a-z]+ |
.|\n /* it’s not a keyword */

Compiled with ‘-Cf’, this is about as fast as one can get a
‘flex’ scanner to go for this particular problem.

A final note: ‘flex’ is slow when matching ‘NUL’’s, particularly
when a token contains multiple ‘NUL’’s. It’s best to write rules
which match short amounts of text if it’s anticipated that the text
will often include ‘NUL’’s.

flex.info 30 / 35

1.20 flex.info/Incompatibilities

Incompatibilities with ‘lex’ and POSIX

‘flex’ is a rewrite of the Unix tool ‘lex’ (the two implementations
do not share any code, though), with some extensions and
incompatibilities, both of which are of concern to those who wish to
write scanners acceptable to either implementation. At present, the
POSIX ‘lex’ draft is very close to the original ‘lex’ implementation,
so some of these incompatibilities are also in conflict with the POSIX
draft. But the intent is that except as noted below, ‘flex’ as it
presently stands will ultimately be POSIX conformant (i.e., that those
areas of conflict with the POSIX draft will be resolved in ‘flex’’s
favor). Please bear in mind that all the comments which follow are
with regard to the POSIX draft standard of Summer 1989, and not the
final document (or subsequent drafts); they are included so ‘flex’
users can be aware of the standardization issues and those areas where
‘flex’ may in the near future undergo changes incompatible with its
current definition.

‘flex’ is fully compatible with ‘lex’ with the following exceptions:

* The undocumented ‘lex’ scanner internal variable ‘yylineno’ is not
supported. It is difficult to support this option efficiently,
since it requires examining every character scanned and
reexamining the characters when the scanner backs up. Things get
more complicated when the end of buffer or file is reached or a
‘NUL’ is scanned (since the scan must then be restarted with the
proper line number count), or the user uses the ‘yyless’, ‘unput’,
or ‘REJECT’ actions, or the multiple input buffer functions.

The fix is to add rules which, upon seeing a newline, increment
‘yylineno’. This is usually an easy process, though it can be a
drag if some of the patterns can match multiple newlines along with
other characters.

‘yylineno’ is not part of the POSIX draft.

* The ‘input’ routine is not redefinable, though it may be called to
read characters following whatever has been matched by a rule. If
‘input’ encounters an end-of-file the normal ‘yywrap’ processing
is done. A "real" end-of-file is returned by ‘input’ as ‘EOF’.

Input is instead controlled by redefining the ‘YY_INPUT’ macro.

The ‘flex’ restriction that ‘input’ cannot be redefined is in
accordance with the POSIX draft, but ‘YY_INPUT’ has not yet been
accepted into the draft (and probably won’t; it looks like the
draft will simply not specify any way of controlling the scanner’s
input other than by making an initial assignment to ‘yyin’).

* ‘flex’ scanners do not use ‘stdio’ for input. Because of this,

flex.info 31 / 35

when writing an interactive scanner one must explicitly call
‘fflush’ on the stream associated with the terminal after writing
out a prompt. With ‘lex’ such writes are automatically flushed
since ‘lex’ scanners use ‘getchar’ for their input. Also, when
writing interactive scanners with ‘flex’, the ‘-I’ flag must be
used.

* ‘flex’ scanners are not as reentrant as ‘lex’ scanners. In
particular, if you have an interactive scanner and an interrupt
handler which long-jumps out of the scanner, and the scanner is
subsequently called again, you may get the following message:

fatal flex scanner internal error--end of buffer missed

To reenter the scanner, first use

yyrestart(yyin);

* ‘output’ is not supported. Output from the ‘ECHO’ macro is done
to the file-pointer ‘yyout’ (default ‘stdout’).

The POSIX draft mentions that an ‘output’ routine exists but
currently gives no details as to what it does.

* ‘lex’ does not support exclusive start conditions (‘%x’), though
they are in the current POSIX draft.

* When definitions are expanded, ‘flex’ encloses them in
parentheses. With ‘lex’, the following:

NAME [A-Z][A-Z0-9]*
%%
foo{NAME}? printf("Found it\n");
%%

will not match the string ‘foo’ because, when the macro is
expanded, the rule is equivalent to ‘foo[A-Z][A-Z0-9]*?’ and the
precedence is such that the ‘?’ is associated with ‘[A-Z0-9]*’.
With ‘flex’, the rule will be expanded to ‘foo([A-Z][A-Z0-9]*)?’
and so the string ‘foo’ will match. Note that because of this,
the ‘^’, ‘$’, ‘<S>’, ‘/’, and ‘<<EOF>>’ operators cannot be used
in a ‘flex’ definition.

The POSIX draft interpretation is the same as in ‘flex’.

* To specify a character class which matches anything but a left
bracket (‘]’), in ‘lex’ one can use ‘[^]]’ but with ‘flex’ one
must use ‘[^\]]’. The latter works with ‘lex’, too.

* The lex ‘%r’ (generate a Ratfor scanner) option is not
supported. It is not part of the POSIX draft.

* If you are providing your own ‘yywrap’ routine, you must include a
‘#undef yywrap’ in the definitions section (section 1). Note that
the ‘#undef’ will have to be enclosed in ‘%{}’.

The POSIX draft specifies that ‘yywrap’ is a function, and this is

flex.info 32 / 35

very unlikely to change; so ‘flex’ users are warned that ‘yywrap’
is likely to be changed to a function in the near future.

* After a call to ‘unput’, ‘yytext’ and ‘yyleng’ are undefined until
the next token is matched. This is not the case with ‘lex’ or the
present POSIX draft.

* The precedence of the ‘{}’ (numeric range) operator is different.
‘lex’ interprets ‘abc{1,3}’ as "match one, two, or three
occurrences of ‘abc’," whereas ‘flex’ interprets it as "match ‘ab’
followed by one, two, or three occurrences of ‘c’." The latter is
in agreement with the current POSIX draft.

* The precedence of the ‘^’ operator is different. ‘lex’
interprets ‘^foo|bar’ as "match either ‘foo’ at the beginning
of a line, or ‘bar’ anywhere", whereas ‘flex’ interprets it as
"match either ‘foo’ or ‘bar’ if they come at the beginning of a
line". The latter is in agreement with the current POSIX
draft.

* To refer to ‘yytext’ outside of the scanner source file, the
correct definition with ‘flex’ is ‘extern char *yytext’ rather
than ‘extern char yytext[]’. This is contrary to the current POSIX
draft but a point on which ‘flex’ will not be changing, as the
array representation entails a serious performance penalty. It is
hoped that the POSIX draft will be amended to support the ‘flex’
variety of declaration (as this is a fairly painless change to
require of ‘lex’ users).

* ‘yyin’ is initialized by ‘lex’ to be ‘stdin’; ‘flex’, on the other
hand, initializes ‘yyin’ to ‘NULL’ and then assigns it to stdin
the first time the scanner is called, providing ‘yyin’ has not
already been assigned to a non-‘NULL’ value. The difference is
subtle, but the net effect is that with ‘flex’ scanners, ‘yyin’
does not have a valid value until the scanner has been called.

* The special table-size declarations such as ‘%a’ supported by
‘lex’ are not required by ‘flex’ scanners; ‘flex’ ignores them.

* The name ‘FLEX_SCANNER’ is ‘#define’’d so scanners may be
written for use with either ‘flex’ or ‘lex’.

The following ‘flex’ features are not included in lex or the POSIX
draft standard:

‘yyterminate()’
‘<<EOF>>’
‘YY_DECL’
‘#line’ directives
‘%{}’ around actions
‘yyrestart()’
comments beginning with ‘#’ (deprecated)
multiple actions on a line

This last feature refers to the fact that with ‘flex’ you can put
multiple actions on the same line, separated with semicolons, while with
‘lex’, the following

flex.info 33 / 35

foo handle_foo(); ++num_foos_seen;

is (rather surprisingly) truncated to

foo handle_foo();

‘flex’ does not truncate the action. Actions that are not enclosed
in braces are simply terminated at the end of the line.

1.21 flex.info/Diagnostics

Diagnostic Messages

‘reject_used_but_not_detected undefined’
‘yymore_used_but_not_detected undefined’

These errors can occur at compile time. They indicate that the
scanner uses ‘REJECT’ or ‘yymore’ but that ‘flex’ failed to notice
the fact, meaning that ‘flex’ scanned the first two sections
looking for occurrences of these actions and failed to find any,
but somehow you snuck some in (via a ‘#include’ file, for example).
Make an explicit reference to the action in your ‘flex’ input file.
(Note that previously ‘flex’ supported a ‘%used’/‘%unused’
mechanism for dealing with this problem; this feature is still
supported but now deprecated, and will go away soon unless the
author hears from people who can argue compellingly that they need
it.)

‘flex scanner jammed’
A scanner compiled with ‘-s’ has encountered an input string which
wasn’t matched by any of its rules.

‘flex input buffer overflowed’
A scanner rule matched a string long enough to overflow the
scanner’s internal input buffer (16K bytes by default--controlled
by ‘YY_BUF_SIZE’ in ‘flex.skel’. Note that to redefine this
macro, you must first ‘#undefine’ it).

‘scanner requires -8 flag’
Your scanner specification includes recognizing 8-bit characters
and you did not specify the ‘-8’ flag (and your site has not
installed ‘flex’ with ‘-8’ as the default).

‘fatal flex scanner internal error--end of buffer missed’
This can occur in an scanner which is reentered after a long-jump
has jumped out (or over) the scanner’s activation frame. Before
reentering the scanner, use:

yyrestart(yyin);

‘too many %t classes!’
You managed to put every single character into its own ‘%t’ class.
‘flex’ requires that at least one of the classes share characters.

flex.info 34 / 35

1.22 flex.info/Bugs

Deficiencies and Bugs

Some trailing context patterns cannot be properly matched and
generate warning messages (‘Dangerous trailing context’). These are
patterns where the ending of the first part of the rule matches the
beginning of the second part, such as ‘zx*/xy*’, where the ‘x*’ matches
the ‘x’ at the beginning of the trailing context. (Note that the POSIX
draft states that the text matched by such patterns is undefined.)

For some trailing context rules, parts which are actually
fixed-length are not recognized as such, leading to the abovementioned
performance loss. In particular, parts using ‘|’ or {n} (such as
‘foo{3}’) are always considered variable-length.

Combining trailing context with the special ‘|’ action can result in
fixed trailing context being turned into the more expensive variable
trailing context. For example, this happens in the following example:

%%
abc |
xyz/def

Use of ‘unput’ invalidates ‘yytext’ and ‘yyleng’.

Use of ‘unput’ to push back more text than was matched can result
in the pushed-back text matching a beginning-of-line (‘^’) rule even
though it didn’t come at the beginning of the line (though this is
rare!).

Pattern-matching of ‘NUL’’s is substantially slower than matching
other characters.

‘flex’ does not generate correct ‘#line’ directives for code
internal to the scanner; thus, bugs in ‘flex.skel’ yield bogus line
numbers.

Due to both buffering of input and read-ahead, you cannot intermix
calls to ‘stdio.h’ routines, such as, for example, ‘getchar’, with
‘flex’ rules and expect it to work. Call ‘input’ instead.

The total table entries listed by the ‘-v’ flag excludes the number
of table entries needed to determine what rule has been matched. The
number of entries is equal to the number of DFA states if the scanner
does not use ‘REJECT’, and somewhat greater than the number of states
if it does.

‘REJECT’ cannot be used with the ‘-f’ or ‘-F’ options.

Some of the macros, such as ‘yywrap’, may in the future become
functions which live in the ‘-lfl’ library. This will doubtless break

flex.info 35 / 35

a lot of code, but may be required for POSIX compliance.

The ‘flex’ internal algorithms need documentation.

1.23 flex.info/Acknowledgements

Contributors to ‘flex’

The author of ‘flex’ is Vern Paxson, with the help of many ideas and
much inspiration from Van Jacobson. Original version by Jef Poskanzer.
The fast table representation is a partial implementation of a design
done by Van Jacobson. The implementation was done by Kevin Gong and
Vern Paxson.

Thanks to the many ‘flex’ beta-testers, feedbackers, and
contributors, especially Casey Leedom, ‘benson@odi.com’, Keith Bostic,
Frederic Brehm, Nick Christopher, Jason Coughlin, Scott David Daniels,
Leo Eskin, Chris Faylor, Eric Goldman, Eric Hughes, Jeffrey R. Jones,
Kevin B. Kenny, Ronald Lamprecht, Greg Lee, Craig Leres, Mohamed el
Lozy, Jim Meyering, Marc Nozell, Esmond Pitt, Jef Poskanzer, Jim
Roskind, Dave Tallman, Frank Whaley, Ken Yap, and those whose names have
slipped my marginal mail-archiving skills but whose contributions are
appreciated all the same.

Thanks to Keith Bostic, John Gilmore, Craig Leres, Bob Mulcahy, Rich
Salz, and Richard Stallman for help with various distribution headaches.

Thanks to Esmond Pitt and Earle Horton for 8-bit character support;
to Benson Margulies and Fred Burke for C++ support; to Ove Ewerlid for
the basics of support for ‘NUL’’s; and to Eric Hughes for the basics of
support for multiple buffers.

Work is being done on extending ‘flex’ to generate scanners in which
the state machine is directly represented in C code rather than tables.
These scanners may well be substantially faster than those generated
using ‘-f’ or ‘-F’. If you are working in this area and are interested
in comparing notes and seeing whether redundant work can be avoided,
contact Ove Ewerlid (‘ewerlid@mizar.DoCS.UU.SE’).

This work was primarily done when I was at the Real Time Systems
Group at the Lawrence Berkeley Laboratory in Berkeley, CA. Many thanks
to all there for the support I received.

Send comments to:

Vern Paxson
Computer Systems Engineering
Bldg. 46A, Room 1123
Lawrence Berkeley Laboratory
Berkeley, CA 94720

vern@ee.lbl.gov

	flex.info
	flex.info
	flex.info/Introduction
	flex.info/Text-Substitution
	flex.info/Counter
	flex.info/Toy
	flex.info/Files
	flex.info/Input Format
	flex.info/Patterns
	flex.info/Matching
	flex.info/Actions
	flex.info/Scanner
	flex.info/Start
	flex.info/Multiple Input
	flex.info/EOF
	flex.info/Misc
	flex.info/Parsers
	flex.info/Translation
	flex.info/Invoking
	flex.info/Performance
	flex.info/Incompatibilities
	flex.info/Diagnostics
	flex.info/Bugs
	flex.info/Acknowledgements

