
Supporting large direct-access block devices using

64-bit extensions to the trackdisk.device command set

Ralph Babel <rbabel@babylon.pfm-mainz.de>
�

15 April 1996

In an effort to overcome the 4-GB limit imposed by the current trackdisk.device interface (which all drivers for

direct-access block devices must support in order to be compatible with the standard Amiga disk filesystem), the

following set of 64-bit commands has been defined:

� new commands:

command name decimal value

TD READ64 24

TD WRITE64 25

TD SEEK64 26

TD FORMAT64 27

TD FORMAT64 is provided mostly for reasons of symmetry, as track-oriented formatting is required by

very few devices only (e.g. trackdisk.device), and writing a full “track” of data using CMD WRITE or

TD WRITE64 should not really depend on the previous contents of that track. TD FORMAT64 is therefore

expected to be identical to TD WRITE64 in most implementations.

� data offset:

Unlike CMD READ, CMD WRITE, TD SEEK, and TD FORMAT, all of which deal with a 32-bit-wide byte

offset passed via io Offset, the new commands listed above accept a 64-bit-wide byte offset to address the

medium. The lower 32 bits of that byte offset are stored in io Offset; the upper 32 bits are stored in the

io Actual field, for which the alias io HighOffset is introduced.

According to the 1.3 edition of the RKRM Libraries & Devices, page 291, a driver may overwrite parameter

fields of an I/O request (other than io Command) in the course of processing a command, so all fields need

to be reinitialized upon every command submitted to the driver. io HighOffset thus does not differ from

io Offset in that regard.

This way, the io HighOffset field will not overlap with any of the extra IOExtTD fields required for the

ETD-style trackdisk.device commands, and applications can continue to use the original IOStdReq-sized

structure. Device-driver programmers are free to implement the TDF EXTCOM variants of the new 64-bit

commands.

Note: it is perfectly legal for a 64-bit request to cross a 4-GB “boundary” (i.e. io Offset+ io Length > 232)

or for it to be in 32-bit space completely (i.e. io HighOffset = 0 ^ io Offset+ io Length � 232).

� transfer length:

io Length and io Actual remain 32-bit quantities, and the maximum transfer length is thus still “limited” to

232
� 1 bytes. With the Amiga’s 32-bit address space, this is not a restriction.

�This proposal is supported by Dan Babcock <danb@tiac.net>, Randell Jesup <jesup@scala.scala.com>, Oliver

Kastl <100447.3361@compuserve.com>, Bernhard Möllemann <zza@mhystic.hall.sub.org>, and Ralph Schmidt

<laire@popmail.owl.de>. They all helped tremendously to improve the original draft.

1



� old commands:

It is considered an error to use the original 32-bit commands CMD READ, CMD WRITE, and TD FORMAT

to access data outside a unit’s lower 4-GB data area by “crossing” the upper border of the 32-bit space,

i.e. io Offset plus io Length must be less than or equal to 232. Drivers are free to reject such commands,

to “wrap around” to the beginning (offset 0) of the unit’s data area, or to handle them as 64-bit commands

with io HighOffset implicitly set to zero.

It is therefore recommended that filesystem-level applications use the new 64-bit commands consistently

for all accesses to the underlying medium if part of a partition is located outside the data area addressable

by the original 32-bit command set. This avoids checks at run-time whether a request extends beyond the

32-bit space.

� compatibility issues:

Although Commodore-Amiga extended the trackdisk.device command set twice before (OS 1.0: original

command set up to TD PROTSTATUS; OS 1.2: up to TD REMCHANGEINT; OS 2.0: up to TD EJECT),

it is expected that some drivers do not conform to the standard and provide private commands starting

at TD LASTCOMM or simply crash the system upon receipt of an “out-of-range” command (cf. RKRM

Libraries, 3rd edition, page 924).

Therefore, the new 64-bit commands should be sent to a driver if and only if the associated partition they refer

to extends beyond the first 4 GB of a unit. This way, a potentially incompatible driver will never receive any

of the new commands, and users may safely replace older 32-bit filesystems by 64-bit-compatible updates

thereof in existing configurations. Once a filesystem-level application has determined that accessing a

partition requires the use of 64-bit commands,1 it may optionally check whether the underlying driver

actually supports them by issuing a TD READ64 request with io Offset, io HighOffset, and io Length all set

to zero; if the underlying driver returns IOERR NOCMD, the filesystem-level application should report an

error (e.g. fail the start-up packet in case of a filesystem). For reasons of efficiency, this check should be

performed only once upon start-up.

In deference to older drivers that interpret the new command values differently, 64-bit partitions should not

be mounted (be that via a MountList or an RDB entry) on drivers that do not support devices larger than

4 GB. This is no different from the current situation, where most filesystems and drivers will simply “wrap

around” and overwrite data in the first 4-GB chunk if a partition extending beyond the first 4 GB of a unit

is mounted and written to. This proposal does not intend to address this issue, but neither does it prevent

future standards that may allow the caller to identify type and supported features of a device driver.

� alternatives:

If a driver does not implement the 64-bit commands defined by this proposal, HD SCSICMD may be used

instead to address data above the lower 4-GB range.

� future extensions:

Implementors of drivers and filesystem-level applications are free to agree on methods to determine whether

a driver is at all trackdisk.device-compatible and whether it actually supports the 64-bit command set.

Besides drivers and filesystems, software that needs to be updated to support the extended command set

includes Format, DiskCopy, disk-salvage programs, disk editors, and disk reorganizers.

Applications above the filesystem layer, in particular those that make use of the fields id NumBlocks,

id NumBlocksUsed, and id BytesPerBlock, may need to be enhanced to be prepared for partitions larger than

4 GB (this includes the CLI command Info).

Copyright c

 1996 Ralph Babel — all rights reserved.

1
(de HighCyl + 1)� de Surfaces � de BlocksPerTrack � de SizeBlock � 4 > 232, i.e. the partition does not reside completely in 32-bit

space.

2


