
lw

lw ii

COLLABORATORS

TITLE :

lw

ACTION NAME DATE SIGNATURE

WRITTEN BY July 29, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

lw iii

Contents

1 lw 1

1.1 S0 . 1

1.2 s1 . 4

1.3 s1.1 . 5

1.4 s1.2 . 5

1.5 s2 . 6

1.6 s2.1 . 6

1.7 s2.2 . 6

1.8 s2.2.1 . 7

1.9 s2.2.2 . 8

1.10 s3 . 9

1.11 s3.1 . 9

1.12 s3.2 . 9

1.13 s3.3 . 9

1.14 s4 . 10

1.15 s4.1 . 10

1.16 s4.2 . 12

1.17 s4.2.1 . 13

1.18 s4.2.2 . 14

1.19 s5 . 14

1.20 s5.1 . 14

1.21 s5.1.1 . 15

1.22 s5.1.2 . 15

1.23 s5.1.3 . 16

1.24 s5.1.4 . 16

1.25 s5.1.5 . 17

1.26 s5.1.6 . 18

1.27 s5.1.7 . 19

1.28 s5.1.8 . 20

1.29 s5.1.9 . 20

lw iv

1.30 s5.1.10 . 21

1.31 s5.2 . 22

1.32 s5.2.1 . 22

1.33 s5.2.2 . 23

1.34 s5.2.3 . 26

1.35 s6 . 27

1.36 s6.1 . 27

1.37 s6.2 . 28

1.38 s6.2.1 . 29

1.39 s6.2.2 . 30

1.40 s6.3 . 31

1.41 s6.4 . 31

1.42 s6.5 . 32

1.43 s6.6 . 32

1.44 s6.7 . 33

1.45 s7 . 34

1.46 s7.1 . 34

1.47 s7.2 . 35

1.48 s7.3 . 36

1.49 s7.4 . 36

1.50 s7.5 . 36

1.51 s7.5.1 . 37

1.52 s7.5.2 . 38

1.53 s7.5.3 . 38

1.54 s8 . 39

1.55 s8.1 . 39

1.56 s8.2 . 39

1.57 s8.2.1 . 40

1.58 s8.2.2 . 41

1.59 s8.2.3 . 42

1.60 s8.3 . 42

1.61 s8.3.1 . 43

1.62 s8.3.2 . 43

1.63 s8.3.3 . 45

1.64 s8.3.4 . 45

1.65 s8.3.5 . 46

1.66 s8.4 . 47

1.67 s8.4.1 . 47

1.68 s8.4.2 . 48

lw v

1.69 s8.5 . 48

1.70 s8.5.1 . 48

1.71 s8.5.2 . 49

1.72 s8.6 . 49

1.73 s8.6.1 . 50

1.74 s8.6.2 . 51

1.75 s8.7 . 51

1.76 s8.8 . 52

1.77 s8.9 . 53

1.78 s8.10 . 54

1.79 s9 . 54

1.80 s9.1 . 54

1.81 s9.2 . 56

1.82 s9.3 . 56

1.83 s9.4 . 57

1.84 s9.5 . 58

1.85 s9.6 . 58

1.86 s9.7 . 60

1.87 s9.8 . 62

1.88 s9.9 . 62

1.89 s10 . 63

lw 1 / 64

Chapter 1

lw

1.1 S0

LightWave 3D Animation and Modeling Plug-ins -- Stuart Ferguson
6/28/95

1 Introduction
1.1 Pre-Release Compatibility
1.2 Final 4.0 Compatibility

2 Common Server Classes
2.1 Utility Servers
2.2 Object Import

(1) Common Server Classes
2.2.1 Sending Mesh Data

(2) Common Server Classes
2.2.2 Result Codes

(3) Common Server Classes

3 Common Globals
3.1 Utility Globals
3.2 File Requester

(4) Common Globals
3.3 User Messages

(5) Common Globals

4 Modeling Datatypes
4.1 Dynamic Types

(6) Modeling Base Types
(7) Modeling Types
(8) Modeling Types
(9) Modeling Types
(10) Modeling Types
(11) Modeling Types
(12) Modeling Types
(13) Modeling Types
(14) Modeling Types

4.2 Element Operation Filters
4.2.1 Layer Filters

(15) Modeling Base Types
4.2.2 Element Filters

lw 2 / 64

(16) Modeling Base Types

5 Modeling Server Classes
5.1 Mesh Editing

(17) Modeling Base Types
5.1.1 Local Data

(18) Modeling Servers
5.1.2 Getting Element Information

(19) Modeling Types
5.1.3 PointInfo

(20) Modeling Base Types
5.1.4 PolygonInfo

(21) Modeling Base Types
(22) Modeling Types

5.1.5 Main Data Struct
(23) Modeling Types
(24) Modeling Types

5.1.6 Error Codes
(25) Modeling Base Types

5.1.7 Query Functions
(26) Mesh Edit Count functions
(27) Modeling Types
(28) Mesh Edit Query functions

5.1.8 Element Traversal
(29) Modeling Base Types
(30) Mesh Edit Enumeration functions

5.1.9 Creating New Elements
(31) Modeling Base Types
(32) Mesh Edit Create functions

5.1.10 Modifying Existing Elements
(33) Mesh Edit Modify functions

5.2 Command Sequencing
(34) Modeling Types

5.2.1 Command Activation
(35) Modeling Servers

5.2.2 Commands
5.2.3 External Activation on Windows

(36) Trigger code

6 Modeling Globals
6.1 Dynamic Conversion

(37) Modeling Globals
(38) Modeling Types
(39) Modeling Types

6.2 Dynamic Requester
(40) Modeling Globals

6.2.1 Requester Usage
(41) Modeling Types

6.2.2 Control Descriptors
(42) Modeling Types
(43) Modeling Types
(44) Modeling Types
(45) Modeling Types

6.3 Dynamic Monitor
(46) Modeling Globals

6.4 Custom Commands
(47) Modeling Globals

lw 3 / 64

6.5 Modeler Internal State
(48) Modeling Globals

6.6 Surfaces List
(49) Modeling Globals

6.7 Outline Font List
(50) Modeling Globals

7 Animation Datatypes
7.1 Coordinate and Range Scales

(51) Animation Types
7.2 Items and Properties

(52) Animation Types
(53) Animation Types
(54) Animation Types

7.3 Time
(55) Animation Types

7.4 Errors
(56) Animation Types

7.5 Instances and Handlers
(57) Animation Types

7.5.1 Instance Persistence
(58) Animation Types
(59) Animation Types

7.5.2 Handler Functions
(60) Animation Types

7.5.3 Interface Server

8 Animation Server Classes
8.1 Utilities
8.2 Image Post Processing

8.2.1 Input Buffers
(61) Animation Servers

8.2.2 Filter Access
(62) Animation Servers

8.2.3 Handler
(63) Animation Servers

8.3 Procedural Texture
8.3.1 Shader Access

(64) Animation Servers
8.3.2 Geometric Parameters

(65) Read-only shader parameters
8.3.3 Modifiable Parameters

(66) Modifiable shader parameters
8.3.4 Shading Functions

(67) Shader functions
8.3.5 Instance

(68) Animation Servers
(69) Animation Servers

8.4 Procedural Displacement Map
8.4.1 Displacement Access

(70) Animation Servers
8.4.2 Handler

(71) Animation Servers
8.5 Procedural Item Animation

8.5.1 Item Motion Access
(72) Animation Servers

8.5.2 Handler

lw 4 / 64

(73) Animation Servers
8.6 Procedural Object Replacement

8.6.1 Object Replacement Access
(74) Animation Servers
(75) Animation Servers

8.6.2 Handler
(76) Animation Servers

8.7 Frame Buffers
(77) Animation Servers

8.8 Animation Output
(78) Animation Servers

8.9 Scene Conversion
(79) Animation Servers

8.10 General Function

9 Animation Globals
9.1 Item Information

(80) Animation Types
(81) Animation Globals

9.2 Object Information
(82) Animation Types
(83) Animation Globals

9.3 Bone Information
(84) Animation Types
(85) Animation Globals

9.4 Light Information
(86) Animation Types
(87) Animation Types
(88) Animation Globals

9.5 Camera Information
(89) Animation Globals

9.6 Scene Information
(90) Animation Types
(91) Animation Globals
(92) Animation Globals

9.7 Image List Information
(93) Animation Types
(94) Animation Globals

9.8 Compositing Information
(95) Animation Globals

9.9 Global Rendering Memory Pool
(96) Animation Types
(97) Animation Globals

10 Files
(98) Common LightWave Header
(99) LightWave Modeler Plug-in Header
(100) LightWave Rendering and Animation Plug-in Header

1.2 s1

This document describes the plug-in interfaces defined for the
LightWave 3D animation and modeling programs. The two programs which
make up the LightWave 3D suite each have different plug-in interfaces
to allow access to their internal state and functions, as well as some

lw 5 / 64

common interfaces which are shared between the two. These common
interfaces are the subject of the first portion of this document.
After the common interfaces, the plug-in interfaces specific to
modeling and animation are described.

The reader should be familiar with the basic concepts of the LightWave
plug-in design, such as server classes, local data, and global data.
These are described in the document entitled "LightWave Plug-in
Architecture," and should be considered a prerequsite to this
document. In addition, some of the common server classes are defined
in other documents which will be referenced.

The LightWave animation program will be called ’Layout’ and the
modeling program will be called ’Modeler’ throughout this document.

1.1 Pre-Release Compatibility
1.2 Final 4.0 Compatibility

1.3 s1.1

LightWave 4.0 was released commercially in "pre-release" form in April
95. The pre-release Modeler fully supported the plug-in interface as
it was defined at that time. The pre-release Layout only supported a
small fraction of the interface defined for it:

The ImageFilterHandler class was enabled, but with no
instance saving or loading and RGBA buffers only.

The ShaderHandler class was enabled, but with no instance
saving or loading and no rayTrace or illuminate
functions.

The SceneInfo global was fully available.

The ImageList global was available but without load or
spot functions.

Since then development has continued both on the programs and on the
plug-in interface. While most of the changes are backward compatible
with the pre-release, a few are not. If you are using the
pre-release, you will have to define the LW_PRERELEASE symbol to
remove anything from this header that is incompatible with the
pre-release versions of Layout and Modeler.

1.4 s1.2

This SDK goes with the LightWave 4.0 release. Modeler 4.0 implements
all the features of the interface described in this document. While
the interface for Layout 4.0 is described by this document, it varies
slightly from the design given in beta versions of the specification.

The item paramters W_RIGHT, W_UP and W_FORWARD have been

lw 6 / 64

removed. These can be calculated by inverting the matrix
given by the values for RIGHT, UP and FORWARD.

The global Envelope Handler has been removed.

The ObjReplacementAccess field curType is always set to
OBJREP_NONE and the fields curFrame, curTime and
curFilename are not set.

The Item Motion callback ’getParam’ only returns values
for the directly keyframable values POSITION, ROTATION
and SCALING. Other parameter values may be read using
the global item info callbacks.

1.5 s2

These are the common server classes defined for both programs in the
LightWave 3D suite. There are interfaces for these server classes
present in Layout and Modeler and any plug-in of one of these classes
may be shared by both programs.

2.1 Utility Servers
2.2 Object Import

1.6 s2.1

The "FileRequester" and "ImageLoader" utility server classes are used
by both LightWave and Modeler. The interfaces for these server
classes are defined in the "File Requester Plug-ins" and "LightWave
Images" documents.

1.7 s2.2

When Layout or Modeler encounters a foreign object file which it
cannot parse, it will call an "ObjectLoader" class server to import
it. All the loaders defined for the host will be activated in
sequence, and the first one to recognize the file will load it. The
order in which loaders are called is not defined, although it may be
alphabetical by server name.

At activate, an ObjectImport structure is passed to a plug-in object
loader as its local data, and the loader should attempt to parse the
input file given by the filename field. If it cannot open or
recognize the file the loader should set the ‘result’ field to the
appropriate code and return.

If it recognizes the file type it should send the mesh and surface
data to the host by calling the callbacks. The ‘data’ field is an
opaque pointer to some internal state for the host and should be the
first argument to every callback. The ‘monitor’ field will contain a

lw 7 / 64

pointer to a monitor which can be used to track the progress of
loading. The monitor should not be used unless the object format is
recognized.

(1) Common Server Classes

typedef struct st_ObjectImport {
int result;
const char *filename;
Monitor *monitor;
char *failedBuf;
int failedLen;

void *data;
void (*begin) (void *, void *);
void (*done) (void *);
void (*numPoints) (void *, int total);
void (*points) (void *, int numPts,

const float *xyz);
int (*surfIndex) (void *, const char *name,

int *firstTime);
void (*polygon) (void *, int numPts, int surf,

int flags,
const unsigned short *);

void (*surfData) (void *, const char *name,
int size, void *data);

} ObjectImport;
. . .

2.2.1 Sending Mesh Data
2.2.2 Result Codes

1.8 s2.2.1

Sending mesh data to the host involves calling the functions provided
in the ObjectImport structure in a semi-sequential order. The basics
are to start the data transfer, send the points, define surface names,
send the polygons, assign surface parameters to names, and complete
the transfer.

Begin Callback ‘begin’ is called to mark the start of new mesh
data. The second argument is for special information and
should normally be null. (It might be possible to call
this more than once, although ‘done’ would have to be
called before calling ‘begin’ a second time.)

Points Callback ‘numPoints’ is called with the total number of
points. Then ‘points’ is called with 1 or more point
coordinates until the total number of points is reached.
Points are numbered from zero in the order added, and
that implicit index is used to create polygons. All
points must be added before any polygons may be created.

Surfaces The callback ‘surfIndex’ is called with a surface name to
get a surface ID number for that surface. This ID number

lw 8 / 64

is used to create polygons. The function may optionally
return a boolean flag to indicate if this is the first
time this surface name has been given an ID.

Polygons For each polygon, the ‘polygon’ function is called with a
list of point indices for the polygon, the number of
points, mode flags and a surface index. The mode flags
word is a collection of bits. If the CURVE bit is set,
this is a curve rather than a face. If the DETAIL bit is
set, then this polygon is a detail of the last top-level
polygon. If the STARTCC or ENDCC bits are set, then this
curve has start and/or end points which are continuity
control points.

(2) Common Server Classes
. . .
#define OBJPOLF_FACE 0
#define OBJPOLF_CURVE (1<<0)
#define OBJPOLF_DETAIL (1<<1)
#define OBJPOLF_STARTCC (1<<2)
#define OBJPOLF_ENDCC (1<<3)
. . .

Surface Data
A block of raw surface parameters may be assigned to a
name at any time by calling the ‘surfData’ call with the
surface name and byte block.

Done Callback ‘done’ is called when data transfer is complete.

If a failure occurs partway through loading a file, the loader can set
the result field and return without having to do any other cleanup.

1.9 s2.2.2

The loader must set the ‘result’ field to one of these following
values before it returns. OK indicates successful parsing of the
object file. BADFILE indicates that the loader could not open the
file. NOREC indicates that the loader could not recognize the format,
and ABORTED indicates the that the user manually aborted the load.
Any other failure is indicated by the generic FAILED value. In this
case, the loader may also place a human-readable error message into
the buffer pointed to by ‘failedBuf,’ provided that ‘failedLen’ is
non-zero.

(3) Common Server Classes
. . .
#define OBJSTAT_OK 0
#define OBJSTAT_NOREC 1
#define OBJSTAT_BADFILE 2
#define OBJSTAT_ABORTED 3
#define OBJSTAT_FAILED 99

lw 9 / 64

1.10 s3

This section contains descriptions of the data pointers which can be
accessed by passing specific global ID strings to the global functions
of both Modeler and Layout. Common servers can access these globals
regardless of which program they are running under.

3.1 Utility Globals
3.2 File Requester
3.3 User Messages

1.11 s3.1

The global ID "Host Display Info" returns a HostDisplayInfo structure
initialized for the host application’s main window. This structure is
described in the "LightWave Plug-in Architecture" document and defined
in the ‘hdisp.h’ header file.

The global ID "File Type Pattern" returns a file type function used to
get filename filters for different file types. This is used by the
file requester class primarily and is described in the "File Requester
Plug-ins" document.

1.12 s3.2

The global ID "File Request" returns a ‘FileReqFunc’ pointer. Servers
can use this function to request filenames from users with the same
file requester used by the host. The ‘hail’ string is the title of
the request and the ‘name’ & ‘path’ buffers should be filled in with
the starting base name and path for the request. These buffers will
be modified and the ‘fullName’ buffer filled with the final complete
name for the user-selected file. ‘bufLen’ is the length of all the
passed buffers. The function returns 0 if the user elected to cancel,
1 if they hit Ok, and negative values for any errors.

(4) Common Globals

typedef int FileReqFunc (const char *hail, char *name,
char *path, char *fullName,
int buflen);

. . .

1.13 s3.3

The global ID "Info Messages" returns a pointer to a MessageFunc
structure which provides simple functions for displaying messages to
the user. The functions will display different types of messages,
each with one or two lines of text. The second string argument can be
null for one-line messages.

lw 10 / 64

(5) Common Globals
. . .
typedef struct st_MessageFuncs {

void (*info) (const char *, const char *);
void (*error) (const char *, const char *);
void (*warning) (const char *, const char *);

} MessageFuncs;

1.14 s4

The servers and globals for Modeler share a set of type and value
definitions. These are basic to an understanding of the Modeler
servers and globals.

4.1 Dynamic Types
4.2 Element Operation Filters

1.15 s4.1

Dynamic Values are values of variable type. Unlike normal C types
which have a fixed interpretation, dynamic values have a type which
can vary according to what is needed. The possible types for a
dymamic value are given by the following definitions.

(6) Modeling Base Types

typedef int DynaType;
#define DY_NULL 0
#define DY_STRING 1
#define DY_INTEGER 2
#define DY_FLOAT 3
#define DY_DISTANCE 4
#define DY_VINT 5
#define DY_VFLOAT 6
#define DY_VDIST 7
#define DY_BOOLEAN 8
#define DY_CHOICE 9
#define DY_SURFACE 10
#define DY_FONT 11
#define DY_TEXT 12
#define DY_LAYERS 13
#define DY_CUSTOM 14
#define DY__LAST DY_CUSTOM
. . .

A dynamic value datatype is a structure whose first field is a
DynaType code for the type of the value, followed by varient fields
which hold the value in a form appropriate to the given type. The
different varient forms of value encoding are listed here.

DY_STRING and DY_SURFACE type values contain a pointer to a string

lw 11 / 64

buffer and a buffer size. If the buffer size is zero, the buffer is
read-only.

(7) Modeling Types

typedef struct st_DyValString {
DynaType type;
char *buf;
int bufLen;

} DyValString;
. . .

Integer values are used for types DY_INTEGER, DY_BOOLEAN (zero or
non-zero), DY_CHOICE (0 - n-1), DY_FONT (font number 0 to n-1) and
DY_LAYERS (bit mask for layer set). The default value is only used in
requesters as the reset value.

(8) Modeling Types
. . .
typedef struct st_DyValInt {

DynaType type;
int value;
int defVal;

} DyValInt;
. . .

Floating point values are used for types DY_FLOAT and DY_DISTANCE
(distance measure in meters). The default value is again used when
resetting a requester.

(9) Modeling Types
. . .
typedef struct st_DyValFloat {

DynaType type;
double value;
double defVal;

} DyValFloat;
. . .

The DY_VINT type is an integer vector with three components. The
single default value resets all three components of the vector when
used in a requester.

(10) Modeling Types
. . .
typedef struct st_DyValIVector {

DynaType type;
int val[3];
int defVal;

} DyValIVector;
. . .

Floating point three-component vectors are used for the types
DY_VFLOAT and DY_VDIST, with the latter being distances encoded in
meters.

(11) Modeling Types

lw 12 / 64

. . .
typedef struct st_DyValFVector {

DynaType type;
double val[3];
double defVal;

} DyValFVector;
. . .

The custom dynamic type, DY_CUSTOM, is used to encode values which do
not fit one of the standard types. The meaning of the fields
following the type for a custom value are defined by agreement between
the sender and receiver and are usually a set of 4-byte numbers and
pointers, although they can be anything. Usually anywhere a custom
value is required, an alternate string form can also be accepted.

(12) Modeling Types
. . .
typedef struct st_DyValCustom {

DynaType type;
int val[4];

} DyValCustom;
. . .

A DynaValue type is the union of all possible value type varients plus
the type code itself which is the only field set for DY_NONE and
DY_TEXT types.

(13) Modeling Types
. . .
typedef union un_DynaValue {

DynaType type;
DyValString str;
DyValInt intv;
DyValFloat flt;
DyValIVector ivec;
DyValFVector fvec;
DyValCustom cust;

} DynaValue;
. . .

Error codes returned from the dynamic data type functions.

(14) Modeling Types
. . .
#define DYERR_NONE 0
#define DYERR_MEMORY (-1)
#define DYERR_BADTYPE (-2)
#define DYERR_BADSEQ (-3)
#define DYERR_BADCTRLID (-4)
#define DYERR_TOOMANYCTRL (-5)
#define DYERR_INTERNAL (-6)
. . .

1.16 s4.2

lw 13 / 64

At any given moment Modeler holds some set of layers, each containing
a potentially large collection of point and polygon elements. The
user selects which subset of elements are to be affected by an
operation by picking layers as active and inactive, and selecting
elements in those layers with the element selection tools. Plug-in
operations can select what elements to operate on as a function of the
user’s selections.

4.2.1 Layer Filters
4.2.2 Element Filters

1.17 s4.2.1

EltOpLayer codes are used to select which layers will be affected by
an operation.

PRIMARY The primary layer is the single active layer that is
affected by mesh edits.

FG The foreground layers are those which are active and
displayed.

BG The background layers are those which are inactive but
still displayed.

SELECT Select layers are all displayed layers, foreground and
background.

ALL All layers are all layers in the modeler system whether
they contain data or not.

EMPTY Empty layers are those with no data elements in them.

NONEMPTY Non-empty layers are any layers which contain some data.

Individual Layers
In addition to the defined values, codes from 101 to 110
can be used to select the individual layers 1 through 10.

(15) Modeling Base Types
. . .
typedef int EltOpLayer;
#define OPLYR_PRIMARY 0
#define OPLYR_FG 1
#define OPLYR_BG 2
#define OPLYR_SELECT 3
#define OPLYR_ALL 4
#define OPLYR_EMPTY 5
#define OPLYR_NONEMPTY 6
. . .

lw 14 / 64

1.18 s4.2.2

EltOpSelect is a selection mode to pick elements from the selected
layers for operations.

GLOBAL All elements, whether selected or unselected, will be
affected by the operation.

USER Only those elements selected by the user will be
affected. This includes the implicit selection of all
elements when nothing is explicitly selected, and
selections by volume.

DIRECT Elements selected directly with the point or polygon
selection tools will be affected. This is the case for
both points and polygons regardless of the current select
mode.

(16) Modeling Base Types
. . .
typedef int EltOpSelect;
#define OPSEL_GLOBAL 0
#define OPSEL_USER 1
#define OPSEL_DIRECT 2
. . .

1.19 s5

There are two types of servers defined for Modeler which can perform
modeling operations. Mesh Edit servers can perform a single mesh data
editing operation by affecting the data elements at a fairly low
level. Command Sequence servers can execute a sequence of editing
operations, including most of those accessable to the user as well as
low-level mesh edits.

5.1 Mesh Editing
5.2 Command Sequencing

1.20 s5.1

The "MeshDataEdit" class provides the capability of editing existing
layer data though low-level point and polygon operations. The
available MeshDataEdit servers in a Modeler session are presented to
the user in the "Custom" popup in the "Tools" menu. Editing is done
through functions which operate on elements represented by opaque
pointers. The editing state itself is also maintained as an opaque
pointer and is the first argument to most of the calls.

(17) Modeling Base Types
. . .
typedef struct st_Vertex *PntID;
typedef struct st_Polygon *PolID;

lw 15 / 64

typedef struct st_EditState *EditStateRef;
. . .

A mesh edit operation is a single undoable modification to layer data.
The server starts the operation and is given an EditStateRef pointer
to refer to the ongoing state of the edit operation. The server may
then add new elements and modify or delete existing elements. As the
server requests changes, those are logged by the host but will not be
applied until the operation is complete. At any time the server may
abort the operation and the pending changes will be discarded, or it
can accept the changes and they will be applied as the last step
before the server exits.

5.1.1 Local Data
5.1.2 Getting Element Information
5.1.3 PointInfo
5.1.4 PolygonInfo
5.1.5 Main Data Struct
5.1.6 Error Codes
5.1.7 Query Functions
5.1.8 Element Traversal
5.1.9 Creating New Elements
5.1.10 Modifying Existing Elements

1.21 s5.1.1

Upon activation, a mesh edit server gets a ‘MeshEditBegin’ function
pointer as its local data. To initiate the mesh editing operation,
the server calls this function and gets back a ‘MeshEditOp’ which
contains the data for the edit as well as pointers to all the editing
functions. This can be called only once for each activation.

(18) Modeling Servers

typedef MeshEditOp * MeshEditBegin (int pntBuf, int polBuf,
EltOpSelect);

. . .

The first two arguments to the function are the client data sizes (in
bytes) for points and polygons, respectively. If non-zero, the host
will allocate a block of memory for each and every point and polygon
for the exclusive use of this edit operation. These client data
buffers can be used to associate any information with specific points
and polygons for the course of the edit operation, and will be freed
when the operation completes. The third argument is the selection
option and determines what elements are initially selected.

1.22 s5.1.2

Servers can get information about existing elements by reading them
out into special information structures. The PointInfo and
PolygonInfo structures are used to hold information about points and

lw 16 / 64

polygons, respectively. Every element has an ID, a userData pointer,
a layer number and flags.

PntID or PolID
This uniquely identifies each element and is the
reference used for manipulating them.

userData This is a pointer to a memory block which has been
allocated for the client specifically for this element
according to the requested size in the call to
MeshEditBegin. This is an area where the client can
store computed values for points and polygon while it
operates on them.

layer This is just the number of the layer where the element is
located (0-9 currently).

flags All elements have flags bits for selection and deletion.
The PPDF_SELECT bit is set if the element matched the
selection criterion from the start of the edit, and the
PPDF_DELETE bit is set if the element has been deleted in
this session.

(19) Modeling Types
. . .
#define PPDF_SELECT (1<<0)
#define PPDF_DELETE (1<<1)
. . .

Except for the memory pointed to by the userData pointer, the contents
of info structures or the data they reference are read-only and cannot
be modified. Any attempts to do so will either be futile or
catastrophic.

1.23 s5.1.3

In addition to the common parts, a PointInfo struct also includes the
point position as a triple of floating point numbers for the X, Y and
Z coordinates.

(20) Modeling Base Types
. . .
typedef struct st_PointInfo {

PntID pnt;
void *userData;
int layer;
int flags;
double position[3];

} PointInfo;
. . .

1.24 s5.1.4

lw 17 / 64

In addition to the common parts of the info structure, a PolygonInfo
struct encodes the polygon shape as the number of points and an array
of their IDs. The surface assigned to the polygon is given by a name
string.

(21) Modeling Base Types
. . .
typedef struct st_PolygonInfo {

PolID pol;
void *userData;
int layer;
int flags;
int numPnts;
const PntID *points;
const char *surface;

} PolygonInfo;
. . .

Polygons also have some additional flag bits. CCEND and CCSTART are
set if the polygon has continuity points at either end. CURVE is set
if this is a curve (it is a face if this is clear). DETAIL is set if
the polygon is a detail.

(22) Modeling Types
. . .
#define PPDF_CCEND (1<<2)
#define PPDF_CCSTART (1<<3)
#define PPDF_CURVE (1<<4)
#define PPDF_DETAIL (1<<5)
. . .

1.25 s5.1.5

When the ‘MeshEditBegin’ function starts an edit operation, it returns
a MeshEditOp structure which the client uses to execute the edit.
This structure contains a few data fields and a large set of function
fields.

(23) Modeling Types
. . .
typedef struct st_MeshEditOp {

EditStateRef state;
int layerNum;
void (*done) (EditStateRef, EDError, int selm);

<Mesh Edit Count functions>
<Mesh Edit Enumeration functions>
<Mesh Edit Query functions>
<Mesh Edit Create functions>
<Mesh Edit Modify functions>

} MeshEditOp;
. . .

state The internal state of the edit is maintained in the

lw 18 / 64

private ‘state’ field which is the first argument to
every function.

layerNum Points and polygons may only be modified if they belong
to the primary active layer which is given by this layer
number. The primary layer is the lowest numbered
foreground layer. All new data will be added to this
layer and changes attempted on data in other layers will
fail.

done The ‘done’ function completes the edit. If the error
code is EDERR_NONE, the edit operation will complete and
the cumulative edits will be applied to the data. If an
actual error code is passed, the edit will abort and any
changes made will be discarded. The ‘selm’ argument is
bit flags which provide info on how to alter the
selection based on editing changes. A value of zero
leaves all directly selected elements selected after the
edit. The CLEARCURRENT hint bit set will clear the
current selected elements, and the SELECTNEW hint bit set
will cause any newly created elements to become selected.
Hints will not override selection settings made by the
user, and only when elements are explicitly selected will
new selections be made. The force bits will always force
direct selection of the points and/or polygons created by
this operation regardless of current user selections.

(24) Modeling Types
. . .
#define EDSELM_CLEARCURRENT (1<<0)
#define EDSELM_SELECTNEW (1<<1)
#ifndef LW_PRERELEASE
#define EDSELM_FORCEVRTS (1<<2)
#define EDSELM_FORCEPOLS (1<<3)

#endif
. . .

Other functions
The remaining functions allow for examining the state of
the mesh data and modifying it. All changes for a given
edit operation must be made through these functions. No
data structures may be modified directly.

As changes are made they are buffered through the undo mechanism, so
they are not reflected in the data until the operation is complete.
For example, if a MeshDataEdit client reads the coordinates of a point
and changes them (correctly using the ‘pntMove’ function) and reads
the coordinates again, they will be the same as the first time. The
coordinates will not change until the edits are sucessfully applied
using the ‘done’ function.

1.26 s5.1.6

Errors are integer codes returned from functions and passed to the
‘done’ function. The exceptions are functions which create new

lw 19 / 64

elements in which case an error is signaled by a null return value.
The BADLAYER error will be returned for an attempt to operate on data
not in the primary edit layer. BADSURF will be returned for an
illegal surface name. BADARGS is the catch-all for other invalid
arguments.

(25) Modeling Base Types
. . .
typedef int EDError;
#define EDERR_NONE 0
#define EDERR_NOMEMORY 1
#define EDERR_BADLAYER 2
#define EDERR_BADSURF 3
#define EDERR_USERABORT 4
#define EDERR_BADARGS 5
. . .

1.27 s5.1.7

Clients can get a count of the number of points or polygons in
specific layers. The ‘mode’ argument to the count functions specify
all the elements, only the selected elements or only the elements
deleted in this edit session.

(26) Mesh Edit Count functions

int (*pointCount) (EditStateRef, EltOpLayer, int mode);
int (*polyCount) (EditStateRef, EltOpLayer, int mode);

(27) Modeling Types
. . .
#define EDCOUNT_ALL 0
#define EDCOUNT_SELECT 1
#define EDCOUNT_DELETE 2
. . .

Given a point or polygon ID, the client can get info for that element.
The returned info pointer is only valid until the next call to an info
function (including enumeration). The normal vector for a polygon may
also be found given its ID. The ‘polyNormal’ function returns zero if
the polygon has fewer than 3 vertices, or the normal is degenerate for
some reason. If it returns 1, then the normal has been written to the
caller’s vector.

(28) Mesh Edit Query functions

PointInfo * (*pointInfo) (EditStateRef, PntID);
PolygonInfo * (*polyInfo) (EditStateRef, PolID);
int (*polyNormal) (EditStateRef, PolID, double[3]);

There is only one of each of the PointInfo and PolygonInfo structs for
every usage. The same pointer is returned from each query call and
passed to the enumeration functions, so the client must copy any
information needed before calling the query function again.

lw 20 / 64

1.28 s5.1.8

The client can traverse all the elements in a layer or combination of
layers by passing a callback to be called for each element. These
enumeration functions (given by the prototypes below) take as
arguments a client data pointer which can be arbitrary, and the info
structure for the current element. If the client returns an error
code (or any non-zero value for that matter) from this function, the
scan will be aborted and that code will be returned.

(29) Modeling Base Types
. . .
typedef EDError PointScanFunc (void *, const PointInfo *);
typedef EDError PolyScanFunc (void *, const PolygonInfo *);
. . .

The following functions initiate a scan of points or polygons in layer
data. The client provides an enumeration callback and client data
pointer as well as specifying which layers to include in the scan.
The function will be called for each point and polygon in order. If
the selection mode used to begin this edit was DIRECT, the order of
the selected elements is the same as the order that the user selected
them. In other select modes, the order is the creation order for
points and undefined for polygons. The return value is EDERR_NONE (0)
if the scan completed, and the non-zero error code returned by the
enumeration callback if the scan was aborted.

(30) Mesh Edit Enumeration functions

EDError (*pointScan) (EditStateRef, PointScanFunc *,
void *, EltOpLayer);

EDError (*polyScan) (EditStateRef, PolyScanFunc *,
void *, EltOpLayer);

1.29 s5.1.9

A new data element is added by calling the appropriate function, which
creates the new element but does not add it to the layer until the
edit is completed. Polygons are created from lists of PntIDs which
can be the IDs of pre-existing points or of points created in this
session, as long as the existing ones are in the primary layer.

addPoint New points are created by passing a vector of X, Y and Z
coordinates to this function.

addPoly Polygons are created from a surface name (or null for
default), number of points and point list. The first,
second and last points are used to compute the polygon
normal.

addCurve Curves are created the same way as polygons except that
they have an additional flag value which may have
PPDF_CCSTART and/or END set. Closed curves must have
both of these bits set and have the first and last two

lw 21 / 64

points overlapping.

addQuad and addTri
These two functions create quadrangles and triangles
using the default surface and obeying the user’s new data
options with respect to two-sided and triangles only.
These are used by operations which create new objects
from scratch, like the sphere or box tools in Modeler.

addPatch This will add a set of polygons to create a polygonal
patch from bounding curves obeying the user’s new data
options. It takes the number of divisions in the C and R
directions, the length/knot flags in the C and R
directions, and three or four boundary curve
descriptions. Each boundary curve is a curve-type
polygon and the indices of the start and end knots of the
curve to be used for patching.

(31) Modeling Base Types
. . .
typedef struct st_PBoundCv {

PolID curve;
int start, end;

} PBoundCv;

(32) Mesh Edit Create functions

PntID (*addPoint) (EditStateRef, double *xyz);
PolID (*addPoly) (EditStateRef, const char *surf,

int numPnt, const PntID *);
PolID (*addCurve) (EditStateRef, const char *surf,

int numPnt, const PntID *, int flags);
EDError (*addQuad) (EditStateRef, PntID, PntID,

PntID, PntID);
EDError (*addTri) (EditStateRef, PntID, PntID, PntID);
EDError (*addPatch) (EditStateRef, int nr, int nc, int lr,

int lc, PBoundCv *r0, PBoundCv *r1,
PBoundCv *c0, PBoundCv *c1);

1.30 s5.1.10

These functions are used to alter existing data. If called with
elements created in this edit session they will return BADLAYER.

remPoint, remPoly
Remove existing data elements. These will remove points
and polygons from the current data set. The PPDF_DELETE
flag bit will be set for these elements after this
function is called.

pntMove Move a point. The point will be moved to the new
coordinates.

polSurf Change polygon surface. The polygon will be altered to
use the new named surface.

lw 22 / 64

polPnts Change point list. The polygon will be changed to have a
new set of points given by the list of IDs. The PntIDs
may be for existing points or points created this
session, but should not refer to points that will be
deleted.

polFlags Change polygon attributes. The first mask is the set of
attributes to change and the second is their new values.
Only PPDF_CCEND and PPDF_CCSTART may currently be
modified.

(33) Mesh Edit Modify functions

EDError (*remPoint) (EditStateRef, PntID);
EDError (*remPoly) (EditStateRef, PolID);
EDError (*pntMove) (EditStateRef, PntID, const double *);
EDError (*polSurf) (EditStateRef, PolID, const char *);
EDError (*polPnts) (EditStateRef, PolID, int, const PntID *);
EDError (*polFlag) (EditStateRef, PolID, int mask, int value);

1.31 s5.2

The "CommandSequence" class servers can execute a sequence of Modeler
commands and/or mesh edits. CommandSequence servers are presented to
the user in the "Custom" popup in the "Objects" menu, and the user has
the ability to configure the server to take different string
arguments. The argument string selected by the user is pass to the
server at activation.

Modeling commands are identified by unique case-insensitive names and
by unique integer codes. Codes may be looked up given the command
string.

(34) Modeling Types
. . .
typedef int CommandCode;
. . .

Commands are executed by passing the command code and a list of
arguments in the form of DynaValues. The values can have any type
which is can be converted to the required type of each positional
argument. A command sequence server can execute any sequence of
commands and may combine them with mesh edit operations as well.

5.2.1 Command Activation
5.2.2 Commands
5.2.3 External Activation on Windows

1.32 s5.2.1

lw 23 / 64

A CommandSequence server gets a ModCommand structure passed to its
activation function. The activation function performs the sequence of
commands and mesh edits and returns when complete.

data Internal host data passed as the first argument to the
‘lookup’ and ‘execute’ functions.

argument String argument to this command as set in the custom
command list.

lookup Function which converts a command name to a command code
for use with the ‘execute’ function. This is a separate
step so that the string lookup does not have to be done
on every command invocation. Case is not significant.
Since the codes are fixed for a session, they can be
looked up the first time the server is used and cached
after that.

execute Function which performs the modeling function. Takes a
command code as found by ‘lookup’ and an array of
DynaValue arguments. Which elements to be affected by
the command can be selected using the EltOpSelect mode.
If non-null, the result pointer will be written with the
return value of the command. Commands with no result
will write DY_NULL on this value. The return value is
zero for success and an error code for failure. Some
possible codes are: 1 = out of memory, 2 = I/O error, 4 =
user abort, 2901 = wrong number of arguments, 2902 =
wrong argument type, 2903 = bad argument value.

editBegin This function can be used as described in the secion on
mesh editing to start a mesh edit operation from a
command sequence server. Any edit operation must be
complete before more commands are executed.

(35) Modeling Servers
. . .
typedef struct st_ModCommand {

void *data;
const char *argument;
CommandCode (*lookup) (void *, const char *cmdName);
int (*execute) (void *, CommandCode cmd,

int argc, const DynaValue *argv,
EltOpSelect, DynaValue *result);

MeshEditBegin *editBegin;
} ModCommand;

1.33 s5.2.2

Here follows a complete list of the commands supported by the command
mode interface and their arguments. Optional arguments are listed in
square brackets. A more complete description of each command may be
found in the Modeler ARexx documentation.

lw 24 / 64

NEW, UNDO

DELETE, CUT, COPY, PASTE

LOAD, SAVE filename<string>

SETLAYER, SETBLAYER
mask<layers>

SURFACE name<string>

FIXEDFLEX axis<X|Y|Z>, start<dist>, end<dist>, [ease<i;o>]

AUTOFLEX axis<X|Y|Z>, direction<+|->, [ease<i;o>]

DEFORMREGION
radius<vector>, [center<vector>, axis<X|Y|Z>]

MOVE, SHEAR, MAGNET
offset<vector>

ROTATE, TWIST, VORTEX
angle<float>, axis<X|Y|Z>, [center<vector>]

SCALE, TAPER, POLE
factor<vector>, [center<vector>]

BEND angle<float>, direction<float>, [center<vector>]

JITTER radius<vector>, [type<GAUSSIAN|UNIFORM|NORMAL|RADIAL>,
center<vector>]

SMOOTH [iterations<int>, strength<float>]

QUANTIZE size<vector>

MERGEPOINTS [mindist<dist>]

MAKEBOX lowcorner<vector>, highcorner<vector>,
[nsegments<vector>]

MAKEBALL radius<vector>, nsides<int>, nsegments<int>,
[center<vector>]

MAKETESBALL radius<vector>, level<int>, [center<vector>]

MAKEDISC, MAKECONE
radius<vector>, top<dist>, bottom<dist>, axis<X|Y|Z>,
nsides<int>, [nsegments<int>, center<vector>]

MAKETEXT text<string>, index<number>, [cornertype<SHARP|BUFFERED>,
spacing<number>, scale<number>, axis<X|Y|Z>, pos<vector>]

LATHE axis<X|Y|Z>, nsides<int>, [center<vector>,
endangle<float>, startangle<float>, offset<dist>]

lw 25 / 64

EXTRUDE axis<X|Y|Z>, extent<dist>, [nsegments<int>]

MIRROR axis<X|Y|Z>, plane<dist>

PATHCLONE, PATHEXTRUDE
filename<string>, [step<float>, start<float>, end<float>]

RAILCLONE, RAILEXTRUDE
segments<int>, [divs<KNOTS|LENGTHS>, flags<o;s>,
strength<float>]

AXISDRILL operation<CORE|TUNNEL|SLICE|STENCIL>, axis<X|Y|Z>,
[surface<string>]

SOLIDDRILL operation<CORE|TUNNEL|SLICE|STENCIL>, [surface<string>]

BOOLEAN operation<UNION|SUBTRACT|INTERSECT|ADD>

BEVEL inset<dist>, shift<dist>

SHAPEBEVEL pattern<custom>

The patten for a shapebevel is either a string containing
pairs of inset / shift values, or a custom dynavalue with
the val[0] field set to the number of pairs, and the
val[1] field cast to a pointer to an array of doubles
holding the pairs.

SMOOTHSHIFT offset<dist>, [maxangle<float>]

FLIP, TRIPLE, FREEZECURVES

ALIGNPOLS, REMOVEPOLS, UNIFYPOLS

CHANGESURFACE
surface<string>

SUBDIVIDE mode<FLAT|SMOOTH|METAFORM>, [maxangle<float>]

FRACSUBDIVIDE
mode<FLAT|SMOOTH|METAFORM>, fractal<float>,
[maxangle<float>])

SEL_POINT action<SET|CLEAR>

action, VOLUME, lo<vector>, hi<vector>

action, CONNECT

action, NPEQ, npol<int>

action, NPLT, npol<int>

action, NPGT, npol<int>

lw 26 / 64

SEL_POLYGON action<SET|CLEAR>

action, VOLEXCL, lo<vector>, hi<vector>

action, VOLINCL, lo<vector>, hi<vector>

action, CONNECT

action, NVEQ, nvert<int>

action, NVLT, nvert<int>

action, NVGT, nvert<int>

action, SURFACE, surface<string>

action, FACE

action, CURVE

action, NONPLANAR, [limit<float>]

SEL_INVERT

SEL_HIDE state<SELECTED|UNSELECTED>

SEL_UNHIDE

CMDSEQ name<string>, [arg<string>]

PLUGIN module<string>, [class<string>, name<string>,
username<string>]

1.34 s5.2.3

When Modeler is running under Windows, CommandSequence class servers
in the program can be triggered by other Windows programs. The
Modeler main window looks for messages with a code created by the
function RegisterWindowMessage() with the string "LWM CmdSeq Trigger".
This message code is unique throughout the Windows session and the
arguments of this message describe the server to activate. The first
argument (wp) should be null, and the second argument (lp) should be
two global atoms containing the CommandSequence server name and
argument string, combined with the MAKELONG() macro.

The following Windows function triggers a server in Modeler given the
handle to Modeler’s main window. Atoms are created to pass the server
name and argument (if any) and the message is posted to Modeler’s
window. If the PostMessage fails, this function frees the atoms,
otherwise Modeler will free them when it processes the message. The
message code could be looked up only one time if multiple messages are
to be sent, and SendMessage could be used for synchronous triggering.

(36) Trigger code

lw 27 / 64

static void
TriggerModeler (

HWND wnd,
const char *server,
const char *argument)

{
UINT msg;
ATOM name, arg;

msg = RegisterWindowMessage ("LWM CmdSeq Trigger");

name = GlobalAddAtom (server);
if (argument && argument[0])

arg = GlobalAddAtom (argument);
else

arg = 0;

if (!PostMessage (wnd, msg, NULL, MAKELONG (name, arg))) {
GlobalDeleteAtom (name);
if (arg)

GlobalDeleteAtom (arg);
}

}

1.35 s6

This section contains descriptions of the global data pointers which
can be accessed from Modeler’s global function.

6.1 Dynamic Conversion
6.2 Dynamic Requester
6.3 Dynamic Monitor
6.4 Custom Commands
6.5 Modeler Internal State
6.6 Surfaces List
6.7 Outline Font List

1.36 s6.1

The global ID "LWM: Dynamic Conversion" returns a DynaConvertFunc
which can be used to translate a dynamic type element to another type.
An error may be returned if the conversion cannot be performed, and
hints may be provided when converting strings to integer bitfield or
choice values.

(37) Modeling Globals

typedef int DynaConvertFunc (const DynaValue *,
DynaValue *,
const DynaStringHint *);

. . .

lw 28 / 64

String hints are choice hints and/or bitfield hints. The choice hint
is list of strings and values used when converting between DY_STRING
and DY_CHOICE types. The pairs indicate a mapping between choice
values and strings. The list is terminated with a null item string.
The bitfield hint is a list of character codes and bit values used
when converting between DY_STRING and DY_INTEGER types. If the
character (upper or lower case) is present in the string, the bit
value will be ORed into the result, and visa-versa. The list is
terminated with a zero bitval.

(38) Modeling Types
. . .
typedef struct st_DyChoiceHint {

const char *item;
int value;

} DyChoiceHint;

typedef struct st_DyBitfieldHint {
char code;
int bitval;

} DyBitfieldHint;
. . .

Either field in the string hint structure may be null.

(39) Modeling Types
. . .
typedef struct st_DynaStringHint {

DyChoiceHint *chc;
DyBitfieldHint *bits;

} DynaStringHint;
. . .

1.37 s6.2

The global ID "LWM: Dynamic Request" returns a set of functions for
creating and displaying a simple requester. The requesters that can
be created with this interface are like simple forms. There is a
title and a series of lines each with a label and a control for a
single value. The controls are described by DynaValues, with the
DynaType determining the type of control and the value determining its
setting. The user can change the value of the controls while the
requester is displayed.

(40) Modeling Globals
. . .
typedef struct st_DynaReqFuncs {

DynaRequestID (*create) (const char *);
int (*addCtrl) (DynaRequestID, const char *,

DyReqControlDesc *);
DynaType (*ctrlType) (DynaRequestID, int);
int (*valueSet) (DynaRequestID, int, DynaValue *);
int (*valueGet) (DynaRequestID, int, DynaValue *);
int (*post) (DynaRequestID);
void (*destroy) (DynaRequestID);

lw 29 / 64

} DynaReqFuncs;
. . .

6.2.1 Requester Usage
6.2.2 Control Descriptors

1.38 s6.2.1

The basic idea is to create a requester, set up its controls, set
their values, post the requester, read out the modified values and
destroy the requester. The set/post/get cycle may be done any number
of times once the requester is created.

create Create is used to allocate an instance of a dynamic
requester with a given title string. Multiple requesters
can be allocated at the same time, although only one may
be displayed at once. The create function returns an ID
which is used throughout the rest of the interface.

(41) Modeling Types
. . .
typedef struct st_DynaRequest *DynaRequestID;
. . .

addCtrl Controls are added to the requester starting from the
top. The function takes a label and a description
(below) and returns an index number for the new control
which is used to set and get its value. The description
contains the control type and other information necessary
for its display.

ctrlType This function just returns the type of a control given
its index.

valueSet Calling this function with a control index and a
DynaValue sets the given control to that value. The type
of the value does not have to be the same as the control
as long as the one can be converted to the other. Note
that any "default" fields in the DynaValue will be used
to reset the control if the user selects "Reset."

valueGet This function is the opposite of the above, reading out
the value of the control into the provided DynaValue.

post Once the requester is created and the proper values are
set, this function displays the requester and allows the
user to change the values. It returns zero if the user
presses "Cancel" to dismiss the requester and one if the
user presses "Ok."

destroy When all interaction is done, a call to destroy frees all
resources and completes the process.

lw 30 / 64

1.39 s6.2.2

Controls in a dynamic requester are determined primarily by a DynaType
for the type of data being edited, however for some types additional
settings may be required for correct display of the value.

Controls of type DY_STRING have a width, in characters, of the input
field. This is an average width on systems with variable pitch fonts.

(42) Modeling Types
. . .
typedef struct st_DyReqStringDesc {

DynaType type;
int width;

} DyReqStringDesc;
. . .

Controls of type DY_CHOICE present a set of labeled buttons for the
user to select between. The descriptor contains a pointer to an array
of strings (terminated with a null pointer) for the labels of the
choice items. If the vertical flag is true, the choices will be set
in a vertical layout, otherwise they will be horizontal.

(43) Modeling Types
. . .
typedef struct st_DyReqChoiceDesc {

DynaType type;
const char **items;
int vertical;

} DyReqChoiceDesc;
. . .

The DY_TEXT control type is a constant control for displaying lines of
text. The text lines are contained in an array of strings (terminated
with a null pointer).

(44) Modeling Types
. . .
typedef struct st_DyReqTextDesc {

DynaType type;
const char **text;

} DyReqTextDesc;
. . .

The control descriptor is the union of all these varient records plus
the DynaType alone. If there is no special descriptive data for a
type, then only the type code is needed to create a control of that
type.

(45) Modeling Types
. . .
typedef union un_DyReqControlDesc {

DynaType type;
DyReqStringDesc string;
DyReqChoiceDesc choice;
DyReqTextDesc text;

lw 31 / 64

} DyReqControlDesc;

1.40 s6.3

The global ID "LWM: Dynamic Monitor" returns a structure holding
functions which can be used to create a monitor for providing feedback
on the progress of an operation and allow user to abort it. Monitors
are described in the "LightWave Plug-in Architecture" document and are
declared in the ‘moni.h’ header file.

create Clients create a monitor instance with header and
optional footer text. Once created, the monitor object
can be used as described in the above referenced
document. The create func may return null if the Modeler
bar graph is already in use, since there can be only one.

destroy When done, the monitor must be destroyed by calling this
function. This must be called whether the operation was
completed or not.

(46) Modeling Globals
. . .
typedef struct st_DynaMonitorFuncs {

Monitor * (*create) (const char *, const char *);
void (*destroy) (Monitor *);

} DynaMonitorFuncs;
. . .

1.41 s6.4

The global ID "LWM: Custom Commands" returns a set of functions for
manipulating the custom commands and function key mappings. These may
be changed by a server, but there should be some provision for setting
them back to the user’s defaults when complete.

listAdd Adds an new custom command to the list. The name will be
the string that the user sees in the custom popup, the
server is the internal server name of the CommandSequence
plug-in to activate, and the arg string is the agrument
that will be passed to that plug-in. This returns false
if the new item could not be added.

listRem Removes a entry from the custom list given its name.

funGet Gets the server and argument strings for the current
association with function key N. The bufLen is the
length of the string buffers. This returns false if the
key is not assigned.

funSet Sets the server to activate and the argument to pass when
the given function key is pressed.

lw 32 / 64

(47) Modeling Globals
. . .
typedef struct st_CustomCommandFuncs {

int (*listAdd) (const char *name,
const char *server,
const char *arg);

void (*listRem) (const char *name);
int (*funGet) (int n, char *server,

char *arg, int bufLen);
void (*funSet) (int n, const char *server,

const char *arg);
} CustomCommandFuncs;
. . .

For ARexx scripts on the Amiga Modeler, the server name is "$REXX" and
the argument is the script name.

1.42 s6.5

The global ID "LWM: State Query" returns a set of functions for
querying Modeler’s global state. It can be queried at any time
although it may only be altered at specific times.

numLayers This returns total number of data layers in Modeler.

layerMask This returns bits describing the set of layers included
in each of the possible EltOpLayer selections. If the
set includes layer 1 then bit 0 is set, if it includes
layer 2 bit 1 is set, and so forth.

surface This returns the name of the default surface.

bbox This returns the number of points in the given layer, and
if minmax is a non-null pointer, it is treated as an
array of 6 doubles and is filled with the bounding box
information for the layer (x0, x1, y0, y1, z0, z1).

(48) Modeling Globals
. . .
typedef struct st_StateQueryFuncs {

int (*numLayers) (void);
unsigned int (*layerMask) (EltOpLayer);
const char * (*surface) (void);
unsigned int (*bbox) (EltOpLayer, double *minmax);

} StateQueryFuncs;
. . .

1.43 s6.6

The global ID "LWM: Surface List" returns a set of functions which can
be used to read and modify Modeler’s surface list. Clients may add,
rename and modify the contents of surfaces at any time, but there is

lw 33 / 64

no capability to remove them. Note that adding surfaces or renaming
them will alter the relative order of surfaces in the list.

next This returns the name of the surface after the given one.
If the argument is null, it returns the first surface.
If the argument is the last surface in the list, it
returns null.

create This creates a surface of the given name with no data.

rename This changes the name of a surface, reordering it in the
list.

getData This returns the size and contents of the surface data
parameters for the named surface.

setData This resets the data parameter block to the given size
and contents.

(49) Modeling Globals
. . .
typedef struct st_SurfaceListFuncs {

const char * (*next) (const char *name);
void (*create) (const char *name);
void (*rename) (const char *name,

const char *newName);
void * (*getData) (const char *name, int *size);
void (*setData) (const char *name, int size,

void *data);
} SurfaceListFuncs;
. . .

1.44 s6.7

The global ID "LWM: Font List" returns a set of functions for reading
and modifying Modeler’s font list. The list may be modified at any
time, but keep in mind that altering the list may affect stored font
choices in your requesters, if any.

count This returns the total number of fonts in the list.

index This returns the list index for a named font, -1 if not
found.

name This returns the name of a font given its list index,
null if out of range.

load This loads the given file as a Type-1 font and returns
the new list index. The fonts at this old index and
above are all shifted up. It returns -1 for errors.

clear This removes the font at the given index from the list,
shifting all the others down.

(50) Modeling Globals

lw 34 / 64

. . .
typedef struct st_FontListFuncs {

int (*count) (void);
int (*index) (const char *name);
const char * (*name) (int index);
int (*load) (const char *filename);
void (*clear) (int index);

} FontListFuncs;

1.45 s7

The servers and globals for Layout share a set of type and value
definitions which are basic to understanding concepts dehind the
Layout servers and globals.

7.1 Coordinate and Range Scales
7.2 Items and Properties
7.3 Time
7.4 Errors
7.5 Instances and Handlers

1.46 s7.1

There are several conventions used to interpret different types of
values within LightWave and throughout this external interface.

positions Positions are always given as an array of three doubles
which are the X, Y and Z coordinates (respectively) of a
position with respect to some known coordinate system.
This system is always listed along with the vector
(usually object or world).

directions Direction vectors, such as normals, are also an X Y Z
array of doubles, but are normalized to be unit vectors.
The coordinate system for these is also always listed.

rotations Rotations are arrays of three doubles representing the
Euler angles (heading, pitch and bank, respectively) of
an item in some coordinate system. Angles are
represented in radians.

colors Colors are given as an array of three doubles giving the
intensities of the red, green and blue componenets of the
color, respectively. The values are scaled so that 0.0
is the minimum intensity and 1.0 is the maximum, although
out-of-range values are allowed.

percentages Values which are represented on the LightWave user
interface as percentages are represented internally as
doubles scaled from 0.0 to 1.0. A luminosity of 65.7%,
for example, would be held internally as the floating
point value 0.657.

lw 35 / 64

Floating point values with a nominal range of 0.0 to 1.0 will
sometimes be converted to single-byte values for storing in image
buffers. Colors and alphas are converted this way for final image
output and other values are used this way internally. The floating
point value is clipped to be strictly within the 0.0 to 1.0 range and
is then scaled and converted to a BufferValue type so that 0.0 is 0
and 1.0 is 255.

(51) Animation Types

typedef unsigned char BufferValue;
. . .

1.47 s7.2

A LightWave item is anthing which can be keyframed in the layout
interface. All objects, lights, bones and cameras in LightWave are
items and have a unique LWItemID value.

(52) Animation Types
. . .
typedef void * LWItemID;
#define LWITEM_NULL ((LWItemID) 0)
. . .

Types of items are given by LWItemType codes.

(53) Animation Types
. . .
typedef int LWItemType;
#define LWI_OBJECT 0
#define LWI_LIGHT 1
#define LWI_CAMERA 2
#define LWI_BONE 3
. . .

All items have a set of vector parameters which servers can read (and
sometimes write) using property codes.

POSITION item location in its parent’s coordinates.

ROTATION item rotation in its parent’s coordinates.

SCALING item X, Y and Z scaling factors relative to its parent.

RIGHT, UP, FORWARD
+X, +Y and +Z direction vectors, respectively, for the
item in world coordinates. These three concatenated
together are the transformation matrix for the item.

PIVOT item pivot point in its own coordinates.

W_POSITION item location in world coordinates.

lw 36 / 64

(54) Animation Types
. . .
typedef int LWItemParam;
#define LWIP_POSITION 1
#define LWIP_RIGHT 2
#define LWIP_UP 3
#define LWIP_FORWARD 4
#define LWIP_ROTATION 5
#define LWIP_SCALING 6
#define LWIP_PIVOT 7
#define LWIP_W_POSITION 8
. . .

1.48 s7.3

Time values in LightWave are given in two ways. A frame number is the
index of a single image (typically the current image) in the output
sequence of still images that make up the animation. A time value is
the precise instant of an event in seconds. Assuming a scene rendered
at 30 frames per second and without motion blur (or with a blur length
of zero), frame N is a snapshot of the animation at a time in seconds
of N/30. If there is motion blur, then some events in frame N will be
from times slightly before N/30 seconds, and if the motion blur length
is greater than 100%, then some events may even overlap with the times
of events in previous frames.

(55) Animation Types
. . .
typedef int LWFrame;
typedef double LWTime;
. . .

1.49 s7.4

Server functions return errors to LightWave by returning a string
pointer. A null string pointer indicates no error, and a non-null
pointer points to an error string. The string will be displayed for
the user and, except where otherwise indicated, the user will have the
option to ignore the error and continue with the operation.

(56) Animation Types
. . .
typedef const char * LWError;
. . .

1.50 s7.5

Most LightWave plug-ins are "handlers" which manage "instances." An
instance is a specific collection of user settings for a texture,
image filter, etc., which persist across sessions by being stored in

lw 37 / 64

scene and object files. A ‘LWInstance’ is any longword value which
identifies a specific instance for a specific server, usually a
pointer to allocated memory.

(57) Animation Types
. . .
typedef void * LWInstance;
. . .

7.5.1 Instance Persistence
7.5.2 Handler Functions
7.5.3 Interface Server

1.51 s7.5.1

Instances have to load and save their data to and from ASCII scene
files and binary object files, and sometimes both, so the data
read/write mechanism provides servers with functions to read and write
data in both these formats. The ‘read’ function reads bytes from the
source and returns the number of bytes read. The ‘write’ function
writes bytes to the output and tracks any errors internally. The
format of the file is given by ‘ioMode’ code, either OBJECT or SCENE.

(58) Animation Types
. . .
#define LWIO_OBJECT 0
#define LWIO_SCENE 1
. . .

If the mode is OBJECT, the format is binary and no scene-specific
information should be stored. The read and write functions deal in
raw bytes which can have any value from 0 to 255. They read or write
the number of bytes requested using the passed buffer.

If the mode is SCENE, the format is ASCII and bytes stored must be in
the extended ASCII range of 32 to 255. Values outside this range are
ignored or undefined. The read and write functions in this case deal
with lines. The write function writes a line at a time and looks for
a null terminator in the input rather than the length. The read
function can read partial lines if a length less then or equal to the
total line length is requested. If the length is greater than the
remaining line length, the length is returned and the buffer is
null-terminated. The read function returns -1 for the actual end of
input, since a read length of zero is valid for a blank line.

(59) Animation Types
. . .
typedef struct st_LWLoadState {

int ioMode;
void *readData;
int (*read) (void *readData, char *buf,

int len);
} LWLoadState;

typedef struct st_LWSaveState {

lw 38 / 64

int ioMode;
void *writeData;
void (*write) (void *writeData, char *buf,

int len);
} LWSaveState;
. . .

Plug-in clients which write instance data must do their own versioning
so they can read old forms of their own data, and their own bit
twiddling to read and write binary data on machines with different
byte order and floating point formats. Clients must also make sure
they do not read past the end of their own data. This last
restriction may be lifted in future versions.

1.52 s7.5.2

A server manages its instances by providing LightWave with functions
to create, destroy, load and save them. The server activation
function gets a handler structure which it initializes with the
standard instance handler functions listed here, plus whatever else is
required by the specific class of plug-in.

create create a default instance. Any failure should return a
null pointer and optionally set the error value.

destroy dispose of an instance.

copy copy the contents of the "from" instance to the "to"
instance.

load read an instance description from a file into an already
created instance.

save write an instance description to a file.

The create function should create a default instance which can then be
modified by the interface function. The load and copy functions will
overwrite existing instances with new values read from a file or a
source instance.

(60) Animation Types
. . .
typedef struct LWInstHandler {

LWInstance (*create) (LWError *);
void (*destroy) (LWInstance);
LWError (*copy) (LWInstance from, LWInstance to);
LWError (*load) (LWInstance, const LWLoadState *);
LWError (*save) (LWInstance, const LWSaveState *);

} LWInstHandler;
. . .

1.53 s7.5.3

lw 39 / 64

There is often another server associated with a handler and that is
the "Interface" server. The activation function for the interface
server is called with a LWInstance as its local data. The server will
then allow the user to edit the instance description and return. The
interface server is just another function that operates on instances
of a specific type, but it is separate from the other instance handler
functions for two reasons. The first is that the user interface code
is frequently the largest and least often used part of a handler, so
it makes sense to allow it to be loaded separately only when needed.
The second is to permit plug-in authors to easily make "render-only"
versions of their plug-in servers for rendering accelerators or
packaging bundles.

For example, if the plug-in type was "XXX", there would be two classes
of server, "XXXHandler" and "XXXInterface". Then for a specific
server of the XXX type, called "MyXXX", there would be a MyXXX defined
for the XXXHandler class which would provide all the normal handler
functions, and there would also be a MyXXX server of the XXXInterface
class which would perform the user interface.

1.54 s8

The many server classes for Layout provide a wide range of
capabilities and extentions to basic LightWave rendering and
animation. Since there are so many servers there may be multiple ways
to accomplish the same effect, some better than others.

8.1 Utilities
8.2 Image Post Processing
8.3 Procedural Texture
8.4 Procedural Displacement Map
8.5 Procedural Item Animation
8.6 Procedural Object Replacement
8.7 Frame Buffers
8.8 Animation Output
8.9 Scene Conversion
8.10 General Function

1.55 s8.1

The "ImageSaver" class, described in the "LightWave Images" document
is used by Layout to save output images in different formats.

1.56 s8.2

The "ImageFilterHandler" (and "ImageFilterInterface") class is used to
apply image post processing (filtering) effects to the final rendered
image. Each filter is applied after all the antialiasing and motion
blur passes are complete, and the server modifying the red, green,

lw 40 / 64

blue and alpha values of the final image.

8.2.1 Input Buffers
8.2.2 Filter Access
8.2.3 Handler

1.57 s8.2.1

In addition to looking at the RGBA of the image, the server can
compute its effects based on a potentially large set of full-image
buffers, given by the LWBUF codes below. Each of these is a
full-screen array of 0-255 BufferValues indicating the presence or
absence of that particular attribte for each pixel in the final image.

RED, GREEN, BLUE and ALPHA
These buffers are the outputs of the rendering pass and
are the base which should be modified by the server.
These are always provided to every image filter.

SPECIAL This value is assigned by the user on a surface by
surface basis which is used only for this filter. This
is designed to be used to activate the post processing
effect for specific surfaces, and user-assigned
percentages show up here as 0-255 values in the buffer.

LUMINOUS..RAW_BLUE
These eight buffers are the raw values of the surface
parameters before shading.

SHADING This buffer is a picture of the diffuse shading applied
to the raw shapes in the image.

SHADOW This indicates where shadows are falling in the final
image. It may also be thought of as an illuminations
map, showing what parts of the image are visible to the
lights in the scene.

GEOMETRY The value in this buffer is computed from the dot-product
of the surface normal with the eye vector. It reveals
something about the underlying shape of the objects in
the image. Where this buffer is 255 (or 1.0) the surface
is facing directly toward the camera, and where this
buffer is 0, the surface is edge-on to the camera.

DEPTH The depth buffer is a map of the distance of each pixel
from the camera plane. This buffer is different from all
the others because it is floating point, and because it
is not anti-aliased or motion-blured.

(61) Animation Servers

#define LWBUF_SPECIAL 0

#define LWBUF_LUMINOUS 1
#define LWBUF_DIFFUSE 2

lw 41 / 64

#define LWBUF_SPECULAR 3
#define LWBUF_MIRROR 4
#define LWBUF_TRANS 5
#define LWBUF_RAW_RED 6
#define LWBUF_RAW_GREEN 7
#define LWBUF_RAW_BLUE 8

#define LWBUF_SHADING 9
#define LWBUF_SHADOW 10
#define LWBUF_GEOMETRY 11
#define LWBUF_DEPTH 12

#define LWBUF_RED 32
#define LWBUF_GREEN 33
#define LWBUF_BLUE 34
#define LWBUF_ALPHA 35
. . .

1.58 s8.2.2

At each frame that the filter is active, the server will get the image
to process. It reads the contents of the image buffers and writes new
RGB and Alpha data to the output buffer and exits when it has
processed the entire frame. This processing is done using a
‘FilterAccess’ structure which contains data fields and functions.

width, height
This is the total size of the input and output image
buffers. Filters cannot change the image size and all
buffers are the same size.

frame This is the frame number of this final image.

start, end These two times are the start and end times for the
frame. The times are the same unless the frame has
motion-blur, in which case the difference between them is
the "exposure time" for the frame.

bufLine, fltLine
The functions allow access to the input buffers and
return pointers to a line of the buffer of the given
type. For y=0, the top line of the buffer is returned;
for y=1 the second to the top line, etc. ‘bufLine’
returns lines from byte-encoded buffers and ‘fltLine’
returns lines from float-encoded buffers (currently only
LWBUF_DEPTH). Invalid type codes return null pointers.

setRGB, setAlpha
The output buffers must be set using these functions
which set the final value at a pixel location. The input
RGBA buffers do not change as the output buffers are
modified. A filter must set every pixel in the output
image even if it does not alter the value, but it can set
them in any order.

lw 42 / 64

monitor This monitor can be used by the server to update the host
about its progress through the frame. As with all
monitors, the number of steps should be kept fairly low
since checking for abort can have significant overhead on
some systems. Every line or every other line should be
about right.

(62) Animation Servers
. . .
typedef struct st_FilterAccess {

int width, height;
LWFrame frame;
LWTime start, end;
BufferValue * (*bufLine) (int type, int y);
float * (*fltLine) (int type, int y);
void (*setRGB) (int x, int y, BufferValue[3]);
void (*setAlpha) (int x, int y, BufferValue);

#ifndef LW_PRERELEASE
Monitor *monitor;

#endif
} FilterAccess;
. . .

1.59 s8.2.3

The activation function for an image filter gets passed a blank
handler structure as its local data which the server must fill in. In
addition to the normal instance functions, it must also provide a
‘process’ function and ‘flags’ function.

process This is the function which filters a single frame given
an instance and the access structure.

flags This returns a set of bits representing the buffers this
instance wants at processing time, where the bit numbers
are the LWBUF values above. Only buffers 0-12 need to be
specified this way since the R, G, B and Alpha buffers
are always provided. Undefined bits should be clear by
default.

(63) Animation Servers
. . .
typedef struct st_ImageFilterHandler {

LWInstHandler inst;
void (*process) (LWInstance, const FilterAccess *);
unsigned int (*flags) (LWInstance);

} ImageFilterHandler;
. . .

1.60 s8.3

lw 43 / 64

The "ShaderHandler" (and "ShaderInterface") class is for modifying the
attributes of a pixel as it is being rendered. These are sometimes
called "procedural textures," but in the LightWave implementation they
are quite a bit more powerful than that. Since it is called on a
per-pixel basis, this interface is designed for speed.

As LightWave goes through the process of converting abstract 3D
surfaces into imagery, it breaks surfaces down into tiny patches which
each get a uniform color. Computing the color of these tiny spots is
done by starting from a set of basic surface parameters which are
approximately constant over the patch: base color, surface normal,
luminosity, diffuse reflection, specular reflection, reflectivity,
transparency, refractive index and roughness (or glossiness). From
these values LightWave’s illumination calculation computes the color
and intensity of reflected light and transmitted light and determines
the color of the spot as seen from the given viewpoint. Plug-in
shaders can either alter the base parameters and let LightWave do the
rendering calculation, or they can perform the illumination themselves
and compute the preceived color directly.

8.3.1 Shader Access
8.3.2 Geometric Parameters
8.3.3 Modifiable Parameters
8.3.4 Shading Functions
8.3.5 Instance

1.61 s8.3.1

The spot evaluation function is called for every visible spot on a
surface with a ‘ShaderAccess’ structure describing the spot to be
shaded. The access structure for contains some values which are
read-only and some which are meant to be modified. The read-only
values describe the geometry of the pixel being shaded. The
read-write values describe the current parameters of this pixel and
should be modified in place to affect the final look of the spot.
Since shaders may be layered, these properties may be altered many
more times before final rendering. The access structure also contains
special functions usable only while rendering.

(64) Animation Servers
. . .
typedef struct st_ShaderAccess {

<Read-only shader parameters>
<Modifiable shader parameters>
<Shader functions>

} ShaderAccess;
. . .

1.62 s8.3.2

The spot parameters are read-only and describe the local geometry of

lw 44 / 64

the spot being shaded.

sx, sy Spot location in the final image in pixel coordinates
with (0,0) at the upper-left.

oPos, wPos Spot position in object coordinates and world
coordinates.

gNorm Geometric normal in world coordinates. This is the raw
polygonal normal at the spot, unperturbed by smoothing or
bump mapping.

spotSize Approximate spot diameter. This is a very approximate
value since spots on a surface viewed on edge are long
and thin. This can be used to compute texture
antialiasing.

raySource Origin of the incoming viewing ray in world coordinates.
Often this will be the camera but it does not have to be.

rayLength The distance the viewing ray traveled in free space to
reach this spot.

cosine This is the cosine of the angle between the viewing ray
and the surface normal at this spot. It indicates how
glancing the view is and gives a measure of how
approximate the spot size is.

oXfrm, wXfrm
Object to world and world to object transformation
matrices. This can be computed other ways, but are
included here for speed and are intended to be used
primarily for directional vectors.

objID The object being shaded. A single shader instance can be
shared between multiple objects, so this may be different
for each evaluation. For sample sphere rendering the ID
will refer to an object not in the current scene.

polNum The polygon number of the object being shaded. While
this will be the polygon number for normal mesh objects,
it may represent other sub-object information in non-mesh
objects.

(65) Read-only shader parameters

int sx, sy;
double oPos[3], wPos[3];
double gNorm[3];
double spotSize;
double raySource[3];
double rayLength;
double cosine;
double oXfrm[9], wXfrm[9];
LWItemID objID;

#ifndef LW_PRERELEASE
int polNum;

lw 45 / 64

#endif

1.63 s8.3.3

These parameters are used by the renderer to compute the perceived
color at the spot and may be modified by the shader. The shader must
return the correct flags for any value it will modify or the change
will not take effect (see below).

wNorm Surface normal in world coordinates. Modifying this
makes the surface look bumpy without altering the
geometry (bump mapping). The shader needs to renormalize
the vector after perturbation.

color Base color of the spot.

luminous Percentage luminosity.

diffuse Percentage diffuse reflection.

specular Percentage specular reflection.

mirror Percentage reflectivity.

transparency
Percentage transparency.

eta Index of refraction.

roughness Surface roughness, often expressed as the inverse of
glossiness.

(66) Modifiable shader parameters

double wNorm[3];
double color[3];
double luminous;
double diffuse;
double specular;
double mirror;
double transparency;
double eta;
double roughness;

To set the perceived color directly a shader can set all the
parameters to zero except for luminous which is 1.0 and color which is
the output color of the spot.

1.64 s8.3.4

Special functions are provided to shaders which are not available in
any other context.

lw 46 / 64

illuminate This function returns the light ray (color and direction)
hitting the given position from the given light at the
current instant. The return value is zero if the light
does not illuminate the given world coordinate position
at all. The color includes effects from shadows (if
any), falloff, spotlight cones and transparent objects
between the light and the point.

rayTrace This function may be called to trace a ray from the a
given location in a given direction (in world
coordinates). The return value is the length of the ray
(or -1.0 if infinite) and the color coming from that
direction. The direction used is the outgoing direction
and must be normalized to be a unit vector.

(67) Shader functions

int (*illuminate) (LWItemID light,
const double position[3],
double direction[3],
double color[3]);

double (*rayTrace) (const double position[3],
const double direction[3],
double color[3]);

1.65 s8.3.5

A shader instance may store its data in an object (in the case of a
surface texture) or in a scene (in the case of a clip map) so the
save/load functions should be prepared to deal with both cases.

init Called at the start of rendering a sequence of frames.

cleanup Called when current sequence is complete.

newTime Called at the start of each new time within the current
sequence.

evaluate Called to compute the shading of each affected pixel
within the current time.

flags Returns a word containing status bits for the instance.
Undefined flag bits should be clear by default. The
first nine LWSHF bits should be set only if the shader
instance is going to modify that particular attribute.
RAYTRACE must be set if the shader intends to use the
‘rayTrace’ function.

(68) Animation Servers
. . .
#define LWSHF_NORMAL (1<<0)
#define LWSHF_COLOR (1<<1)
#define LWSHF_LUMINOUS (1<<2)
#define LWSHF_DIFFUSE (1<<3)

lw 47 / 64

#define LWSHF_SPECULAR (1<<4)
#define LWSHF_MIRROR (1<<5)
#define LWSHF_TRANSP (1<<6)
#define LWSHF_ETA (1<<7)
#define LWSHF_ROUGH (1<<8)
#define LWSHF_RAYTRACE (1<<10)
. . .

(69) Animation Servers
. . .
typedef struct st_ShaderHandler {

LWInstHandler inst;
LWError (*init) (LWInstance);
void (*cleanup) (LWInstance);
LWError (*newTime) (LWInstance, LWFrame, LWTime);
void (*evaluate) (LWInstance, ShaderAccess *);
unsigned int (*flags) (LWInstance);

} ShaderHandler;
. . .

1.66 s8.4

The "DisplacementHandler" (and "DisplacementInterface") class is
called upon before rendering to modify the geometry of an object.
This is done not only during rendering but also during interactive
previewing in the Layout window. This means that a server should
always be prepared to process a displacement instance at any time.

8.4.1 Displacement Access
8.4.2 Handler

1.67 s8.4.1

At its core a displacement handler takes point coordinates and moves
them for each timestep. The access structure for a displacement map
gets the position of the point to displace in two ways.

oPos This is the point location in object coordinates and is
read-only. The server may use this in computations, but
moving it has no effect.

source This is the location to be transformed in place by the
displacement. If this is not a world-coordinate
displacement, then the source coordinates are the in the
object coordinate system but have been already displaced
by any morphing or boning applied to the object, and may
differ from the object coordinates. If the displacment
is in world coordinates (see ‘flags’ below), then the
source coordinates are morphed, boned and transformed by
object motion (i.e. they are world coordinates).

(70) Animation Servers

lw 48 / 64

. . .
typedef struct st_DisplacementAccess {

double oPos[3];
double source[3];

} DisplacementAccess;
. . .

1.68 s8.4.2

The handler functions for a displacement map are the same as a shader
except for the lack of ‘init’ and ‘cleanup’ functions. The ‘newTime’
function also has a parameter for the ID of the object being affected
by the displacement. The LWDMF_WORLD bit should be set in the ‘flags’
return value if the displacement will take place in world coordinates.

(71) Animation Servers
. . .
typedef struct st_DisplacementHandler {

LWInstHandler inst;
LWError (*newTime) (LWInstance, LWItemID,

LWFrame, LWTime);
void (*evaluate) (LWInstance,

DisplacementAccess *);
unsigned int (*flags) (LWInstance);

} DisplacementHandler;

#define LWDMF_WORLD (1<<0)
. . .

1.69 s8.5

The "ItemMotionHandler" (and "ItemMotionInterface") class is used to
apply animation behavior to any item in a scene which can be
keyframed. After the keyframe position of the item is computed, the
item motion server can alter the keyframed motion or replace it with a
completely different one. Motions will be evaluated both during
rendering and while interactively laying out a scene.

8.5.1 Item Motion Access
8.5.2 Handler

1.70 s8.5.1

At each time instant and for each affected item, the motion evaluation
function will be called with an access structure holding the ID of the
item and the time instant for which the motion should be computed.
The server can query keyframe parameters for the item and sets it own
values for the current time.

item This is set to the ID for the item to be affected by the

lw 49 / 64

procedural motion.

frame, time This is set to the current instant for which the motion
should be evaluated.

getParam Returns the keyframed motion set by the user for the item
at any given time. Only the POSITION, ROTATION and
SCALING parameters may be queried.

setParam Used by the evaluation function to set the computed
motion of the item at the current time. Only the
POSITION, ROTATION and SCALING parameters may be set.

(72) Animation Servers
. . .
typedef struct st_ItemMotionAccess {

LWItemID item;
LWFrame frame;
LWTime time;
void (*getParam) (LWItemParam, LWTime,

double vector[3]);
void (*setParam) (LWItemParam,

const double vector[3]);
} ItemMotionAccess;
. . .

Procedural motions are not currently allowed to interact. If a motion
evaluation function attempts to read out the position of another
object which is affected by a procedural motion, only the values of
the keyframed motion will be returned.

1.71 s8.5.2

The handler for item motions adds only the ‘evaluate’ function to the
standard set of handler functions. This computes the motion for an
item at a given timestep, and may be called at any time.

(73) Animation Servers
. . .
typedef struct st_ItemMotionHandler {

LWInstHandler inst;
void (*evaluate) (LWInstance,

const ItemMotionAccess *);
} ItemMotionHandler;
. . .

1.72 s8.6

The "ObjReplacementHandler" (and "ObjReplacementInterface") class
allows another type of animation which can replace the entire object
geometry at every single step. Replacement is done by object name, so
the server evaluation function can provide a new object name to load

lw 50 / 64

for each subframe timestep, or it can only load a new object
periodically, allowing the same geometry to persist for a length of
time.

Filenames are used instead of direct mesh replacement for generality.
An object replacement server could use a series of prebuilt objects,
like character heads for example, to do expressions or lip-syncing by
providing the name of the correct head at each step. Some animation
could be done very efficiently using a combination of object
replacement and object import servers. The replacement server could
write a brief description file for the parameters of a timestep
(positions and sizes of metaballs, for example) which the object
import server could then convert into a complete mesh while loading.
A simple form of this server could be used to replace objects with
nulls when they are not visible in the scene.

8.6.1 Object Replacement Access
8.6.2 Handler

1.73 s8.6.1

The access structure passed to the evaluation function contains
information about the currently loaded object and the next timestep.
The server compares the current settings and the next step and
provides a new filename if a different object should be loaded for the
next timestep to be evaluated. If the currently loaded geometry can
be used for the new frame and time, then the new filename can be set
to null.

objectID Item ID for the object whose geometry may be replaced by
this server.

curFrame, curTime, newFrame, newTime
The frame and time values for the currently loaded
geometry and the next step. New geometry should be
loaded if the object needs to look different at the two
different times. The times may not be sequential, since
network rendering can cause the renderer to jump around
between non-sequential times.

curType, newType
The type of the geometry currently loaded and needed for
the next timestep. The server can provide different
geometry for interactive previewing and actual rendering
by examining this value. OBJREP_NONE is only used when
there is no geometry loaded at all for the current time.

(74) Animation Servers
. . .
#define OBJREP_NONE 0
#define OBJREP_PREVIEW 1
#define OBJREP_RENDER 2
. . .

curFilename This is set to the object geometry file currently loaded,

lw 51 / 64

and may be null if there is no geometry loaded.

newFilename This is the filename of a new object file to be loaded as
the geometry for this item at the new timestep, and is
the only field set by the server. It should only be set
if the new geometry differs from that currently loaded,
since loading new geometry incurs significant overhead.

(75) Animation Servers
. . .
typedef struct st_ObjReplacementAccess {

LWItemID objectID;
LWFrame curFrame, newFrame;
LWTime curTime, newTime;
int curType, newType;
const char *curFilename;
const char *newFilename;

} ObjReplacementAccess;
. . .

In Layout 4.0, curType is always set to OBJREP_NONE and curFrame,
curTime and curFilename are not set. 4.0 treats every frame as if no
model were loaded.

1.74 s8.6.2

In addition to the normal handler functions, the server provids an
‘evaluate’ function which is called for each affected object at each
timestep to get new geometry. This function can be called at any time
while rendering or setting up animations.

(76) Animation Servers
. . .
typedef struct st_ObjReplacementHandler {

LWInstHandler inst;
void (*evaluate) (LWInstance,

ObjReplacementAccess *);
} ObjReplacementHandler;
. . .

1.75 s8.7

The "FrameBufferHandler" (and "FrameBufferInterface") class is used to
display the output of rendering as each frame is completed. This is
for the user to view, so the frame buffer should also be able to pause
waiting for user input.

A frame buffer is an instance, but it may be very limited. The built-
in frame buffers have no UI and no stored state.

open Open display at the given size.

lw 52 / 64

close Close display and end display transations.

begin Start a new frame.

write Write a new line of RGB and alpha data to the
framebuffer. Lines always come from top to bottom and
there are always enough to fill the width and height of
the requested display.

pause Display the buffer to the user and wait for their signal
to continue before returning.

The sequence of calls for rendering to the frame buffer can be
visualized as a regular expression:

open, (begin, (write)H, pause?)*, close

Any number of frames may be displayed in a session (even zero). Write
will always be called for all the lines in the image and pause is
optional.

(77) Animation Servers
. . .
typedef struct st_FrameBufferHandler {

LWInstHandler inst;
LWError (*open) (LWInstance, int w, int h);
void (*close) (LWInstance);
LWError (*begin) (LWInstance);
LWError (*write) (LWInstance,

const BufferValue *R,
const BufferValue *G,
const BufferValue *B,
const BufferValue *alpha);

void (*pause) (LWInstance);
} FrameBufferHandler;
. . .

1.76 s8.8

The "AnimSaverHandler" (and "AnimSaverInterface") class is used to
write out animations. The scheme is nearly identical to framebuffers,
except that there is no ‘pause’ function and in addition to the image
size, LightWave will also pass a filename for the animation file.

(78) Animation Servers
. . .
typedef struct st_AnimSaverHandler {

LWInstHandler inst;
LWError (*open) (LWInstance, int w, int h,

const char *filename);
void (*close) (LWInstance);
LWError (*begin) (LWInstance);
LWError (*write) (LWInstance,

const BufferValue *R,
const BufferValue *G,

lw 53 / 64

const BufferValue *B,
const BufferValue *alpha);

} AnimSaverHandler;
. . .

1.77 s8.9

The "SceneConverter" class is used in import foreign scene formats.
When the user selects a file to load as a scene, LightWave first
attempts to load it directly as an LWSC format file. It it cannot, it
will pass the filename to each scene converter in sequence. The scene
converter will attempt to read the file and rewrite it as an LWSC
file. After successful translation the server will pass the name of
the new scene back to LightWave. The file will be loaded and the
server will be called back again to delete the translated scene file.

filename Filename of foreign scene file. This is set by the host
before activating the server. This is the file to try to
parse.

readFailure If the server can recognize the format but cannot parse
the file for some reason, it should set this error return
value.

tmpScene If the server sucessfully parses the foreign scene file,
it should write a translation of that scene as a LWSC
format file and return the name of this translation scene
in this field.

deleteTmp After reading the temporary scene file set above, the
host will call back this delete function to dispose of
the file and any other temporary state. The ‘tmpScene’
and ‘deleteTmp’ fields should be set as a pair before the
server returns.

(79) Animation Servers
. . .
typedef struct st_SceneConverter {

const char *filename;
LWError readFailure;
const char *tmpScene;
void (*deleteTmp) (const char *tmpScene);

} SceneConverter;

When the server is called, only ‘filename’ will be set. It then must
set the other three fields to one of the following configurations:

readFailure and tmpScene both null
This indicates that the server was unable to recognize
the file format and no translation was done. LightWave
will simply try the next translator.

readFailure set, tmpScene null
This indicates that the file format was recognized, but
that a failure of some kind occured during translation.

lw 54 / 64

LightWave will display this error and will stop
attempting to translate the file.

readFailure null, tmpScene set
This indicates successful translation. LightWave will
read ‘tmpScene’ as an LWSC file and then will call the
‘deleteTmp’ function to dispose of it. Note that if
tmpScene is set, deleteTmp must be set as well.

1.78 s8.10

The "LayoutGeneric" class is provided for general layout functionality
which does not fit into any of the previous server or handler
categories. Servers of this class can be activated by the user from
the Layout interface to perform non-rendering functions, such as
configuring external devices, performing calculations, etc.

Normal global information is available to this class of server, but
the local pointer is unused.

1.79 s9

This section contains descriptions of the global data pointers which
can be accessed from LightWave’s global function. The ID string for
each global is given in quotes.

9.1 Item Information
9.2 Object Information
9.3 Bone Information
9.4 Light Information
9.5 Camera Information
9.6 Scene Information
9.7 Image List Information
9.8 Compositing Information
9.9 Global Rendering Memory Pool

1.80 s9.1

The global ID "LW Item Info" returns functions for traversing the
entire set of items in the scene and getting information about all of
them. This information is common to all items. Any information
specific to certain item types is given by separate global functions.

first Returns the ID of the first item of a given type. If
type is LWI_BONE, the second argument is the ID of the
boned object. If there are no items of this type this
returns LWITEM_NULL.

next Returns the next item of the same type as the argument.
If there are no more, this returns LWITEM_NULL.

lw 55 / 64

firstChild Returns the first child item of the parent item. It
returns LWITEM_NULL if none.

nextChild Returns the next child item given a parent item and the
previous child. It returns LWITEM_NULL if that was the
last one.

parent Returns the item’s parent, if any, and LWITEM_NULL if
none.

target Returns the item’s target, if any, and LWITEM_NULL if
none.

goal Returns the item’s goal, if any, and LWITEM_NULL if none.

type Returns the type of an arbitrary item.

name Returns the name of the item as it appears to the user.

param Returns vector parameters from an item using a
LWItemParam code to identify the parameter desired. The
value is written to the vector array for the given time.

limits Returns upper and lower bounds on vector parameters.
These may be limits set by the user on joint angles or
ranges of movement. LWVECF flag bits are returned to
indicate which of the three vector indicies contain
limits. Any bits unset are unbounded.

(80) Animation Types
. . .
#define LWVECF_0 (1<<0)
#define LWVECF_1 (1<<1)
#define LWVECF_2 (1<<2)
. . .

(81) Animation Globals

typedef struct st_LWItemInfo {
LWItemID (*first) (LWItemType, LWItemID);
LWItemID (*next) (LWItemID);
LWItemID (*firstChild) (LWItemID parent);
LWItemID (*nextChild) (LWItemID parent, LWItemID

prevChild);
LWItemID (*parent) (LWItemID);
LWItemID (*target) (LWItemID);
LWItemID (*goal) (LWItemID);
LWItemType (*type) (LWItemID);
const char * (*name) (LWItemID);
void (*param) (LWItemID, LWItemParam, LWTime,

double vector[3]);
unsigned int (*limits) (LWItemID, LWItemParam,

double min[3], double max[3]);
} LWItemInfo;
. . .

lw 56 / 64

1.81 s9.2

The global ID "LW Object Info" returns functions for object-specific
information.

filename Returns the filename for the object file.

numPoints, numPolygons
Returns the number of points and polygons in the object
mesh.

shadowOpts Returns bits for shadow options, as below.

(82) Animation Types
. . .
#define LWOSHAD_SELF (1<<0)
#define LWOSHAD_CAST (1<<1)
#define LWOSHAD_RECEIVE (1<<2)
. . .

dissolve Returns the object dissolve percentage as a function of
time.

(83) Animation Globals
. . .
typedef struct st_LWObjectInfo {

const char * (*filename) (LWItemID);
int (*numPoints) (LWItemID);
int (*numPolygons) (LWItemID);
unsigned int (*shadowOpts) (LWItemID);
double (*dissolve) (LWItemID, LWTime);

} LWObjectInfo;
. . .

1.82 s9.3

The global ID "LW Bone Info" returns functions for getting
bone-specific information.

flags Returns a set of flag bits for the given bone, as
follows.

(84) Animation Types
. . .
#define LWBONEF_ACTIVE (1<<0)
#define LWBONEF_LIMITEDRANGE (1<<1)
. . .

restParam This gets vector parameters for the rest position of a
given bone. Parameters of the animated bone can be read
from the normal item info functions.

restLength This gets the special rest length parameter of the given
bone.

lw 57 / 64

limits For limited range bones, this gets the inner and outer
limit radii for the bone. Influence areas are in the
shape of a cylinder with hemispherical ends centered at
the tips of the bone.

(85) Animation Globals
. . .
typedef struct st_LWBoneInfo {

unsigned int (*flags) (LWItemID);
void (*restParam) (LWItemID, LWItemParam,

double vector[3]);
double (*restLength) (LWItemID);
void (*limits) (LWItemID, double *inner,

double *outer);
} LWBoneInfo;
. . .

1.83 s9.4

The global ID "LW Light Info" returns functions for getting
light-specific information.

ambient Returns the ambient light color (with intensity factored
in) at the given time. There is no light ID needed since
this is global to the scene.

type Returns the type of the given light as one of the
following values.

(86) Animation Types
. . .
#define LWLIGHT_DISTANT 0
#define LWLIGHT_POINT 1
#define LWLIGHT_SPOT 2
. . .

color Returns the light color (with intensity factored in) at
the given time.

shadowType Returns the shadow type for the given light as one of the
following values.

(87) Animation Types
. . .
#define LWLSHAD_OFF 0
#define LWLSHAD_RAYTRACE 1
#define LWLSHAD_MAP 2
. . .

coneAngles Returns the cone angles for spotlights. Radius is half
the total light code angle and edge is the angular width
of the soft edge.

(88) Animation Globals

lw 58 / 64

. . .
typedef struct st_LWLightInfo {

void (*ambient) (LWTime, double color[3]);
int (*type) (LWItemID);
void (*color) (LWItemID, LWTime, double color[3]);
int (*shadowType) (LWItemID);
void (*coneAngles) (LWItemID, double *radius,

double *edge);
} LWLightInfo;
. . .

1.84 s9.5

The global ID "LW Camera Info" returns functions for accessing
information specific to the camera. A camera has an ID which must be
passed to these functions in anticipation of multiple cameras per
scene.

zoomFactor Returns the zoom factor for the camera at the given time.

focalLength Returns the focal length of the camera lens at the given
time. Focal length is expressed in millimeters.

focalDistance
Returns the distance to the focal plane of the camera at
the given time.

fStop Returns the F-Stop number at the given time.

blurLength Returns the blur length as a fraction of the frame time
for the given time.

fovAngles Returns the camera field of view angles at the given
time. These are angles in radians centered around the
camera direction.

(89) Animation Globals
. . .
typedef struct st_LWCameraInfo {

double (*zoomFactor) (LWItemID, LWTime);
double (*focalLength) (LWItemID, LWTime);
double (*focalDistance) (LWItemID, LWTime);
double (*fStop) (LWItemID, LWTime);
double (*blurLength) (LWItemID, LWTime);
void (*fovAngles) (LWItemID, LWTime,

double *horizontal,
double *vertical);

} LWCameraInfo;
. . .

1.85 s9.6

lw 59 / 64

The global ID "LW Scene Info" returns a block of information about the
scene itself. This is all strictly read-only.

name User’s name for the scene.

filename Filename of the scene file.

numPoints, numPolygons
Total number of points and polygons for all the objects
in the scene.

renderType This can be one of the following values.

(90) Animation Types
. . .
#define LWRTYPE_WIRE 0
#define LWRTYPE_QUICK 1
#define LWRTYPE_REALISTIC 2
. . .

renderOpts This is a combination of bits for different rendering
options. EVENFIELDS is set only if field rendering is on
and the first line of the output image is from the field
that comes first in time.

(91) Animation Globals
. . .
#define LWROPT_SHADOWTRACE (1<<0)
#define LWROPT_REFLECTTRACE (1<<1)
#define LWROPT_REFRACTTRACE (1<<2)
#define LWROPT_FIELDS (1<<3)
#define LWROPT_EVENFIELDS (1<<4)
#define LWROPT_MOTIONBLUR (1<<5)
#define LWROPT_DEPTHOFFIELD (1<<6)
#define LWROPT_LIMITEDREGION (1<<7)
. . .

frameStart, frameEnd, frameStep
The range of frames defined for the scene.

framesPerSecond
Number of frames per real-time second. This will be 30
for video (even field rendered), and 24 for film.

frameWidth, frameHeight
Final output image size in pixels.

pixelAspect Pixel aspect ratio as pixel-width / pixel-height. Values
greater than one mean short wide pixels and values less
than one mean tall thin pixels.

minSamplesPerPixel, maxSamplesPerPixel
Limits on number of samples per pixel in the final image.
Because of different rendering techniques and adaptive
sampling it is impossible to compute a precise number of
antialiasing samples at any pixel, but this gives a range

lw 60 / 64

for the current rendering options.

limitedRegion
The location of the limited region area, given as x0, y0,
x1, y1.

(92) Animation Globals
. . .
typedef struct st_LWSceneInfo {

const char *name;
const char *filename;
int numPoints;
int numPolygons;
int renderType;
int renderOpts;
LWFrame frameStart;
LWFrame frameEnd;
LWFrame frameStep;
double framesPerSecond;
int frameWidth;
int frameHeight;
double pixelAspect;
int minSamplesPerPixel;
int maxSamplesPerPixel;
int limitedRegion[4]; /* x0, y0, x1, y1 */

} LWSceneInfo;
. . .

1.86 s9.7

The global ID "LW Image List" returns functions for traversing
LightWave’s image list and accessing values in the image. Images are
identified by an abstract data type.

(93) Animation Types
. . .
typedef void * LWImageID;
. . .

first Returns the first image in the list, null if none.

next Returns the next image after the given one, null if none.

load Loads a file as an image, adds it to the list and returns
it.

name Returns the user’s name for an image.

filename Returns the filename for the loaded image. This is the
value that should be stored for later retrieval of the
image using ‘load.’ If the ID refers to an image
sequence, the frame number will be used to construct the
appropriate image filename.

isColor Returns true if the image has color data or false if only

lw 61 / 64

greyscale.

needAA This needs to be called by shaders that want to use the
"spot" functions to access values in the image in the
course of their shading calculations. This function can
only be called from a shader’s ‘init’ function.

size Returns the width and height of the image in pixels.

luma Returns the greyscale value of the image from 0-255. If
this is a color source image the value returned is the
NTSC luminence.

RGB Returns the RGB color of the image from 0-255 at the
given pixel.

lumaSpot, RGBSpot
Returns the floating point greyscale or color value of
the image for a spot of the given diameter at the given
center in the image. These functions can only be called
during the spot evaluation function of a shader, and
‘needAA’ must have been called during the shader’s
initialization. If the spot size is small and ‘blend’ is
true, the color value will be interpolated from between
image pixels.

clear Removes the image from the scene, clearing all
references.

(94) Animation Globals
. . .
typedef struct st_LWImageList {

LWImageID (*first) (void);
LWImageID (*next) (LWImageID);
LWImageID (*load) (const char *);
const char * (*name) (LWImageID);

#ifndef LW_PRERELEASE
const char * (*filename) (LWImageID, LWFrame);

#else
const char * (*filename) (LWImageID);

#endif
int (*isColor) (LWImageID);
void (*needAA) (LWImageID);
void (*size) (LWImageID, int *w, int *h);
BufferValue (*luma) (LWImageID, int x, int y);
void (*RGB) (LWImageID, int x, int y,

BufferValue[3]);
double (*lumaSpot) (LWImageID, double x, double y,

double spotSize, int blend);
void (*RGBSpot) (LWImageID, double x, double y,

double spotSize, int blend,
double[3]);

#ifndef LW_PRERELEASE
void (*clear) (LWImageID);

#endif
} LWImageList;

lw 62 / 64

. . .

1.87 s9.8

The global ID "LW Compositing Info" returns a structure describing the
state of the built-in compositing function. The three ImageID’s are
the background image, the foreground image and the foreground alpha
image.

(95) Animation Globals
. . .
#ifndef LW_PRERELEASE
typedef struct st_LWCompInfo {

LWImageID bg;
LWImageID fg;
LWImageID fgAlpha;

} LWCompInfo;
#endif
. . .

1.88 s9.9

The global ID "Global Render Memory" returns functions for accessing
the Global Rendering Pool. This is shared memory that can be used
while rendering. This has two main uses: The first is for read-only
tables, like trig or random noise lookup tables which can be shared by
textures. The second is for communication areas for textures that
wish to cooperate in terms of sharing computed values on a per-pixel
basis. LightWave does nothing to manage this shared pool expect to
clear it out after rendering.

The memory chunks are pointers to blocks of memory of different sizes.
They are identified by arbitrary null-terminated character strings.

(96) Animation Types
. . .
typedef void * MemChunk;

first, next These functions allow traversal of the memory chunks in
the list (pool). Clients can use these functions if they
need to search for more complex critera than just ID.

ID, size These return the ID string and size of a memory chunk
given a pointer to the memory.

find This returns a pointer to a memory chunk which matches
the given ID. Multiple chunks may be created with the
same ID, so this returns the first one.

create This creates a memory chunk with the given size and ID
and returns a pointer to the memory. For chunks to be
unique it is best to try to find the ID before calling

lw 63 / 64

this function.

(97) Animation Globals
. . .
typedef struct st_GlobalPool {

MemChunk (*first) (void);
MemChunk (*next) (MemChunk);
const char * (*ID) (MemChunk);
int (*size) (MemChunk);
MemChunk (*find) (const char *ID);
MemChunk (*create) (const char *ID, int size);

} GlobalPool;

1.89 s10

Three header files describe the whole set of LightWave servers and
globals. ‘lwbase.h’ is for the declarations common to both Layout and
Modeler, ‘lwmod.h’ is for Modeler only and ‘lwran.h’ is for Layout
only (Rendering and ANimation).

(98) Common LightWave Header

/*
* LWSDK Header File

* Copyright 1995 NewTek, Inc.

*/
#ifndef LW_BASE_H
#define LW_BASE_H

#include <moni.h>
#include <plug.h>

<Common Server Classes>
<Common Globals>

#endif

(99) LightWave Modeler Plug-in Header

/*
* LWSDK Header File

* Copyright 1995 NewTek, Inc.

*/
#ifndef LW_MOD_H
#define LW_MOD_H

#include <lwbase.h>

<Modeling Base Types>
<Modeling Types>
<Modeling Servers>
<Modeling Globals>

#endif

lw 64 / 64

(100) LightWave Rendering and Animation Plug-in Header

/*
* LWSDK Header File

* Copyright 1995 NewTek, Inc.

*/
#ifndef LW_RAN_H
#define LW_RAN_H

#include <lwbase.h>

<Animation Types>
<Animation Servers>
<Animation Globals>

#endif

	lw
	S0
	s1
	s1.1
	s1.2
	s2
	s2.1
	s2.2
	s2.2.1
	s2.2.2
	s3
	s3.1
	s3.2
	s3.3
	s4
	s4.1
	s4.2
	s4.2.1
	s4.2.2
	s5
	s5.1
	s5.1.1
	s5.1.2
	s5.1.3
	s5.1.4
	s5.1.5
	s5.1.6
	s5.1.7
	s5.1.8
	s5.1.9
	s5.1.10
	s5.2
	s5.2.1
	s5.2.2
	s5.2.3
	s6
	s6.1
	s6.2
	s6.2.1
	s6.2.2
	s6.3
	s6.4
	s6.5
	s6.6
	s6.7
	s7
	s7.1
	s7.2
	s7.3
	s7.4
	s7.5
	s7.5.1
	s7.5.2
	s7.5.3
	s8
	s8.1
	s8.2
	s8.2.1
	s8.2.2
	s8.2.3
	s8.3
	s8.3.1
	s8.3.2
	s8.3.3
	s8.3.4
	s8.3.5
	s8.4
	s8.4.1
	s8.4.2
	s8.5
	s8.5.1
	s8.5.2
	s8.6
	s8.6.1
	s8.6.2
	s8.7
	s8.8
	s8.9
	s8.10
	s9
	s9.1
	s9.2
	s9.3
	s9.4
	s9.5
	s9.6
	s9.7
	s9.8
	s9.9
	s10

