image

image

] COLLABORATORS
TITLE :
image
ACTION NAME DATE SIGNATURE
WRITTEN BY July 29, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

image ii

Contents

1 image 1
L1 SO .o 1
0 2
1.3 82 2
N 2
1.5 S22 e 3
1.6 823 4
L7 824 4
L8 S24.1 .« . L 4
1.9 S242 e 5
110 8243 . o o e 5
LI1 S24.4 o o 6
112 245 o e 6
L1383 7
L14 831 7
LIS S3.2 o 11
116 833 . e 14

image 1/15

Chapter 1

image

1.1 SO

LightWave Images —-- Stuart Ferguson 1/13/95

1 Introduction
(1) Public declarations
(2) Public forward definitions

2 Image I/0 Server Interface
2.1 Image Loaders
(3) Public types
2.2 Image Savers
(4) Public types
2.3 Result Value
(5) Public declarations
Image Transfer Protocols
Color Protocol
) Public types
Index Protocol
) Public types

2.4
1
6
2
7
3 Generic Protocol
8
9
4
5
1
1

2.4.
(
2.4.
(

4.

(
(

) Public types

) Public forward definitions
Error Handling
Misc Types

0) Public declarations

1) Public declarations

(
(

3 Test Server
3.1 Targa Reader
Targa types
Targa functions
Targa utilities
Read targa data
Read targa lines
Read uncompressed targa line
Read compressed targa line
Read a targa pixel element into ‘bgra’
Store ‘bgra’ pixel to line buffers
3.2 Targa Saver

~

S N e e
O W WJo U WN

N

image

2/15

(21) Targa types

(22) Targa functions
(23) Targa utilities
(24) Targa utilities
(25) Targa utilities

3.3 Plug-in Module
(26) Targa Image server

1.2 si

This module provides interfaces for dealing with image types commonly
employed by LightWave users. This allows the loading and saving of
large, deep images in an expandable set of formats, and for accessing
the data in a uniform manner regardless of the underlying data format.
This interface is designed with plug-in image loaders and savers in
mind and it provides some built-in IFF format support.

Image types are given by the following values. RGB24 is an image with
eight bits each of red, green and blue data for each pixel. GREYS8 is
an image with eight bits of greyscale value at each pixel. INDEXS8 is
an image with up to eight bits of color index at each pixel, mapped
through a 24 bit color table.

(1) Public declarations
#define IMG_RGB24 0
#define IMG_GREYS 1
#define IMG_INDEXS 2

Image color component, grey or index values are all unsigned chars
scaled from 0 to 255.

(2) Public forward definitions

typedef unsigned char ImageValue;

1.3 s2

The image input and output interfaces are designed to be extended with
plug-in loaders and savers. As result, each interface really only
defines the local data structure for the activation function.

Image Loaders
Image Savers
Result Value
Image Transfer Protocols

nDNDNDDN
s w N

1.4 s2.1

image

3/15

Image loaders are servers that are called sequentially until one is
able to load the image file. An application will normally have a
standard format in which images are saved, so that will normally be
tried first after which other loaders may be tried in any order the
host can determine. If loaders are just scanned in the host plug-in
database they will be called in something like alphabetical order.

The activation call for a loader gets passed a pointer to a filename

as well as callbacks for image data transfer. If the loader cannot
open the file it sets the ‘result’ field to IPSTAT_BADFILE and
returns. If it does not recognize the file format, it sets the result

to IPSTAT_NOREC. If it can load the image, it calls the ‘begin’
callback with type of image protocol it would like. The loader then
sends the data from the file to the host through the protocol and
calls the ‘done’ callback when complete to allow the source to dispose
of the protocol. These callbacks are called with the ‘priv_data’
pointer as the first field.

(3) Public types

typedef struct st_ImLoaderLocal {

void *priv_data;

int result;

const char +*filename;

Monitor *monitor;

ImageProtocolID (xbegin) (void x, int type);

void (xdone) (void %, ImageProtocolID);

} ImLoaderLocal;

1.5 s2.2

Image savers are servers of "ImageSaver" class that write an image out
to a file in a single specific format. The save format is typically
chosen directly by the user with an interface showing the user names
for the servers, so no scanning or ordering is required.

The activation call for savers gets a filename, a requested protocol
type, and a callback for the host to output its image data to the
saver protocol. The flag in the ‘sendData’ callback can contain the
IMGF_ALPHA bit if the saver can store alpha data and IMGF_REVERSE bit
if the saver wants the data sent bottom to top rather than top to
bottom. The saver should create a protocol and set flags most
appropriate for the destination file format. The ‘sendData’ callback
will return a non-zero error code if anything failed on the sending
end or if the destination reports an error.

(4) Public types

typedef struct st_ImSaverLocal {

void *priv_data;
int result;
int type;

const char *filename;

image 4/15

Monitor *monitor;
int (#sendData) (void =%, ImageProtocolID, int);
} ImSaverLocal;

1.6 s2.3

The result value indicates the status of the loader or saver upon
completion. If the load or save was sucessful, the value should be
IPSTAT_OK. If a loader fails to recognize a file as something it can

load it should set the result to IPSTAT_NOREC. If the server could
not open the file it should return IPSTAT_BADFILE. Any other error is
just a generic failure of the loader or saver and so should set the
result to IPSTAT_FAILED. Other failure modes might be possible if
required in the future.

(5) Public declarations

#define IPSTAT_OK

#define IPSTAT_NOREC

#define IPSTAT_BADFILE

#define IPSTAT_ABORT

#define IPSTAT_FAILED 9

O W N P O

1.7 s24

Images are passed from source to destination using an image protocol.
Typically, the source will select the protocol type and the
destination will create a protocol of that type. The source will then
send the image data to the source by calling callbacks in the
protocol. Both ends are then given an opportunity to clean up. This
is called a pusher protocol since the source "pushes" the data at the
destination rather than the destination pulling it.

There are two protocols for the three types of images: color and index
protocols. The protocol ‘type’ can have any of the same values as
image type and determines the callbacks in the protocol and what they
do. Protocols contain a private data pointer which should be passed
as the first argument to all the callbacks.

Color Protocol
Index Protocol
Generic Protocol
Error Handling
Misc Types

DN
B D DD
g w N

1.8 s2.4.1

image

5/15

The color protocol is used for the RGB and grey valued images (RGB24
and GREY8 types). The source starts the output by calling the
‘setSize’ function with the width and height of the image and flags.
The flags can contain the IMGF_ALPHA bit to indicate that the source
data contains an alpha channel. The source then sends the data by
calling the ‘sendLine’ function with each image row number and a
pointer to a line of image data and a line of alpha data, if any was

indicated. For greyscale images, the image line consists of one image

value per column in the image (Gl G2 ... Gw). For RGB images, this
line data consists of three image values per column of the image in
RGB order (R1 Gl B1 R2 G2 B2 ... Rw Gw Bw). The alpha data is in

greyscale format.
(6) Public types

typedef struct st_ColorProtocol {

int type;

void *priv_data;

void (¥setSize) (void =, int, int, int);

int (xsendLine) (void %, int, const ImageValue =x,
const ImageValue x*);

int (xdone) (void =*, int);

} ColorProtocol;

1.9 s2.4.2

Colormap index images use the index protocol. The source must first
call ‘setSize’ and ‘numColors’ with image size, flags and number of
entries in the colormap. The source must then set the colormap by
calling the ‘setMap’ callback for each entry in the colormap. Any
entry which is not set is left undefined. The data in the image is
then filled in using the ‘sendLine’ function just like the greyscale
case except that the image values are not grey values but colormap
indices. Alpha values are in greyscale data format.

(7) Public types

typedef struct st_IndexProtocol {

int type;

void *priv_data;

void (#setSize) (void *, int, int, int);

void (*numColors) (void *, int);

void (xsetMap) (void x, int, const ImageValuel[3]);
(

int +*sendLine) (void %, 1int, const ImageValue x,
const ImageValue x);
int (#done) (void *, int);

} IndexProtocol;

1.10 s2.4.3

image

6/15

The generic protocol is either of these possibilities plus the type
field for easy type identifcation.

(8) Public types

typedef union un_ImageProtocol {

int type;
ColorProtocol color;
IndexProtocol index;

} ImageProtocol;
(9) Public forward definitions

typedef union un_ImageProtocol *ImageProtocollID;

1.11 s2.4.4

There are two specific mechanisms for dealing with errors that occur
while using image protocols. The destination can return error codes
from the ‘sendLine’ and ‘done’ callbacks, and the source can pass an
error code to the destination’s ‘done’ callback.

If an error occurs in the source of a protocol, such as a failure
partway though reading a file, the source can stop calling ‘sendLine’
prematurely. This will often trigger an error in the destination
since it will have been keeping track of the amount of data sent. The
source should then also pass a non—-zero error code to the ‘done’
callback which will signal an error to the destination.

If an error occurs in the destination of a protocol, such as a failure
partway through saving an image, the destination should start to
return a non-zero error code from ‘sendLine.’ A well-written source
will stop sending data when this happens, but the destination should
be prepared to continue to get lines of data and to continue to return
an error code. A failed destination should also return a non-zero
error code from the ‘done’ callback.

1.12 s2.4.5

Flags to be passed to ‘setSize’ and ‘sendData’ callbacks.

(10) Public declarations
#define IMGF_ALPHA 1
#define IMGF_REVERSE 2

There are also some protocol macros defined to get the whole calling
interface right.

(11) Public declarations

image 7/15

#define IP_SETSIZE (p,w,h, f)

(* (p) —>setSize) ((p)->priv_data,w,h,f)
#define IP_NUMCOLORS (p,n) (* (p) —>numColors) ((p)-—->priv_data,n)
#define IP_SETMAP (p,1i,val) (% (p) —>setMap) ((p)->priv_data,i,val)
#define IP_SENDLINE (p, 1ln,d, a) (* (p) —>sendLine)
((p) —>priv_data,1ln,d, a)
#define IP_DONE (p,err) (* (p) —>done) ((p)-—->priv_data,err)

1.13 s3

This is a very simple server designed to test an alternate image
format. The single plug—-in will load and save Targa 32 and 24 bit
formats.

3.1 Targa Reader
3.2 Targa Saver
3.3 Plug-in Module

1.14 s3.1

The targa loader will recognize a targa file by reading the header
into this data struct. The ‘type’ gives the compression format and
interpretation of image data, ‘bits’ gives the pixel size and
‘reverse’ indicates if the lines will come bottom to top.

(12) Targa types

typedef struct st_TargaInfo {

unsigned char type, bits;
short width, height;
int reverse;

} Targalnfo;

#define CKPT_TGA_BADFILE 991
#define CKPT_TGA_NOREC 992

The main reader just reads the header, and if this can be matched as a
targa image it reads the body. Errors will be captured by the
exception context and will set the result code.

(13) Targa functions
int
Targaloader (
long version,
GlobalFunc *global,
ImLoaderLocal *local,
void *servData)
{
ReadStrmID strm;

TargalInfo tga;

image 8/15

int fail;

if (version != 1)
return AFUNC_BADVERSION;

if (!CkptCapture (fail)) {

if (fail == CKPT_ABRBORT)
local->result = IPSTAT_ABORT;
else i1f (fail == CKPT_TGA_BADFILE)
local->result = IPSTAT_BADFILE;
else if (fail == CKPT_TGA_NOREC)
local->result = IPSTAT_NOREC;
else

local->result IPSTAT_FAILED;

return AFUNC_OK;

strm = StrmReadOpen (local->filename, NULL) ;
if (!strm)

CkptRecover (CKPT_TGA_BADFILE);
ARM1 (StrmReadClose, strm);

if (!'ReadTargaHeader (strm, &tga))
CkptRecover (CKPT_TGA_NOREC) ;

<Read targa data>

StrmReadClose (strm);
CkptEnd () ;

local->result = IPSTAT_OK;
return AFUNC_OK;

The reader will check just a very few things in the header before it
decides it can load the file. This might be a problem since targa
files are much less self-identifying than others. Any values that are
out of range cause this to return 0, indicating failure to recognize.
If it returns 1, the info has been read.

(14) Targa utilities

static int

ReadTargaHeader (
ReadStrmID strm,
TargalInfo *tga)

{
unsigned char byte, idLen;
(#strm->readBytes) (strm, &idLen, 1);
(*strm->readBytes) (strm, &byte, 1);
if (byte)

return 0;

(*strm->readBytes) (strm, &tga->type, 1);

image

9/15

if (tga->type != 2 && tga->type != 10)

return 0;

(#strm->skipBytes) (strm, 9);

(#strm->readIWords) (strm, &tga->width, 1);
(#strm->readIWords) (strm, &tga->height, 1);

(#strm->readBytes) (strm, &tga->bits, 1);
if (tga->bits != 24 && tga->bits != 32)

return 0;

(#strm->readBytes) (strm, &byte, 1);
byte &= 0xFO;
if (byte == 0)
tga->reverse = 1;
else if (byte =
tga->reverse =
else
return O;

I
o O
~e X
N
(@]

(#strm->skipBytes) (strm, idLen);
return 1;

We will always send the data in RGB24 fo
recognize targa 32 and 24 bit formats.
transfer the rgb and alpha data in the r
protocol is started and recovery actions
partway through.

(15) Read targa data

rmat, since we currently only

Buffers are allocated to

ight byte-packing order. The
are armed in case we fail

ImageProtocollID ip;
ColorProtocol *CpP;
ImageValue *buf, =*abuf;
int bufSize, i, alpha;
ip = (xlocal->begin) (local->priv_data, IMG_RGB24);
if (!ip)
CkptRecover (CKPT_IO_ERROR);
alpha = (tga.bits == 32);
bufSize = tga.width x 4;
buf = NEW_Z (bufSize);
ARM_7 (buf, bufSize);
abuf = (alpha ? buf + 3 * tga.width NULL) ;
cp = &ip->color;

IP_SETSIZE (cp, tga.width, tga.height, (alpha ? IMGF_ALPHA

0));

ARM2 (local->done, local->priv_data,

cp);

MON_INIT (local->monitor, tga.height);

image 10/15

if (local->monitor)
ARM1 (local->monitor—->done, local->monitor->data);

if (CkptBegin ()) |
ARM2 ((voidx)cp->done, cp->priv_data, -1);
<Read targa lines>
CkptEnd () ;
}
if (IP_DONE (cp, 0))
CkptRecover (CKPT_IO_ERROR);

MON_DONE (local->monitor);

(#local->done) (local->priv_data, ip);
FREE_Z (buf, bufSize);

Basically we just read all the lines in forward or reverse order.
They may be compressed or not.
(16) Read targa lines

for (1 = 0; 1 < tga.height; i++) {

int In, x;
unsigned char bgrald];
ImageValue *rgbBuf, xalphaBuf;

rgbBuf = buf;
alphaBuf = abuf;

if (tga.type == 2) {
<Read uncompressed targa line>
} else {

<Read compressed targa line>

ln = (tga.reverse ? tga.height - i - 1: 1i);
if (IP_SENDLINE (cp, 1ln, buf, abuf))
break;

if (MON_STEP (local->monitor))
CkptRecover (CKPT_ABORT) ;

Uncompressed lines of data are just ‘width’ pixels which we read
sequentially.
(17) Read uncompressed targa line
for (x = 0; x < tga.width; x++) {

<Read a targa pixel element into ‘bgra’>
<Store ‘bgra’ pixel to line buffers>

A compressed line is enough pixels in literals and runs to fill a
scanline. TIf the scanline is not exactly filled, this is an error.

(18) Read compressed targa line

image

11/15

x = 0;

while (x < tga.width) {
unsigned char test;
int count, k;
(*strm->readBytes) (strm, &test, 1);
count = (test & O0x7F) + 1;

if (test & 0x80) {
<Read a targa pixel element into ‘bgra’>
for (k = 0; k < count; k++) {
<Store ‘bgra’ pixel to line buffers>
}
} else {
for (k = 0; k < count; k++) {
<Read a targa pixel element into ‘bgra’>
<Store ‘bgra’ pixel to line buffers>

}
X += count;

}

if (x !'= tga.width)
CkptRecover (CKPT_IO_ERROR);

24 and 32 bit targa pixels are just 3 or 4 bytes in BGR(A) order.

read that into an array that will be unpacked into the format we want.

(19) Read a targa pixel element into ‘bgra’

(*strm->readBytes) (strm, bgra, (alpha ? 4 : 3));

We

Once we have read a pixel we can store it to the accumulating output
row by sticking the rgb and optional alpha into their buffers.

(20) Store ‘bgra’ pixel to line buffers

*rgbBuf++ = bgral[2];

*rgbBuf++ = bgral[l];
*rgbBuf++ = bgral0];
if (alpha)

xalphaBuf++ = bgra[3];

1.15 s3.2

(21) Targa types

typedef struct st_TargaSave {

WriteStrmID strm;
Monitor *mon;
int width, height;
int alpha, result;

} TargaSave;

The targa saver sets up a protocol of the RGB24 type and
send from the source. Since the protocol callbacks have

requests a
to return

result codes, the ckpt mechanism is more of a hinderance here.

image 12/15

(22) Targa functions
int

TargaSaver (
long version,
GlobalFunc *global,
ImSaverLocal *local,
void *servData)

{
ImageProtocol prot;
TargaSave tga;
if (version != 1)

return AFUNC_BADVERSION;

if (local->type != IMG_RGB24) {

The
the
for

local->result = IPSTAT_FAILED;
return AFUNC_OK;

tga.strm = StrmWriteOpen (local->filename);
if (!'tga.strm) {

local->result = IPSTAT_BADFILE;

return AFUNC_OK;

tga.result = IPSTAT_OK;
tga.mon = local->monitor;

prot.type = IMG_RGB24;
prot.color.priv_data = &tga;
prot.color.setSize = Targa_SetSize;
prot.color.sendLine = Targa_SendLine;
prot.color.done = Targa_Done;

(#local->sendData) (local->priv_data, &prot, IMGF_ALPHA);

StrmWriteClose (tga.strm);
local->result = tga.result;
return AFUNC_OK;

set size callback will just record the size and alpha status in
save info and write the header. The header is mostly zero expcpt
a few bytes with special values and the size as reversed byte

order words.

(23) Targa utilities

XCALL_ (static void)

Targa_SetSize (

TargaSave *tga,
int w,
int h,

int flags)

image 13/15

unsigned char hdr[12];
short size[2];
int fail;

if (!CkptCapture (fail)) {
tga->result = IPSTAT_FAILED;
return;

tga->width = w;
tga->height = h;
tga->alpha = ((flags & IMGF_ALPHA) != 0);
memset (hdr, 0, 12);

hdr[2] = 2;

(#tga->strm->writeBytes) (tga->strm, hdr, 12);

size[0] = w;

size[l] = h;

(#tga->strm->writeIWords) (tga->strm, size, 2);
hdr[0] = (tga->alpha ? 32 : 24);

hdr[1l] = 0x20;

(xtga->strm->writeBytes) (tga->strm, hdr, 2);

if (tga->mon)
MON_INIT (tga->mon, tga—->height);

CkptEnd ();

Writing a line is really easy. The pixel loop Jjust unwraps the rgb
and optional alpha data into targa pixel format and writes it. Write
errors will return an error code, but nothing else.

(24) Targa utilities

static int
Targa_SendLine (

TargaSave *tga,

int line,
const ImageValue xdata,
const ImageValue xadata)

{

unsigned char bgral4];
int i, plen;
int fail;

if (tga—->result != IPSTAT_OK)

return -1;

if (!CkptCapture (fail)) {
if (fail == CKPT_ABORT)
tga->result = IPSTAT_ABORT;
else
tga->result = IPSTAT_FAILED;

image 14/15

return -1;

plen = (tga->alpha ? 4 : 3);

for (i = 0; i < tga->width; i++) {

I~

bgral2] *data++;
bgral[l] = xdata++;
bgra[0] = *data++;
if (tga->alpha)
bgra[3] = xadata++;
(*tga—->strm->writeBytes) (tga->strm, bgra, plen);

if (tga->mon && MON_STEP (tga->mon))
CkptRecover (CKPT_ABORT) ;

CkptEnd () ;
return 0;

The ‘done’ callback completes the monitor transaction and returns the
aggregate error status.

(25) Targa utilities

static int

Targa_Done (
TargaSave *tga,
int error)

if (error)
tga->result = IPSTAT_FAILED;

if (tga->mon)
MON_DONE (tga—->mon) ;

return (tga->result != IPSTAT_OK) ;
}
1.16 s3.3
(26) Targa Image server

#include <image.h>
#include <strmu.h>
#include <splug.h>
#include <std.h>

<Targa types>
<Targa utilities>
<Targa functions>

image 15/15

ServerRecord ServerDesc[] = {
{ "ImageSaver", "Targa", TargaSaver 1},
{ "ImageLoader", "Targa", Targaloader },

{ NULL }
}i

	image
	S0
	s1
	s2
	s2.1
	s2.2
	s2.3
	s2.4
	s2.4.1
	s2.4.2
	s2.4.3
	s2.4.4
	s2.4.5
	s3
	s3.1
	s3.2
	s3.3

