
plug

plug ii

COLLABORATORS

TITLE :

plug

ACTION NAME DATE SIGNATURE

WRITTEN BY July 29, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

plug iii

Contents

1 plug 1

1.1 S0 . 1

1.2 s1 . 2

1.3 s1.1 . 3

1.4 s1.2 . 3

1.5 s1.3 . 3

1.6 s1.4 . 4

1.7 s2 . 4

1.8 s2.1 . 4

1.9 s2.2 . 5

1.10 s2.3 . 6

1.11 s2.4 . 6

1.12 s2.5 . 7

1.13 s2.6 . 7

1.14 s2.7 . 8

1.15 s3 . 8

1.16 s3.1 . 8

1.17 s3.2 . 9

1.18 s4 . 10

1.19 s4.1 . 10

1.20 s4.2 . 11

1.21 s4.2.1 . 11

1.22 s4.2.2 . 12

1.23 s4.2.3 . 12

1.24 s4.2.4 . 13

1.25 s4.3 . 14

1.26 s4.3.1 . 14

1.27 s4.3.2 . 15

1.28 s4.3.3 . 15

1.29 s4.3.4 . 16

plug iv

1.30 s5 . 16

1.31 s5.1 . 17

1.32 s5.2 . 17

1.33 s5.3 . 17

1.34 s5.4 . 18

1.35 s5.5 . 19

plug 1 / 19

Chapter 1

plug

1.1 S0

LightWave Plug-in Architecture -- Stuart Ferguson 5/3/95

1 Plug-In Interface
1.1 Server Identification
1.2 Server Activation Function
1.3 The Global Function
1.4 Plug-in and Built-in Servers

2 Server Interface
2.1 Plug-in Initialization and Cleanup

(1) Startup usage
(2) Shutdown usage

2.2 Activation Function
(3) Activation function args
(4) ActivateFunc type

2.3 Global Function
(5) GlobalFunc types
(6) GlobalFunc types

2.4 The Global Server Class
(7) Global activation data

2.5 External Function Entry Points
(8) XCALL Definitions

2.6 Single-Service Plug-ins
(9) Activate usage

2.7 Multiple-Service Plug-ins
(10) ServerRecord type

3 Common Globals
3.1 Host Display Info

(11) Host Display Info declaration
3.2 Monitor Objects

(12) Monitor types
(13) Monitor declarations

4 Example Plug-in Service
4.1 String Transform Class

(14) Test types
(15) Test types

plug 2 / 19

4.2 String Transform Functions
(16) String transform arguments

4.2.1 Length Operation
(17) Length function body

4.2.2 Reverse Operation
(18) Reverse function body

4.2.3 Capitalization Operation
(19) Capitalize function body

4.2.4 Double Operation
(20) Double function body

4.3 Implementing Servers
4.3.1 Single-Service Plug-in -- Reverse

(21) Test Reverse plug-in program
4.3.2 Multiple-Service Plug-in -- Caps & Double

(22) Test Caps and Double plug-in program
4.3.3 Built-in Server -- Length

(23) Test host utilities
4.3.4 Global Test Server

(24) Test Global Server plug-in

5 Creating a Plug-in
5.1 Amiga -- SAS/C Compiler

(25) Makefile examples
5.2 Amiga -- Manx Compiler

(26) Makefile examples
5.3 Microsoft’s Windows

(27) Makefile examples
(28) Alignment Table

5.4 SGI Unix
(29) Makefile examples

5.5 Linking with LightWave
(30) Config file examples
(31) Config file examples

1.2 s1

There are two parts to the system-generic plug-in interface: the host
side and the server side. The host is the application program which
wants to load external code modules to perform some generic type of
operation. Servers are imported routines (which can be loaded
plug-ins or internal built-ins) which implement a specific instance of
a generic type of service.

The host interface provides facilities to create server classes,
register plug-in modules, and perform lazy loading and activation of
registered servers. There is a fairly elaborate name and type mapping
scheme which allows a great deal of flexibility in how modules are
used, but which still provides a fairly simple interface for those who
do not need the full facility.

The server interface provides an easy method to write programs that
will operate as plug-ins. Different classes of plug-in services will
require different host interfaces, but the loading and initialization
part of the server interface is standard and works with the host
portion of the system.

plug 3 / 19

1.1 Server Identification
1.2 Server Activation Function
1.3 The Global Function
1.4 Plug-in and Built-in Servers

1.3 s1.1

The plug-in interface is designed to allow the host to have any number
of servers loaded to perform as many different functions as the host
wants to define. The servers in the system are referenced by a
combination of class and name.

A Server Class is a string which determines the type of service which
the server can perform. This might be strings like "TEXTURE" or
"FileRequester". Many servers can have the same class, and all
servers of the same class have the same host interface.

A Server Name is a string which refers to a specific server within a
given class. This might be something like "FractalNoise3D" or
"Default". The name must be unique among the servers of the same
class.

The names for class and server identification should be byte strings
containing characters only the the ASCII range 33-127. By convention
these string contain no spaces and no characters outside 7-bit ASCII.
Case is significant in distinguishing different classes and servers
within classes.

1.4 s1.2

Every server has a single ‘activation’ function. This is the function
which the host calls to access the service provided by the server.
For some servers this one function will perform the whole action and
for others this will only be a prelude to a sequence of actions.
Servers which must remain loaded after they return from their
activation function must be locked by the host while there are actions
pending or they may be unloaded.

1.5 s1.3

The activation function for every server is called with a ‘global’
function pointer which provides access to the internal global state of
the host system. The server calls the function with a string
identifing the global data requested and a flag for how it will be
used. The host can service this request, or the request can be passed
on to global plug-in servers.

plug 4 / 19

1.6 s1.4

Servers can be either plug-in or built-in. A plug-in server is
implemented as a file containing code that can be loaded and unloaded
as needed. A built-in server is implemented as a callback within the
host itself. Having both allows the host to provide a standard set of
servers which it handles the same way it handles plug-in servers,
without having to unbundle their functionality in a way that can be
replaced or used by other programs.

1.7 s2

A plug-in server is written like any ordinary C program, but instead
of a single "main()" entry point, a server has a different primary
entry point and several possible additional entry points. The server
is linked with initializaion code (different from the normal shell or
Workbench init) which places these interfaces where the host can
access them.

There are two main types of plug-in modules: those providing a single
server and those providing multiple servers. It is simple to have one
server per module, but it can be more efficient and useful to define
many servers with a single code file.

All servers require an activation function, and all plug-ins have the
option of providing initialization and cleanup functions. The header
for server types is ‘splug.h’.

2.1 Plug-in Initialization and Cleanup
2.2 Activation Function
2.3 Global Function
2.4 The Global Server Class
2.5 External Function Entry Points
2.6 Single-Service Plug-ins
2.7 Multiple-Service Plug-ins

1.8 s2.1

In both the single and multiple versions of the plug-in module, there
are optional entry points which allow the module to initialize itself
when it is first loaded and to clean itself up before being unloaded.
If the plug-in code does not contain functions with these names, no
attempt will be made to call them.

The Startup function, if present, will be called when the plug-in is
first loaded into the host system. The return value is global data
for the server which is passed to the Activate and Shutdown entry
points as ‘ serverData’. A zero return value (null pointer) indicates
failure, so even a plug-in with no data should return something.

(1) Startup usage

plug 5 / 19

void *
Startup (void)

If provided, the server’s Shutdown function is called just before the
server module is unloaded from the host. Any allocated server data
should be freed at this point. Note that even though it is an error,
this function may be called even when the server is locked, so correct
cleanup should be done in this case as well.

(2) Shutdown usage

void
Shutdown (

void *serverData)

1.9 s2.2

All servers have a single activation function which is the entry point
for the host to get access to the service provided by the server. The
activation function gets passed the version number for the service
implementation, the ‘global’ pointer to access global host data,
class-specific ‘local’ data, and private data maintained by the
plug-in. The version number is application-defined, but typically it
represents the revision of the interface that the host expects the
server to use. Typically a server will not attempt to operate if the
version number is greater than it expects. The ‘ serverData’ is
returned by the Startup entry point in a plug-in. The global function
can be called to get global data from the host enviroment, and the
contents of the ‘local’ pointer are defined by the type of service.

(3) Activation function args

long version,
GlobalFunc *global,
void *local,
void *serverData

The activation function returns an error code if the attempt to call
failed because of some clash between the server and the host
environment. If the server was able to process the request, even it
failed to complete it, it should return AFUNC_OK. If the version
number is not a value which the server can explicitly handle it should
return AFUNC_BADVERSION. If there is some global data the server
cannot get which it requires it should return AFUNC_BADGLOBAL. Severe
problems with the contents of the local data, such as some necessary
pointer in the local data being null, may be reported by returning
AFUNC_BADLOCAL. Any other errors from the server (running out of
memory, bad filenames, user aborts, etc.) must be provided for by the
specific plug-in protocol.

(4) ActivateFunc type

typedef int ActivateFunc (<Activation function args>);

#define AFUNC_OK 0

plug 6 / 19

#define AFUNC_BADVERSION 1
#define AFUNC_BADGLOBAL 2
#define AFUNC_BADLOCAL 3

1.10 s2.3

The global function passed by the host to the server is a special
function which returns the pointer to some global data given by a
string ID. These data blocks will often contain function pointers,
but can be anything.

(5) GlobalFunc types

typedef void * GlobalFunc (const char *, int);
. . .

When a server calls the global function, it passes a string which
identifies the global data required and a code for the way the data
will be used. If the data pointer is not available, null is returned.
The ID’s that will be recognized depends on the host, on the available
global plug-ins and perhaps on the server class.

The use code depends on how the result of the call will be used. If
the returned pointer will only be used for the course of the
activation function itself, the TRANSIENT code should be used. If the
data will be used after the activation function returns, such as in a
server that requires locking, the ACQUIRE code should be used. In
this case there must be a matching RELEASE call made when the data
pointer is no longer required. RELEASE calls need only be made for
ACQUIRE calls which returned a non-null pointer. The return value
from a release mode global data call is undefined.

(6) GlobalFunc types
. . .
#define GFUSE_TRANSIENT 0
#define GFUSE_ACQUIRE 1
#define GFUSE_RELEASE 2

1.11 s2.4

The server class given by the name "Global" is special in that it
allows multiple plug-in servers to share common data or routines. In
fact, the members of the Gobal class are extensions to the set of ID
strings that can be passed to the "global" function.

When a server calls the global function with an ID string, the host
can service the request itself or has the option of pass unrecognized
ID’s to Global class servers of the same name. For example, if the ID
is "Mambo Functions," the host may recognize this itself and return a
pointer value. If it does not recognize it, it may attempt to
activate a server of class "Global" with name "Mambo Functions." If
such a server exists, it may be locked or unlocked, depending on the

plug 7 / 19

use type of the global request, and it will be called to get the value
of the global pointer for the orignal requester.

The activation function of a Global server is called with a
GlobalService structure which will be initialized with the ID string
for the request. The server must fill in the data pointer with a
value which will be returned to the client, which may be null if the
server wishes to deny the request. The string is passed as data so
that the same activation function may be used for multiple servers.

(7) Global activation data

typedef struct st_GlobalService {
const char *id;
void *data;

} GlobalService;

1.12 s2.5

Functions in the plug-in get called directly by the host, and this is
a funky thing in some systems since they are different environments.
The XCALL_ and XCALL_INIT macros take care of everything for all
different systems and compilers, so these can be used to make
multi-platform servers from a single source code.

XCALL_ is used on the return type, e.g. XCALL_(int) for an external
entry point returning an int. XCALL_INIT is used as the first
statement of the function. Both must be used for full compatibility,
but XCALL_INIT is only non-null for Manx small-code modules.

(8) XCALL Definitions

<XCALL_ and XCALL_INIT system-specific definition>

The activation function as well as any function pointers returned from
the activation function need the XCALL treatment. Startup and
Shutdown do not.

1.13 s2.6

A single-service plug-in is a C program with an entry point for the
activation callback and global symbols for the class and name of the
server. There are also optional entry points for initialization and
cleanup.

This plug-in must contain a global character string with the name
‘ServerClass’. This string defines the class of this server and the
server will not be loaded if this string does not match the service
type string requested by the host.

It must also contain a global character string called ‘ServerName’
which holds the name for this specific server.

plug 8 / 19

The activation function must be called Activate, which takes the
arguments as described above.

(9) Activate usage

XCALL_(int)
Activate (<Activation function args>)

1.14 s2.7

A multiple-service plug-in is a C program which defines multiple
servers through a standard set of global symbols. In particular, a
multiple server module must contain a global array with the name
‘ServerDesc’ composed of elements of the ServerRecord type. The last
record in the array must have a null class name pointer.

(10) ServerRecord type

typedef struct st_ServerRecord {
const char *class;
const char *name;
ActivateFunc *activate;

} ServerRecord;

The plug-in module may also have Startup and Shutdown entry points,
and all the activate functions in the plug-in will get the same
serverData as returned from the Startup function. The assumption is
that the servers all share a module for some logical reason, so the
sharing of global data is not unreasonable.

1.15 s3

There are a few global data types which are so basic that they are the
same across plug-in hosts or are used in a wide range of plug-in
interfaces.

3.1 Host Display Info
3.2 Monitor Objects

1.16 s3.1

A plug-in may need to open windows to get user input, and since they
run in the host’s context, they will need to do this using the host’s
display information. This info, which can be normally accessed with
the "Host Display Info" ID string, contains information about the
windows and display context used by the host. If this ID yeilds a
null pointer, the server is probably running in a batch mode and has
no display context.

plug 9 / 19

The fields of the HostDisplayInfo structure vary from system to
system. On the Amiga, the screen pointer is provided for custom
screens and is null for Workbench applications. The window pointer is
the main application window or null if there is none. On X systems,
the window session handle is passed, as well as the ID of the main
application window, if any. On Win32 systems, the application
instance and main window are provided.

(11) Host Display Info declaration

typedef struct st_HostDisplayInfo {
#ifdef _AMIGA

struct Screen *screen;
struct Window *window;

#endif

#ifdef _XGL
Display *xsys;
Window window;

#endif

#ifdef _WIN32
HANDLE instance;
HWND window;

#endif
} HostDisplayInfo;

This structure is defined in the ‘hdisp.h’ header file.

1.17 s3.2

Monitors are simple data structures defining an interface which the
server can use to give feedback to the host on its progress in
performing some task. They are sometimes passed servers to give
feedback on the progress of the particular operation, and can
sometimes be accessed from within a server that wants to show its
progress on a slow operation using the host’s normal feedback display.

A Monitor consists of some generic data and three functions: init,
step and done. The ‘init’ function is called first with the number of
steps in the process to be monitored, which is computed by the server.
As the task is processed, the ‘step’ function is called with the
number of steps just completed (often one). These step increments
should eventually add up to the total number and then the ‘done’
function is called, but ‘done’ may be called early if there was a
problem or the process was aborted. The ‘step’ function will return
one if the user requested an abort and zero otherwise.

(12) Monitor types

typedef struct st_Monitor {
void *data;
void (*init) (void *, unsigned int);
int (*step) (void *, unsigned int);
void (*done) (void *);

plug 10 / 19

} Monitor;

The server is masked from any errors in the monitor that may occur on
the host side of the interface. If there is a problem with putting up
a monitor, the functions will still return normally, since the monitor
is for user feedback and is not that critical.

There are some macros provided to call a monitor which will do nothing
if the monitor pointer is null. MON_INCR is used for step sizes
greater than one and MON_STEP is used for step sizes exactly one.

(13) Monitor declarations

#define MON_INIT(mon,count) if (mon) (*mon->init) (mon->data,
count)

#define MON_INCR(mon,d) (mon ? (*mon->step) (mon->data, d) :
0)

#define MON_STEP(mon) MON_INCR (mon, 1)
#define MON_DONE(mon) if (mon) (*mon->done) (mon->data)

These structures and macros are described in the ‘moni.h’ header file.

1.18 s4

This describes a hypothetical server class and creates some samples of
plug-in modules using it. This serves as a testbed for third parties
to create test plug-ins, so it should have some general capability.

4.1 String Transform Class
4.2 String Transform Functions
4.3 Implementing Servers

1.19 s4.1

This server class will perform manipulations on character strings,
like reverse them, capitalize them, etc. This class will be
"StringXfrm".

A new server class is completely defined by the semantics of the
activation function for the class. The activation function takes a
pointer argument from the host, ‘local’ which is a reference to data
for the particular service the host needs performed. It also gets a
‘global’ function pointer which will return global data as needed by
the server.

The ‘local’ pointer will point to a StringLocal structure which holds
the data for the current operation. This is a null-terminated string
and the length of the string buffer, plus a temporary scratch buffer
and its length. The server will overwrite ‘buf’ with the result, and
will set the ‘overflow’ status flag if the buffers were too short.

(14) Test types

plug 11 / 19

typedef struct st_StringLocal {
char *buf;
char *tmpBuf;
int len, tmpLen;
int overflow;

} StringLocal;
. . .

For the string transform class of server, the global function can
return a ‘progress’ function which can be called by the server to give
the user feedback about its progress. This is returned using a string
ID of "Progress Function."

(15) Test types
. . .
typedef void StringProgress (void);

We’ll stick these definitions into the ‘t_plug.h’ header file for test
modules to use.

1.20 s4.2

The functions to do string transformations are all the same. They all
get the same arguments as defined by the format of the activation
function. The local pointer is specific to the string transform
class. There is no ‘ serverData’ for any of the transforms since
there is no Startup function.

(16) String transform arguments

long version,
GlobalFunc *global,
StringLocal *local,
void *serverData

String activation functions may return with an error code if the
version number is wrong or if the global progress function is not
available.

4.2.1 Length Operation
4.2.2 Reverse Operation
4.2.3 Capitalization Operation
4.2.4 Double Operation

1.21 s4.2.1

The length operation gets the length of the string and prints that as
a number into the string buffer.

(17) Length function body

plug 12 / 19

{
if (version != 1)

return AFUNC_BADVERSION;

if (local->len < 10)
local->overflow = 1;

else
sprintf (local->buf, "%ld", strlen (local->buf));

return AFUNC_OK;
}

1.22 s4.2.2

The reverse operation copies the characters from the main buffer to
the temp buffer in reverse order and then copies them back. This
could use a swap operation to reverse them in place, but this method
demonstrates using the temp buffer and returning an overflow if the
temp buffer is too small. This also calls the progress function as it
swaps.

(18) Reverse function body

{
StringProgress *progress;
int len, i;

if (version != 1)
return AFUNC_BADVERSION;

progress = (*global) ("Progress Function", GFUSE_TRANSIENT);
if (!progress)

return AFUNC_BADGLOBAL;

len = strlen (local->buf);
if (local->tmpLen <= len) {

local->overflow = 1;
return AFUNC_OK;

}

for (i = 0; i < len; i++) {
local->tmpBuf[i] = local->buf[len - i - 1];
(*progress) ();

}
local->tmpBuf[len] = 0;

strcpy (local->buf, local->tmpBuf);
return AFUNC_OK;

}

1.23 s4.2.3

plug 13 / 19

This just passes through the string and converts each letter to
uppercase, calling the progress function as it goes. This will also
use the global empty string if there are no characters passed.

(19) Capitalize function body

{
StringProgress *progress;
const char *empty;
char *c;

if (version != 1)
return AFUNC_BADVERSION;

progress = (*global) ("Progress Function", GFUSE_TRANSIENT);
empty = (*global) ("EmptyStringText", GFUSE_TRANSIENT);
if (!progress || !empty)

return AFUNC_BADGLOBAL;

if (local->buf[0]) {
for (c = local->buf; *c; c++) {
(*progress) ();
if (*c >= ’a’ && *c <= ’z’)

*c = *c - ’a’ + ’A’;
}

} else
strncpy (local->buf, empty, local->len - 1);

return AFUNC_OK;
}

1.24 s4.2.4

This doubles each character in the string by copying the buffer to the
temp buffer and moving twice as many characters back into the buffer
from there. This will fail if the buffers are not big enough.

(20) Double function body

{
StringProgress *progress;
int len, i;

if (version != 1)
return AFUNC_BADVERSION;

progress = (*global) ("Progress Function", GFUSE_TRANSIENT);
if (!progress)

return AFUNC_BADGLOBAL;

len = strlen (local->buf);
if (local->tmpLen < len || local->len - 1 < len * 2) {
local->overflow = 1;
return AFUNC_OK;

plug 14 / 19

}

strcpy (local->tmpBuf, local->buf);
for (i = 0; i < len; i++) {

local->buf[i * 2] = local->tmpBuf[i];
local->buf[i * 2 + 1] = local->tmpBuf[i];
(*progress) ();

}
local->buf[len * 2] = 0;

return AFUNC_OK;
}

1.25 s4.3

A plug-in module is really a wrapper around the activation function,
and can be implemented several ways. They can be single-service
plug-ins, multiple-service plug-ins, or built-in. This test includes
one of each.

4.3.1 Single-Service Plug-in -- Reverse
4.3.2 Multiple-Service Plug-in -- Caps & Double
4.3.3 Built-in Server -- Length
4.3.4 Global Test Server

1.26 s4.3.1

The reverse operation is implemented as a single-service plug-in, so
there is one global class and server name. The activation function is
called ‘Activate’ (which it must be).

The C program module itself includes the headers for the test system
and server-side plug-ins. The source file is ‘tp_rev.c’.

(21) Test Reverse plug-in program

#include <splug.h>
#include "t_plug.h"
#include <string.h>

char ServerClass[] = "StringXfrm";
char ServerName[] = "REVERSE";

XCALL_(int)
Activate (<String transform arguments>)
{

XCALL_INIT;
<Reverse function body>

}

plug 15 / 19

1.27 s4.3.2

The capitalize and double operations are implemented as one
multiple-service plug-in with two servers. The activation function
entry points can have any name and are not exported symbols. They are
associated with their server name in the exported array of
ServerRecords which has the required name ‘ServerDesc’. The source
file for this is ‘tp_cpdb.c’.

(22) Test Caps and Double plug-in program

#include <splug.h>
#include "t_plug.h"
#include <string.h>

static XCALL_(int)
Capitalize (<String transform arguments>)
{

XCALL_INIT;
<Capitalize function body>

}

static XCALL_(int)
Double (<String transform arguments>)
{

XCALL_INIT;
<Double function body>

}

const char class[] = "StringXfrm";
ServerRecord ServerDesc[] = {

{ class, "CAPS", Capitalize },
{ class, "DOUBLE", Double },
{ NULL }

};

1.28 s4.3.3

The length operation will be implemented as a built-in. As result,
all we need is a local function entry point of any name in the host
program.

(23) Test host utilities

static int
ActLength (<String transform arguments>)
{

<Length function body>
}
. . .

plug 16 / 19

1.29 s4.3.4

This test program includes a global server which just returns a string
for clients to use when passed an empty string. This global’s
activation function gets a GlobalService request block with the ‘id’
set to the requested string. In this case, this MUST be the same as
the server name. The function returns a global pointer in the ‘data’
field.

(24) Test Global Server plug-in

#include <splug.h>
#include <string.h>

char ServerClass[] = "Global";
char ServerName[] = "EmptyStringText";
char result[] = "** Empty String **";

XCALL_(int)
Activate (

long version,
GlobalFunc *global,
GlobalService *local,
void *data)

{
XCALL_INIT;
if (strcmp (local->id, ServerName) != 0)

return AFUNC_BADLOCAL;

local->data = result;
return AFUNC_OK;

}

1.30 s5

Methods for creating plug-ins have been developed for each of the
target platforms. Versions of a plug-in can be created for the
different systems from a single source code with different linking
instructions. Each case that follows includes an implicit makefile
rule to create a ".p" plug-in module from an object file. The macro
SLIB stands for the directory where the startup code and server
libraries are located. SINC is the include directory and OTHER_LIBS
would be any other libraries need by the module.

The final section shows how to add your plug-in to the LightWave host.

5.1 Amiga -- SAS/C Compiler
5.2 Amiga -- Manx Compiler
5.3 Microsoft’s Windows
5.4 SGI Unix
5.5 Linking with LightWave

plug 17 / 19

1.31 s5.1

Linking under SAS/C on the Amiga requires replacing the normal startup
code with plug-in startup code, ‘serv_s.o’. This can be done by using
the "startup" option when using "sc link" or by placing ‘serv_s.o’
first in the "FROM" list when using slink. Modules must also be
linked with the server library. Object modules should be built
without stack checking.

(25) Makefile examples

.o.p:
sc link $(CFLAGS) startup=$(SLIB)serv_s.o $*.o\
$(SLIB)server.lib $(OTHER_LIBS) pname=$@

. . .

The math options to the compiler must be chosen so that doubles are
64-bit IEEE values. There is currently some difficulty using the
"math=68881" option, however, having to do with the startup code in
serv_s.a.

1.32 s5.2

Linking under the Manx compiler on the Amiga requires using the
plug-in startup code ‘serv_m.o’, which must be placed first in the
list of objects passed to ln. The linker will warn about ".begin" and
"_geta4" overriding library symbols, which is correct behavior in this
case. They should also be linked with the "server_m" library to get
the Manx server library.

(26) Makefile examples
. . .
.o.p:

ln -o $@ $(SLIB)serv_m.o $*.o -lserver_m $(OTHER_LIBS)
. . .

Manx modules must use 32-bit ints and IEEE format floating point
values.

1.33 s5.3

Plug-in modules under Windows are just DLLs created by linking with
‘serv_w.obj’ and ‘server.lib’. There is no need to create a ".lib" or
".exp" file for the DLL, but the ".def" file should contain an export
statement for the global address ‘_mod_descrip’. A usable default def
file is provided as "serv.def" in the main include directory. There
is no DLL entry point function.

(27) Makefile examples
. . .
.obj.p:

link32 -dll -out:$@ -def:$(SINC)serv.def $*.obj\

plug 18 / 19

$(SLIB)serv_w.obj server.lib $(OTHER_LIBS)
. . .

Structure alignment may vary among different compilers and can cause
problems when trying to communicate between the host and a plug-in
DLL. The LightWave host is compiled using Microsoft alignment rules.
Here’s an excerpt on structure alignment from the MS Visual C
documentation:

"Applications should generally align structure members at addresses
that are ’natural’ for the data type and the processor involved. For
example, a 4-byte data member should have an address that is a
multiple of four.

"This principle is especially important when you write code for
porting to multiple processors. A misaligned 4-byte data member,
which is on an address that is not a multiple of four, causes a
performance penalty with an 80386 processor and a hardware exception
with a MIPS® RISC processor. In the latter case, although the system
handles the exception, the performance penalty is significantly
greater. The following guidelines ensure proper alignment for
processors targeted by Win32:

(28) Alignment Table

"Type Alignment
---- ---------
char Align on byte boundaries
short (16-bit) Align on even byte boundaries
int and long (32-bit) Align on 32-bit boundaries
float Align on 32-bit boundaries
double Align on 64-bit boundaries
structures Largest alignment requirement of any member
unions Alignment requirement of the first member

"The compiler automatically aligns data in accordance with these
requirements, inserting padding in structures up to the limit (default
pack size) specified by the /Zp option or #pragma pack. For example,
/Zp2 permits up to 1 byte of padding, /Zp4 permits up to 3 bytes of
padding, and so on. The default pack size for Windows 3.x is 2,
whereas the default for Win32 is 8."

1.34 s5.4

Plug-in modules under IRIX are shared object modules linked with
‘serv_u.o’ and ‘libserver.lib’. The DSO should export the
"_mod_descrip" symbol and use "serv_u" as startup code.

The link line should include any other libraries that the plug-in
would need as a stand-alone program. Since most libs on the SGI are
themselves DSOs, this adds very little to the size of the plug-in and
adds no extra runtime overhead.

(29) Makefile examples
. . .

plug 19 / 19

.o.p:
ld -shared -exported_symbol _mod_descrip -L$(SLIB)\
$(SLIB)serv_u.o $*.o -o $@ -lserver $(OTHER_LIBS)

Normally the plug-in DSO’s are loaded in a way that forces resolution
of all symbols. This allows the host program to report undefined
symbols to the plug-in developer. If the name of the module includes
the substring "__lazy" (lowercase), however, then the lazy evaluation
mode is used, allowing the module to contain undefined symbols as long
as they are not referenced by any executed code. This is normally not
needed unless you are using code from an external vendor which
includes undefined but unused symbols, like the HIIP library from
Elastic Reality.

1.35 s5.5

LightWave and Modeler read the names of servers from their startup
configuration files. This method is much faster than scanning a
directory path and allows for some user customization of plug-in names
(such as national localization). It does require that the config file
be accurate, since the host will blindly attempt to use servers that
may not exist. This is non-fatal but may be disconcerting to the
user.

For Modeler, for example, the config file on the Amiga is
"MOD-config", on the SGI is ".lwmrc" and on Windows is "LWM.CFG".
This file can contain any number of lines of the following form:

(30) Config file examples

Plugin <class> <name> <module> <user name>
. . .

Each line describes a single server given by Class and Name. The
module is the plug-in file containing the server and the user name is
the string to display on the interface for describing the server’s
function. Class, name and module are delimited by spaces, and the
user name is the rest of the line. Here are some examples (lines wrap
for readability -- each statement has to be a single line).

(31) Config file examples
. . .
Plugin CommandSequence Demo_AllBGLayers layerset.p Include Background
Plugin CommandSequence Demo_NextEmptyLayer layerset.p Next Empty
Plugin MeshDataEdit Demo_MakeSpikey z:lw/plugin/spikey.p Spikey

Subdivide
Plugin ImageLoader PDQ_Targa pdq/targa.lwp Truevision Targa Image

	plug
	S0
	s1
	s1.1
	s1.2
	s1.3
	s1.4
	s2
	s2.1
	s2.2
	s2.3
	s2.4
	s2.5
	s2.6
	s2.7
	s3
	s3.1
	s3.2
	s4
	s4.1
	s4.2
	s4.2.1
	s4.2.2
	s4.2.3
	s4.2.4
	s4.3
	s4.3.1
	s4.3.2
	s4.3.3
	s4.3.4
	s5
	s5.1
	s5.2
	s5.3
	s5.4
	s5.5

