
FinalWrapper

NDY’s

FinalWrapper ii

COLLABORATORS

TITLE :

FinalWrapper

ACTION NAME DATE SIGNATURE

WRITTEN BY NDY’s July 19, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

FinalWrapper iii

Contents

1 FinalWrapper 1

1.1 Hitchhikers guide to FinalWrapper . 1

1.2 What the hell is it? . 1

1.3 Installation . 2

1.4 Note on installation . 2

1.5 How to use it . 2

1.6 Note on usage . 6

1.7 Note on usage . 6

1.8 Note on usage . 7

1.9 Note on usage . 7

1.10 Programmer’s corner . 7

1.11 Known bugs and limitations . 9

1.12 About the history . 9

1.13 Note . 11

1.14 About the future . 11

1.15 Legal stuff . 11

1.16 How to contact the author . 13

1.17 Special thanks . 13

FinalWrapper 1 / 13

Chapter 1

FinalWrapper

1.1 Hitchhikers guide to FinalWrapper

**
* *
* FinalWrapper 1.3 (27.04.94) by NDY’s *
* *
**

What the hell is it?
Installation
How to use it
Programmer’s corner
Known bugs and limitations
About the history
About the future
Legal stuff
How to contact the author
Special thanks

1.2 What the hell is it?

A Short Overview

FinalWrapper is a FinalWriter(TM) macro that wraps some piece of text or ←↩
a

textblock around an oval! It can also create amazing spiral text effects ←↩
with

just a few mouseclicks and keystrokes!

Features:

- Supports all kind of text attributes and fonts
- Supports any type of text flow
- Unlimited text length when using main text
- Supports rotated ovals
- Additional effects with rotation of characters

FinalWrapper 2 / 13

- Link oval to wrapped text in different ways
- Built in help requesters for all options
- Uses your preferred language (currently english and german available)
- Can be easily translated into other languages (also available in OS2.0!)
- Different types of spirals
- Automatic/custom reduction of character size towards the inside of a spiral

1.3 Installation

How to Install

Simply copy FinalWrapper to your FWMacros drawer. (I suggest you install it ←↩
to

the user menu or the button strip!).

To run it, you need the "rexxmathlib.library" installed in your LIBS: ←↩
drawer.

Furthermore, of course Rexxmast has to be run before (and you REALLY should ←↩
own

FinalWriter B-)!

If you don’t know how to do this, or if you’re a lazy guy (like myself 8-]), ←↩
you

can use the Installer-script provided with this release, which will do the ←↩
whole

job for you. To use it, you need Commodore’s Installer. It can be found on ←↩
the

OS3.0+ Install disk and is also available from PD (Fish Disk 870).1

Click here to start the script

1.4 Note on installation

Note:

The script internally makes use of the Version command which needs ←↩
the

version.library to work. Unless you’ve deleted them, they’re situated on ←↩
your

Workbench.

1.5 How to use it

Usage

(There’s no need to read the footnotes to use this program, they just ←↩
provide

you with some extra information.)

FinalWrapper 3 / 13

* Before calling the macro

To run the macro, you first have to select an oval plus some text. It doesn ←↩
’t

matter whether this is a textblock or a passage of normal text. The whole ←↩
text

will be neatly wrapped around the oval.

Normal text has the advantage of enabling the usage of an unlimitted number ←↩
of

characters in different styles, colours, font etc. Due to the system used ←↩
for

this, it’s fairly slower than a textblock, which can be only 33 characters ←↩
long

and can only have one style1.

If the oval had been rotated, the wraptext will be rotated as well.

So: select the text, click on the "mouse-pointer gadget" and select the ←↩
oval,

or select the textblock, press Shift and then click on the oval2. Now you ←↩
may

start FinalWrapper.

* Using the requester

You’ll be prompted a requester where you can enter all needed options (the ←↩
Ok

and Cancel gadgets work as usual). Note that it’s perfectly OK to enter ←↩
nothing

to use the default settings. All options are to be separated by a space ←↩
from

their precessor and successor3. Unknown ones are ignored.

* Sector size: An = n / A-n = -n (default: 360)

The first option determines the size of the sector to be used in degrees. ←↩
This

allows you to wrap the text around only a part of the oval. You have to enter ←↩
a

number4 between -360 and 360. A negative number makes the bottom of ←↩
the

characters point to the outside of the circle, a positive one to the inside (←↩
try

both to see the difference). Unless you add an "a" in front of the size, ←↩
this

option must be given in the first place. If the option is omitted or ←↩
missplelt,

it’s assumed to be the default value of 360. Too high / low numbers are ←↩
changed

to 360 / -360.

E.g: 360 Use the full circle (a360/a+360/A+360/A360 would be the same ←↩
)

180 Use one half of the circle

FinalWrapper 4 / 13

-40 Only a tiny arc is to be used

* Deletion: D+ / D- / D= (default: delete oval)

Unless the D option is specified, the oval will be deleted by this macro. ←↩
The

following switches can be used: "d+" deletes both the textblock and the ←↩
oval

whereas "d-" prevents the oval from being deleted. "d-" slows down the ←↩
drawing

process quite a bit. Therefore you can use the "d=" option, which copies ←↩
the

oval before deleting it for you can simply paste it afterwards, as soon as ←↩
you

need it.

* Rotation: R+n / R-n / R+ / R- / R= (default: R+0)

"r\ensuremath{\pm}n" rotates all characters by another n degrees to the right ←↩
(+) or left (-).

"r\ensuremath{\pm}" is a shortcut for "r\ensuremath{\pm}90". n must be between ←↩
-180 and +180.

"rn" sets the rotation of all letters to n (i.e. they all look in the ←↩
same

direction). n is relative to the oval’s rotation, i.e. with "r0", the ←↩
characters

are drawn parallel to the axes of the oval. "r=" works like "rn", exept that ←↩
all

chars now have the same rotation as the textblock (or 0 for normal text). n ←↩
is

limitted to 0 ... 360.

E.g: r+90 The letters build a "file"
r+180 Looks like "a-360", but the order of the chars is reversed
r180 All characters are drawn upside down

* Grouping: G- / G+ (default: don’t group oval)

The "g" option allows you to group the oval to the created object. "g+ ←↩
groups

the oval as it is, whereas "g-" makes it invisible before. This is mainly ←↩
useful

if you use a sector of less than 360 and want the text to flow around the ←↩
full

oval.

* Starting point: Sn = S+n / S-n / S+ / S- (default: S0)

With this option you can determine the place where the text starts. "s0" ←↩
lets

the text be centered relative to the top of the oval. Positive values (the + ←↩
can

FinalWrapper 5 / 13

be omitted) shift the starting point anticlockwise, negative ones ←↩
clockwise.

"s\ensuremath{\pm}" is equal to "s\ensuremath{\pm}90". The option allows you ←↩
to specify any position you want

for the wrapped text, e.g. to use a special part of an oval. By the way: n ←↩
must

be between -180 and 180.

E.g: s90 The text starts on the right side of the oval
a90 s90 90 degree arc, centered to the left side

* Spirals: @n = @+n / @-n (default: @0)

Spirals can be achieved with the "@n" option: n must be between -100 and 100 ←↩
and

indicates the radius of the inside of the spiral in ratio to the oval’s ←↩
in

percent. Negative values make the text start at the inside of the ←↩
spiral,

positive at the outside. "@n" starts the spiral with the oval’s radii ←↩
getting

successively smaller upto n% of their original size to the end of the text. ←↩
The

height is reduced in the same way (unless the "h" option is specified, ←↩
see

below). The sector size is unlimited when using spirals. "@0" is equal to " ←↩
@100"

and "@-100" (no spiral).

E.g. @30 a1080 Start at the outside, going three times round until a ←↩
size

of 30% of the original is reached
@-1 a720 Start in the middle of the oval, 2 full turns

* Height: Hn = H+n / H-n (default: Value of @ if given, otherwise H0)

The "hn" option, mainly intended to be used in conjunction with ←↩
spirals

(although it can be used without, of course), defines the ratio of the height ←↩
of

the first character to the height of the last one. It works exactly the same ←↩
way

as the "@" option. "h0" is the same as "h100" and "h-100".

It’s main purpose is to keep the height unchanged ("h0") when using spirals, ←↩
but

you can also set another size reduction rate as for the radius.

E.g: "h-20" Lets the first character have one fifth of the original ←↩
size

and each following a bit more, until the last, which is ←↩
drawn

in normal size.

FinalWrapper 6 / 13

* Save options: O+ / O- (default: don’t save)

If you intend to use the same options more than once (to experiment with ←↩
them

for instance), you can use the "o" option to store the current contents of ←↩
the

requester. Any time you call FinalWrapper from now on, the same options ←↩
will

reappear. The difference between the two forms is that the "o-" will be ←↩
removed

from the option list before saving it and then will abort. Use this, if you ←↩
want

to save the options only once. "o+" saves all options and continues.

E.g.: First call On any further call, the following will ←↩
appear:

r+ s-90 d= o- a R+ S-90 D= A (just add the missing number)
120 d= s- o+ @120 120 D= S- O+ @120

* Help: ? (default: no help)

If you can’t remember the exact syntax or don’t know all options, just type ←↩
"?"

anywhere in the options and a help requester will pop up. You can work your ←↩
way

through the help by using the "Next" and "Previous" buttons. "Back", as ←↩
you

might have thought, brings you back to the input requester.

E.g.: a123 g+?

1.6 Note on usage

Note:
Currently case, super-/subscript and underline etc. are not supported ←↩

by
FinalWriter for textblocks.

1.7 Note on usage

Note:
Don’t select more than one oval or textblock. FinalWrapper being unable ←↩

to
figure out which object you selected first, it will simply take the oval and ←↩

the
textblock with the highest internal number. If you select a ←↩

textblock,
highlighted text will be ignored. Due to Final Writer, you can’t select only ←↩

one
character (exept with textblocks), but this is no real limitation, I think!

FinalWrapper 7 / 13

1.8 Note on usage

Note:
If an option is used twice or more times, only the first occurence ←↩

is
recognized. If the sector size is given with and without a preceding "a", ←↩

the
one with the "a" is used.

1.9 Note on usage

Note:
All numbers are integers (pointless numbers ;-S), i.e. they may not contain ←↩

any
decimal point or comma.

1.10 Programmer’s corner

Some information for Gurus and the like

If you aren’t familiar with Arexx, you’d better skip this section.

* I’ve split up the whole code in some subroutines to simplify your (and in ←↩
the

first place my own) life when altering FinalWrapper. The code growing ←↩
larger

and larger comments have been reduced to a minimum.

* The "PROC" in front of all subroutines enables folding them with GoldEd (←↩
set

fold start/end to PROC/RETURN in misc config). This is completely ignored ←↩
by

Arexx, since it’s located before the label (how cunning! ß->).

* All subroutines have now all parameters listed in their first line, so ←↩
you

even don’t need to unfold them for usage. The number in [brackets] indicates ←↩
the

version of FinalWrapper in which this routine has changed for the last time. ←↩
So

you know what is new if you receive a new version. I suggest you add an ←↩
asterisk

ot something like that, if you change a routine yourself.

How to translate the program into another language

Copy the english strings in the "locale" sub and translate them. Make sure ←↩
you

don’t remove any doublequote ("), since they’re essential. If you use ←↩
single

quotes (’), add another quote (i.e. use ’’ instead of ’).

FinalWrapper 8 / 13

You can make use of the following variables inside your strings:
"errtext": %n error number (=RC)

%l error line (=SIGL)
%t errortext (note that Arexx returns it’s errortexts always ←↩

in
english, at least upto OS3.0) (=ErrorText(RC))

"nolib": %y library name (=library)
"input": %i program info (=info)

%d default values (=default)
E.g.:

info="FinalWrapper 1.3 by NDY’s"
help.7=’"This is %i" "It has been enhanced by:" "Al «Kojack» Longhair"’
expanded to: ’"This is FinalWrapper 1.3 by NDY’s" "It has been...

"helppages" can be increased for any language, if necessary.

Don’t remove my name from the infostring and do include it somewhere, please ←↩
...

To test your new language, set the variable "test" to 1 and start macro, ←↩
then

set it to 2 and so on. The following things are tested:

test=1 Error requester
test=2 Library not found requester
test=3 Wrong things selected
test=4 Requester and help (just hit "Ok" and try ALL ←↩

requesters)
test=10,20,100,200 FinalWriter returncodes

If everything works fine, reset "test" to 0.

FW reads it’s language from the variable ENV:Locale which is used ←↩
by

locale.library V40+. But don’t bother if you don’t have this one (I don’t ←↩
have

it either!), the ENV_Locale program initializes this variable and also the ←↩
one

in ENVARC:. This is automatically called by the installation script and sets ←↩
the

variable according to locale’s preferred language. Unless you translate ←↩
the

whole doc and the script (:-), you should duplicate the install button in ←↩
this

doc, adding "LANGUAGE name" just after the "NOPRINTER" (e.g. ... ←↩
NOPRINTER

LANGUAGE français"). Like that, OS2.0 users can also use your translation ←↩
as

well.

If you send me your translations or improved versions, you’ll receive my ←↩
newest

version including your additional features, if possible. By the way: Who ←↩
wants

FinalWrapper 9 / 13

to do the translation work of the english doc to german for me??? It takes me ←↩
a

lot of time which could be used for coding instead...

1.11 Known bugs and limitations

Bugs and other insects

* For flat ovals, the results aren’t very amazing if the text flows round ←↩
the

tight arcs, but I didn’t want to spend much time on finding an algorithm ←↩
to

improve this since I don’t consider it useful. Use a sector of 120 degrees or ←↩
so

and all will be well. The same effect occurs when using spirals.

* Spiral effects don’t look that good yet.

* You’d better not change the text while FinalWrapper is working since ←↩
this

could lead to malfunction (especially when using normal text!).

* For normal text, the width of a space is calculated from the last used ←↩
font

only (for reasons of speed). This could slightly change the space between ←↩
the

words. Just add some more spaces where required. Tabs and ends of paragraphs ←↩
are

replaced by spaces which can change spacing as well.

* If the oval is rotated and the sector size is not about \ensuremath{\pm}360 ←↩
then the created

object may be placed not exactly over the oval (how terrible! ;). Use g- and ←↩
it

should be OK.

FinalWrapper was created and tested using Final Writer Release 1 ←↩
(21.10.93,

german version) on an A1200 (OS3.0, 2MB Chip, 4MB Fast, HD). It should run ←↩
under

OS2.0/2.1 and other hardware configurations as well.

1.12 About the history

Program history

(The alpha, beta etc. versions were not released)

1.0 (24.02.94) Initial Release
1.1a (06.03.94) Changed name from Wrap to FinalWrapper

Corrected version string
Added usage of normal text for long texts and different ←↩

styles

FinalWrapper 10 / 13

Textflow is now taken from the oval not the standard ←↩
textblock

Added D option
Seperate doc file for saving memory

1.1b (10.03.94) Added runtime/syntax error checking
Thus corrected syntax of RemLib
And added test whether no object is selected
Added replacing of bad characters (TABs, CRs etc.) by spaces
Fixed "sectorsize 6 impossible" bug
Sectorsize limited to -360...360, default is now 360

1.1c (11.03.94) Added RemLib in case of runtime error
Corrected SELECTED to "SELECTED" etc.
Added support for rotated ovals
Changed indention which reduced source size by ~2.5k!
Removed requester for wrong input

1.1 (17.04.94) Corrected bug if using normal text
Better german docfile (translation of this one)

1.2a (18.03.94) Added R option
Added L option
Added help requesters

1.2b (26.03.94) Now supports locale’s preferred language1
Linked strings ("a b c") replaced by dotted variables (x.y)
Multiple textblocks abandoned (the selection order is unknown ←↩

)
Now uses Datatype() instead of complicated Verify()s
Added S option

1.2 (27.03.94) Documentation now in the AmigaGuide format
Character objects are deleted if an error occurs
Added Installer-script

1.3a (02.04.94) Added @/h options (inspired by CBM’s Bullet-lib spiral demo)
Corrected silly bug that caused an error when "Abort" was ←↩

used
Changed procedure headers to enable folding them with GoldEd
Installer-script now can be started from within the doc

1.3b (03.04.94) Completely restructured the whole code (once again saved ~2k ←↩
!)

Decimal delimiter now is correctly reset after an error
Now all printable characters are handled (;=" didn’t work)
Helppages are shown in correct order
The Installer-script now asks before overwriting the macro

1.3c (13.04.94) Added d= option
Removed bug in help: Back wouldn’t always work

1.3d (14.04.94) Added O option
L option now is called G (more clear)
Somewhat improved parts of the manual
Help doesn’t trash the option line anymore

1.3 (27.04.94) Now uses ENV:Locale to determine the language
Added ENV_Locale
Installer-script now checks whether newer version is ←↩

installed

Has been tested for quite some time, should be stable now
(I can’t test all possible option combinations, however!)

FinalWrapper 11 / 13

1.13 Note

Note:
Therefore, there won’t be a special german version anymore from now on i.e. ←↩

all
comments in the source are english, but I think programmers should ←↩

understand
this...

1.14 About the future

The future of FinalWrapper

The next release will probably include:
- A requester with gadgets for all options
- Faster processing of normal text
- Better results with spirals and flat ovals (I’ve got an idea of how to do ←↩

it,
let’s see how it works out!)

- Some other little goodies

Do you have some cool ideas? Don’t hesitate to write me!

If you tell me about bugs in FinalWrapper or write me a good idea for ←↩
an

improvement, you’ll receive a new version with the bugs fixed or the new ←↩
feature

included (if possible).

Anyway, do send me a disk (maybe with some cool stuff on it?) and some ←↩
money

(sfr., DM, US$) to cover postage (or money for both), if you want me to send ←↩
you

a new version.

Other macros

I’ve already got some other Final Writer macros in mind:
- Function plotter with lots of options
- Sinetext (yeah!)
- Macro to make a single textobject out of selected text (with different ←↩

fonts
and styles, useful for image descriptions etc.)

- Effects with oblique (/text\ \text/ etc.)
- Effects with text size
- Everything you suggest

1.15 Legal stuff

Law and order

FinalWrapper 12 / 13

* Disclaimer:

You use the program at your own risk. Neither I nor any other author of ←↩
any

included file can be made responsable for any damage caused by any part of ←↩
this

distribution.

Especially don’t blame me if...
- your machine has crashed because of FinalWrapper and you’ve lost 10 hours ←↩

of
work on your new amazing shot’em up.
- your cat has eaten the disk containing FinalWrapper and got ill.
- your local power plant broke down while using FinalWrapper (a known bug, ←↩

which
only occurs very rarely)!
- you cannot close your mouth anymore because of sheer amazement about ←↩

the
effects achieved with FinalWrapper (look at a PC, this should cure you!).

3-) ←↩

* Distribution:

This program is Public Domain, i.e. you may use it or change it as you ←↩
please.

The whole distribution should be kept together, but at least you should ←↩
include

the rexxmathlib.library and one of the ShortInfo docs.

The following files are included:

FinalWrapper.rexx + .info The macro
FinalWrapper.Guide + .info English AmigaGuide doc
FinalWrapperD.Guide + .info German AmigaGuide doc
ShortInfo.doc A very short description
ShortInfo.dok The same in german
FinalWrapper.install Installer script
DemoDoc + .info An example Final Writer document
ENV_Locale Used by the install-script
E/ENV_Locale.e E source of the program \ Only useful for
E/locale.m Needed to compile it / E programmers!
libs/rexxmathlib.library For trigonometry

* Copyrights:

Final Writer is (c) by Soft Wood Inc.

The Installer and AmigaGuide are (c) by Commodore, but they both can be found ←↩
on

Fish Disk 870.

Workbench and Amiga are trademarks of Commodore Amiga Inc.

Arexx is (c) by William S. Hawes and Commodore

FinalWrapper 13 / 13

GoldEd is (c) by Dietmar Eilert

The Guide icons are (c) by Martin Huttenloher

If I should have unintentionally violated a Copyright, please let me know!

1.16 How to contact the author

For suggestions, bug reports, gifts :-} etc. write to:

Andreas Weiss
Dorfstrasse 24
CH-8212 Nohl
(Switzerland)

P.S: This is my very first prog in Arexx! D’ya like it?

Have fun!
ND

1.17 Special thanks

Thanx...

...must go to Dietmar Eilert for his great GoldEd, to SoftWood for ←↩
their

FinalWriter (I’m waiting for Release 2!) and to the programmer of ←↩
the

rexxmathlib.library (whoose name I don’t know since I haven’t got the docs)!

Also thanks to William S. Hawes for his ARexx portation!!!

And not to forget: Matrin Huttenloher for his wonderful MagicWB-icons and ←↩
Wouter

van Oortmerssen for his E-Compiler!

	FinalWrapper
	Hitchhikers guide to FinalWrapper
	What the hell is it?
	Installation
	Note on installation
	How to use it
	Note on usage
	Note on usage
	Note on usage
	Note on usage
	Programmer's corner
	Known bugs and limitations
	About the history
	Note
	About the future
	Legal stuff
	How to contact the author
	Special thanks

