
OCTOBER 1991

Getting Started in NLM
Development

Morgan B. Adair
Technical Consultant
Systems Engineering Division

For those who have decided to make the leap into NetWare
Loadable Module (NLM) development, this AppNote tells how to get
started. It helps you determine what hardware and software you
need and how to configure your NLM development environment. It
introduces various NLM development tools and gives an example of
how to compile your first NLM.

Copyright © 1991 by Novell, Inc., Provo, Utah. All rights reserved.

As a means of promoting NetWare AppNotes, Novell grants you without charge the
right to reproduce, distribute, and use copies of the AppNotes, provided you do not
receive any payment, commercial benefit, or other consideration for the reproduction
or distribution, or change any copyright notices appearing on or in the document.

Disclaimer

Novell, Inc. makes no representations or warranties with respect to the contents or
use of these Application Notes (AppNotes) or of any of the third-party products
discussed in the AppNotes. Novell reserves the right to revise these AppNotes and to
make changes in their content at any time, without obligation to notify any person or
entity of such revisions or changes. These AppNotes do not constitute an
endorsement of the third-party product or products that were tested. Configuration(s)
tested or described may or may not be the only available solution. Any test is not a
determination of product quality or correctness, nor does it ensure compliance with
any federal, state, or local requirements. Novell does not warranty products except as
stated in applicable Novell product warranties or license agreements.

NetWare Application Notes—October 1991

Contents
You, Too, Can Write NLMs 43

What Hardware Will I Need? 43
Configuration 1: One Workstation/Server on a Network 43
Configuration 2: A Two-PC Mini-network 44
Configuration 3: A Test Server and Workstation on a Network

45

Configuring Your Test File Server 47
Disabling Transaction Tracking 48
Setting File Server Parameters 48

Display Relinquish Control Alerts 48
Pseudo Preemption Time 48
Display Old API Names 48
Console Display Watchdog Logouts 49
Auto Register Memory Above 16 Megabytes 49

NLM Development Tools 49
NLM Linkers 50
Make Files 52

Hello Universe NLM 52

Getting Started in NLM Development

NetWare Application Notes—October 1991

You, Too, Can Write
NLMs

Maybe your company has a software product that is pushing the
processing limits of a single PC, and you would like to see if
distributing your application across a network will eliminate the
processor bottleneck. Perhaps you are an in-house software
developer for an established NetWare network, and have an idea for
an application that will make your network easier to administer. Or
maybe you have a couple PCs in your basement, and dream of
riding the client-server wave to fame and fortune.

Whatever your situation, the fact that you have read past the first
paragraph of this AppNote says that you are thinking about writing an
NLM. This AppNote will help you get from that initial thought to your
first compiled NLM.

What Hardware Will I
Need?

Your exact hardware needs depend upon the nature of the NLM you
are developing. At some points in the development cycle, you will
want to test your NLM in network configurations that approximate
conditions your NLM will be used in after release. You should,
however, be able to do most development with just one or two PCs.
Three development network configurations are described below.

Configuration 1: One
Workstation/Server on a
Network

Although this is typically not an ideal development environment, you
can develop most NLMs on a single 386/486-based PC attached to a
network, using the machine as both a workstation and a NetWare
v3.x file server. To set up a development workstation/server using
this configuration you will need:

● A 386 or 486-based PC
● At least 4MB RAM
● A NetWare disk partition of at least 20MB
● A floppy drive or DOS hard disk partition
● Enough disk space, either on a network server or on the
development workstation's DOS partition, for all development tools,
source code, and object code
● A network interface card and cables to connect the workstation to
the network

A one workstation/server development environment is diagrammed
in Figure 1.

Getting Started in NLM Development

Figure 1: A one workstation/server NLM development environment.

Using this configuration, you edit and compile your NLM on the
development workstation, then (if your development tools are on a
network file server) copy the compiled NLM code to a disk from
which it can be loaded after you bring up NetWare—either a floppy
disk or the workstation's DOS partition. Then load NetWare on the
development workstation, and load and test your NLM.

The disadvantage to a one-PC configuration is that once you bring
up NetWare, you do not have a workstation. You cannot log into your
development file server to test client-oriented features of your NLM,
or to debug your NLM remotely (using Watcom's WVIDEO
debugger). Still, for many NLMs, this configuration is adequate. And
even for NLMs that require a client workstation for complete testing,
a one-PC development environment can be used while developing
the NLM's console interface.

Configuration 2: A Two-PC
Mini-network

Two 386/486-based PCs should be considered the minimum for
most NLM development. To set up a development network using this
configuration you will need:

● Two 386 or 486-based PCs
● At least 4MB RAM for each computer
● A "large" hard disk in one computer (large enough to hold all your
development tools and code)
● Two network interface cards and cables to connect the two
computers

There are two ways to operate a two-PC network: the two-
workstation approach, and the server-workstation approach.

A two workstation development environment is diagrammed in Figure
2.

Figure 2: A two workstation NLM development environment.

NetWare Application Notes—October 1991

Under the two-workstation approach, one machine (usually the one
with the larger hard disk) holds all development tools and code, and
is the main development workstation. The other machine, which
must have enough hard disk space for a NetWare partition (at least
20MB), is a workstation/server. You can use it as a second
workstation while you are editing, compiling, and linking your NLM on
the main development workstation. When the NLM is ready to test,
load NetWare on the workstation/ server machine, log into the server
from your main development workstation, copy the NLM to the
server's SYS:SYSTEM directory, then load and test the NLM.

A server-workstation development environment is diagrammed in
Figure 3.

Figure 3: A server-workstation NLM development environment.

Under the server-workstation approach, the machine with the larger
hard disk is a dedicated NetWare server. The other machine, which
might not have a hard disk at all, is the development workstation.
When your NLM is ready to test, copy the NLM to SYS:SYSTEM,
then load and test it on the file server.

Each of these two approaches has its own advantages. With the two-
workstation approach, all your development tools are on the
workstation. When your NLM crashes your file server, you can
continue working on the workstation while the file server is coming
back up. Hardware requirements are more modest with the server-
workstation approach, since the workstation does not have to have a
hard disk.

A third variant of the two-PC development network is available for
those with very limited hardware resources. You still need a 386-
based machine with at least 4MB RAM and a large hard disk. Part of
the hard disk on this machine is set aside as a NetWare partition.
You edit, compile, and link your NLM on this machine, then load
NetWare and load the NLM from the machine's DOS partition. The

Getting Started in NLM Development

second computer acts simply as a workstation that can log into the
file server when testing client-oriented features of the NLM (such as
adding jobs to a queue serviced by the NLM). The advantage to this
approach is that the second workstation can be a 8086- or 80286-
based computer with or without a hard disk.

All three variants of the two-PC development network have the
advantage of being isolated. If you are developing an NLM for your
company's NetWare network, a separate development network
allows you to work without adding to the traffic or otherwise affecting
your company's production network.

Configuration 3: A Test
Server and Workstation on a
Network

Perhaps the best NLM development environment, overall, uses a
workstation and dedicated NetWare file server, attached to a larger
network. This configuration is the two-workstation variant of the two-
PC development network, attached to another network. In addition to
the existing network, hardware requirements for this configuration
are the basically same as for the two-PC configuration:

● Two 386 or 486-based PCs
● At least 4MB RAM for each computer
● Two network interface cards and cables to connect the two
computers

The difference is that the workstation/server machine is not required
to have a large hard disk, since all development tools are kept on a
separate file server. The workstation/server machine need only have
enough hard disk space for a small NetWare partition. A test server
and workstation development environment is diagrammed in Figure
4.

NetWare Application Notes—October 1991

Figure 4: A test server and workstation NLM development environment.

Two development workstations are available during editing,
compiling, and linking, both with access to all resources on the
network. When you have compiled your NLM, load NetWare on the
workstation/server machine, map a search drive from the
development workstation to the test server's SYS:SYSTEM directory,
copy the NLM to the test server, then load and test the NLM.

If (or when) your NLM crashes the test server, the development
workstation retains its connection to the file server where your
development tools and source code are stored. You can therefore
continue working uninterrupted while you reboot the test server.

This configuration is best when one or more NLMs are being
developed by a group of software engineers. Source code and
development tools are stored on a main file server where all
developers have access. Each developer can compile and link the
shared version of the NLM source code, then load and test the
compiled NLM on a test file server without affecting developers on
other parts of the network.

Configuring Your Test
File Server

A default NetWare v3.x installation is configured for a "typical"
network environment. When you are developing NLMs, you might
need to make some adjustments to the default installation. These
adjustments include disabling the Transaction Tracking System
(TTS) and changing file server parameters from their default settings.

Disabling Transaction
Tracking

If your NLM maintains a database on the file server, you should
disable TTS during testing. This forces your NLM to handle locking
and unlocking of all records, and enables you to see if your NLM
correctly handles calls to TTS even when it is disabled. The only

Getting Started in NLM Development

disadvantage is that if the file server goes down during a transaction,
the file server will not be able to "back out" the incomplete
transaction when the file server is brought up again. Disable TTS by
running FCONSOLE and selecting the "Status" option in the main
menu.

Setting File Server
Parameters

NetWare v3.x has a number of parameters that can be set to
configure the operating system for various environments. On your
test file server, you may want to change the settings of some of
these parameters, particularly those that send additional warning
messages to the file server console.

To change a file server parameter from its default value, you can
execute the SET command at the file server console, or enter a SET
command in the file server's AUTOEXEC.NCF file. Some parameters
can also be set in the file server's STARTUP.NCF file.
Documentation for the SET command and all the file server
parameters is given in the NetWare System Administration manual.

Some of the parameters you should be aware of are given below,
along with default settings, recommended settings on NLM test file
servers, and brief explanations of each parameter.

Display Relinquish Control Alerts. When ON, causes the operating
system to display a message on the file server console when an
NLM does not relinquish control of the CPU within 0.4 seconds. This
parameter can also be set in the STARTUP.NCF file.
Default Setting: OFF
Recommended Setting: ON

Pseudo Preemption Time. This parameter is available on NetWare
v3.11, and indicates the amount of time (in 0.84 microsecond
increments) to allow an NLM process to run before forcing it to
relinquish control. It is called pseudo preemption because the
preemption occurs only at the next file read or write call, and only if
the NLM was linked with WLINK's PSEUDOPREEMPTION linker
option. The range of values supported by this parameter is 1,000 to
10,000. If the release version of your NLM relies on pseudo
preemption, a recommended setting for this parameter should be
given in the NLM's documentation.
Default Setting: 2000
Recommended Setting: 2000

Display Old API Names. When ON, causes the operating system to
display a message on the file server console when an NLM is loaded
that calls APIs for a previous version of NetWare. This parameter
should be set ON if you are upgrading an NLM to a newer version of
NetWare. This parameter can also be set in the STARTUP.NCF file.
Default Setting: OFF
Recommended Setting: ON

Console Display Watchdog Logouts. NetWare's watchdog verifies
which workstation connections are active. If a workstation does not
send a file server request within a specified period of time, the
watchdog sends a packet to the workstation shell, asking it to send a
reply if it is still active. If the file server does not receive a reply, the
watchdog sends a number of retries at specified intervals. If the

NetWare Application Notes—October 1991

workstation still does not reply, the file server disables the connection
to the workstation. The delay before the first watchdog packet is
sent, the delay between watchdog packets, and the number of
watchdog packets sent can all be specified by setting file server
parameters.

If your NLM communicates with a client program, you should set this
parameter to ON and allow the client program to sit idle for more
than 20 minutes (assuming the default watchdog parameter
settings). This verifies that the client program does not interfere with
the workstation shell in replying to watchdog packets.
Default Setting: OFF
Recommended Setting: ON

Auto Register Memory Above 16 Megabytes. When ON, this
parameter causes the file server to automatically register memory
above 16MB in EISA computers. This parameter must be set OFF if
the file server has a network or disk board that uses on-line DMA or
AT bus mastering. These boards use 24-bit addressing, and can only
address 16MB. They will address low memory, instead of the
assigned high memory, and will corrupt low memory in use by the
operating system.

You should test your NLM on machines with less that 16MB RAM,
and on machines with more than 16MB RAM and this parameter set
ON, to ensure that the NLM runs correctly regardless of the amount
of available memory. This parameter must be set in the
STARTUP.NCF file.
Default Setting: ON
Recommended Setting: Test with both ON and OFF

NLM Development Tools
Currently, there are two ways to develop NLMs:

● Write the NLM in assembly language and assemble it with an
assembler (such as Phar Lap Software's 386ASM assembler) that
produces 32-bit protected-mode object code. This method is typically
used for LAN and disk driver NLMs.
● Write the NLM in C (or a combination of C and assembly
language), and compile and link it using the tools in the NLM
software development kit (SDK) from Novell.
Novell and Watcom have worked together to produce software
development toolkits for NLMs. The original SDK was called the C
Network Compiler/386. The latest version is the NetWork C for NLMs
Software Developer's Kit. Both kits contain compilers, linkers,
function libraries, and other tools for creating NLMs. Most of the
components of the SDKs are much like tools you have worked with
in other C language development systems, with three major
differences:

● The compiler produces 32-bit protected-mode object code that
uses a flat memory model.
● The linker produces NLM format executable files (rather than
DOS EXE format files).
● The function library, in addition to the standard malloc and printf
you are familiar with, includes several hundred functions that allow
you to access network resources.

Getting Started in NLM Development

The compiler's code generation is transparent. The function library is
too huge to discuss here, but is documented in two large volumes in
the SDK. That leaves the linkers, which are discussed below.

NLM Linkers
The C Network Compiler/386 shipped with a linker developed by
Novell called NLMLINK. For the Network C for NLMs SDK, Watcom
modified its linker, WLINK, to produce NLM format executable files.
NLMLINK also ships with NetWork C for NLMs, for backward
compatibility. The two linkers have many command-line options,
summarized in the table below.

Figure 5: Linker options.

NLMLINK Option WLINK Option Description

DEBUG DEBUG Specifies the types of debugging information to put
in the executable file

EXPORT EXPORT Indicates which symbols are made available for
import by other NLMs

INPUT FILE Specifies object files and library modules the linker
is to use as input

TYPE and
DESCRIPTION

FORMAT Specifies the format of the executable file (NLM,
LAN, DSK, or NAM)

IMPORT IMPORT Specifies symbol(s) that are defined externally in
other NLMs

LIBRARY Gives the name of a function library to be linked

MODULE MODULE Specifies an NLM that is required to be loaded
before the NLM being linked

OUTPUT NAME Indicates the name of the executable file the linker
is to create

OPTION CASEEXACT Sets case sensitive mode for resolving references
to global symbols

CHECK OPTION CHECK Specifies the name of a procedure to execute
before the NLM is unloaded

OPTION COPYRIGHT Specify copyright string to be displayed when the
NLM is loaded

CUSTOM OPTION CUSTOM Specifies the name of a data file that is to be linked
with the executable, then passed to the NLM as
arguments

OPTION DOSSEG Specifies the order in which segments are to be
linked

EXIT OPTION EXIT Specifies the name of the function to be executed
when the NLM terminates

FULLMAP OPTION MAP Tells the linker to generate a map file and
optionally specifies the name of the map file

MULTIPLE OPTION MULTILOAD Indicates that the NLM can be loaded more than
once

OPTION NAMELEN Specifies the number of characters that must

NetWare Application Notes—October 1991

uniquely identify a symbol (default is 39)

OPTION NODEFAULTLIBS Instructs the linker to ignore default libraries

OPTION
PSEUDOPREEMPTION

Indicates that the NetWare operating system is to
force the NLM to relinquish control of the CPU if it
does not do so after the time specified by the
operating system's Pseudo Preemption Time
parameter

OPTION QUIET Suppresses informational messages

REENTRANT OPTION REENTRANT Indicates that the NLM is written to be reentrant, so
if the module is loaded more than once, the code in
the server's memory is reexecuted

SCREENNAME OPTION SCREENNAME Specifies the name of the NLM's first screen

STACK and
STACKSIZE

OPTION STACK Specifies the size of the stack to be allocated for
the NLM (default is 8192 bytes)

START OPTION START Specifies the name of the procedure to execute
first (default is _Prelude)

SYNCHRONIZE OPTION SYNCHRONIZE Causes the load process, when the NLM is loaded,
to sleep until the NLM calls SynchronizeStart
(prevents other console commands from being
executed while the NLM is loading)

THREADNAME OPTION THREADNAME Specifies the base name to be used for the NLM's
thread(s)

OPTION UNDEFSOK Tells the linker to generate an executable file, even
if there are undefined symbols

VERBOSE OPTION VERBOSE Causes the linker to include in the map file all
segments it defines and their sizes

OPTION VERSION Specifies the version number of the NLM, which is
displayed when the NLM is loaded

PATH Specifies directories to be searched for object files
in subsequent FILE directives

Fortunately, linker options can be kept in a file, so they do not have
to be typed on the command line every time an NLM is linked.
Probably the most convenient way to handle linker options is to have
a make file create the linker option file.

Make Files
Watcom's make utility, WMAKE, is both powerful and complex. Until
you become familiar with all the make file syntax rules, you should
use a make file that works in your development environment, and is
easily modified for each NLM you write. A sample make file is
provided with the Hello Universe NLM below. You can modify the
make file for any NLM with one source code file, just by changing the
macro definitions at the beginning of the file. For NLMs with more
than one source code file, add lines at the end of the file that define
the dependence of each object file on the corresponding source file.

Hello Universe NLM
A heretofore unwritten law of software development says that the first
program written in a new development environment is Hello World.

Getting Started in NLM Development

While it is possible to write an NLM that just printfs "Hello, world" to
the NLM's screen, you might want to consider using Hello Universe
as your gentle introduction to NLM programming. Hello Universe
sends a greeting to every workstation connected to the file server on
which it is loaded.

The HELLOU.C source code follows:

#include <stdio.h>
#include <nwconn.h>
#include <nwbindry.h>
#include <nwmsg.h>

#define MAX_BINDERY_OBJ_NAME_LEN 48

main()
{

int maxStations;
char message[] = "Hello, universe";
WORD i;
int ccode;
char objectName[MAX_BINDERY_OBJ_NAME_LEN];
WORD objectType;

maxStations = GetMaximumNumberOfStations();
for (i=1; i<=maxStations; i++) {

ccode = GetConnectionInformation(i, objectName, &objectType,
(long *)NULL, (BYTE)NULL);

if (ccode)
printf("Unable to get user name for connection %u\n", i);

else if (objectType == OT_USER) {
printf("Sending howdy to %s at connection %d\n", objectName, i);
SendBroadcastMessage(message, &i, (BYTE *)NULL, 1);

}
}

}

The make file for Hello Universe is given below. Notice that the make
file creates the linker option file for you. The OPTION lines of the
linker option file are not required, but are included to show how these
options are used.

Commands to execute before making any target
Set environment variables for compiler
.BEFORE

@set inc386=f:\nwcnlms\h
@set wcg386=f:\nwcnlms\bin\386wcgl.exe

###
Macro definitions
NLMNAME = hellou
DESCRIPTION = Hello Universe (network hello)
VERSION = 0.10
COPYRIGHT = (c) Copyright 1991, Novell, Inc.
SCREENNAME = Hello Universe
CLIBIMP = f:\nwcnlms\imp\clib.imp
OBJFILE = $NLMNAME.obj
PRELUDE = f:\nwcnlms\imp\oprelude.obj
COMPILE = wcc386p /zq /d2 /3s
LINK = wlink
DESTDIR = f:\system
###

All .obj files implicitly depend on .c files
.c.obj:

@echo Compiling $[*.c
@$COMPILE $[*.c

NetWare Application Notes—October 1991

If .obj or .lnk files are modified, link new .nlm and copy to dest dir
$NLMNAME.nlm : $OBJFILE $NLMNAME.lnk

@$LINK @$NLMNAME
@echo Copying $[*.nlm to $DESTDIR
@copy $NLMNAME.nlm $DESTDIR

If makefile is modified, create new linker option file
$NLMNAME.lnk : makefile

@echo FORMAT NOVELL NLM '$DESCRIPTION' >$NLMNAME.lnk
@echo OPTION THREADNAME '$NLMNAME' >>$NLMNAME.lnk
@echo DEBUGALL >>$NLMNAME.lnk
@echo FILE $OBJFILE >>$NLMNAME.lnk
@echo FILE $PRELUDE >>$NLMNAME.lnk
@echo OPTION MAP >>$NLMNAME.lnk
@echo OPTION VERSION=$VERSION >>$NLMNAME.lnk
@echo OPTION COPYRIGHT '$COPYRIGHT' >>$NLMNAME.lnk
@echo NAME $NLMNAME >>$NLMNAME.lnk
@echo MODULE clib >>$NLMNAME.lnk
@echo OPTION SCREENNAME '$SCREENNAME' >>$NLMNAME.lnk
@echo IMPORT @$CLIBIMP >>$NLMNAME.lnk

If .c file is modified, compile new .obj
$NLMNAME.obj : $NLMNAME.c

At this point, you are probably saying "that doesn't look so bad." You
are right. When your NLMs have several threads that communicate
with clients and control access to shared resources, it will be a little
more complicated. But that can wait until tomorrow.

Getting Started in NLM Development

