BackUP

BackUP

COLLABORATORS
TITLE :
BackUP
ACTION NAME DATE SIGNATURE
WRITTEN BY November 24, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

BackUP iii

Contents

1 BackUP 1
1.1 BackUPguide o . e e 1
1.2 legalstuff 1
1.3 credits e 2
1.4 SyStem reqUITeMENtS v v v v vt e 3
1.5 historicalinfo L e e 3
1.6 benchmarks L 5
1.7 userdocumentation e e e e e e e 6
1.8 backingup e 6
1.9 restoringbackup L 9
1.10 recoveringbackup L. e e e 9
LAT COmMPresSion v v v it e 10
1.12 known problems L L e e e e e 12
113 release nOtes e e e e e e 12

BackUP 1/16

Chapter 1

BackUP

1.1 BackUP.guide

* ok Kk kK * K * Kk *k KKk kKk Kk
* % * * * % * % *k kK * %
* % * * * kK K * kK k * % *x kK *k kKk * *
* Kk Kk kK * x * x *kx Kk k% * * * Kk kK KkKk K
* K * K * kK kK * Kk * Kk Kk k * x * Kk kK

* * * K% Kk x * * * % * k% K**x *%* * % **x k%
* Kk Kk Kk % * * * * % * * k% % * % * * * K% Kk % * *
BackUP V3.91 © 1992, 1993 Felix R. Jeske

All Rights Reserved

Legal Stuff
Credits
System Requirements
Historical Info
Benchmarks
User Documentation
Known Problems

Release Notes

1.2 legal stuff

Kkkkkkkxkkkkkkrkxxhhkkkrkxxxhkk*kx Legal Stuff s+xxxxxx4%*x September 16, 1993 =

BackUP

2/16

BackUP V3.91 © 1992, 1993 Felix R. Jeske
All Rights Reserved

BackUP is a shareware, freely distributable hard drive backup program for
the Amiga under Workbench 2.x. If you like BackUP and regularly use it, I
would appreciate being sent a $20 contribution to the following address:

Felix R. Jeske
3746 North Oleander Avenue
Chicago, IL 60634-3210
USA

Usenet: fjeske@amiganet.chi.il.us

Contributors will receive the latest version of BackUP (I am already adding
a few other goodies) plus a few other programs I’ve written but not
published.

Suggestions, comments and criticisms (ouch) are also welcome at the above
address or on Usenet. I am quite proud of BackUP and gladly support
registered users. If any problems are encountered, PLEASE report them!

The fastest way to get a problem report to me is by leaving e-mail at the
above Usenet address. I have sent out disks at my own expense to users who
report problems to correct them.

DISCLAIMER

FELIX R. JESKE MAKES NO WARRANTIES EITHER EXPRESSED OR IMPLIED, WITH
RESPECT TO THIS SOFTWARE, ITS QUALITY, PERFORMANCE OR FITNESS FOR ANY
PARTICULAR PURPOSE. THIS SOFTWARE IS PROVIDED "AS IS." THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH THE USER. 1IN NO
EVENT WILL FELIX R. JESKE BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE.

Many thanks go to the developers of ARP who have created an extremely
useful collection of routines in one library and have made it easy to
program with as well.

Thanks go to Holger P. Krekel and Olaf Barthel for use of their
lh.library. This is an excellent version of the LZH compression algorithm
that, again, is very easy to program.

Thanks to Ludwig Kamphenkel for his translation of the text in
BackUP into the German.

BackUP 3/16

Finally, thanks to Urban D. Miller, et al. for XPK. XPK is a great
collection of packers and encrypters.

BackUP requires Workbench 2.x, 1MB of RAM, a hard drive (obviously) and as
many floppy drives as you can afford. BackUP requires lh.library V1
(available on FF436, distributed with BackUP) .

BackUP was initially developed on an A500 under Aztec C 3.6a. Workbench
2.x additions were made on an A3000 under Aztec C 5.2a. Development has
since shifted to an A4000/040 under SAS/C 6.3.

V3.91 - XPK support added, fixed sensing of new (3.0) disk formats

V3.90 - Add pseudo-localization in the form of a separate German
version of program. Lots of other little fixes, tweaks and
twiddles.

V3.89 - Added alphabetization option to file requestor, worked around a

SAS/C 6.2 bug regarding inlined memcmp () and started internal
restucturing for a localized version

V3.88 - Added safe backups and alternate restore destination, fixed
recognition of RAD devices as backup partitions and modified the
backup log name

V3.87 - Fixed high-density floppy support (now that I got an A4000)

V3.86R - Added ability to backup to another hard drive partition
(not fully supported yet so current off)

V3.85 - Added don’t compress pattern and changed highlighting in file

BackUP

4/16

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V2.

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

64

63

62

61

requestor

Added recursive selection, fixed directory state bug and
removed 6.5 MB file limit

Fixed file scan array resizing bug

More optimizations and changed file requestor behavior
Removed internal sound generator for bell, used 2.1 DisplayBeep()
Discontinued use of arp.library

Changed manner in which disk drives are scanned for

Fixed color palette bug introduced during optimization frenzy
Converted array indexing to pointers to save code

Fixed maximum number of files (2000) on restore problem
Fixed internal tracking of bad tracks

Added support for hard file links

Added optional bell on message and disk change requestors
Fixed disk labeling bug

Fixed directory selection bug and improved selection overall
Improved input-blocking code for multiple requests

Added status (Reading..., Writing..., etc.) display
Rearranged menu system

Added two different types of backup logs

Squashed file protection bug

Squashed empty file bug

Squashed CrossDOS incompatibility

Squashed drive motor bug

Added color requestor and support for high density drives
First public release

Added compression using lh.library

Discontinued use of req.library and added custom gadgetry

Added gadgets using reqg.library

BackUP 5/16

V1.0 — Added primitive interface using autorequestors and the console
v0.9 - Initial development of the backup and restore engines

I started developing BackUP after my purchase of a $700 (groan) 30MB Supra
hard drive. Not wanting to spend any more money than I had to, I started
on BackUP after reading about programming the trackdisk.device in an issue
of Transactor for the Amiga by Bob Rakosky (August ’89: Vol. 2, Issue 5).
After figuring out how to do raw reads and writes to the floppy drive, I
learned about parsing a partitions directory structure. I heard about ARP
in another issue of Transactor and finally got my hands on it. I
incorporated req.library after buying CygnusEd which uses it quite heavily.
The current version of the code is almost identical to that under
req.library except for cosmetics. I borrowed the current gadgetry style
from AVS (Application Visualization System), a scientific visualization
package I program and use at work on UNIX workstations. Finally, I found
lh.library on Fred Fish Disk #436 and included compression as an option.

The target machine for BackUP is any Amiga with at least two (2) floppy

drives. Being restricted to one floppy drive eliminates the continuous
write feature. BackUP does not support tape drives since I don’t have one
(yet!). Compression is only recommended for fast machines or if you really

want to save disks (190% compression is typical) as the on-the-fly
compression does slow down the backup substantially. Compression actually
speeds up the restore since the speed bottleneck is the floppy read/write
time. The decompression process is so fast that reading in less data,
decompressing it in memory and writing it out to the hard drive is faster
than reading and writing out the original uncompressed data which took
longer to load from the floppy.

My only real comparison of the capabilities of BackUP to other hard drive
backup programs is my experience with HDBackup (shipped with my A3000) and
other PD backup programs I’ve uploaded. Since most of the PD backup
programs I’ve obtained are CLI based, I only compare BackUP and HDBackup
since the CLI is not well suited to perform such an operation. Therefore,
the following is a comparison of BackUP and HDBackup working on 294 files
comprising about 1.1MB of data with compression and verify on. It shows
the following:

BackUP HDBackup

Executable Size 40K 81K

Memory Usage 430K 475K

BackUP

6/16

While Backing

Time to Backup 2:56 4:03

Number of Disks 1 3

I could not figure out why HDBackup needed three (3) disks to backup 1.1MB

of data, especially when full compression was enabled. In uncompressed
form, it should have only occupied two disks.

Backing Up

Restoring Backup

Recovering Backup

Compression

The backup procedure consists of selecting the partition to backup, the

specific directories and files to backup within the partition, selecting
which floppy drives to use during the backup and finally the swapping of
disks in and out of the floppy drives.

When BackUP boots up, it polls the machine for all hard drive partitions
and all floppy drives. A gadget for each is created on the main screen.
The user need only press on one of the labeled partition buttons to start
reading the complete directory contents into memory. When done, a standard

BackUP

7/16

file requestor displays the entire directory structure.

A few methods are available to the user as to how files are selected to be
included in the backup. The order of the methods chosen is important. For
example, selecting a particular file in a directory and then deselecting
the entire directory will deselect that file. The following lists the
order in which the selection process should proceed.

1) The Incremental/Full button changes whether files with their archived
bits set are included in the selected file list.

2) The Include and Exclude wildcard patterns are convenient ways to
include/exclude large groups of files. A file is selected for backup
if it matches the Include pattern and does NOT match the Exclude
pattern. An ARP compatible pattern matching system is used and
therefore asterisks (x) can be used in place of Commodore’s global
wildcard (#7?). Also patterns can be ORed together via the pipe (|)
operator to form more complex pattern such as:

.(clh) |.doc

which would match all files ending with either a .c, .h or .doc
extension.

3) Whole directories trees can be manually included or excluded by single

clicking on them in the file requestor with the recursive select option

on. The immediate contents of a directory may be selected if this
option is off. Directory names with a highlighted background indicate
that all the files in that directory are selected. Double clicking on
a directory name changes to that directory. All non-empty directories
have a much-greater-than sign (») appended to their name denoting that
they may be entered.

4) Finally, individual files can be selected (unselected) by single
clicking on them in the file requestor.

After choosing the files to be backed up, the user can press the buttons for
each of the floppy drives BackUP will use during the procedure. It is
recommended that as many drives be used as available. BackUP automatically
formats disks as it writes and also switches between drives without any user
intervention (continuous write). This speeds the process up by constantly
writing to one drive while the user is changing the disk in another.

Finally, a number options may be set in the menu bar: compression, verify,
logs, beeping and the palette. BackUP performs on-the-fly compression by
reading in small (11K) blocks of files, compressing them and asynchronously
writing them to disk. The asynchronous part allows BackUP to read from the
hard drive and write to the floppy drive simultaneously. Compression can
reduce the number of disks used by a factor of two (I have seen 2MB written
to 1 disk). Compression does, however, slow down the backup since the
compression process takes time and degenerates the backup to a synchronous
process (read, compress, write).

The compression option has been extended in BackUP to include XPK support.
XPK is an external set of libraries that perform compression and data
encryption. Now, in addition to the LhLib compression scheme that was
implemented in V3.4, the user has the choice using one of the XPK

BackUP

8/16

compressors instead. This feature has been implemented in such a way that
BackUP automatically detects the type of compression on restore and calls
either LhLib or XPK appropiately. Note that previous versions of BackUP
cannot uncompress the XPK compressed backups. See the "Compression"
section below regarding benchmarks for the various compressors.

The verify option specifies whether a read pass of the tracks written to
the floppy is made after the format/write pass. The backup process is sped
up considerably with verify off, however, it is not recommended since the
integrity of the data is unknown.

Two types of backup logs are available: sortable and printable. The
sortable type simply lists the file, its path, creation date, size and
backup status in tab separated columns that can be passed onto other codes
to be sorted at will. The second backup log type lists by directory the
same information. As the name suggests, it 1s more appropriate to be
printed for future reference. The name of the backup log file can be
chosen when either type log file is selected. The current backup partition
name can be put into the log name by placing a "%n" somewhere in the name.
The current date may be automatically put into the name (in DD-MM-YY
format) by placing a "%d" somewhere in the name. Note also that this name
is only a root name and that either ".inc" or ".ful" is appended to the log
name depending on the backup type.

The beep option allows the user to choose whether or not an audible beep

is made when a pop up message and/or a disk request is made. This is useful
if the user walks away from the machine during the backup or restore
process.

Finally, the color palette may be changed to suit the user’s preferences.
As mentioned above, the gadgetry style was modeled off of AVS. The default
color map was chosen to enhance the 3D feel of the interface.

All of the options (include/exclude wildcards, compression state, verify
state, backup type, etc.) can be saved as the defaults by choosing the
"Save Configuration" option in the Options menu. Upon subsequent boot ups,
BackUP will load the configuration file (S:BackUPDefaults) and
automatically set the previously saved defaults. The configuration file
should be compatible between BackUP versions as it is always appended to.
If, however, BackUP boots up with "funky" colors (as sign of configuration
file incompatibility), Jjust delete the file, reset your options and resave
the configuration.

After all this is completed, the user need only press the "Start Backup"
button and begin swapping disks. During the backup, a fuel gauge bar fills
representing the completion of the backup. Also, the current file being
backed-up as well as the current disk being written to and the total number
of files and bytes backed-up are constantly updated. The disks should be
labeled by date and disk number since BackUP will request numbered disks
during the restore procedure. The user may halt the process at any time by
pressing the "STOP" button. Note that the process will not actually stop
until the current file is completely written.

After the files are copied to floppy, BackUP writes out the directory
structure. Only the directories that contain backed-up files are written in
order to save space. This means that, on full backups, empty directories
will not be saved, and, therefore, cannot be restored.

BackUP 9/16

When backing-up, the "Safe Backup" feature can be enabled via the "Options"
menu to protect the user from a corrupted or destroyed directory
information disk. This feature writes this information along with the
backup data allowing all the disks to be rescanned in case the directory
information is otherwise lost. This feature has been implemented in a
backward-compatible fashion and only costs 1-2% extra disk space.

The restore procedure is very similar to the backup procedure with the
exception that the list of files is read from the floppy set instead of the
hard drive.

When BackUP boots up, the user need only press the "Start Restore" button
to have BackUP read a partition’s directory structure off floppy. BackUP
will request that the last disk of a backup set be inserted into any
available drive to start this process. BackUP may ask that the previous
disk be inserted depending if the directory structure write overlapped
multiple disks. When finished, the user can select and deselect files Jjust
as in the backup procedure with the exception that the Incremental/Full
button is not available.

After choosing which files to restore the user should press the "Start
Restore" button again. The same window with fuel gauge bar will appear

and BackUP will request particular numbered disks to be inserted in the
available drives. Files are restored to their previous location with date
stamp, file note and protection bits restored as well. Directories will be
made if necessary.

Files may be restored to an alternate destination if one is specified via
the "Options" menu. This features strips off the leading volume name of the
file’s path and replaces it with specified alternate destination which must
contain a volume name and optionally a path (e.g., vol:pathl/path2 is OK but
pathl/path2 is insufficient).

1.10 recovering backup

R R e i b S b b S b b A g e S S R S S b i b Recovering Backup BRI I e dh i b I S b A 2 e S b S b b S b S b 4

BackUP 10/16

The "Safe Backup" feature writes extra directory information along with the
data that is backed-up. This is in case the directory information written
at the end of the backup set becomes corrupted which would previously
render the entire backup set useless. In case this occurs, the "Recover
Backup" feature is used to rescan all the disks in order to obtain this
critical directory information.

The process begins by selecting "Recover Backup" and sequentially swapping
all the backup disks in the floppy drives of the particular backup set.
This builds an internal directory structure similar to the restore process
above. The differences are limited to the fact that file comments and
links are not kept track of and are therefore lost when recovering a
backup. All other information is preserved: file name, path, size, date
stamp and protection bits. Once all the disks have been read, the file
requestor is updated and a normal restore process can continue.

Note that once everything is restored it is HIGHLY recommended to perform
another backup since recovering a backup is a very inefficient way to
perform a restore.

1.11 compression

With the addition of XPK support, the user now has quite a number of
choices regarding the type of compression performed during the backup
process. Six compressors are now distributed with BackUP. Other XPK
compressors are available (e.g, RLEN), however, they are only demonstration
compressors and are not useful in real applications. Each of the
compressors have different characteristics in terms of speed and
compression ratio (defined as the ratio of original data to compressed
data) .

The following list some benchmarks I have made on various data. The "Time"
column lists the number of seconds to perform the backup on my A4000/040.
The "Compression Ratio" column lists the compression ratio for the backup.
The "Ratio" column lists the normalized (by None) ratio of "Compression
Ratio" by "Time". This gives an indication of the tradeoff of time and
compression ratio. In parentheses, next to each column, is the rank of the
compressor in each of the three catagories with the sum being listed in the
last column. All this is done because it is interesting to know how
compressors compare in terms of speed, compression ratio, the tradeoff of
these and finally, all of three considered as a whole. The point being the
compressor with the lowest sum (highest ranks) is probably optimal.

77 Files - 1483351 Bytes - Mixture of binaries, ascii, etc.

BackUP

11/16

None
LhLib
BLZW
HUFF
IMPL
NUKE
RLEN
SHRI

Time [s] Compression Ratio
Ratio [%]
130 (7) 100 (8) 1.00 (8)
131 (8) 224 (2) 2.22 (5)
77 (2) 178 (5) 3.01 (2)
87 (3) 153 (6) 2.29 (4)
119 (5) 202 (4) 2.21 (6)
72 (1) 203 (3) 3.67 (1)
99 (4) 130 (7) 1.71 (7)
123 (6) 232 (1) 2.45 (3)

28 Files — 1686548 Bytes - DEM files from VistaPro

None
LhLib
BLZW
HUFF
IMPL
NUKE
RLEN
SHRIT

492 Files — 1491036 Bytes — Ascii texts files

None
LhLib
BLZW
HUFF
IMPL
NUKE
RLEN
SHRI

Time [s] Compression Ratio
Ratio [%]
145 (7) 100 (8) 1.00 (8)
122 (4) 159 (2) 1.89 (3)
102 (1) 145 (3) 2.06 (1)
103 (2) 143 (4) 2.01 (2)
133 (5) 138 (6) 1.50 (6)
111 (3) 141 (5) 1.84 (4)
143 (6) 102 (7) 1.03 (7)
152 (8) 162 (1) 1.55 (5)

Time [s] Compression Ratio
Ratio [%]
136 (6) 100 (8) 1.00 (8)
138 (7) 252 (2) 2.48 (2)
116 (2) 179 (5) 2.10 (5)
118 (3) 130 (6) 1.50 (6)
128 (4) 210 (4) 2.23 (4)
111 (1) 225 (3) 2.76 (1)
133 (5) 104 (7) 1.06 (7)
149 (8) 257 (1) 2.35 (3)

From the above, it can be gleaned that SHRI is the best compressor

highest mean compression ratio),

and BLZW are the best overall.

more compression options ("Minimum Disks" and "Minimum Time") that
statistical data such as above in order to create a backup using the

minimum number of disks (without regard to time) or in the minimum amount

of time (without regard to disks used) by automatically sensing th

type (ascii,
compressor.

executable, data, etc.) and choosing an appropriate

Sum

23

15

13
15

18
10

~ e~ o~~~ o~~~

w o oD O

Sum

23
9
5
8

17

12

20

14

O 3> o NP W oo

(#includes from SAS/C)

Sum

22
11
12
15
12

5
19
12

W O W s w o

(i.e.,

NUKE and BLZW are the fastest compressors,
NUKE has the best tradeoff in terms of compression ratio to speed and NUKE
A future release of BackUP will offer two

use

e file

BackUP 12/16

1.12 known problems

There are few known problems with the program. The first is that although
a "Cancel" button is included on a number of popup requestors, it is not
always implemented and therefore pressing it just brings up the same
requestor. This is true only for requestors with red text (as opposed to
white) that appear in the middle of screen that usually request that a disk
be (re)placed in a drive (usually, truly canceling the request will destroy
the backup or restore process).

This is not really a problem but a known bad interaction. If BackUP is run
with BlitzDisk (V2.00 © 1989 Microsmiths) caching a hard drive partition,
the file scan of that partition is slowed down substantially (the other
portions of the code don’t seem to be affected). I can only figure that
both processes are contending for the CPU and therefore BackUP visibly
slows down. If anyone has any ideas as to a fix for this, I’d be happy to
hear it.

A problem has cropped up between versions prior to 3.73 and those after.
In order to support hard file links, the format of the backup on floppy
changed. This, of course, makes versions 3.74 and on completely
incompatible with versions earlier than this. Fortunately, not too many
people have these versions.

Due to the increasing number of hard drive cache programs, a warning must
be added about the use of them during a backup. It is STRONGLY recommended
that such programs be turned OFF prior to backing-up a partition. These
programs usually operate at the driver level (well below BackUP) which

prevents any detection of their unseen operation. BackUP expects tracks to
have been written to or read from disk, however, with a cache, they are
written to or read from cache buffers. This can confuse BackUP and prevent
its normal operation (as evident from "ERROR: Bad Disk! ..." requestors

that pop up randomly on newly inserted disks). BackUP rigorously invalidates
buffers prior to all reads and flushs all buffers after a write, however,
this may not be enough for some cache programs. Hypercache Pro (V1.01B ©

Dave Plummer), in particular, is known to be fully compatible with BackUP.

1.13 release notes

Release Comments

v3.91 This version adds support for XPK packers and encrypters. This

BackUP

13/16

v3.90

V3.89

V3.88

V3.87

V3.86R

V3.85

V3.84

version also fixes the problem with sensing the new (3.0) disk
formats (DOS2 - DOS5). These include the new "International"
and "Directory Caching”" formats.

This version is now available in German. The internal changes
required for this include converting to the GadTools system of
menus as well as removing hard-coded text positions. 1In
addition, qgquite a number of other little fixes, tweaks and
twiddles have been made. For example, more strict buffer
invalidation and disk updating (to thrwart cache programs),
slight position changes to the main-screen buttons and other
small, internal changes.

This version includes a workaround for a SAS/C 6.2 bug in the
inline memcmp () routine. The code compared one byte beyond the
length of the specified buffer and randomly caused "BAD DISK!"
requestors to pop up. This version has a hand-coded memcmp ()
routine optimized for the particular comparison made. Also
included in this release is some internal restructuring made
necessary for localization of the menu and requestor text.
Version 3.90 should be available in German as well as English.

This version adds "safe backups" allowing disks to be rescanned
via the "Recover Backup" item in case the directory information
written at the end of the backup set becomes corrupted. Also,
an "Alternate Destination” item has been added in the "Options"
menu allowing files to be restored to an alternate destination
instead of their original path. In addition, RAD type devices
are no longer recognized a valid backup partitions. Finally,
the backup log name accepts %d and %n specifications for date

and partition name, respectively. Previously, just a %$s was used

for the date and, if two or more partitions were backed-up on
the same day, the log files would get clobbered (oops!).

This version fixes the high-density floppy drive support in the
program. As I figured, this feature was broken previously but
I could not fix it since I did not own a HD drive. Now that I
am developing (and backing up) on an A4000, I fixed this. The
fix was not simple because queries needed to be placed at
numerous points in the code to determine what type of disk was
in the drive at the time of the query.

This version adds the capability to backup to another harddrive
partition. However, this capability has been hacked in so far
and therefore is not a fully supported feature.

This version adds a pattern against which files are compared to
see if they should be compressed. This speeds up the backup
process since files that have been already compressed (with
*.lha, *.lzh, %.zoo, *.arc and *.dms extensions, for example)
usually do not compress any further and therefore only slow down
the backup process. Also, files are now highlighted by changing
their background which is consistent with how directories are
highlighted. File names are always blue (in the default color
scheme, anyway) and directories are always red.

This version adds optional recursive selection in the file

BackUP

14 /16

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

83

82

81

80

79

78

77

76

75

requestor. This means that clicking on directories (de)selects
everything immediately in them and in any subdirectories and so
on. Also, a bug with the proper highlighting of directories was
fixed. Finally, an internal limit of 6.5 MB for a single file
that could be backed-up was removed.

This version fixes an "off by 1" bug that limited the number of
files that could be scanned in off a hard drive. Similar to the
bug fix for V3.76, this time, however, the problem occured just
after the files were read in off the hard drive and initially
displayed in the requestor. The "off by 1" comes in because
BackUP resized an array one element after it exceeded the size
of the array (not one element before) and this trashed some
random memory.

This version includes more optimizations that cut code size and
includes a requested change to the behavior of the file

requestor. It now keeps track of where (i.e., position in the
file list) a user was when he enters a new directory and returns
him to the same place. This eliminates the hassle of scrolling

back to where you were after pressing the "Parent" button.

This version removes internal sound generation code in favor of
DisplayBeep (). Prior to 2.1, DisplayBeep() only flashed the
screen. Now, however, a user specified sound and/or a screen
flash can be generated at the user’s preference.

This version discontinues the use of ARP completely. All the
functions BackUP used from ARP were in AmigaDOS 2.x so they
were simply converted. Also, ARP is stagnant to my knowledge
so the functions in AmigaDOS should be more up to date.

This version replaces the ARP calls that scan for disk drives
(hard and floppy) with AmigaDOS versions of the same. The
routine should now be fool-proof (yeah right) against CrossDOS
devices calling up requestors. Also the hard drive volume names
are used instead of their device equivalents which is more
consistent with other parts of the code.

This version fixes a small bug in the color palette requestor.
BackUP updated the numbers above the slider gadgets with the
values of color 0 instead of the appropriate color number.

This version includes some optimizations of array addressing that
were converted to pointers. For example, tracks[numtracks++]

was converted to stracks++. This and other small tweeks led to
1100 bytes of code being saved.

This version fixes a bug concerning the maximum number of files

that can be restored. 1In order to save memory, BackUP dynamically

allocates buffers to some initial size, then, whenever they are
about to be exceeded, they are resized. BackUP forgot to resize
the file buffer (currently set to 1000 files). It was resized
correctly during the backup procedure so an unlimited number of
files can be backed up.

This version fixes a long-standing bug that screwed up internal

BackUP

15/16

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

V3.

74

73

72

71

70

69

68

67

64

tracking of bad tracks on backup floppies. If a track refuses
to verify, internal updates are necessary to reflect the new
track numbers to which file data has been moved to. Due to

the asynchronous operation, this becomes complicated since data
is buffered and verification of data lags behind writing of data.
Put simply, BackUP would determine track n-1 is bad when it is
ready to write out track n so it would have to move track n-1
data to wherever and track n data to wherever+l.

This version adds support for hard file links. The link is
examined to determine where it is pointing to and this
information is save. On restore, the link is restored via
MakeLink () . This, however, requires that the destination file
be present to be successful. BackUP, therefore, restores all
real files first and then restores file links. If the user did
not restore the destination file or else intentionally deleted
it, the MakeLink () will fail and the user will be informed.
Soft links are not yet supported. Directory links are ignored.

This versions adds an optional audible bell cue when either
messages pop up or a disk change is requested.

This version fixed a bug in the labeling of disks. Proper error
checking was not performed to ensure that the disk label was
actually written. If a user popped out a disk during the
labeling process, the label would not be written and this would
corrupt the backup set.

This version fixed the directory selection bug in which BackUP
lagged in noting when a directory was selected (i.e., all the
files in the directory were selected). In addition, the
background color of a selected directory is changed to note its
state.

This version improves the manner in which input is blocked to
windows when they are superseded by another request. Earlier
versions used a cumbersome system that failed to work on
multiple, overlapping user requests.

This version adds a flashing status display informing the user
of the exact operation being currently performed (Reading...,
Writing..., Compressing..., Decompressing... and Verifying...).
Note that some of the messages flicker so fast that they
sometimes cannot even be seen.

This version reorganizes the menu system by adding a second menu
that is just for the growing list of backup options. The first
menu is a standard Project menu.

This version adds two types of backup log files: sortable and
printable.

This version removes a bug with read protection on a file. A
proper check was not made that an error did not occur during
the read of a file (as opposed to opening it which was checked).
This failure to check the read status also caused a problem if
a file was removed during the backup procedure.

BackUP

16/16

V3.63

V3.62

V3.61

V3.6

This version removes a serious bug with empty files. Backups
made prior to this release cannot restore empty files as they
crash the machine (oops!). As a work around, users should
remove empty files from the restore list prior to restoring.

I found this one restoring my 50MB Quantum onto my new 236MB
ST3283N. I also removed a few potential divide-by-zeros if the
user backs up zero bytes of files.

This version removes an incompatibility with CrossDOS. The DIx:
and PCx: devices where found by BackUP which called up a system
requestor.

This version actually squashes two bugs 1) the drive motor was
left running when the user was informed that the current disk

was write protected and 2) a tab creeped into one of the messages
which printed as a square block in BackUP.font.

This version contains two additional features as per Olaf
Barthel’s request: a color requestor and support for high-
density drives. I am uncertain of the latter since I do not

own such a drive and cannot, therefore, verify my implementation.
I would appreciate user feedback on this. Questions I have
concern what happens when a user puts a low-density disk into

a high density drive? I am not certain I handle this case
correctly since the code I inserted queries drive geometry not
disk geometry and I don’t think a DD disk can be formatted as HD.

Original public release.

	BackUP
	BackUP.guide
	legal stuff
	credits
	system requirements
	historical info
	benchmarks
	user documentation
	backing up
	restoring backup
	recovering backup
	compression
	known problems
	release notes

