
GTDriver
A graphic tablet and serial mouse driver for Amiga

Edition 1.0, for GTDriver V 1.0, rev 37.5
26 October 1994

by Roberto Attias & Marco Zandonadi

Copyright c© 1994 Roberto Attias & Marco Zandonadi

Chapter 1: Overview 1

1 Overview

GTDriver is a program to control serial graphic tablets and serial mice with your Amiga. Version

1.0 of GTDriver supports the following tablets:

• Summagraphics MM

• Summagraphics Bitpadone

• CalComp 2000

• Cherry

• TekTronix 4957

• Wacom (see Chapter 9 [Known bugs or problems], page 30)

and the following mice:

• Microsoft mouse

• Mouse System mouse

If your tablet or mouse emulates one of the previous models you can use it with GTDriver.

If not, contact the authors to have your device supported in the next release of the package (see

Chapter 8 [How to have your tablet supported], page 28).

GTDriver has many parameters that can be configured using the program GTDOptions. Among

the parameters, you can find the emulation type, the baud rate, the dpi tablet resolution and the

dimensions of the clip region. These parameters must be properly set for both the driver and

the tablet before you can start working (see Chapter 2 [Configuring hardware], page 3 and see

Section 3.1 [Configuring software. GTDOptions], page 7).

GTDriver has two working modes: driver mode and server mode. When started, GTDriver is

in driver mode. In this mode, you can move the screen pointer just like you do with the mouse. If

you are using a stylus, pressing it down is equivalent to clicking the mouse select button. Pressing

the button on the stylus body (if present) is comparable to clicking the mouse menu button. If

you have a digitizing puck it may have more than two buttons. However, only three buttons are

supported in driver mode. The third button is mapped to the third Amiga mouse button (that is

supported by few programs).

Chapter 1: Overview 2

Server mode is intended for programmers only. You can write your own programs that use

GTDriver in server mode: in this way GTDriver will send complete tablet information to your

program (instead of inserting it into the “input.device” chain) in a standard format, so you can

take full advantage of tablet features in your software (see Chapter 6 [Programming GTDriver],

page 20).

GTDriver supports user-defined tablet buttons (called pseudo-buttons or p-buttons). A p-button

is a rectangular area on the tablet, to which an arbitrary key combination has been associated.

Whenever you press the stylus on a pseudo button, its key combination is sent to the active program

just like you were pressing it on the keyboard. As many programs use keyboard shortcuts to select

tools and menu items, you can define sets of p-buttons even for programs not explicitly written to

work with GTDriver. For example, you can use Deluxe Paint or DynaCadd with a graphic tablet

without having tool bars on the screen, without selecting menu items and, most of all, without the

software being aware of GTDriver!

Warning: Before you can use your tablet with GTDriver you must configure both the
tablet and the driver. Tablet configuration consists of setting parameters affecting the
way your tablet behaves. Driver configuration consists of setting parameters that define
how GTDriver interprets data coming from the tablet. Some driver parameters must
be set in a compatible way with their counterparts on the tablet. I.e. you will have to
set the baud rate at wich your tablet sends data to the driver. The driver will have to
be set at the same rate, or nothing will work.

GTDriver requires O.S. V2.0 or greater. A fast CPU (68020/30/40) is not required but recom-

mended.

Chapter 2: Configuring hardware 3

2 Configuring hardware

Your graphic tablet has many internal parameters that must be configured before you can use

it with GTDriver. Depending or your tablet model you can use one of the following methods:

− sending configuration strings to the tablet from the computer (see Section 3.1.2 [Init string],

page 7);

− moving dip switches on your tablet;

− pressing the stylus on a menu/mask over the tablet;

Please refer to your tablet manual to understand which method to use. If your tablet is able to

receive configuration strings, you should use the Init field in the GTDOptions program to specify

the string. This is the preferred way to set up your device. To use this method you will need to

compose a string using the character sequences associated to every setting. These sequences may

be different from model to model so you will need to look them up in your tablet manual.

If you set parameters by using dip switches you will need to do this only once.

If you use menu/mask there should be a way to make permanent the changes you made (i.e. a

button labeled “save” on your tablet).

If you use an Init String, it will be sent to the tablet every time you start GTDriver.

In the following sections we show the typical tablet parameters explaining how to set them.

2.1 Emulation

Your tablet sends to the computer a stream of packets, each one containing information about

the position and the button status of the pointing device (stylus or digitizing puck). The way these

information are stored in the packets is different from tablet model to tablet model. Some tablets

may have only one packet format, while others may allow the user to choose among many formats.

We call emulation the format of the packet.

Chapter 2: Configuring hardware 4

You must set one emulation among those supported by GTDriver. You will have to set the same

emulation for both tablet and the driver (see Section 3.1.1 [Emulation (GTDOptions gadget)],

page 7).

The available emulations are:

• Summagraphics MM

• Summagraphics Bitpadone

• CalComp 2000

• Cherry

• TekTronix 4957

• Wacom

• Microsoft mouse

• Mouse System mouse

2.2 Data format

Some emulations has a dual form: binary or ASCII. The binary format is more compact and al-

lows faster manipulation by the software. For this reason all the emulations supported by GTDriver

are binary, and you must set your tablet in binary format.

2.3 Baud rate

Being a serial device, a tablet may use different speeds to communicate with the computer.

Usually the speed can range from 150 baud to 9600 baud. You can choose any of these, but a speed

between 2400 and 9600 baud will give better results.

You will have to set the same rate for both tablet and the driver (see Section 3.1.6 [Baud],

page 10).

2.4 Data bits

Number of bits sent to the serial port. Usually this parameter may be set to 7 or 8, but GTDriver

expects eight bits, so you must set it to 8.

Chapter 2: Configuring hardware 5

2.5 Operating mode

This parameter defines a set of conditions which trigger the transmission of coordinate data to

the computer. Usually the following modes are available:

Point A packet is transmitted only when one button of the pointing device is pressed while

in proximity of the tablet surface.

Stream Packets are transmitted continuosly as long as the pointing device is in proximity of

the tablet surface. This mode is also referred to as Run.

Track Packets are transmitted continuosly as long as one button of the pointing device is hold

pressed while in proximity of the tablet surface.

As GTDriver uses the stylus as a mouse replacement, the tablet must always send data to the

driver; so you must set it to Stream (or Run) mode.

2.6 Sampling rate

Speed at which the tablet generates packets. If this value is too high, the serial device will be

overloaded and you may experiment some strange behaviour of the screen pointer. On the other

hand, if this value is too low, the pointer movements will be jerky. It is recommended to choose a

value between 50 and 100 events per second.

2.7 Resolution

The number of separately discernable points in a given distance. It is expressed in Dots Per

Inch (DPI). Resolution can usually range from 100 to about 1000 DPI. You can choose any value

for this parameter. Of course, the higher

the resolution the better the precision.

You will have to set the same rate for both tablet and the driver (see Section 3.1.9 [DPI],

page 11).

Chapter 2: Configuring hardware 6

2.8 Origin setting

This parameter defines where the origin of the coordinate system is located and how the axes

are oriented. Usually, you should set the origin to the upper left corner of the tablet. You may

avoid to modify this parameter of your tablet because GTDOptions allows to adjust the origin by

software using the MirrorX, MirrorY and SwapXY parameters.

2.9 Coordinate mode

This parameter specifies if the coordinate pairs sent by the tablet to the serial port are absolute

or are differences from the previous pairs (delta coordinates). GTDriver does not handle delta

coordinates, so you must set this to "absolute".

Chapter 3: Configuring software. GTDOptions 7

3 Configuring software. GTDOptions

Once you have set the parameters for your tablet, you must set those for the driver using the

GTDOptions prefs program. This program saves the configuration in a file called ‘GTD.prefs’; this

file can be found bin the "ENVARC:" and "ENV:" directori and is read by GTDriver every time

it is started.

GTDOptions is operated via a font-adaptive graphic user interface. This means that the program

window adjusts itself and its gadgets depending on the current screen font (if you use square pixel

resolution for your Workbench and you never gave up the old topaz 8 font, try helvetica 13). If the

screen font is too large, the program window is opened in topaz 8 font.

Tip: GTDOptions lets you cycle through string and integer gadgets (via the Tab key)
even when no one of them is selected. Try pressing the Tab key right after you started
the program.

3.1 GTDOptions gadgets

In the following sections we describe the window gadget functions.

3.1.1 Emulation

Format used by the tablet to send data. To know wich emulations are supported by GTDriver

see Chapter 1 [Overview], page 1.

Warning: this parameter must match the tablet emulation setting.

3.1.2 Init string

This gadget should be used to set your tablet if it supports configuration via serial port. This

is the preferred way to set up your device (see Chapter 2 [Configuring hardware], page 3).

Please understand that the Init String has nothing to do with GTDriver configuration: its

purpose is to set tablet internal parameters. It could be said that the Init String field configures

Chapter 3: Configuring software. GTDOptions 8

the hardware (the tablet) whereas all other gadgets in the window configure the software (the

driver). Of course hardware and software are to be set in a compatible way so that they can

communicate correctly.

For example, if you have a tablet supporting Summagraphics MM and Calcomp 2000 emulations,

you have to set it to use one emulation or the other. Depending on your tablet you can do it by

adjusting dip switches, by moving the stylus over a menu (or a mask) on the tablet or by software

(sending a configuration string to the serial port). The Init String field provides a simple way to

use the third method (if your tablet supports it). If you use the Init String, you have to check the

manual that came with your tablet and look up the commands you can send. If your tablet does

not support the configuration string you have to use the other methods (again, check your tablet

manual). If a command sequence includes non-printable characters they can be indicated by using

the two digit hexadecimal ASCII code, preceeded by a "\x" string (i.e. the character whose ASCII

code is 9 is indicated as "\x09"). You can also use "\n" for newline (ASCII code 10) and the "\\"

sequence to specify the "\" character.

After some commands a short delay may be needed before your tablet can process the remaining

part of the init string. You can produce this delay using the "\p" sequence.

3.1.2.1 Init string for Summagraphics tablets

For Summagraphics and compatible tablet models (Kurta, SummaSketch) we suggest to use the

following Init string:

\x00\p@Rh

The following table shows the most important commands and their meaning:

\x00 tablet reset
@ set run mode
Q set maximal data rate
R set high data rate
S set medium data rate
T set minimal data rate
b origint to upper left corner
c origin to lower left corner
d Resolution 100 DPI
e Resolution 200 DPI
f Resolution 10 DPmm

Chapter 3: Configuring software. GTDOptions 9

g Resolution 400 DPI
h Resolution 500 DPI
i Resolution 20 DPmm
j Resolution 1000 DPI

As you can see the suggested init string executes a tablet reset, sets a high data rate and a

resolution of 500 DPI. Note that the reset command requires a delay, so a "\p" command has been

introduced.

3.1.2.2 Init string for Wacom tablets

For Wacom and compatible tablet models we suggest to use the following Init string:

− Wacom A5

RE\x0D\n\pSR\nAS1\nLA2\nIT4\nIC1\nSU0\nAS1\nPH0\n

− Wacom A5 pressure

RE\x0D\n\pSR\nAS1\nLA2\nIT4\nIC1\nSU0\nAS1\nPH1\n

− Wacom A4+

RE\x0D\n\pSR\nAS1\nLA2\nIT4\nIC0\nSU0\nAS1\nPH0\nLA3\n

− Wacom A4+ pressure

RE\x0D\n\pSR\nAS1\nLA2\nIT4\nIC0\nSU0\nAS1\nPH1\nLA3\n

− Wacom A3

RE\x0D\n\pSR\nAS1\nLA2\nIT4\nIC0\nSU0\nAS1\nPH0\nLA3\n

− Wacom A3 pressure

RE\x0D\n\pSR\nAS1\nLA2\nIT4\nIC0\nSU0\nAS1\nPH1\nLA3\n

− Wacom A3 +

RE\x0D\n\pSR\nAS1\nLA2\nIT4\nIC0\nSU0\nAS1\nPH0\nLA3\n

− Wacom A3 + pressure

RE\x0D\n\pSR\nAS1\nLA2\nIT4\nIC0\nSU0\nAS1\nPH1\nLA3\n

3.1.3 Priority

Priority of the GTDriver process. A value of 5 should be appropriate in almost every situation.

The maximum value allowed for this parameter is 19.

Chapter 3: Configuring software. GTDOptions 10

3.1.4 Pressure

This parameter has a meaning only for pressure sensitive tablets. It tells the driver the threshold

above which a stylus pressure will be translated in a left mouse button event by GTDriver. If the

stylus pressure value is inferior to the Pressure field value, GTDriver ignores it. The only pressure

sensitive tablet supported by GTDriver 1.0 is Wacom.

3.1.5 Device

Under normal conditions your tablet will be connected to the standard Amiga serial port. This

port is controlled by the “serial.device” , and its unit number is 0 (these two settings are the

defauts). However, third party serial boards exist that are driven by different software devices and

that may have different unit numbers, so you are allowed to specify the name of the device and the

unit number in the corresponding fields of GTDOptions.

3.1.6 Baud

Baud rate at wich GTDriver communicates with the tablet. You can choose values between 150

and 9600.

Warning: this parameter must match the tablet baud rate setting.

3.1.7 Metric

Metric preferences (centimeters or inches) for the values expressed in fields Clip, XDim and

YDim. If Metric is changed then Clip, XDim and YDim values are converted on the fly.

3.1.8 XDim and YDim

Dimensions of the tablet active area: the area in which a stylus move or pressure is translated

to a serial message (the sensitive part of your tablet). Values are expressed in centimeters or inches

depending on the status of the Metric gadget. The minimum value allowed for both fields is 2

inches.

Chapter 3: Configuring software. GTDOptions 11

Note: You may notice that after lowering XDim or YDim values, Clip value gets lowered
too. This happens because GTDOptions makes sure that the clip region is always at
least 2x2 inches.

3.1.9 DPI

Tablet DPI resolution. DPI is for Dots per Inch. The higher this value the better the precision.

Warning: this parameter must match the tablet emulation setting.

3.1.10 Clip

The clip region is a part of the active area that is used for screen pointer movements. The Clip

field specifies the clip region as a rectangle centered inside the active area; the Clip value is the

distance between a border of the active area and the corresponding border of the clip region.

I.e. if a value of 1 is specified, the metric setting is inches, the XDim and YDim values are both

12 inches, the clip region is a 10-inch-sided square.

The Clip value is expressed in centimeters or inches depending on the status of the Metric

gadget.

Note well: since the minimum value for XDim and YDim is 2 inches, the maximum value for

Clip is

(min(XDim, YDim) - 2 inches)

2

This ensures that the clip region is always at least 2 inches.

3.1.11 Swap XY

The SwapXY flag exchanges the tablet X and Y axes. Mixing SwapXY, MirrorX and MirrorY

allows you to rotate and use your tablet at any orientation.

Chapter 3: Configuring software. GTDOptions 12

3.1.12 Mirror X and Mirror Y

It may happen that mouse movements are reversed (e.g. you move the stylus right and the screen

pointer moves left). This should be due to a wrong position of the tablet origin (see Chapter 2

[Configuring hardware], page 3). You may solve this problem by using the MirrorX and MirrorY

gadgets. MirrorX mirrors the X-axis and MirrorY mirrors the Y-axis on the tablet.

3.2 GTDOptionsmenus

In the following sections we describe the menu items functions.

3.2.1 Open

Opens an ASL file requester for choosing a prefs file to load in GTDOptions.

Keyboard shortcut: Right-Amiga-o.

3.2.2 Save As

Opens an ASL file requester for saving the current preferences with a user-selected name.

Keyboard shortcut: Right-Amiga-a.

3.2.3 About

Gives some informations about the authors and about current program versions.

3.2.4 Quit

Exits GTDOptions.

Keyboard shortcuts: Right-Amiga-q or the ESC key.

Chapter 3: Configuring software. GTDOptions 13

3.2.5 Last Saved

Loads last saved prefs file, without opening a file requester.

Keyboard shortcut: Right-Amiga-l.

Chapter 4: Starting and exiting GTDriver 14

4 Starting and exiting GTDriver

GTDriver can be started from shell or Workbench.

To start GTDriver from Workbench (preferred way) you must double click on its icon. The

driver will run using the parameters found in the file ‘ENV:GTD.prefs’. You have to set these

parameters by using the GTDOptions program. If this file is not found, GTDriver informs you

about it and runs with the default parameters.

You can also start GTDriver from Workbench by double clicking on a p-button project icon.

Such icon has to be associated to an ASCII file containing the pseudo-buttons definition (see

Chapter 5 [Pseudo-buttons], page 16 to know how to use this feature).

If you start GTDriver from shell, you may override some of the settings in ‘ENV:GTD.prefs’ by

using arguments on the command line. The shell template is the following:

EMUL=Emulation/K,Device/K,Unit/K/N,Baud/K/N,DPI/K/N,Metric/K,
Xdim/K,Ydim/K,MX=MirrorX/S,MY=MirrorY/S,SwapXY/S,CLIP/K,Init/K,
Pri/K/N,Pressure/K/N,ButDef/K,Verbose/S,Help/S

Most parameters are equivalent to the ones specified by using GTDOptions; the remaining pa-

rameters are:

ButDef allows to specify a file name containing the description of a set of p-buttons; (see

Chapter 5 [Pseudo-buttons], page 16)

Verbose if this keyword is given the state of the parameters is printed in the shell;

Help Shows a little explanation of the keywords and exits

GTDriver does not detach from the shell, so if you want to use the shell after starting it, you

must use the run command.

There are many ways to kill GTDriver. If you started the program from shell you can press

CTRL-C or send a break-signal to the program with the command

break CLI process number

Chapter 4: Starting and exiting GTDriver 15

(you can obtain the CLI process number by using the status command).

A second way you to end GTDriver is by starting it again. A requester will be opened asking

you if you want to kill it or to not. The last way to kill the driver is intended for programmers and

is explained in the programmer section.

Chapter 5: Pseudo-buttons 16

5 Pseudo-buttons

Pseudo-buttons are rectangular regions defined on the tablet. They must be outside the clip

region.

Each pseudo-button may have one or two keyboard sequences associated to it. When the stylus

(or button 0 of the digitizing puck) is pressed over a pseudo-button, the first keyboard sequence is

sent to the active program. When the button on the stylus (or button 1 of the digitizing puck) is

pressed over the pseudo-button, the second keyboard sequence is sent. I.e.: if you created a pseudo

button with keyboard sequence LEFT AMIGA-O (usually mapped to the "Project/Open" menu item)

when you press the stylus on it, the active application opens a file requester just like if you pressed

LEFT AMIGA-O on the keyboard.

You can edit your own sets of p-buttons to be used with paper masks over the tablet.

Every set of p-buttons is defined in an ASCII file. We suggest to use a filename with extension

“.but”. The file contains a command specifying the metric, followed by the clip region coordinates

and one or more button definitions. If a ";" is found, the remaining part of the line is interpreted

as a comment. The text can be typed in lower or upper case.

The metric-mode command must be the first command in the file. This command spcifies the

metric unit used to interret the button and clip definitions. It has the following syntax:

Metric cm

or

Metric inches

The metric definition must be followed by the clip command. This command allows to define

the clip region. When you move the pointing device inside this area the screen pointer moves

accordingly. P-buttons will have to reside on the tablet outside of the clip area. When using

GTDriver with a button file, the clip rectangle definition replaces the one defined with the clip

gadget of GTDOptions. The syntax for this command is:

Chapter 5: Pseudo-buttons 17

Clip ULC x ULC y LRC x LRC y

where (ULC x, ULC y) are the coordinates of the upper left corner, while (LRC x, LRC y) are

the coordinates of the lower right corner. Coordinates can be positive, negative or null. A positive

x coordinate means a distance from the side upon wich the y axis lies. A negative x coordinate

means a distance from the opposite side of the tablet. The same holds for y coordinates. Null

coordinates are interpreted in different ways for ULC and LRC. A null coordinate is interpreted

as a positive coordinate for ULC, while it is interpreted as negative for LRC. Here there are some

examples of metric and clip commands:

Metric cm
Clip 1 2 -3 -4

defines a clip region with left side 1 cm far from tablet left side, top side 2 cm far from tablet

top side, right side 3 cm far from tablet right side and bottom side 4 cm far from tablet bottom

side.

Metric cm
Clip 0 0 0 0

defines a clip region covering the whole active area.

Negative coordinates have been implemented for defining clip regions and p-buttons that adapt

to the width and height of the tablet. In this way you can create masks and distribute them to

people with different sized tablets. I.e. suppose you want to define a clip region leaving a half-inch

border on the left top and bottom sides, and a two inch border on the right side to put a p-button

bar in it. If your tablet is 12 * 12 inches you can insert in the button file the following commands:

Metric inches
Clip 0.5 0.5 10 11.5

Anyway if you give this file to someone having a different sized tablet, he will not be able to use

it. The following method ensures the correct compatibility:

Chapter 5: Pseudo-buttons 18

Metric inches
Clip 0.5 0.5 -2 -0.5

obviously the clip region will have different sizes in the two cases (depending on the size of the

tablet used), but the border widths will be the same.

After the clip command you have to type one or more p-button definitions, each one with the

following syntax:

Button rectangle definition Selector [Qualifiers] key
[Selector [Qualifiers] key]

where:

− rectangle definition are two coordinate pairs defining the button area. as for the Clip command

you can use positive or negative coordinates.

− Selector can be the string b0 or b1. b0 refers to the action of pressing the stylus over the

p-button while b1 refers to pressing the button on the stylus body (if present).

− Qualifiers and key define a key combination to be sent to the active program when the corre-

sponding action (b0 or b1 pressure) happens. Qualifiers is a sequence of one or more strings

corresponding to special keys such as Ctrl, Alt, Shift, etc. Possible string values for Qualifier

are

control (CTRL key)
lalt (LEFT-ALT key)
ralt (RIGHT-ALT key)
lcommand (LEFT-AMIGA key)
Rcommand (RIGHT-AMIGA key)
lshift (LEFT-SHIFT key)
rshift (RIGHT-SHIFT key)
numericpad (Numeric Pad key)

You can not use the l/rshift qualifier but with raw special command (see below).

− key is a key identifier. On a keyboard normal and special keys are present. Normal keys

generate characters: among them there are alfanumeric keys, punctuation keys, and others.

Special keys have particular functions: among them there are the editing keys (i.e. backspace,

delete and cursor keys), function keys and others. To express a normal key in the key field you

can type it or you can use its two digit hexadecimal ASCII code, preceeded by a "\x" string

(i.e. the character whose ASCII code is 09 is indicated as "\x09"). You can also use "\n" for

Chapter 5: Pseudo-buttons 19

newline (ASCII code 10) and the "\\" sequence to specify the "\" character. To express a

special key just use one of the following special identifiers:

"BACKSPACE", "CURSOR_DOWN", "CURSOR_LEFT", "CURSOR_RIGHT",
"CURSOR_UP","DEL", "ESC", "F1", "F2", "F3", "F4", "F5", "F6",
"F7", "F8", "F9", "F10", "HELP","TAB".

If the program to build the button mask for gets keyboard inputs as raw keys (i.e. Dpaint 4.5)

you may need to express some keys as raw data. For this purpose the special command raw

has been provided. Raw is to be follwed by the raw code for the key (see the example below).

You can use any qualifier together with a raw key definition.

To understand the Button syntax easily take a look at the following examples:

Button -1 0 0 1 b0 LAlt LShift p

defines a 1 x 1 inches or cm (depending on the Metric command) p-button located in the

upper right corner of the tablet active area. When you press the stylus over it, the active program

receives a LEFT-ALT-LEFT-SHIFT-P key combination.

Button -1 1 0 2 b0 Ctrl a b1 TAB

defines a 1 x 1 inches or cm (depending on the Metric command) p-button located under

the previous one. When you press the stylus over it, the active program receives a CTRL-A key

combination, while if you press the button on the stylus a TAB key is sent.

Button -1 2 0 3 b0 LShift RAW \x39

defines a 1 x 1 inches or cm (depending on the Metric command) p-button located under the

previous one. When you press the stylus over it, the active program receives a key combination

composed of the left shift key and the key whose raw code is 39. Such key corresponds to the ">"

key on American keyboards, and ":" on Italian keyboards.

For further examples, take a look at the ‘Dpaint.but’ file of the distribution.

Chapter 6: Programming GTDriver 20

6 Programming GTDriver

This section is intended for programmers only, so, if you are not a programmer, you may skip

to the next section. GTDriver has a public message port, named GTDPubPort. By sending special

messages to such port you can quit the driver, change the internal settings, and set it to “server

mode” (see below).

To enable your C programs to send commands to this port you will need to include the file

‘GTDriverMPC.h’ containing constant definitions and structures used to communicate with the

driver. ‘GTDriverMPC.h’ can be found in the ‘Sources’ directory of the distribution.

Every command sent to GTDriver is a structure TabletCommand:

struct TabletCommand {
struct Message msg;
UWORD Command;
APTR Data;

};

The Command field must be initialized with one of the MPC xxx constants, that identify com-

mands (and that are found in ‘GTDriverMPC.h’). The Data field can be initialized with a command

parameter (if the Command requires it). The msg field is a normal struct Message (see the example

below, to understand how to initialize it). When the struct TabletCommand instance is initialized

correctly, you can send it to the public port of GTDriver by using the PutMsg() system function.

After you sent the message you have to wait for the reply to a message port you previously set

up. When you receive the reply you must check the Command field of the message for the acknowl-

edgement: if it’s equal to COMMAND OK your request has been satisfied, otherwise the field

contains COMMAND FAILED. In this case you can get some info on the reason of the failure by

reading the Data field (it will be set to one of the CMDERR constants).

Here follows a fragment of code showing how to send commands:

: : : :
/* The TabletCommand instance (Tcmd) is a global variable in this example
*/
struct TabletCommand Tcmd;
: : : :
/* Somewhere you must create a message port to receive replies to. You
** also need to init your TabletCommand instance with the port address

Chapter 6: Programming GTDriver 21

*/
Tcmd.msg.mn_Node.ln_Type = NT_MESSAGE;
Tcmd.msg.mn_ReplyPort = myreplyport;
Tcmd.msg.mn_Length = sizeof(struct TabletCommand);

: : : :

/* Here follows a sample function you can use to send commands
*/
short SendCommand(ULONG comm, ULONG data)
{

Tcmd.Command = comm;
Tcmd.Data = (void *)data;

/* Here we look for GTDriver message port; if it does not exist we return
** NO_PUBPORT. Note that you should always FindPort() before sending a
** message because the driver may have been quitted.
*/
Forbid();
port = FindPort(GTDPUBPORTNAME);
if (! port) {

Permit();
return NO_PUBPORT;

}
/* We send the message and wait for the reply
*/
PutMsg(port,(struct Message *)&Tcmd);
Permit();
WaitPort(repport);
GetMsg(repport);

/* We return Tcmd.Command: if it contains COMMAND_OK then everything went
** fine, otherwise in Tcmd.Data you find a CMDERR_xxx code explaining what
** happened.
*/
return (short)Tcmd.Command;

}

GTDriver works synchronously, so you must wait for the reply to a command before sending a

new one. Here follows command explanations. They are preceeded by a short reference with three

fields:

Command: the name of the command
Data: explanation of the parameter for the command (if needed)
Errrors: name of the constant that can be found in the Data field

of the message after the WaitPort() if the command has failed
(Command == COMMAND FAIL)

Chapter 6: Programming GTDriver 22

You can find some examples on how to program GTDriver in the ‘sources’ directory of the

distribution.

The allowed commands are

6.1 MPC SERVERMODE command

Command: MPC SERVERMODE
Data: address of the client port
Error: CMDERR SERVER (GTDriver is already a server)

This command can switch GTDriver to “server mode”. When started, GTDriver is in “driver

mode”: this means that the driver sends its data in the input.device chain, controlling the screen

pointer movements. With an MPC SERVERMODE command, your program makes the driver

send it information in the form of messages sent to a private message port of its. In this case your

program is called client, while the driver is called server. While it is in “server mode” GTDriver

does not control the screen pointer any more.

When sending the MPC SERVERMODE command the Data field must be set to the address

of the port at which you wait for serial info. Note that this port must be different from the

reply port where you WaitPort() for acknowledgement after you send a command to the driver.

The MPC SERVERMODE command may fail if GTDriver is already in “server mode”: in fact

when in “server mode” the driver will refuse every command not coming from the client program

exept MPC GETPREFS. The format of the messages sent by GTDriver to your program is the

following:

struct TabletMessage {
struct Message msg;
UWORD type;
UWORD x,y;
ULONG buttons;
char key;
WORD pressure;

};

where

Chapter 6: Programming GTDriver 23

− type can be TMTYPE COORDS, indicating that the message is due to a stylus movement

or button pressure, or TMTYPE PBUTTON, if some pseudo-button has been used;

− x,y are the coordinates of the stylus expressed in tablet dots;

− buttons is a binary mask indicating the state of the buttons. Each bit expresses the status of

a button (0 means released and 1 means pressed).

− key matches the key field of the definition of a pseudo-button if such p-button has been pressed

(in this case type == TMTYPE PBUTTON);

− pressure reports the pressure value of the stylus on the tablet in the Wacom emulation;

X and y are expressed in dots. Dots are used internally by the driver instead of centimeters or

inches. If you need to convert dots in inches or centimeters use the following formulas:

x_inches = ((float)Tmsg->x)/DPI; x_cm = x_inches * CONV_INCHES2CM;
y_inches = ((float)Tmsg->y)/DPI; y_cm = y_inches * CONV_INCHES2CM;

where CONVINCHES2CM is a constant defined in the ‘GTDriverMPC.h’ file. You can know

about the internal GTDriver DPI setting with the command MPC GETPREFS.

Warning: GTDriver works sincronously. This means that it does not send a new
TabletMessage to your program if the previous one has not been ReplyMsg()’ed. As
the driver Wait() for your reply, data coming from the tablet are lost if you don’t do
it quickly. Your tablet event routine has to handle messages quite fastly, or you will
loose data.

Note that by using server mode your program may know about more than three buttons (if they

are present on your device) and it may also know about pressure (if you have a Wacom tablet).

These information are not available in driver mode.

Warning: your program must switch GTDriver back to driver mode before closing its
message port. For performance reasons GTDriver does not search for your program’s
port before sending data. So, if your program closes it before resetting GTDriver to
driver mode, a system crash is almost guaranteed.

6.2 TheMPC DRIVERMODE command

Chapter 6: Programming GTDriver 24

Command: MPC DRIVERMODE
Data: -
Error: CMDERR SERVER (your program is not the client)

This command switches GTDriver back to driver mode. After getting it, GTDriver will start

controlling the screen pointer movements and will stop sending data to the client program. The

command will not work if the sending program is not the client.

6.3 TheMPC QUIT command

Command: MPC QUIT
Data: -
Error: MPC SERVER (your program is not the client)

This command makes GTDriver exit. If GTDriver is in server mode, only the client can send

this command. If GTDriver is in driver mode any program is allowed to send this command.

6.4 TheMPC GETPREFS command

Command: MPC GETPREFS
Data: pointer to an instance of a GTDPrefs structure
Error: -

By sending this command any program (client or not) can know the internal settings of

GTDriver. The Data field of the command must point to an instance of GTDPrefs structure. The

definition of the structure can be found in the ‘GTDriverMPC.h’ file. After your program gets

the reply of the command your GTDPrefs structure will have been filled with GTDriver internal

settings.

6.5 TheMPC NEWPREFS command

Command: MPC NEWPREFS

Chapter 6: Programming GTDriver 25

Data: -
Error: MPC SERVER (GTDriver is in server mode)

This command tells GTDriver that its preferences have been changed. It was implemented only

to allow the needed interaction with GTDOptions and you should not need to use it. The command

will fail if the driver is in “server mode” to avoid problems with the client program.

6.6 TheMPC TESTPREFS command

Command: MPC TESTPREFS
Data: -
Error: MPC SERVER (GTDriver is in server mode)

This command is sent by GTDOptions when you press the Test gadget. It was implemented only

to allow the needed interaction with GTDOptions and you should not need to use it. The command

will fail if the driver is in “server mode” to avoid problems with the client program.

6.7 TheMPC NOTESTPREFS command

Command: MPC NOTESTPREFS
Data: -
Error: MPC SERVER (GTDriver is in server mode)

This command is sent by GTDOptions when you press the OK gadget after finishing the test of

some preferences setting. It was implemented only to allow the needed interaction with GTDOptions

and you should not need to use it. The command will fail if the driver is in “server mode” to avoid

problems with the client program.

6.8 TheMPC NEWBUTTONS command

Command: MPC NEWBUTTONS
Data: address of the name of the p-button file
Error: MPC SERVER (GTDriver is in server mode)

Chapter 6: Programming GTDriver 26

This command tells GTDriver to load a new p-buttons definition. Data field must be a string

pointer pointing to the address of the name of the file containing such definition. The command

will fail if the driver is in server mode to avoid problems with the client program.

Chapter 7: Troubleshooting 27

7 Troubleshooting

• When I move the stylus, the screen pointer behaves in a crazy way.

Check that Emulation and Baud Rate settings are the same for the tablet and for the driver.

If any one of them is set to different values GTDriver won’t work correctly. If you configured

the tablet using the init string check the commands in the string (consult your tablet manual)

• The screen pointer cannot reach the screen limits

Check that DPI settings are the same for the tablet and for the driver. If they are set to

different values GTDriver won’t work correctly. Also check that XDim and YDim correspond

to the dimensions of the active area.

• Only a small area of the tablet is mapped to the screen mouse movements.

Check that DPI settings are the same for the tablet and for the driver. If they are set to

different values GTDriver won’t work correctly. Also check that XDim and YDim correspond

to the dimensions of the active area. Another possibility is that you set a clip region (check

clip regions dimensions.

• The screen pointer follows your stylus movement too slowly.

This problem may be due to a too high sampling rate of the tablet: this causes an overloading

of the driver and of the serial device. It can be solved by reducing the sampling rate (it’s a

tablet parameter and not a driver parameter) or by reducing the baud rate (both in the driver

and in the tablet). You may also try to increase the priority value.

• The screen pointer movements are jerky.

This problem may be due to a too low sampling rate of the tablet. It can be solved by raising

the sampling rate (it’s a tablet parameter and not a driver parameter) or by raising the baud

rate (both in the driver and in the tablet). The problem may be also due to other porgrams

interfering with GTDriver, so you may try to increase the priority value.

• My tablet seems to loose stability when I do water sports with it.

Remember to remove seaweeds from the bottom of the tablet periodically.

Chapter 8: How to have your tablet supported 28

8 How to have your tablet supported

If your tablet is not supported by GTDriver, contact the authors. In this section it is explained

which information you should send them to have your tablet supported. To know how to reach the

authors see Chapter 13 [Disclaimer and authors info], page 34.

In your tablet manual you should find a section with a name similar to “DATA OUTPUT

FORMATS”. Usually tablets have an ASCII mode and a BINARY mode. Send us the binary

format preferably (because they’re faster).

The binary format is usually indicated in a table like the following one (valid for the Summa-

graphics emulation):

MSbit LSbit
BYTE	7 6 5 4 3 2 1 0
1 | 1 PR T0 SX SY C2 C1 C0
2 | 0 X6 X5 X4 X3 X2 X1 X0
3 | 0 X13 X12 X11 X10 X9 X8 X7
4 | 0 Y6 Y5 Y4 Y3 Y2 Y1 Y0
5 | 0 Y13 Y12 Y11 Y10 Y9 Y8 Y7

We need the table for the binary emulation of your tablet, along with the legenda of the acronyms

(i.e. PR = proximity bit, C2 = button 2 and so on). Don’t forget to report the name of the

emulation also!

If you have only an ASCII format, it should be found in the manual in a format similar to the

following one:

< 508LPI XXXX,YYYY,C CR LF
> 508LPI XXXXX,YYYYY,C CR LF

with a table stating the C possible values and the meaning (i.e. C can vary from ’0’ to ’7’, and

it means the value of the three buttons in the binary format. i.e. if C2=1, C1=0 and C0=1 then

C=’5’)

Chapter 8: How to have your tablet supported 29

How to send data formats. E-mail is preferred because it is faster and if you have an e-mail

address we can solve any problem in the implementation easily and quickly. If you don’t have an

e-mail address you can send the data by mail (in this case it would be better if you send a copy of

the most important pages of the tablet manual).

Chapter 9: Known bugs or problems 30

9 Known bugs or problems

There are no known bugs. On the Acecad tablet we used in the developement most emulations

work quite well. If you change device or emulation in your tablet you should kill the driver before

doing so, as some unexpected byte is sent to GTDriver in response to the change.

Wacom emulation could not be tested, because no beta tester with such tablet model has been

found. The emulation routine is based on a PD source for Unix. We decided to implement it in this

release (even if we couldn’t test it) because we hope to find someone with this tablet. If you have

one and the emulation does not work properly, please contact us to help us get rid of the problem.

We found that some init strings do not work properly. It could happen that the first command is

executed correctly by the tablet, but the following are ignored. As far as we know, the commands

are sent correctly by GTDriver: the problem should be due to some undocumented hardware

constrain in the tablet.

Under critical conditions some data can be lost by the driver, but don’t panic: GTDriver will

resynchronize on the following packets, and you should not experience any real problem. After

losing data it may happen that a mouse button seems to be pressed while it is not. Press and

release it to solve this problem.

Chapter 10: Why GTDriver is not a commodity 31

10 Why GTDriver is not a commodity

You may ask why GTDriver is not a commodity. The reason is that commodities have been

misunderstood by many programmers. Commodities were defined to simplify the job of writing

software that NEEDS to get events from the input device. The programs supposed to need this

feature are basically screen blankers and system monitors. I know it’s nice to have programs that

can be recalled using a shortcut and that have hidable GUIs, but the main problem is that whenever

you press a key, every commodity gets the input event and lets it flow down in the commodities

chain. If you have many commodities running at the same time you get a heavy slowdown in all of

the system activities. GTDriver does not need to know about input events (it only generates input

events), so it is not a commodity.

Chapter 11: Future improvements 32

11 Future improvements

We plan to add:

− the ability to start programs and to execute Arexx scripts by pressing p-buttons;

− Arexx port (if someone proves it is useful :-));

− new multiwindow layout for GTDOptions;

− GadTools and MUI version of GTDOptions;

− ability to set XDim, YDim and Clip parameters in GTDOptions using the tablet pointing device;

− more and more predefined p-buttons masks;

− new tablet emulations (if you send us any ...);

... and any interesting feature you suggest us !

Chapter 12: Acknowledgments 33

12 Acknowledgments

We must thank (in alphabetical order):

Federica Colla, whose kind patience and support have been unvaluable to our project;

Giovanni Gentile for eight color icons;

Remco Straatman who gave us many good ideas and helped with the documentation;

Sebastiano Vigna for having shown us the problem and having given the first suggestions;

Vittorio Calzolari who nicely lent us the tablet used during the development of the software;

the Amiga user group of Milan... just because they exists!

and last but not least, the beta testers

Andreas Geierlehner

Carlo Zambellini

Giovanni Gentile

Jan Robijns

Peter Larsen

Remco Straatman

Chapter 13: Disclaimer and authors info 34

13 Disclaimer and authors info

The unregistered version is freely distributable as long as all of its files are included in their

original form without additions, deletions, or modifications of any kind, and only a nominal fee is

charged for its distribution. This software is provided AS IS without warranty of any kind, either

expressed or implied. By using GTDriver, you agree to accept the entire risk as to the quality and

performance of the program.

Comments, complaints, desiderata are welcome.

GTDriver was developed by Roberto Attias

GTDOptions was developed by Marco Zandonadi

Please, send any bug reports regarding GTDriver and request for new tablet support to Roberto

Attias:

e-mail: attias@ghost.sm.dsi.unimi.it
UUCP: roby@utopia.adsp.sub.org
mail: Roberto Attias

Via Lissoni, 5
20162-I Milano
ITALY

and any bug reports regarding GTDOptions to Marco Zandonadi:

e-mail: zandonad@ghost.sm.dsi.unimi.it
UUCP: marcoz@utopia.adsp.sub.org
mail: Marco Zandonadi

Via Deledda, 23
20052-I Monza (MI)
ITALY

Chapter 14: Registration and upgrades 35

14 Registration and upgrades

GTDriver is a shareware program. The unregistered version has no functional limitations, but

exits after 10 minutes of use.

To become a registered user you have to send us a registration fee and your full name and

address.

Registration fees and upgrades:

− Internet registration: if you have an internet address, send us $10 US. We will send you an

uuencoded keyfile that upgrades the unregistered version to registered. The keyfile contains

your encrypted name and must not be spreaded.

− Mail registration: if you don’t have an internet address, send us $13 US. We will send you a

disk by mail. This disk will contain the latest version of GTDriver together with a keyfile that

upgrades the unregistered version to registered. The keyfile contains your encrypted name and

must not be spreaded.

− Internet upgrades: If you are a registered user and you have ftp access, you can download new

versions of GTDriver without additional fees.

− Upgrade by mail: If you are a registered user and you don’t have ftp access, send us $3 US.

We will send you a disk by mail. This disk will contain the latest version of GTDriver together

with a keyfile that upgrades the unregistered version to registered.

If you like GTDriver and use it, please register yourself, helping us to enhance this product. If

you don’t think this program is useful enough to pay for it, please, at least e-mail (or mail) us your

suggestions, so that we can make improvements.

Concept Index 36

Concept Index

A
About (GTDOptions menu item) 12

Absolute coordinates . 6

Active area . 10

ASCII format . 4

B
Baud (GTDOptions gadget) . 10

Baud rate (hardware configuration) 4

Binary format . 4

C
Centimeters . 10

Clip region (GTDOptions gadget) 11

Configuration . 3

Configuration file . 7

D
Data bits . 4

Data format . 4

Device (GTDOptions gadget) . 10

Dip-switches . 3

Dot per inch . 11

DPI (GTDOptions gadget) . 11

Driver mode . 1, 20

E
Emulation (GTDOptions gadget) . 7

Emulation (hardware configuration) 3

ENV: . 7

ENVARC: . 7

Exiting . 14

F
Features . 1

G
GTD.Prefs . 7

GTDPubPort . 20

H
Hardware . 3

I
Inches . 10

Init string . 3

Init string (GTDOptions gadget) . 7

K
Kurta (init string) . 8

L
Last Saved (GTDOptions menu item) 13

M
Message port . 20

Metric (GTDOptions gadget) . 10

Mirror X (GTDOptions gadget) . 12

Mirror Y (GTDOptions gadget) . 12

MPC DRIVERMODE . 23

MPC GETPREFS . 24

MPC NEWBUTTONS . 25

MPC NEWPREFS . 24

MPC NOTESTPREFS . 25

MPC QUIT . 24

MPC SERVERMODE . 22

MPC TESTPREFS . 25

O
Open (GTDOptions menu item) 12

Operating mode . 5

Origin . 6

Overview . 1

P
Parameters (tablet) . 3

Pressure treshold (GTDOptions gadget) 10

Priority (GTDOptions gadget) . 9

Pseudo-button . 1, 16

Concept Index 37

Q
Quit (GTDOptions menu item) . 12

R
Relative coordinates . 6

Resolution . 5

S
Sampling rate . 5

Save As (GTDOptions menu item) 12

Server mode . 1, 20

Starting . 14

Stream mode . 5

Struct TabletCommand . 20

Summagraphics (init string) . 8

SwapXY (GTDOptions gadget) . 11

U
Unit (GTDOptions gadget) . 10

W
Wacom (init string) . 9

X
XDim (GTDOptions gadget) . 10

Y
YDim (GTDOptions gadget) . 10

i

Table of Contents

1 Overview . 1

2 Configuring hardware . 3

2.1 Emulation . 3

2.2 Data format . 4

2.3 Baud rate . 4

2.4 Data bits . 4

2.5 Operating mode . 5

2.6 Sampling rate . 5

2.7 Resolution . 5

2.8 Origin setting . 6

2.9 Coordinate mode . 6

3 Configuring software. GTDOptions . 7

3.1 GTDOptions gadgets . 7

3.1.1 Emulation . 7

3.1.2 Init string . 7

3.1.2.1 Init string for Summagraphics tablets 8

3.1.2.2 Init string for Wacom tablets . 9

3.1.3 Priority . 9

3.1.4 Pressure . 10

3.1.5 Device . 10

3.1.6 Baud . 10

3.1.7 Metric . 10

3.1.8 XDim and YDim . 10

3.1.9 DPI . 11

3.1.10 Clip . 11

3.1.11 Swap XY . 11

3.1.12 Mirror X and Mirror Y . 12

3.2 GTDOptions menus . 12

3.2.1 Open . 12

3.2.2 Save As . 12

3.2.3 About . 12

3.2.4 Quit . 12

3.2.5 Last Saved . 13

4 Starting and exiting GTDriver . 14

ii

5 Pseudo-buttons . 16

6 Programming GTDriver . 20

6.1 MPC SERVERMODE command . 22

6.2 The MPC DRIVERMODE command . 23

6.3 The MPC QUIT command . 24

6.4 The MPC GETPREFS command . 24

6.5 The MPC NEWPREFS command . 24

6.6 The MPC TESTPREFS command . 25

6.7 The MPC NOTESTPREFS command . 25

6.8 The MPC NEWBUTTONS command . 25

7 Troubleshooting . 27

8 How to have your tablet supported 28

9 Known bugs or problems . 30

10 Why GTDriver is not a commodity 31

11 Future improvements . 32

12 Acknowledgments . 33

13 Disclaimer and authors info . 34

14 Registration and upgrades . 35

Concept Index . 36

