Description

File Name
Object Type

Remarks

About

Distribution

Revision
history

Properties
*AllModules

DBAppMon v1.2 Sep 95

DBAppMon notifies a Visual Basic program every time an application or a DLL
starts or exits. It also contains properties for retrieving various information about
active tasks and modules as well as file version info.

DBAPPMON.VBX
DBAppMon

DBAppMon is a VB interface to the libraries TOOLHELP.DLL and VER.DLL. By
installing a Toolhelp notification callback, DBAppMon is able to supply a VB
program with information regarding application and module startup and termination.
The primary reason DBAppMon was written was the need to wait for an application
and all its children to terminate. In the process, most of WPS' (a program supplied
with the CDK) functionality was included.

By being a little creative and combining DBAppMon's features with more
standard API calls like GetWindow and GetWindowlnstance, it's possible find out a
whole lot about the currently running applications. Ever wanted to use the VB
AppActivate command, but found that the application in question changes its caption
on the fly? DBAppMon is your rescue!

This control was developed by Dan Bystrom. For more information, contact
me at e-mail: "dan.bystrom@yvisual-design.se" or phone: +46 708 68 65 78 (no
support calls, please). I would be happy to discuss development of customized
VBX'es or OCX'es for you.

You have the right to do whatever you want with DBAppMon, as long as you don't
attempt to modify any of its code. "Do whatever you want" includes using
DBAppMon in your own commercial applications and distributing it for free.

When the control is loaded in design mode a message is sometimes
displayed. This message may not be removed or changed in any way. Anyway, the
message won't ever appear at run-time.

I'm giving DBAppMon away for free. If you should decide to use it in an
application of yours, this means that I have saved you a whole lot of trouble, time and
$3$$ doing it yourself. Therefore I think a nice gesture would be to include some sort
of credit in your application's about box and/or documentation. You could include the
name of the VBX, my name and my e-mail address. I would be glad if you did this.
Anyway - happy VB programming with DBAppMon!

Jan 95: Beta release.
v0.9: New property added: MyTask.
v1.0: More resistant to crashing applications.
The Monitor property doesn't show up in design mode. It never
should.
vl.l: Version info had problem with different language versions.
v1.2: New property added: HotKey.
New event added: HotKey.

* AllTasks *HotKey Index

*ModuleFileName *ModuleFindName *ModuleLookupName *ModuleName

*ModuleUsage *Monitor

Parent Tag
*TaskModule *TaskName
*VerLanguages *VerQueryValue

* = The property applies only to DBAppMon.

Events
*DLLEXit *DLLStart
*HotKey

* =The event applies only to DBAppMon.

*MyTask
*TaskFileName
*TaskParent
*VerReadInfo

* AppExit

Name
*TaskInstance
*VerLanguageName

* AppStart

AllModules Property

Description Retrieves all currrently active modules in the system.

Usage DBAppMon.AllModules

Remarks The property returns all module handles in a comma separated string.
Data Type String

AllTasks Property

Description Retrieves all currrently active tasks in the system.

Usage DBAppMon.AllTasks

Remarks The property returns all task handles in a comma separated string.
Data Type String

HotKey Property

Description The HotKey property array maintains a list of up to 10 hotkey combinations. Each
hotkey will fire the HotKey event when the keyboard combination gets pressed,
regardless of what application is currently active (as long as it's not a 32-bit

application).
Usage DBAppMon.HotKey(Index) [= KeyCode%]
Remarks The key code value should be calculated like this: take the virtual key code (like in
the VB KeyDown event) and then add a combination of the following constants:
&HO0100& shift key pressed simultaneously
&H0200& ctrl key pressed simultaneously
&H0400& alt key pressed simultaneously
&HO0800& don't pass the key combination to the active application
Data Type Integer

ModuleFileName Property

Description Retrieves the file name from a module handle.
Usage DBAppMon.ModuleFileName(hZModule)
Data Type String

ModuleFindName Property

Description Retrieves the module handle of a module name. The module name used for the search

3

is the content of the property ModuleLookupName.
Usage DBAppMon.ModuleFindName

Data Type Integer

ModuleLookupName Property

Description Gets or sets the module name used in subsequent calls to ModuleFindName. No
action is performed until ModuleFindName is called.

Usage DBAppMon.ModuleLookupName = [modulename$ |

Data Type String

ModuleName Property

Description Retrieves the module name from a module handle.
Usage DBAppMon.ModuleName(iModule)
Data Type String

ModuleUsage Property

Description Retrieves a module's usage count from a module handle.
Usage DBAppMon.ModuleUsage(hModule)

Data Type Integer

Monitor Property

Description Starts or stops the notification events (DLLStart, DLLExit, AppStart and AppExit).
Note that these events won't be fired for 32-bit applications.

Usage DBAppMon.Monitor = [setting% |

Data Type Integer (Boolean)

MyTask Property
Description Retrieves the task handle of the application itself.
Usage DBAppMon.MyTask

Remarks This property just calls the API function GetCurrentTask().

Data Type Integer

TaskFileName Property

Description Retrieves the file name from a task handle.
Usage DBAppMon.TaskFileName(hiModule)
Data Type String

Taskinstance Property

Description Retrieves the task instance handle from a task handle.

Usage DBAppMon.TaskInstance(hModule)

Remarks This is the same handle as returned by the VB Shell function.
Data Type Integer

TaskModule Property

Description Retrieves the module handle from a task handle.
Usage DBAppMon.TaskModule(hModule)
Data Type Integer

TaskName Property

Description Retrieves the task name from a task handle.
Usage DBAppMon.TaskName(hModule)
Data Type String

TaskParent Property

Description Retrieves the task's parent from a task handle.
Usage DBAppMon.TaskParent(iModule)
Remarks This is the task handle of the application which launched the task.

Data Type Integer

VerLanguageName Property

Description

Usage

Remarks

Data Type

Retrieves a language name of version info from a file. A file may contain multiple
languages.

DBAppMon.VerLanguageName (Language%s)

Legal language numbers range from zero to VerLanguages-1. After reading this
property, Language% becomes the current language used when retrieving version
fields with VerQueryValue. This property retrieves a string in the format
"LLLLCCCC Language name", where the first 4 characters consists of the language
code number in hex, characters 5 to 8 are the code page number in hex, character 9 is
always a space and the remaining characters, starting at the 10th position, are the
language name in readable text.

String

VerLanguages Property

Description
Usage

Remarks

Data Type

Retrieves the number of languages the version info is available in.
DBAppMon.VerLanguages

After version info has been read from a file into memory, this propery contains the
number of languages the versio info is available in.

Integer

VerQueryValue Property

Description

Usage

Remarks

Data Type

Example

Retrieves selected version information previously read into memory with the
VerReadInfo property.

DBAppMon.VerQueryValue = filedname$
DBAppMon.VerQueryValue

This property serves double duty. When written, it stores the name of a version field,
and when read, it fetches the value of that particular field. Some common field names
are: "Comments", "CompanyName", "FileDescription", "FileVersion",
"InternalName", "LegalCopyright", "LegalTrademarks", "OriginalFilename",
"PrivateBuild", "ProductName", "ProductVersion", and "SpecialBuild". Note: If the
version info is available in multiple languages, the language last read through the
VerLanguageName property is used.

String

DBAppMonl.VerReadInfo = "c:\windows\system\dbappmon.vbx"
DBAppMonl.VerQueryValue = "CompanyName"
MsgBox DBAppMonl.VerQueryValue
DBAppMonl.VerReadInfo = ""

VerReadinfo Property

Description Retrieves version info from a file.
Usage DBAppMon.VerReadlInfo = filename$
Remarks The version info is read into memory and kept there for further investigation through

the VerQueryValue property. If the file doesn't exist or if it doesn't contain verion info,
a trappable error 52 (Bad file name or number) is generated. To free the few bytes
used to hold the version info, set this property to an empty string.

Data Type String

DLLEXit Event
Description Occurs after a DLL has been unloaded.
Sub DBAppMon DLLEXit (hModule As Integer)

Remarks Since the event occurs after the DLL has unloaded, AModule has is invalid. It shall
only be used to be compared with previously stored hModules.

DLLStart Event
Description Occurs after a DLL has been loaded.
Sub DBAppMon_DLLStart (hModule As Integer)

Remarks hModule may be stored for later use or passed to any of the ModuleFileName,
ModuleName or ModuleUsage properties.

AppEXxit Event
Description Occurs after an application has terminated.

Sub DBAppMon_AppExit (hlask As Integer, nExitCode As Integer)
Remarks Since the event occurs after the application has terminated, #7ask is invalid. It shall

only be used to be compared with previously stored hTasks. nExitCode contains the
application's exit code (ErrorLevel for DOS applications).

AppStart Event
Description Occurs after an application has started.
Sub DBAppMon_AppStart (hTask As Integer)

Remarks hTask may be stored for later use or passed to any of the TaskFileName, Taskinstance,

7

TaskModule, TaskName or TaskParent properties.

HotKey Event

Description Occurs when a hot key combination, specified with the HotKey property, has been
pressed.

Sub DBAppMon_HotKey (KeyCode As Integer, Keylnfo As Integer)

Remarks KeyCode is the same key code as previously passed to the HotKey property and
KeylInfo may be interpreted like this:
bit 0-7: keyboard scan code
bit 8: extended key
bit 9-10: not used
bit 11-12: used internally by Windows
bit 13: context code
bit 14: previous key state
bit 15: key transition state

Version control

The following code shows an easy way to check the version of DBAPPMON.VBX before it is accessed
by VB. In a global module, put the following declaration:

Declare Function DBAppMonVersion Lib "dbappmon.vbx" () As Integer

Then use a Sub Main() as your program's entry point:

Sub Main ()
If DBAppMonVersion() < &H120& Then
MsgBox "Your DBAAPPMON.VBX is too old for this program!", 16
End
End If
'Load your main form here
End Sub

