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Chapter 1

Introduction

In this thesis "intelligent" games are investigated from the perspective of

Arti�cial Intelligence (ai) research. In this chapter the relevance of such

investigations is discussed, leading to the formulation of a problem statement.

1.1 Speculations and AI

All through history, mankind has been fascinated by the thought of creating

machines to perform the most di�cult of tasks. Men of every era have dreamt

of and speculated about achievements beyond the scope of the technology of

their time. Yet, when confronted with a machine performing tasks at an

unexplained high level, many willingly believed that science and technology

had made it possible, instead of doubting the genuineness of the machine's

results. For example:

In 1769, Wolfgang von Kempelen demonstrated his chess-playing automa-

ton, the Turk, to the world (Carroll, 1975). It was the �rst machine to create

the illusion of havingmental abilities: playing chess at a high level. Among its

successes was a victory over the Prussian king Frederick the Great. For many

years, large numbers of people believed that the Turk was a true thinking

machine, even though the technology of the 18th century did not hint at

how such a machine could have been created. For exactly that reason, many

others believed that the Turk had to be a fraud. Nevertheless, the secret

of the small human chess-player hidden inside the Turk was well-kept until

1834.

With the creation of modern computers, the �eld of Arti�cial Intelligence

emerged as a new focal point for speculations. Some of these speculations

1



2 Chapter 1. Introduction

have been made by scientists working within the �eld, while others have been

made by laymen, such as those working in the motion-picture industry. For

instance, movies such as 2001: A Space Odyssey, Star Wars andWar Games

feature computers (resp. hal, r2-d2 and c-3po, and wopr) which seem

to have minds of their own. The impact of these truly arti�cially intelligent

entities, �ctitious as they may be, on the perception of ai research by the

public at large is considerable. Predictions presented by leading scientists in

the �eld reinforce the image created by movies and science-�ction authors. As

an example we refer to the Inaugural Lecture delivered by Van den Herik in

which he raised the question whether computers will be able to decide issues

of law (Van den Herik, 1991). Irrespective of Van den Herik's estimation of

several hundreds of years necessary to create an arti�cial judge, the spin-o�

of such speeches in terms of nation-wide coverage by newspapers, radio and

television strengthens the general public's idea that the creation of arti�cially

intelligent entities is within close range.

It is important to distinguish clearly between the state-of-the-art in ai and

speculations concerning future achievements. We present three well-known

examples of progress in ai, each of which has led to unjusti�ed speculations:

1. Newell et al. (1957) created the General Problem Solver, a new control

metaphor for representing and solving problems. The name of their

system led to speculations concerning the creation of a truly general

problem solver. More than three decades later ai has not produced

anything near such a goal.

2. In 1959, Samuel created his learning checkers

1

program which won a

game against a human master player (Samuel, 1959; Samuel, 1967).

From this single game, it has been wrongly concluded by many that

an arti�cial master checkers player had been created, while some even

believed that the game of checkers had been "solved" (Schae�er et al.,

1991). Samuel's work on learning is classical within ai but only recently

have programs begun to compete with the best human checkers players

(Schae�er et al., 1992).

3. The medical diagnostic expert system mycin determines the infectious

agent in a patient's blood, and speci�es a treatment for the infection

(Shortli�e, 1976; Buchanan and Shortli�e, 1984). Despite the promise

1

In this thesis we shall use the name checkers for the game played on an 8 � 8 board,

which is called checkers in the United States of America, and draughts in Great Britain.

We reserve the term draughts for the game played on a 10� 10 board.



1.2 Identifying the obstacles 3

created by successes such as mycin, the development of expert systems

has been hindered by many problems, such as the knowledge-acquisition

bottleneck (Feigenbaum, 1979). Speculations regarding machines repla-

cing doctors of medicine so far lack a scienti�c basis.

The three examples illustrate that ai research in the last decades of

the twentieth century is not directly involved in creating true intelligence.

Instead, many of the stumbling blocks on the road to such a goal are now

themselves the main subject of investigation. Only when these obstacles are

removed may we start looking for the goal implicit in the name of the �eld.

1.2 Identifying the obstacles

It is believed by many scientists that the main hurdle to be cleared when

creating arti�cial experts in practical domains is common-sense knowledge

(Marr, 1977). Where humans are extraordinarily well equipped to acquire

common-sense knowledge with their �ve senses, computers are de�cient in

this area. Despite e�orts in areas such as computer vision, robotics, speech

processing etc., no computer program exists which exhibits even a basic

understanding of the real world (Marr, 1977). This lack of knowledge severely

handicaps computers in becoming experts in any real-world domain, such

as medicine, law, manufacturing etc. A direct consequence is the failure

in dealing with natural languages. In conversations between human beings

many things are left unsaid without hindering the participants. The gaps

are �lled by common-sense knowledge and sentences are interpreted within

the context of our world view. Many ai researchers thus believe that

common-sense knowledge is a vital ingredient for natural language processing

(Charniak, 1978).

Another area where nature has been generous to humans is learning.

Humans continuously learn from their experiences, much unlike computer

programs. Whereas learning is an automatic built-in feature of infants, it is

di�cult to realize in computer programs, despite the e�orts spent on machine

learning (Michalski et al., 1983; Michalski et al., 1986).

The lack of common-sense knowledge and of learning have a large impact

on what computers can and cannot do. Besides these known obstacles,

we may wonder whether other, hidden obstacles hinder progress in ai.

For instance, some argue that intuition is a human quality which cannot

be implemented (De Groot, 1965), while others believe that intuition is

simply a name for rule-based behavior where the rules are not accessible
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to consciousness (Michie, 1982). Thus, while some consider intuition to be

unattainable for computers, others stress that to implement intuition, all we

need to do is to uncover the rules at its basis. In general, it is of interest to

know as many of the main obstacles hindering progress in ai as possible. It

remains in dispute whether intuition should be regarded as such.

1.3 Uncovering hidden obstacles

Some new obstacles for ai research may become visible only after we

have successfully dealt with the obstacles apparent today. Others may be

discovered by concentrating on a set of domains where known obstacles play

no role of importance, such as the domain of games. Many games, such as

chess, checkers, go and bridge possess the property that they create a micro

world (Van den Herik, 1983), in which common-sense knowledge and natural

languages are not relevant. Instead, a small set of rules determines all possible

states within the micro world. And yet, in most of these games, humans are

(still) superior to their arti�cial counterparts. The game of go is a striking

example: today's strongest go programs have reached a mere novice level.

By investigating a game, we envision two possible outcomes.

� If we achieve a playing strength su�cient to defeat the best human

players, analysis of the means which led to this improvement may

uncover new ai techniques.

� If the playing strength keeps falling short, even after prolonged

attempts, of that of the best human players, a better understanding

of the problems inherent in playing the game at a high level may be

acquired.

We remark that the possibility remains that the results do not lead to

progress (i.e., to new ai techniques or a better understanding of the inherent

problems). In the �rst case, the improvement may be due to entirely domain-

speci�c techniques which cannot be generalized to ai techniques (Dreyfus,

1980). In the second case, we may �nd that we have di�culty in isolating

the problems from our failed attempts. Although a lack of progress may

occur in some cases, by investigating a representative set of games in this

way the probability increases that new ai techniques are developed or insight

into problems hindering progress is obtained.

If similar problems are found in several di�erent games, it may help us

to uncover obstacles which are likely to exist in real-world domains as well.
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It could also lead to an understanding of the restrictions of the techniques

applied. We list two examples of this last phenomenon.

� After the rapid increase in playing strength of computer chess programs

in the seventies and eighties, it was suggested that an increase of

the search depth by an extra ply (i.e., a move by one player), was

equivalent to an increase in playing strength of approximately 200

elo points (Thompson, 1982). Now that progress in playing strength

has slowed down, investigations in the relation between search depth

and playing strength for checkers indicate that the added strength per

ply diminishes for deeper searches (Schae�er, 1993b). Furthermore,

positions have occurred in tournament games where a search of 60 ply

would be necessary to stand up against human knowledge (Schae�er,

1993b). Because such searches are by far out of reach of current

technology, it has become clear that added knowledge is a vital

ingredient to world-champion level checkers and chess programs.

� In the early days of ai research, many new weak methods (i.e., using

little domain-speci�c knowledge) were demonstrated to succeed on

toy problems (Winston, 1992). It was believed that through deeper

search the results on toy problems could be extrapolated to real-world

problems. This has proved to be more di�cult than anticipated. Using

su�cient domain knowledge, state spaces can be reduced such that

problems become solvable. However, when vital knowledge is excluded

the explosion of possibilities makes many such problems intractable.

We postulate that when investigating su�ciently complex games with the

goal of outperforming human beings, success is likely to yield new ai

techniques as their products, while failure presents a better understanding

of problems and obstacles encountered. This observation is the basis of the

problem statement presented in the next section.

1.4 The problem statement

In this thesis, we consider games which have the following �ve properties.

Examples of games which have these properties include chess, checkers, go

and bridge.

1. Two-player. Most games are two-player games, as opposed to zero-

player games (e.g., Conway's life (Berlekamp et al., 1982)), one-player
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games (e.g., the 15-puzzle (Korf, 1985), Rubik's cube and peg solitaire

(Beasley, 1985)) and multi-player games (e.g., poker and diplomacy (Hall

and Loeb, 1992)).

2. Zero-sum. These are games where one player's loss is the other player's

gain. The prisoners' dilemma (Hofstadter, 1985) when considered as a

game is not zero-sum.

3. Non-trivial. A best playing strategy should not be trivially establish-

able through enumeration or mathematical analysis. Examples of

trivial games are tic-tac-toe and nim.

4. Well-known. These are games which have been played by large numbers

of people, resulting in the game being known in several countries. This

excludes many mathematical games, and obscure variations on well-

known games (such as give-away chess).

5. Requiring skill. Some games serve mainly as a pastime, not requiring

much skill. The more experienced player has no real advantage in those

games, except maybe against novices (examples are many simple card

games played by children). The games included here should exhibit a

strong relation between skill and winning chances. Such a relation also

exists in some games which are in
uenced by a chance element, such

as backgammon and bridge, which are thus included.

The �rst two properties (two-player and zero-sum) are selected to ensure

that cooperation between players can be excluded from the investigations.

The third property (non-trivial) is necessary for us to have something to

investigate. The last two properties (well-known and requiring skill) ensure

that the results of our investigations can be checked (for instance against

strong human players) and evaluated.

To be more speci�c, we list the set of games played at the Computer

Olympiads which ful�ll all these criteria (Levy and Beal, 1989; Levy and

Beal, 1991; Van den Herik and Allis, 1992). This list of games will henceforth

be called the Olympic List.

awari, backgammon, bridge, chess, Chinese chess, checkers, connect-

four, draughts, go, go-moku, nine men's morris, othello, qubic, renju,

scrabble.

We do not claim that the �fteen games of the Olympic List are the

only games satisfying the �ve properties listed above. However, as long as
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su�cient challenges exist for the listed games, there is no need to try to be

complete.

We are now ready to present our problem statement, consisting of two

questions.

Through an investigation of games of the Olympic List,

1. which new ai techniques can be developed and

2. which obstacles for ai research will emerge?

The goal of this thesis is to �nd an answer to these questions. To this

end, we list below three detailed research questions, distinguishing between

performance levels of systems which may be the result of investigating games

of the Olympic List.

1. Which games can be solved (see section 1.5) and what techniques may

contribute to the solution?

2. For which games can we create programs outperforming the best human

players in the near future, and what techniques contribute to their

performance?

3. In which games will humans continue to reign in the near future (say,

at least the next decade) and what are the main obstacles to progress

for computer programs?

Our attempts to answer these three questions have guided the research e�orts

described in this thesis.

Before we give an outline of the thesis in section 1.6, we must clarify the

term solved in relation to games. As there is no consensus about this term,

we will give a de�nition in section 1.5.

1.5 Solving games

Stating that a game is solved usually indicates in common parlance that

a property with regard to the outcome of the game has been determined.

Even for two-player zero-sum games with perfect information (see section

6.2), at least three di�erent de�nitions could be meant, which we name ultra-

weakly solved, weakly solved and strongly solved. The �rst two terms have

been suggested by Paul Colley, while the third term has been suggested by

Donald Michie.
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ultra-weakly solved For the initial position(s), the game-theoretic value

has been determined.

weakly solved For the initial position(s), a strategy has been determined to

obtain at least the game-theoretic value of the game, for both players,

under reasonable resources.

strongly solved For all legal positions, a strategy has been determined to

obtain the game-theoretic value of the position, for both players, under

reasonable resources.

We remark that the reasonable resources mentioned may be a subject of

discussion. The size of the resources is meant only to give an approximate

indication of the time and computing equipment allowed for reproducing a

solving strategy. Without these restrictions, it could be argued that, for

instance, chess could be weakly solved. As a strategy to solve chess, an

�-� search through the full game tree su�ces. The reasonable resources

mentioned should typically allow the use of a state-of-the-art computer and

several minutes of computation time per move.

The de�nition of ultra-weakly solved indicates that, at the start of the

game, it is known what the outcome of the game would be with optimal play

by both sides. It is not necessarily known how either player can achieve the

optimal outcome. The game of hex, for instance, is known to be a �rst-player

win on all diamond-shaped boards, although no constructive strategy has

been determined. The game-theoretic value has been established by noting

that the game does not permit draws and that having an extra move cannot

be a disadvantage. Thus, since the �rst player does not need to lose, hex is

a �rst-player win. This reasoning has not (yet) led to a winning strategy for

the �rst player, which makes it of little use to practical play.

It is well-known that tic-tac-toe is a game-theoretic draw. A player who

has weakly solved tic-tac-toe only needs to be able to achieve a draw, in every

game she

2

plays. It is not necessary for her to win against a non-optimally

playing opponent, when she is given a winning opportunity.

The de�nition of strongly solved demands a strategy not just from the

initial position(s), but from all legal positions. Thus, against a non-optimally

playing opponent, each mistake must be capitalized upon. Examples of

strongly-solved games are tic-tac-toe, nim (Knuth, 1969) and many chess

2

In contexts where the gender of a non-neutral third person is irrelevant, we will always

use "she" and "her" to avoid the more cumbersome "s(he)" and "her/his".
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endgames (Van den Herik and Herschberg, 1985; Thompson, 1986; Stiller,

1989).

An ordering exists between the three de�nitions. Any strongly-solved

game, is also weakly solved, while a weakly-solved game is also ultra-weakly

solved. To see the latter, it su�ces to play a single game from each initial

position of the game, with both sides played by the system which solved the

game. The outcome of such a game is guaranteed to be the best attainable

by both players, equaling the game-theoretic value of the game.

In any domain for ai research, evaluation of the practical performance of

the systems produced is essential. The natural performance test of a game-

playing system is a match consisting of a large number of games against a

rated opponent. When claiming that a program has solved a game, it seems

reasonable to require the program to exhibit skill in such a match. A program

which has ultra-weakly solved a game does not guarantee being capable of

playing the game at all. A program which has weakly solved a game will

at least draw every match it plays (while it plays both sides equally often).

Note, however, that for games where the program has shown the game to

be a win for the stronger side, it is not guaranteed to exhibit any skill when

playing the weaker side. The guaranteed performance level, i.e., ensuring

that no single match is lost, is in our opinion su�cient to declare a game

solved.

In this thesis, we consider a game solved when it is at least weakly solved.

1.6 Thesis outline

In 1988, research performed for a Master's thesis (Allis, 1988) led to solving

connect-four, published as (Uiterwijk et al., 1989a). Inspired by this result,

we decided to start with the �rst research question, i.e., determining which

other games of the Olympic List can be solved, and identifying techniques

which contribute to their solution. In particular, of the fourteen remaining

games of the Olympic List (i.e., excluding connect-four), we have selected

four which seemed eligible for solution. These games are awari, qubic, nine

men's morris and go-moku. Awari and nine men's morris are selected for their

relatively small state-space complexity (see chapter 6), while qubic and go-

moku are selected since human experience indicates that the �rst player

has an overwhelming advantage. As Ralph Gasser has been investigating

nine men's morris concurrently with our research (Gasser, 1991), we have

concentrated on awari, qubic and go-moku.

During investigation of these games, two new search techniques have been
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1. Introduction

2. Proof-number

search

will Survive?

3. Dependency-
based search

4. Qubic 5.  Go-Moku

6. Which Games

Figure 1.1: The interdependencies of chapters

developed, viz. proof-number search (pn-search) and dependency-based search

(db-search). While db-search forms the basis for solving qubic and go-moku,

pn-search is an important contributing factor. Although our investigations

showed that applying pn-search to awari leads to promising results, awari has

not (yet) been solved. The results of our investigation of the �rst research

question are described in chapters 2 through 5.

In chapter 6 the second and third research questions are investigated

leading to an evaluation of the problem statement.

The thesis is organized as follows. It consists of four parts, the �rst of

which is this introduction. The second part consists of chapters 2 (Proof-

Number Search) and 3 (Dependency-Based Search), containing descriptions

of the two search techniques developed in the course of this research.

Both techniques are presented independently of their application to games.

Chapters 2 and 3 can each be read independently of other parts of the thesis

and are of special interest to those researchers who would like to apply the

techniques to their own research domains.

The third part of the thesis consists of chapters 4 (Qubic) and 5

(Go-Moku), each describing the solution to the game under investigation.

Although it is recommended to read chapter 2 before any of the game-speci�c

chapters, proof-number search is not essential foreknowledge. Dependency-

based search forms the basis for solving qubic and go-moku. It is, therefore,

necessary to read chapter 3 before starting on chapters 4 and 5.
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The fourth part of the thesis consists of chapter 6 (Which Games Will

Survive?), in which all games of the Olympic List are investigated. For each

game, we determine the value of four game properties, describe the state

of the art in game-playing programs, list the techniques applied and the

obstacles to progress. Next we evaluate our research with respect to the

problem statement. Predictions regarding the future of games conclude the

chapter. The fourth part of the thesis can be read independently of the

second and third parts, although it is recommended that the reader �rst

obtains some knowledge of the contents of these parts.

The interdependencies between the chapters are pictured in �gure 1.1. An

arrow from chapter A to chapter B indicates that A is essential foreknowledge

for B. A dashed arrow between chapters A and B indicates that it is

recommended, but not essential, to read A before B.



12 Chapter 1. Introduction



Chapter 2

Proof-Number Search

2.1 Knowledge representation and search

Problem solving is one of the corner-stones of ai research. Within problem

solving, we distinguish two subprocesses: choosing a knowledge re-pre-

sentation and performing a search. We remark that the term knowledge

representation is meant to include analysis, conceptualization and formalisa-

tion. A well-chosen representation may considerably reduce the amount of

search needed to solve a problem, while a badly chosen representation may

render solving a problem (virtually) impossible. As an example we present

the mu-puzzle (Hofstadter, 1979).

A production system consisting of four rewriting rules generates

theorems consisting of the letters m, i and u. In each production,

x and y denote any string of letters.

1. xi ! xiu

2. mx ! mxx

3. xiiiy ! xuy

4. xuuy ! xy

The goal of themu-puzzle is to determine whether mu is a theorem

in the above system, given that mi is the only axiom.

In a �rst attempt to solve the puzzle, we represent a theorem

simply by its string of letters. The rewriting rules are used to

expand nodes of the search tree, where each node represents

a theorem. We are now faced with a tree-search problem: to

13



14 Chapter 2. Proof-Number Search

�nd a path of rewriting rules leading from the initial state mi to

the goal state mu. A suitable tree-search algorithm is selected

to perform the search, such as breadth-�rst search or depth-

�rst search. To select a search algorithm, various criteria may

be applied. For instance, breadth-�rst search guarantees that

the �rst solution found is also the shortest solution (Nilsson,

1980). A disadvantage of breadth-�rst search is that it requires

more working memory than an algorithm such as depth-�rst

search (Nilsson, 1980). Generally, each of the applicable search

algorithms has its own advantages and disadvantages. In case no

solution exists, these algorithms have the disadvantage that the

search will not terminate, as the set of theorems is in�nite.

Instead of concentrating on the selection of the best possible

search algorithm, we may �rst try to optimize the chosen

representation. For the mu-puzzle, a better representation

involves an extra item of knowledge per theorem. This Boolean

item, which we name IsTripleI, indicates whether the theorem's

total number of is is a multiple of three. We can now verify

that each of the four rewriting rules creates new theorems with

IsTripleI's value equal to that of the theorem it is created

from. The observation that mi (false) and mu (true) have unequal

IsTripleI values is su�cient to prove that mu is not a theorem.

In the mu-puzzle example, it was possible to eliminate all search by

enhancing the representation of the puzzle. It illustrates that choosing

a representation should have the highest priority when solving problems.

Choosing a knowledge representation in problem solving is mostly domain-

speci�c. Even though general techniques (such as abstraction, here applied

to the mu-puzzle) exist, their successful application remains the fruit of a

thorough understanding of the domain under investigation.

For problems more complex than the mu-puzzle, a good representation

generally does not eliminate all search; it merely reduces the size of the state

space to, hopefully, manageable proportions. It is then important to select a

search algorithm which will �nd a solution, if it exists, in an e�cient manner.

The e�cient manner is to be understood here in a broad sense, including

programming time, calculation time and the required amount of working

memory. The weighting of these resources depends on the circumstances in

which the problem has to be solved.
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Thus, the domain-speci�c task of �nding a suitable knowledge represen-

tation is performed in combination with the selection of a search algorithm

well-suited for the state space. In the course of a considerable number of

years of research in ai, many di�erent search algorithms have been developed.

We distinguish between several categories of search problems, such as those

represented by single-agent trees, and/or trees and game trees (Nilsson,

1971). While the category that a search problem belongs to restricts our

choice of search algorithms, within each category several search algorithms

exist, each with its own characteristics. These characteristics determine the

scope of problems for which the algorithm may be preferred over the other

algorithms within the same category. We remark that the division into search

categories is not strict. An example relevant to this thesis is that two-valued

game-tree searches can also be performed by search algorithms for and/or

trees.

For the category of game trees, many di�erent search algorithms have

been developed. We name the best known algorithms and mention the type

of search problems for which we believe they are best suited:

� By far the best-known game-tree search algorithm is �-� search (Knuth

and Moore, 1975). It is a directional (also known as depth-�rst)

algorithm, having working-memory requirements linear in the depth

of the tree investigated. Knuth and Moore (1975) have shown that

�-� search achieves optimal e�ciency on perfectly-ordered uniform

trees. Application of iterative deepening to �-� search ensures for

many application domains that strongly-ordered trees are traversed,

resulting in close-to-optimal e�ciency on uniform trees (Campbell and

Marsland, 1983).

� Sss* is a best-�rst search algorithm (Stockman, 1979). It will never

investigate a node pruned by �-� search (Campbell and Marsland,

1983).

The algorithm has two drawbacks. First, as with all best-�rst

search algorithms, the working-memory requirements are linear in the

number of nodes created, thus exponential in the depth of the tree.

However, recently variants requiring less working memory have been

developed (Reinefeld, 1994). Second, the reduction in the number

of nodes searched compared with iterative-deepening �-� search does

not outweigh the cost of maintaining the search tree (or open list) in

working memory for most practical applications. However, if the cost
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of heuristic evaluation is large compared to the cost of traversing the

tree, or if obtaining a good ordering through iterative deepening for

�-� search is di�cult for the domain under investigation, sss* may be

an alternative to be preferred.

� Another best-�rst search algorithm is b* (Berliner, 1979). It depends

on the availability of reliable heuristic estimates for the upper and lower

bounds on the value of internal nodes. For chess, the algorithm has been

implemented in hitech, but it remains unclear whether for this domain

su�ciently accurate upper and lower bounds can be estimated to result

in better move selection than by algorithms based on �-� search.

� Conspiracy-number search (cn-search) (McAllester, 1988; Schae�er,

1989) is a best-�rst search algorithm which determines the cardinality

of the smallest sets of (terminal) nodes which must change their value

in order to change the value of the root. Once this cardinality grows

beyond a pre-speci�ed bound, it is considered unlikely that the root

value will change, and the search is terminated. Cn-search has shown

its merits in tactical chess positions (Schae�er, 1989), but has failed

in a comparison with �-� search in a tournament chess program (Van

der Meulen, 1990). Cn-search has as disadvantages the large amount

of bookkeeping necessary at each node, and the subsequent amount of

working memory required to perform the search. One of the ideas

underlying cn-search is that the distribution of the values over the

leaf nodes of the tree, and the shape of the tree, should in
uence the

selection of the next node to be investigated.

The last aspect of cn-search, using the shape of the tree to guide the search,

has been singled out in proof-number search (pn-search), which can be seen

as a successor to conspiracy-number search. In this chapter we present pn-

search, which has the exploitation of non-uniformity as its main theme. Pn-

search will be presented as an and/or tree search algorithm, even though

all applications discussed in this thesis concern game trees.

We introduce in section 2.2 the pn-search algorithm for and/or trees.

In section 2.3, several enhancements to the algorithm are presented. These

include techniques to reduce execution time and usage of working memory,

examples of the application of domain-speci�c knowledge, and a discussion

regarding transpositions within pn-search. Results of applying pn-search to

a practical domain, the game of awari, are presented in section 2.4, where

its performance is compared with those of sophisticated implementations of
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�-� search. Finally, section 2.5 contains a discussion of related algorithms,

analyzing the similarities and di�erences between pn-search and conspiracy-

number search, sss*, b* and a*. (A* (Hart et al., 1968), a single-agent

search algorithm, has been included in this list because of its similarities

with pn-search.)

2.2 Pn-search: the algorithm

In this section we introduce pn-search for and/or trees. First, in section

2.2.1 we de�ne our tree model and a precise terminology for the remainder

of the chapter. Then, the main assumptions of pn-search are described in

section 2.2.2 and the notions of proof numbers and disproof numbers are

introduced. Next, section 2.2.3 informally discusses the order in which the

nodes of a pn-search tree should be created. Finally, an algorithm in pseudo-

code for pn-search is presented in section 2.2.4.

2.2.1 The AND/OR-tree model

We de�ne our tree model as follows. In the tree, there are two types of nodes:

and nodes and or nodes. We assume that each node can be evaluated,

leading to one of three values: false, true or unknown. Please note the

di�erence between nodes which have not yet been evaluated (thus whose

evaluation value is not yet known) and nodes which have been evaluated and

obtained the value unknown.

Nodes with evaluation value unknown can be expanded. When a node

J is expanded, a non-empty set of child nodes is created, each having J as

parent node. A node which has been expanded is an internal node. There are

three kinds of leaf nodes, i.e., nodes without children. First, a node evaluated

to false or true is a terminal node. Second, a node which has evaluated to

unknown is called a frontier node. Third, a node which has not yet been

evaluated is also called a frontier node.

There are two tree-creation procedures, which we name immediate evalua-

tion and delayed evaluation. When applying immediate evaluation each node

in the tree is immediately evaluated upon creation. The tree is initialized by

creating (and evaluating) the root. Then, as long as the tree has not been

solved, at each step a frontier node is selected (which, since it has already

been evaluated, must have value unknown), expanded and all its children are

immediately evaluated. This process of expanding a node J and evaluating

J 's children is called developing node J . In case of delayed evaluation, each
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node is only evaluated when it is selected, instead of at creation. Thus,

the tree is initialized by creating the root (without evaluation). Then, at

each step a frontier node J is selected (which is guaranteed not to have

been evaluated) and evaluated. If the evaluation value of J is unknown, J is

expanded (without evaluating J 's children). Here the process of evaluating

a node, possibly followed by its expansion, is also called developing node J .

We remark that the terms frontier node and developing each have a double

meaning. However, once the tree-creating procedure has been speci�ed, both

terms are unique. This approach has been chosen so that pn-search can be

explained independently of the tree-creation procedure.

The value of an expanded internal and node A is determined as follows: if

A has at least one child with value false, A also has value false; otherwise, if A

has at least one child with value unknown, A has value unknown; otherwise A

has value true. The value of an expanded internal or node O is determined

as follows: if O has at least one child with value true, O also has value

true; otherwise, if O has at least one child with value unknown, O has value

unknown; otherwise O has value false. A tree is solved if the value of its root

has been established as either true or false. A solved tree with value true is

called proved, while a solved tree with value false is called disproved.

Throughout this chapter, we depict and nodes by circles and or nodes

by squares in each of the �gures. Furthermore, and nodes can be recognized

by the arcs linking their children, in accordance with standard conventions

for depicting and/or trees.

2.2.2 Main assumptions of pn-search

Best-�rst search algorithms select a best node (according to some criterion)

in the search tree, develop the node and then update such information as is

necessary for the algorithm to continue. The distinguishing factor of each

best-�rst search algorithm is the manner in which a node is characterized as

'best'.

For pn-search we assume that we have no knowledge regarding a priori

probable values of nodes, nor knowledge regarding correlations between node

values, although this knowledge could be added to the program (see section

2.3.3). Instead, only the position of a node in the tree and its possible

contribution to solving the tree is considered.

First, we formulate the assumptions of pn-search, implying the above.

Second, we present some de�nitions to aid in the description of pn-search.

Third, using an example, we illustrate that some nodes are better in their
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contribution to solving the tree than others. Finally, we summarize our

�ndings.

Assumptions

While searching and/or trees, we make the following two assumptions.

1. The probability distribution of values (true, false, unknown) for a

frontier node is unknown.

2. The probability distribution of values (true, false, unknown) for a

frontier node is equal throughout the tree.

Even though these assumptions mean that we cannot distinguish between

two nodes by looking at them independently of their context, nevertheless

their position in the tree may in
uence their expected contribution to solving

the tree.

De�nitions

When searching and/or trees, developing a single frontier node is often

insu�cient to solve the tree. In most cases, several frontier nodes must

obtain the value true to prove the tree or the value false to disprove it. This

observation is re
ected in de�nitions 2.1 and 2.2.

De�nition 2.1 For any and/or tree T a set of frontier nodes S is a proof

set if proving all nodes within S proves T.

De�nition 2.2 For any and/or tree T a set of frontier nodes S is a disproof

set if disproving all nodes within S disproves T.

Since it will turn out that we shall use the cardinality of proof and disproof

sets, these are given names in de�nition 2.3 and 2.4.

De�nition 2.3 For any and/or tree T, the proof number of T is de�ned

as the cardinality of the smallest proof set of T.

De�nition 2.4 For any and/or tree T, the disproof number of T is de�ned

as the cardinality of the smallest disproof set of T.
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Figure 2.1: and/or tree with proof numbers.

Examples

To illustrate how the context can be used to distinguish between nodes, we

have depicted an and/or tree in �gure 2.1.

With each node, we have associated the proof number of the subtree with

that node as its root, as de�ned in de�nition 2.3.

All frontier nodes (E, F, I, L,M, N and P in �gure 2.1) have proof number

1. This follows from the fact that only the node itself needs to obtain the

value true to prove the whole subtree (consisting of only the node itself). A

terminal node with value true (node K in �gure 2.1) has proof number 0, since

its value has already been proved. Terminal nodes with value false (node O

in �gure 2.1), have proof number 1, since there is no smallest �nite set of

nodes which can undo the fact that the node is disproved. Internal and nodes

obtain the value true only if all their children are proved. Thus, internal and

nodes (B, D, G, H and J in �gure 2.1) have proof numbers equal to the sum

of the proof numbers of their children. For internal or nodes it su�ces to

prove one of their children, in order to have the parent obtain the value true.

Thus, for internal or nodes (A and C in �gure 2.1) we establish the proof

number by taking the minimum of the proof numbers of their children.

Root A of the tree in �gure 2.1 has proof number 1. This indicates that

somewhere in the tree a frontier node exists, which, by obtaining the value

true, would complete the proof of the tree. The path from the root to this

frontier node can be found by examining the proof numbers. To prove the
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Figure 2.2: and/or tree with disproof numbers.

root (an or node), it is su�cient to prove one of its children. Child C has

the smallest proof number among the three children of A. The frontier node

we are looking for thus lies within subtree C. In the same way, node G is

preferred over node H, since G's proof number is equal to 1, while H's proof

number equals 2. To prove node G (an and node), it is necessary to prove

all its children. Child K has already been proved, thus only a proof of node

L is needed, which is the frontier node we have been looking for.

We could now proceed and develop node L, in an attempt to prove

the tree. Instead, we will �rst determine which nodes may contribute to

a potential disproof. In �gure 2.2 we have depicted the same tree as in �gure

2.1. With each node, we have associated the disproof number of the subtree

with that node as root, as de�ned in de�nition 2.4.

The disproof numbers behave analogously to proof numbers, inter-

changing the roles of and nodes and or nodes, and the cardinalities 0 and

1. Thus, frontier nodes (E, F, I, L, M, N and P in �gure 2.2) have disproof

number 1. A terminal node with value false (node O in �gure 2.2) has disproof

number 0, since it is already disproved. Terminal nodes with value true (node

K in �gure 2.2) have disproof number1. Internal and nodes (B, D, G, H and

J in �gure 2.2) have disproof numbers equal to the minimum of the disproof

numbers of their children. Internal or nodes (A and C in �gure 2.2) have

disproof numbers equal to the sum of the disproof numbers of their children.

Root A of the tree in �gure 2.2 has disproof number 3. This means that
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at least 3 nodes must obtain the value false to disprove the tree. Analysis of

the tree shows that it involves one of the nodes E and F, node L and one of

the nodes M and N.

Summary

The previous paragraphs illustrate that proof numbers and disproof numbers

can be used to �nd nodes within the smallest subset of frontier nodes in the

tree which, by all obtaining the same value, solve the tree.

From the assumptions underlying pn-search it follows that the probability

that all nodes in a proof set obtain the value true increases with decreasing

cardinality of the proof set (except in the trivial cases that the probability

of evaluation to true equals either 0 or 1). As a result the total number

of node developments needed to solve a tree is (on the average) reduced by

�rst focusing on potential solutions involving a small number of nodes (i.e.

subtrees with small proof and/or disproof numbers), before trying to �nd

solutions known to require a larger number of nodes. This expectation is the

basis for the pn-search algorithm as described in the following sections.

2.2.3 Informal description of pn-search

Pn-search continuously tries to solve the tree by focusing on the potentially

shortest solution, i.e., consisting of the least number of nodes. At each step of

the search, a node which is part of the potentially shortest solution available

is selected and developed. After the development of a node, its proof number

and disproof number are established anew. Then, the proof and disproof

numbers of its ancestors are updated. This process of selection, development

and ancestor updating is repeated until either the tree is solved or we have

run out of resources (time or working memory).

The main issue yet to be resolved is to decide (1) to select a node in the

smallest proof set, or (2) to select a node in the smallest disproof set. We will

show in the following paragraphs that, maybe surprisingly, we can always do

both at the same time. This results in the de�nition of a most-proving node

as in de�nition 2.5.

De�nition 2.5 For any and/or tree T, a most-proving node of T is a

frontier node of T, which by obtaining the value true reduces T's proof number

by 1, while by obtaining the value false reduces T's disproof number by 1.

De�nition 2.5 assumes that within each unsolved tree T a frontier node

exists, which is an element of the intersection of a smallest proof set and of a
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smallest disproof set of T. A stronger claim is that each pair consisting of a

smallest proof set and a smallest disproof set has a non-empty intersection.

We prove this stronger claim by induction.

Proof

� Basis

For each frontier node J the singleton set containing J is both the only

proof set, and the only disproof set. The intersection of these two sets

contains node J and thus is not empty.

� Induction step

Suppose that the assumption has been proved for all children J

1

, .., J

n

of an internal and node J. To disprove J, only one child needs to be

disproved. Let disp(J

x

) be any disproof set of J

x

which has minimal

cardinality among all disproof sets of children of J. Then disp(J

x

) is also

a minimal disproof set of J. To prove J, all children must be proved.

Let prove(J

i

) (1 � i � n) be arbitrary minimal proof sets for each

of the children J

i

. Then

S

n

i=1

prove(J

i

) is a minimal proof set of J,

which we name prove(J). Thus disp(J

x

) is a minimal disproof set of

J, and prove(J

x

) is contained in a minimal proof set of J. As disp(J

x

)

and prove(J

x

) are minimal disproof and proof sets of J

x

, they have a

non-empty intersection according to the induction assumption. Thus

disp(J) and prove(J) have a non-empty intersection.

The proof for internal or nodes proceeds analogously.

2

We conclude that there is no con
ict of strategies between trying to prove

or to disprove the tree: by repeatedly selecting a most-proving node, both

strategies are executed simultaneously, without one strategy delaying the

other. How to select the most-proving node using proof and disproof numbers

is illustrated with an example tree.

Below each node of the tree depicted in �gure 2.3, we have depicted its

proof number and disproof number (in that order). Thus, the least number

of nodes which must be developed to prove the tree is 3. The same number

of nodes is needed to disprove the tree.

First, let us analyze the e�ort necessary to disprove the tree. As node A is

an or node, it will only obtain value false if both children obtain value false.

In other words, both children must be solved (with value false) to disprove

the tree. Thus, in both subtrees frontier nodes exist which are part of the
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Figure 2.3: and/or tree with most-proving node R.

smallest disproof set of A. Second, let us look at the least number of node

developments needed to prove the tree. For an or node it is su�cient to

have one child with value true to prove the or node. In other words, only

one child needs to be solved (with value true) to prove the tree. The proof

number of child B (3) is one less than the proof number of child C (4). Thus,

all frontier nodes of a smallest proof set lie within subtree B. We conclude

that all most-proving nodes lie within subtree B.

With respect to subtree B an analogous analysis applies. However, since

node B is an and node, the roles of proof number and disproof number are

interchanged. Thus, to prove B, both its children must be proved. Therefore,

in both subtrees D and E, frontier nodes exist which are part of the smallest

proof set of B. To disprove B, it is su�cient to disprove one child. Node E

has disproof number 2, one less than disproof number 3 of node D. Thus, all

frontier nodes of a smallest disproof set lie within subtree E. We conclude

that all most-proving nodes lie within subtree E.

The selection within or node E is based on the disproof numbers, as

it was for node A, and thus subtree N is selected. Within and node N no

preference exists on the basis of the disproof numbers and both R and S
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procedure ProofNumberSearch(root);

Evaluate(root);

SetProofAndDisproofNumbers(root);

while root.proof 6= 0 and root.disproof 6= 0 and

ResourcesAvailable() do

mostProvingNode := SelectMostProving(root);

DevelopNode(mostProvingNode);

UpdateAncestors(mostProvingNode)

od ;

if root.proof = 0 then root.value := true

elseif root.disproof = 0 then root.value := false

else root.value := unknown

�

end

Table 2.1: Pn-search algorithm.

are most-proving nodes according to de�nition 2.5. In such cases we will,

somewhat arbitrarily, always select the leftmost child. Thus, R is selected to

be developed.

To summarize, the selection of a most-proving node is based on proof

numbers among the children of or nodes and on disproof numbers among

the children of and nodes.

2.2.4 The pn-search algorithm

In this section the algorithmic details of pn-search are presented in pseudo-

code, except for three domain-speci�c procedures and functions. In each of

these three cases, the code for the implementation depends on the domain

of investigation. The goal of each of these three, however, is domain-

independent and has been speci�ed below.

1. Evaluate(node). Assigns to node.value one of the values true, false and

unknown.

2. GenerateAllChildren(node). Assigns to node.numberOfChildren the

number of children of the node, and to node.children[1..node.number-

OfChildren] (pointers to) the children themselves.
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function SelectMostProving(node);

while node.expanded do

case node.type of

or :

i := 1;

while node.children[i].proof 6= node.proof do

i := i+1

od

and :

i := 1;

while node.children[i].disproof 6= node.disproof do

i := i+1

od

esac ;

node := node.children[i]

od ;

return node

end

Table 2.2: Most-proving node selection algorithm.

3. ResourcesAvailable(). Returns a Boolean value which indicates whether

su�cient resources are available to continue the search. This function

will typically test the availability of working memory.

The algorithm of table 2.1 encodes the main loop of pn-search. The root

of the tree is created and evaluated. Then, at each iteration, a most-proving

node is selected and developed, followed by updating the proof and disproof

numbers of the most-proving node and its ancestors.

The algorithm terminates when the tree is solved, or the program runs

out of resources. We remark that there is a choice between implementing

immediate evaluation and delayed evaluation. The main di�erence between

these two methods is the amount of information available within trees of

the same size: with immediate evaluation, all nodes in the tree have been

evaluated, while with delayed evaluation the frontier nodes have not been

evaluated. Due to the extra information, under the same working-memory

limitations, immediate evaluation is more often able to solve a tree than

delayed evaluation. In rare circumstances, however, delayed evaluation may

be preferable. Examples of these circumstances include trees with a large
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procedure SetProofAndDisproofNumbers(node);

if node.expanded then

case node.type of

and :

node.proof := �

N2Children(node)

N.proof;

node.disproof := Min

N2Children(node)

N.disproof

or :

node.proof := Min

N2Children(node)

N.proof;

node.disproof := �

N2Children(node)

N.disproof

esac

elseif node.evaluated then

case node.value of

false : node.proof := 1; node.disproof := 0

true : node.proof := 0; node.disproof := 1

unknown : node.proof := 1; node.disproof := 1

esac

else node.proof := 1; node.disproof := 1

�

end

Table 2.3: Proof and disproof numbers calculation algorithm.

variance in the branching factor, and slow evaluation. We have chosen to

implement immediate evaluation, as it is used in all our applications of pn-

search to games. Thus, all frontier nodes in the tree have been evaluated.

The algorithm of table 2.2 encodes the selection of a most-proving node,

in accordance with the description in section 2.2.3. Thus, at or nodes the

child with lowest proof number is selected, while at and nodes the child with

lowest disproof number is selected. In case of a tie between children, the

leftmost child is selected. Selecting the child with minimal proof number (in

an or node) or disproof number (in an and node) is equivalent to selecting

a child with proof number or disproof number equal to its father's. We

remark that in most applications children will not be ordered by their proof

or disproof number, as the cost of updating the ordering may be prohibitive.

If the children are unordered, selecting the leftmost child with equal proof or

disproof number on the average reduces the selection time of the most-proving

node by at least a factor two, compared with determining the minimum over

all children. A detailed discussion of enhancements to the algorithm can be
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procedure DevelopNode(node);

GenerateAllChildren(node);

for i := 1 to node.numberOfChildren do

Evaluate(node.children[i]);

SetProofAndDisproofNumbers(node.children[i])

od

end

Table 2.4: Node-development algorithm.

procedure UpdateAncestors(node);

while node 6= nil do

SetProofAndDisproofNumbers(node);

node := node.parent

od

end

Table 2.5: Ancestor-updating algorithm.

found in section 2.3.

The algorithm of table 2.3 encodes the calculation of proof and disproof

numbers for a given node. It is a direct translation into pseudo-code of the

case-by-case observations made in section 2.2.2. We remark that "�" in the

algorithm indicates that the sum is calculated over all children, while "Min"

indicates that the minimum over all children is calculated.

The algorithm of table 2.4 encodes the development of a node. As stated

before, we have implemented immediate evaluation.

The algorithm of table 2.5 updates the proof and disproof numbers of

the most-proving node and its ancestors. This is necessary to ensure that all

nodes in the tree correctly re
ect the new situation after the development

of the most-proving node. Starting from the most-proving node, the tree

is traversed in the direction of the root, updating the proof and disproof

numbers of each ancestor. After the proof and disproof numbers of the root

have been updated, the algorithm is terminated (indicated by the fact that

the root has no parent).

This concludes our formal description of pn-search.
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2.3 Enhancements

In the previous section we have presented the pn-search algorithm. Several

enhancements exist. Some of these should be applied in most practical

circumstances, since the added performance outweighs the additional im-

plementation e�ort. The advantage associated with the other enhancements

depends on the domain of application. In section 2.3.1 we focus on en-

hancements reducing the amount of working memory needed to execute a

search. Section 2.3.2 deals with reducing the execution time necessary to

select the most-proving node and to update the proof and disproof numbers

of the ancestors. The role of domain-speci�c knowledge when enhancing the

algorithm is examined in section 2.3.3. Finally, transpositions are discussed

in section 2.3.4.

2.3.1 Reducing memory requirements

Pn-search has working-memory requirements linear in the size (number of

nodes) of the search tree. Depth-�rst search algorithms, such as �-� search,

only require working memory linear in the depth of the search. As a result,

working memory is a possible bottleneck when applying pn-search. We

discuss two techniques to reduce memory requirements. The �rst technique

is concerned with the removal of solved subtrees, while the second technique

performs pn-search at two levels.

Deleting solved subtrees

A node in a pn-search tree may in
uence the search process in two ways:

1. it is (on the path to) the most-proving node;

2. its proof and disproof numbers in
uence the proof and disproof numbers

of its parent.

Below, we show that solved subtrees do not in
uence the search process in

either way, except that they may solve their parent immediately after they

were solved themselves.

First, we show that a solved node is never on the path to the most-

proving node. As long as the search is in progress the root is not solved. We

thus start the selection of the most-proving node from an unsolved node. All

unsolved nodes have �nite proof and disproof numbers unequal to zero. Since

at each step of the selection, a child is chosen with a proof or disproof number
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equal to that of its parent, each subsequent node must also be unsolved. We

conclude that a solved node cannot be on the path to the most-proving node.

Second, we show that the proof and disproof numbers of a solved node

either solves its parent, or does not in
uence its parent's values. A solved

node with value true has proof number 0 and disproof number in�nity. A

parent or node is solved by this child, and immediately obtains the value

true. A parent and node sums its children's proof numbers, to which the

0 does not contribute, while it minimizes its children's disproof numbers, to

which in�nity does not contribute. Only if this child were the last unsolved

child is the and node solved and obtains the value true. To a solved child

with value false an analogous reasoning applies, with false and true, proof

number and disproof number, and and node and or node interchanged.

We conclude that a solved subtree, once its parent has been updated,

no longer in
uences the search, and thus may be removed. An e�cient

way to implement this enhancement in the SetProofAndDisproofNumbers()

algorithm of table 2.3 is by deleting solved children when calculating the sum

and minimum of the childrens' proof and disproof numbers.

For a discussion of the expected gain of this technique, we refer to section

2.4.

Pn

2

-search

As a second technique to reduce memory requirements, we present a short

description of a recent, so far unpublished, development in pn-search, named

pn

2

-search. The algorithm has been developed in collaboration with Stef

Keetman.

Pn

2

-search consists of two levels of pn-search. The �rst level consists of

a pn-search (pn

1

), which calls as evaluation of any node J a pn-search at the

second level (pn

2

), with a bound N on the maximum tree size. In pn

2

-search

N is chosen to be the current size of the pn

1

search tree. The second level of

pn-search is a standard pn-search, with a normal (either standard or domain-

speci�c) evaluation. The result of pn

2

on node J is the value true or false

in case pn

2

solved J , or the proof and disproof numbers of J , if J has not

been solved. In the latter case, the proof and disproof numbers are used to

initialize J in pn

1

. After termination of pn

2

, its tree is removed from memory.

We remark that several enhancements to pn

2

-search have been suggested to

reduce the overhead associated with recreating deleted parts of the tree. One

example of such an enhancement involves storing the M last pn

2

trees in a

cache, instead of deleting them, as suggested by Schae�er (1994). The gain
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achieved by such enhancements is a topic of future research. Pn

2

-search has

the following properties.

1. A search resulting in a pn

1

tree of size N has searched approximately

1

2

�N

2

nodes.

2. The memory requirements during the creation of a pn

1

tree of size N

are approximately 2N nodes.

3. Implementing pn

2

-search requires only minor changes to an implemen-

tation of standard pn-search

It has been established that the memory requirements of pn

2

-search are on the

order of the square root of the number of nodes investigated. Comparisons on

awari and draughts have shown experimentally that pn

2

-search investigates

on the average three times as many nodes as standard pn-search to solve the

same problem. This factor of three is independent of problem size within the

range investigated.

Given the approximate constancy of this factor, it follows that in cases

where pn-search is bounded by trees of 10

6

nodes, pn

2

-search, with the same

resources of memory may usefully investigate 10

12

nodes. This conclusion

can be extrapolated to even larger problems only when the factor of three

suggested by the experiments remains constant. Whether it does and whether

the extrapolation therefore remains valid, is a topic for future research.

2.3.2 Reducing execution time

The main di�erence in execution time between a best-�rst search algorithm,

such as pn-search, and a depth-�rst search algorithm, such as �-� search,

is the number of node traversals necessary to select the most-proving node.

The overhead speci�c to pn-search is the calculation of proof and disproof

numbers at internal nodes, being linear in the number of node traversals.

The enhancement presented in this section reduces the number of node

traversals per selection of the most-proving node. We remark that the

same enhancement can be and has been applied to conspiracy-number search

(Klingbeil, 1989).

At each iteration of pn-search we traverse the tree starting at the root

and ending at the most-proving node. After developing the most-proving

node, we follow the same path backwards until we are at the root. The basis

of the enhancement consists of two observations.
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� If the proof and disproof numbers of an ancestor do not change, the

updating process can be terminated.

� If a node J is on the path from the root to the most-proving node,

and J's proof and disproof numbers are not changed by the updating

process, J also lies on the path from the root to the next most-proving

node.

From these two observations it follows that at each iteration a node exists

where we can terminate the updating process, and start the next most-

proving node selection. Such a node is called the current node, which is

de�ned as follows.

De�nition 2.6 For any and/or tree T, at any time during the execution

of pn-search, the current node of T is de�ned as the ancestor of the previous

most-proving node J, closest to J, which had no changes to its proof and

disproof numbers caused by the development of J. Initially, the current node

equals the root.

Enhancing the pn-search algorithm to use the notion of current node

changes the algorithms for ProofNumberSearch and UpdateAncestors. The

new algorithms are shown in the tables 2.6 and 2.7.

The current-node enhancement reduces the number of node traversals per

iteration from linear in the depth of the search tree to close to constant and

should therefore be included in most practical implementations of pn-search.

We remark that at the cost of storing a most-proving node per subtree,

the selection process can be changed into an instant most-proving node

selection. Then, the most-proving nodes of the subtrees are updated during

the updating of the proof and disproof numbers within the tree. Since the

working memory is the main bottleneck in most applications, we feel that

small gains in terms of processing speed do not warrant the extra space

requirements.

2.3.3 Applying domain-speci�c knowledge

Two assumptions underly the formulation of the pn-search algorithm. First,

the probability distribution of expected values of frontier nodes is equal

throughout the tree. Second, the distribution of probabilities over the three

evaluation values (true, false, unknown) is unknown. These two assumptions

describe a situation in which no domain-speci�c knowledge can be applied to

guide the search through the tree. In many practical domains, however, at
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procedure ProofNumberSearch(root);

Evaluate(root);

SetProofAndDisproofNumbers(root);

currentNode := root;

while root.proof 6= 0 and root.disproof 6= 0 and

ResourcesAvailable() do

mostProvingNode := SelectMostProving(currentNode);

ExpandNode(mostProvingNode);

currentNode := UpdateAncestors(mostProvingNode)

od ;

if root.proof = 0 then root.value := true

elseif root.disproof = 0 then root.value := false

else root.value := unknown

�

end

Table 2.6: Pn-search algorithm (with current node).

least some knowledge is available. In this section we show how such knowledge

can be applied to pn-search by altering the initialization of the proof and/or

disproof numbers of frontier nodes.

We can view proof and disproof numbers as lower bounds on the e�ort

necessary to solve a tree. So far, the e�ort has been measured in node

developments. We consider three methods to use alternative measures of

e�ort. First, we use the number of node evaluations as a measure of e�ort.

Second, a domain-speci�c measure of e�ort is applied. Third, a function

of the tree depth is used to in
uence the shape of the tree searched. Each

method is illustrated using a particular game, being give-away chess, awari

and go-moku, respectively. Finally, we review the three methods applied.

Evaluations as a measure of e�ort

A node development, when using immediate evaluation, consists of expanding

the node and evaluating each of its children. Thus, the amount of e�ort

involved in a node development depends on the number of children. We will

use as J 's proof number the least number of node evaluations necessary to

prove node J and as its disproof number the least number of node evaluations

necessary to disprove J . Let us assume that J will have n children when
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function UpdateAncestors(node);

changed := true ;

while node 6= nil and changed do

oldProof := node.proof;

oldDisproof := node.disproof;

SetProofAndDisproofNumbers(node);

changed := (oldProof 6= node.proof) or

(oldDisproof 6= node.disproof);

previousNode := node;

node := node.parent

od

return previousNode

end

Table 2.7: Ancestor updating algorithm (enhanced).

expanded. J 's proof and disproof numbers can be initialized using that

knowledge, even before J is expanded. If J is an or node, only one child

needs to evaluate to true to prove J , thus J 's proof number equals 1. To

disprove J , all n children must evaluate to false. J 's disproof number is

therefore initialized to n. For an and node, the proof number is initialized

to n, while the disproof number becomes 1.

The advantage of using the number of evaluations as a measure of e�ort is

that a distinction between frontier nodes can be made which is not present in

standard pn-search. It allows pn-search to focus on frontier nodes with fewer

children before developing frontier nodes with more children. It is expected

that in this way pn-search will �nd solutions more quickly. Below we present

results from applying this method to give-away chess.

Give-away chess is a variant of chess where a player wins as soon as she

cannot make a legal move (i.e., she has no pieces left or her remaining pieces

are blocked). The pieces move as in chess, with two exceptions:

1. the king has no special status and can be captured like any other piece;

2. a player is forced to make a capture move if she can (like in checkers

and draughts).

Castling and en-passant capturing are extremely rare in give-away chess. To

simplify our implementation task, we have omitted these types of moves, thus
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rendering them illegal. In collaboration with Barney Pell we created the give-

away chess program Prove-away, solely based on pn-search. A node evaluates

to true, if white is to move and has no legal moves, while it evaluates to

false if black is to move and has no legal moves. All other nodes evaluate to

unknown. Pn-search was implemented in two variants, one variant using the

standard initialization, and the other one using node evaluations as measures

of e�ort.

To enable Prove-away to play games against opponents, it selects its

moves by performing pn-search with a predetermined bound on the number

of nodes to be created. If the tree is not solved within that limit, the 1-ply

nodes are inspected and the move leading to a node with the minimal ratio

of proof and disproof numbers is selected. If the tree is proved within the

limit, the move proving the tree is selected, ensuring a win for Prove-away.

If the tree is disproved, the 1-ply node with the largest subtree is selected,

speculating on the opponent not seeing her winning line. Although we have

no clear indication of the strength of Prove-away, it has beaten its human

opponents in all but three of its games (out of several dozen). Most games

are decided by Prove-away �nding a winning line in which the opponent is

forced at each move to capture one of the program's pieces, until the program

runs out of moves and wins. The maximum depth of such lines in give-away

chess is 32 ply (16 moves by the program and 16 captures by the opponent).

We conducted an experiment to compare the two variants of pn-search

described above. During the experiment, Prove-away plays random games

against itself. At each move in the game, both variants of pn-search (standard

initialization and using evaluations as measure of e�ort) create a tree, with

the current game position as root. As soon as one or both variants solve the

tree, the game is terminated. If in a position neither variant solves the tree

within 25,000 nodes, Prove-away plays a random legal move to continue the

game. A total of 30 games were played, which lasted on the average 5.6 ply

(i.e., a little less than three moves by white and three moves by black). Three

games where duplicates of other games, due to the fact that the program

quickly proved that black wins after the opening moves 1. d2-d4, 1. d2-d3 or

1. e2-e4, and each of these moves was selected twice as opening move during

the 30 games. In the following we disregard the three duplicate games.

The conditions of the experiment ensure that the �nal position of each

random game has been proved a win for one of the players by at least one

of the pn-search variants. In some games, both variants proved the win,

while in others only the pn-search variant with the number of evaluations

as the measure of e�ort succeeded. In none of the games did only standard
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standard initialization by improvement

initialization no. of moves factor

developments 5928 2661 2.2

nodes visited 62323 7838 8.0

branching factor 10.5 2.9 3.6

max tree size 48935 5988 8.2

nodes per sec. 169 132 0.8

Table 2.8: Give-away chess results.

pn-search solve the tree of the �nal position. To compare the performances

of both algorithms, we reran the standard algorithm with unlimited working

memory on the positions where that variant had not found the win within

the limit of 25,000 nodes. The results of the experiment are presented in

table 2.8.

Measured in number of node developments, the enhanced algorithm

(using evaluations as measure of e�ort) gains a factor of a little over 2, while

in number of nodes the improvement factor is almost 8. These numbers

indicate that the enhanced algorithm develops nodes with, on average, a 4

times smaller branching factor (2.9 vs. 10.5). This clearly indicates that the

selection of most-proving nodes is strongly in
uenced by the non-standard

initialization. The average amount of working memory necessary to complete

the search is speci�ed in table 2.8 as the maximal tree in memory per search.

It is directly related to the total size of the tree created, resulting in an

improvement by a factor 8. The extra time spent on counting the number of

moves per terminal node slows the algorithm down approximately 20% per

node, compared to the standard initialization. Thus, the overall gain in cpu

time amounts to a factor of more than 6.

We conclude that using the number of node evaluations as a measure of

e�ort to initialize the proof and disproof numbers may yield a signi�cant

reduction in node evaluations, node developments and cpu time.

Domain-speci�c measures of e�ort

In many domains, domain-speci�c properties exist which give an indication

of the amount of e�ort involved in solving a position (i.e., in solving the

and/or tree with the position as root).
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For instance, in othello solving a position with only a few empty squares

is easier than solving a position with more empty squares. In draughts, it is

simpler to solve a position if both players have only four men than if both

players have ten men. In these cases, we could select as domain-speci�c

measures of e�ort the number of moves to the end of the game (othello) or

the number of men of the opponent to be captured (draughts and checkers).

We illustrate the idea on the game awari. In the initial awari position,

there are 48 stones on the board. Both players move stones around, with the

goal of capturing stones. The goal of awari is to capture more stones than

your opponent. It follows that a player who has captured at least 25 out of

the total of 48 stones, wins the game (for a de�nition of the rules of awari,

see section 2.4.2). We use the number of stones a player needs to capture

as the measure of e�ort. Let us assume that we would like to determine

whether north can win, or whether south can obtain at least a draw. Let

us furthermore assume that south has so far captured 11 stones, while north

has collected 8 stones. We build the tree from the perspective of south, thus

proving the tree means showing that south can reach at least a draw. In the

given position, south must capture at least another 13 stones to reach a draw,

while north needs another 17 stones to obtain the 25 stones necessary for a

win. These values, 13 and 17, are then used as proof and disproof numbers

of the position.

In section 2.4.7 we present test results of applying pn-search to awari

for both the standard initialization and the stone-based initialization as

suggested here.

Depth-related measures of e�ort

By inspecting trees created by pn-search, we have found some occasions in

which the shape of the tree indicated that much e�ort was spent on variations

which were less likely to succeed quickly than some others. For instance, in

mating problems in chess, where the weaker side was restricted to moving

one piece between two squares, most variations had proof number one. As a

result, variations where the attacker moved a single piece aimlessly over the

board were searched very deeply. On one occasion, this resulted in a mate in

114 moves being found, while a mate in 4 moves existed. Instead of putting

a hard limit on the depth of the search, examining deep variations can be

somewhat discouraged by initializing the proof and disproof numbers of a

node using a function of the depth of the node.

By assigning higher proof and disproof numbers to nodes deeper in the
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tree, it is expected that pn-search will create a somewhat shallower and

broader tree. Analogously, by assigning smaller proof and disproof numbers

to nodes deeper in the tree, pn-search is expected to create deeper and

narrower trees. Inspection of trees created by pn-search with such alternative

proof-and-disproof-numbers initializations shows that the average node depth

is indeed in
uenced in accordance with these expectations.

Experiments on go-moku (see chapter 5), with each node's proof and

disproof numbers initialized to the depth of the node measured in full moves,

show that a somewhat broader, shallower tree is created, without losing pn-

search's ability to �nd narrow, deep variations leading to a win. Comparisons

on go-moku showed that this initialization was an improvement over the

standard initialization. The depth-related initialization was used in the

search which led to solving go-moku.

Despite this example, we do not have much ground for the assumption

that such an initialization is an enhancement to pn-search for domains

with behavior similar to go-moku. Furthermore, the evaluation function

we developed for go-moku also in
uenced the success of the non-standard

initialization. Although a linear function in the depth of the node worked

well in go-moku, more complicated functions may be necessary for other

domains. The strongest conclusion we are prepared to draw is that by using

a function of the depth of the node, the shape of the tree can be somewhat

in
uenced (either made broader and shallower, or narrower and deeper).

Reviewing the application of domain-speci�c knowledge

We have presented three ways in which domain-speci�c knowledge can be

used to change the initialization of the proof and disproof numbers at frontier

nodes. Although each of the three methods has been successful in improving

the performance in a practical domain, some caution is in order, particularly

with the second and third methods. While the use of non-standard proof-and-

disproof-numbers initializations may seem useful to guide the search process,

the underlying principles of pn-search are violated. Two examples of violated

principles are: (1) the assumption that all frontier nodes are indistinguishable

and (2) the assumption that the proof and disproof numbers are lower bounds

on the e�ort required to solve the tree. The positive in
uence of di�erent

initializations may at the same time result in negative e�ects. We have

found that for some domains, such as othello, it is necessary to perform

a large number of experiments to �ne-tune the initialization process, akin

to the process of �ne-tuning evaluation functions in game-playing programs
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(Gnodde, 1993). We conclude that as yet we lack a proper understanding

of the precise e�ects associated with knowledge-driven proof-and-disproof-

numbers initializations.

2.3.4 Transpositions

The de�nition of pn-search depends on the graph searched being a tree.

When determining the proof and disproof numbers of an internal node J , the

cardinality of the smallest proof set and disproof set must be determined.

In a tree, the subtrees rooted at the children of J are disjoint, ensuring

that the cardinality of the smallest proof set and disproof set of J can be

calculated from the cardinality of the smallest proof sets and disproof sets of

the children.

In many domains, however, the same subtree may be encountered several

times during the search, at di�erent places in the tree. The standard pn-

search algorithm will in such cases obtain an upper bound on the cardinality

of the smallest proof and disproof sets, instead of the true proof and

disproof numbers. Problems and solutions related to the problem of the

common subtree (transpositions) in combination with pn-search have been

investigated by Schijf (1993) and Schijf et al. (1994).

In the following, we shortly describe problems and practical solutions for

transpositions in pn-search. We distinguish between directed acyclic graphs,

abbreviated as dags and directed cyclic graphs, abbreviated as dcgs. We

remark that practical techniques for handling transpositions in game-playing

programs using �-� search have been extensively described in the literature

(Greenblatt et al., 1967).

Transpositions in DAGs

Transpositions resulting in dags necessarily occur in games where each move

is a conversion, i.e. an irreversible alteration of the state of the game. In

chess, captures and pawn moves are examples of conversions, while non-

capture moves by a piece (except for castling, and castling-forbidding moves)

are non-conversions. In connect-four, qubic and go-moku, each move is a

conversion, as in all three games the number of stones on the board strictly

increases.

As stated above, in a dag, addition of proof numbers or disproof numbers

possibly overestimates the cardinality of the minimal set of nodes needed

to solve the tree. Theoretically correct algorithms exist to establish the

correct proof and disproof numbers at each node, but these are slow or use
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Figure 2.4: and/or dag with practical solution.

an inordinate amount of working memory, or both, thus barring practical

application (Schijf, 1993).

A practical solution to this problem is to treat the dag as if it were a tree,

thus calculating (incorrect) proof and disproof numbers of a node directly

from its children. The main di�erence in the algorithm is that while updating

ancestors, all parents of a node must be updated recursively. In �gure 2.4,

a dag is depicted where proof and disproof numbers are calculated directly

from their children. It can easily be shown that if node G is solved, root

A obtains the same value as G. Thus, the proof and disproof numbers of A

should equal 1. Furthermore, G should be the most-proving node. Thus, both

numbers in the root are too high, and the selection mechanism incorrectly

selects node D as the most-proving node. This example clearly indicates that

the practical solution is no longer in accordance with the de�nitions of section

2.2.2. Still, our experience with connect-four, qubic and go-moku shows that

this practical pn-search algorithm for dags has advantages similar to those

of standard pn-search.

Transpositions in DCGs

Transpositions resulting in dcgs appear in games where a series of non-

conversion moves leads to a position which has occurred before. Special

rules govern the continuation of games after repetitions, leading by complex

regulations to game-speci�c outcomes. There is fascination in the diversity
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of these rules: in Chinese chess, some repetitions are illegal by the operation

of complex rules; in go, any repetition is outlawed by the ko rule; in chess,

�nally, a repeated position can give rise to a claim of a draw from its third

occurrence onwards.

Figure 2.5 depicts a dcg; in �gure 2.6 we have converted that graph into

a tree. Each path in the tree terminates at a frontier node of the graph, or

at a repetition of positions in the path. In this example we assume that a

repetition evaluates to false. The tree contains three duplicates of node D.

Among these three, two have the value false, while one has proof number

2 and disproof number 1. The fact that the same node may have di�erent

proof and disproof numbers depending on the path it lies on forms the basis

of the complexity of performing pn-search on dcgs. Node C has properties

similar to node D. Moreover, we note that A's proof number (2) is less than

the sum of the proof numbers of its children, as subtrees B and C have node

E in common. The proof number at the root indicates that to prove the tree,

both E and F must be proved. The disproof number 1 of A indicates that

disproving either E or F disproves the tree.

The dependence of the proof and disproof numbers of a node on the

path to that node forms the basis of the di�culties of cyclic transpositions.

In Schijf (1993), a theoretically correct algorithm for pn-search on dcgs is

described. Unfortunately, its time and working-memory requirements are too

costly to warrant practical application.
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Figure 2.6: Tree version of the graph of �gure 2.5.

Practical methods to apply pn-search to dcgs also exist. First, the

practical algorithm for dags may be applied with one modi�cation: only

positions created after a conversion move are eligible to have more than one

parent. As a result, some transpositions are investigated only once, while for

others duplicates are created in the graph. Second, for each set of equivalent

positions, at most two nodes are created: one for all paths in which the

node occurs for the �rst time, and the second node when the node is its

own ancestor. The second node is initialized to the value associated with a

repetition of positions in the game under investigation. In this case, if a node

is its own ancestor through at least one path, the repetition of positions is

used to update the ancestors on all paths leading to the node, including those

in which the node is not a repetition. Therefore, the search may incorrectly

deduce that a node must have the value of a repetition of positions. Thus,

if the value of the root is proved to equal the value assigned to repetitions

of positions, the proof is not fully reliable. If the opposite value is proved,

however, the proof is bound to be correct. For a detailed description of these

two practical algorithms for pn-search in dcgs, we refer to Schijf (1993).

We believe that pn-search on directed cyclic graphs requires further in-

vestigation.
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2.4 Results

2.4.1 Introduction

In this section we compare pn-search's performance with that of a sophisti-

cated implementation of �-� search, by far the most commonly applied game-

tree search algorithm in tournament programs for strategic games. As a test

domain, we have selected the game of awari, one of the games on the Olympic

List. We have chosen awari for two main reasons. First, awari search trees

contain non-uniformity, which make them suitable for the application of pn-

search. Second, all strong tournament programs competing in the Computer

Olympiads selected their moves using sophisticated implementations of �-�

search, establishing that awari search trees are suitable for application of �-�

search.

It will be shown that, for the purpose of proving the game-theoretic value

of a position in awari, pn-search outperforms �-� search by a wide margin. It

proves that a category of search trees exists for which pn-search outperforms

�-�. Further indications of pn-search's strengths can be found in chapters

4 and 5, where pn-search's contribution to solving qubic and go-moku is

described.

This section is organized as follows. First, we present the rules of awari.

Second, we give a description of the strongest existing awari programs, which

presents evidence that our implementation of �-� search is competitive with

�-� search implementations of other authors. Third, we describe in detail

the implementations of pn-search and �-� search and their performances are

compared. Fourth, it is explained how the nodes visited by both algorithms

are counted, which is important due to the di�erent nature of the algorithms.

Fifth, we describe the set of awari positions to which the algorithms were

applied. Finally, we present and analyze the empirical data.

2.4.2 The rules of awari

Awari is a two-player (south and north) zero-sum game with perfect informa-

tion. It is one instance of a large family of games named mancala, of which

some 1200 variants are known. The mancala games originate from Africa.

Awari is mainly played in its western regions, such as Nigeria. For the game

described here, the names wari or awele are also used (Deledicq and Popova,

1977).

Awari is played on a wooden board containing two rows of six pits. Each

player controls the row on her side of the board. South's pits (from left to
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Figure 2.7: A position with legal moves A1, C4�2, D19�7, E4 and F2�4.

right, as seen by south) are named A through F, while north's pits (from left

to right, as seen by north) are named a through f. At the right-hand side

of each row, an auxiliary pit is used to contain a player's captured stones.

At the start of the game each pit (except the auxiliary pits) contains four

stones, for a total of 48 stones on the board.

At each move, a player selects a non-empty pit X from her row. Starting

with X's neighbor, she then sows all stones from X, one at the time, counter-

clockwise over the board (omitting the two auxiliary pits). If X contains

su�cient stones to go around the board (12 stones or more), pit X is skipped

and sowing continues. Thus, after the move, X will always be empty. Finally,

captured stones, if any, are removed and stored in the auxiliary pit. Stones

are captured if the last stone sown lands in an enemy pit which after landing

contains 2 or 3 stones. If such a capture is made, and the preceding pit

contains 2 or 3 stones and the pit is an enemy pit, those stones are also

captured. This procedure is successively repeated for the pits preceding and

ends as soon as a pit is encountered containing a number of stones other than

2 or 3, or the end of the opposing row is reached.

A move is described by the name of the pit, followed by the number

of stones sown (the name of the pit by itself de�nes the move, but such a

notation is prone to error). The number of stones captured, if any, is indicated

by the amount preceded by a "�". In �gure 2.7 an example position is shown

with south to move. Legal moves for south are: A1, C4 � 2, D19 � 7, E4

and F2� 4.

The goal of awari is to capture more stones than the opponent. The game

ends as soon as one of the players has collected 25 or more stones. Two

other conditions exist which terminate the game. First, if a player is unable
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Figure 2.8: 1: B1 f1 wins. After 1: E1? f1 south must play 2: F1:

to move (i.e., all her pits are empty), the remaining stones are captured by

her opponent. Second, if the same position is encountered for the third time,

with the same player to move, the remaining stones on the board are evenly

divided among the players. In all cases, after the end of the game, the winner

is the player who captured the most stones. If both players capture 24 stones,

the game is drawn.

A last rule exists to prevent players from running out of moves early

in the game. Whenever possible, a player is forced to choose a move

such that her opponent is able to make a reply move. It is, however, not

compulsory to look several moves ahead to ensure that the opponent will

continue to be able to reply. For instance, �gure 2.8 shows a position in

which south by playing 1. B1 can deliberately create a position in which

she is unable to o�er north any stones on her next move. By doing so,

south captures all three stones remaining on the board and wins the game.

However, would she have played 1: E1, then after 1: : : : f1 she is forced

to play 2: F1, leaving the game for the moment undecided (although after

2: : : : a1 3: B1 b1 4: C1 c1 5: D1 d1 6: A1 e1 we are back at the initial

position, giving south a second chance to play the winning move).

2.4.3 Tournament programs

Lithidion

In 1990 Maarten van der Meulen and the author constructed an awari-playing

tournament program, named Lithidion (Greek for 'little stone'). Lithidion at

the time consisted of an �-� search algorithm, and an endgame database

containing the game-theoretic value of each awari position with 13 stones or
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fewer left on the board (Allis et al., 1991c).

In 1991 Lithidion was enhanced with pn-search and a larger database (all

positions with 17 stones or fewer). In 1992 Lithidion was further enhanced

with an opening book. In describing Lithidion, we will concentrate on this

last version of Lithidion.

The basis for Lithidion is its �-� search algorithm. Any position not in the

opening book or the endgame database is searched with iterative-deepening

�-� search. The evaluation function for leaf nodes is trivial: at each leaf

node it is assumed that the players divide the remaining stones evenly. If,

in the search tree, a position is encountered having 17 stones or fewer on

the board, its exact value is retrieved from the endgame database. Thus,

the value of the �-� search is based on a combination of crude guesses for

some leaf nodes, and exact values for others (Beal, 1984). We remark that in

awari the di�erence in the number of stones by which one wins is irrelevant.

Therefore, the value retrieved from the endgame database is converted into

�1 for losses, 0 for draws, and 1 for wins. Once the game has progressed

to a position contained in the endgame database, no search is needed, and

at each turn the best move is played instantly.

After a move has been selected by �-� search (typically based on an 18-

to-20 ply search), pn-search is called to check the move. If a proof can be

found that the selected move loses, the move is rejected, �-� is asked to select

a new move, and the procedure is repeated. If all moves are proved losses, the

�rst move selected is played, hoping for an error by the opponent. While the

opponent is pondering on the position, Lithidion performs pn-searches on her

potential moves looking for wins. In case the opponent selects a losing move,

Lithidion uses the proof by pn-search to select its winning move. The pn-

search algorithm regards positions within the endgame database as terminal

nodes, just as it treats positions where a player has no legal moves. All

other positions are internal nodes. In summary: pn-search is only used to

prevent Lithidion from playing losing moves and to detect winning lines after

erroneous moves by the opponent. All other moves are based on �-� search.

Opponents

Lithidion has played in three tournaments: the awari tournaments of the

2nd, 3rd and 4th Computer Olympiads (London 1990, Maastricht 1991 and

London 1992). Lithidion won the gold medal each time. The tournaments

of the 2nd and 3rd Olympiads have been described in Levy and Beal (1991)

and Van den Herik and Allis (1992).
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In 1990, Lithidion's only opponent, Marco, written by Remi Nierat,

winner of the gold medal at the awari tournament of the 1st computer

Olympiad, lost all its games. Marco is based on human-expert knowledge

of awari, shallow �-� searches (averaging fewer than 10 ply) and no endgame

databases. In most games, both Marco and Lithidion had prospects of

winning, until Lithidion's endgame database was reached. At that point

Marco made one or more erroneous moves, leaving Lithidion with an easy

win. In 1990, the main deciding factor was the endgame database (at that

time, all positions of 13 stones or fewer).

In 1991, a new opponent appeared: MyProgram written by Eric van

Riet Paap. MyProgram had been created using the published description

of Lithidion (Allis et al., 1991c). It contained a large endgame database

(all positions of 16 stones or fewer), a fast implementation of �-� search

including the singular-extension enhancement (Anantharaman et al., 1989)

and the same evaluation function as Lithidion (see above). Lithidion defeated

MyProgram by the smallest possible margin, with three wins, two losses and

one draw. In at least one of the games, pn-search played a decisive role,

�nding a deep winning line in a position unclear to �-� search. Given the

small di�erences between the programs (a 17-stone database versus a 16-stone

database, pn-search versus singular extensions, and MyProgram searching

twice as many nodes per second), it is unclear what the exact impact of

pn-search on the match has been.

In 1992, two new opponents appeared: Marvin and Juju. Juju turned

out to be no competition for its two strong opponents and lost all its games.

Marvin was created by Ralph Gasser with Lithidion as its example. The

�-� search algorithms of Marvin and Lithidion performed almost equally

well. Marvin's endgame database (20 stones), however, was much larger than

Lithidion's (17 stones). A disadvantage to Marvin was that its database did

not �t in ram memory. Each entry retrieved from the hard disc slowed down

the �-� search. Two further disadvantages to Marvin were its lack of a pn-

search implementation and of an opening book. As a later test indicated, the

opening book was the decisive factor in this match, which Lithidion won by a

score of 4-2. The test consisted of replaying the �rst game from the position

where Lithidion had exited its opening book, with Marvin and Lithidion

changing places. Marvin easily won the game, similarly to the way Lithidion

had won the game during the tournament. Clearly, the opening book had

provided Lithidion with a winning advantage.
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Conclusion

We have given a description of the architecture of Lithidion, the role of

�-� search in it, and the competition it faced. From this description we

conclude that Lithidion's �-�-search implementation has been thoroughly

tested and has performed well in competition with strong opponents. We

stress this point, since Lithidion's �-� search has been selected as the sparring

partner for pn-search in our comparison tests on awari. Such a comparison is

only valid if made against a sophisticated implementation, and we believe

that practical evidence suggests that Lithidion's �-� search meets those

requirements.

2.4.4 The algorithms compared

For our experiments, we have compared two variants of �-� search, and two

variants of pn-search. We will use the following abbreviations for the four

algorithms:

�-� �-� iterative-deepening search without transpos-

ition tables.

transposition �-� iterative-deepening search with transposition

tables.

basic pn pn-search with standard initialization.

stones pn pn-search with initialization based on the number

of stones to be captured.

The �-� algorithm has the following characteristics. At each node, moves are

pre-ordered by capture size. The largest captures are evaluated �rst, since

the resultant positions are most likely to hit the database. Another reason

for processing captures �rst is that they are often good moves. An iterative-

deepening search is performed with a depth increase of 1 per iteration. The

result of each iteration is a value and a move ordering of the full principal

variation. The search terminates as soon as the value of the position has

reached �1 or +1, indicating that the value of the position has been

determined.

The transposition algorithm is the same as �-�, except that it is

extended with a transposition table of a quarter of a million entries. The

transposition table is implemented as a hash table, with one entry per hash

code. At each node in the search tree, we �rst examine whether the position



2.4 Results 49

is present in the transposition table. Then we investigate whether the depth

to which it had previously been searched is at least as large as the current

depth. If both conditions are met, the range of possible values stored in the

entry is used to narrow the �-� window. If after updating � exceeds or equals

�, the search returns to the node's parent. Otherwise, the search is continued

with the narrowed window.

After a node's value has been established, the results are stored in the

transposition table. If the value of the node is equal to the initial � or �,

we only know that the node's value is less or equal to �, or greater or equal

to �, respectively. Only if the value lies between � and � proper, is the

value reliable and can be stored as the true outcome of the search to the

given depth. Values �1 and1 are treated separately, since these values are

always indisputable. For those values, the searched depth is set to1 as well,

since deeper searches cannot change a reliable value, making the information

applicable to each following iteration. Collisions in the hash table are resolved

in favor of the position which has been searched most deeply. We remark that

unlike tournament chess programs, we store a full G�odel code per entry in the

transposition table, ensuring that two di�erent positions will not mistakenly

be regarded as equal.

The transposition table is expected to be useful in awari in the middle and

end games, when empty pits and pits containing single stones are common.

A con�rmation of this assumption will transpire from the results of our

experiments presented in section 2.4.7.

Basic pn is the standard pn-search algorithm, enhanced with the

technique which removes solved subtrees. Each frontier node is initialized

to proof number 1 and disproof number 1.

Stones pn is equal to basic pn, except for the initialization of frontier

nodes. Instead of proof and disproof numbers being initialized to 1, the

number of stones still to be captured by a player to achieve her goal is used

as the initialization, as explained in section 2.3.3. We remark that neither

variant of pn-search uses transposition tables.

The �-� algorithm calculates approximately 10,000 nodes per second on

a sun sparcstation 1+. The other three algorithms are roughly a factor

two slower. For transposition, storing and retrieving information from the

transposition tables is responsible for the slowed-down performance, while

the pn-search variants have as extra overhead the creation and deletion of

nodes, as well as the calculation of the proof and disproof numbers.
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2.4.5 Comparing the performances

When selecting a search algorithm for an application, the elapsed cpu time

is an important selection criterion. However, experimental results on tree

searches when measured in cpu time are di�cult to generalize, due to

implementation details. Instead, it is customary to compare the number

of nodes visited.

In this case, a careful analysis is needed to determine the fairest way to

compare the number of nodes visited by �-� search and pn-search.

Let us consider the number of nodes visited by �-� iterative-deepening

search. On the one hand, we could sum the number of nodes visited in

each iteration. However, this would be unfair to �-� search, since a smaller

number of iterations (e.g., by searching to even ply depths only) may result

in almost the same ordering and thus reducing the number of nodes visited.

On the other hand, we could just take the number of nodes visited in the

last iteration. That would be unfair towards pn-search, as the last iteration

does use the move ordering of previous iterations, and these searches should

be included in the total node count somehow. Moreover, �-� search with

transposition tables obtains many early cut-o�s during the last iteration due

to the solved subtrees stored in the transposition table.

Instead, we have chosen to count at iteration i only the nodes at depth

i. Then the extra iterations are an asset to �-� search, without costing

anything in terms of the number of nodes visited. Re-ordering of the moves

may result in terminal nodes in a new iteration, which are not at the deepest

level. These nodes are not counted at all. This slight bias in favor of �-�

iterative-deepening search does not signi�cantly in
uence the results.

For pn-search, we simply count the total number of nodes created during

the search.

2.4.6 Test positions

As mentioned in section 2.4.3, Lithidion has taken part in three awari

tournaments of Computer Olympiads. In total, she played 23 games (5

against Marco and 6 each against MyProgram, Juju and Marvin), of which

two games were identical, which can be explained as follows. Each of the �ve

programs described in section 2.4.3 plays deterministically. Therefore, before

the next game against the same opponent, a change should be made in the

opening choice of the program to avoid losing in exactly the same way. Juju

forgot to do so once, and lost two games in identical fashion.
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In the 22 di�erent games a total of 1707 positions have occurred (from the

initial position to the position after the last move had been played). Of these

there were 1599 unique positions, which have been selected as the initial test

positions.

For each of the initial test positions, a search with all four algorithms was

performed. Since an awari game has three possible outcomes: win, draw and

loss, and pn-search is a two-valued search algorithm, the three outcomes must

be divided into two sets. We arbitrarily chose to treat a draw as equivalent to

a loss for the player to move. Each of the searches has one of three possible

outcomes:

� The player to move has a proved win.

� The opponent has at least a draw.

� The search ran out of resources.

Not all test positions can be used to compare the performance of the four

algorithms. First, positions with 17 stones or fewer are solved immediately by

all four algorithms through a single database lookup. Second, positions too

early in the game are likely to be unsolvable by all four algorithms. Therefore,

we have selected the relevant positions from the 1599 initial positions as

follows. Each position has been investigated by all four algorithms with a

resource limit of 500,000 nodes per position. If after 500,000 nodes the search

had not succeeded, it was terminated. Using the outcome of the searches,

the following selection was made. First, the 2 positions in which the game

had just ended were discarded since all four algorithms solved the positions

visiting only a single node. The reason why only 2 such positions were found

out of 22 di�erent games is that most games ended by resignation. Second,

all positions with 17 stones or fewer (496 in total) were excluded. Third,

all positions which were not solved by any of the algorithms (764 in total)

were labeled unsolvable. The remaining 337 positions are named the �nal

test positions.

We remark that in this way positions which are well suited for �-� search

will be selected for the �nal test positions, as well as those positions well

suited for pn-search. Thus, in our selection method of test positions there is

no bias towards either of the algorithms.

Each of the algorithms which failed to solve one of the �nal test positions

within the 500,000 nodes limit, was given virtually unlimited resources to try

again. In practice this meant a limit of a quarter billion nodes per position for
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�-� search, while for pn-search no �nal test position took more than about

one and a half million nodes to solve.

2.4.7 Results

In this section we present the results of the comparison of the four algorithms

described in section 2.4.4 on the 337 �nal test positions of section 2.4.6.

Each of the 337 �nal test positions was solved by basic pn and

stones pn. Two positions were not solved by �-� within a quarter billion

nodes, while there were two more positions not solved by both �-� and

transposition. In this section we have set the solution size of unsolved

positions at a quarter billion, which is a lower bound on the number of nodes

necessary to solve them. Although this results in a bias in favor of �-� search,

it does not in
uence our conclusions and it allows us to include the positions

in the test results. Removing the positions from the �nal test set would be

particularly unfair towards pn-search, as it would ignore its �nest results.

First, we present �gures indicating how often one algorithm outperfor-

med another, without paying attention to the exact di�erence in node counts.

Second, we tabulate the total number of nodes visited by each of the four

algorithms, and calculate averages. Third, we group test positions by size of

solution, and graphically depict the average di�erence in performance of the

search algorithms per group.

Outperforming the other algorithms

In this section, we are interested in whether one algorithm performed better

on a speci�c test position than another algorithm, but ignore the size of the

di�erence. In our results we have divided the set of positions into two halves:

the easy and the hard positions. To this end, we have sorted the positions

according to the minimum number of nodes in which a position was solved.

As a result, the 169 positions which were solved by at least one algorithm

in fewer than 3200 nodes, were classi�ed as easy positions, while the 168

positions with smallest solution larger than 3200 nodes were named the hard

positions.

In table 2.9 we have listed for each algorithm how often it outperformed

all other algorithms, separated for easy and hard positions. If two algorithms

shared �rst place on a position, they were each awarded half a point.

As can be seen from table 2.9, at the easy positions there is hardly any

di�erence between the �-� search algorithms (84 times best algorithm) and

the pn-search algorithms (85 times best algorithm). For the hard positions
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�-� transposition basic pn stones pn

easy 23 61 41 44

hard 0 22 31

1

2

114

1

2

Table 2.9: Number of times an algorithm performed best of all.

�-� transposition basic pn stones pn

�-� - 35 79 91

1

2

transposition 134 - 89 100

basic pn 90 80 - 82

stones pn 77

1

2

69 87 -

Table 2.10: Comparing pairs of algorithms on easy positions.

the picture is entirely di�erent: the pn-search variants are 146 times best,

against just 22 times for the �-� search variants.

Table 2.10 shows per pair of algorithms, how often one algorithm outper-

formed the other, on the easy positions. Each entry at row R and column C

in the table indicates how often the algorithm heading row R found a solution

more quickly than the algorithm heading column C. The same information

for the hard positions is displayed in table 2.11.

Table 2.10 indicates that transposition wins against the other three

variants, albeit with a small margin compared with the two pn-search variants

(89 against 80 and 100 against 69).

Table 2.11 clearly indicates that �-� has the worst performance of all

four algorithms. It loses in all cases against transposition, and only 6

times outperforms the pn-search variants. Transposition occasionally does

better than the pn-search variants, but is outperformed in more than 85% of

all hard positions. Between the pn-search variants, the initialization based

on the stones to be captured seems to pay o�, given the 126 against 42 win

compared with the standard initialization.
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�-� transposition basic pn stones pn

�-� - 0 6 6

transposition 168 - 25 24

basic pn 162 143 - 42

stones pn 162 144 126 -

Table 2.11: Comparing pairs of algorithms on hard positions.

total nodes average nodes factor tree size

�-� 2,437,035,522 7,231,559 128.8 -

transposition 1,285,839,816 3,815,548 68.0 -

basic pn 28,214,875 83,723 1.5 42,767

stones pn 18,918,032 56,136 1.0 25,505

Table 2.12: Test �gures per algorithm.

Nodes visited

In this section we concentrate on the number of nodes visited by each

algorithm.

In table 2.12 the �rst column of results lists the total number of nodes

visited on the 337 test positions, per algorithm, while the second column

contains the average per position. In the third column, the factor di�erence

between each algorithm's average and the best average is presented. For both

pn-search variants we have also determined the maximum number of nodes

present in memory during each search. The average of these maxima have

been listed in the last column of the table.

From table 2.12 a pattern similar to that seen in tables 2.10 and 2.11

becomes apparent: the pn-search variants perform best, with stones pn

doing somewhat better than basic pn. With factors 68.0 and 128.8, both

�-� and transposition are clearly outperformed.

The average maximum tree size in memory during the pn-searches,

compared to the average solution size, indicates that removing solved subtrees

during the search results in somewhat smaller memory requirements. Here

approximately a factor 2 is gained. We remark that these �gures only relate
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10

1

10

2

10

3

10

4

10

5

10

6

10

7

10

8

10

9

�-� 18 47 40 45 57 61 36 26 7

transposition 18 47 44 59 67 53 23 23 3

basic pn 14 43 52 77 92 57 2

stones pn 14 37 57 77 101 51

Table 2.13: Positions per group, per grouping algorithm.

to solved positions. In searches which are not successful, the number of solved

subtrees is smaller, rendering the technique less e�ective.

Performance by size

Table 2.12 shows that pn-search is capable of outperforming �-� search by a

large factor. The table does not indicate, however, to what extend the gain

factor is related to the size of the search problems. Furthermore, we must

realize that in the table the hard problems dominate the results.

Measuring the size of the search problems is not a straightforward task,

since a position which is di�cult to solve with �-� search may be rather

simple for pn-search or vice versa. Therefore, we have grouped the test

positions in four di�erent ways, each time according to one of the algorithms

applied in our experiments. We describe the grouping process based on �-�.

We have created groups for each power of 10. Thus, group i consists of

all positions which were solved by �-� in more than 10

i�1

nodes, and less

than or equal to 10

i

nodes. Within each group, the average number of nodes

necessary to solve all positions in the group is calculated, for each of the

four algorithms. These averages are then compared to see which algorithm

performs best on positions of the size represented by the group.

In table 2.13 we have listed for each algorithm the number of positions

per group, depending on the algorithm used as grouping criterion. These

numbers indicate the size of each of the groups on which �gures 2.9, 2.10,

2.11 and 2.12 are based.

Figures 2.9, 2.10, 2.11 and 2.12 contain the results per group, where

the groups are created according to the solutions of �-�, transposition,

basic pn and stones pn, respectively. For each �gure, the numbers on the

horizontal axis indicate the log

10

of the size of the groups. The numbers

on the vertical axis indicate the log

2

of the factor di�erence between the
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Figure 2.10: Comparison based on grouping by transpositions
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Figure 2.11: Comparison based on grouping by basic pn
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Figure 2.12: Comparison based on grouping by stones pn
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10

1

10

2

10

3

10

4

10

5

10

6

10

7

10

8

15 43 46 65 75 57 35 1

Table 2.14: Positions per group, grouped by all four algorithms.

algorithms.

In �gures 2.9 and 2.10 we see that on small problems �-� search does

somewhat better, while with increasing problem size, pn-search does better

and better. For the largest problems, the gain factor is around 500.

In �gures 2.11 and 2.12, again pn-search does worse on the smallest

problems and quickly starts doing better on increasing problem size. It

is remarkable that the gain factor reduces when the problem size further

increases. The cause of this phenomenon is described below.

In each �gure the algorithm used as grouping criterion plays an important

role. In the �rst few groups we �nd positions which were suitable for that type

of algorithm, while in the last few groups the positions found were di�cult

to solve for the algorithm. It is thus to be expected that in the graphs the

other algorithms will do somewhat worse in the �rst groups, while they do

somewhat better on the last groups.

This is exactly what can be seen in all four graphs. In �gures 2.9

and 2.10 pn-search outperform �-� search starting from group 4, while in

�gures 2.11 and 2.12 pn-search is the better algorithm from group 2 onwards.

Furthermore, in the �rst two graphs pn-search's gain factor towards the last

few groups grows remarkably fast, while in the second two graphs, with pn-

search as the grouping criterion, pn-search's advantage reduces in the last

two groups.

Thus, when looking at the groups for the hard problems, �gures 2.9 and

2.10 are too 
attering towards pn-search while �gures 2.11 and 2.12 do not

give pn-search full credit.

As a solution to this problem, we present one �nal graph. This time we

have determined the size of a problem in a more elaborate way. For each

solution by an algorithm, we determine the log

10

of the number of nodes

visited. For the four algorithms we then determine the average of these

exponents and use it as group number. The number of positions per group

has been tabulated in table 2.14. We average the logs since node counts tend

to grow exponentially instead of linearly.
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Figure 2.13: Comparison based on grouping using all four algorithms.

The singleton last group has been deleted, and its position has been

added to the second last group, making a total of 36 entries in that group.

The graph produced by this grouping criterion is pictured in �gure 2.13. The

numbers on the axes have the same meaning as in �gures 2.9, 2.10, 2.11 and

2.12. In it, the bias towards a single algorithm no longer exists. The �gure

con�rms the suggestion from the previous four �gures, that pn-search's gain

factor, compared with �-� search, grows with increasing problem size.

2.4.8 Conclusions

In this section we have compared the behavior of two pn-search variants with

two variants of �-� search. The comparisons lead to clear conclusions: pn-

search signi�cantly outperforms both variants of �-� search (cf. table 2.12)

in proving game-theoretic values in awari. The gain factor di�erence between

pn-search and the �-� variants tends to increase with increasing problem size

(cf. �gure 2.13).

We further conclude from table 2.12 that a domain-dependent initializa-

tion can be bene�cial on awari, with the enhancement yielding a pro�t of

about a factor 2. Moreover, the removal of solved subtrees in pn-search
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decreases the working memory requirements by a factor of about 2, in

problems which are ultimately solved.

We believe that the success of pn-search on awari is due to the non-

uniformity of the tree. Allis et al. (1991b) have attempted to measure the

degree of non-uniformity necessary for pn-search to outperform alternative

algorithms. The results of this section show that awari's non-uniformity

warrants the selection of pn-search for proving game-theoretic values instead

of �-� search variants.

We tentatively conclude from these results that pn-search has contributed

signi�cantly to proving the game-theoretic values of other non-uniform trees,

such as those of connect-four, qubic (see chapter 4) and go-moku (see chapter

5).

2.5 Related algorithms

In this chapter we have presented pn-search as an and/or tree search

algorithm. Its roots, however, lie within the game-tree search algorithms.

So far we have applied pn-search only to game trees, including awari, chess

(Breuker et al., 1994), connect-four (Allis, 1988), give-away chess, go-moku

(see chapter 5), othello (Gnodde, 1993) and qubic (see chapter 4). In our

discussion of related algorithms we will therefore focus mainly on game-

tree search algorithms. In this section, we discuss the relationships with

conspiracy-number search, sss*, b* and a*, the latter being the only single-

agent search algorithm in the list.

2.5.1 Conspiracy-number search

Conspiracy-number search (cn-search) is pn-search's direct ancestor. Cn-

search was developed in the middle of the 1980s by McAllester, and has

received attention of many researchers since then (McAllester, 1988; Klingbeil

and Schae�er, 1988; Klingbeil, 1989; Schae�er, 1989; Van der Meulen, 1990;

Allis et al., 1991b; Lister and Schae�er, 1994).

While pn-search focuses on the minimum number of nodes which must

conspire to prove the value of a position, cn-search determines the minimum

number of nodes which must conspire to change the value of a position. This

main di�erence is more apparent when looking at the search tree: pn-search

does not use a heuristic evaluation function to evaluate non-terminal nodes,

while cn-search does.
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Subtle di�erences between cn-search and pn-search can be identi�ed by

creating an instantiation of cn-search which resembles pn-search as much as

possible. To do so, we de�ne a three-valued evaluation function for cn-search,

which returns -1 for a disproved node, 0 for a node with value unknown, and

1 for a proved node. In such a tree, the conspiracy numbers for -1 and 1 of

a node correspond to the proof and disproof numbers of that node. These

algorithms only di�er in the manner in which the next node to be developed

is selected, for which unpublished experiments on connect-four have shown

that the selection mechanism of pn-search performs better than the selection

mechanism of cn-search.

In cn-search, for any potential value v of the evaluation function it is

determined for each subtree howmany nodes, sayN

v

, within the subtree must

change their evaluation value to v, to change the value of the subtree to v. If

N

v

for the root exceeds a certain limit, for all v unequal to the current root

value, cn-search assumes that the current root value is reliable and terminates

the search. Schae�er's implementation showed that cn-search could achieve

good results in tactical chess positions (Schae�er, 1989). Unfortunately,

experiments with tournament chess programs (Van der Meulen, 1990) have

not been successful.

We remark that, despite pn-search's success in analyzing awari positions,

we do not claim that pn-search is better suited than cn-search to perform well

in a tournament chess program. Instead, we claim that the ideas behind cn-

search, such as applied in pn-search, are better suited for proving values, than

for determining the reliability of heuristic root values. Pn-search capitalizes

on this suitability, concentrating on proving only. We do envision applications

in tournament programs, as we have in our awari program. For instance,

Breuker et al. (1994) have shown that pn-search may be an asset to chess

programs, to prove quickly whether a mating sequence exists in a given chess

position.

We conclude that cn-search and pn-search are closely related, with pn-

search focusing on a di�erent goal and being successful at it.

2.5.2 SSS*

With the availability of large internal memories, algorithms which store

the search in working memory have become of practical interest. One of

the earliest game-tree search algorithms which uses a stored tree is sss*

(Stockman, 1979; Campbell and Marsland, 1983).



62 Chapter 2. Proof-Number Search

sss* and pn-search are both best-�rst search algorithms. At each step

in the algorithm a node is selected according to a certain criterion and

then developed. This process is repeated until the tree has been solved, or

resources have run out. An important similarity between sss* and pn-search

is that neither algorithm uses a heuristic evaluation function for internal

nodes. Only leaf nodes are assigned a value, either by a heuristic evaluation

function or by reliable game knowledge.

The main di�erence between the algorithms is the criterion which deter-

mines the selection of the next node. Sss* selects a node purely based on

the upper bound still achievable. At any point during the search the node

which has the highest possible upper bound is selected, while among equals

the leftmost node in the tree is preferred. Pn-search does not use a range

of terminal-node values. Instead, the set of possible terminal-node values is

split into two. Solving the tree means determining in which of the two sets

the true value lies. If the exact value from a larger range must be determined,

pn-search should be called repeatedly, for instance by having pn-search be

the discriminating function in a binary search. While pn-search does not use

a range of values, it bases its selection on the proof and disproof numbers

implying that a node is tried which may be part of a solution with minimal

e�ort.

A predecessor of pn-search, viz. ��-cn search (Allis et al., 1991b), can be

seen as a hybrid form of pn-search and sss*. It uses both a range of values

and proof and disproof numbers (although these were named di�erently)

to determine the next node to be developed. The main criterion is the

range of possible values, like in sss*, while in case of a tie the proof and

disproof numbers are used. It can be shown, however, that trees exist with

solutions of only a few nodes, in which ��-cn search could spend a long

time in irrelevant subtrees (Allis et al., 1994). The solution to this problem

consisted of reducing the impact of the range of values, while enlarging the

role of the proof and disproof numbers. The result of this change has been

the development of pn-search.

For a comparison of sss* and ��-cn search on random trees, see Allis et al.

(1991b).

2.5.3 B*

B* is a best-�rst game-tree search algorithm introduced by Berliner (1979).

It assumes that at each frontier node a special evaluation function returns

a reliable lower and upper bound on the true value of the node. After a
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node is expanded, the lower and upper bounds of a node are calculated by

maximizing (or minimizing, depending on the node type) the lower and upper

bounds of its children. Let us assume that the root of the tree is a max node.

Let us further assume that the root has two children A and B, with values in

the intervals [0; 2] and [1; 3]. b*'s main goal is to determine the best move,

without necessarily knowing the exact value of such a move. In our example,

B is the most-promising child of the root. Before we can terminate the search,

however, we should either prove that the upper bound (2) on A's interval can

be reduced to a value below the lower bound of B, which currently equals 1,

or we should prove that the lower bound of B can be raised to at least the

value of A's upper bound. These two di�erent strategies are called prove and

disprove.

Focusing both on proving and disproving is a similarity with pn-search.

However, a di�erence with pn-search is that there is no way to simultaneously

work on both strategies. Thus, in b*, at each step �rst a choice must be made

for one of the strategies, followed by the selection of a node. Of course, after

each node expansion, a change of strategies may take place. Since b* does not

assume that some nodes may change their bounds more easily than others,

we suggest that the concept of proof and disproof numbers could be a useful

addition to b*.

An important prerequisite of b* is the reliable evaluation function which

determines the lower and upper bound per node. Such an evaluation function

heavily depends on domain-speci�c knowledge, and may be a serious obstacle

in many domains. If, however, the knowledge to create such a function is

readily available, b* provides a sound mechanism to incorporate it to guide

the search process. An alternative way to obtain these bounds through a

small search has been described by (Palay, 1982). For pn-search such a clear

mechanism has not yet been formulated. In this respect b* has advantages

above pn-search.

2.5.4 A*

A*, a single-agent search algorithm, has links with pn-search. A* is a best-

�rst search algorithm, which uses an admissible evaluation function at each

frontier node. Such a function calculates a lower bound on the total costs

of the path from the root to a solution through that node. At each step

a node with minimal lower bound on the solution costs is developed. a*

thus guarantees �nding an optimal solution (Hart et al., 1968; Hart et al.,

1972; Nilsson, 1980).
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Where a* concentrates on the cheapest overall solution, including the

e�ort already spent (i.e., the cost of the path from root to frontier node), pn-

search selects a node on the basis of the cheapest remaining solution, thus

ignoring the contribution of already solved nodes and the path length from

the root to the most-proving node. As a result, pn-search is not guaranteed

to �nd the solution tree of minimal size.

Surprisingly, a small change to pn-search is su�cient to let it �nd the

minimal solution tree. If, at each internal node, we add one to the proof

number and disproof number as calculated from its children's proof and

disproof numbers, then the proof number and disproof number at each node

are a lower bound on the size of a solution tree for the node. We remark that

proof and disproof numbers now can only increase, making some changes to

the algorithm necessary. This algorithm, originating from discussions with

Ingo Alth�ofer, has been named mst*, short for Minimal Solution-Tree search.

Mst*, as variant of pn-search, will be subject of future research.



Chapter 3

Dependency-Based Search

3.1 Introduction

In section 2.1, we argued that choosing a representation and performing

a search are two interacting subprocesses of problem solving. Better

representations of a problem may result in smaller state spaces, and

better search algorithms may traverse a given state space more e�ciently.

While the game-tree search algorithm pn-search (chapter 2) focuses on the

latter, the single-agent search algorithm dependency-based search (db-search)

introduced in this chapter, focuses on the former.

Atomic vs. structured states

Search problems are often modeled by treating states as atomic entities. This

means that two states are considered as either equal or di�erent, without the

option of a measure of similarity between states.

As an alternative to atomic state representations, states can be structured,

such as in strips (Fikes and Nilsson, 1971). In strips, each state is de�ned

as a set of attributes. Each operator f is speci�ed by a precondition set, a

delete set and an add set. In any state A containing the attributes of the

precondition set of f , f can be applied, yielding a state B. B consists of the

attributes of A with the attributes of the delete set of f removed and with

the attributes of the add set of f added.

To see how a structured state representation may help in reducing the size

of a state space consider a production system P consisting of 10 rewriting

rules r

0

; r

1

; : : : ; r

9

.

65
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0

r

0

�! a

1

r

1

�! l

2

r

2

�! t

3

r

3

�! o

4

r

4

�! g

5

r

5

�! e

6

r

6

�! t

7

r

7

�! h

8

r

8

�! e

9

r

9

�! r

Furthermore, we consider production system P

0

, which contains the 10 rules

of P as well as the rule r

10

.

altogether

r

10

�! goal

Rule r

10

states that the string altogether may be replaced by the string goal.

For both P and P

0

, we start with the initial string 0123456789. The goal of

both P and P

0

is to create the string goal. Clearly, in P there is no solution,

while any order of applying rules r

0

to r

9

, followed by the application of r

10

leads to the goal in P

0

.

First, let us represent P using atomic states. The state space will consist

of 2

10

= 1024 states, each representing a mixture of digits and lower-case

letters. The state space of P

0

consists of the same 1024 states as P , with

one additional state consisting of the string goal. Without the application of

domain-speci�c knowledge, searching P consists of traversing the full state

space of 1024 states. The number of states visited in P

0

depends on the

search algorithm applied. Depth-�rst search visits the goal as 11th state,

while breadth-�rst search visits the goal state as number 1025.

Second, let us represent P and P

0

using structured states. A possible

structure consists of attributes of the form a(i; z), where i 2 f0; : : : ; 9g, and

z 2 f0; : : : ; 9; a; e; g; h; l; o; r; tg. An attribute a(i; z) indicates that letter or

digit z occupies position i in the string represented by the set of attributes.

In P

0

we have an additional attribute g representing the string goal. The

rule r

0

can now be represented by its precondition set fa(0; 0)g, its delete

set fa(0; 0)g and its add set fa(0; a)g. Similarly, rule r

5

is represented by its
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precondition set fa(5; 5)g, its delete set fa(5; 5)g and its add set fa(5; e)g.

The rule r

10

is represented by its precondition set

fa(0; a); a(1; l); a(2; t); a(3; o); a(4; g); a(5; e); a(6; t); a(7; h); a(8; e); a(9; r)g;

its delete set

fa(0; a); a(1; l); a(2; t); a(3; o); a(4; g); a(5; e); a(6; t); a(7; h); a(8; e); a(9; r)g;

and its add set

fa(0; g); a(1; o); a(2; a); a(3; l)g:

The number of states in the state space, as well as the number of states visited

by depth-�rst search and breadth-�rst search algorithms are equivalent to the

numbers found for atomic states.

The di�erence between the atomic and the structured state representa-

tions is that the structure of states provides us with a framework for reasoning

about relations between states and operators (e.g., rewriting rules), without

having to rely on domain-speci�c knowledge. As an example of such a relation

between operators we state that any two rules r

i

and r

j

, for 0 � i < j � 9

are independent, meaning that in any state where both rules can be applied,

changing the order of application does not in
uence the outcome.

Clearly, all relations which can be found by using structured state re-

presentations can also be found through a domain-speci�c analysis of the

problem at hand. The advantage of a general framework using structured

states as introduced in this chapter is that the analysis is performed once

and for all for a category of problems.

In this chapter we de�ne a framework, based on structured states and

strips-like operators. Within the framework, a set of conditions has been

identi�ed which are su�cient to prove that a reduction of the state space can

be performed without the loss of solutions in the state space.

Conventional search algorithms cannot traverse the reduced state space;

but the db-search algorithm can. It is proved that db-search, introduced for

the purpose, traverses exactly the reduced state space.

To give an indication of the amount of state-space reduction achieved by

our framework, we once again look at the state space de�ned for production

systems P and P

0

. For P the reduced state space consists of 11 elements

(an initial state and 10 states representing the changes by rules r

0

; : : : ; r

9

).

For P

0

the reduced state space consists of 12 elements (one additional state

representing goal). These numbers should be compared with the 1024 and

1025 found for the atomic-state representation.
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Overview of the chapter

In section 3.2 we describe the double-letter puzzle (dlp), which is used as

an example throughout the chapter. In section 3.3 we formally de�ne a

framework for a category of single-agent searches based on structured-state

representations. Each de�nition in this section is illustrated by its application

to dlp. In section 3.4 db-search is described informally using the framework

introduced in the previous section, by applying it to an instance of dlp. In

section 3.5 we present algorithms in pseudo-code for db-search. In section

3.6 we compare the performances on dlp of db-search and depth-�rst search.

Finally, in section 3.7 the scope of applicability of db-search is discussed. For

practical results of db-search we refer to chapters 4 and 5.

3.2 The double-letter puzzle

The double-letter puzzle (dlp) is a production system consisting of an axiom

and a set of 10 rewriting rules. The axiom is an element of fa; b; c; d; eg

+

.

The rewriting rules are listed below.

aa ! e j b

bb ! a j c

cc ! b j d

dd ! c j e

ee ! d j a

The rewriting rules can be informally described as allowing any double

occurrence of a letter to be replaced by a single instance of its alphabetical

predecessor or successor in a circular alphabet.

We de�ne the set of theorems of dlp as follows:

1. The axiom is a theorem

2. If x is a theorem and there exists a rewriting rule r such that x

r

�! y,

then y is a theorem.

3. There are no theorems except as de�ned by 1. and 2.

Each theorem of length 1 (i.e., a theorem consisting of a single letter) is called

a solution to dlp.
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Two solutions to instance aabdcbbdcaa of dlp are presented below.

aabdcbbdcaa

aa!b

�! bbdcbbdcaa

bb!a

�! adcbbdcaa

bb!c

�! adccdcaa

cc!d

�!

cc!d

�! adddcaa

dd!c

�! adccaa

cc!d

�! addaa

dd!e

�! aeaa

aa!e

�! aee

ee!a

�!

ee!a

�! aa

aa!bje

�! b j e

aabdcbbdcaa

aa!b

�! bbdcbbdcaa

bb!c

�! cdcbbdcaa

bb!c

�! cdccdcaa

cc!d

�!

cc!d

�! cdddcaa

dd!c

�! ccdcaa

cc!d

�! ddcaa

dd!c

�! ccaa

cc!b

�! baa

aa!b

�!

aa!b

�! bb

bb!ajc

�! a j c

From the examples we see that a, b, c and e can be deduced. For a proof

that d cannot be deduced from aabdcbbdcaa, we refer to appendix A.

3.3 A formal framework for db-search

In this section we de�ne a formal framework for db-search. The framework

is described in four steps. In section 3.3.1 we de�ne states and operators. In

section 3.3.2 we de�ne paths through the state space and classes of equivalent

paths. It is shown that conventional search algorithms traverse exactly the

set of all paths. In section 3.3.3 key classes are de�ned. These form a subset

of the classes of paths de�ned previously. It is shown that, under accurately

de�ned circumstances, the set of all key classes is complete, meaning that each

solution path is represented by a key class. In section 3.3.4 we de�ne a meta-

operator for traversing the state space de�ned by the set of all key classes.

It is shown that the meta-operator is sound and complete, meaning that

through application of the meta-operator exactly all key classes are visited.

Finally, in section 3.3.5, we summarize the properties of our framework.

The description of the framework for db-search requires a large number

of de�nitions. For reference purposes, we have listed the symbols used in this

section and a short description of their meaning in table 3.1. Each de�nition

in this section is illustrated by its application to the instance of dlp with

axiom aacc.

3.3.1 States and operators

In this section we �rst de�ne the set of attributes U and the state space U

s

.

Then we de�ne operators (consisting of a precondition set, a delete set and

an add set) which map states onto other states, followed by the set of all
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symbol description

U the set of all attributes

U

s

the state space

U

i

the set of all initial states

U

g

the set of all goal states

U

f

the set of all operators

U

p

the set of all paths applicable to initial states

U

k

the set of all key classes

f an operator

f

pre

the precondition set of operator f

f

del

the delete set of operator f

f

add

the add set of operator f

f(S) the state reached when applying operator f to S

f

1

� f

2

f

1

supports f

2

, f

2

depends on f

1

f

1

� f

2

f

1

precedes f

2

f

(p;q;r;z

1

;z

2

)

an operator in dlp

P a path

P � Q the concatenation of paths P and Q

P � Q paths P and Q are equivalent

P

�

=

Q P and Q are transpositions

P (S) the state resulting from applying path P to state S

[P ]

�

the equivalence class of path P

U

p

=

�

the set of equivalence classes of U

p

key(P ) the key operator (last operator) of path P

P k Q the merge of paths P and Q

Par

f

(P ) the set of parents of operator f in path P

Anc

f

(P ) the set of ancestors of operator f in path P

Ax the axiom state of dlp

Table 3.1: Symbols used in db-search framework
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operators U

f

. Finally, we de�ne the set U

i

of all initial states, and the set U

g

of all goal states.

De�nition 3.1 Let U be a set of attributes. Then the state space U

s

is

de�ned as 2

U

, the power set of U .

We index the letters of the axiom in dlp from 0 to n � 1, where n is

the length of the axiom (i.e., 4 for dlp with axiom aacc). In the axiom, the

�rst a has index 0, the second a has index 1, the �rst c has index 2 and the

second c has index 3. Each letter in a theorem originates from a substring

of the axiom. We represent a letter z in a theorem by three values: the �rst

and last index of the substring of the axiom z originates from, and z itself.

If aab is produced from aacc, the letter b originates from the substring cc in

the axiom, which has �rst index 2 and last index 3. Therefore, the b in aab

is represented by A(2; 3; b).

The set of all attributes U is speci�ed as follows.

U = fA(i; j; z) j 0 � i � j � 3 ^ z 2 fa; b; c; d; egg

As the axiom will play a special role in many of the de�nitions of this section,

we denote the state representing the axiom aacc by Ax. In accordance with

de�nition 3.1, Ax 2 U

s

is represented as follows.

Ax = fA(0; 0; a); A(1; 1; a); A(2; 2; c); A(3; 3; c)g

De�nition 3.2 We de�ne an operator f as a 3-tuple hf

pre

; f

del

; f

add

i, with

f

pre

; f

del

; f

add

� U and f

del

� f

pre

. The elements in the 3-tuple are

named the precondition set, the delete set and the add set of f , respectively.

Operator f is a partial function f : U

s

�! U

s

, de�ned as f(S) = (S n f

del

)[

f

add

, for all S � f

pre

.

De�nition 3.2 states that an operator f is applicable to each state

containing all attributes in the precondition set of f . Applying operator

f to state S yields a state T , by deleting the attributes of the delete set of f

from S and adding to the result the attributes of the add set of f . In dlp,

two equal adjacent letters z

1

are replaced by z

2

, which is either the successor

or predecessor of z

1

. The two z

1

s originate from two adjacent substrings in

the axiom. Let the �rst z

1

originate from the substring with start index p

and end index q, and let the second z

1

originate from the substring with start

index q+1 and end index r. Then, the indices p, q, and r, and the letters z

1
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and z

2

are su�cient information to de�ne an operator. In the following, we

denote with f

(p;q;r;z

1

;z

2

)

the operator

hfA(p; q; z

1

); A(q + 1; r; z

1

)g; fA(p; q; z

1

); A(q + 1; r; z

1

)g; fA(p; r; z

2

)gi:

An example operator in dlp is

f

(0;0;1;a;b)

= hfA(0; 0; a); A(1; 1; a)g; fA(0; 0; a); A(1; 1; a)g; fA(0; 1; b)gi

Applying f

(0;0;1;a;b)

to axiom state Ax yields fA(0; 1; b); A(2; 2; c); A(3; 3; c)g.

De�nition 3.3 The set of operators de�ned within a domain is denoted by

U

f

.

Using de�nition 3.3 we de�ne for our instance of dlp the set of operators

U

f

as

ff

(p;q;r;z

1

;z

2

)

j 0 � p � q < r � 3 ^ z

1

2 fa; b; c; d; eg ^ z

2

2 succpred(z

1

)g

Here succpred(z) denotes a set containing the circular alphabetical successor

and predecessor of z.

De�nition 3.4 We denote the set of initial states by U

i

, with U

i

� U

s

. We

denote the set of goal states by U

g

, with U

g

� U

s

.

For our instance of dlp,

U

i

= ffA(0; 0; a); A(1; 1; a); A(2; 2; c); A(3; 3; c)gg

U

g

= ffA(0; 3; a)g; fA(0; 3; b)g; fA(0; 3; c)g; fA(0; 3; d)g; fA(0; 3; e)gg:

3.3.2 Paths

In this section we �rst de�ne paths, which are just sequences of operators.

We de�ne the application of a path to a state S, as one by one applying the

operators, starting from state S. Then solutions for a state S are de�ned as

the paths which, if applied to S yield a superset of a goal state. We then

de�ne the extension of a path P , which is a path consisting of all operators of

P , in the same order, plus one additional operator. An equivalence relation

for paths is de�ned, which states that two paths are equivalent if one is

a permutation of the other. Then, a notation for equivalence classes of

paths is introduced. Finally, we describe the behavior of conventional search

algorithms in terms of paths.
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De�nition 3.5 Any element P of U

f

�

is a path. Let P = (f

1

; : : : ; f

n

) be a

path. Let concatenation of two paths P and Q be denoted by P � Q. Then,

P is applicable to S if (1) P = �, or (2) P = (f) � Q and f(S) is de�ned

and Q is applicable to f(S). If P is applicable to S, then

P (S) = f

n

(f

n�1

(: : : (f

2

(f

1

(S))) : : :)):

For path P = (f

(0;0;1;a;b)

; f

(2;2;3;c;b)

; f

(0;1;3;b;c)

), applicable to the axiom

state Ax, it follows from de�nition 3.5 that

P (Ax) = f

(0;1;3;b;c)

(f

(2;2;3;c;b)

(f

(0;0;1;a;b)

(Ax))) =

= f

(0;1;3;b;c)

(f

(2;2;3;c;b)

(fA(0; 1; b); A(2; 2; c); A(3; 3; c)g)) =

= f

(0;1;3;b;c)

(fA(0; 1; b); A(2; 3; b)g) =

= fA(0; 3; c)g

De�nition 3.6 The set of paths U

p

, is de�ned as follows.

U

p

= fP j S 2 U

i

^ P is applicable to Sg

It can be checked that for our instance of dlp with initial state Ax, U

p

(de�nition 3.6) consists of 17 paths.

U

p

= f�; (f

(0;0;1;a;b)

); (f

(0;0;1;a;e)

); (f

(2;2;3;c;b)

); (f

(2;2;3;c;d)

);

(f

(0;0;1;a;b)

; f

(2;2;3;c;b)

); (f

(2;2;3;c;b)

; f

(0;0;1;a;b)

); (f

(0;0;1;a;b)

; f

(2;2;3;c;d)

);

(f

(2;2;3;c;d)

; f

(0;0;1;a;b)

); (f

(0;0;1;a;e)

; f

(2;2;3;c;b)

); (f

(2;2;3;c;b)

; f

(0;0;1;a;e)

);

(f

(0;0;1;a;e)

; f

(2;2;3;c;d)

); (f

(2;2;3;c;d)

; f

(0;0;1;a;e)

);

(f

(0;0;1;a;b)

; f

(2;2;3;c;b)

; f

(0;1;3;b;a)

); (f

(2;2;3;c;b)

; f

(0;0;1;a;b)

; f

(0;1;3;b;a)

);

(f

(0;0;1;a;b)

; f

(2;2;3;c;b)

; f

(0;1;3;b;c)

); (f

(2;2;3;c;b)

; f

(0;0;1;a;b)

; f

(0;1;3;b;c)

)g

De�nition 3.7 Let P = (f

1

; : : : ; f

n

) be a path applicable to S. We de�ne

the following terminology with respect to P .

1. P is a solution for S, if 9x 2 U

g

x � P (S).

2. A path Q is an extension of P , if Q = P � (f), for some operator f .

We give examples for de�nition 3.7 using path

P = (f

(0;0;1;a;b)

; f

(2;2;3;c;b)

; f

(0;1;3;b;c)

):
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1. P is a solution for axiom state Ax, because P (Ax) = fA(0; 3; c)g and

fA(0; 3; c)g 2 U

g

.

2. P is an extension of path (f

(0;0;1;a;b)

; f

(2;2;3;c;b)

).

.

De�nition 3.8 Let P and Q be paths. P and Q are equivalent, denoted by

P � Q, if P is a permutation of Q.

An example of de�nition 3.8 from the set of paths in dlp applicable to

Ax is

(f

(0;0;1;a;b)

; f

(2;2;3;c;b)

; f

(0;1;3;b;c)

) � (f

(2;2;3;c;b)

; f

(0;0;1;a;b)

; f

(0;1;3;b;c)

)

De�nition 3.9 Let P 2 U

p

be a path. We denote the set of all paths Q 2 U

p

such that P � Q by [P ]

�

(the equivalence class of P modulo �). The set of

all equivalence classes of U

p

modulo � is denoted by U

p

=

�

.

From de�nition 3.9 and the example after de�nition 3.6 it follows that for

P = (f

(0;0;1;a;b)

; f

(2;2;3;c;b)

; f

(0;1;3;b;c)

);

[P ]

�

= f(f

(0;0;1;a;b)

; f

(2;2;3;c;b)

; f

(0;1;3;b;c)

); (f

(2;2;3;c;b)

; f

(0;0;1;a;b)

; f

(0;1;3;b;c)

)g:

We mention that in our instance of dlp U

p

=

�

consists of 11 equivalence

classes.

Traversing U

p

In this section we describe how a conventional tree search algorithm traverses

U

p

, as de�ned within our framework.

As an example tree search algorithm, we discuss depth-�rst search (dfs).

Starting from initial state Ax, dfs traverses a tree such that each node N

represents a path P applicable to initial state Ax. At node N , an operator

f of U

f

can be applied, if f is applicable to P (Ax). In other words, f can

be applied at node N , if P � (f) is applicable to Ax, i.e., P � (f) 2 U

p

.

Clearly, dfs will traverse a �nite U

p

fully, unless terminated early.

A reduction of state space U

p

is applied in many practical domains. We

say that P

�

=

Q if P (Ax) = Q(Ax). Thus, if P

�

=

Q, then P (Ax) and Q(Ax)

are transpositions. From the de�nition of a path, it is clear that in such a

case P and Q can be extended in exactly the same way. Thus, even though
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several paths may lead to the same state, the continuations from that state

need to be investigated only once. Instead of traversing U

p

, we may therefore

restrict ourselves to traversing U

p

=

�

=

. To do so, transposition tables are used

to store the results of investigating the continuations starting at each node.

Before investigating a node, it is checked whether the node has already been

investigated (indicating that the node is a transposition) (Greenblatt et al.,

1967).

We conclude that conventional tree search algorithms traverse the state

space U

p

, which may be reduced by investigating each transposition only

once.

3.3.3 Key classes

In this section we de�ne the key operator of a path (which is just the last

operator of the path), key classes (which are equivalence classes of paths

where all paths have the same key operator), and the set of all key classes. We

de�ne monotonicity, which indicates that in the course of executing operators,

an attribute can never be recreated after it has been deleted. We de�ne

singularity, which means that each goal state consists of a single attribute.

Furthermore, we de�ne redundant paths, which are extensions of solutions.

Finally, we show that the set of all key classes is complete under the condition

of monotonicity, singularity and the absence of redundancy. Completeness

means that each solution in U

p

is an element of a key class.

De�nition 3.10 Let P = (f

1

; : : : ; f

n

) be a path applicable to S. The last

operator of a non-empty path P (i.e., f

n

), is called the key operator of the

path. Notation: key(P ) = f

n

.

For path P = (f

(0;0;1;a;b)

; f

(2;2;3;c;b)

; f

(0;1;3;b;c)

) we obtain from de�nition

3.10 that key(P ) = f

(0;1;3;b;c)

.

De�nition 3.11 Let C 2 U

p

=

�

be a class. C is a key class, if for all P

i

; P

j

2

C, key(P

i

) = key(P

j

). The set of all key classes of U

p

=

�

is denoted by U

k

.

The key of a key class C is de�ned to equal the key of the paths in C and is

denoted by key(C).

From de�nition 3.11 and the example after de�nition 3.9, it follows

that for P = (f

(0;0;1;a;b)

; f

(2;2;3;c;b)

; f

(0;1;3;b;c)

), [P ]

�

is a key class. For

Q = (f

(0;0;1;a;b)

; f

(2;2;3;c;b)

), [Q]

�

is not a key class, since Q has key f

(2;2;3;c;b)

,

while (f

(2;2;3;c;b)

; f

(0;0;1;a;b)

) has key f

(0;0;1;a;b)

. We note that U

k

for our

instance of dlp consists of 7 key classes.
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De�nition 3.12 A path P = (f

1

; : : : ; f

n

) applicable to S is monotonous for

S if

8

i 6=j

f

add

i

\ f

add

j

= ; ^ 8

i

S \ f

add

i

= ;:

U

p

is monotonous if all paths in U

p

are monotonous for all S 2 U

i

.

In our instance of dlp, there are 17 paths. Investigation shows that each

path P is monotonous for Ax. From de�nition 3.12 it follows that U

p

is

monotonous.

De�nition 3.13 We say that U

g

is singular if each S 2 U

g

consists of a

single attribute, i.e., jSj = 1.

The U

g

de�ned for dlp,

U

g

= ffA(0; 3; a)g; fA(0; 3; b)g; fA(0; 3; c)g; fA(0; 3; d)g; fA(0; 3; e)gg

is singular, according to de�nition 3.13.

De�nition 3.14 A path Q is redundant, if Q is an extension of P , and P

is a solution for an initial state, or P is redundant. U

p

is non-redundant, if

no path in U

p

is redundant.

In dlp, there are no operators applicable to goal states. Therefore, there

are no redundant paths in dlp, as de�ned in de�nition 3.14.

Completeness of U

k

In section 3.3.2 we have shown that conventional search algorithms traverse

U

p

. Through the equivalence relation �, we have de�ned classes of paths,

U

p

=

�

. Of these classes, the subset U

k

of key classes has been singled out.

In this section we will show that to �nd all solutions in U

p

, it is su�cient

to consider only paths which are elements of key classes, thereby restricting

the size of the state space. Our proof is based on the assumption that U

p

is

monotonous and non-redundant, and that U

g

is singular.

Our proof consists of three steps. First, in lemma 3.1 we show that

either all paths in a class are a solution, or none are. It follows that instead

of focusing on paths, we need only to focus on classes of paths, thereby

restricting our state space to U

p

=

�

. Second, in lemma 3.2 we show that each

equivalence class containing a solution must be a key class. Third, in theorem

3.1 we combine these two results to show that it is su�cient to examine the

set of all key classes U

k

.

Lemma 3.1 Let P and Q, paths applicable to S, be elements of [P ]

�

, for P

and Q monotonous for S. Then P (S) = Q(S).
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Proof

We assume without lack of generality that P = (f

1

; : : : ; f

n

) for some natural

n. Let a 2 P (S) be an attribute. Then, because of monotonicity, a is an

element of exactly one of the following sets: S; f

add

1

; f

add

2

; : : : ; f

add

n

. Now let

us suppose that a 2 f

del

i

, for some i. Then from de�nition 3.2 it follows

that a 2 f

pre

i

, restricting a to membership of exactly one of the following

sets: S; f

add

1

; f

add

2

; : : : ; f

add

i�1

. But then, since a 62 f

i

(: : : (f

1

(S))), also a 62

P (S). This contradicts our assumption that a 2 P (S). Thus, there is no

i 2 f1; : : : ; ng such that a 2 f

del

i

. Since Q is a permutation of P , a 2 Q(S)

and P (S) � Q(S). Analogously, Q(S) � P (S). 2

Lemma 3.2 Let U

g

be singular and let U

p

be monotonous and non-redun-

dant. If P is a solution applicable to S then [P ]

�

is a key class.

Proof

Let Q 2 [P ]

�

. We assume without lack of generality that Q = (f

1

; : : : ; f

n

)

for some natural n. Let x be an attribute in an element of U

g

. If x 2 f

add

p

,

for some p 2 f1; : : : ; ng, then (f

1

; : : : ; f

p

) is a solution, since U

g

is singular.

Since U

p

is non-redundant, Q is non-redundant. Thus, f

p

must be the last

operator (i.e., the key operator) of Q. As f

p

occurs in all paths in [P ]

�

, it

must be the key operator in each of these paths. Thus, [P ]

�

is a key class 2

Theorem 3.1 Let U

p

be monotonous and non-redundant and let U

g

be

singular. Then U

k

is complete (i.e., each solution path in U

p

is element

of a class in U

k

, and each class in U

k

either consists of only solutions, or no

solutions).

Proof

From lemma 3.1 it follows that either all paths in the equivalence classes

of U

p

=

�

are solutions, or none are. From lemma 3.2 it follows that the

equivalence class modulo � for any solution path is a key class. Thus, for any

solution path, its equivalence class is a key class, of which each representative

is a solution. Thus U

k

is complete. 2

3.3.4 Traversing U

k

In this section we de�ne two relations, to support and to precede, between

operators. These relations create a partial order between operators in
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monotonous paths. Using the partial order we can de�ne the parents

(operators which directly support or precede an operator) and ancestors

(operators which directly or indirectly support or precede an operator). Last,

we de�ne the merge of a set of classes, which itself is a class. The merge of a

set of classes consists of paths containing exactly the operators in the paths of

the classes merged. Stated more simply, if we merge a class containing path

P with a class containing path Q, the merge contains all paths consisting of

exactly the operators in P and Q. Operators in both P and Q occur only

once in the paths of the merge.

The purpose of these de�nitions is to create a meta-operator which is

capable of traversing exactly U

k

. We have shown in section 3.3.3 that U

k

is complete. Together with a proof that we have a meta-operator which

traverses exactly U

k

, we have shown that a restricted state space can be

traversed, without reduced e�cacy. The de�nition of the meta-operator

and the proof of its soundness (each application leads to a key class) and

completeness (all key classes will be created by application of the meta-

operator) follow the de�nitions in this section.

De�nition 3.15 Let f

1

; f

2

2 U

f

. We de�ne the two relations � (supports)

and � (precedes) on U

f

� U

f

as follows.

1. f

1

� f

2

() f

add

1

\ f

pre

2

6= ;.

2. f

1

� f

2

() f

pre

1

\ f

del

2

6= ;.

We remark that we will use both the phrases f

1

supports f

2

and f

2

depends

on f

1

to describe f

1

� f

2

. We provide examples in our instance of dlp, for

the two relations of de�nition 3.15.

1. f

(0;0;1;a;b)

� f

(0;1;3;b;a)

, as f

add

(0;0;1;a;b)

\ f

pre

(0;1;3;b;a)

= fA(0; 1; b)g.

2. f

(0;0;1;a;b)

� f

(0;0;1;a;e)

, as f

pre

(0;0;1;a;b)

\ f

del

(0;0;1;a;e)

= fA(0; 0; a); A(1; 1; a)g.

We remark that also f

(0;0;1;a;e)

� f

(0;0;1;a;b)

. Which shows that

f

(0;0;1;a;e)

and f

(0;0;1;a;b)

cannot occur in the same monotonous path.

De�nition 3.16 Let P be a non-empty path applicable to S, and let f be an

operator in path P . The set of parents of f in P is de�ned as follows.

Par

f

(P ) = ff

i

j f

i

2 P ^ (f

i

� f _ f

i

� f)g
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Between f

(0;0;1;a;b)

, f

(2;2;3;c;b)

and f

(0;1;3;b;c)

the following two relations

hold: f

(0;0;1;a;b)

� f

(0;1;3;b;c)

and f

(2;2;3;c;b)

� f

(0;1;3;b;c)

. Thus, for path P =

(f

(0;0;1;a;b)

; f

(2;2;3;c;b)

; f

(0;1;3;b;c)

), de�nition 3.16 states that Par

f

(0;1;3;b;c)

(P ) =

ff

(0;0;1;a;b)

; f

(2;2;3;c;b)

g.

De�nition 3.17 Let P be a non-empty path applicable to S, and let f be an

operator in P . The set of ancestors of f in P is de�ned as follows.

Anc

f

(P ) = ffg [

[

f

i

2Par

f

(P )

Anc

f

i

(P )

Furthermore, a parent f

i

of f is named a relevant parent if for all parents f

j

of f , with f

j

6= f

i

, f

i

62 Anc

f

j

(P ).

In our example instance of dlp, Anc

f

(P ) = ffg [ Par

f

(P ), for all paths

P and all operators f . In more complex instances of dlp, however, not all

ancestors of f as de�ned in de�nition 3.17 will be parents of f (or f itself).

In each instance of dlp, each parent is a relevant parent.

De�nition 3.18 Let P

1

; : : : ; P

n

be paths applicable to S. Then the merge

of P

1

; : : : ; P

n

, denoted by P

1

k : : : k P

n

, is de�ned as the set of all paths Q

applicable to S, such that Q is a permutation of the set of all operators in

the P

i

. The merge of a set of classes [P

i

]

�

is de�ned as the merge of a set of

representatives of the classes. Thus,

[P

1

]

�

k : : : k [P

n

]

�

= P

1

k : : : k P

n

:

We present three examples of merges of paths, as de�ned in de�nition

3.18.

(f

(0;0;1;a;b)

) k (f

(2;2;3;c;b)

) = f(f

(0;0;1;a;b)

; f

(2;2;3;c;b)

); (f

(2;2;3;c;b)

; f

(0;0;1;a;b)

)g

(f

(0;0;1;a;b)

) k (f

(0;0;1;a;e)

) = ;

(f

(0;0;1;a;b)

) k (f

(2;2;3;c;b)

) = f(f

(0;0;1;a;b)

)g k f(f

(2;2;3;c;b)

)gg

A meta-operator

So far, we have de�ned U

k

and proved its completeness, under the assump-

tions of singularity, non-redundancy and monotonicity. For the remainder

of this section we assume that these three conditions hold, unless stated

otherwise.
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Traversing U

k

is not as straightforward as traversing U

p

. For instance,

f(f

(0;0;1;a;b)

)g is a key class in the unsolvable instance aacaa of dlp, whose

axiom is represented by

fA(0; 0; a); A(1; 1; a); A(2; 2; c); A(3; 3; a); A(4; 4; a)g:

We can extend the only path in the key class to the paths (f

(0;0;1;a;b)

; f

(3;3;4;a;b)

)

and (f

(0;0;1;a;b)

; f

(3;3;4;a;e)

). However, in both cases the equivalence classes of

these paths are not key classes. Thus, extending elements of key classes

may lead to paths which are not element of a key class. We conclude that

traversing U

k

involves more than just extending paths.

In this section we introduce the meta-operator F (N; f) which is capable of

traversing U

k

. First, we de�ne F (N; f). Then we prove that each application

of F (N; f) in a graph where each node represents a key class, creates only

nodes representing key classes. Finally, we prove through induction that each

key class is created through application of F (N; f).

De�nition of the meta-operator

We de�ne meta-operator F (N; f) in de�nition 3.19.

De�nition 3.19 Let N � U

k

, with N = fC

1

; : : : ; C

n

g, all C

i

6= ;, and

n � 1. Let C

1

k : : : k C

n

= C, with C 6= ;. Let operator f 2 U

f

, such

that 8

1�i�n

(key(C

i

) � f _ key(C

i

) � f), and let f be an extension to a

path P 2 C. We then say that f is valid in N . F (N; f) is applicable if

and only if f is valid in N and there is no proper subset M of N , such

that f is valid in M . If F (N; f) is applicable, then F (N; f) = [P � (f)]

�

.

Furthermore, F (;; f) is applicable if and only if f(Ax) is de�ned. In those

cases, F (;; f) = f(f)g.

An informal interpretation of F (N; f) is as follows. Operator f can only

be applied to states containing all elements of f

pre

. Each element C

i

of the

set of key classes N contributes one or more attributes of f

pre

, implying that

f depends on or is preceded by the key operators of each C

i

. If all operators

in the C

i

can be combined without con
icts (i.e., the merge of all C

i

is not

empty) and paths in the merge extended with f are applicable, then F (N; f)

is applicable.

We give two examples. First, we look at instance aacc of dlp. Both C

1

=

f(f

(0;0;1;a;b)

)g and C

2

= f(f

(2;2;3;c;b)

)g are key classes. Operator f = f

(0;1;3;b;a)

,

with f

pre

= fA(0; 1; b); A(2; 3; b)g depends on the keys of the paths of C

1

and

C

2

. Furthermore, C

1

k C

2

= f(f

(0;0;1;a;b)

; f

(2;2;3;c;b)

); (f

(2;2;3;c;b)

; f

(0;0;1;a;b)

)g.
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For both paths Q

1

and Q

2

in the merge, Q

1

� (f) and Q

2

� (f) are

applicable to Ax. Finally, F (fC

1

g; f) and F (fC

2

g; f) are not valid. Thus,

F (fC

1

; C

2

g; f) is applicable.

Second, we look at the production system P

0

of section 3.1. In P

0

, each

of the applications of r

0

; : : : ; r

9

results in a key class of one element, which

we name C

0

through C

9

. Rule r

10

depends on each of the applications of

r

0

to r

9

to have been executed. Thus, F (fC

0

; : : : ; C

9

g; r

10

) is applicable and

yields the solution of P

0

.

Soundness of the meta-operator

In theorem 3.2 we prove that each application of meta-operator F (N; f)

creates a key class. Before we give the proof of theorem 3.2, we prove lemmas

3.3 and 3.4.

Lemma 3.3 Let P = (f

1

; : : : ; f

n

) be a path applicable to S. Let f

i

6� f

i+1

^

f

i

6� f

i+1

. Then (f

1

; : : : ; f

i�1

; f

i+1

; f

i

; f

i+2

; : : : ; f

n

) is also a path applicable

to S.

Proof

Let f

i�1

(: : : (f

1

(S)) : : :) = T . Then f

i

(T ) is de�ned, and f

pre

i

� T . Since

f

i

6� f

i+1

we know that f

add

i

\ f

pre

i+1

= ;. Thus, f

pre

i+1

� T and f

i+1

(T ) is

de�ned. Furthermore, f

i

6� f

i+1

implies that f

del

i+1

\ f

pre

i

= ;. Therefore

f

i

(f

i+1

(T )) is de�ned. Since f

i

(f

i+1

(T )) = f

i+1

(f

i

(T )) according to lemma

3.1, (f

1

; : : : ; f

i�1

; f

i+1

; f

i

; f

i+2

; : : : ; f

n

) is a path. 2

Lemma 3.4 Let C be a key class with key f

n

. Let P = (f

1

; : : : ; f

n

) be a path

in C. Then the following two statements are true.

1: 8

1�i�n�1

9

j>i

(f

i

� f

j

_ f

i

� f

j

)

2: 8

1�i�n�1

(f

n

6� f

i

^ f

n

6� f

i

)

Proof

1. Suppose that there exists an f

p

, with 1 � p � n�1, such that 8

j>p

(f

p

6�

f

j

^f

p

6� f

j

). Then, by repeated application of lemma 3.3, we can move

f

p

to the end of P . However, this contradicts the assumption that C is

a key class. Thus, 8

1�i�n�1

9

j>i

(f

i

� f

j

_ f

i

� f

j

).
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2. Suppose that there exists an f

p

, with 1 � p � n� 1, such that f

n

� f

p

.

Then f

add

n

\ f

pre

p

6= ;. Let x 2 f

add

n

\ f

pre

p

. Then, by monotonicity,

x 62 S and x 62 f

add

i

, for all i < n. Thus, f

p

is only applicable if p � n,

which is a contradiction. Thus, f

n

6� f

p

. Suppose that there exists an

f

p

, with 1 � p � n� 1, such that f

n

� f

p

. Then f

pre

n

\ f

del

p

6= ;. Let

x 2 f

pre

n

\ f

del

p

. Then, by de�nition 3.2 x 2 f

pre

p

, and either x 2 S, or

x 2 f

add

i

for exactly one i < p, but not both. And thus, x 62 f

add

j

for all

j � p. Thus, f

n

is only applicable, if n � p, which is a contradiction.

Thus, f

n

6� f

p

. Therefore, 8

1�i�n�1

(f

n

6� f

i

^ f

n

6� f

i

). 2

Theorem 3.2 If F (N; f) is applicable, then F (N; f) is a key class.

Proof

Consider arbitrary P 2 F (N; f) and suppose that key(P ) 6= f . Then either

key(P ) = key(P

i

) for some P

i

in a class in N or key(P ) is a non-key operator

f

j

in a path in some class in N . The �rst case leads to a contradiction, since

key(P

i

) � f according to de�nition 3.19, which contradicts lemma 3.4. The

second case also leads to a contradiction, since [P

i

]

�

is a key class, and from

lemma 3.4 it follows that f

j

precedes or supports at least one operator f

k

in P

i

and thus cannot be the key in P

i

. We conclude that the assumption

key(P ) 6= f is invalid, thus F (n; f) is a key class with key f . 2

Completeness of the meta-operator

In this section we prove by induction that each key class can be created

through applications of F (N; f), as formulated in theorem 3.3. Before we

present the proof of theorem 3.3, we prove lemmas 3.5 and 3.6.

Lemma 3.5 Let P be a path applicable to S, and f 2 P . Then there is a

path Q applicable to S, such that

1. Q consists of exactly the operators in Anc

f

(P ).

2. [Q]

�

is a key class, with key f .

We name [Q]

�

the key class induced by f in P .



3.3 A formal framework for db-search 83

Proof

1. Let P = (f

1

; : : : f

n

) and Q be the path consisting of the operators in

Anc

f

(P ) in the same order as they appear in P . Now let us suppose

that Q is not applicable to S, i.e., there is an operator f

i

in Q, such

that f

i

is not applicable. Then, there is an attribute x 2 f

pre

i

, such

that x 2 f

add

j

, while f

j

62 Anc

f

(P ). However, then f

add

j

\ f

pre

i

6= ;,

and thus f

j

� f

i

, and thus f

j

2 Anc

f

(P ) if f

i

2 Anc

f

(P ). Thus, Q is

applicable to S.

2. By de�nition of Anc

f

(P ), for each operator f

i

2 Anc

f

(P ) with f

i

6= f ,

there is an operator f

j

, such that f

i

� f

j

_ f

i

� f

j

. And thus, f

i

must

occur before f

j

in any path containing both. Thus, only f may be the

last operator in a path containing all operators in Anc

f

(P ). Therefore,

[Q]

�

is a key class, with key f .

2

Lemma 3.6 Let C be a key class with key f

n

and let P 2 C be a path, with

P = (f

1

; : : : ; f

n

). Let N be the set of relevant parents of f

n

in P . Then the

merge M of the key classes induced by the elements of N is non-empty, and

for each path Q 2M , Q � (f

n

) 2 [P ]

�

.

Proof

Let f

i

2 P (1 � i � n � 1) be the operator with highest index such that

f

i

is not in any path of the key classes induced by the relevant parents of

f

n

. Since P is a path in a key class, it follows from lemma 3.4 that there

exists an f

j

such that f

i

� f

j

_ f

i

� f

j

. If f

j

= f

n

, then f

i

is a parent of

f

n

and by de�nition a relevant parent. If f

j

6= f

n

, then f

i

is in a path in the

same key class as f

j

induced by a relevant parent of f

n

. Thus, in both cases,

f

i

is in a path in a key class induced by a relevant parent of f

n

. From this

contradiction, it follows that all f

i

2 P are in a path in a key class induced by

a relevant parent of f

n

. Thus, the merge of all these key classes contains at

least the path Q such that Q � (f

n

) = P . From this it follows immediately

that for each path Q 2M , Q � (f

n

) 2 [P ]

�

. 2

Theorem 3.3 For each non-empty key class C 2 U

k

, there is a set N of key

classes and an operator f , such that F (N; f) = C.
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Proof

� Basis.

Let C = f(f

1

)g. Then by de�nition F (;; f

1

) = C.

� Induction step.

We assume that each class C consisting of paths with length less than

n is the result of an application of F (N; f). Let P = (f

1

; : : : ; f

n

) and

let C = [P ]

�

be a key class, with key f

n

. Let R be the set of relevant

parents of f

n

in P . Furthermore, let N be the set of key classes induced

by the elements of R (cf. lemma 3.5). Then, from lemma 3.6 it follows

that the merge M of all paths in N is non-empty, and that for each

path Q 2M , [Q � (f

n

)]

�

= C. Thus, F (N; f

n

) = C.

2

3.3.5 Summary

In this section we have created a framework for db-search. We have shown

that conventional search algorithms traverse the set of all paths U

p

. The

object of determining the state space traversed by conventional search

algorithms was to create a standard for comparison with db-search.

Next we have de�ned the set of key classes U

k

, which is a subset of the

equivalence classes of U

p

modulo �. We have proved that U

k

is complete,

which means that all solutions in U

p

are elements of classes in U

k

under

the conditions of monotonicity, non-redundancy and singularity. Thus, even

though the cardinality of U

k

is not larger than that of U

p

, and often (much)

smaller, all solutions are present in the smaller state space.

Finally, we determined a meta-operator which can be used to traverse

the smaller state space U

k

. The meta-operator F (N; f) was de�ned, and we

have shown that it is both sound and complete. The former indicates that

each operation of the meta-operator yields an element of the reduced state

space, while the latter indicates that each element of the reduced state space

can be reached by application of the meta-operator.

Summarizing, we have succeeded in creating a framework which allows

us to search a smaller state space, while being assured that the smaller

state space contains all solutions of the original state space, and that the

smaller state space is fully traversed. What remains to be done, is to describe

practical algorithms for applying the meta-operator in an e�cient manner.

This is the topic of the next section.
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3.4 Informal description of db-search

In section 3.3.4 we have de�ned meta-operator F (N; f). F (N; f) can be

applied to a set of nodes N (each node representing a key class) and an

operator f , under the three conditions that (1) the merge M of all key

classes in N is non-empty; (2) the concatenation of a path P in M with

f is applicable to the initial state; (3) for each of the key operators f

i

of the

classes in N , f

i

� f or f

i

� f .

Clearly, trying all subsets N of nodes of a tree T as parameter for F (N; f),

has a search complexity exponential in the number of nodes of T . In such a

case, searching U

k

may be more expensive than searching the larger set U

p

using a conventional search algorithm. The way in which db-search traverses

the search graph is designed to limit the cost of applying F (N; f) as much

as possible. We present a short informal description of db-search, followed

by an explanation of the application of db-search to an instance of dlp

Db-search repeatedly executes levels, where each level consists of two

stages. In the �rst stage, named the dependency stage, only sets of nodes

with cardinality 1 are selected for application of F (N; f). If new eligible sets

of nodes with cardinality 1 are created during a stage, F (N; f) is applied to

these sets as well. The dependency stage ends when F (N; f) has been applied

to all such sets. In the second stage, called the combination stage, sets of

nodes with larger cardinality are considered. A node A created during the

combination stage may not be element of a set N to which F (N; f) is applied

during the same stage. This ensures that the computationally expensive

combination stage does not continue any longer than is strictly necessary.

We remark that during each combination stage of db-search, we only

perform preparatory work for application of F (N; f). We create a combina-

tion node A for each set of nodes N , such that at least one f exists allowing

the execution of F (N; f). During the dependency stage of the next level,

f will be executed from A. Thus, nodes created during the combination

stage do not themselves represent elements of U

k

, but are aids to a clear

implementation. They correspond to the merge of the classes represented by

the nodes in N .

In the following, we describe the application of db-search to instance

aaccadd of dlp.

Figure 3.1 shows the search graph after executing the �rst dependency

stage for axiom aaccadd. In each child node we have capitalized the letter

which has been created through the last applied operator. In each of the

1-ply nodes of the tree four operators are applicable. However, none of these
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aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

Figure 3.1: Search graph after 1st dependency stage for theorem aaccadd.

aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

BBadd

Figure 3.2: Search graph after 1st combination stage for theorem aaccadd.

correspond to an application of meta-operator F (N; f), since the operator f

does not depend on the operator leading to the 1-ply node. To clarify this,

we look at the node representing theorem Eccadd. The rules cc ! bjd and

dd! cje are applicable and correspond to the operators f

(2;2;3;c;b)

, f

(2;2;3;c;d)

,

f

(5;5;6;d;c)

and f

(5;5;6;d;e)

. Neither of these operators depends on the operator

f

(0;0;1;a;e)

which has led to the creation of this node. Therefore, the meta-

operator is not applicable in node Eccadd.

Having �nished the �rst dependency stage, we proceed with the �rst

combination stage. In dlp, each precondition set of an operator consists of

two attributes. As a result, during the combination stage only combinations

of exactly two nodes need to be considered. Figure 3.2 shows the search

graph for our instance of dlp after �nishing the �rst level of db-search.

It was created by examining all 15 combinations of two 1-ply nodes, to

see if the combination of two nodes would lead to a valid application of

the meta-operator. In one case it did, resulting in the creation of node

BBadd. The operators which led to the creation of the parents BBadd are

f

(0;0;1;a;b)

and f

(2;2;3;c;b)

. Depending on both these operators are f

(0;1;3;b;a)

and

f

(0;1;3;b;c)

. Thus, two operators are applicable in BBadd, for which reason

the combination node representing theorem BBadd was created.

Next, we execute the dependency stage of the second level of db-search.

For this stage, we apply F (N; f) to the combination node created in the

�rst level. The application of f

(0;1;3;b;a)

and f

(0;1;3;b;c)

from the combination

lead to the creation of Aadd and Cadd. From Aadd we can apply two more
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aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

BBadd

Cadd

Bdd Edd

Aadd

Figure 3.3: Search graph after 2nd dependency stage for theorem aaccadd.

aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

BBadd

Cadd

Bdd Edd

Aadd
EE

D A

Figure 3.4: Complete dependency-based search graph for theorem aaccadd.

operators which depend on the operator leading to Aadd. Thus, a total of

four nodes is added in the second dependency stage. Figure 3.3 shows the

search graph after the second dependency stage.

For the second level of combination nodes, not all combinations of nodes

in the tree need to be checked. Only combinations involving at least one

node created during the second dependency stage need to be investigated. In

our example this leads to a combination between second-level node Edd and

�rst-level node aaccaE. Using the new combination node, the third level of

nodes is created, again consisting of a dependency stage and a combination

stage.

The complete dependency-based search graph for theorem aaccadd is
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procedure DbSearch()

CreateRoot(root);

level := 1;

while ResourcesAvailable() and TreeSizeIncreased() do

AddDependencyStage(root);

AddCombinationStage(root);

level := level + 1

od

end

Table 3.2: Main db-search algorithm.

procedure AddDependencyStage(node)

if node 6= nil then

if level = node.level+1 and

node.type in [Root, Combination] then

AddDependentChildren(node)

� ;

AddDependencyStage(node.child);

AddDependencyStage(node.sibling)

�

end

Table 3.3: Dependency-stage algorithm.

shown in �gure 3.4.

The graph consists of three dependency levels, and two combination

levels. The third combination level is empty, which terminates the search.

From �gure 3.4 we see that the instance of dlp with axiom aaccadd has two

solutions: single-letter theorems a and d can be created.

3.5 Algorithms

In this section we present the db-search algorithms in pseudo-code. We

remark that many implementation details have been omitted in the algo-

rithms.

Table 3.2 shows the main loop of db-search. Repeatedly, a level is created,
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procedure AddDependentChildren(node)

for operator in LegalOperators(node) do

if Applicable(operator, node) then

LinkNewChildToGraph(node, operator);

AddDependentChildren(node.newChild)

�

od

end

Table 3.4: Dependent-children algorithm.

procedure AddCombinationStage(node);

if node 6= nil then

if node.type = Dependency and node.level = level then

FindAllCombinationNodes(node, root);

� ;

AddCombinationStage(node.child);

AddCombinationStage(node.sibling)

�

end

Table 3.5: Combination-level algorithm.

consisting of a dependency stage and a combination stage, as described in

section 3.4.

Table 3.3 shows the algorithm for creating the dependency stage. It is

assumed that each node has a child pointer and a sibling pointer. The child

pointer points to the �rst child of the node, while the child's sibling pointer

points to the next child, etc. This assumption explains the recursive calls in

AddDependencyStage(). In the graph, we distinguish between three types of

nodes: Root, Combination and Dependency. A dependency stage is started

only from combination nodes, and, for the �rst level, from the root.

The algorithm of table 3.4 determines all operators dependent on a node

and creates children for each eligible operator. The functionApplicable() tests

to see if the selected operator and node form a pair of parameters which is

eligible for application of the meta-operator F (N; f).

The second stage of each level of db-search consists of creating the

combinations of independent paths. In our example algorithm (see table
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procedure FindAllCombinationNodes(partner, node);

if node 6= nil then

if NotInCon
ict(partner, node) then

if node.type = Dependency then

combination := Combine(partner, node);

operators := DependingOn(combination);

if operators 6= nil then

AddCombinationNode(node, combination)

�

� ;

FindAllCombinationNodes(partner, node.child)

� ;

FindAllCombinationNodes(partner, node.sibling)

�

end

Table 3.6: Algorithm to �nd combinations of nodes.

3.5) we have assumed that each combination consists of exactly two nodes.

In the double-letter puzzle and qubic, this is indeed the case. In go-moku,

combinations of up to four nodes exist. Extending the algorithm to include

combinations of three or more nodes is not di�cult. A disadvantage is,

however, that searching for combinations of c nodes in a graph of size N

has a time complexity in the order of N

c

. Domain-speci�c reductions of

the complexity may often be possible. We have therefore refrained from

presenting a general algorithm for combinations of other than two nodes.

The algorithm of table 3.6 �nds a node in the graph for a selected

partner. It is checked that the nodes are not in con
ict, that its type is

a dependency node, and that the combination of the two nodes allows at

least one application of the meta-operator. This last condition is important

to prevent the creation of a large number of useless combination nodes.

3.6 Test results

Earlier, we stated that conventional search algorithms traverse U

p

, while db-

search traverses U

k

. In this section we investigate through experiments on

dlp the di�erence in cardinality between U

p

and U

k

.

First, we describe the four algorithms used in the experiments. Second,
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we describe the set of test problems used for the experiments, as well as the

conditions in which the experiments took place. Third, we present the results

of the experiments.

Selected algorithms

As a conventional tree-search algorithm for our experiments, we have selected

dfs of which we have implemented two variants: (1) without transposition

tables (dfs-), and (2) with transposition tables (dfs+). Since we intend

to run the algorithms in our experiments until the complete state space has

been traversed, the performance of alternatives like breadth-�rst search are

equivalent to the performance of dfs.

The other two implemented algorithms are the domain-speci�c algorithm

triangle, presented in appendix A, and, of course, db-search. An advantage

of db-search over triangle is that in cases where only few theorems can be

deduced, db-search may search less nodes than the �xed number of entries

needed for triangle. A disadvantage of our implementation of db-search

is that we did not implement a transposition table. However, transpositions

resulting from the order in which operators are executed are non-existent in

U

k

, as they are all part of the same key class. As a result, transpositions

have only a minor in
uence on the performance of db-search on dlp.

Test problems

We have generated random instances of dlp. For each string length of 1

to 20, 100 strings were generated, for a total of 2000 axioms. For each of

these 2000 axioms, all four algorithms were to run to completion. However,

in order not to have extremely large state spaces dominate the results and to

keep the required resources within practical limits, we have set limits for the

state spaces examined by dfs+ and dfs-. We terminated dfs+ as soon as

the tree size exceeded 100,000 nodes, while dfs- was terminated as soon as

the tree size exceeded 1,000,000 nodes. Both triangle and db-search were

run to completion on all selected test problems.

Results

The tree-size limit set for dfs+ terminated the search 26 times out of the

2000 runs. Only once did the early termination result in missing a solution.

For dfs- a million nodes was insu�cient to complete the search in 129 of the

2000 runs. In 24 of these, at least one of the solutions was missed.
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Figure 3.5: Tree size per algorithm applied to the double-letter puzzle.

Db-search's most di�cult problem was dbdeabbaacccddaeecda, for which

it needed 3934 nodes to determine that it has no solutions. Both variations

of depth-�rst search did not complete the search on this axiom within their

respective tree-size limits.

The average number of nodes visited by each algorithm is illustrated in

�gure 3.5. The horizontal axis is the axiom length, while the vertical axis is

the log

2

of the number of nodes created.

Up to strings of length 18, db-search outperforms triangle. For

those strings, transpositions do not outweigh the gain db-search makes in

terminating the search early if possible. Still, the time complexity of db-

search, in particular in the combination stage of each level, is higher than

for the domain-speci�c algorithm. Therefore, we do not claim that db-search

outperforms triangle.

The trees traversed by both variants of dfs su�er from a combinatorial

explosion. At theorem length 20 the average cardinality of U

p

(the size of

the trees searched by dfs-) is more than 1200 times the average cardinality

of U

k

(the size of the graphs searched by db-search). As can be seen from

the size of the graph traversed by dfs+, transpositions are responsible for

a factor 20. The more than 60 times smaller graph traversed by db-search

compared to dfs+ indicates that db-search is far more e�cient on dlp than

conventional search algorithms.

In chapters 4 and 5 db-search has been applied to qubic and go-moku,



3.7 Applicability 93

resulting in signi�cantly reduced state spaces, while no domain-speci�c algo-

rithm has yet been developed which does the same.

3.7 Applicability

Db-search is a single-agent search algorithm. The main source of applications

therefore lies within that area. In some games, such as qubic and go-

moku, a restricted search concentrates on sequences of threatening moves

only. If the opponent is constantly restricted to only a single reply, the

state space is conceptually transformed into a single-agent state space. In

those circumstances db-search may be applied to games. For details of such

transformations on qubic and go-moku see chapters 4 and 5.

In section 3.3.3 we have proved that U

k

is complete if three conditions

are met. While these conditions all hold for dlp, they do not hold fully

in domains such as qubic and go-moku (i.e., after the transformation to a

single-agent state space). As a result, U

k

may neither be sound nor complete.

Searching a non-complete U

k

may still be favorable to searching U

p

, if the

size of U

p

prohibits full investigation. However, further research is necessary

to understand the implications of applying db-search to such domains in

general.
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Chapter 4

Qubic

In chapters 2 and 3 two new search techniques, pn-search and db-search, were

introduced. Pn-search attempts to use non-uniformity in and/or trees to

traverse the state space more e�ciently than the various conventional search

algorithms. Db-search traverses a smaller graph than conventional search

algorithms. Still, for a special class of problems it has been shown that the

smaller graph is sound and complete. This means that each solution found

by a conventional search algorithm will also be found by db-search.

Pn-search and db-search were developed during the investigation of

several games: connect-four (Allis, 1988), awari (Allis et al., 1994), qubic

(Allis and Schoo, 1992) and go-moku (Allis et al., 1993). The application of

pn-search and db-search to qubic and go-moku are discussed in this and the

next chapter. The purpose of these chapters is twofold:

1. to explain in detail how pn-search and db-search were applied to two

combinatorially complex problems, and

2. to show that qubic and go-moku can be solved, thereby positively

answering our �rst research question (cf. section 1.4) for two speci�c

games.

At this point it is important to mention that qubic was solved more than

a decade before we started our research. Oren Patashnik solved qubic in 1977

and his solution was con�rmed by Ken Thompson (Patashnik, 1980).

Our interest in qubic sprang from its potential as a test bed for go-moku,

due to the similarity between these two games. While threat sequences (see

section 4.2.2) play an important role in both games, threat sequences in go-

moku are more complex than threat sequences in qubic.

95
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Being ignorant of Patashnik's work, there was the added challenge of

solving the game. After we were informed of Patashnik's work by Ingo

Alth�ofer and Ralph Gasser, we nevertheless decided to �nish our work on

the game. The experience gained has helped to solve go-moku, while it also

provided the means for a comparison of db-search and pn-search with the

search techniques applied by Patashnik.

The chapter is organized as follows. In section 4.1 we provide a

background to the investigations in qubic. The rules of qubic and common

strategies are presented in section 4.2. The application of db-search to qubic

is described in section 4.3. The role of pn-search in the solution of qubic

transpires from section 4.4. The results of our investigations, as well as

comparisons with the results of Patashnik, are presented in section 4.5.

4.1 Background

Among the games of the Olympic List, qubic is one of the lesser-known

games. Despite its simple rules, qubic has a severe handicap: it is played

on a three-dimensional board. Therefore, visualizing sequences of moves is a

di�cult task for human players, while most games end in a long sequence of

threatening moves requiring careful analysis.

Nevertheless, at least some strong human players exist, as is apparent

from Patashnik (1980), who describes how qubic is solved using a combination

of human expert knowledge and a standard search algorithm.

Patashnik assumed that qubic would be a �rst-player win. Therefore, to

prove a win in a position with white (the �rst player) to move, only one

winning move had to be selected. To prove a win in a position with black

(the second player) to move, all moves had to lead to wins for white. Using a

standard ��� search, Patashnik created a tactical module which determined

in a given position whether the player to move had a forced win. For each

position in the search tree, it was determined whether the player to move

had to make a forced move. Otherwise, if black was to move, for each legal

black move a child position was created. If white was to move, a so-called

strategic move had to be made. These moves were selected by hand by

Patashnik. Using some 1500 hours of cpu time, and 2929 strategic moves,

qubic was solved. The database with the solution tree has been checked by

Ken Thompson, who con�rmed Patashnik's results.

Our research in 1991 consisted of creating a tactical module based on

db-search. Furthermore, instead of selecting strategic moves by hand, pn-

search guided the search process. After the program was created we were
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informed that qubic had already been solved. Nevertheless, as qubic was

not yet removed from the Computer Olympiad, we �nished our solution in

collaboration with Patrick Schoo. Since then our understanding of db-search

has improved, resulting in a new implementation of our qubic program. In

this chapter we describe the 1993 implementation and its results, which di�er

somewhat from Allis and Schoo (1992).

In earlier publications (Allis and Schoo, 1992; Allis et al., 1993) we used

the term threat-space search for the application of db-search to qubic and go-

moku. In this text we only use the term db-search. We gladly acknowledge

that both names were suggested by Barney Pell.

4.2 Rules and strategies

Qubic is a three-dimensional instance of a category of games of which well-

known two-dimensional analogs are tic-tac-toe, go-moku and renju. First,

we present the rules in section 4.2.1. Second, in section 4.2.2 we discuss

the role of threats and threat sequences in qubic. Finally, we analyze the

automorphisms (i.e., mappings of the playing board onto itself, such that all

relevant properties of the board are preserved) of the qubic board and its two

di�erent types of cubes in 4.2.3.

4.2.1 Rules

Qubic is played on a 4�4�4 cube, thus consisting of 64 small cubes. Players

move alternately by occupying any empty cube. The game ends as soon as

one of the players has occupied four consecutive cubes in a straight line (either

in one, two or three dimensions). Such a set of four cubes in a straight line

is called a group. There are 3� 16 = 48 one-dimensional groups, 3� 8 = 24

two-dimensional groups and 4 three-dimensional groups, for a total of 76

groups.

In �gure 4.1 the three di�erent types of groups are shown. Group a is one-

dimensional, group b is two-dimensional, while group c is three-dimensional.

4.2.2 Threats and threat sequences

If a player has occupied three cubes in a group, with the fourth cube empty,

she threatens to win at her next move. In such a position, the opponent is

forced to refute the threat (unless she can win at her next move). The game
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a a a a

b

b

b

b

c

c

c

c

Figure 4.1: Three types of groups in qubic.

is usually decided by a player creating a threat sequence ending in a double

threat, which cannot be stopped by the opponent.

In �gure 4.2 an example winning threat sequence in a single plane is

shown. White has occupied three cubes in the plane (in the corners), while

black has played her moves elsewhere (i.e., in other planes). White now has

an 11-ply winning threat sequence starting with moves 1 through 9 in �gure

4.2. After move 9, white threatens to win at a and b, which cannot both be

countered by black's next move.

In general, a threat sequence may end in one of three possible ways. First,

a double threat may be created, resulting in a win for the attacker. Second,

the attacker may run out of threats. Third, the forced moves of the defender

may result in her accidentally creating a threat of her own, and changing her

role from defender to attacker.

If a threat sequence ends without success for the attacking player, she

has normally exhausted most of her threat potential, reducing her winning

chances. Therefore, early in the game, both players try to occupy cubes which

increase their potential for creating threats, without actually executing those

threats.
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8 6

5 4 b

973a

1 2

Figure 4.2: An 11-ply winning threat sequence.

4.2.3 Cube types and automorphisms

The 64 cubes fall into two categories. The 8 corner cubes and 8 center cubes

are named 7-cubes, as each is part of 7 groups (3 one-dimensional groups, 3

two-dimensional groups and 1 three-dimensional group). The other 48 cubes

are called 4-cubes as they are part of four groups only (3 one-dimensional

groups and 1 two-dimensional group).

The number of automorphisms in qubic is surprisingly high: 192. This

can be explained as follows. By rotation, each of the six sides of the cube

can be brought on top in four di�erent ways, resulting in a total of 24

automorphisms by rotation. There are three more operations, each doubling

the number of automorphisms. First, re
ection in a plane through the center

of the cube. Second, turning the cube inside out, i.e., exchanging (in all three

dimensions) the inner planes with the outer planes. Third, internal exchange,

i.e., exchanging the inner planes in all three dimensions, while leaving the

outer planes untouched.

Due to the automorphisms, there are only two distinct opening moves in

qubic, one at any 7-cube, and one at any 4-cube. After White's �rst move

at a 7-cube, black has 12 distinct answers, as presented in �gure 4.3. Each

of the empty 51 cubes in the �gure can be mapped to at least one of the 12

black cubes, through at least one of the automorphisms of qubic.

4.3 Applying db-search

As mentioned before, threat sequences play a dominant role in qubic. Obvi-

ously, to play qubic well, it would be advantageous to have a module which

determines whether a winning threat sequence exists. Our application of

db-search to qubic is restricted to searching for winning threat sequences.

This section consists of three parts. First, in section 4.3.1 we describe

how the adversary-agent state space, when restricted to threat sequences,

can be transformed into a single-agent state space. Second, in section 4.3.2



100 Chapter 4. Qubic

Figure 4.3: The 12 two-ply moves.

we illustrate how the single-agent state space thus created for qubic �ts in

the framework for db-search presented in chapter 3. Third, in section 4.3.3

we discuss three properties of the single-agent state space for qubic which

have not been included in the framework of section 4.3.2. For each of these

properties there is an explanation of how our implementation of db-search

handles them.

4.3.1 A single-agent search in qubic

Our description of the single-agent state space of threat sequences in qubic

consists of a set of de�nitions, an interpretation of the de�nitions, and the

transformation of the adversary-agent state space to a single-agent state

space.

De�nitions

In the previous sections we informally introduced the concept of threats,

threat sequences and winning threat sequences in qubic. These notions are

de�ned in de�nitions 4.1, 4.2 and 4.3.
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De�nition 4.1 A threat in qubic is a move by the attacker leading to a

position such that

1. The defender cannot win at her next move, and

2. The defender has at most one move stopping the attacker from winning

at her next move.

If a threat leaves the defender without any moves to stop the attacker

from winning at her next move, it is called a double threat, otherwise the

threat is called a single threat.

De�nition 4.2 A threat sequence (a

1

; d

1

; a

2

; d

2

; : : : ; a

n

; d

n

), with n � 1, is

any sequence of moves such that each a

i

, 1 � i � n is a single threat, and

each d

i

the single response to a

i

which does not lose immediately,

De�nition 4.3 A winning threat sequence in qubic is a sequence of moves

(a

1

; d

1

; : : : ; a

n

; d

n

; a

n+1

; d

n+1

), such that (a

1

; d

1

; : : : ; a

n

; d

n

) is a threat se-

quence, a

n+1

is a double threat and d

n+1

is any legal move.

Interpretation

Here we elaborate on the de�nitions presented above, interpreting them in

the context of groups.

To win in qubic, a player must occupy all four cubes in a group. Thus,

a player who occupies three cubes in a group, while the last cube is empty,

threatens to win. According to de�nition 4.1, such a move is only a threat

if the opponent has not obtained three cubes in a group herself. In other

words, a threat consists of a local property for the attacker (i.e., the state of

one speci�c group) and the global lack of a similar property for the defender

(i.e., no group on the board having the property).

In a threat sequence, each attacker move occupies the third attacker cube

in a group, while the fourth cube is empty. Each defender move occupies

the fourth cube in that group. In each case, the defender has no alternative

move which wins immediately and, although the rules of qubic allow playing

anywhere else, alternative moves are blunders as they would result in losing

at the next move. In other words, a threat sequence consists of a sequence of

moves where each attacker move is followed by its only non-blundering reply.

A winning threat sequence is a threat sequence followed by a double

threat and any legal move. Since there are at least two places where the

attacker threatens to win at the next move, and the defender cannot win
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herself immediately, all moves are equally bad. Therefore, any legal move

may be selected.

Adversary-agent vs. single-agent

As we have seen, in threat sequences and winning threat sequences each move

by the defender is implied by the previous attacker move. Therefore, we may

conceptually merge these two moves into a single meta-move.

If we examine the state space created by these meta-moves, it is no longer

an adversary-agent state space, but instead a single-agent state space. For

each meta-move, the attacker selects any of the possible threats in a position.

If the threat is a single threat, the move by the opponent is implied by the

previous move. If the threat is a double threat, all moves by the opponent

are equally bad, and a random move may be selected to represent all possible

moves. In both cases the defender has no real choice, e�ectively transforming

the state space into a single-agent state space. In the remainder of this

section, we will only regard meta-moves, and assume that the attacker move

and defender move in a meta-move are made at the same time.

4.3.2 A db-search framework for qubic

In this section, we describe a db-search framework for the single-agent state

space of qubic. We mention that the framework only involves local properties,

i.e., occupation of single groups, while ignoring global properties, i.e., possible

counter threats of the defender. Global properties of a position will be

handled in section 4.3.3. The terminology introduced in chapter 3 is used

throughout this section.

Attributes

The set U of all attributes is de�ned as follows. U = fC(i; x)j0 � i �

size � 1 ^ x 2 f�; �; �gg. Attribute C(i; x) represents the fact that cube i is

occupied by the attacker (�), occupied by the defender (�) or empty (�). The

constant size equals the number of cubes on the playing board (i.e., 4

3

= 64).

It can easily be checked that U has 192 elements.

Operators

The operator f

c

1

;c

2

;c

3

;c

4

is de�ned as follows.

f

pre

c

1

;c

2

;c

3

;c

4

= fC(c

1

; �); C(c

2

; �); C(c

3

; �); C(c

4

; �)g
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f

del

c

1

;c

2

;c

3

;c

4

= fC(c

3

; �); C(c

4

; �)g

f

add

c

1

;c

2

;c

3

;c

4

= fC(c

3

; �); C(c

4

; �)g

The set of all operators U

f

is de�ned as follows.

U

f

= ff

c

1

;c

2

;c

3

;c

4

jfc

1

; c

2

; c

3

; c

4

g is a groupg

We remark here that a group is a set of four squares which, if all occupied

by one player, result in that player winning the game. In qubic there are 76

groups. For each group, the 4 elements can be ordered in 4! = 24 possible

ways. Thus, there are 24 � 76 = 1824 operators in U

f

. Since c

1

and c

2

can be

exchanged without changing the operator, there are e�ectively 912 operators

in U

f

.

Initial state and goal states

The initial state consists of exactly 64 attributes, one per cube indicating

the contents of the cube. Each qubic position which is to be checked for the

existence of a winning threat sequence can serve as an initial state. The set

U

g

of goal states is independent of the initial state, and is de�ned as follows.

U

g

= ffC(c

1

; �); C(c

2

; �); C(c

3

; �); C(c

4

; �)g j fc

1

; c

2

; c

3

; c

4

g is a groupg

In other words, any state in which a group exists of which three cubes

have been occupied by the attacker and the fourth cube is empty, is a goal

state. We remark that each meta-move starts with a move by the attacker.

Therefore, a state as described here in the single-agent search, ensures that

in the adversary-agent search the attacker can win at her next move. U

g

has

304 elements and is not singular.

Properties of the qubic framework

The framework we have described above is monotonous. Furthermore, we

can easily restrict ourselves to non-redundant paths. If U

g

were singular, our

U

k

would be complete.

We can create a singular U

g

0

= f fGg g, by de�ning a special goal

attribute G and operators which transform any element of U

g

into G, which

would result in a complete U

k

. A discussion of the completeness of U

k

would

be premature, however, since we have ignored the global properties of qubic

so far.
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4.3.3 Qubic-speci�c enhancements to db-search

The db-search framework for qubic presented in the previous section focuses

only on the local properties of threats. In this section we discuss the three

global properties which need to be incorporated in db-search. Each property

is described followed by the method of inclusion in db-search.

Defender four

In each winning threat sequence, both the attacker and defender occupy

cubes. Even though the defender has no choices of which cubes to occupy,

the attacker may, accidentally, force her to occupy all four cubes in a group.

Such a group is named a defender four. If this happens, the threat sequence

by the attacker has failed.

During the dependency stage of each level of db-search, it is easy to check

after each meta-move (a; d), consisting of attacker move a and defender move

d, whether d has created a defender four. It is su�cient to investigate the

4 or 7 groups in which d lies. During the combination stage of each level

of db-search, a defender four could be created by the merge of two or more

paths. To detect such a defender four, all 76 groups must be investigated

when creating a combination.

We remark that the qubic-speci�c enhancements mentioned below render

the dependency-stage test for defender fours super
uous and it has therefore

been omitted in our implementation.

Closed defender three

Each meta-move results in a group containing three attacker cubes and one

defender cube. Such a group is named a closed attacker three. Similarly,

a closed defender three is a group containing three defender cubes and one

attacker cube. A group where one player has occupied three cubes, while the

fourth cube is empty are named open attacker three or open defender three.

Even though closed defender threes cannot be converted into a winning

group, they may represent a subtle problem. If two paths in db-search are

merged they may create one or more closed defender threes on the board.

Let us assume that the three defender cubes are occupied during meta-moves

m

1

, m

2

and m

3

, while the attacker cube is occupied during meta-move m.

Furthermore, let us assume that a path P in the merge exists, consisting

of the following sequence of moves: (m

1

;m

2

;m

3

;m

4

;m), where m

4

is any

meta-move. Then, after move m

3

, an open defender three exists. Clearly,
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the only way for the attacker to stop the open defender three is to immediately

play move m. In P move m

4

is played �rst, which means that meta-movem

4

erroneously ignores the option for the defender to win. We remark that (some

of) the cubes in a closed defender three need not be part of a meta-move,

but could be part of the initial state.

Summarizing, closed defender threes present a problem when the meta-

move occupying the attacker cube is played later than immediately after the

third defender cube has been occupied. In other words, an ordering exists

between the set of meta-operators occupying the defender cubes in the closed

defender three, and the operator occupying the attacker cube.

During the dependency stage of db-search, to create a closed defender

three, �rst an open defender three must be created, otherwise the closed

defender three does not pose a problem. As these are monitored separately,

we can safely ignore closed defender threes during the dependency stage.

During the combination stage, a merge may create one or more closed

defender threes. Only paths in which the attacker cube for each closed

defender three is occupied in time (i.e., not later than immediately after

the third defender cube has been occupied) should be included in the merge.

Determining whether a merge is non-empty may be time-consuming when

fully incorporating the closed defender tests. Instead, we have implemented a

simple and surprisingly e�ective heuristic. Previously, for each combination

node (i.e., for each merge), a path representing the merge was selected

randomly. The heuristic consists of investigating whether the selected path

honors the ordering criteria imposed by the closed defender threes. If so, the

merge is not empty. If not, the merge is assumed to be empty. Clearly, in this

way valid merges may be rejected, but invalid merges are never wrongfully

accepted.

To investigate the amount of error created through the use of this

heuristic, we ran the program twice on a set of test positions. The �rst variant

of the program contained the heuristic test, while the second variant did not

test for closed defender threes at all. In less than 1% of the test positions did

the second variant suggest a winning line, while the �rst variant failed to �nd

any winning line, although several times the �rst variant suggested a di�erent

winning line. We remark that in the extra 1%, the suggested winning line

may have been incorrect, due to defender threes, or may have been valid

and have been accidentally rejected by the above heuristic. A non-heuristic

implementation for investigating closed defender threes is expected to yield

only a small gain in e�cacy while causing a signi�cant decrease in e�ciency.

Such an implementation has therefore been omitted.



106 Chapter 4. Qubic

Open defender three

When a threat sequence contains an open defender three, the attacker must

respond to that defender three immediately or lose at the next move.

During the dependency stage of db-search, only meta-moves are consi-

dered which depend on, or are preceded, by the node from which the meta-

move is made. Therefore, during the dependency stage it is often not possible

to counter a defender three. Instead, we solve the problem of open defender

threes during the combination stage.

In standard db-search, to apply meta-operator F (N; f), set N must be a

minimal set of key classes, such that f depends on, or is preceded by, the key

operator in each of those classes. We extend the application of meta-operator

F (N; f) as follows.

Let F (N; f) be applicable and let P be an element in the merge of classes

of N . Furthermore, we assume that (x

1

; : : : ; x

n

) is the priority queue of

empty cubes in open defender threes in P (A), where A is the initial state.

Then, we de�ne F (N

0

; f), with N

0

= N [ P

1

, to be applicable, if (1) the key

operator f

1

of P

1

occupies with its attacker move x

1

, and (2) the merge of

all elements in N

0

is non-empty.

Using the extended meta-operator, we can create combinations of paths

to counter open defender threes. Clearly, a combination should only be

created if F (N; f) is applicable and its priority queue of empty cubes in

open defender threes is empty. In our db-search implementation for qubic we

have implemented the extended meta-operator.

Summary of db-search enhancements

In this section we have introduced three qubic-speci�c enhancements to db-

search. The main question yet to be answered is whether the state space

searched by db-search with these qubic-speci�c enhancements is complete.

Of course, the heuristic applied to counter closed defender threes renders the

state space incomplete, but as has been argued, only a marginal number of

solutions are incorrectly rejected. Without proof we state that, except for

the aforementioned heuristic, our implementation of db-search is complete.

In other words, in each position where a winning threat sequence exists,

db-search �nds a winning threat sequence, unless the meta-moves within each

winning threat sequence can be reordered such that a closed defender three

is countered too late by the attacker.
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4.4 Applying pn-search

To apply pn-search to qubic, we need to convert the qubic game tree into

an and/or tree. This is described in section 4.4.1. The enhancements to

basic pn-search adopted for our qubic implementation are described in section

4.4.2.

4.4.1 Qubic as an AND/OR tree

Proof-number search (as described in chapter 2) is an and/or-tree algorithm.

To apply it to qubic, we represent positions where white is to move as or

nodes, and positions where black is to move as and nodes. A win for white is

represented by the value true, while a draw and a win for black are represented

by the value false. Thus, proving the pn-search tree means that white can

win in the root position, while disproving the pn-search tree means that black

can achieve at least a draw.

At each or node, white is to move. At such nodes, db-search with white

as attacker is used as evaluation function. If db-search �nds a winning threat

sequence, the node is proved, otherwise it obtains the value unknown. In and

nodes, black is to move. In such nodes, db-search with black as attacker is

used as evaluation function. If a winning threat sequence is found, the node is

disproved, otherwise the value of the node is unknown. A node representing a

position with all 64 cubes occupied, while neither player has created a winning

con�guration, is a draw and therefore has value false, without applying the

evaluation function.

4.4.2 Enhancements

The above description explains how standard pn-search is applied to qubic.

However, four enhancements have been added to speed up the search. The

enhancements are discussed in this section.

Transpositions

A dag is created instead of a tree, using the algorithm described in section

2.3.3. This ensures that if a position has already occurred in the dag, or if

a position is equivalent through automorphisms to another position in the

dag, the position is not investigated again.
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Threatening moves by white

Pn-search favors subtrees in which the mobility (i.e., the number of choices

available to a player) of one player is restricted, while the mobility of the

other is enlarged. In qubic, this means that threatening moves are favored

above all other moves, as they leave the opponent with just a single response.

After a threatening move, and the forced response by the opponent, again

threatening moves are favored above all other moves, and so on. Thus, pn-

search automatically focuses on the space of threatening moves. This is

undesirable for pn-search in qubic, since the evaluation function (db-search)

will already have investigated whether a winning threat sequence exists. If

such a sequence does not exist, the potential for threats should be increased,

instead of decreased by executing them. Therefore, in our pn-search tree, we

have restricted white to non-threatening moves, simply by omitting moves

which create a threat in the move-generation module. For black, of course,

all moves are investigated.

Heuristic (dis)proof number initialization

In chapter 2 we have suggested several methods to include some domain-

speci�c knowledge in the initialization of proof and disproof numbers. Here

we describe our qubic-speci�c initializations.

After expansion of an and node (black to move), usually many nodes

are proved immediately by db-search. Nodes in which black has just created

a threat, however, are not proved immediately, because white is forced to

counter the threat. A good estimate of the number of nodes which must

still be proved at an and node is the number of threatening moves black

can make. Therefore, the proof number of an and node is initialized to the

number of threatening moves for black (with a minimum of 1), while the

disproof number is initialized to 1.

After expansion of an or node (white to move), usually several nodes are

disproved immediately by db-search. Moves which create potential threats

(named positional moves), however, are usually not disproved immediately.

We determine the number of positional moves using the following heuristic.

For a move M we consider the set of groups G which contain M , while

not containing any black cubes. M is named positional if G consists of at

least three groups, each containing zero or one white cubes (besides M), or

at least two groups, each containing at least one white cube (besides M).

At or nodes, the disproof number is initialized to the number of positional

moves for white (with minimum 1), while the proof number is set to 1.
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Removing solved terminal nodes

In section 2.3.1 it was described how solved subtrees in a pn-search tree may

be removed. Such a technique has disadvantages when applied to a dag

instead of a tree.

Assume that a node J has been solved and is subsequently removed from

the dag. If in another subtree a new instance of node J is created, the work

to solve J will be duplicated. The decision of which solved nodes to remove

may depend on the size of the working memory and the probability that this

scenario will occur. Generally, nodes which have been solved with little e�ort

may be removed with less cost than nodes which have been solved only after

a large search.

We have decided to remove nodes from the dag only if they were solved

through evaluation. As evaluations of nodes require only a small amount of

time, the reduced memory requirements were judged to outweigh the cost

of re-evaluation for the terminal nodes which occur more than once in the

search. In our experiments the memory requirements were thus reduced by

approximately 70%.

4.5 Solving qubic

In this section we describe how we solved qubic. First, in section 4.5.1

we describe how we subdivided the game tree into 195 subtrees. Second,

in section 4.5.2 we present statistics on solving each of the 195 subtrees.

Third, we compare our results with those of Patashnik (1980) in section

4.5.3. Finally, in section 4.5.4 we discuss the reliability of our results.

4.5.1 Subdividing the game tree

In this section we explain why and how we subdivided the qubic game tree

in 195 subtrees. First, we explain why this was necessary. Second, we show

how we subdivided the game tree into four-ply subtrees. Third, we explain

how each of the four-ply subtrees was investigated.

Necessity of subdividing the game tree

Before white can create a threat, she must have occupied two cubes in the

same group. After the threat is executed by white and countered by black,

white has three cubes in one group together with a black cube. To create a

new threat she must have occupied at least one other cube. Thus, winning
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threat sequences can only be found in positions with at least six cubes (three

white and three black) on the board. As we have seen in �gure 4.2, in some

positions with exactly three white cubes, winning threat sequences exists.

From the above, it follows that any evaluation by db-search of positions

with 0 to 5 cubes occupied will return the value unknown. Furthermore, the

number of children per qubic position at level d equals size-d. Therefore,

the �rst 5 ply of the qubic game tree, using evaluation function db-search,

has a uniform branching factor per level of the tree. Executing pn-search

for the full game tree (with the root representing the empty board) will be

ine�ective, as pn-search relies on non-uniformity. For this reason, we decided

to split the game tree into subtrees.

Selecting a minimal set of subtrees

The subtrees each represent positions 4-ply into the game. A depth of four

was selected since it was deep enough to overcome the uniformity problem for

pn-search mentioned above, while it required the selection of only 13 strategic

moves by hand (i.e., one move for the initial position, and 12 moves in the

twelve 2-ply positions of �gure 4.3) thus leaving as much work to pn-search

as possible.

Starting from the empty board, we suggested a move for white. Since

there are only two distinct moves, one at a 4-cube, and one at a 7-cube, we

selected the 7-cube move as white's best chance for winning.

As shown in �gure 4.3, black has 12 di�erent �rst moves. Thus, at ply two

we have 12 positions to solve. In each of these positions we suggested a move

for white. In Patashnik (1980), moves at 7-cubes were selected, such that the

number of di�erent resultant positions (after applying automorphisms) was

as small as possible. There, 7 three-ply positions are presented. To obtain

the 7 three-ply positions, in each of the 12 two-ply positions, white played

in a one-dimensional group containing white's �rst move. Since white's �rst

move at a 7-cube is an element of 3 one-dimensional groups, it is possible to

select such a move with the extra constraint that black's �rst move is not an

element of the same group.

Using this approach, it turns out that there are eight di�erent ways in

which the 12 two-ply positions are reduced to 7 three-ply positions. We

represent a three-ply position by a three-tuple < w

1

; w

2

; b

1

>, with w

1

and

w

2

the cube number of the white stones, and b

1

the cube number of the

black stone. The cube numbers for each of the 64 cubes of the qubic board

are shown in �gure 4.4. The eight ways to create 7 three-ply positions is as
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Figure 4.4: Cube numbers on the qubic board.

follows.

< 0; 3; 12 >;< 0; 3; 21 >;< 0; 3; 60 >;

((< 0; 3; 5 >;< 0; 3; 29 >) _ (< 0; 3; 20 >;< 0; 3; 24 >));

((< 0; 12; 1 >; (< 0; 3; 28 > _ < 0; 3; 61 >))_

(< 0; 3; 28 >; (< 0; 3; 1 > _ < 0; 12; 1 >)))

For each of these eight groups of 7 three-ply positions, we have created

the set of all four-ply positions. Since there are 61 legal moves per position,

initially 427 four-ply positions were created. After applying automorphisms,

however, 195, 195, 217, 217, 226, 226, 241 or 241 positions remain, depending

on the group of three-ply positions. The 3-ply position < 0; 3; 1 > looks bad

for white, since black has blocked the potential white threats. Therefore, the

group expanding to 195 four-ply positions of which < 0; 3; 1 > is an element

is ignored. The remaining group of 7 three-ply positions expanding to 195

four-ply positions is listed below.

< 0; 3; 12 >;< 0; 3; 20 >;< 0; 3; 21 >;< 0; 3; 24 >;
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< 0; 3; 60 >;< 0; 3; 61 >;< 0; 12; 1 >

The same group of three-ply positions was selected by (Patashnik, 1980).

Since each 7-cube move is also an element of three two-dimensional

groups, we could instead try moves at 7-cubes in the same two-dimensional

group as the �rst white move. Again, the 12 two-ply positions can be reduced

to 7 three-ply positions, this time in seven di�erent ways, all of which have

been listed below.

< 0; 15; 51 >;< 0; 15; 21 >;< 0; 60; 3 >;< 0; 51; 6 >;< 0; 51; 5 >;

((< 0; 15; 1 >; (< 0; 60; 1 > _ < 0; 60; 7 >))_

(< 0; 60; 7 >; (< 0; 15; 1 > _ < 0; 60; 1 >))_

(< 0; 60; 1 >; (< 0; 60; 7 > _ < 0; 51; 7 > _ < 0; 15; 1 >)))

The number of four-ply positions grown from each of these groups is 219,

229, 229, 229, 229, 240 and 240.

We have selected the same set of three-ply positions as Patashnik (1980),

since it yields the smallest set of four-ply positions. This choice also allows

us to compare his results with ours.

Investigating the subtrees

Pn-search has been applied to all but two of the 195 four-ply positions. The

two remaining positions have the property that the two black stones lie within

a group G

1

which intersects the group G

2

containing the two white stones.

By playing at the intersection c of G

1

and G

2

, either player can create a

threat and counter a potential threat by the opponent at the same time.

Therefore, move c is regarded as a strong move for white. However, in pn-

search we explicitly forbid white to create threats. In these two positions,

this heuristic deprives white of her best move, and allows black to gain

counterplay. Therefore, in these two positions we played white's third move

at c and countered the threat with black's third move before applying pn-

search.

Tests on these two four-ply positions showed that one position was quickly

solved through an alternative third move for white, while the pn-search for

the other position was terminated after a dag of a million nodes had been

created. In the latter case, these tests suggest that playing at intersection c

may be white's only path to a win.
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4.5.2 Statistics

In this section we present the statistics of running pn-search on the 195

positions described in the previous section. We distinguish between execution

time, pn-search dag size, db-search evaluations and solution size. We also

present an example winning line.

Execution time

All experiments were run on a sparcstation 2 at the Vrije Universiteit in

Amsterdam. The machine has 128 Megabytes of internal memory, allowing

pn-search trees of up to 1 million nodes to �t in internal memory, without

slowing down the search by swapping to disk. The sparcstation 2 is

estimated to have an execution speed of 28 mips.

The cpu time needed for the 195 positions (193 four-ply positions and 2

six-ply positions) was 55,700 seconds, or roughly 15.5 hours.

Pn-search DAG size

The pn-search tree size is the number of nodes created during the search.

Since no nodes are removed from the dag once created, this equals the size

at termination. We remark that terminal nodes solved by db-search are not

included in the dag, as described in section 4.4.2.

The smallest pn-search dag consisted of 884 nodes, while the largest

consisted of 310,000 nodes, with the median at 4,000 nodes and the average

at 10,000 nodes. Only one other dag was larger than 60,000 nodes, at

118,000. These two di�cult positions are < 0; 3; 1; 7 > (118,845 nodes)

and < 0; 3; 21; 22 > (310,424 nodes). (The positions are described by the

two cubes containing white stones, followed by two cubes containing black

stones.)

Db-search evaluations

A total of 3.5 million positions were evaluated with db-search, for white to

move, and 0.9 million positions for black to move. Comparing the total

number of evaluations, 4.4 million, with the sum of the sizes of the pn-search

dag's created, 2.0 million, it follows that not creating nodes for the solved

positions in the tree shrinks the tree to be held in memory by a factor of

almost 3.2.

Each time db-search created a dag of 500 nodes or more it was reported.

This occurred just 241 times, out of over 4 million evaluations. Among these,
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depth positions

0 1

2 12

4 195

6 2000

8 1426

10 1074

12 772

14 573

16 345

18 142

20 62

22 36

24 8

26 4

28 4

total 6654

Table 4.1: Number of positions in the qubic solution

31% were successful evaluations. The largest successful evaluation took 2,008

nodes, while the largest failed evaluation took 3,153 nodes. Creating the db-

search dag of 3,153 nodes took less than 5 seconds cpu time.

Solution size

The solution tree we found for qubic consists of a set of positions with white

to move, and a winning move for each of these positions. The number of

positions at each depth of the tree is shown in table 4.1.

A deep winning line

Our approach to solving qubic makes it di�cult to determine the length of

the winning line constituting optimal play by both sides. First, db-search

does not search for the shortest winning threat sequence, but terminates as

soon as any winning sequence is found. Second, pn-search does not search for

the shallowest solution, but for one which reduces the work still to be done
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Figure 4.5: A deep winning line.

to complete the proof.

Therefore, the 4 lines of depth 28, as shown table 4.1, followed by the

winning threat sequence found by db-search are not necessarily the longest

lines with optimal play by both sides. Nevertheless, the winning line shown

in �gure 4.5, consisting of 33 ply, is one of these four.

Below follows a short analysis of the game. The �rst four ply consist of

white and black occupying 7-cubes. White 5 comes somewhat as a surprise:

white occupies a 4-cube to block the potential threat created by black. Black

6 similarly blocks white's potential threat. With white 7 two more potential

threats are created, of which one is countered by black 8. White 9, again

at a 4-cube, creates several opportunities for white to win through a threat

sequence. Black then starts creating threats up to black 28, each of which is

followed by a forced move by white. White 29, countering black 28, regains

the initiative for white by creating a threat. After black's forced reply, white

creates a double threat with white 31 and wins with white 33.

We remark that while this may be the line of play where black postpones

the end as long as possible, after white 9 all white had to do is counter threats

created by black. The �rst time white had to select a move again, she had
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many options to win, of which white 31 is the simplest way. Therefore, from

the point of view of human players, playing white in this line only requires

skill up to white 9. We remark that other lines exist in the solution to qubic

which require more strategic moves by white, although the winning line is

shorter.

4.5.3 Comparison with Patashnik

In this section we compare our solution with that of Patashnik. This

comparison is not meant to criticize Patashnik's work in any way. On the

contrary: his ability to solve qubic in the late 1970s constrained by the

computing resources of that time should be regarded as one of the more

impressive achievements in games research. The goal of our comparison is

only to obtain information on the performance of db-search and pn-search.

First, we compare the performance of pn-search in selecting strategic

moves with that of Patashnik as strong human player. Second, we compare

the performance of db-search with that of the forced-sequence searcher used

by Patashnik. Third, we summarize the results.

Pn-search vs. human expert

As stated in section 4.5.1, we have researched the same 195 four-ply positions

as Patashnik (1980). Patashnik de�nes a strategic move as a non-obvious

move for white, thus excluding moves suggested by the tactical search, and

excluding forced moves for white when countering threats made by black. To

compare our results with Patashnik's we must exclude all forced moves for

white from the 6,654 moves in our solution to qubic. The number of strategic

moves per depth, for both Patashnik and our solution, are shown in table

4.2.

From table 4.2 it follows that Patashnik made 10% fewer strategic moves

than pn-search. For Patashnik, making the strategic moves was a bottleneck

in solving qubic, as each strategic move was made by hand. Consequently,

minimizing the number of strategic moves was a major concern in his

research. Therefore, we feel that pn-search, while not explicitly trying

to minimize the number of strategic moves in our solution to qubic, has

performed well.
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level Patashnik pn-search

0 1 1

2 12 12

4 195 195

6 1448 1960

8 788 668

10 309 248

12 110 113

14 51 41

16 15 14

18 0 2

total 2929 3254

Table 4.2: Number of positions in qubic solution per depth.

Db-search vs. forced-sequence search

Before we can compare the total amount of cpu time spent by Patashnik with

our results, we must allow for the di�erent types of machines used. Although

it is di�cult to compare such vastly di�erent machines, an expert indicated

that if the performance had to be expressed in mips, his best estimate for the

dec-10 would be between 2 and 3 mips (Witmans, 1994). Compared with the

approximately 28 mips of the sparcstation 2, we assume that our machine

was between 10 and 20 times faster than the hardware used by Patashnik. In

our comparison we disregard the fact that today's computers are equipped

with much larger memories than 15 years ago.

Our �rst comparison is based on the total solution time. Patashnik's

solution took approximately 1500 hours, not counting time wasted on back-

tracking due to bad strategic moves, and computer failure. We compare

this �gure with our 15.5 hours of cpu time. Factoring out the di�erence in

machine speed, our solution is between 5 and 10 times faster than the solution

found by Patashnik. As almost all cpu time is spent on searching forced

sequences, for both Patashnik's solution and ours, this is a �rst indication

that db-search may be 5 to 10 times more e�cient than a conventional forced-

sequence search as implemented by Patashnik.

Comparing the execution time of individual instances of Patashnik's

forced-sequence search and our db-search is slightly more di�cult. Patashnik
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remarks that typically his forced-sequence search took about two seconds,

but occasionally as long as half an hour. He also remarks that if his strategic

moves had been slightly worse, an uncontrollable combinatorial explosion

would have occurred in some positions.

For a second comparison, we will assume an average of two seconds per

forced-sequence search for Patashnik. To simplify matters for db-search,

we assume that all 55,700 seconds of cpu time were spent on db-search

evaluations (disregarding the time necessary to perform pn-search, to check

for automorphisms, and to �nd transpositions in the pn-search dag). During

this time over 4.4 million evaluations were performed, for an average of almost

80 evaluations per second. Given the di�erence in machine speed, we �nd that

db-search is between 8 and 16 times faster than Patashnik's forced-sequence

search.

As a third comparison, we look at the slowest evaluation of db-search

(less than 5 seconds) and the slowest forced-sequence search of Patashnik

(approximately 30 minutes). This di�erence implies a gain factor for db-

search of 20 to 40 on the di�cult positions.

Summarizing comparison with Patashnik

We conclude that applying expert knowledge (Patashnik) to solve qubic,

results in a marginally smaller solution compared to applying the knowledge-

free search technique pn-search. On qubic, db-search performs between 5 and

40 times better than a conventional search algorithm. In our opinion, the

qubic results illustrate the strengths of both pn-search and db-search.

4.5.4 Reliability

There are many sayings concerning the number of errors made by program-

mers, among which one of the most famous is: There is always one more bug.

These bugs may vary from uninitialized variables to serious programming-

logic errors. For a program the size of our qubic implementation (over 6,000

lines of C code), there may thus be some doubts about the reliability of

our results. In this section we present some measures taken to ensure their

correctness.

The most complicated part of the program consists of the db-search

implementation. During the implementation errors were made, and corrected

but, of course, ensuring that this code is error free is a di�cult task.

Therefore, the products of db-search, viz. winning threat sequences, were

independently examined for their correctness. Once a potential winning
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threat sequence was found, the program started from the initial search

position and played the sequence move by move. After each move by the

attacker it is investigated whether (1) the defender has a threat, and (2) the

attacker has a threat at the cube suggested as next move for the defender.

After the last move by the attacker, it is investigated if indeed a group of

four cubes has been occupied by the attacker. If any of these investigations

show that db-search made an error, this is reported. No errors have been

discovered in db-search during the process of solving qubic. We conclude that

the product of the most complicated part of the program is independently

veri�ed.

The second most complicated part of the program consists of the pn-

search implementation. Fortunately, pn-search has been implemented for

several di�erent games, ensuring that the chances of implementation errors

are much lower than for new code. Still, the search process is too complicated

to monitor fully, and thus errors may go unnoticed. To examine our results, a

successful pn-search produces a small database consisting of the positions in

the solution tree. After we solved all 195 four-ply positions, we merged these

databases. Next, we created a database-checking module. For each position

in the database with white to move a successor should be contained in the

database. For each position in the database with black to move, all successors

are generated. A successor should either be contained in the database, or

white should have a winning threat sequence as found by db-search. We

have thus checked the database and found it complete.

Third, our solution is consistent with the results of Patashnik (1980), but

arrived at independently. In conclusion, we believe that our implementation

may be regarded as reliable.
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Chapter 5

Go-Moku

In this chapter we discuss the application of pn-search and db-search to go-

moku. In the previous chapter we stated two goals for chapters 4 and 5,

which we repeat here. The �rst goal is to explain in detail how pn-search

and db-search have been applied to two combinatorially complex problems.

The second goal is to show that qubic and go-moku can be solved, thereby

positively answering our �rst research question (cf. section 1.4) for two

speci�c games.

In several ways, qubic and go-moku are related games, with go-moku

being the more complex one. The relationship between qubic and go-moku

is expressed in the organization of this chapter: almost every section has

a corresponding section in chapter 4. We mention this relationship for

readers who are particularly interested in the application of db-search or

pn-search. Comparing corresponding sections on qubic and go-moku may

provide additional insight in these algorithms.

The chapter is organized as follows. In section 5.1 we provide a

background to investigations in go-moku. The rules of go-moku and common

strategies are presented in section 5.2. The application of db-search to go-

moku is described in section 5.3. The role of pn-search in the solution of

go-moku is explained in section 5.4. The results of our investigations are

presented in section 5.5.

5.1 Background

Among the games of the Olympic List, go-moku has the simplest rules: two

players (black and white) alternate placing stones on a 15� 15 square lattice

121
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with the goal of obtaining a line of exactly �ve consecutive stones of the

player's color. While its roots lie in China and Japan, it is also popular in

several countries of Europe and the former Soviet-Union. Part of go-moku's

popularity must be ascribed to the fact that it can be played with pencil and

paper, allowing it to be played virtually everywhere (including classrooms)

by virtually everyone (including bored students).

In Japan professional renju players (renju being a complicated variant of

go-moku) have studied go-moku in detail and have stated that the player

to move �rst (black) has an assured win (Sakata and Ikawa, 1981). These

statements are sometimes accompanied by a list of main variations, such

as the 32-page analysis in Sakata and Ikawa (1981). Close examination of

these analyses reveals that in each position only a small number of white

moves are analyzed. For example, after black's �rst move at the center of a

15�15 board, white has 35 distinct moves, of which 2 are adjacent to black's

�rst move, ignoring symmetrically equivalent moves. In Sakata and Ikawa

(1981) only the variations after the 2 moves adjacent to black's �rst move

are discussed. As far as we know, prior to this work no complete proof of

black's win in go-moku has been published.

Until this study, all go-moku programs have been defeated at least once

or been in a lost position when playing black. As an example of the latter

we mention the game between the go-moku 1991 world-champion program

Vertex (black) and the program Polygon (white). Vertex maneuvered itself

into a position provably lost for black (Uiterwijk, 1992a). As an aside we

note that Polygon played its �rst move non-adjacent to the �rst black stone,

indicating that �nding a win in such a variation may not be entirely obvious.

Summarizing, go-moku is assumed to be a �rst-player win but, as far as

we know, no complete proof has been published nor has any go-moku program

ever been shown to be unbeatable when playing black.

At this point we reiterate our remark of section 4.1. In earlier publications

we have used the term threat-space search for the application of db-search to

qubic and go-moku. In this text we only use the term db-search.

5.2 Rules and strategies

Go-moku is a two-player game, related to the well-known trivial game of tic-

tac-toe. While in tic-tac-toe players must create a line of three consecutive

markers of their color on a restricted 3 � 3 board, in go-moku players must

create a line of �ve on a practically unrestricted lattice. Through the years,

several variants of go-moku have been developed, which are described in detail
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in section 5.2.1. Next, threats and threat trees are discussed in section 5.2.2.

Finally, in section 5.2.3 some insight is given into the way human go-moku

experts think.

5.2.1 Rules

In go-moku, simple rules lead to a highly complex game, played on the 225

intersections of 15 horizontal and 15 vertical lines. Going from left to right

the vertical lines are lettered from a to o; going from the bottom to the top

the horizontal lines are numbered from 1 to 15. Two players, black and white,

move in turn by placing a stone of their own color on an empty intersection,

henceforth called a square. Black starts the game. The player who �rst

makes a line of �ve consecutive stones of her color (horizontally, vertically or

diagonally) wins the game. The stones once placed on the board during the

game never move again nor can they be captured. If the board is completely

�lled, and no one has �ve-in-a-row, the game is drawn.

Go-moku variants

Many variants of go-moku exist; they all restrict the players in some sense,

mainly reducing the advantage of black's �rst move. We mention four

variants.

Non-standard boards In the early days the game was played on a 19� 19

board, since go boards have that size. Some people prefer to think of

go-moku as being played on an in�nite board. However, a larger board

increases black's advantage (Sakata and Ikawa, 1981), which resulted

in the standard board size of 15� 15.

Free-style go-moku An overline is a line of six or more consecutive stones

of the same color. In this variant, an overline is regarded as a win.

Standard go-moku In the variant of go-moku played most often today, an

overline does not win (this restriction applies to both players). Only a

line of exactly �ve stones is considered as a winning pattern.

Renju A professional variant of go-moku is renju. White is not restricted in

any way, e.g., an overline wins the game for white. However, black is not

allowed to make an overline, nor a so-called double three or double four

(cf. Sakata and Ikawa (1981)). If black makes any of these patterns,

she is declared to be the loser. Renju is not a symmetric game: to play
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it well requires di�erent strategies for black and for white. Even though

black's advantage is severely reduced, she still seems to have the upper

hand.

We have investigated both free-style go-moku and standard go-moku. We

remark that in this chapter we discuss free-style go-moku unless it is explicitly

stated otherwise.

Opening restrictions

In an attempt to make the game less unbalanced, opening restrictions have

been imposed on black. We mention two such restrictions.

Professional go-moku In professional go-moku, black is forced to make her

�rst move in the center of the board. White must play her �rst move at

one of the eight squares adjacent to black's �rst move. Black's second

move must be outside the set of 5� 5 squares centered by black's �rst

stone.

Professional renju In professional renju, the game starts with two players

which are named temporary black and temporary white. Temporary

black plays her �rst move at the center of the board, while temporary

white plays her �rst move adjacent to the black stone on the board.

Due to symmetry, there are only two distinct �rst moves for temporary

white. For each of these two, there are 12 selected squares where

temporary black is allowed to play her second move. Thus, there are

24 possible 3-ply sequences in this variant. Next, temporary white

may choose between playing black or white for the remainder of the

game. Temporary black automatically plays the other color. Then,

white plays her second move. Finally, black selects two squares for her

third move and gives white the choice between these two. From there,

the game continues according to the rules of standard renju.

In our research we have investigated variants of go-moku without any

opening restrictions.

5.2.2 Threats and threat trees

We describe the four types of threats in go-moku, followed by a discussion of

threat trees and winning threat trees.
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Figure 5.1: Threats in go-moku.

Threats

In go-moku a threat is an important notion; the main types have descriptive

names: the four (�gure 5.1a) is de�ned as a line of �ve squares, of which the

attacker has occupied any four, with the �fth square empty; the straight four

(�gure 5.1b) is a line of six squares, of which the attacker has occupied the

four center squares, while the two outer squares are empty; the three (�gure

5.1c and 5.1d) is either a line of seven squares of which the three center

squares are occupied by the attacker and the remaining four squares are

empty, or a line of six squares with three consecutive squares of the four center

squares occupied by the attacker and the remaining three squares empty; the

broken three (�gure 5.1e) is a line of six squares of which the attacker has

occupied three non-consecutive squares of the four center squares, while the

other three squares are empty. A winning pattern, i.e., a line of �ve squares,

all occupied by one player, is named a �ve.

If a player constructs a four, she threatens to win on the next move.

Therefore, the threat must be countered immediately at the empty square of

the four. If a straight four is constructed, the defender is too late, since there

are two squares where the attacker can create a �ve at her next move (unless,

of course, the defender has the opportunity to win at her next move). With

a three, the attacker threatens to create a straight four at her next move.

Thus, even though the threat has a depth of two moves, it must be countered

immediately. If an extension at both sides is possible (�gure 5.1c), then there
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Figure 5.2: Complicated threats.

are two defensive moves: both directly adjacent to the attacking stones. If

only one extension is possible then three defensive moves are available (�gure

5.1d). Moreover, against a broken three, three defensive moves exist (�gure

5.1e).

We remark that more complicated threats exist, which threaten to win in

two or more moves. Three examples are shown in �gure 5.2, in each of which

black threatens to play at the intersection of the two lines of black stones.

In �gure 5.2a, black threatens to create a double four, in �gure 5.2b, black

threatens to create a four-three, and in �gure 5.2c, black threatens to create

a double three. Each of these is a winning pattern. White can counter the

threats of �gure 5.2 in 3, 4 and 5 possible ways, respectively.

In our research we have not included the patterns of �gure 5.2 as threats

for three reasons. First, the large number of defensive moves per threat does

not combine well with our transformation of the winning threat-tree search

to a single-agent search, as described in section 5.3.1. Second, recognizing

threats which consist of a single line on the board can be performed more

e�ciently than recognizing threats which consist of combinations of lines.

Third, the threats shown in �gure 5.2 are only a small sample of the complete

set of more complicated threat patterns, making inclusion of all possible

threats of go-moku a complex task. In Uiterwijk (1992b) a program based

on a large set of threat patterns is described.
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Figure 5.3: Winning threat variations

Threat trees

To win the game against any opposition a player needs to create a double

threat (either two threes, two fours, or a three and a four). In most cases,

several threats are executed before a double threat occurs. A tree in which

each attacker move is a threat is called a threat tree. A threat tree leading to

a (winning) double threat in each variation is called a winning threat tree. A

variation in a winning threat tree is called a winning threat variation. Each

threat in the tree forces the defender to play a move countering the threat.

Hence, the defender's possibilities are limited.

In �gure 5.3a a position is shown in which black can win through a winning

threat variation consisting of fours only. Since a four must be countered

immediately, the whole sequence of moves is forced for white.

In �gure 5.3b a position is shown in which black wins through a winning

threat variation consisting of threes, twice interrupted by a white four. As

mentioned earlier, white has at each turn a limited choice. During the play,

she can create fours as is shown in �gure 5.3b. Still, her loss is inevitable.
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5.2.3 Human strategies

During the second and third Computer Olympiad (Levy and Beal, 1991; Van

den Herik and Allis, 1992), we observed two human expert go-moku players

(A. Nosovsky, 5th dan and N. Alexandrov, 5th dan). These Russian players

are involved in two of the world's strongest go-moku playing programs (Vertex

and Stone System). While observing the experts, it became clear that they

are able to �nd quickly sections on the board where a winning threat tree can

be created, regardless of the number of threes which are part of the winning

threat tree. The depth of these winning threat trees are typically in the range

of 5 to 20 ply.

The way a human expert �nds winning threat trees so quickly can be

broken down into the following four steps.

1. A section of the board is chosen where the con�guration of stones seems

favorable for the attacking player. It is then decided whether enough

attacking stones can collaborate making it useful to search for a winning

threat tree. This decision is based on a "feeling", which comes from a

long experience in judging patterns of stones (cf. De Groot (1965)).

2. Threats are considered, and in particular the threats related to other

attacking stones already on the board. Defensive moves by the

opponent are mostly disregarded.

3. As soon as a variation is found in which the attacker can combine her

stones to form a double threat, it is investigated how the defender can

refute the potential winning threat variation. Whenever the opponent

has more than one defensive move, an examination is made to see

whether the same threats work in all variations of the threat tree.

Moreover, it is investigated whether the opponent can insert one or

more fours, e�ectively neutralizing the attack.

4. If only a few variations of the tree do not lead to a win via the same

threat variation, an examination is made to see whether the remaining

positions can be won via other winning threat trees.

In practical play, a winning threat tree often consists of a single set of

attacking moves applicable to each variation of the tree, independent of the

defensive moves.

We remark that the size of the state space is considerably reduced by

�rst searching for one side (the attacker). Only if a potential winning
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threat tree is found is the impact of defensive moves investigated. This

approach is supported by the analyses given in (Sakata and Ikawa, 1981).

When presenting a winning threat tree, they only provide the moves for the

attacker, thus indicating that the set of attacking moves works irrespective

of the defensive moves. Possible fours which the defender can create without

refuting the threat tree can be neglected altogether

In positions without winning threat trees, the moves to be played

preferably increase the potential for creating threats or, whenever defensive

moves are called for, the moves chosen will reduce the opponents potential for

creating threats. The human evaluation of the potential of a con�guration is

based on two aspects: (1) direct calculations of the possibilities, (e.g., if the

opponent does not answer in that section of the board) and (2) a so-called

good shape (i.e., con�gurations of which it is known that stones collaborate

well).

In section 5.3 we model the above thinking process in our application of

db-search to go-moku.

5.3 Applying db-search

As mentioned before, threat trees play a dominant role in go-moku. To play

go-moku well, it would be advantageous to have a module which determines

whether a winning threat tree exists. Our application of db-search to go-moku

is restricted to searching for winning threat trees.

This section consists of four parts. First, in section 5.3.1 we describe

how the adversary-agent state space, if restricted to a subset of all possible

threat trees, can be transformed into a single-agent state space. Second, in

section 5.3.2 we illustrate how the single-agent state space thus created for

go-moku �ts in the framework for db-search as presented in chapter 3. Third,

in section 5.3.3 we discuss properties of the single-agent state space for go-

moku which have not been included in the framework of section 5.3.2. For

each of these properties it is explained how our implementation of db-search

handles them. Fourth, in section 5.3.4 heuristics are described which lead to

a signi�cantly improved e�ciency, at the cost of a slightly reduced e�cacy.

Fourth, in section 5.3.5 we describe the additional requirements necessary to

apply db-search to standard go-moku instead of free-style go-moku.
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5.3.1 A single-agent search in go-moku

Our description of the single-agent state space in go-moku consists of a set

of de�nitions, an interpretation of the de�nitions, and the transformation of

the adversary-agent state space to a single-agent state space.

De�nitions

In the previous sections we have introduced the concept of threats, threat

trees and winning threat trees. For our application of db-search to go-moku,

we formally de�ne the notions threat (de�nition 5.1), reply (de�nition 5.2),

threat sequence (de�nition 5.3), potential winning threat sequence (de�nition

5.4) and winning threat sequence (de�nition 5.5).

De�nition 5.1 A threat in go-moku is a move by the attacker creating a

�ve, a straight four, a four, a three or a broken three. A �ve and a straight

four are called double threats, while a four, three and broken three are called

single threats. The squares related to a threat are the 5 (�ve and four),

6 (straight four, three, broken three) or 7 (three) squares in the line of the

threat (cf. section 5.2.2).

De�nition 5.2 A reply to a threat T in go-moku is the set of defender moves

R, such that each element of R counters T . Against a �ve and a straight four,

R is empty, against a four, R consists of one move, against a three R consists

of two or three moves, and against a broken three, R consists of three moves.

De�nition 5.3 A threat sequence in go-moku is any sequence of moves

(a

1

; d

1

; a

2

; d

2

; : : : ; a

n

; d

n

), with n � 1, such that each a

i

, 1 � i � n is a

single threat, and each d

i

is the reply to a

i

.

De�nition 5.4 A potential winning threat sequence in go-moku is any

sequence (a

1

; d

1

; : : : ; a

n

; d

n

; a

n+1

; d

n+1

), such that (a

1

; d

1

; : : : ; a

n

; d

n

) is a

threat sequence, a

n+1

is a double threat and d

n+1

is the reply to a

n+1

.

De�nition 5.5 A winning threat sequence in go-moku is a potential winning

threat sequence (a

1

; d

1

; : : : ; a

n

; d

n

; a

n+1

; d

n+1

), for which it has been checked

that the defender cannot counter the threat sequence by:

1. interjecting a sequence of threats the attacker must respond to, leading

to a win for the defender

2. interjecting a sequence of threats the attacker must respond to, leading

to occupation of a square related to a threat a

i

, before the defender has

played the reply to d

i

.



5.3 Applying db-search 131

Interpretation

Here we elaborate on the de�nitions presented above. De�nition 5.1 de�nes

threats in accordance with the de�nitions of section 5.2.2. The only di�erence

is our inclusion of the �ve as a threat, and naming the straight four and the

�ve double threats. The reason for doing so is explained below.

When a double three is created, it is assumed that the defender counters

one of them, allowing the attacker to convert the remaining three into a

straight four at the next move. When a double four is created, it is assumed

that the defender counters one of them, allowing the attacker to convert the

remaining four into a �ve at the next move. When a four-three is created,

depending on the threat countered by the defender, the attacker can create

either a �ve or a straight four. Thus, we may recognize double threats one

move after they appear in the form of straight fours or �ves.

The de�nition of a reply forms a crucial step in our conversion of

the adversary-agent state space of go-moku into a single-agent state space.

Human strategies imply that often threat trees are found such that in each

variation the same attacking moves are played. In other words, the choice

between defensive moves in such threat trees is irrelevant. We convert these

threat trees to threat sequences by allowing the defender to play all defensive

moves as a single reply. In �gure 5.4, we have depicted such a winning threat

sequence, consisting of four threats. After black 1, white has the three-move

reply 2. After black 3, white has the two-move reply 4. After black 5, white

has the three-move reply 6. Black 7 creates a straight four, to which the

reply set is empty.

Clearly, in free-style go-moku, having extra stones on the board is never a

disadvantage. Thus, if a variation wins for the attacker when the defender is

allowed to play replies consisting of multiple stones, then the variation wins

also if the defender is forced to select one stone from each multiple-stone

reply.

Positions exist in which the multiple-stone reply leads to counter play for

the defender, while the attacker would win in all variations through the same

attacking moves if the defender were restricted to playing one stone per reply,

but these are rare.

A potential winning threat sequence as de�ned in de�nition 5.4 has in-

vestigated only local defensive moves, i.e., after each threat, it is assumed

that the defender must immediately counter the threat. A winning threat

sequence has also been checked for global defensive moves, i.e, that the squares

not related to the threat sequence have been investigated for their in
uence
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Figure 5.4: White defending with multiple-stone replies

on the success of the threat sequence.

Adversary-agent vs. single-agent

As we have seen, in (winning) threat sequences, each reply by the defender

is implied by the previous attacker move. Therefore, we may conceptually

merge these two moves into a single meta-move.

The state space created by these meta-moves is no longer an adversary-

agent state space, but instead a single-agent state space. In the remainder of

this section, when discussing meta-moves, we assume that the attacker move

and defender move in a meta-move are made simultaneously.

5.3.2 A db-search framework for go-moku

In this section we de�ne a db-search framework for the single-agent state

space of go-moku, de�ned in the previous section. We mention that the

framework only involves local defensive moves, while ignoring global defensive

moves. Global defensive moves of a position will be discussed in section 5.3.3.

The terminology introduced in chapter 3 is used throughout this chapter.
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Notation

Lines of �ve, six and seven squares play an important role in go-moku. For

notational purposes, we de�ne the following sets.

G

5

= ffs

1

; s

2

; : : : ; s

5

g j s

1

; : : : ; s

5

form a line of �ve squaresg

G

6

= ffs

1

; s

2

; : : : ; s

6

g j s

1

; : : : ; s

6

form a line of six squaresg

G

7

= ffs

1

; s

2

; : : : ; s

7

g j s

1

; : : : ; s

7

form a line of seven squaresg

We mention that on a 15 � 15 board, G

5

has 572 elements, G

6

has 500

elements and G

7

has 432 elements.

Furthermore, we de�ne a linear order on the squares of the go-moku board,

such that a1 < a2 < : : : < a15 < b1 < : : : < o15. Clearly, the outer squares

of a line are always minimal and maximal within the line, with respect to

this ordering.

Attributes

The set U of all attributes is de�ned as follows. U = fS(i; x) j a1 � i �

o15 ^ x 2 f�; �; �gg. Attribute S(i; x) represents the fact that square i is

occupied by the attacker (�), occupied by the defender (�), or empty (�). It

can easily be checked that U has 675 elements.

Operators

The operator f

FI;g

5

(�ve), for g

5

= fs

1

; : : : ; s

5

g and g

5

2 G

5

, is de�ned as

follows.

f

pre

FI;g

5

= fS(s

1

; �); S(s

2

; �); S(s

3

; �); S(s

4

; �); S(s

5

; �)g

f

del

FI;g

5

= fS(s

5

; �)g

f

add

FI;g

5

= fS(s

5

; �)g

The operator f

SF;g

6

(straight four), for g

6

= fs

1

; : : : ; s

6

g and g

6

2 G

6

,

and s

1

< s

2

; s

3

; s

4

; s

5

< s

6

, is de�ned as follows.

f

pre

SF;g

6

= fS(s

1

; �); S(s

2

; �); S(s

3

; �); S(s

4

; �); S(s

5

; �); S(s

6

; �)g

f

del

SF;g

6

= fS(s

5

; �)g

f

add

SF;g

6

= fS(s

5

; �)g
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The operator f

FO;g

5

(four), for g

5

= fs

1

; : : : ; s

5

g and g

5

2 G

5

, is de�ned

as follows.

f

pre

FO;g

5

= fS(s

1

; �); S(s

2

; �); S(s

3

; �); S(s

4

; �); S(s

5

; �)g

f

del

FO;g

5

= fS(s

4

; �); S(s

5

; �)g

f

add

FO;g

5

= fS(s

4

; �); S(s

5

; �)g

The operator f

BT;g

6

(broken three), for g

6

= fs

1

; : : : ; s

6

g and g

6

2 G

6

,

and s

1

< s

2

; s

3

; s

4

; s

5

< s

6

and s

4

neither minimum nor maximum in

fs

2

; s

3

; s

4

; s

5

g, is de�ned as follows.

f

pre

BT;g

6

= fS(s

1

; �); S(s

2

; �); S(s

3

; �); S(s

4

; �); S(s

5

; �); S(s

6

; �)g

f

del

BT;g

6

= fS(s

1

; �); S(s

4

; �); S(s

5

; �); S(s

6

; �)g

f

add

BT;g

6

= fS(s

1

; �); S(s

4

; �); S(s

5

; �); S(s

6

; �)g

The operator f

T2;g

7

(three with 2 reply moves), for g

7

= fs

1

; : : : ; s

7

g and

g

7

2 G

7

, and s

1

< s

2

< s

3

; s

4

; s

5

< s

6

< s

7

, is de�ned as follows.

f

pre

T2;g

7

= fS(s

1

; �); S(s

2

; �); S(s

3

; �); S(s

4

; �); S(s

5

; �); S(s

6

; �); S(s

7

; �)g

f

del

T2;g

7

= fS(s

2

; �); S(s

5

; �); S(s

6

; �)g

f

add

T2;g

7

= fS(s

2

; �); S(s

5

; �); S(s

6

; �)g

The operator f

T3;g

6

(three with 3 reply moves), for g

6

= fs

1

; : : : ; s

6

g and

g

6

2 G

6

, and s

1

< s

2

; s

3

; s

4

; s

5

< s

6

and s

2

either minimum or maximum in

fs

2

; s

3

; s

4

; s

5

g, is de�ned as follows.

f

pre

T3;g

6

= fS(s

1

; �); S(s

2

; �); S(s

3

; �); S(s

4

; �); S(s

5

; �); S(s

6

; �)g

f

del

T3;g

6

= fS(s

1

; �); S(s

2

; �); S(s

5

; �); S(s

6

; �)g

f

add

T3;g

6

= fS(s

1

; �); S(s

2

; �); S(s

5

; �); S(s

6

; �)g

The set of all operators U

f

is de�ned as follows.

U

f

= ff

FI;g

5

j g

5

2 G

5

g [ ff

SF;g

6

j g

6

2 G

6

g [ ff

FO;g

5

j g

5

2 G

5

g [

ff

BT;g

6

j g

6

2 G

6

g [ ff

T2;g

7

j g

7

2 G

7

g [ ff

T3;g

6

j g

6

2 G

6

g

We mention that on a 15� 15 board, U

f

contains 3076 operators, of which

each can be applied in more than one way, resulting in a total number of

23596 possible applications of operators.
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Initial state and goal states

The initial state consists of exactly 225 attributes, one per square indicating

the contents of the square. Each possible con�guration of black, white and

empty squares in which neither player has occupied a line of �ve can serve

as initial state. The set U

g

of goal states is independent of the initial state,

and is de�ned as follows.

U

g

= f fS(s

1

; �); S(s

2

; �); S(s

3

; �); S(s

4

; �); S(s

5

; �)g j

fs

1

; s

2

; s

3

; s

4

; s

5

g 2 G

5

g [

f fS(s

1

; �); S(s

2

; �); S(s

3

; �); S(s

4

; �); S(s

5

; �); S(s

6

; �)g j

fs

1

; s

2

; s

3

; s

4

; s

5

; s

6

g 2 G

6

^ s

1

< s

2

; s

3

; s

4

; s

5

< s

6

g

In other words, each state containing a �ve or straight four is a goal state.

U

g

is not singular.

Properties of the go-moku framework

The framework we have described above is monotonous. Furthermore, we

can easily restrict ourselves to non-redundant paths. If U

g

were singular, our

U

k

would be complete.

We can create a singular U

g

0

, by de�ning a special goal attribute G and

operators which transform any element of U

g

into G, which would result in

a complete U

k

. A discussion of the completeness of U

k

would be premature,

however, since so far we have ignored global defensive moves.

5.3.3 Go-moku speci�c enhancements to db-search

The db-search framework for go-moku presented in the previous section

focuses only on the local defensive moves. For those moves we de�ned replies

such that each defender move was forced, allowing us to transform the search

into a single-agent search.

A search for global defensive strategies is only necessary to investigate

whether a potential winning threat sequence is correct. Thus, given such

a threat sequence, it should be investigated whether the defender has

alternatives to the local reply to refute the threat sequence. To investigate

the global defensive strategies, we perform single-agent searches, this time

�xing the attacker choices. After each attacker move speci�ed in the threat

sequence, the resultant position is investigated for a global defensive strategy

by the defender. We describe the investigations in four steps.
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First, we de�ne the threat categories, which play an important role

in determining for each position the types of global defensive moves

available. Second, we describe two ways in which global defensive moves may

successfully counter a potential threat sequence. Third, we describe a set of

parameters for db-search. Fourth, we describe how the module searching for

winning threat sequences is composed of a series of db-searches.

Threat categories

The operators de�ned in section 5.3.2 can be divided in three categories.

Category 0 consists of the �ve, category 1 of the straight four and four, and

category 2 consists of the three and the broken three. Using these categories

we can state exactly what kind of global defensive moves may be interjected

by the defender while countering a threat sequence. Against a threat from

category i, only threats from categories j can be used as global defensive

moves, with j < i. Thus, against a �ve no global defensive moves exist,

against a (straight) four only a �ve can serve as global defensive move, while

against a three or broken three, both �ves, straight fours and fours may serve

as global defensive moves.

The above relation between global defensive moves and threat categories

can easily be veri�ed by noting that each threat in category i threatens to

win in exactly i moves.

Global defensive strategies

In section 5.3.1 we have listed two ways in which the defender may successfully

counter a threat by interjecting global defensive moves. First, she may create

a sequence of threats leading to a win. Second, she may create a sequence of

threats leading to the occupation of a square in the threat sequence.

Here we describe how db-search can be used to determine whether such a

global defensive strategy exists. Our application of db-search for this purpose

is such that we may erroneously decide that a defensive strategy exists, thus

rejecting a winning threat sequence for the attacker, but that we will never

overlook the existence of a defensive strategy.

To prevent confusion arising from the terms attacker and defender in this

context, we assume here that player A has found a potential winning threat

sequence, and we investigate whether player B has a global defensive strategy

after move a

i

by A. Three remarks concerning the application of db-search

to search for global defensive strategies for player B are in order.
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1. The goal set U

g

for player B should be extended with singleton goals

for occupying any square in threat a

j

or reply d

j

, with j � i.

2. If B �nds a potential winning threat sequence (i.e., a global defensive

strategy against the potential winning threat sequence ofA), this threat

sequence is not investigated for counter play of player A. Instead,

in such a case we always assume that A's potential winning threat

sequence has been refuted.

3. In the application of db-search for player B, only threats of categories

less than the category of the threat played by A may be applied. Thus,

in a db-search for player B, only threats having replies consisting of a

single move are applied.

If we examine the description of db-search for B, we may �nd that the

search is monotonous and contains no redundant paths. As argued before, U

g

can be easily transformed into a singular U

g

0

, without a conceptual di�erence

in the resulting U

k

. Since any sequence found for player B is accepted as

refutation of the potential winning threat sequence of A, we claim that if

application of db-search does not �nd a global defensive strategy, such a

strategy does not exist for player B.

We stress this point as it is a vital element in the process of solving go-

moku: we must ensure that in no position we accept a threat sequence as

winning, if the threat sequence could be refuted.

Parameters to db-search

Above, we have seen that db-search is used to �nd potential winning threat

sequences as well as to investigate whether the defender has a global defensive

strategy refuting a potential winning threat sequence. These searches are all

performed by the same module, whose parameters are listed below.

1. The position to which db-search is to be applied.

2. The attacker, i.e., the player for whom a db-search is applied.

3. The goal squares, i.e., the set of squares, which, if one is occupied by

the attacker, terminates the search.

4. The defensive check option. This is a Boolean value indicating whether

a potential winning threat sequence should be investigated for counter

play.
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Figure 5.5: White refutes a potential winning threat sequence.

5. The maximum category, i.e., only threats of this category and lower

categories may be applied.

The winning threat sequence module

Here we present a step by step description of the winning threat sequence

module, with the aid of the position in �gure 5.5.

To �nd the winning threat sequence for black in the position before black

1 of �gure 5.5, db-search may be called with (1) that position; (2) attacker

black; (3) the empty set of goal squares; (4) the defensive check option at

value true; (5) maximum category 2. If the potential winning threat sequence

shown in �gure 5.5 is found, db-search will be called �ve more times, after

black 1, black 3, black 5, black 7 and black 9. The parameters to db-search

after, for instance, black 1 are: (1) the position after black 1; (2) attacker

white; (3) the set consisting of the 28 squares related to the threats black

1 (7 squares), black 3 (5 squares), black 5 (5 squares), black 7 (5 squares)

and black 9 (6 squares); (4) the defensive check option at value false; (5)

maximum category 1.

After black 5, which is of category 1, black can only use a defensive

strategy involving threats of category 0, i.e., �ves only. However, to create

a �ve after black 5, white should have created several fours after black 1 (of

category 2), followed by the local defensive reply white 2. Therefore, we need

to try threats of category 0 after black 5, for all positions which could arise
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after sequences of fours by white, in earlier global defensive strategy searches.

Indeed, if white, instead of playing 2 immediately after 1, interjects move

a (followed by black's forced reply b) and move c (followed by black's forced

d), then after white 2, black 3, white 4 and black 5, white can create a �ve

at e.

Summarizing, to �nd the global defensive strategies, after each attacker

move of category 2, a search for category 1 for the defender should be

performed, while after each attacker move of category 1, a search for category

0 for the defender should be performed, from every position which could be

reached by interjecting defender fours after previous threats of category 2 by

the attacker.

5.3.4 Heuristically improving the e�ciency of db-search

As we have argued before, the module which searches for winning threat

sequences will only return a winning threat sequence if the winning threat

sequence is guaranteed to lead to a win for the attacker. The opposite is not

true: not all winning threat sequences will be found. This is caused by our

acceptance of a global defensive strategy, without investigating whether the

defensive strategy itself can be countered.

In the context of winning threat trees our search is far from complete,

as we only �nd winning threat sequences, i.e., threat trees in which each

variation leads to a win through the same attacking moves, in the same

order.

In this section we present three heuristics which signi�cantly increase

the e�ciency of our winning threat sequence module, at the cost of another

(small) reduction in e�cacy. Each of the heuristics, if at all applicable, is

not applied during searches for global defensive strategies, in order to ensure

that all existing refutations of potential winning threat sequences are found.

Global refutation

Our �rst heuristic for increasing the e�ciency of db-search is based on the

existence of global refutations in some positions. A global refutation is a

con�guration on the board which refutes all winning threat sequences of the

attacker. An arti�cial example is depicted in �gure 5.6.

Black to move has a large number of distinct potential winning lines at

her disposal, each starting with a three. For instance, black 1 creates a double

three immediately. White 2, however, creates a double four, thus successfully

countering the three created by black 1. Alternative lines for black, such as
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Figure 5.6: Global refutation of all potential winning lines.

black a, black b and black c, again creating a double three, are all also refuted

by white 2.

Thus, while db-search, focusing on local defenses, �nds many potential

winning threat sequences, each of these is refuted by the search for global

defensive strategies. Finding all several hundreds or thousands of potential

winning threat sequences in such a position is clearly a waste of time.

As heuristic to recognize those positions, we check at the end of each db-

search level the number of potential winning threat sequences investigated

so far. If this number exceeds a preset threshold T , the search is terminated.

Experiments showed that T = 10 leads to a largely increased e�ciency, at a

small cost in e�cacy.

We remark that while searching for global defender strategies, the �rst

potential winning threat sequence found is accepted as refutation. The search

is therefore not in
uenced by this heuristic.

Category reduction

The category reduction heuristic is designed for a special type of global

refutations. Let us suppose that the defender has a threat T

c

1

of category

c

1

. If the attacker creates a threat T

c

2

of category c

2

, then either (1) c

2

< c

1

,

or (2) T

c

2

should counter T

c

1

, or (3) T

c

1

is a refutation of T

c

2

. As the search

for potential winning lines does only consider local replies, countering T

c

1

by

T

c

2

will only occur by accident.
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Ignoring the option that this may happen, we obtain the category

reduction heuristic: if in a node N of the db-search dag, the defender has a

threat of category c

1

, for each descendent of N the attacker is restricted to

threats of categories less than c

1

.

We remark that this heuristic is switched o� while searching for global

defender strategies.

Restricted threes

The de�nitions of operator f

T3;g

6

(three with 3 reply moves) and operator

f

T2;g

7

(three with 2 reply moves) imply that if the latter is applicable, the

former is too. While in most positions where both are applicable they are

interchangeable, operator f

T2;g

7

is superior in that its reply consists only of 2

moves, thus diminishing the chances for counterplay. Only in rare occasions

are both applicable, while only f

T3;g

6

leads to a winning threat sequence.

To prevent the creation of threat sequences with as only di�erence the

occurrence of f

T3;g

6

instead of f

T2;g

7

, we restrict application of f

T3;g

6

to lines

where f

T2;g

7

is not applicable.

We remark that while searching for global defender strategies, only threats

of categories 0 and 1 are applicable. The search is therefore not in
uenced

by this heuristic.

5.3.5 Additional requirements for standard go-moku

Standard go-moku di�ers from free-style go-moku in the value of overlines: an

overline is a win in free-style go-moku, while it is not in standard go-moku.

To apply our winning threat sequences module, as described in the

previous sections, to standard go-moku, a few additional requirements are

necessary. We discuss these requirements brie
y.

First, we introduce the concept of a line extension. Second, we describe

how a line extension in
uences a db-search for potential winning threat

sequences. Third, we describe the in
uence of line extensions to the search

for global defensive strategies.

Extensions

For each line g 2 G

5

, a square c is an extension of g, if g[fcg 2 G

6

. Similarly,

for each line g 2 G

6

, a square c is an extension of g, if g [ fcg 2 G

7

. We

mention that the extension of a line g 2 G

7

is de�ned analogously, after the

set G

8

has been de�ned. The extension set of a line g, i.e., the set of all
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extensions of g consists of 0, 1 or 2 elements, depending on the position of g

on the board, with respect to the board edge.

Line extensions and winning threat sequences

A winning threat sequence in standard go-moku must meet all the requi-

rements for a winning threat sequence in free-style go-moku. An added

requirement is that at the moment of execution of threat a

i

, the squares

in the extension set of a

i

must not be occupied by an attacker stone.

An attacker stone may be placed at the extension of a threat in three

distinct ways.

1. The stone was present in the initial position.

2. The stone is played while executing an earlier threat in the threat

sequence.

3. The stone is played as forced response to a defender threat.

The �rst and second way of placing an attacker stone at a threat extension

is checked during the db-search for potential winning threat sequences: an

operator can only be applied if the extension squares are empty or occupied

by the defender. During the combination stage of db-search, we ignore the

occupation of extensions. Instead, after a potential winning threat sequence

has been found, the extensions of all threats in the threat sequence are

examined.

Line extensions and global defensive strategies

The third way of placing an attacker stone in a threat extension provides the

defender with an extra global defensive strategy. This strategy �ts as follows

within the parameters provided to db-search. In addition to the set of goal

squares provided for free-style go-moku, the set of extensions to the threats

which have not yet been executed by the attacker is passed to db-search. A

refutation of the potential winning threat sequence has been found, if one

of the extensions has been occupied by the attacker (i.e., the player whose

potential winning threat sequence is being examined).

Special attention must be paid to the multiple-stone replies. While having

extra stones on the board does not harm a player in free-style go-moku, it

may harm a player in standard go-moku. To ensure that each global defensive

strategy is found, we perform the db-search for global defensive strategies
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as a free-style go-moku search. Thus, a potential winning threat sequence

in standard go-moku may be refuted through a sequence of defender threats

containing overlines.

5.4 Applying pn-search

To apply pn-search to go-moku, we need to convert the go-moku game tree

into an and/or tree. This is described in section 5.4.1. Furthermore,

we describe the enhancements to basic pn-search adopted for our go-moku

implementation in section 5.4.2.

5.4.1 Go-moku as an AND/OR tree

Pn-search (as described in chapter 2) is an and/or-tree algorithm. To apply

it to go-moku, we represent positions where black is to move as or nodes, and

positions where white is to move as and nodes. A win for black is represented

by the value true, while a draw and a win for white are represented by the

value false. Thus, proving the pn-search tree means that black can win in

the root positions, while disproving the pn-search tree means that white can

achieve at least a draw.

In each or node, black is to move. As evaluation function at such a node,

we apply db-search with black as attacker. If db-search �nds a winning threat

sequence, the node evaluates to true, otherwise to the value unknown. In each

and node, white is to move. The same procedure as in or nodes is applied,

this time with white as attacker. If a winning threat sequence is found, the

node evaluates to false, otherwise to the value unknown. A node representing

a position with all 225 squares occupied and neither player having a winning

con�guration, is a draw, and therefore obtains value false, without applying

db-search.

5.4.2 Enhancements

The above description explains how standard pn-search is applied to go-moku.

However, �ve enhancements have been added to speed up the search. The

enhancements are discussed in this section.

Transpositions

A dag is created instead of a tree, using the algorithm described in section

2.3.3. This ensures that if a position has already occurred in the dag, or
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if a position is equivalent through automorphisms to another position in

the dag, the position is not investigated again. We test for the 8 standard

automorphisms of a square board.

Restricting black's moves

In go-moku, the average branching factor is more than 200. Most of these

moves are unrelated to the battle at the center of the board and should be

ignored. However, since we want to prove the value of the root position, we

cannot simply ignore moves using heuristic selection functions.

A large reduction of the branching factor at the or nodes can be made,

however. Since we want to prove a win for black in the root position, it is

su�cient to prove for each internal or node that (at least) one child leads to

a win for black. For each internal and node all children must be proved.

Using these properties, we may at each or node restrict black to, say,

the N most-promising children, using a heuristic ordering function. If in the

restricted game tree a proof of black's win is found, the same proof is valid

in the full game tree. In our investigations presented in section 5.5 we have

restricted black in each or node to the 10 most-promising children. Before

the ordering function is applied, we �rst restrict the set of all legal moves to

the set of moves which counter the threats of the opponent, as described in

the next section.

The heuristic ordering function used is rather simple: each square is

assigned 4 points for each three with a two-stone reply, 3 points for each three

with a three-stone reply, 2 points for each broken three, 2 points for each open

two, which is de�ned as two black stones in the center of an otherwise empty

line of 6 and 1 point for each broken two, which is de�ned as two black stones

with a one-square gap in the center three squares of an otherwise empty line

of 7. Among all children, the 10 children with the highest score are selected.

No points are given for the creation of a four. Creating a four is often

only a strong move if it stops a threat of the opponent, or if it creates a

winning threat sequence. Since a node is only expanded if no winning threat

sequence exists and it is ensured that we select the 10 best moves among the

moves which counter the existing threats of the opponent, there was no need

to assign any points for creating fours.

Clearly, a thorough analysis of the strategic knowledge of experts would

have led to a more re�ned move-ordering function. As we show in section

5.5, the function described here was su�cient for our purposes.
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Figure 5.7: Black threatens to win by moves 1 through 7.

Related squares

As stated before, most of the approximately 200 legal moves per position

are unrelated to the battle at the center of the board and should be ignored.

Although we cannot ignore moves by white using heuristic selection functions,

we may try to apply a winning threat sequence found as reply to one move to

a large number of other moves. In this section we describe how this is done

in a reliable way.

For each winning threat sequence of the attacker, we de�ne the set of

related squares as follows. An empty square c is related to a winning threat

sequence in a given board position, if the threat sequence no longer wins, if

c would have been occupied by the defender.

Before we use the notion of related squares, we introduce the term implicit

threat, for any position where a player threatens to win through a winning

threat sequence. In �gure 5.7 black threatens to win through the threat

sequence consisting of black 1 through 7. Therefore, the position is an implicit

threat for black.

Now let us suppose that we have algorithms to determine whether a

position is an implicit threat, and that we can determine for each winning

threat sequence the set of related squares. Given a position with white to

move, which is an implicit threat for black, we determine the set of squares

related to the winning threat sequence. Then, it follows directly from the

de�nition of related squares that we may restrict white to these related
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Figure 5.8: Replies to the threat sequence of �gure 5.7

squares.

Clearly, by determining implicit threats and sets of related squares in an

e�cient way, we could speed up our search. To determine an implicit threat,

it su�ces to make a null-move for the opponent (white in �gure 5.7) and to

apply db-search to �nd a winning threat sequence for black. Determining the

exact set R of squares related to a winning threat sequence is computationally

expensive. Instead, we determine a superset S of the set of related squares.

The set consists of all squares meeting one of the following two conditions.

1. The square is in one of the lines of the threats in the winning threat

sequence.

2. The square may be used in any counter threat by the opponent, in any

of the global defensive strategy searches performed to investigate the

winning threat sequence.

Using db-search S can be determined e�ciently. Without proof we state that

R � S. For empirical evidence of this claim we refer to section 5.5.4.

In �gure 5.8a, we have shown the set S for the threat sequence of �gure

5.7. The squares labeled a are part of the lines of the threats. The squares
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labeled bmay, together with white stones on the board or the defensive moves

in the threat sequence, form new defensive threats for white.

Iterated related squares

The related-squares concept can be used to even further reduce the set of

white moves to be examined. After having determined the superset S of

the set of related squares, an element s of S is selected. A white stone is

placed at s, and the position is investigated with db-search. If no winning

threat sequence is found, a child is added to the tree for s. Otherwise, the

superset S

1

of squares related to the newly found winning threat sequence

is determined. Only squares in S \ S

1

need further be investigated, since all

moves at other squares lead to a win through one of the two winning threat

sequences found so far. This procedure is repeated until all moves have been

examined.

In �gure 5.8b we have marked the set of squares for which child nodes

are grown. Of the 35 related squares of �gure 5.8a (set S), only 19 squares

(set R) remain in 5.8b.

The null-move heuristic and the related-squares heuristic are applied for

both players in the pn-search dag. For the attacker in the search (the player

for which we select only 10 moves per node) we �rst determine the set of

counter moves using the heuristics of this section, and then order the moves

according to the move-ordering function of the previous section. Of course,

if less than 10 counter moves exist, these are all selected.

The implicit-threat heuristic

The branching factor of go-moku is such that the search tree may become

quickly intractable. To force black to select moves where white has a

restricted number of moves, we evaluate a position which is not an implicit

threat for black to false. Only early in the game tree (i.e., when there are

less than 9 stones on the board), if no black move leads to an implicit threat,

is the above restriction lifted.

We have found that no later than move 11 in the game, black can ensure

that each move is an implicit threat. By enforcing this restriction, the size

of the search tree is signi�cantly reduced.
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Heuristic (dis)proof number initialization

During our initial experiments, we have used the standard proof and disproof

numbers initialization of 1 each. While studying the trees grown, it became

apparent that pn-search tended to pursue some deep lines longer than

desirable. This is mainly caused by continuously executing threats, without

creating a potential for a winning threat sequence.

In qubic, as described in chapter 4, we chose to remove all threatening

moves for the attacker from the search tree. We could safely do so, since our

db-search implementation for qubic searched the full space of threatening

sequences. The incompleteness of db-search in go-moku with respect to the

space of all threat trees blocks a similar approach in go-moku. Instead, we

have opted to attach a small penalty to all deep lines. At each frontier

node the proof and disproof numbers are initialized to the number of full

moves made from the root position. Thus, at depth d, the proof and disproof

numbers are initialized to 1 + bd=2c.

This heuristic initialization ensures that forcing lines are not searched

too deeply (before su�cient alternatives have been tried), without interfering

with the essence of pn-search.

5.5 Solving go-moku

The program Victoria consists of the pn-search algorithm described in the

previous section, using db-search as evaluation function. In this section we

describe how Victoria solved both free-style go-moku and standard go-moku.

First, we describe the i/o of Victoria. Second, it is explained how the game

tree was split in several hundreds of subtrees. Third, we present statistics

regarding the search process. Finally, we discuss the reliability of our results.

5.5.1 Victoria's I/O

The input to Victoria consists of (1) A go-moku position; (2) The game

variant (free-style go-moku or standard go-moku); (3) The player to move;

and (4) The maximum tree size for pn-search.

The output of Victoria consists of (1) the value upon termination of

pn-search (true, false, unknown) (2) a database containing a record for

each position in the solution tree. The database returned by Victoria is

empty unless the value true was returned. For each record in the database

representing a position with black to move, at least one child position will also
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be represented in the database. For each record in the database representing

a position with white to move, only child positions are represented in the

database in which black does not have a winning threat sequence.

The database created by Victoria served two purposes. First, the merged

database of all subtrees investigated should provide us with a solution tree

for the full go-moku game tree. Second, the databases created by solved

subtrees were used as transposition table for pn-searches. We have seen

several occasions where a search of several hundreds of thousands of nodes

without transposition tables was reduced to a mere few thousands nodes, by

hitting the database early during the search.

5.5.2 Subdividing the game tree

We have divided the go-moku game tree into several hundreds of smaller

problems. The main reason for doing this is that the size of the go-moku

game tree is such that we could not solve it through a single pn-search, due

to the limits imposed on pn-search by the size of our computer's working

storage.

We remark that by splitting the game tree into subtrees, part of the

solution process has been performed by hand. Most of these moves have been

made with the aid of Sakata and Ikawa (1981), while others where suggested

by the proof and disproof numbers of failed pn-searches. The number of black

moves selected by hand (several hundreds) is less than one percent of the total

number of black moves in the solution tree (many tens of thousands).

5.5.3 Statistics

In this section we present the statistics of running pn-search on go-moku. As

mentioned before, we have subdivided the problem in several hundreds of

subtrees, each of which was individually solved. Since each completed search

extended the database of solved positions, the number of positions searched

partly depend on the order in which the subproblems were solved.

Execution time

Our calculations were performed in parallel on 11 sun sparcstations of the

Vrije Universiteit in Amsterdam. Each machine was equipped with 64 or

128 megabytes internal memory, ensuring that pn-search trees of up to 1

million nodes would �t in internal memory, without slowing down the search

by swapping to disk. The processor speed of the machines ranged from 16
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to 28 mips. Our processes could only run outside o�ce hours. As a result,

sometimes processes which had not �nished at 8am were killed, and had

to be restarted at 6pm. Still, over 150 cpu hours per day were available

for solving go-moku. In the �gures below, we have not included cpu time

spend on processes which were killed in the morning and restarted in the

evening, nor have we included the cpu time spent on test runs during which

we discovered bugs in our software (see also section 5.5.4). Thus, the time

mentioned indicates the amount of time necessary to solve go-moku without

interruptions, using the �nal version of Victoria.

Free-style go-moku was solved using 11.9 days of cpu time, while standard

go-moku (thus banning wins through overlines) was solved with 15.1 days of

cpu time.

Pn-search tree size

The summed size of all pn-search trees built during the calculations (again

excluding terminated processes and runs of initial versions of the program)

for free-style go-moku is 5.3 million. For standard go-moku, 6.3 million nodes

were grown.

Comparing these �gures with the execution time necessary for the

solutions, we see that both variations ran at the speed of approximately 5

nodes per second. The rejection of potential winning lines involving overlines,

resulted in the creation of a 20% larger search tree.

Db-search evaluations

For each internal node of the pn-search tree, 10-20 independent db-searches

(excluding global defensive strategy searches) were performed on the average,

resulting in, between 50 and 100 db-searches per cpu second. Multiplied by

the total calculation time, the number of independent db-searches executed

to solve go-moku lies between 50 million and 130 million.

Solution size

The solution tree found by Victoria for free-style go-moku is slightly smaller

than the solution tree found for standard go-moku: 138,790 versus 153,284

database records. Comparing these numbers with the total size of the pn-

search trees, we �nd that 1 out of every 40 nodes created participates in the

solution. The deepest variation in both solution trees is 35 ply.
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depth free-style standard depth free-style standard

0 1 1 18 1351 1885

1 1 1 19 1094 1590

2 35 35 20 710 1125

3 35 35 21 594 954

4 7227 7242 22 408 641

5 6824 7251 23 327 506

6 20859 22749 24 193 296

7 20239 21078 25 154 241

8 20686 22056 26 85 159

9 20550 21898 27 74 128

10 8959 10015 28 40 67

11 8637 9570 29 35 54

12 5246 6015 30 7 19

13 4778 5492 31 7 18

14 2999 3663 32 1 8

15 2647 3282 33 1 6

16 2173 2810 34 1 1

17 1811 2392 35 1 1

Table 5.1: Nodes per tree depth in go-moku solutions.

In table 5.1 we have listed the number of nodes per depth for both solution

trees. We remark that for each position with black to move, only one child

position needs to be included. Due to transpositions, the number of nodes

at each odd ply should therefore be less or equal to the number of nodes at

the preceding even ply. The only exception in the table, ply 5 for standard

go-moku, is caused by the fact that we have included several options for black

for some opening positions in our set of positions to be checked by pn-search.

Deep winning lines

The combination of db-search and pn-search makes it di�cult to determine

the maximin of go-moku (i.e., the length of the game after optimal play

of both players). Both db-search and pn-search do not aim at �nding the

shortest winning paths, while the longest path found by the combination of

the algorithms may well be di�erent from the game leading to the single
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Figure 5.9: Deep variations

position at level 35 of the solution tree. Even though the games leading to

positions at level 35 of the solution trees do not necessarily show optimal

play of either side, we have depicted two of these games in �gure 5.9.

5.5.4 Reliability

In section 4.5.4, we have explained the hazards of solving games through large

computer programs. The same hazards mentioned there exist in go-moku in

even greater form.

Our go-moku implementation consists of almost 20,000 lines of C-code.

Approximately half is dedicated to the X-interface created by Loek Schoen-

maker, while the other half consists of db-search, pn-search, database look-up

and database creation, automorphism management, etc. Errors in programs

this size are virtually unavoidable. Many errors have been created and

corrected during implementation and testing of the program, but there is

no guarantee that all bugs have been found.

A further source of error is the complexity of the calculation process.

We used 11 sparcstations in parallel to solve each of the several hundreds of

subtrees. These 11 sparcstations created their own databases when solving a

position, while they all used one large database as transposition table. After
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solving a position, the transposition table should be extended with the newly

created small databases. A locking mechanism was created to ensure that

no databases would be corrupted. Still, computers going down at critical

moments introduced the possibility that data would get lost. This, in fact,

has happened during our calculations.

To ensure the completeness of the solution found, we have created a

module which examines the �nal database created. For each position with

black to move a successor position must be present in the database. For

each position with white to move, for each legal move either a winning

threat sequence must exist, or the successor position must be present in

the database. The only common element with the solving process is db-

search. Thus, an error in db-search may go unnoticed, while all other parts,

including pn-search and the related-squares generator, are eliminated from

the checking process. Using the database checking module, we have both

located missing database parts, due to computers failing at critical moments

and human error, and have found an error in our related-squares generator.

The �nal investigations, however, for both the free-style go-moku and standard

go-moku variants were successful.

The correctness of our db-search implementation is based on meticulously

testing all possible types of counterplay, including intricate ways in which the

opponent forces the attacker, after a sequence of fours, to occupy an extension

square of a threat in the threat sequence. After the �nal database creation,

which was checked and accepted by the database-checking module, no errors

have been found in this part of the program. Therefore, go-moku should be

considered a solved game.
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Chapter 6

Which Games Will Survive?

6.1 Scope

In chapters 2 and 3, we presented two new search techniques which have been

applied to qubic and go-moku in chapters 4 and 5, thereby partly answering

our �rst research question (see section 1.4). In this chapter, we broaden our

scope to all three research questions and the problem statement. The chapter

consists of four parts.

First, in section 6.2, we de�ne four properties of games. These are perfect

information, convergence, sudden death, and complexity.

Second, in section 6.3, we discuss four aspects of each of the games of the

Olympic List.

1. The relation between the game and the four game properties introduced

in section 6.2.

2. The state of the art in game-playing programs.

3. Techniques currently applied.

4. Obstacles to progress.

Third, in section 6.4 we review our three research questions on the basis

of the discussion of individual games presented in section 6.3, leading to a

review of the problem statement.

Finally, in section 6.5, we speculate about the future playing strength of

computer game playing programs, as well as of the future of thinking games

in our society.

155
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For the rules of the games discussed in this chapter, we refer to Levy and

Beal (1989), Levy and Beal (1991) and Van den Herik and Allis (1992).

6.2 Game properties

In this section we de�ne four properties of games, viz. perfect information

(section 6.2.1), convergence (section 6.2.2), sudden death (section 6.2.3) and

complexity (section 6.2.4).

6.2.1 Perfect information

The perfect-information property divides the set of games into two disjoint

subsets: the set of perfect-information games and the set of imperfect-

information games. In a perfect-information game, all players, at any time

during the game, have access to all information de�ning the game state and

its possible continuations. Any game which is not a perfect-information game

is de�ned to be an imperfect-information game.

For example, chess is a perfect-information game. Relevant information

de�ning the game state in chess includes: (1) the con�guration of chess pieces

on the board; (2) the number of moves made since a pawn was moved, or

a piece has been captured; (3) the en-passant capturing opportunities in

the current game state; (4) the castling options left to both players; and

(5) previous con�gurations with their en-passant capturing opportunities

and castling options. The information described here allows each player to

determine the game state and its possible continuations, including en-passant

capturing moves, castling moves, repetition of positions, and the status with

respect to N -move rules. In practice, a player needs only three pieces of

information: (1) the con�guration of chess pieces; (2) the game score, i.e.,

all moves played since the start of the game; and (3) the o�cial rules of

chess. The combination of these three pieces of information allows a player

to deduce all necessary information during a game.

Bridge is an example of an imperfect-information game. During the

bidding phase of bridge, each player sees only her own cards, leaving her

unaware of the distribution of the remaining 39 cards over her partner and

her opponents. During the playing phase, each player sees her cards, those

of the dummy and the cards already played, still leaving her unaware of the

distribution of the remaining cards over the undisclosed hands.

Optimal play in a perfect-information game always consists of a pure

strategy, while in imperfect-information games optimal play may require a
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mixed strategy. In a pure strategy, for each game state a single move can

be determined, which leads to the game-theoretic value of the position.

In a mixed strategy, optimal play requires a player to play a move i with

probability p

i

, while at least two such p

i

are non-zero. For a discussion of

pure and mixed strategies, we refer to von Neumann and Morgenstern (1944).

6.2.2 Convergence

The convergence property labels games as either converging, diverging or

unchangeable. Before we can de�ne these classi�cations, we introduce con-

versions in de�nition 6.1.

De�nition 6.1 A move M from state A to state B is a conversion, if no

con�guration of pieces which could have occurred in any game leading to the

con�guration of pieces in A, can occur in a game continuing from state B.

Examples of conversions in chess are moving a pawn, or capturing a piece. In

checkers, any move except for a non-capture move by a king is a conversion.

For most games, the main conversions involve the addition (e.g., connect-

four, go-moku, qubic and othello) or removal (e.g., chess, checkers, bridge) of

pieces from play. We may divide the state space of all legal positions of a

game into disjoint classes, where each class contains all positions with the

same number of pieces on the board. Let us de�ne a directed graph G in

which each class is a node, and an arc exists between class A and class B if

and only if a position P exists in A such that a move exists from P which

leads to a position Q in B. We can now de�ne convergence using this notion

of classes of positions. A game converges if for the majority of edges from A

to B in G, the cardinality of A is larger than the cardinality of B. A game

diverges if for the majority of edges from A to B in G, the cardinality of B

is larger than the cardinality of A. A game is unchangeable if the game does

not have conversions, or if it neither converges nor diverges.

An example of a converging game is checkers. The initial position in

checkers consists of 24 men, while during the game the number of men

decreases. After the �rst few captures, the number of legal checkers positions

decreases as the number of pieces on the board decreases.

An example of a diverging game is othello. Each move in othello adds a

piece to the board. Except for the endgame, the number of legal positions

increases as the number of stones on the board increases.

An example of an unchangeable game is shogi. Although shogi contains

captures, there are no conversions in shogi. Captured pieces may be brought
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into play again by the player who captured the piece. As a result, the total

number of pieces participating in a shogi game does not increase or decrease.

Thus, shogi is an unchangeable game.

The relevance of the convergence property is that for converging games

endgame databases (Thompson, 1986) can be created, while this is generally

unfeasible for diverging or unchangeable games.

6.2.3 Sudden death

The sudden-death property labels games as either sudden-death or �xed-ter-

mination. A sudden-death game may end abruptly by the creation of one of

a prespeci�ed set of patterns. A �xed-termination game lacks sudden-death

patterns.

An example of a sudden-death game is go-moku: the game is terminated

if one of the players has created a line of �ve stones in her color. Sudden-

death games need not always terminate through the creation of a sudden-

death pattern: go-moku is declared a draw when all 225 squares have been

occupied without either player creating a winning pattern.

An example of a �xed-termination game is othello. Othello lasts until

both players run out of moves or one of the players has no discs left on the

board. In practice, games last between 55 and 60 moves. Even though a

game might be decided within 15 moves by one player capturing all the discs

of the opponent, such an anomaly is only of marginal relevance.

The sudden-death property often is an important property in restricting

the search tree of a game. For games of high complexity (see section 6.2.4)

the sudden-death element in combination with a clear advantage for one of

the players may be the main property that allows the game to be solved.

Examples are qubic and go-moku (both sudden-death games) described in

chapters 4 and 5.

6.2.4 Complexity

The property complexity in relation to games is used to denote two di�erent

measures, which we name the state-space complexity and the game-tree

complexity.

State-space complexity

The state-space complexity of a game is de�ned as the number of legal game

positions reachable from the initial position of the game. While calculating
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the exact state-space complexity of games such as chess is hardly feasible, we

present a method for calculating an approximation, using tic-tac-toe as an

example.

A crude approximation to tic-tac-toe's state-space complexity is obtained

through the notion that each of the nine squares can be occupied by cross,

nought, or be empty. Thus, an upper bound to the state-space complexity is

3

9

= 19; 683. A sharper upper bound is obtained by noting that the number of

crosses should equal the number of noughts, or exceed it by one. This results

in an upper bound of 6; 046. The exact state-space complexity, however, is

obtained by observing that a position is illegal if a move has been added after

a player has created three-in-row. Thus, positions containing a line of three

noughts with nought to move, or a line of three crosses with cross to move

must be excluded. The resulting 5; 478 legal positions determine the state-

space complexity of tic-tac-toe. The de�nition of the state-space complexity

could be re�ned so that symmetrically equivalent positions are counted only

once. We refrain from such a re�nement.

Let us assume that we have established a superset of all legal positions

of the game and the cardinality of that superset. Let us also assume that

for each individual position of the superset we have an evaluation function

which determines whether the position is legal. Using the combination of

these two and a Monte-Carlo simulation, we may obtain an estimate of the

true state-space complexity. We performed 10 Monte-Carlo simulations,

with a thousand samples per simulation, chosen from the superset of 3

9

con�gurations mentioned above. For each simulation we determined the

fraction of the positions which were legal. Multiplication of this fraction

by the size of the superset, 3

9

, gave an estimated state-space complexity in

our 10 simulations ranging from 4; 920 to 5; 983 with an average of 5; 479,

surprisingly close to the true state-space complexity.

The main application of the state-space complexity of a game is that it

provides a bound to the complexity of games which can be solved through

complete enumeration. With today's (1994) technology, where computer

networks have access to Gigabytes of disk storage, the boundary of solvability

by exhaustive enumeration lies at a state-space complexity of approximately

10

11

.

Game-tree complexity

Before we are able to de�ne the game-tree complexity of a game, two auxiliary

de�nitions are needed.
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De�nition 6.2 The solution depth of a node J is the minimal depth (in ply)

of a full-width search su�cient to determine the game-theoretic value of J.

According to de�nition 6.2, the solution depth of a mate-in-n position in

chess, n � 1, is 2n� 1 ply.

De�nition 6.3 The solution search tree of a node J is the full-width search

tree with a depth equal to the solution depth of J.

As an example we consider a chess position J with white to move. White has

30 legal moves. For simplicity's sake, we assume that after each legal white

move, black has 20 legal moves of which at least one mates white. Then,

the solution search tree of J consists of J , the 30 children of J , and the 600

grandchildren of J .

De�nition 6.4 The game-tree complexity of a game is the number of leaf

nodes in the solution search tree of the initial position(s) of the game.

If J were the initial position of a game, its game-tree complexity would be

600.

While calculation of the exact game-tree complexity of games such as

chess is hardly feasible, we can calculate a crude approximation as follows.

Using tournament games, we can observe the average game length. Also, we

may determine the average branching factor, either as a constant, or as a

function of the depth in the game tree. The game-tree complexity can be

approximated by the number of leaf nodes of the search tree with as depth the

average game length (in ply), and as branching factor the average branching

factor (per depth).

For instance, in tic-tac-toe, the average game length is close to nine ply,

since most games end in a draw, which always takes exactly nine half-moves.

The branching factor at level i in the game tree equals 9 � i. Thus, the

minimax search tree with depth 9 and branching factor 9 � i at level i

consists of 9! = 362880 terminal nodes, which is an estimate of the game-tree

complexity of tic-tac-toe. Note that the game-tree complexity of a game may

be larger than the state-space complexity, as the same position may occur at

several di�erent places in the game tree.

The game-tree complexity is an estimate of the size of a minimax search

tree which must be built to solve the game. Thus, using optimally-ordered

�-� search, we may expect to search a number of positions in the order of

the square root of the game-tree complexity (Knuth and Moore, 1975).

As a guide to the perplexed, anticipating results duely credited in the

following section, we present a graphical overview of the two complexities we
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Figure 6.1: Estimated game complexities.

distinguish in �gure 6.1. For credits and sources see the discussions of the

individual games.

6.3 The games of the Olympic List

In this section we discuss each of the games of the Olympic List individually.

For each game, we describe (1) its properties, as introduced in section 6.2;

(2) the currently strongest computer programs; (3) the techniques applied in

these programs; and (4) the obstacles to progress in the game.

We have ordered the games of the Olympic List as follows. First, we

discuss four solved games (qubic, connect-four, go-moku and nine men's morris)

in the order in which they were solved. Second, we discuss the eight unsolved

perfect-information games, in an order depending on the strengths of the

currently strongest game-playing program: (1) stronger than the current
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world champion (awari and othello) (2) Grand Master strength or stronger

(checkers, draughts and chess) (3) below Grand Master strength (Chinese

chess, renju and go). Third, we discuss the three imperfect-information games

of the Olympic List (scrabble, backgammon and bridge).

6.3.1 Qubic

Game properties

Qubic is a diverging, perfect-information game with sudden death. An upper

bound to the state-space complexity of qubic is 3

64

� 10

30

. To estimate the

game-tree complexity, we assume an average game length of 20 ply. With

64� i legal moves in a position at ply i, the game-tree complexity of qubic is

approximately

64!

44!

� 10

34

.

The state of the art

Qubic was the �rst game of the Olympic List to be solved. It was proved

that the game is a win for the player to move �rst (Patashnik, 1980). The

main game property responsible for qubic being solvable is sudden-death. For

details on the solution of qubic, we refer to chapter 4.

Techniques currently applied

Qubic was solved by Patashnik using a standard �-� search for determining

the existence of winning threat sequences. All non-forced moves leading to

the solution were made by hand, using expert knowledge. Qubic has been

solved again using db-search for determining the existence of winning threat

sequences, and pn-search for making the non-forced moves, as described in

chapter 4.

Obstacles to progress

It could be argued that qubic provides additional challenges beyond solving

the game. For instance, one might want to determine the game-theoretic

value of every legal position, or determine the shortest winning threat

sequence from each position. However, we believe that with respect to human

performance on qubic, all interesting problems within qubic have been solved.

During the solution processes, no obstacles to progress have been discovered.
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6.3.2 Connect-Four

Game properties

Connect-four is a diverging, perfect-information game with sudden death.

Although at �rst sight the sudden death in connect-four may seem as

important as in qubic, most games in connect-four are decided between moves

37 and 42, i.e., while �lling the last column of the board.

The state-space complexity of connect-four has been estimated at 10

14

(Allis, 1988). With an estimated average game length of 36 ply, and an

average branching factor of 4, the game-tree complexity of connect-four is

approximately 4

36

� 10

21

.

The state of the art

In September 1988, James Allen determined the game-theoretic value through

a brute-force search (Allen, 1989): a win for the player to move �rst.

A few weeks later, in October 1988, connect-four was solved through a

knowledge-based approach, resulting in the tournament program victor

(Allis, 1988; Uiterwijk et al., 1989a; Uiterwijk et al., 1989b). Recently

John Tromp has calculated the game-theoretic value for all 8-ply connect-

four positions (Tromp, 1993).

Techniques currently applied

Both Allen and Tromp used a sophisticated implementation of �-� search.

While Allen spent 300 hours of cpu time to determine the game-theoretic

value of the position after 1: d1, Tromp's calculations took some 40,000 hours

cpu time for his (vastly) more complex task. Our knowledge-based solution

initially took 350 hours of cpu time. However, adding a knowledge rule in

combination with changing the search algorithm to pn-search has resulted

in a program which solves connect-four in less than 25 cpu hours. All these

experiments were performed on comparable hardware.

Obstacles to progress

The current version of victor, in combination with the 8-ply database

created by Tromp, can be used to determine the game-theoretic value of

almost any connect-four position within minutes. Furthermore, victor's

knowledge-based component is able to provide us with an explanation why
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a position is won. Therefore, we believe that no challenges remain within

connect-four and no obstacles to progress have been discovered.

6.3.3 Go-moku

Game properties

Go-moku is a diverging, perfect-information game with sudden death. An

upper bound to the state-space complexity is 3

225

� 10

105

. To estimate the

game-tree complexity, we assume an average game length of 30 ply. With

225 � i legal moves in a position at ply i, the game-tree complexity of go-

moku is approximately 10

70

. For the professional variant of go-moku, with

opening restrictions for black, the average game length will be somewhat

larger, resulting in a higher game-tree complexity.

The state of-the-art

As described in chapter 5, two variants of go-moku without opening

restrictions have been solved in August 1992, proving that the game-theoretic

value is a win for the player to move �rst. The current computer go-

moku world champion (according to the rules of professional go-moku) is the

program Vertex written by Shaposhnikov (Uiterwijk, 1992a). It is unclear

at what performance level Vertex plays in relation to the strongest human

players.

Techniques currently applied

As described in chapter 5, the two variants of go-moku without opening

restrictions were solved using a combination of db-search and pn-search.

world champion Vertex is based on standard game-tree search techniques:

a �xed-depth (16-ply) �-� search for the most-promising 14 moves in

each position. Vertex has been provided with expert pattern knowledge

and opening knowledge of two-fold world correspondence Renju champion

Nosovsky .

Obstacles to progress

During the solution process of go-moku, it became apparent that through its

tactical knowledge Victoria was able to suggest strong positional moves in

many positions. In other words, many positionally strong moves could be

explained through tactical calculations. We believe that a combination of
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db-search and pn-search, without the multi-move reply and other e�ciency

measures, can be implemented to outperform all human players in the search

for deep winning threat trees. With similar positional bene�ts as encountered

during the solution process of the free-style and standard go-moku, we

conjecture that the best human players can be defeated at any variant of

go-moku. It is also possible that standard techniques as applied in Vertex

would prove su�cient for the task. Therefore, we conclude that no obstacles

have been discovered in go-moku.

6.3.4 Nine men's morris

Game properties

Nine men's morris is a converging, perfect-information game. The game has a

sudden-death element: if a player is unable to make a move, she loses. Even

though this plays a role in practice, its in
uence on the game is much less

than that of the main feature: closing mills and thereby capturing men of the

opponent. Therefore, it seems more appropriate to classify nine men's morris

as a �xed-termination game than as a sudded-death game.

The state-space complexity of nine men's morris, calculated by Gasser

(1990), is the smallest of all games of the Olympic List: 10

10

. Nine men's

morris' game-tree complexity is much larger. During the opening phase of

the game, the branching factor is 16 on the average In the middle game

and end game, the branching factor ranges from 1 to over 50, resulting in

our conservative estimate of the average branching factor of 10. Setting the

average game length at 50 ply (again a conservative estimate), the game-tree

complexity of nine men's morris is calculated to be at least 10

50

.

The state of the art

Nine men's morris has been solved in October 1993 by Ralph Gasser, proving

that the game-theoretic value is a draw. In the years preceding the solution of

the game, the program Bushy, also by Gasser, has shown itself to be stronger

than the best human players, as illustrated by defeating the British champion

by 5 to 1 in an exhibition match during the 2nd Computer Olympiad (Levy

and Beal, 1991).

Techniques currently applied

Nine men's morris has been solved through the creation of databases by

retrograde analysis for all positions which may occur during the middle game
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or endgame (Gasser, 1993). For the opening phase, which takes exactly 18

ply, a forward search using �-� search was applied.

Obstacles to progress

During the solution of nine men's morris through the application of standard

search techniques, no obstacles to progress on the game have been discovered.

6.3.5 Awari

Game properties

Awari is a converging, perfect-information game, with �xed termination. Only

in rare circumstances may a player run out of moves early in the game,

terminating it. The chances of this happening, however, are quite remote,

which is why awari is not a sudden-death game.

The state-space complexity of awari is calculated by Allis et al. (1991c) to

be 10

12

. The game-tree complexity of awari, based on an average branching

factor of 3.5 and an average game length of 60 ply, is estimated at 10

32

.

The state of the art

Although lack of o�cial human awari champions makes it di�cult to prove,

empirical evidence suggests that today's strongest awari program, Lithidion

(Allis et al., 1991c), outperforms the strongest human players. Lithidion

has lost games against human opponents, but in each of these cases the

game revealed a serious bug in the program. All other games against human

opponents were won, most by large margins.

We believe that awari will be the next game to be solved. Its state-space

complexity is such that, using 2 terabyte of disk space, awari can be solved.

It is only because solving awari is not a high-priority project, that it will

take several years and advances in technology before the hardware becomes

available to solve the game through full enumeration.

A similar approach as applied to nine men's morris, i.e. endgame-database

construction in combination with a forward search, may reduce the memory

requirements for solving awari.

Techniques currently applied

For a detailed description of the techniques applied to today's strongest awari

programs, we refer to section 2.4.3.
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Obstacles to progress

Given the current strength of awari programs, and the impending solution of

the game, no obstacles have been found on awari.

6.3.6 Othello

Game properties

Othello is a diverging, perfect-information game with �xed termination. The

state-space complexity of othello has an upper bound of 3

64

� 10

30

. Several

legality tests, such as that the four center squares should not be empty and

that the occupied squares must form a connected set, reduced the upper

bound in a Monte-Carlo analysis to approximately 10

28

.

To calculate the game-tree complexity of othello, we assume an average

game length of 58 ply. With a conservative estimate of the average number

of moves per position set at 10, we obtain a game-tree complexity of 10

58

.

The state of the art

Othello programs have played at the level of the human world champion since

1980. In that year the program The Moor won a game against the reigning

world champion. Since then, programs have continued to improve. Currently,

rating lists for othello players show that several programs clearly exceed the

strongest human players in playing strength. Today's strongest program is

Logistello by Michael Buro, which, among other tournaments, has won the

1st Paderborn othello tournament.

Techniques currently applied

All strong othello programs are based on standard game-playing techniques:

(1) a deep �-� search; (2) a large opening database; (3) an endgame search

determining the outcome of a game after approximately 36 ply; and (4) a

�nely-tuned evaluation function.

The chances that othello will be solved in the near future are extremely

remote. The state-space complexity rules out the option of full enumeration,

while the game-tree complexity renders a full-depth forward search imposs-

ible. The diverging nature of othello makes creation of endgame databases

unfeasible. Finally, the property of �xed termination of othello renders solving

the game in similar fashion to the solution of qubic and go-moku impossible.

Only if a so far unidenti�ed structure in the game is discovered, resulting in
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knowledge rules which prove the value of nodes early in the game tree, may

othello be solved in the coming decades.

Obstacles to progress

The strongest othello programs have already surpassed their human oppo-

nents. Even though solving the game is out of reach, human players do

not possess knowledge or skill not shown by their arti�cial opponents. We

conclude that no obstacles have been found in the research on othello.

6.3.7 Checkers

Game properties

Checkers is a converging, perfect-information game with �xed termination.

In checkers a game is lost by a player who runs out of moves. Although

in exceptional cases this may happen while both players still have most of

their pieces, in practice to win a game, (almost) all of the opponent's pieces

must be captured. The state-space complexity of checkers is estimated at

10

18

(Schae�er et al., 1991). The average branching factor is surprisingly

low: 2.8, which is mostly due to the forced-capture rule (Schae�er, 1993a).

With an estimated average game length of 70 ply, we obtain a game-tree

complexity of 10

31

.

The state of the art

As stated in section 1.1, Samuel's learning checkers program has, at least

by some, been wrongfully credited with solving the game, which has

clouded the history of the performance of checkers programs. Recent

e�orts by Schae�er et al. (1992) have led to the development of a true

world-championship level checkers program, named Chinook. Chinook has

challenged the human world champion, Marion Tinsley, for his title. In

a rather close match, 4 wins, 2 losses and 33 draws, Tinsley successfully

defended his title.

A rematch is scheduled for August 1994 in Boston. With the extra e�orts

spent on Chinook (see below), it is not unlikely that 1994 will see a computer

program become the strongest checkers entity in the world.

Techniques currently applied

Chinook consists of (1) a deep �-� searcher (averaging approximately 20
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ply); (2) a �ne-tuned evaluation function; (3) a large, man-made, computer

checked opening book; and (3) endgame databases comprising all endgame

positions of 7 pieces or less, and all endgame positions of 4 pieces against 4.

The in
uence of the endgame databases in checkers should not be under-

estimated. Due to forced captures in checkers, removing 16 men o� the board

may happen rather quickly.

With regard to solving checkers, we mention that full enumeration of the

game is ruled out by the size of the state-space complexity. A complete

forward search, even if the game-tree is perfectly ordered, is also out of reach

of current technology. However, convergence in checkers has allowed the

creation of large endgame databases, which decrease the size of the game-tree

signi�cantly. Therefore, we do not rule out that the combination of forward

search (either pn-search or �-� search) and endgame databases may prove

su�cient to solve (some of the openings of) checkers, as stated by Schae�er

(1993a).

Obstacles to progress

While Chinook's strength is its deep tactical searches, combined with perfect-

endgame knowledge, its main weakness is that the value of each pattern

not available in the evaluation function must be compensated for by search.

In contrast, Tinsley's pattern knowledge is such, that he knows of many

positions for which a search of 50 or more plies is necessary to reveal the

value of the position. Each of such patterns corresponds to a weakness of the

program with respect to human players.

Although Chinook's tactical and endgame ability make up for most of

the lack of pattern knowledge, it reveals traces of an obstacle to progress in

checkers: the inability to gain experience from previous plays. The suitability

of checkers to alternative approaches, such as the brute-force approach

applied by Chinook shows that this experience obstacle has not prevented

checkers programs from successfully challenging the strongest human players.

6.3.8 Draughts

Game properties

Draughts is a converging, perfect-information game with �xed termination,

in many ways similar to checkers. The state-space complexity of draughts is

signi�cantly larger than that of checkers, and we have calculated an upper

bound of 10

30

. The game-tree complexity of draughts is also larger than that
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of checkers. Conservatively estimating the average branching factor at 4,

and the average game length at 90 ply, we obtain an estimated game-tree

complexity of 4

90

� 10

54

.

The state of the art

The strongest draughts program is Truus written by Stef Keetman (Keetman,

1993). Truus' current level of play at tournament speed is ranked around the

40th position in the world. In speed draughts, Truus has beaten reigning

world champion Alexei Tsjizjow once, and reached the 9th position in a

tournament entered by almost all strong human players.

Currently, Keetman works towards the goal of creating a tournament

program able to defeat the human world champion. These e�orts may

improve Truus' level of play in the near future.

Techniques currently applied

Truus consists of (1) a deep �-� searcher (averaging a nominal depth of

approximately 10 ply); (2) a �ne-tuned evaluation function; (3) a large, man-

made, computer-checked opening book; and (4) a set of about 1,000 tactical

patterns, which Truus learned through automatic generalization.

According to its author, Truus' undefeated record amongst draughts

programs since 1990, is mostly due to its learning of tactical patterns

(Keetman, 1993). In the near future, Truus' learning abilities will be

extended to positional patterns, which have so far been hand-coded by the

author.

The large state-space complexity, in combination with the large game-tree

complexity, make draughts unsolvable in the foreseeable future.

Obstacles to progress

Truus' strength is mostly based on its knowledge of tactical patterns and

deep tactical searches. Although it has been argued by Keetman (1993) that

tactical knowledge in draughts enhances positional play, positional knowledge

is Truus' main weakness in comparison with human experts. Like in checkers,

each pattern not available in the evaluation function must be compensated

for by search revealing similar traces of an obstacle to progress as in checkers:

the inability to gain experience while playing the game.
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6.3.9 Chess

Game properties

Chess is a converging, perfect-information game with sudden-death. While

convergence and sudden-death are major contributors to high-level play in

games like qubic, go-moku and checkers, there is only a slight in
uence on

tournament play in chess. Convergence in chess is slow, and a large majority

of all chess games are decided long before endgame databases come into

play. In chess practice the subgoal of obtaining material superiority often

dominates the sudden-death goal of checkmate. Thus, both convergence and

sudden-death are less pronounced in chess, than in games like checkers and

draughts, or qubic and go-moku, respectively.

In our calculation of the state-space complexity of chess, we have included

all states obtained through various minor promotions. Using rules to

determine the number of possible promotions, given the number of pieces

and pawns captured by either side, an upper bound of 5 �10

52

was calculated.

Not all of these positions will be legal, due to the king of the player who just

moved being in check, or due to the position being unreachable through a

series of legal moves. Therefore, we assume the true state-space complexity

to be close to 10

50

. A state-space complexity of 10

43

, as mentioned by various

authors (Schae�er et al., 1991), is in our opinion too low an estimate.

The game-tree complexity of chess, 10

123

is based on an average branching

factor of 35 and an average game length of 80 ply.

The state of the art

Today's strongest chess program is Deep Thought (Hsu, 1990). Its estimated

elo rating of 2550 ranks it between positions 100 and 150 on the world rating

list. Current e�orts to create Deep Blue, a parallel program consisting of 1000

Deep Thoughts, aim at surpassing the human world champion.

Possibly as early as 1994 a new match with today's strongest computer

chess player and one of the reigning world champions, Garry Kasparov, will

be held. So far, all previous games between Kasparov and Deep Thought

have been won by the human Grand Master (Van den Herik and Herschberg,

1989).

Techniques currently applied

Most ai research on games has focused on chess. Several di�erent approaches

have been tried, ranging from purely knowledge-based (Reznitsky and
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Chudako�, 1990) to purely brute-force (Hsu, 1990).

Deep Thought consists of (1) a deep �-� searcher (averaging approxima-

tely 10 ply); (2) a �ne-tuned evaluation function; (3) a move-generator

embedded in hardware; and (4) a large, man-made, computer-checked

opening book.

Even though deep searches have had a large impact on the strength of

today's chess programs, we should not ignore the contribution of the improved

evaluation functions developed alongside the deeper searches. A strong

example is Ed Schr�oder's 1992 world champion program, which compensates

for one or more plies of search through a highly sophisticated evaluation

function, manually �ne-tuned through years of development and testing.

Obstacles to progress

In chess, just as in checkers, many strategic concepts known to human Grand

Masters are based on gains achieved after a large number of moves. For many

of these patterns, programs cannot compensate for their lack of knowledge

by simply searching a few ply deeper.

Again, but more clearly than in checkers and draughts, the contours of

lack of experience as obstacle to progress in chess becomes visible.

The extent to which this obstacle prevents programs from attaining

dominance over their human counterparts through brute-force alone is

unclear. While some believe that it will still take decades before computers

will defeat the human world champion, others have stated that this event

will occur before the year 2000 (Van den Herik, 1983).

6.3.10 Chinese chess

Chinese chess is similar to (Western) chess in many ways: (1) it is a

converging, perfect-information game with sudden-death; (2) its state-space

complexity, at 10

48

, is similar to that of chess (at 10

50

). (3) the approaches

to creating computer programs for playing Chinese chess have been similar

to that of chess. Its game-tree complexity, estimated at 38

95

� 10

150

(Tsao et al., 1991), is somewhat larger than the game-tree complexity of

chess, at 10

123

.

In our opinion, the main reason why Chinese chess programs fall somewhat

behind in their challenge of the stronger human players is the lesser amount

of e�ort invested in Chinese-chess research.
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6.3.11 Renju

Game properties

Renju (see also section 5.2.1) is a variant of go-moku, played by professional

players. It is a diverging, perfect-information game with sudden death. Its

state-space complexity and game-tree complexity are similar to that of go-

moku.

The state of the art

In its purest form, without special opening rules restricting black (see section

5.2.1), we believe renju can be proved a �rst-player win, in the same way

as go-moku has been solved. The main extension needed consists of the

de�nition of special types of threats white can create, using squares forbidden

to black (squares where black would create a double three, a double four or an

overline). Using these extra threat types, white may be able to counter threat

sequences which cannot be countered otherwise. Furthermore, potential

winning threat sequences by black must be checked for the occupation by

black of forbidden squares. Despite the extra complications in the program,

and the somewhat enlarged solution complexity, we believe that renju should

be solvable in at most ten times the e�ort required for the go-moku solution.

Professional renju, as described in section 5.2.1, is a game with virtually

equal chances for both players. As go-moku could only be solved through

black's opening advantage, we believe that professional renju will be unsolv-

able in the foreseeable future. Today's strongest renju programs, such as

Vertex by Shaposhnikov, are estimated to play at a level of 2 or 3 kyu (Ohta,

1993), which is the level of intermediate to strong club players.

Techniques currently applied

World champion Vertex is based on standard game-tree search techniques:

a �xed-depth (16 ply) �-� search for the most-promising 14 moves in

each position. Vertex has been provided with expert pattern knowledge

and opening knowledge by two-fold world correspondence Renju champion

Nosovsky.

Obstacles to progress

In go-moku we have seen that the availability of a strong tactical module

allows a program to determine positionally strong moves: through refutation
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of positionally weak moves by tactically forced sequences, the positionally

strong moves automatically emerge as the only options. In renju, a strong

tactical module can be created using the same principles as applied to go-

moku, albeit somewhat more complex. So far, it has not been shown that it is

necessary to master deep positional knowledge as applied by human master

players. In other words, so far no obstacles to progress in renju have been

discovered.

6.3.12 Go

Game properties

Go is a diverging, perfect-information game with �xed termination, We

remark that, in theory, go should be regarded as an unchangeable game,

instead of a diverging game, as any legal state can be reached from any other

legal state, if both players cooperate to this end. However, in practice, the

board is slowly �lled with stones until the board is divided into territories

for both players. For practical purposes, therefore, go is a diverging game..

Go's state-space complexity, bounded by 3

361

� 10

172

, is far larger than

that of any of the other perfect-information games of the Olympic List. Its

game-tree complexity, with an average branching factor of 250, and average

game length of 150 ply, is approximately 10

360

.

The state of the art

The strongest programs, such as Goliath by Mark Boon and Go-Intellect

by Ken Chen, have achieved ratings roughly between 8 and 10 kyu (Boon,

1991; Chen, 1992), a level equivalent to weak club players. The low playing

strength in comparison to human players cannot be attributed to the lack of

interest by strong players or by �nanciers: both Mark Boon and Ken Chen

have a go-rating of 5 dan, while large sums of money can be won by the

strongest go programs.

The explanation for the low playing strength of current go programs

is found in the nature of the game. While the potential branching factor

averages 250, human players only consider a small number of these, through

extensive knowledge of patterns relevant to go. Similarly, while evaluating

a position, humans determine the strengths and weaknesses of groups on

the board with pattern knowledge. Thus, either programs must obtain

pattern knowledge similar to human experts, or compensate for a lack of

such knowledge through search or other means.
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Techniques currently applied

We restrict our description to two-fold computer world champion Goliath,

written by Mark Boon. Goliath's main strength is its evaluation function.

As part of the evaluation function, heuristics determine the value of groups

under attack, as well as the result of many forcing sequences, without

having to analyze these sequences in detail. The evaluation function is used

in a selective search, where moves are generated using pattern knowledge

indicating candidate moves.

A future version of Goliath, aimed at achieving a playing level of 5 kyu,

is currently being developed.

Obstacles to progress

The main progress made by human go novices can be attributed to learning

important patterns, in go terminology called good shape and bad shape.

Furthermore, after each life-and-death attack, their pattern knowledge re-

garding the liveliness of each group on the go board is enhanced. After

playing a few hundred games, a novice go player will have acquired su�cient

pattern knowledge to defeat today's strongest go programs.

While lack of pattern knowledge is not unique to go (cf. checkers, draughts

and chess), the main reason why it stands out in go is that deep search fails

to mask the lack of pattern knowledge. As a result, in go, the experience

obstacle is clearly visible.

6.3.13 Scrabble

Game properties

Scrabble is a diverging imperfect-information game with �xed termination.

The imperfect information in scrabble consists of not knowing the contents

of the rack of the opponent and of the chance element in drawing tiles from

the heap.

The state of the art

During our investigations we have not been able to determine the current

level of the strongest scrabble programs. While some people stated that

scrabble programs such as TSP by Jim Homan and Tyler by Alan Frank (the

two competitors at the third Computer Olympiad) (Uljee, 1992) are stronger
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than the best human players, others believe that human players still have the

edge.

Techniques currently applied

Scrabble as a family game may be best known for its potential of family

disputes: while one player maintains that a word is valid, another may dispute

it. At o�cial scrabble tournaments, the set of legal words is strictly de�ned.

Either the British O�cial Scrabble Words or the American O�cial Scrabble

Players Dictionary determine the legal words. For words of nine or more

letters, Webster's Ninth Collegiate is decisive. All strong scrabble programs

have these dictionaries in memory.

Generally, a set of legal moves is selected, of which each move is evaluated

according to (1) the number of points scored; (2) the remaining board position

(i.e., the average score the opponent may obtain after the move); and (3) the

potential of the letters remaining on the rack, in combination with the letters

likely to be drawn from the heap.

The endgame of scrabble (i.e., once all letters from the heap have been

drawn) is a perfect-information game. A standard forward search can be

applied to such positions to determine optimal play for both sides.

Obstacles to progress

Scrabble programs have shown to be capable of high-level play, even though

relatively little research has been performed in this area. We believe

that using existing techniques, scrabble programs will surpass their human

opponents, if this is not already the case. Summarizing, no obstacles to

progress in scrabble have been encountered.

6.3.14 Backgammon

Game properties

Backgammon is a converging, imperfect-information game of �xed termina-

tion. Although both players have access to all information determining the

current state, dice determine the legal continuations. Not until a player is

bearing her stones o� or until the game has converted into a running game,

are conversion moves made.
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The state of the art

In 1980, the human world champion in backgammon, Luigi Villa, was beaten

in a short match by the backgammon program bkg (Berliner, 1980). However,

both the length of the match, and the fact that Villa seems not to have taken

the match as seriously as he should have done, suggest that bkg may not

have been truly stronger than the top human players of that time.

Recently, Gerald Tesauro created the program TD-gammon, which nar-

rowly lost a match against former world champion Bill Robertie: 40-39.

Tesauro's investigations suggest that TD-gammon is signi�cantly stronger

than bkg (approximately 0.35 points per game), while being close to current

human world-champion level (Tesauro, 1993).

Techniques currently applied

While bkg has been created through expert knowledge, TD-gammon is a

three-layer neural network, which is trained through the unsupervised TD(�)

learning algorithm. The input to TD-gammon consists of the board position

in combination with some fairly basic backgammon knowledge. From the

input and a random initialized network, TD-gammon has trained itself on

1.5 million games of self play, resulting in world-class level play (Tesauro,

1993).

Using the neural network as the evaluation function, TD-gammon

performs a 3-ply search. Doubling is handled by a separate algorithm, as

well as part of bearing o�, for which an endgame database is used.

Obstacles to progress

Tesauro's work on TD-gammon indicates that a neural network is capable of

capturing pattern knowledge in backgammon as well as the strongest human

players. Therefore, we do not see obstacles which have become apparent

through research on backgammon.

6.3.15 Bridge

Game properties

By declaring bridge to be a two-player game, it was possible to include it

in the Olympic List. Arguments can be adduced for bridge being a two-

player, three-player or four-player game. During the bidding phase, four

players participate in the bidding. During the playing phase, three players
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participate, while the fourth player becomes the dummy. On the score card,

two partnerships are recognized as the players in bridge. Like Blair et al.

(1993), we have chosen to regard bridge as a two-player game.

We remark that double-dummy bridge problems are two-player perfect-

information games, while bridge problems assuming optimal counterplay can

be regarded as two-player imperfect-information games. Finally, we mention

that Blair et al. (1993) call the three and four player phases in bridge, two-

player games without perfect recall.

Restricting ourselves to the playing phase of bridge, it is a converging,

imperfect-information game with �xed termination.

The state of the art

Instead of trying to master the whole game at once, several researchers have

concentrated on single aspects, such as Lindelof (1983), who developed a

special bidding system for computer programs and Berlekamp (1963), who

created a double-dummy analyzer. Recently, Schoo (1992) has created a

program which determines optimal play in single suits.

Despite progress on parts of bridge, the strength of today's best bridge

programs may at best be called amateur level. An example of leading bridge

programs is Bridge Baron by Tom Throop and Tony Guilfoyle, winner of the

bridge tournament at the second and third Computer Olympiads.

Techniques currently applied

Bridge Baron consists of knowledge rules which determine what to bid and

the information each bid contains. A major problem not yet solved is

interpreting the bids of the opponents when they are using vastly di�erent

bidding systems.

Knowledge rules containing standard playing patterns form the basis for

the playing phase, in combination with search. The heuristic nature of the

patterns is the source of errors, as shown in a deciding hand in the �nal of

the third Computer Olympiad (Throop and Guilfoyle, 1992).

Except for double-dummy problems and single-suit problems, exhaustive

search has so far not been successful, predictions by Levy (1989) notwith-

standing that a world-champion level program based on brute-force search

could be created with today's technology.
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Obstacles to progress

The main reason for the slow progress on bridge seems the inability of

programs to truly understand the vague information they are processing.

Instead, programs are taught a bidding system by specifying for each bid the

hands for which the bid may be applicable, and the information transferred

by the bid. The creation of a bidding program in this way su�ers from

the knowledge-acquisition bottleneck (Feigenbaum, 1979). Furthermore,

extracting information from the bidding phase for use during the playing

phase has proved to be rather di�cult. Novice human players learning to

play bridge experience similar problems. However, through experience, they

learn to interpret bids, judge hands, and transfer information gained during

bidding to the playing phase. We believe that the experience obstacle blocks

progress in bridge.

6.4 Reviewing the problem statement

In section 1.4, we have formulated the problem statement consisting of two

questions. To �nd an answer to the questions in the problem statement,

we formulated three research questions. In this section we summarize the

answers found to the three research questions (section 6.4.1) and review the

problem statement (section 6.4.2).

6.4.1 The research questions

In this section, we summarize the answers found to the three research

questions of section 1.4. We discuss each of the questions separately.

Solvable games

The �rst research question reads: `Which games can be solved and what

techniques may contribute to the solution. With respect to the �rst part of

the question, solvable games, we have found the following answer.

1. Four games (qubic, connect-four, go-moku and nine men's morris) have

been solved.

2. Awari and renju without opening restrictions will be solved in the near

future.

3. Checkers is a likely candidate for solution in the future.
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With respect to the second part of the question, contributing techniques, we

have found the following answer.

1. For qubic, go-moku and renju, db-search has been, or will be, a

contributor to �nding winning threat sequences.

2. For qubic, connect-four, go-moku, renju and checkers, pn-search has

been, or may be, a contributor to performing a forward search to solve

the game.

3. For nine men's morris, awari and checkers, retrograde analysis has been,

or will be, a contributor to create endgame databases which reduce the

size of the search tree necessary to solve the game.

4. In connect-four applying knowledge rules to determine the game-

theoretic value of game positions has proved to be successful.

5. Variants of �-� search have proved e�ective as contributors to the

solution of qubic, connect-four and nine men's morris, while they may

aid in solving checkers.

Outperforming the best human players

The second research question reads: `For which games can we create

programs outperforming the best human players in the near future, and what

techniques contribute to their performance.' With respect to the �rst part

of the question, outperforming the best human players, we have found the

following answers (we ignore the games listed in the answers to the �rst

research question.)

1. Today's othello programs are stronger than the best human players.

2. Today's draughts, backgammon and scrabble programs are close to world

champion level. Expected progress in the near future, possibly just by

technological advances, seem su�cient to outperform the best human

players.

3. For chess, Chinese chess and (professional) renju, current techniques may

prove su�cient to obtain world-champion level, although it is rather

di�cult to predict when the last human hurdle will be taken.

With respect to the second part of the question, contributing techniques, we

have found the following answer.
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1. The most important techniques for obtaining high-level tournament

programs have been sophisticated variants of �-� search, with �ne-

tuned static evaluation function. It is a contributing factor in othello,

draughts, chess, Chinese chess and professional renju.

2. Db-search in combination with pn-search may prove a contributing

factor for professional renju.

3. Neural networks are the basis for the high performance level in

backgammon.

Human superiority

The third research question reads: `In which games will humans continue to

reign in the near future (say, at least the next decade) and what are the main

obstacles to progress for computer programs?' With respect to the �rst part

of the question, human superiority, we have found the following answer.

1. For chess, Chinese chess and (professional) renju it is unclear whether

the, seemingly inevitable, defeat of the strongest human players will

take place within the coming decade.

2. For bridge and go the current performance level as well as the obstacles

to progress suggest that humans will remain superior for at least the

coming decade, if not for much longer.

With respect to the second part of the question, we have found that the main

obstacle to progress apparent in several games, but most clearly in bridge and

go, is the lacking ability to gain experience.

6.4.2 The problem statement

Through the answers to the three research questions, as presented in section

6.4.1, we are now able to discuss the questions raised in the problem

statement.

As an answer to the �rst question, concerning new ai techniques

applicable to other domains, we have found in the course of our research

two new search techniques, pn-search and db-search. Pn-search is applicable

to and/or trees (see chapter 2), and can thus be applied outside the area of

games. Db-search is a single-agent search (see chapter 3), for which we have

presented examples including production systems. The applicability of db-

search to problems outside the domains discussed in this thesis needs to be
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Predicted program strengths in the year 2000

Solved Over Champion World Champion Grand Master Amateur

connect-four checkers

qubic renju chess Chinese chess

nine men's morris othello go

go-moku scrabble draughts bridge

awari backgammon

Table 6.1: Predictions for the Olympic Games in the year 2000

investigated in the future. Clearly, as challenges remain within the domain

of games, with as speci�c examples bridge and go, new ai techniques may be

developed through further investigation of these games.

As answer to the second question, concerning obstacles emerging through

investigation of games, we have found a single obstacle, apparent in several

games, but most pronounced in bridge and go: the lack of an ability to gain

experience. The ability to gain experience is based on learning and 
exibility.

Flexibility is necessary to generalize while learning, and to recognize the

applicability of patterns learned. While these concepts are not at all new

revelations, we believe that their importance in relation to our research

consists of showing that even without other interfering obstacles, such as

common-sense knowledge, gaining experience is an obstacle in itself. We

believe that to overcome such an obstacle, a recommended approach is to

research it in separation from other known obstacles. Stated di�erently, we

believe that bridge and go are suitable test beds for investigating the nature

of the experience obstacle.

In conclusion, we state that our research has contributed two new search

techniques which may be applied in ai, as well as some additional insight in

the importance of one obstacle to game research.

6.5 Predictions

6.5.1 Future playing strength

In 1990 we have predicted the strength of computer programs in the year

2000 for each of the games of the Olympic List (Allis et al., 1991a). These

predictions have been reproduced in table 6.1. In 1990, we were only aware of

the solution to connect-four even though qubic had been solved over a decade

before. Currently, four of the �ve games listed as predicted to be solved in
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2000 are solved. In the Over Champion category (i.e., signi�cantly stronger

than the human world champion), renju is listed. If we were to recreate

table 6.1 today, we would put renju without opening restrictions in the Solved

category, while we would put professional renju at the Grand Master category.

The Over Champion entry should thus be regarded as a compromise between

these two. Of the �ve games in the Over Champion category, currently

only othello is known to have achieved true Over Champion level. To be at

world champion level means having a rating close to that of the human world

champion. For both games mentioned (chess and draughts), an o�cial rating

system exists, which makes it possible to check such a claim. Equivalent to

such a rating would be a close match over a large number of games. Thus,

Chinook is considered by us to be of world-champion level in checkers. The

main reason for listing Chinese chess at Grand Master level, instead of at

world-champion level, is the little e�ort invested in comparison with chess.

Therefore, we believe that progress in Chinese chess will keep trailing several

years behind that of chess.

The bridge entry at Grand Master level in retrospect seems somewhat

optimistic. Had we introduced a Master level, this is where we would

categorize it with our 1994 knowledge. However, having to choose between

amateur level and Grand Master level, we opted for the latter.

Finally, the go entry speaks for itself. In go terminology, the term

amateur may be ambiguous. To be clear, any dan rating in the year 2000 for

computer programs (even amateur dan ratings) would be above our current

expectations.

6.5.2 The future of games

Even where computers have failed to achieve perfection, which we see as

solving the game, they may succeed at the simpler task of outwitting human

beings. In table 6.1, we predict that for the majority of the games of the

Olympic List computers will have the advantage over their human opponents

before the turn of the century.

This being so, we nevertheless argue that all games will continue to be

played at all levels, from youngsters enjoying tic-tac-toe to Grand Masters

competing in chess tournaments for titles and money. Neither known game-

theoretic values nor the availability of silicon opponents of superior strength

will extinguish man's urge to compete.

It has also been argued that, once a program of over-champion strength

exists, programs will cease to improve. Not so: while human beings construct
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programs, competition among programmers will see to it that programs will

continue to rise in strength. We therefore conclude: all games will survive at

all levels.



Appendix A

Domain-speci�c solution to

DLP

In this appendix we describe the algorithm triangle to determine the

solution to an instance of the double-letter puzzle. Triangle has storage

complexity in the order of n

2

and time complexity in the order of n

3

.

To simplify the description of triangle, we index the letters in the axiom

of dlp from 0 to n � 1, where n is the length of the axiom. We de�ne a

substring of the axiom as any range of letters from a start index i to an end

index j, with 0 � i � j � n� 1.

Triangle uses a triangular array of

1

2

n(n+ 1) entries, where each entry

can store any subset of fa; b; c; d; eg. Rows in the array represent start indices,

and columns represent end indices, i.e., each row i consists of column entries

i to n � 1. In the triangular array, triangle stores for each substring of

the axiom, the single letters to which that substring can be reduced. After

�nishing this task for all substrings, the solution to dlp is found in the entry

representing the substring with start index 0 and end index n � 1, which

represents the whole axiom. The triangular array is �lled in n steps.

First, the n entries with the start index equal to the end index (entries

[i; i], for 0 � i � n�1) are initialized to the singleton set containing the letter

at position i in the axiom. The other

1

2

n(n� 1) entries are not initialized.

Second, we concentrate on entries representing substrings of two letters

(i.e., entries [i; i + 1], for 0 � i � n � 2). In general, the value of [i; i + 1]

can be determined by looking at the sets at table entries [i; i] and [i+ 1; i+

1]. The intersection S of these sets indicates pairs of equal letters which

can be replaced by the predecessor or successor of the letters in S. These
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0 1 2 3 4 5 6 7 8 9 10
a be − − − bd ce bd − abce

a − − − − − − − −
b − −

−
− − − − − −

−

d − − ce − ce − ad
c − bd ce bd − ac

b ac − − − −
b − − − −

d − − −
c − −

a be
a

1
2

3
4

5
6

7
8

9
10

0 ac

Figure A.1: Solution to instance aabdcbbdcaa of dlp.

predecessors and successors are then stored at the entry [i; i+ 1].

Third, we determine the value of the entries representing substrings of

three letters (i.e., entries [i; i + 2], for 0 � i � n � 3). To determine the

value of [i; i+2] we must look at the intersection S

1

of the sets at entry [i; i]

and [i+ 1; i+ 2], and at the intersection S

2

of the sets at entry [i; i+ 1] and

[i + 2; i+ 2]. The union of S

1

and S

2

determines the letters from which the

predecessors and successors are included in entry [i; i+ 2].

In general, entry [p; q] is the set of predecessors and successors of the

letters in

S

q�1

i=p

([p; i] \ [i+ 1; q]).

Figure A.1 depicts the array of entries created to solve the instance

aabdcbbdcaa of dlp (the example of section 3.2). The set of letters stored in

entry [0; n� 1] yields the solution. As mentioned in section 3.2, only d is not

a solution.



Summary

In this thesis "intelligent" games are investigated from the perspective of

Arti�cial Intelligence (ai) research. Games were selected in which, at least

partially, human expert players outperformed their arti�cial opponents. By

investigating a game, we envision at least two possible outcomes.

� If we achieve a playing strength su�cient to defeat the best human

players, analysis of the means which led to this improvement may

uncover new ai techniques.

� If the playing strength keeps falling short, even after prolonged

attempts, of that of the best human players a better understanding

of the problems inherent in playing the game at a high level may be

acquired.

We remark that there is a possibility that the results do not lead to

progress (i.e., no new ai techniques and no better understanding of the

inherent problems). In the �rst case, the improvement may be due to entirely

domain-speci�c techniques which cannot be generalized to ai techniques. In

the second case, we may �nd that we have di�culty in isolating the problems

from our failed attempts. By investigating a representative set of games,

the probability increases that new ai techniques are developed or insight

into problems hindering progress is obtained. For our investigations, we

have selected a set of games called the Olympic List, consisting of: awari,

backgammon, bridge, chess, Chinese chess, checkers, connect-four, draughts,

go, go-moku, nine men's morris, othello, qubic, renju and scrabble.

The research is in two parts. First, we have investigated three games

which we believed could be solved: awari, qubic and go-moku. Games can

be solved if it is possible to determine strategies leading to the best possible

result for both players. For qubic and go-moku we have been able to �nd

strategies which guarantee a win for the �rst player. For awari this has
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not yet been achieved, but we did create a program that outperforms the

strongest human players. Analysis and generalization of the methods used

in solving qubic and go-moku resulted in two new ai techniques: the search

techniques proof-number search (pn-search) and dependency-based search (db-

search). Awari is close to its solution, indeed so close that we believe that

extant techniques su�ce to solve it.

Second, for each game of the Olympic List we have investigated whether

the di�erence in playing skill of human beings and computer programs gives

us reason to believe that there is an intrinsic obstacle to progress. We have

found that, based on insu�cient 
exibility and learning ability, an experience

obstacle exists. This obstacle is particularly conspicuous in bridge and go.

We conjecture that, while such obstacles exist in the games domain, these

same obstacles will stand in the way of progress in other domains.

This thesis consists of six chapters. In chapter 1, the relevance of

investigating games is discussed, leading to the formulation of a problem

statement and three research questions. In chapter 2, pn-search is de�ned.

It is shown that pn-search traverses a set of state spaces much more e�ciently

than alternative search algorithms; awari serves to provide an example. In

chapter 3, db-search is de�ned, a search algorithm that traverses a state

space signi�cantly reduced when compared to traditional search algorithms.

It is shown that under clearly de�ned conditions the reduced state space is

complete, which means that it contains all solutions present in the original

state space. The potential of db-search is demonstrated on an example

domain. In chapter 4, it is demonstrated how pn-search and db-search solved

qubic. Similarly, in chapter 5 it is demonstrated how pn-search and db-search

combined solved go-moku. In chapter 6 all games of the Olympic List are

investigated, resulting in, among others, a prediction of the playing strengths

of the strongest computer programs in the year 2000 and a discussion of the

future of games in our society.



Samenvatting

Dit proefschrift beschrijft onderzoek naar denkspelen in het kader van de

Kunstmatige Intelligentie. Uitgegaan is van denkspelen waarin de sterkste

menselijke spelers hun kunstmatige opponenten, in elk geval op onderdelen,

nog de baas waren. Dergelijke onderzoekingen kunnen leiden tot tenminste

twee nuttige uitkomsten.

� Wanneer de achterstand op de menselijke topspelers geheel wordt

ingelopen, dan leidt analyse van de wijze waarop dit bereikt wordt

mogelijk tot het vinden van nieuwe ai-technieken.

� Wanneer ook na langdurige pogingen het niveau van de mens onhaal-

baar blijkt, kan analyse van de gevonden problemen leiden tot het

ontdekken van algemene obstakels voor vooruitgang in de Kunstma-

tige Intelligentie.

Het is natuurlijk ook mogelijk dat de achterstand op de mens in een

bepaald denkspel wordt ingehaald, maar dat reeds bestaande technieken

gebruikt kunnen worden, of dat de gebruikte technieken geheel speci�ek

zijn voor dat spel en geen algemenere toepassing zullen vinden. Ook zou

het zich kunnen voordoen dat langdurige pogingen tot analyse van de

gevonden problemen tot niets leiden. Door een representatieve verzameling

denkspelen te onderzoeken, achten wij de kans groot dat onderzoek bij een

aantal daarvan tot nieuwe inzichten zal leiden. Deze verzameling, die der

Olympische Denkspelen, bestaat uit: awari, backgammon, bridge, Chinees

schaken, checkers, dammen, go, go-moku, molenspel, othello, qubic, renju,

schaken, scrabble en vier-op-een-rij.

In het onderzoek hebben we ons allereerst geconcentreerd op drie

denkspelen die mogelijk opgelost konden worden: awari, qubic, en go-moku.

Dit zijn denkspelen waarvoor het mogelijk lijkt uitspraken te bewijzen over

strategie�en die tot het best bereikbare resultaat leiden voor beide spelers.
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Voor qubic en go-moku hebben we een strategie kunnen vaststellen die de

eerste speler winst garandeert. Voor awari zijn we nog niet zover; wel is een

programma gecre�eerd dat sterker speelt dan menselijke topspelers. Analyse

en generalisatie van de methoden die tot de oplossing van qubic en go-

moku leidden, hebben twee nieuwe ai technieken opgeleverd, namelijk de

zoektechnieken proof-number search (pn-search) en dependency-based search

(db-search). Awari staat op het punt opgelost te worden. We geloven dan

ook dat bestaande technieken hiervoor afdoende zullen blijken te zijn.

Vervolgens is voor elk van de Olympische Denkspelen nagegaan in

hoeverre de afwijking tussen de speelniveau's van mensen en computers

aanleiding geeft te veronderstellen dat een belangrijk obstakel de vooruitgang

in de weg staat. Wij hebben gevonden dat met name het feit dat

computerprogramma's onvoldoende in staat zijn relevante ervaring op te

doen, door gebrek aan 
exibiliteit en lerend vermogen, dit bij sommige spelen

leidt tot een wezenlijke achterstand ten opzichte van menselijke spelers. Het

duidelijkst wordt dit gebrek bij bridge en go. We vermoeden dat zolang

bij begrensde onderzoeksgebieden, zoals denkspelen, dergelijke obstakels

vooruitgang in de weg staan, diezelfde obstakels een hindernis vormen bij

vooruitgang in andere onderzoeksgebieden.

Het proefschrift bestaat uit zes hoofdstukken. In hoofdstuk 1 worden

de mogelijke produkten van onderzoek naar denkspelen beschreven. Er

wordt een probleemstelling geformuleerd, evenals drie onderzoeksvragen. In

hoofdstuk 2 wordt pn-search gede�nieerd. Aan de hand van experimenten

op awari wordt aangetoond dat pn-search een bepaald type zoekruimte

aanzienlijk e�cienter onderzoekt dan alternatieve zoekalgoritmen. In hoofd-

stuk 3 wordt db-search gede�nieerd, een zoekalgoritme dat de zoekruimte

die door traditionele zoektechnieken wordt onderzocht aanzienlijk verkleint.

Er wordt aangetoond dat onder nauwkeurig gede�nieerde omstandigheden

de door db-search verkleinde zoekruimte volledig is, wat wil zeggen dat zij

alle oplossingen van de oorspronkelijke ruimte bevat. Aan de hand van een

voorbeeld wordt de potentie van db-search ge��llustreerd. In hoofdstuk 4

wordt gedemonstreerd hoe pn-search en db-search qubic hebben opgelost,

terwijl in hoofdstuk 5 het oplossen van go-moku met pn-search en db-search

wordt beschreven. In hoofdstuk 6 worden alle Olympische Denkspelen onder

de loep genomen, resulterend in, onder andere, een voorspelling van de

speelsterkte van de beste computerprogramma's in het jaar 2000 en van de

toekomst van denkspelen in onze samenleving.
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