
iostream

iostream ii

COLLABORATORS

TITLE :

iostream

ACTION NAME DATE SIGNATURE

WRITTEN BY June 8, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

iostream iii

Contents

1 iostream 1

1.1 iostream.guide . 1

1.2 iostream.guide/Introduction . 1

1.3 iostream.guide/Copying . 2

1.4 iostream.guide/Acknowledgements . 2

1.5 iostream.guide/Operators . 2

1.6 iostream.guide/Streams . 4

1.7 iostream.guide/Ios . 4

1.8 iostream.guide/States . 5

1.9 iostream.guide/Format Control . 6

1.10 iostream.guide/Manipulators . 9

1.11 iostream.guide/Extending . 10

1.12 iostream.guide/Synchronization . 11

1.13 iostream.guide/Streambuf from Ios . 11

1.14 iostream.guide/Ostream . 12

1.15 iostream.guide/Writing . 12

1.16 iostream.guide/Output Position . 13

1.17 iostream.guide/Ostream Housekeeping . 13

1.18 iostream.guide/Istream . 14

1.19 iostream.guide/Char Input . 15

1.20 iostream.guide/String Input . 15

1.21 iostream.guide/Input Position . 17

1.22 iostream.guide/Istream Housekeeping . 17

1.23 iostream.guide/Iostream . 18

1.24 iostream.guide/Files and Strings . 19

1.25 iostream.guide/Files . 19

1.26 iostream.guide/Strings . 22

1.27 iostream.guide/Streambuf . 23

1.28 iostream.guide/Areas . 23

1.29 iostream.guide/Overflow . 24

iostream iv

1.30 iostream.guide/Formatting . 25

1.31 iostream.guide/Stdiobuf . 26

1.32 iostream.guide/Procbuf . 26

1.33 iostream.guide/Backing Up . 27

1.34 iostream.guide/Indirectbuf . 28

1.35 iostream.guide/Stdio . 29

1.36 iostream.guide/Index . 29

iostream 1 / 33

Chapter 1

iostream

1.1 iostream.guide

The GNU C++ Iostream Library

This file provides reference information on the GNU C++ iostream
library (‘libio’), version 0.64.

Introduction
Operators Operators and default streams.
Streams Stream classes.
Files and Strings Classes for files and strings.
Streambuf Using the streambuf layer.
Stdio C input and output.
Index

1.2 iostream.guide/Introduction

Introduction

The iostream classes implement most of the features of AT&T version
2.0 iostream library classes, and most of the features of the ANSI X3J16
library draft (which is based on the AT&T design).

This manual is meant as a reference; for tutorial material on
iostreams, see the corresponding section of any recent popular
introduction to C++.

Copying Special GNU licensing terms for libio.
Acknowledgements Contributors to GNU iostream.

iostream 2 / 33

1.3 iostream.guide/Copying

Licensing terms for ‘libio’
===========================

Since the ‘iostream’ classes are so fundamental to standard C++, the
Free Software Foundation has agreed to a special exception to its
standard license, when you link programs with ‘libio.a’:

As a special exception, if you link this library with files
compiled with a GNU compiler to produce an executable, this does
not cause the resulting executable to be covered by the GNU
General Public License. This exception does not however
invalidate any other reasons why the executable file might be
covered by the GNU General Public License.

The code is under the GNU General Public License (version 2) for all
other purposes than linking with this library; that means that you can
modify and redistribute the code as usual, but remember that if you do,
your modifications, and anything you link with the modified code, must
be available to others on the same terms.

These functions are also available as part of the ‘libg++’ library;
if you link with that library instead of ‘libio’, the GNU Library
General Public License applies.

1.4 iostream.guide/Acknowledgements

Acknowledgements
================

Per Bothner wrote most of the ‘iostream’ library, but some portions
have their origins elsewhere in the free software community. Heinz
Seidl wrote the IO manipulators. The floating-point conversion software
is by David M. Gay of AT&T. Some code was derived from parts of BSD
4.4, which was written at the University of California, Berkeley.

The iostream classes are found in the ‘libio’ library. An early
version was originally distributed in ‘libg++’, and they are still
included there as well, for convenience if you need other ‘libg++’
classes. Doug Lea was the original author of ‘libg++’, and some of the
file-management code still in ‘libio’ is his.

Various people found bugs or offered suggestions. Hongjiu Lu worked
hard to use the library as the default stdio implementation for Linux,
and has provided much stress-testing of the library.

1.5 iostream.guide/Operators

iostream 3 / 33

Operators and Default Streams

The GNU iostream library, ‘libio’, implements the standard input and
output facilities for C++. These facilities are roughly analogous (in
their purpose and ubiquity, at least) with those defined by the C
‘stdio’ functions.

Although these definitions come from a library, rather than being
part of the "core language", they are sufficiently central to be
specified in the latest working papers for C++.

You can use two operators defined in this library for basic input and
output operations. They are familiar from any C++ introductory
textbook: ‘<<’ for output, and ‘>>’ for input. (Think of data flowing
in the direction of the "arrows".)

These operators are often used in conjunction with three streams that
are open by default:

- Variable: ostream cout
The standard output stream, analogous to the C ‘stdout’.

- Variable: istream cin
The standard input stream, analogous to the C ‘stdin’.

- Variable: ostream cerr
An alternative output stream for errors, analogous to the C
‘stderr’.

For example, this bare-bones C++ version of the traditional "hello"
program uses ‘<<’ and ‘cout’:

#include <iostream.h>

int main(int argc, char **argv)
{

cout << "Well, hi there.\n";
return 0;

}

Casual use of these operators may be seductive, but--other than in
writing throwaway code for your own use--it is not necessarily simpler
than managing input and output in any other language. For example,
robust code should check the state of the input and output streams
between operations (for example, using the method ‘good’). See
Checking the state of a stream. You may also need to adjust maximum
input or output field widths, using manipulators like ‘setw’ or
‘setprecision’.

- Operator on ostream: <<
Write output to an open output stream of class ‘ostream’. Defined
by this library on any OBJECT of a C++ primitive type, and on
other classes of the library. You can overload the definition for
any of your own applications’ classes.

iostream 4 / 33

Returns a reference to the implied argument ‘*this’ (the open
stream it writes on), permitting statements like

cout << "The value of i is " << i << "\n";

- Operator on istream: >>
Read input from an open input stream of class ‘istream’. Defined
by this library on primitive numeric, pointer, and string types;
you can extend the definition for any of your own applications’
classes.

Returns a reference to the implied argument ‘*this’ (the open
stream it reads), permitting multiple inputs in one statement.

1.6 iostream.guide/Streams

Stream Classes

The previous chapter referred in passing to the classes ‘ostream’
and ‘istream’, for output and input respectively. These classes share
certain properties, captured in their base class ‘ios’.

Ios Shared properties.
Ostream Managing output streams.
Istream Managing input streams.
Iostream Input and output together.

1.7 iostream.guide/Ios

Shared properties: class ‘ios’
==============================

The base class ‘ios’ provides methods to test and manage the state
of input or output streams.

‘ios’ delegates the job of actually reading and writing bytes to the
abstract class ‘streambuf’, which is designed to provide buffered
streams (compatible with C, in the GNU implementation). See
Using the ‘streambuf’ layer, for information on the facilities
available at the ‘streambuf’ level.

- Constructor: ios::ios ([streambuf* SB [, ostream* TIE])
The ‘ios’ constructor by default initializes a new ‘ios’, and if
you supply a ‘streambuf’ SB to associate with it, sets the state
‘good’ in the new ‘ios’ object. It also sets the default
properties of the new object.

You can also supply an optional second argument TIE to the
constructor: if present, it is an initial value for ‘ios::tie’, to

iostream 5 / 33

associate the new ‘ios’ object with another stream.

- Destructor: ios::~ios ()
The ‘ios’ destructor is virtual, permitting application-specific
behavior when a stream is closed--typically, the destructor frees
any storage associated with the stream and releases any other
associated objects.

States Checking the state of a stream.
Format Control Choices in formatting.
Manipulators Convenient ways of changing stream properties.
Extending Extended data fields.
Synchronization Synchronizing related streams.
Streambuf from Ios Reaching the underlying streambuf.

1.8 iostream.guide/States

Checking the state of a stream

Use this collection of methods to test for (or signal) errors and
other exceptional conditions of streams:

- Method: ios::operator void* () const
You can do a quick check on the state of the most recent operation
on a stream by examining a pointer to the stream itself. The
pointer is arbitrary except for its truth value; it is true if no
failures have occurred (‘ios::fail’ is not true). For example,
you might ask for input on ‘cin’ only if all prior output
operations succeeded:

if (cout)
{

// Everything OK so far
cin >> new_value;
...

}

- Method: ios::operator ! () const
In case it is more convenient to check whether something has
failed, the operator ‘!’ returns true if ‘ios::fail’ is true (an
operation has failed). For example, you might issue an error
message if input failed:

if (!cin)
{

// Oops
cerr << "Eh?\n";

}

- Method: iostate ios::rdstate () const
Return the state flags for this stream. The value is from the
enumeration ‘iostate’. You can test for any combination of

iostream 6 / 33

‘goodbit’
There are no indications of exceptional states on this stream.

‘eofbit’
End of file.

‘failbit’
An operation has failed on this stream; this usually
indicates bad format of input.

‘badbit’
The stream is unusable.

- Method: void ios::setstate (iostate STATE)
Set the state flag for this stream to STATE *in addition to* any
state flags already set. Synonym (for upward compatibility):
‘ios::set’.

See ‘ios::clear’ to set the stream state without regard to existing
state flags. See ‘ios::good’, ‘ios::eof’, ‘ios::fail’, and
‘ios::bad’, to test the state.

- Method: int ios::good () const
Test the state flags associated with this stream; true if no error
indicators are set.

- Method: int ios::bad () const
Test whether a stream is marked as unusable. (Whether
‘ios::badbit’ is set.)

- Method: int ios::eof () const
True if end of file was reached on this stream. (If ‘ios::eofbit’
is set.)

- Method: int ios::fail () const
Test for any kind of failure on this stream: *either* some
operation failed, *or* the stream is marked as bad. (If either
‘ios::failbit’ or ‘ios::badbit’ is set.)

- Method: void ios::clear (iostate STATE)
Set the state indication for this stream to the argument STATE.
You may call ‘ios::clear’ with no argument, in which case the state
is set to ‘good’ (no errors pending).

See ‘ios::good’, ‘ios::eof’, ‘ios::fail’, and ‘ios::bad’, to test
the state; see ‘ios::set’ or ‘ios::setstate’ for an alternative
way of setting the state.

1.9 iostream.guide/Format Control

Choices in formatting

iostream 7 / 33

These methods control (or report on) settings for some details of
controlling streams, primarily to do with formatting output:

- Method: char ios::fill () const
Report on the padding character in use.

- Method: char ios::fill (char PADDING)
Set the padding character. You can also use the manipulator
‘setfill’. See Changing stream properties in expressions.

Default: blank.

- Method: int ios::precision () const
Report the number of significant digits currently in use for
output of floating point numbers.

Default: ‘6’.

- Method: int ios::precision (int SIGNIF)
Set the number of significant digits (for input and output numeric
conversions) to SIGNIF.

You can also use the manipulator ‘setprecision’ for this purpose.
See Changing stream properties using manipulators.

- Method: int ios::width () const
Report the current output field width setting (the number of
characters to write on the next ‘<<’ output operation).

Default: ‘0’, which means to use as many characters as necessary.

- Method: int ios::width (int NUM)
Set the input field width setting to NUM. Return the *previous*
value for this stream.

This value resets to zero (the default) every time you use ‘<<’;
it is essentially an additional implicit argument to that
operator. You can also use the manipulator ‘setw’ for this
purpose. See Changing stream properties using manipulators.

- Method: fmtflags ios::flags () const
Return the current value of the complete collection of flags
controlling the format state. These are the flags and their
meanings when set:

‘ios::dec’
‘ios::oct’
‘ios::hex’

What numeric base to use in converting integers from internal
to display representation, or vice versa: decimal, octal, or
hexadecimal, respectively. (You can change the base using
the manipulator ‘setbase’, or any of the manipulators ‘dec’,
‘oct’, or ‘hex’; see
Changing stream properties in expressions.)

On input, if none of these flags is set, read numeric
constants according to the prefix: decimal if no prefix (or a

iostream 8 / 33

‘.’ suffix), octal if a ‘0’ prefix is present, hexadecimal if
a ‘0x’ prefix is present.

Default: ‘dec’.

‘ios::fixed’
Avoid scientific notation, and always show a fixed number of
digits after the decimal point, according to the output
precision in effect. Use ‘ios::precision’ to set precision.

‘ios::left’
‘ios::right’
‘ios::internal’

Where output is to appear in a fixed-width field;
left-justified, right-justified, or with padding in the
middle (e.g. between a numeric sign and the associated
value), respectively.

‘ios::scientific’
Use scientific (exponential) notation to display numbers.

‘ios::showbase’
Display the conventional prefix as a visual indicator of the
conversion base: no prefix for decimal, ‘0’ for octal, ‘0x’
for hexadecimal.

‘ios::showpoint’
Display a decimal point and trailing zeros after it to fill
out numeric fields, even when redundant.

‘ios::showpos’
Display a positive sign on display of positive numbers.

‘ios::skipws’
Skip white space. (On by default).

‘ios::stdio’
Flush the C ‘stdio’ streams ‘stdout’ and ‘stderr’ after each
output operation (for programs that mix C and C++ output
conventions).

‘ios::unitbuf’
Flush after each output operation.

‘ios::uppercase’
Use upper-case characters for the non-numeral elements in
numeric displays; for instance, ‘0X7A’ rather than ‘0x7a’, or
‘3.14E+09’ rather than ‘3.14e+09’.

- Method: fmtflags ios::flags (fmtflags VALUE)
Set VALUE as the complete collection of flags controlling the
format state. The flag values are described under ‘ios::flags ()’.

Use ‘ios::setf’ or ‘ios::unsetf’ to change one property at a time.

- Method: fmtflags ios::setf (fmtflags FLAG)
Set one particular flag (of those described for ‘ios::flags ()’;

iostream 9 / 33

return the complete collection of flags *previously* in effect.
(Use ‘ios::unsetf’ to cancel.)

- Method: fmtflags ios::setf (fmtflags FLAG, fmtflags MASK)
Clear the flag values indicated by MASK, then set any of them that
are also in FLAG. (Flag values are described for ‘ios::flags
()’.) Return the complete collection of flags *previously* in
effect. (See ‘ios::unsetf’ for another way of clearing flags.)

- Method: fmtflags ios::unsetf (fmtflags FLAG)
Make certain FLAG (a combination of flag values described for
‘ios::flags ()’) is not set for this stream; converse of
‘ios::setf’. Returns the old values of those flags.

1.10 iostream.guide/Manipulators

Changing stream properties using manipulators

For convenience, MANIPULATORS provide a way to change certain
properties of streams, or otherwise affect them, in the middle of
expressions involving ‘<<’ or ‘>>’. For example, you might write

cout << "|" << setfill(’*’) << setw(5) << 234 << "|";

to produce ‘|**234|’ as output.

- Manipulator: ws
Skip whitespace.

- Manipulator: flush
Flush an output stream. For example, ‘cout << ... <<flush;’ has
the same effect as ‘cout << ...; cout.flush();’.

- Manipulator: endl
Write an end of line character ‘\n’, then flushes the output
stream.

- Manipulator: ends
Write ‘\0’ (the string terminator character).

- Manipulator: setprecision (int SIGNIF)
You can change the value of ‘ios::precision’ in ‘<<’ expressions
with the manipulator ‘setprecision(SIGNIF)’; for example,

cout << setprecision(2) << 4.567;

prints ‘4.6’. Requires ‘#include <iomanip.h>’.

- Manipulator: setw (int N)
You can change the value of ‘ios::width’ in ‘<<’ expressions with
the manipulator ‘setw(N)’; for example,

cout << setw(5) << 234;

iostream 10 / 33

prints ‘ 234’ with two leading blanks. Requires ‘#include
<iomanip.h>’.

- Manipulator: setbase (int BASE)
Where BASE is one of ‘10’ (decimal), ‘8’ (octal), or ‘16’
(hexadecimal), change the base value for numeric representations.
Requires ‘#include <iomanip.h>’.

- Manipulator: dec
Select decimal base; equivalent to ‘setbase(10)’.

- Manipulator: hex
Select hexadecimal base; equivalent to ‘setbase(16)’.

- Manipulator: oct
Select octal base; equivalent to ‘setbase(8)’.

- Manipulator: setfill (char PADDING)
Set the padding character, in the same way as ‘ios::fill’.
Requires ‘#include <iomanip.h>’.

1.11 iostream.guide/Extending

Extended data fields

A related collection of methods allows you to extend this collection
of flags and parameters for your own applications, without risk of
conflict between them:

- Method: static fmtflags ios::bitalloc ()
Reserve a bit (the single bit on in the result) to use as a flag.
Using ‘bitalloc’ guards against conflict between two packages that
use ‘ios’ objects for different purposes.

This method is available for upward compatibility, but is not in
the ANSI working paper. The number of bits available is limited; a
return value of ‘0’ means no bit is available.

- Method: static int ios::xalloc ()
Reserve space for a long integer or pointer parameter. The result
is a unique nonnegative integer. You can use it as an index to
‘ios::iword’ or ‘ios::pword’. Use ‘xalloc’ to arrange for
arbitrary special-purpose data in your ‘ios’ objects, without risk
of conflict between packages designed for different purposes.

- Method: long& ios::iword (int INDEX)
Return a reference to arbitrary data, of long integer type, stored
in an ‘ios’ instance. INDEX, conventionally returned from
‘ios::xalloc’, identifies what particular data you need.

- Method: long ios::iword (int INDEX) const
Return the actual value of a long integer stored in an ‘ios’.

iostream 11 / 33

- Method: void*& ios::pword (int INDEX)
Return a reference to an arbitrary pointer, stored in an ‘ios’
instance. INDEX, originally returned from ‘ios::xalloc’,
identifies what particular pointer you need.

- Method: void* ios::pword (int INDEX) const
Return the actual value of a pointer stored in an ‘ios’.

1.12 iostream.guide/Synchronization

Synchronizing related streams

You can use these methods to synchronize related streams with one
another:

- Method: ostream* ios::tie () const
Report on what output stream, if any, is to be flushed before
accessing this one. A pointer value of ‘0’ means no stream is
tied.

- Method: ostream* ios::tie (ostream* ASSOC)
Declare that output stream ASSOC must be flushed before accessing
this stream.

- Method: int ios::sync_with_stdio ([int SWITCH])
Unless iostreams and C ‘stdio’ are designed to work together, you
may have to choose between efficient C++ streams output and output
compatible with C ‘stdio’. Use ‘ios::sync_with_stdio()’ to select
C compatibility.

The argument SWITCH is a GNU extension; use ‘0’ as the argument to
choose output that is not necessarily compatible with C ‘stdio’.
The default value for SWITCH is ‘1’.

If you install the ‘stdio’ implementation that comes with GNU
‘libio’, there are compatible input/output facilities for both C
and C++. In that situation, this method is unnecessary--but you
may still want to write programs that call it, for portability.

1.13 iostream.guide/Streambuf from Ios

Reaching the underlying ‘streambuf’

Finally, you can use this method to access the underlying object:

- Method: streambuf* ios::rdbuf () const
Return a pointer to the ‘streambuf’ object that underlies this

iostream 12 / 33

‘ios’.

1.14 iostream.guide/Ostream

Managing output streams: class ‘ostream’
==

Objects of class ‘ostream’ inherit the generic methods from ‘ios’,
and in addition have the following methods available. Declarations for
this class come from ‘iostream.h’.

- Constructor: ostream::ostream ()
The simplest form of the constructor for an ‘ostream’ simply
allocates a new ‘ios’ object.

- Constructor: ostream::ostream (streambuf* SB [, ostream TIE])
This alternative constructor requires a first argument SB of type
‘streambuf*’, to use an existing open stream for output. It also
accepts an optional second argument TIE, to specify a related
‘ostream*’ as the initial value for ‘ios::tie’.

If you give the ‘ostream’ a ‘streambuf’ explicitly, using this
constructor, the SB is *not* destroyed (or deleted or closed) when
the ‘ostream’ is destroyed.

Writing Writing on an ostream.
Output Position Repositioning an ostream.
Ostream Housekeeping Miscellaneous ostream utilities.

1.15 iostream.guide/Writing

Writing on an ‘ostream’

These methods write on an ‘ostream’ (you may also use the operator
‘<<’; see Operators and Default Streams).

- Method: ostream& ostream::put (char C)
Write the single character C.

- Method: ostream& ostream::write (STRING, int LENGTH)
Write LENGTH characters of a string to this ‘ostream’, beginning
at the pointer STRING.

STRING may have any of these types: ‘char*’, ‘unsigned char*’,
‘signed char*’.

- Method: ostream& ostream::form (const char *FORMAT, ...)
A GNU extension, similar to ‘fprintf(FILE, FORMAT, ...)’.

iostream 13 / 33

FORMAT is a ‘printf’-style format control string, which is used to
format the (variable number of) arguments, printing the result on
this ‘ostream’. See ‘ostream::vform’ for a version that uses an
argument list rather than a variable number of arguments.

- Method: ostream& ostream::vform (const char *FORMAT, va_list ARGS)
A GNU extension, similar to ‘vfprintf(FILE, FORMAT, ARGS)’.

FORMAT is a ‘printf’-style format control string, which is used to
format the argument list ARGS, printing the result on this
‘ostream’. See ‘ostream::form’ for a version that uses a variable
number of arguments rather than an argument list.

1.16 iostream.guide/Output Position

Repositioning an ‘ostream’

You can control the output position (on output streams that actually
support positions, typically files) with these methods:

- Method: streampos ostream::tellp ()
Return the current write position in the stream.

- Method: ostream& ostream::seekp (streampos LOC)
Reset the output position to LOC (which is usually the result of a
previous call to ‘ostream::tellp’). LOC specifies an absolute
position in the output stream.

- Method: ostream& ostream::seekp (streamoff LOC, REL)
Reset the output position to LOC, relative to the beginning, end,
or current output position in the stream, as indicated by REL (a
value from the enumeration ‘ios::seekdir’):

‘beg’
Interpret LOC as an absolute offset from the beginning of the
file.

‘cur’
Interpret LOC as an offset relative to the current output
position.

‘end’
Interpret LOC as an offset from the current end of the output
stream.

1.17 iostream.guide/Ostream Housekeeping

iostream 14 / 33

Miscellaneous ‘ostream’ utilities

You may need to use these ‘ostream’ methods for housekeeping:

- Method: ostream& flush ()
Deliver any pending buffered output for this ‘ostream’.

- Method: int ostream::opfx ()
‘opfx’ is a "prefix" method for operations on ‘ostream’ objects;
it is designed to be called before any further processing. See
‘ostream::osfx’ for the converse.

‘opfx’ tests that the stream is in state ‘good’, and if so flushes
any stream tied to this one.

The result is ‘1’ when ‘opfx’ succeeds; else (if the stream state
is not ‘good’), the result is ‘0’.

- Method: void ostream::osfx ()
‘osfx’ is a "suffix" method for operations on ‘ostream’ objects;
it is designed to be called at the conclusion of any processing.
All the ‘ostream’ methods end by calling ‘osfx’. See
‘ostream::opfx’ for the converse.

If the ‘unitbuf’ flag is set for this stream, ‘osfx’ flushes any
buffered output for it.

If the ‘stdio’ flag is set for this stream, ‘osfx’ flushes any
output buffered for the C output streams ‘stdout’ and ‘stderr’.

1.18 iostream.guide/Istream

Managing input streams: class ‘istream’
=======================================

Class ‘istream’ objects are specialized for input; as for ‘ostream’,
they are derived from ‘ios’, so you can use any of the general-purpose
methods from that base class. Declarations for this class also come
from ‘iostream.h’.

- Constructor: istream::istream ()
When used without arguments, the ‘istream’ constructor simply
allocates a new ‘ios’ object and initializes the input counter (the
value reported by ‘istream::gcount’) to ‘0’.

- Constructor: istream::istream (streambuf *SB [, ostream TIE])
You can also call the constructor with one or two arguments. The
first argument SB is a ‘streambuf*’; if you supply this pointer,
the constructor uses that ‘streambuf’ for input. You can use the
second optional argument TIE to specify a related output stream as
the initial value for ‘ios::tie’.

iostream 15 / 33

If you give the ‘istream’ a ‘streambuf’ explicitly, using this
constructor, the SB is *not* destroyed (or deleted or closed) when
the ‘ostream’ is destroyed.

Char Input Reading one character.
String Input Reading strings.
Input Position Repositioning an istream.
Istream Housekeeping Miscellaneous istream utilities.

1.19 iostream.guide/Char Input

Reading one character

Use these methods to read a single character from the input stream:

- Method: int istream::get ()
Read a single character (or ‘EOF’) from the input stream, returning
it (coerced to an unsigned char) as the result.

- Method: istream& istream::get (char& C)
Read a single character from the input stream, into ‘&C’.

- Method: int istream::peek ()
Return the next available input character, but *without* changing
the current input position.

1.20 iostream.guide/String Input

Reading strings

Use these methods to read strings (for example, a line at a time)
from the input stream:

- Method: istream& istream::get (char* C, int LEN [, char DELIM])
Read a string from the input stream, into the array at C.

The remaining arguments limit how much to read: up to ‘len-1’
characters, or up to (but not including) the first occurrence in
the input of a particular delimiter character DELIM--newline
(‘\n’) by default. (Naturally, if the stream reaches end of file
first, that too will terminate reading.)

If DELIM was present in the input, it remains available as if
unread; to discard it instead, see ‘iostream::getline’.

‘get’ writes ‘\0’ at the end of the string, regardless of which
condition terminates the read.

iostream 16 / 33

- Method: istream& istream::get (streambuf& SB [, char DELIM])
Read characters from the input stream and copy them on the
‘streambuf’ object SB. Copying ends either just before the next
instance of the delimiter character DELIM (newline ‘\n’ by
default), or when either stream ends. If DELIM was present in
the input, it remains available as if unread.

- Method: istream& istream::getline (CHARPTR, int LEN [, char DELIM])
Read a line from the input stream, into the array at CHARPTR.
cHARPTR may be any of three kinds of pointer: ‘char*’, ‘unsigned
char*’, or ‘signed char*’.

The remaining arguments limit how much to read: up to (but not
including) the first occurrence in the input of a line delimiter
character DELIM--newline (‘\n’) by default, or up to ‘len-1’
characters (or to end of file, if that happens sooner).

If ‘getline’ succeeds in reading a "full line", it also discards
the trailing delimiter character from the input stream. (To
preserve it as available input, see the similar form of
‘iostream::get’.)

If DELIM was *not* found before LEN characters or end of file,
‘getline’ sets the ‘ios::fail’ flag, as well as the ‘ios::eof’
flag if appropriate.

‘getline’ writes a null character at the end of the string,
regardless of which condition terminates the read.

- Method: istream& istream::read (POINTER, int LEN)
Read LEN bytes into the location at POINTER, unless the input ends
first.

POINTER may be of type ‘char*’, ‘void*’, ‘unsigned char*’, or
‘signed char*’.

If the ‘istream’ ends before reading LEN bytes, ‘read’ sets the
‘ios::fail’ flag.

- Method: istream& istream::gets (char **S [, char DELIM])
A GNU extension, to read an arbitrarily long string from the
current input position to the next instance of the DELIM character
(newline ‘\n’ by default).

To permit reading a string of arbitrary length, ‘gets’ allocates
whatever memory is required. Notice that the first argument S is
an address to record a character pointer, rather than the pointer
itself.

- Method: istream& istream::scan (const char *format ...)
A GNU extension, similar to ‘fscanf(FILE, FORMAT, ...)’. The
FORMAT is a ‘scanf’-style format control string, which is used to
read the variables in the remainder of the argument list from the
‘istream’.

- Method: istream& istream::vscan (const char *format, va_list args)

iostream 17 / 33

Like ‘istream::scan’, but takes a single ‘va_list’ argument.

1.21 iostream.guide/Input Position

Repositioning an ‘istream’

Use these methods to control the current input position:

- Method: streampos istream::tellg ()
Return the current read position, so that you can save it and
return to it later with ‘istream::seekg’.

- Method: istream& istream::seekg (streampos P)
Reset the input pointer (if the input device permits it) to P,
usually the result of an earlier call to ‘istream::tellg’.

- Method: istream& istream::seekg (streamoff OFFSET, ios::seek_dir REF)
Reset the input pointer (if the input device permits it) to OFFSET
characters from the beginning of the input, the current position,
or the end of input. Specify how to interpret OFFSET with one of
these values for the second argument:

‘ios::beg’
Interpret LOC as an absolute offset from the beginning of the
file.

‘ios::cur’
Interpret LOC as an offset relative to the current output
position.

‘ios::end’
Interpret LOC as an offset from the current end of the output
stream.

1.22 iostream.guide/Istream Housekeeping

Miscellaneous ‘istream’ utilities

Use these methods for housekeeping on ‘istream’ objects:

- Method: int istream::gcount ()
Report how many characters were read from this ‘istream’ in the
last unformatted input operation.

- Method: int istream::ipfx (int KEEPWHITE)
Ensure that the ‘istream’ object is ready for reading; check for
errors and end of file and flush any tied stream. ‘ipfx’ skips
whitespace if you specify ‘0’ as the KEEPWHITE argument, *and*

iostream 18 / 33

‘ios::skipws’ is set for this stream.

To avoid skipping whitespace (regardless of the ‘skipws’ setting on
the stream), use ‘1’ as the argument.

Call ‘istream::ipfx’ to simplify writing your own methods for
reading ‘istream’ objects.

- Method: void istream::isfx ()
A placeholder for compliance with the draft ANSI standard; this
method does nothing whatever.

If you wish to write portable standard-conforming code on ‘istream’
objects, call ‘isfx’ after any operation that reads from an
‘istream’; if ‘istream::ipfx’ has any special effects that must be
cancelled when done, ‘istream::isfx’ will cancel them.

- Method: istream& istream::ignore ([int N] [, int DELIM])
Discard some number of characters pending input. The first
optional argument N specifies how many characters to skip. The
second optional argument DELIM specifies a "boundary" character:
‘ignore’ returns immediately if this character appears in the
input.

By default, DELIM is ‘EOF’; that is, if you do not specify a
second argument, only the count N restricts how much to ignore
(while input is still available).

If you do not specify how many characters to ignore, ‘ignore’
returns after discarding only one character.

- Method: istream& istream::putback (char CH)
Attempts to back up one character, replacing the character
backed-up over by CH. Returns ‘EOF’ if this is not allowed.
Putting back the most recently read character is always allowed.
(This method corresponds to the C function ‘ungetc’.)

- Method: istream& istream::unget ()
Attempt to back up one character.

1.23 iostream.guide/Iostream

Input and output together: class ‘iostream’
===

If you need to use the same stream for input and output, you can use
an object of the class ‘iostream’, which is derived from *both*
‘istream’ and ‘ostream’.

The constructors for ‘iostream’ behave just like the constructors
for ‘istream’.

- Constructor: iostream::iostream ()
When used without arguments, the ‘iostream’ constructor simply

iostream 19 / 33

allocates a new ‘ios’ object, and initializes the input counter
(the value reported by ‘istream::gcount’) to ‘0’.

- Constructor: iostream::iostream (streambuf* SB [, ostream* TIE])
You can also call a constructor with one or two arguments. The
first argument SB is a ‘streambuf*’; if you supply this pointer,
the constructor uses that ‘streambuf’ for input and output.

You can use the optional second argument TIE (an ‘ostream*’) to
specify a related output stream as the initial value for
‘ios::tie’.

As for ‘ostream’ and ‘istream’, ‘iostream’ simply uses the ‘ios’
destructor. However, an ‘iostream’ is not deleted by its destructor.

You can use all the ‘istream’, ‘ostream’, and ‘ios’ methods with an
‘iostream’ object.

1.24 iostream.guide/Files and Strings

Classes for Files and Strings

There are two very common special cases of input and output: using
files, and using strings in memory.

‘libio’ defines four specialized classes for these cases:

‘ifstream’
Methods for reading files.

‘ofstream’
Methods for writing files.

‘istrstream’
Methods for reading strings from memory.

‘ostrstream’
Methods for writing strings in memory.

Files Reading and writing files.
Strings Reading and writing strings in memory.

1.25 iostream.guide/Files

Reading and writing files
=========================

These methods are declared in ‘fstream.h’.

iostream 20 / 33

You can read data from class ‘ifstream’ with any operation from class
‘istream’. There are also a few specialized facilities:

- Constructor: ifstream::ifstream ()
Make an ‘ifstream’ associated with a new file for input. (If you
use this version of the constructor, you need to call
‘ifstream::open’ before actually reading anything)

- Constructor: ifstream::ifstream (int FD)
Make an ‘ifstream’ for reading from a file that was already open,
using file descriptor FD. (This constructor is compatible with
other versions of iostreams for POSIX systems, but is not part of
the ANSI working paper.)

- Constructor: ifstream::ifstream (const char* FNAME [, int MODE
[, int PROT]])

Open a file ‘*FNAME’ for this ‘ifstream’ object.

By default, the file is opened for input (with ‘ios::in’ as MODE).
If you use this constructor, the file will be closed when the
‘ifstream’ is destroyed.

You can use the optional argument MODE to specify how to open the
file, by combining these enumerated values (with ‘|’ bitwise or).
(These values are actually defined in class ‘ios’, so that all
file-related streams may inherit them.) Only some of these modes
are defined in the latest draft ANSI specification; if portability
is important, you may wish to avoid the others.

‘ios::in’
Open for input. (Included in ANSI draft.)

‘ios::out’
Open for output. (Included in ANSI draft.)

‘ios::ate’
Set the initial input (or output) position to the end of the
file.

‘ios::app’
Seek to end of file before each write. (Included in ANSI
draft.)

‘ios::trunc’
Guarantee a fresh file; discard any contents that were
previously associated with it.

‘ios::nocreate’
Guarantee an existing file; fail if the specified file did
not already exist.

‘ios::noreplace’
Guarantee a new file; fail if the specified file already
existed.

‘ios::bin’

iostream 21 / 33

Open as a binary file (on systems where binary and text files
have different properties, typically how ‘\n’ is mapped;
included in ANSI draft).

The last optional argument PROT is specific to Unix-like systems;
it specifies the file protection (by default ‘644’).

- Method: void ifstream::open (const char* FNAME [, int MODE [, int
PROT]])

Open a file explicitly after the associated ‘ifstream’ object
already exists (for instance, after using the default
constructor). The arguments, options and defaults all have the
same meanings as in the fully specified ‘ifstream’ constructor.

You can write data to class ‘ofstream’ with any operation from class
‘ostream’. There are also a few specialized facilities:

- Constructor: ofstream::ofstream ()
Make an ‘ofstream’ associated with a new file for output.

- Constructor: ofstream::ofstream (int FD)
Make an ‘ofstream’ for writing to a file that was already open,
using file descriptor FD.

- Constructor: ofstream::ofstream (const char* FNAME [, int MODE
[, int PROT]])

Open a file ‘*FNAME’ for this ‘ofstream’ object.

By default, the file is opened for output (with ‘ios::out’ as
MODE). You can use the optional argument MODE to specify how to
open the file, just as described for ‘ifstream::ifstream’.

The last optional argument PROT specifies the file protection (by
default ‘644’).

- Destructor: ofstream::~ofstream ()
The files associated with ‘ofstream’ objects are closed when the
corresponding object is destroyed.

- Method: void ofstream::open (const char* FNAME [, int MODE [, int
PROT]])

Open a file explicitly after the associated ‘ofstream’ object
already exists (for instance, after using the default
constructor). The arguments, options and defaults all have the
same meanings as in the fully specified ‘ofstream’ constructor.

The class ‘fstream’ combines the facilities of ‘ifstream’ and
‘ofstream’, just as ‘iostream’ combines ‘istream’ and ‘ostream’.

The class ‘fstreambase’ underlies both ‘ifstream’ and ‘ofstream’.
They both inherit this additional method:

- Method: void fstreambase::close ()
Close the file associated with this object, and set ‘ios::fail’ in
this object to mark the event.

iostream 22 / 33

1.26 iostream.guide/Strings

Reading and writing in memory
=============================

The classes ‘istrstream’, ‘ostrstream’, and ‘strstream’ provide some
additional features for reading and writing strings in memory--both
static strings, and dynamically allocated strings. The underlying
class ‘strstreambase’ provides some features common to all three;
‘strstreambuf’ underlies that in turn.

- Constructor: istrstream::istrstream (const char* STR [, int SIZE])
Associate the new input string class ‘istrstream’ with an existing
static string starting at STR, of size SIZE. If you do not
specify SIZE, the string is treated as a ‘NUL’ terminated string.

- Constructor: ostrstream::ostrstream ()
Create a new stream for output to a dynamically managed string,
which will grow as needed.

- Constructor: ostrstream::ostrstream (char* STR, int SIZE [,int
MODE])

A new stream for output to a statically defined string of length
SIZE, starting at STR. You may optionally specify one of the
modes described for ‘ifstream::ifstream’; if you do not specify
one, the new stream is simply open for output, with mode
‘ios::out’.

- Method: int ostrstream::pcount ()
Report the current length of the string associated with this
‘ostrstream’.

- Method: char* ostrstream::str ()
A pointer to the string managed by this ‘ostrstream’. Implies
‘ostrstream::freeze()’.

Note that if you want the string to be nul-terminated, you must do
that yourself (perhaps by writing ends to the stream).

- Method: void ostrstream::freeze ([int N])
If N is nonzero (the default), declare that the string associated
with this ‘ostrstream’ is not to change dynamically; while frozen,
it will not be reallocated if it needs more space, and it will not
be deallocated when the ‘ostrstream’ is destroyed. Use
‘freeze(1)’ if you refer to the string as a pointer after creating
it via ‘ostrstream’ facilities.

‘freeze(0)’ cancels this declaration, allowing a dynamically
allocated string to be freed when its ‘ostrstream’ is destroyed.

If this ‘ostrstream’ is already static--that is, if it was created
to manage an existing statically allocated string--‘freeze’ is
unnecessary, and has no effect.

- Method: int ostrstream::frozen ()
Test whether ‘freeze(1)’ is in effect for this string.

iostream 23 / 33

- Method: strstreambuf* strstreambase::rdbuf ()
A pointer to the underlying ‘strstreambuf’.

1.27 iostream.guide/Streambuf

Using the ‘streambuf’ Layer

The ‘istream’ and ‘ostream’ classes are meant to handle conversion
between objects in your program and their textual representation.

By contrast, the underlying ‘streambuf’ class is for transferring
raw bytes between your program, and input sources or output sinks.
Different ‘streambuf’ subclasses connect to different kinds of sources
and sinks.

The GNU implementation of ‘streambuf’ is still evolving; we describe
only some of the highlights.

Areas Areas in a streambuf.
Overflow Simple output re-direction
Formatting C-style formatting for streambuf objects.
Stdiobuf Wrappers for C stdio.
Procbuf Reading/writing from/to a pipe
Backing Up Marking and returning to a position.
Indirectbuf Forwarding I/O activity.

1.28 iostream.guide/Areas

Areas of a ‘streambuf’
======================

Streambuf buffer management is fairly sophisticated (this is a nice
way to say "complicated"). The standard protocol has the following
"areas":

* The "put area" contains characters waiting for output.

* The "get area" contains characters available for reading.

The GNU ‘streambuf’ design extends this, but the details are still
evolving.

The following methods are used to manipulate these areas. These are
all protected methods, which are intended to be used by virtual
function in classes derived from ‘streambuf’. They are also all
ANSI/ISO-standard, and the ugly names are traditional. (Note that if a
pointer points to the ’end’ of an area, it means that it points to the

iostream 24 / 33

character after the area.)

- Method: char* streambuf::pbase () const
Returns a pointer to the start of the put area.

- Method: char* streambuf::epptr () const
Returns a pointer to the end of the put area.

- Method: char* streambuf::pptr () const
If ‘pptr() < epptr ()’, the ‘pptr()’ returns a pointer to the
current put position. (In that case, the next write will
overwrite ‘*pptr()’, and increment ‘pptr()’.) Otherwise, there is
no put position available (and the next character written will
cause ‘streambuf::overflow’ to be called).

- Method: void streambuf::pbump (int N)
Add N to the current put pointer. No error checking is done.

- Method: void streambuf::setp (char* P, char* E)
Sets the start of the put area to P, the end of the put area to E,
and the current put pointer to P (also).

- Method: char* streambuf::eback () const
Returns a pointer to the start of the get area.

- Method: char* streambuf::egptr () const
Returns a pointer to the end of the get area.

- Method: char* streambuf::gptr () const
If ‘gptr() < egptr ()’, then ‘gptr()’ returns a pointer to the
current get position. (In that case the next read will read
‘*gptr()’, and possibly increment ‘gptr()’.) Otherwise, there is
no read position available (and the next read will cause
‘streambuf::underflow’ to be called).

- Method: void streambuf:gbump (int N)
Add N to the current get pointer. No error checking is done.

- Method: void streambuf::setg (char* B, char* P, char* E)
Sets the start of the get area to B, the end of the get area to E,
and the current put pointer to P.

1.29 iostream.guide/Overflow

Simple output re-direction by redefining ‘overflow’
===

Suppose you have a function ‘write_to_window’ that writes characters
to a ‘window’ object. If you want to use the ostream function to write
to it, here is one (portable) way to do it. This depends on the
default buffering (if any).

#include <iostream.h>
/* Returns number of characters successfully written to WIN. */

iostream 25 / 33

extern int write_to_window (window* win, char* text, int length);

class windowbuf : public streambuf {
window* win;

public:
windowbuf (window* w) { win = w; }
int sync ();
int overflow (int ch);
// Defining xsputn is an optional optimization.
// (streamsize was recently added to ANSI C++, not portable yet.)
streamsize xsputn (char* text, streamsize n);

};

int windowbuf::sync ()
{ streamsize n = pptr () - pbase ();

return (n && write_to_window (win, pbase (), n) != n) ? EOF : 0;
}

int windowbuf::overflow (int ch)
{ streamsize n = pptr () - pbase ();

if (n && sync ())
return EOF;

if (ch != EOF)
{

char cbuf[1];
cbuf[0] = ch;
if (write_to_window (win, cbuf, 1) != 1)
return EOF;

}
pbump (-n); // Reset pptr().
return 0;

}

streamsize windowbuf::xsputn (char* text, streamsize n)
{ return sync () == EOF ? 0 : write_to_window (win, text, n); }

int
main (int argc, char**argv)
{

window *win = ...;
windowbuf wbuf(win);
ostream wstr(&wbuf);
wstr << "Hello world!\n";

}

1.30 iostream.guide/Formatting

C-style formatting for ‘streambuf’ objects
==

The GNU ‘streambuf’ class supports ‘printf’-like formatting and
scanning.

- Method: int streambuf::vform (const char *FORMAT, ...)

iostream 26 / 33

Similar to ‘fprintf(FILE, FORMAT, ...)’. The FORMAT is a
‘printf’-style format control string, which is used to format the
(variable number of) arguments, printing the result on the ‘this’
streambuf. The result is the number of characters printed.

- Method: int streambuf::vform (const char *FORMAT, va_list ARGS)
Similar to ‘vfprintf(FILE, FORMAT, ARGS)’. The FORMAT is a
‘printf’-style format control string, which is used to format the
argument list ARGS, printing the result on the ‘this’ streambuf.
The result is the number of characters printed.

- Method: int streambuf::scan (const char *FORMAT, ...)
Similar to ‘fscanf(FILE, FORMAT, ...)’. The FORMAT is a
‘scanf’-style format control string, which is used to read the
(variable number of) arguments from the ‘this’ streambuf. The
result is the number of items assigned, or ‘EOF’ in case of input
failure before any conversion.

- Method: int streambuf::vscan (const char *FORMAT, va_list ARGS)
Like ‘streambuf::scan’, but takes a single ‘va_list’ argument.

1.31 iostream.guide/Stdiobuf

Wrappers for C ‘stdio’
======================

A "stdiobuf" is a ‘streambuf’ object that points to a ‘FILE’ object
(as defined by ‘stdio.h’). All ‘streambuf’ operations on the
‘stdiobuf’ are forwarded to the ‘FILE’. Thus the ‘stdiobuf’ object
provides a wrapper around a ‘FILE’, allowing use of ‘streambuf’
operations on a ‘FILE’. This can be useful when mixing C code with C++
code.

The pre-defined streams ‘cin’, ‘cout’, and ‘cerr’ are normally
implemented as ‘stdiobuf’ objects that point to respectively ‘stdin’,
‘stdout’, and ‘stderr’. This is convenient, but it does cost some
extra overhead.

If you set things up to use the implementation of ‘stdio’ provided
with this library, then ‘cin’, ‘cout’, and ‘cerr’ will be set up to to
use ‘stdiobuf’ objects, since you get their benefits for free. See
C Input and Output.

1.32 iostream.guide/Procbuf

Reading/writing from/to a pipe
==============================

The "procbuf" class is a GNU extension. It is derived from
‘streambuf’. A ‘procbuf’ can be "closed" (in which case it does

iostream 27 / 33

nothing), or "open" (in which case it allows communicating through a
pipe with some other program).

- Constructor: procbuf::procbuf ()
Creates a ‘procbuf’ in a "closed" state.

- Method: procbuf* procbuf::open (const char *COMMAND, int MODE)
Uses the shell (‘/bin/sh’) to run a program specified by COMMAND.

If MODE is ‘ios::in’, standard output from the program is sent to
a pipe; you can read from the pipe by reading from the ‘procbuf’.
(This is similar to ‘popen(COMMAND, "r")’.)

If MODE is ‘ios::out’, output written written to the ‘procbuf’ is
written to a pipe; the program is set up to read its standard
input from (the other end of) the pipe. (This is similar to
‘popen(COMMAND, "w")’.)

The ‘procbuf’ must start out in the "closed" state. Returns
‘*this’ on success, and ‘NULL’ on failure.

- Constructor: procbuf::procbuf (const char *COMMAND, int MODE)
Calls ‘procbuf::open (COMMAND, MODE)’.

- Method: procbuf* procbuf::close ()
Waits for the program to finish executing, and then cleans up the
resources used. Returns ‘*this’ on success, and ‘NULL’ on failure.

- Destructor: procbuf::~procbuf ()
Calls ‘procbuf::close’.

1.33 iostream.guide/Backing Up

Backing up
==========

The GNU iostream library allows you to ask a ‘streambuf’ to remember
the current position. This allows you to go back to this position
later, after reading further. You can back up arbitrary amounts, even
on unbuffered files or multiple buffers’ worth, as long as you tell the
library in advance. This unbounded backup is very useful for scanning
and parsing applications. This example shows a typical scenario:

// Read either "dog", "hound", or "hounddog".
// If "dog" is found, return 1.
// If "hound" is found, return 2.
// If "hounddog" is found, return 3.
// If none of these are found, return -1.
int my_scan(streambuf* sb)
{

streammarker fence(sb);
char buffer[20];
// Try reading "hounddog":
if (sb->sgetn(buffer, 8) == 8

iostream 28 / 33

&& strncmp(buffer, "hounddog", 8) == 0)
return 3;

// No, no "hounddog": Back up to ’fence’
sb->seekmark(fence); //
// ... and try reading "dog":
if (sb->sgetn(buffer, 3) == 3

&& strncmp(buffer, "dog", 3) == 0)
return 1;

// No, no "dog" either: Back up to ’fence’
sb->seekmark(fence); //
// ... and try reading "hound":
if (sb->sgetn(buffer, 5) == 5

&& strncmp(buffer, "hound", 5) == 0)
return 2;

// No, no "hound" either: Back up and signal failure.
sb->seekmark(fence); // Backup to ’fence’
return -1;

}

- Constructor: streammarker::streammarker (streambuf* SBUF)
Create a ‘streammarker’ associated with SBUF that remembers the
current position of the get pointer.

- Method: int streammarker::delta (streammarker& MARK2)
Return the difference between the get positions corresponding to
‘*this’ and MARK2 (which must point into the same ‘streambuffer’
as ‘this’).

- Method: int streammarker::delta ()
Return the position relative to the streambuffer’s current get
position.

- Method: int streambuf::seekmark (streammarker& MARK)
Move the get pointer to where it (logically) was when MARK was
constructed.

1.34 iostream.guide/Indirectbuf

Forwarding I/O activity
=======================

An "indirectbuf" is one that forwards all of its I/O requests to
another streambuf.

An ‘indirectbuf’ can be used to implement Common Lisp
synonym-streams and two-way-streams:

class synonymbuf : public indirectbuf {
Symbol *sym;
synonymbuf(Symbol *s) { sym = s; }
virtual streambuf *lookup_stream(int mode) {

return coerce_to_streambuf(lookup_value(sym)); }
};

iostream 29 / 33

1.35 iostream.guide/Stdio

C Input and Output

‘libio’ is distributed with a complete implementation of the ANSI C
‘stdio’ facility. It is implemented using ‘streambuf’ objects. See
Wrappers for C ‘stdio’.

The ‘stdio’ package is intended as a replacement for the whatever
‘stdio’ is in your C library. Since ‘stdio’ works best when you build
‘libc’ to contain it, and that may be inconvenient, it is not installed
by default.

Extensions beyond ANSI:

* A stdio ‘FILE’ is identical to a streambuf. Hence there is no
need to worry about synchronizing C and C++ input/output--they are
by definition always synchronized.

* If you create a new streambuf sub-class (in C++), you can use it
as a ‘FILE’ from C. Thus the system is extensible using the
standard ‘streambuf’ protocol.

* You can arbitrarily mix reading and writing, without having to seek
in between.

* Unbounded ‘ungetc()’ buffer.

1.36 iostream.guide/Index

Index

(States
(States
<< on ostream Operators
>> on istream Operators
iostream destructor Iostream
badbit States
beg Output Position
cerr Operators
cin Operators
class fstreambase Files
class fstream Files
class ifstream Files
class istrstream Strings

iostream 30 / 33

class ostream Files
class ostrstream Strings
class strstreambase Strings
class strstreambuf Strings
class strstream Strings
cout Operators
cur Output Position
dec Manipulators
destructor for iostream Iostream
end Output Position
endl Manipulators
ends Manipulators
eofbit States
failbit States
flush Ostream Housekeeping
flush Manipulators
fstream Files
fstreambase Files
fstreambase::close Files
get area Areas
goodbit States
hex Manipulators
ifstream Files and Strings
ifstream Files
ifstream::ifstream Files
ifstream::ifstream Files
ifstream::ifstream Files
ifstream::open Files
ios::app Files
ios::ate Files
ios::bad States
ios::beg Input Position
ios::bin Files
ios::bitalloc Extending
ios::clear States
ios::cur Input Position
ios::dec Format Control
ios::end Input Position
ios::eof States
ios::fail States
ios::fill Format Control
ios::fill Format Control
ios::fixed Format Control
ios::flags Format Control
ios::flags Format Control
ios::good States
ios::hex Format Control
ios::in Files
ios::internal Format Control
ios::ios Ios
ios::iword Extending
ios::iword Extending
ios::left Format Control
ios::nocreate Files
ios::noreplace Files
ios::oct Format Control
ios::out Files

iostream 31 / 33

ios::precision Format Control
ios::precision Format Control
ios::pword Extending
ios::pword Extending
ios::rdbuf Streambuf from Ios
ios::rdstate States
ios::right Format Control
ios::scientific Format Control
ios::seekdir Output Position
ios::set States
ios::setf Format Control
ios::setf Format Control
ios::setstate States
ios::showbase Format Control
ios::showpoint Format Control
ios::showpos Format Control
ios::skipws Format Control
ios::stdio Format Control
ios::sync_with_stdio Synchronization
ios::tie Synchronization
ios::tie Synchronization
ios::trunc Files
ios::unitbuf Format Control
ios::unsetf Format Control
ios::uppercase Format Control
ios::width Format Control
ios::width Format Control
ios::xalloc Extending
ios::~ios Ios
iostream::iostream Iostream
iostream::iostream Iostream
istream::gcount Istream Housekeeping
istream::get Char Input
istream::get Char Input
istream::get String Input
istream::get String Input
istream::getline String Input
istream::gets String Input
istream::ignore Istream Housekeeping
istream::ipfx Istream Housekeeping
istream::isfx Istream Housekeeping
istream::istream Istream
istream::istream Istream
istream::peek Char Input
istream::putback Istream Housekeeping
istream::read String Input
istream::scan String Input
istream::seekg Input Position
istream::seekg Input Position
istream::tellg Input Position
istream::unget Istream Housekeeping
istream::vscan String Input
istrstream Strings
istrstream Files and Strings
istrstream::istrstream Strings
oct Manipulators
ofstream Files and Strings

iostream 32 / 33

ofstream::ofstream Files
ofstream::ofstream Files
ofstream::ofstream Files
ofstream::open Files
ofstream::~ofstream Files
ostream Files
ostream::form Writing
ostream::opfx Ostream Housekeeping
ostream::osfx Ostream Housekeeping
ostream::ostream Ostream
ostream::ostream Ostream
ostream::put Writing
ostream::seekp Output Position
ostream::seekp Output Position
ostream::tellp Output Position
ostream::vform Writing
ostream::write Writing
ostrstream Strings
ostrstream Files and Strings
ostrstream::freeze Strings
ostrstream::frozen Strings
ostrstream::ostrstream Strings
ostrstream::ostrstream Strings
ostrstream::pcount Strings
ostrstream::str Strings
procbuf::close Procbuf
procbuf::open Procbuf
procbuf::procbuf Procbuf
procbuf::procbuf Procbuf
procbuf::~procbuf Procbuf
put area Areas
setbase Manipulators
setfill Manipulators
setprecision Format Control
setprecision Manipulators
setting ios::precision Format Control
setting ios::width Format Control
setw Format Control
setw Manipulators
streambuf::eback Areas
streambuf::egptr Areas
streambuf::epptr Areas
streambuf::gptr Areas
streambuf::pbase Areas
streambuf::pbump Areas
streambuf::pptr Areas
streambuf::scan Formatting
streambuf::seekmark Backing Up
streambuf::setg Areas
streambuf::setp Areas
streambuf::vform Formatting
streambuf::vform Formatting
streambuf::vscan Formatting
streambuf:gbump Areas
streammarker::delta Backing Up
streammarker::delta Backing Up
streammarker::streammarker Backing Up

iostream 33 / 33

strstream Strings
strstreambase Strings
strstreambase::rdbuf Strings
strstreambuf Strings
ws Manipulators

	iostream
	iostream.guide
	iostream.guide/Introduction
	iostream.guide/Copying
	iostream.guide/Acknowledgements
	iostream.guide/Operators
	iostream.guide/Streams
	iostream.guide/Ios
	iostream.guide/States
	iostream.guide/Format Control
	iostream.guide/Manipulators
	iostream.guide/Extending
	iostream.guide/Synchronization
	iostream.guide/Streambuf from Ios
	iostream.guide/Ostream
	iostream.guide/Writing
	iostream.guide/Output Position
	iostream.guide/Ostream Housekeeping
	iostream.guide/Istream
	iostream.guide/Char Input
	iostream.guide/String Input
	iostream.guide/Input Position
	iostream.guide/Istream Housekeeping
	iostream.guide/Iostream
	iostream.guide/Files and Strings
	iostream.guide/Files
	iostream.guide/Strings
	iostream.guide/Streambuf
	iostream.guide/Areas
	iostream.guide/Overflow
	iostream.guide/Formatting
	iostream.guide/Stdiobuf
	iostream.guide/Procbuf
	iostream.guide/Backing Up
	iostream.guide/Indirectbuf
	iostream.guide/Stdio
	iostream.guide/Index

