MathFX

MathFX

COLLABORATORS
TITLE :
MathFX
ACTION NAME DATE SIGNATURE
WRITTEN BY June 8, 2025
‘ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

MathFX iii

Contents

1 MathFX 1
1.1 MathFX Manual: Table of Contents e 1
1.2 MathFX Manual: Introduction e 2
1.3 MathFX Manual: OVerview oo e e e e e 2
1.4 MathFX Manual: Requirements e e e e e e 2
1.5 MathFX Manual: Installation 0 e e 3
1.6 MathFX Manual: Registration Information 3
1.7 MathFX Manual: Author Information 4
1.8 MathFX Manual: Credits :-) e e e e e e 4
1.9 MathFX Manual: Command reference helpmenu o oL 5
1.10 MathFX Manual: A Guided Tour... e 5
1.11 Math FX Manual: A Guided Tour; Hewlett Packard Printers... 6
1.12 Math FX Manual: A Guided Tour; imPRESS & Tektronix Devices 6
1.13 Math FX Manual: A Guided Tour; Support for other devices 6
1.14 Math FX Manual: A Guided Tour; Starting MathFX.o 7
1.15 Math FX Manual: A Guided Tour; Labelling Graphs... 8
1.16 Math FX Manual: The Full Guided Tour to MathFX.... 10
1.17 MathFX Manual: Advanced Use of MathFX 11
1.18 MathFX Manual: Annotating the Viewport. e e 13
1.19 MathFX Manual: 3D surface plots. e 15
1.20 MathFX Manual: Commands Index 18
1.21 MathFX Manual: Registration Form 33

MathFX

1/34

Chapter 1

MathFX

1.1 MathFX Manual: Table of Contents

Copyright (©)

Introduction~~~
Overview~~~~r~n~n~
Requirements~~~
Installation~~~
Registration~~~
Command~Summary
Contacts~~~~~n~~
Credits~~r~~r~~~

This program and it’s accompanying files are copyrighted property of

The Xperts Group

Mat

h FX (®)

Data & Function Plotting Library

1993-95,

The Xp

Author:

TABTLE 0]

Inc.

erts Group Inc.

Manolis~S~Pappas

All Rights Reserved.

F CONTENTS

What is this thing?
Take a closer look...
What do you need...

T

o get started...

This ain’t free...
Manual Reference...
Keep in touch...

Portions,

All Rights Reserved Worldwide.

This program is provided "AS IS".
bad programming or loss of data caused by this program.
stable and "bug free"

misuse,

(©) Tim Pearson and Sze Tan.

possible attempt was taken to provide a solid,

program,

results using this program.

No responsibility is taken for any
Every

but under NO CIRCUMNSTANCES we’ll be responsible for the
USE AT YOUR OWN RISK!

MathFX

2/34

1.2 MathFX Manual: Introduction

Being a student, I was always looking for a good math plotting package
for the Amiga, in order to assist me in writing scientific projects that
involve math, function & data plotting.

Being a UNIX user, I was always fond about what kind of programs that
this platform had to offer. PGPLOT by Tim Pearson is a good example of such
a program. The only dissadvantage of this program was the lack of
versatility in terms of the ability to use the program inside other
applications.

Hence MathFX was created to allow the user to produce professional graphs
either as stand-alone applications or from inside big projects.

1.3 MathFX Manual: Overview

MathFX is a library of C functions for drawing graphs on a variety of
graphics devices using the Amiga personal computer. The only assumption made
about an output device is that it is capable of displaying a line, so new
graphics devices may be added readily by writing a small number of
device-dependent routines.

The library is SAS/C compatible and is accessible using the SAS/C linker
(slink). The library was written in plain ANSI C dialect (except of the
Amiga specific code), so it is possible to use the library with other Amiga
compilers that utilitize Amiga standard object files, such as DICE C.

For most applications, the program can be device-independent, and the
output can be directed to the appropriate graphics device at run-time.
However, for specialized applications, where the absolute size of a graph is
important, it is also possible to specify the plotting area in terms of
absolute coordinates (millimeters).

1.4 MathFX Manual: Requirements

To use this software you need:

- An Amiga personal computer :-)

— An ANSI C compliant compiler (SAS/C, DICE, Sozobon, Manx,...)
capable of using Amiga object files

— Kickstart v1.2 or later

- 512K RAM.

Bigger MathFX applications require more memory, but 1MB memory will
be enough even to the most complicated ones.

MathFX

3/34

NOTE: Although MathFX was created to provide the C language a means of
handling plots & graphs from a higher level, it doesn’t mean that it cannot
be used with other languages that support calls to external functions. A few
examples: ACE Basic (hello David!), Hisoft’s excellent Highspeed Pascal,
Amiga-E, Oberon, Modula-2 and assembly (the ones I know that can!).

1.5 MathFX Manual: Installation

To install this software:

Copy the library to your C compiler link libraries directory. Make sure,
when compiling, to link your program with the MathFX library and with the
apropriate math link libraries (they are supplied with your C compiler
system) .

Note: MathFX performs it’s math calculations using 32 bits, so your
compiler’s math link library must support the IEEE math format.

1.6 MathFX Manual: Registration Information

MathFX took me about a year’s time to develop. During development I had
to study maths REALLY HARD, in order to be able to provide the program with
the neccessary routines for plotting. Accuracy was one of my prime
directives during development time; after all, I really need the software to
be precise because I had to use it for my projects.

As I said, I am a student (at the Chemistry Dept of the University of
Athens). Being a student is wonderful, on the one side. You’re given the
chance to explore many wonderful things and to learn how to THINK right
about life. On the other side, it is difficult to get a job since you don’t
have enough time to acomplish this task; none wants a student to his work
since he isn’t yet a professional, but Jjust a person that needs a part-time
job, just to make some cash for his living.

If you are (or ever were) a student, you’ll probably had experienced all
these. Since I've put a lot of work on getting this program working, I
require a small fee for my efforts. These money will help me cover some of
my expenses (such as my bus tickets) and will also encourage me to develop
the program even further.

I don’t like crippled software or an awful lot of keyfiles hanging around
my system. Thus, MathFX is not crippled IN ANY WAY; however it is COMPLETELY
UNOPTIMIZED! The program as it is, it is very slow (especially on
un-accelerated machines) .

The registration fee costs only $20 (inc. P&P). When you register, you’ll
get a personalized version of the library OPTIMIZED for the following

systems:

68000, 68020, 68020+FPU, 68030, 68030+FPU, 68040FPU

MathFX

4/34

The optimized version is written at 75% in assembly language (instead of
this one that is ompletely written in C), it is smaller and faster (around
60% faster in displaying graphics and over 350% in parsing data and tables
for plotting).

If you live in Greece, you can contact me for registration information.

I accept cheques, with the above amound, from the national Dbank of your
country. Personal cheques are also accepted, but it will take longer for
your program to arrive, since the cheque has to be validated first. Please

DON’T send money; I cannot take the responsibility if the money is stolen.

Please support shareware authors. The Amiga scene REALLY needs the
support of software authors. Don’t push them to abandon the Amiga!

KEEP THE AMIGA ALIVE! REGISTER TODAY!

Registration~Form

1.7 MathFX Manual: Author Information

Feel free to contact me for comments, ideas, bug reports or just anything
else. Write to the address:

Manolis S Pappas
Thermopilon 24
14231 Nea Ionia
Athens

GREECE

You can also reach me via electronic networks:

Internet: mpap@acrogate.ath.forthnet.gr
mpappas@posidon.servicenet.ariadne-t.gr

AmigaNET: 39:250/3.19
FidoNet: 2:410/128.19

See you soon

)

1.8 MathFX Manual: Credits :-)

MathFX was written by Manolis S Pappas in 1994-95 using the excellent
SAS/C Development System v6.51.

Thanks goes to the following people that are the rest members of The
Xperts Group, for their extensive support & beta testing:

Argiris D Maistralis
Menelaos P Mikedis

MathFX

5/34

Andreas C Apessos (Focus Studios Inc)

Thanks must go also to the people behind the Amiga community in Greece
for their assistance in the creation of this program, especially to:

Pantelis Andreadis
George Hionidis
Manos Konstantiniadis

And at last... thanks to ALL Amiga users for supporting the Amiga!

Thanks also goes to the Amiga creators for creating the most advanced
personal computer ever.

1.9 MathFX Manual: Command reference help menu

The main reference goes as follows. It starts with a guided tour to the
MathFX system and after that a command reference index follows.

Let’s start... =)

Quick~Start~ Tell me more of MathFX...
The~REAL~Tour Take a DEEP breath...
Command~Index

1.10 MathFX Manual: A Guided Tour...

Devices Supported by MathFX on the Amiga.

At run time the user specifies whether the graphics should be drawn on the
Amiga’s screen or stored in a device dependent file. If the Amiga screen is
selected then a backdrop, borderless window is opened on a high resolution,
interlaced screen. Two menus are available for screen and graphics control.
When the window is first opened only two menu selections are available.
These are the Interrupt selection under the Graphics Control menu (Interrupt
can also be selected by typing CTRL-C) and the Screen to Back selection
under the Screen Control menu (Screen to Back can also be selected to by
holding the right Amiga key down and then hitting F). The Screen to Back
selection will move the graphics screen behind any other screens you may
have open. The Interrupt selection will suspend any drawing operations.
After the Interrupt selection is made all other menu selections are
enabled.

Under the Screen Control menu the user can then select Screen to Back,
Clear Screen, and Close Screen. The Screen to Back selection has already
been discussed. The Clear Screen and Close Screen operations can also be
selected from the keyboard by holding down the right Amiga key and typing
either C or Q. The Clear Screen selection, as you’ve probably guessed,
clears the screen. The Close Screen selection closes the screen, calls FXEND
and then calls the exit routine to end program execution. The Close Screen
selection must be followed by pressing RETURN after its selection. Close

MathFX 6/34

Screen does not return control back to the user’s main program. It should
be used only to gracefully abort the program.

Under the Graphics Control menu the only enabled menu selection is
Continue (also selectable by hitting the RETURN key). This will continue
program execution at the point where it was suspended. When a program uses
MathFX to create a sequence of graphs then MathFX will automatically wait
for the Continue selection before erasing one graph and starting the next
one. After the last graph is displayed (or the first one, if only one is
being drawn) MathFX will again wait for a Continue selection. The screen
will then be closed and control returned to the user’s program. This is the
preferred method of closing the screen (as opposed to the Close Screen
selection).

After one graph is complete, the user can move the Screen to Back to get
WorkBench access and then use the GraphicDump (or similar) program to obtain
hardcopy. However, if you have a fairly high resolution printer or plotter
best results will be obtained if you use a specific device driver.

Three device drivers are supplied with MathFX. The supplied drivers
provide support for the following graphics languages:

HP~LaserJdet~II
imPRESS
Tektronix

1.11 Math FX Manual: A Guided Tour; Hewlett Packard Printers...

The HP LaserJet II does not actually support any type of vector

graphics language. Instead a bit map is created in memory and when the
graph is completed the bit map is written to a file (along with some HP
specific control sequences). To keep the memory requirements (for both the

Amiga and LaserJet II) low this driver only supports the 150 dot per inch
mode of the laser printer. The file sizes can be rather large if multiple
graphs are produced from a single main program.

1.12 Math FX Manual: A Guided Tour; imPRESS & Tektronix Devices

Tektronix and imPRESS devices do have vector drawing support and are
the simplest type devices to write drivers for. The graphics commands are
written to a file on the fly, without the need for a bit map. imPRESS is a
page description language for IMAGEN printers. After the graphics file is
created just copy it to the appropriate device (do not send the file to
prt: use either ser: or par:).

1.13 Math FX Manual: A Guided Tour; Support for other devices

Support for other devices will be added in the future versions of
MathFX and upon user’s request. If you have some kind of special device and
want MathFX to support it, please send to us as much documentation as you

MathFX

7/34

can, in order to create the apropriate driver for you.

See Contacts setion for more information on contacting us.

1.14 Math FX Manual: A Guided Tour; Starting MathFX.

Starting MathFX

Subroutine fxstar selects a graphics device or opens a disk file to receive
a plot for later display. If fxstar is called again during a program, the
previously opened file will be closed. When called, the user is prompted for
a number representing the device on which the plot is to appear. The syntax
for fxstar is:

fxstar (nx,ny) ; nx, ny (int, input)

The number of plots to a page. The page is divided into nx, ny subpages,
with nx in the horizontal direction, and ny in the vertical direction.

Subpages are useful for placing several graphs on a page, but all subpages
are constrained to be of the same size.

Defining plot scales and axes
The function fxenv is used to define the scales and axes for simple graphs.
fxenv starts a new picture on the next subpage (or a new page if necessary),
and defines the ranges of the variables required. The routine will also draw

a box, axes, and numeric labels if requested. The syntax for fxenv is:

fxenv (xmin, xmax, ymin, ymax, just, axis) ;

xmin, xmax (float, input): The left and right limits for the horizontal axis.
ymin,ymax (float, input): The bottom and top limits for the vertical axis.
just (int, input): This should be zero or one. If just is one, the scales of

the x-axis and y-axis will be the same (in units per millimeter); otherwise
the axes are scaled independently. This parameter is useful for ensuring
that objects such as circles have the correct aspect ratio in the final
plot.

axis (int, input): controls whether a box, tick marks, labels, axes, and/or
a grid are drawn.

axis=-2: No box or annotation.
axis=-1: Draw box only.
axis= 0: Draw box, labelled with coordinate values around edge.
axis= 1: In addition to box and labels, draw the two axes
X=0 and Y=0.
axis= 2: As for axis=1l, but also draw a grid at the major tick
interval.
axis=10: Logarithmic X axis, linear
axis=11: Logarithmic X axis, linear
axis=20: Linear X axis, logarithmic
axis=21: Linear X axis, logarithmic
axis=30: Logarithmic X and Y axes.

axis.
axis and draw line Y=0.
axis.
axis and draw line X=0.

Ko

MathFX

8/34

Note: Logarithmic axes only affect the appearance of the axes and their
labels, so it is up to the user to compute the logarithms prior to passing
them to fxenv and any of the other routines. Thus, if a graph has a 3-cycle
logarithmic axis from 1 to 1000, we need to set xmin=log_{10}1=0.0, and
xmax}=log_{10}1000=3.0.

Labelling~the~graph.

1.15 Math FX Manual: A Guided Tour; Labelling Graphs...

Labelling the graph

The function fxlab may be called after fxenv to write labels on the x and y
axes, and at the top of the picture. All the variables are character
variables or constants. Trailing spaces are removed and the label is centred
in the appropriate field. The syntax for fxlab is:

fxlab(x1bl,ylbl, toplbl);

x1bl (char %, input): Pointer to string with label for the X-axis

(bottom of graph).

y1lbl (char =, input): Pointer to string with label
for the Y-axis

(left of graph).

toplbl (char %, input): Pointer to string with
label for the plot

(top of picture).

More complex labels can be drawn using the function fxmtex.

Drawing the Graph

MathFX can draw graphs consisting of points with optional error bars, line
segments or histograms. Functions which perform each of these actions may be
called after setting up the plotting environment using fxenv. All of the
following functions draw within the box defined by fxenv, and any lines
crossing the boundary are clipped. Functions are also provided for drawing
surface and contour representations of multi-dimensional functions.

Drawing Points

fxpoin and fxsym mark out n points (x[i],y[i]) with the specified
symbol. The routines differ only in the interpretation of the symbol codes.
fxpoin uses an extended ASCII representation, with the printable ASCII
codes mapping to the respective characters in the current font, and the
codes from 0-31 mapping to various useful symbols. In fxsym however, the
code 1is a Hershey font code number. Example programs are provided which

MathFX

9/34

display each of the symbols available using these routines.
fxpoin(n, x,y,code); and fxsym(n,x,y,code);

n (int, input): the number of points to plot.

X, y (float %, input): pointers to arrays of the coordinates of the n
points.

code (int, input): code number of symbol to draw.

Drawing Lines or Curves

MathFX provides two functions for drawing line graphs. All lines
are drawn in the currently selected color and line style.

fxline draws a line or curve. The curve consists of n-1 line segments
joining the n points in the input arrays. For single line segments, fxjoin
is used to join two points.

fxline(n,x,Vy);

n (int, input): the number of points.

x, y (float %, input): pointers to arrays with coordinates of the n points.
fxjoin(x1l,vyl,x2,vy2);

x1, yl (float, input): coordinates of the first point.

x2, y2 (float, input): coordinates of the second point.

Writing Text on a Graph

fxptex allows text to be written within the limits set by fxenv. The
reference point of a text string may be located anywhere along an imaginary
horizontal line passing through the string at half the height of a capital
letter. The parameter "just" specifies where along this line the reference
point is located. The string is then rotated about the reference point
through an angle specified by the parameters dx and dy, so that the string
becomes parallel to a line joining (x,y) to (x+dx,y+dy).

fxptex (x,y,dx,dy, just, text) ;

x, y (float, input): coordinates of the reference point. dx, dy (float,
input): these specify the angle at which the text is to be printed. The text
is written parallel to a line joining the points (x,y) to (x+dx,y+dy) on the
graph. just (float, input): determines justification of the string by
specifying which point within the string is placed at the reference point
(x,v). This parameter is a fraction of the distance along the string. Thus
if Just=0.0, the reference point is at the left-hand edge of the string. If
just=0.5, it is at the center and if Jjust=1.0, it is at the right-hand edge.
text (char %, input): pointer to the string of characters to be written.

MathFX

10/ 34

More Complex Graphs (Histograms and Error Bars)
Functions fxbin and fxhist are provided for drawing histograms, and
functions fxerrx and fxerry draw error bars about specified points.

Finishing up

Before the end of the program, always call fxend to close any output plot
file and to free up any memory that may have been allocated. For devices
that have separate graphics and text modes, fxend always resets the device
into text mode. If it is required to switch between modes within a program,
the functions fxgra fxtext set the device to graphics and text modes
respectively.

Advanced~use~of~MathFX

1.16 Math FX Manual: The Full Guided Tour to MathFX...

Simple Use of MathFX
Plotting a Simple Graph

We shall first consider plotting simple graphs showing the
dependence of one variable upon another. Such a graph may be composed of
several elements:

A box which defines the ranges of the variables, perhaps with axes
and numeric labels along its edges,

A set of points or lines within the box showing the functional
dependence,

A set of labels for the variables and a title for the graph.

In order to draw such a graph, it is necessary to call at least four of
the MathFX functions:

fxstar: to specify the device you want to plot on,
fxenv: to define the range and scale of the graph, and
draw labels, axes, etc.,
One or more calls to fxline or fxpoin to draw
lines or points as needed. Other more complex routines include
fxbin and fxhist to draw histograms, fxerrx and
fxerry to draw error-bars and fxend, to close the plot.

More than one graph can be drawn on a single set of axes by making repeated
calls to the routines listed in item above. The routine fxstar needs to be
called only once, unless a different output device is required.

MathFX 11/34

Starting~MathFX Advanced~Use~of~MathFX

1.17 MathFX Manual: Advanced Use of MathFX

Advanced Use of MathFX

In this chapter, we describe more precisely how to control the position and
scaling of a graph, how to alter the low-level line and character
attributes, and how to use the functions in MathFX for drawing
three-dimensional surface plots and contour plots.

Basic MathFX Concepts

When drawing a graph, the programmer usually wishes to specify the
coordinates of the points to be plotted in terms of the values of the
variables involved. These coordinates are called world coordinates, and may
have any floating-point value representable by the computer. The window
refers to the rectangular region of world-coordinate space which is to be
graphed. This window is mapped onto a rectangular region of the view
surface, which is (a portion) of the screen or sheet of paper in the output
device. This physical region onto which the window is mapped is called the
viewport. Before a graph can be drawn, the program must define both the
window and the viewport by calling appropriate routines in MathFX.

Specifying the View Surface

The first thing that a graphics program must do is to tell MathFX which
device it is going to use, and how this device is to be divided up for graph
plotting. There are two routines that do this, fxstar, which prompts at the
console for the output device type and fxbeg, which expects to be supplied
the code number of the device as an argument. The code numbers required by
fxbeg are the same as displayed by fxstar when it prompts for a device.

Besides selecting the device, fxstar and fxbeg allow the user to divide the
output device plotting area into several subpages of equal size, each of
which can be used separately. The routine fxadv is used to advance to a
particular subpage or to the next subpage. The screen is cleared (after
waiting for the user to select Continue from the Graphics Control menu or
hit the RETURN key), or a new piece of paper is loaded, i1if a new subpage is
requested when there are no subpages left on the current page. When a page
is divided into subpages, the default character, symbol and tick sizes are
scaled inversely as the square root of the number of subpages in the
vertical direction.

At the end of a plotting program, it is important to close the plotting
device by calling fxend. This flushes any internal buffers and frees any
memory that may have been allocated. Note that if fxstar or fxbeg is called
more than once during a program to change the output device, an automatic
call to fxend is made before the new device is opened.

Defining the Viewport
After defining the view surface, it is necessary to define the portion of

this surface which is to be used for plotting the graph. All lines and
symbols (except for labels drawn by fxbox, fxmtex and fxlab) are clipped at

MathFX 12/34

the viewport boundaries.

Viewports are created within the current subpage. If the division of the
output device into equally sized subpages is inappropriate, it is best to
specify only a single subpage which occupies the entire output device (by
setting nx=1 and ny=1 in fxbeg or fxstar), and use one of the viewport
specification subroutines below to place the plot in the desired position on
the page.

There are two methods for specifying the viewport size, using the
subroutines fxvpor and fxsvpa. Each of these has the format:

fxvpor (xmin, xmax, ymin, ymax); plsvpa (xmin,xmax,ymin,ymax) ;

where in the case of fxvpor, the arguments are given in normalized subpage
coordinates which are defined to run from 0.0 to 1.0 along each edge of the
subpage. Thus for example,

fxvpor(0.0,0.5,0.5,1.0);
uses the top left quarter of the current subpage.

In order to get a graph of known physical size, the routine fxsvpa defines
the viewport in terms of absolute coordinates (millimetres) measured from
the bottom left-hand corner of the current subpage. This routine should
only be used when the size of the view surface is known, and a definite
scaling is required.

To help the user call fxsvpa correctly, the routine fxgspa is provided which
returns the positions of the extremities of the current subpage measured in
millimetres from the bottom left-hand corner of the device. Thus, if to set
up a viewport with a 10.0~mm margin around it within the current subpage,
the following sequence of calls may be used

fxgspa (xmin, xmax, ymin, ymax) ;
fxsvpa (10.0, xmax-xmin-10.0,10.0, ymax-ymin-10.0) ;

A further routine fxvsta is available which sets up a standard viewport
within the current subpage with suitable margins on each side of the
viewport. This way be used for simple graphs, as it leaves enough room for
axis labels and a title. This standard viewport is that used by fxenv.

Defining the Window

The window must be defined after the viewport in order to map the world
coordinate rectangle into the viewport rectangle. The routine fxwind is used
to specify the rectangle in world-coordinate space. For example, if we wish
to plot a graph showing the collector current as a function of the
collector to emitter voltage for a transistor we would call the function
fxwind as follows:

fxwind(0.0,12.0,0.0,10.0);

Note that each of the arguments is a floating point number, and so the
decimal points are required. If the order of either the X~limits or ¥Y~limits
is reversed, the corresponding axis will point in the opposite sense, (i.e.,
right to left for X and top to bottom for Y). The window must be defined
before any calls to the routines which actually draw the data points. Note

MathFX 13/34

however that fxwind may also be called to change the window at any time.
This will affect the appearance of objects drawn later in the program, and
is useful for drawing two or more graphs with different axes on the same
piece of paper.

Annotating~the~Viewport

1.18 MathFX Manual: Annotating the Viewport

Annotating the Viewport

The routine fxbox is used to specify whether a frame is drawn around the
viewport and to control the positions of the axis subdivisions and numeric
labels. For our simple graph of the transistor characteristics, we may wish
to draw a frame consisting of lines on all four sides of the viewport, and
to place numeric labels along the bottom and left hand side. We can also
tell MathFX to choose a suitable tick interval and the number of subticks
between the major divisions based upon the data range specified to fxwind.
This is done using the following statement

fxbox ("BCNST", 0.0, 0, "BCNSTV",0.0,0) ;

Another routine fxlab provides for text labels for the bottom, left hand
side and top of the viewport. These labels are not clipped, even though they
lie outside the viewport (but they are clipped at the subpage boundaries).
fxlab actually calls the more general routine fxmtex which can be used for
plotting labels at any point relative to the viewport. The heights of
characters used for the axis and graph labels can be changed by means of the
routine fxschr.

The routine fxenv

Having to call fxadv, fxvpor, fxwind and fxbox is excessively cumbersome for
drawing simple graphs. Subroutine fxenv combines all four of these in one
subroutine, using the standard viewport, and a limited subset of the
capabilities of fxbox. For example, the graph described above could be
initiated by the call:

fxenv(0.0,12.0,0.0,10.0,0,0);
which is equivalent to the following series of calls:

fxadv (0); fxvsta(); fxwind(0.0,12.0,0.0,10.0);
fxbox ("BCNST",0.0,0, "BCNSTV",0.0,0);

Setting Line Attributes

The graph drawing routines may be freely mixed with those described in this
section which allow the user to control line colour and styles. The
attributes set up by these routines apply modally, i.e, all subsequent

MathFX 14 /34

objects (lines, characters and symbols) plotted until the next change in
attributes are affected in the same way. The only exception to this rule is
that characters and symbols are not affected by a change in the line style,
but are always drawn using a continuous line.

Line colour is set using the routine fxcol. The argument is ignored for
devices which can only plot in one colour but some terminals support line
erasure by plotting in colour zero. For HP plotters, these colours map to
the various pens.

Line style is set using the routine fxstyl. A broken line is specified in
terms of a repeated pattern consisting of marks (pen down) and spaces (pen
up) . The arguments to this routine consist of the number of elements in the
line, followed by two pointers to integer arrays specifying the mark and
space lengths in micrometres. Thus a line consisting of long and short
dashes of lengths 4\,mm and 2\,mm, separated by spaces of length 1.5\,mm is
specified by:

MARK[0]=4000; MARK[1]=2000; SPACE[0]=1500; SPACE[1]=1500;
fxstyl (2,MARK, SPACE) ;

To return to a continuous line, just call fxstyl with first argument set
to zero.

Setting Character and Symbol Attributes

The routine fxfont sets up the default font for all character strings. It
may be over-ridden for (a portion) of a string by using an escape sequence
within the text, as described below. Four fonts are available, the default
font (1) is simple and fastest to draw, while the others are useful for
presentation plots on a high-resolution device.

The font codes are interpreted as follows:

font = 1: normal simple font
font = 2: roman font

font = 3: italic font

font = 4: script font

The routine fxschr is used to set up the size of subsquent characters drawn.
The actual height of a character is the product of the default character
size and a scaling factor. If no call is made to fxschr, the default
character size is set up depending on the number of subpages defined in the
call to fxstar or fxbeg, and the scale is set to 1.0. Under normal
circumstances, it is recommended that the user does not alter the default
height, but simply uses the scale parameter. This can be done by calling
fxschr with def=0.0 and scale set to the desired multiple of the default
height. If the default height is to be changed, def is set to the new
default height in millimetres, and the new character height is again set to
def multiplied by scale.

The routine fxssym sets up the size of all subsequent symbols drawn by calls
to fxpoin and fxsym. It operates analogously to fxshr as described above.

The lengths of major and minor ticks on the axes are set up by the routines

MathFX

15/34

fxsmaj and fxsmin.

Escape sequences in text
The routines which draw text all allow you to include escape
sequeces in the text to be plotted. These are character sequences which are
are 1interpreted as instructions to change font, draw superscripts and
subscripts, draw non-ASCII (e.g., Greek letters) etc. All escape sequences
start with a double backslash character (\).

The following escape sequences are defined:

\u: move up to the superscript position
(ended with \d)
\d: move down to subscript position
(ended with \u)
\b: backspace (to allow overprinting)
\\: backslash
\.: toggle overline mode
\—-.: toggle underline mode
\gx: Greek letter corresponding to Roman letter x
(see below)
\fn: switch to normal font
\fr: switch to Roman font
\fi: switch to italic font
\fs: switch to script font
\ (nnn) : Hershey character nnn (1 to 4 decimal digits)

Sections of text can have an underline or overline appended. Greek letters
are obtained by \g followed by a Roman letter.

For more information, examine the example programs Symbolsl.c and Symbols2.c
found in the examples drawer.

Three~dimensional~surface~plots

1.19 MathFX Manual: 3D surface plots.

Three dimensional surface plots

MathFX includes routines that will represent a single-valued function of two
variables as a surface. In this section, we shall assume that the function
to be plotted is Z[X][Y], where Z represents the dependent variable and X
and Y represent the independent variables.

As usual, we would like to refer to a three dimensional point (X,Y,Z) in
terms of some meaningful user-specified coordinate system. These are called
three-dimensional world coordinates. We need to specify the ranges of these
coordinates, so that the entire surface is contained within the cuboid
defined by xmin < x < xmax, ymin < y < ymax and zmin < z < zmax. Typically,
we shall want to view the surface from a variety of angles, and to
facilitate this, a two-stage mapping of the enclosing cuboid is performed.
First, it is mapped into another cuboid called the normalized box whose size
must also be specified by the user, and secondly this normalized box 1is

MathFX 16 /34

viewed from a particular azimuth and elevation so that it can be projected
onto the two-dimensional window.

This two-stage transformation process allows considerable flexibility in
specifying how the surface is depicted. The lengths of the sides of the
normalized box are independent of the world coordinate ranges of each of the
variables, making it possible to use '‘reasonable’’ viewing angles even if
the ranges of the world coordinates on the axes are very different. The size
of the normalized box is determined essentially by the size of the
two-dimensional window into which it is to be mapped. The normalized box is
centred about the origin in the x and y directions, but rests on the plane
z=0. It is viewed by an observer located at altitude alt and azimuth az,
where both angles are measured in degrees. The altitude should be restricted
to the range zero to ninety degrees for proper operation, and represents the
viewing angle above the xy plane. The azimuth is defined so that when az=0,
the observer sees the xz plane face on, and as the angle is increased, the
observer moves clockwise around the box as viewed from above the xy plane.
The azimuth can take on any value.

The first step in drawing a surface plot is to decide on the size of the
two-dimensional window and the normalized box. For example, we could choose
the normalized box to have sides of length basex=2.0; basey=4.0;
height=3.0;

A reasonable range for the x coordinate of the two-dimensional window is
-2.5 to +2.5, since the length of the diagonal across the base of the
normalized box is sqrt{272+472} = 2\sqgrt{5}, which fits into this coordinate
range. A reasonable range for the y coordinate of the two dimensional window
in this case is -2.5 to +4, as the the projection of the normalized box lies
in this range for the allowed range of viewing angles.

The routine fxwind or fxenv is used in the usual way to establish the size
of the two-dimensional window. The routine fxw3d must then be called to
establish the range of the three dimensional world coordinates, the size of
the normalized box and the viewing angles. After calling fxw3d, the actual
surface is drawn by a call to plot3d.

For example, if the three-dimensional world-coordinate ranges are -10.0 x
+10.0, -3.0 y +7.0 and 0.0 z 8.0, we could use the following statements:

xmin2d = -2.5;
xmax2d = 2.5;
ymin2d = -2.5;
ymax2d = 4.0;

fxenv (xmin2d, xmax2d, ymin2d, ymax2d) ;
basex = 2.0;
basey = 4.0;
height = 3.0;

xmin = -10.0;
xmax = 10.0;
ymin = -3.0;
ymax = 7.0;
zmin = 0.0;
zmax = 8.0;
alt = 45.0;

az = 30.0;

MathFX

17 /34

fxw3d (basex,basey, height, xmin, xmax, ymin, ymax, zmin, zmax, alt,az) ;
plot3d(x,vy,z,work,ly,nx,ny,opt);

The values of the function are stored in a two-dimensional array zI[][y]
where the array element z[i][J] contains the value of the function at the
point x (i), vy (j). Note that the values of the independent variables x (1)

and y(j) do not need to be equally spaced, but they must lie on a
rectangular grid. Thus two further arrays x[nx] and y[ny] are required as
arguments to plot3d to specify the values of the independent variables. The
values in the arrays x and y must be strictly increasing with the index. The
argument opt specifies how the surface is outlined. If opt=1l, a line 1is
drawn representing z as a function of x for each value of vy, if opt=2, a
line is drawn representing z as a function of y for each value of x, and if
opt=3, a net of lines is drawn. The first two options may be preferable if
one of the independent variables is to be regarded as a parameter, whilst
the third is better for getting an overall picture of the surface. The final
parameter work is an integer array with at least four times max (nx,ny)
points, which is required for workspace.

Labelling a three-dimensional plot is somewhat more complicated than a two
dimensional plot due to the need for skewing the characters in the label so
that they are parallel to the coordinate axes. The routine fxbox3 thus
combines the functions of box drawing and labelling.

The routine fxside3 can be used to draw sides on three-dimensional plots to
give them a more solid look. Grid lines perpendicular to the z axis can be
drawn with the routine fxgrid3.

Contour Plots

A routine 1is available in MathFX which performs a contour plot of data
stored in a two-dimensional array. A contour following algorithm is used, so
that it is possible to use non-continuous line styles.

The routine fxcont has the form
fxcont (z,nx,ny,kx,1x,ky,ly,clevel,nlevel, tr)

where z is the two-dimensional array of size nx, ny containing samples of
the function to be contoured. The parameters kx, 1x, ky and ly specify the
portion of z that is to be considered. The array clevel of length nlevel is
a list of the desired contour levels.

The path of each contour is initially computed in terms of the values of the
array indicies which range from 1 to nx in the first index and from 1 to ny
in the second index. Before these can be drawn in the current window, it is
necessary to convert from these array indicies into world coordinates. This
is done by passing a pointer to a user-defined function to fxcont. This
function pointer is the last argument tr. This function must be declared as
type void in the module which calls fxcont. This transformation function
must have the parameter list

void tr (x, yrtx, ty) 7

where (x,y) 1s the point through which the contour runs expressed in terms
of array indicies, and (tx,ty) are pointers to float variables which are the

MathFX 18 /34

world coordinates of the point which corresponds to these indicies.

Often, the transformation between array indicies and world coordinates can
be expressed as a linear transformation. A routine is provided within the
library which can be passed to fxcont as the parameter tr. This
transformation routine is as follows:

#include "MathFX.h"

void xform(x,y,tx,ty) float x, vy, *tx, xty; {
extern float tr[];

*tx = tr[0]*xx + tr[l]lxy + tr[2];
*ty tr[3]xx + tr[d4]xy + tr[5]; }

Thus by setting up the values in the array tr[], we can apply an
arbitrary translation, rotation and/or shear to the array before drawing out
the contours. By defining other transformation subroutines, it is possible
to draw contours wrapped around polar grids etc.

1.20 MathFX Manual: Commands Index

MathFX Subroutine Reference

All the MathFX subroutines are listed below in alphabetical order.

fxadv (sub)

Advances to the next subpage if sub=0 or to the specified subpage if sub is
non-zero. This routine is called automatically (with sub=0) by fxenv, but if
fxenv is not used, fxadv must be called after fxstar but before defining the
viewport.

sub (int, input)

Specifies the subpage number (starting from 1 in the top left corner and
increasing along the rows) to which to advance. Set to zero to advance to
the next subpage.

fxbeg (dev,nx,ny) ;

Alternative to fxstar for initializing the plotting package. The device
number of the desired output device must be supplied as an argument. The
mapping from device numbers to devices varies from one implementation to
another, and so use of fxstar which prompts for the device type is
recommended. The device codes are the same as those printed out by fxstar.
This routine also divides the output device into nx by ny sub-pages, each
of which may be used independently. The subroutine fxadv is used to advance
from one subpage to the next.

dev (int, input) Device number of the required output device.

MathFX 19/34

nx (int, input) Number of subpages to divide output page in the horizontal
direction.

ny (int, input) Number of subpages to divide output page in the vertical
direction.

fxbin (nbin, x,vy,cen);

Plots a histogram consisting of n bins. The value associated with the i’th
bin is placed in x[i], and the number of points in the bin is placed in
y[i]. For proper operation, the values in x[i] must form a strictly
increasing sequence. If centre is false, x[i] is the left-hand edge of the
i’th bin, and if centre is true, the bin boundaries are placed midway
between the values in the x~array. Also see fxhist for drawing histograms
from unbinned data.

nbin (int, input) Number of bins (i.e., number of values in x and y
arrays) .

x (float *, input) Pointer to array containing values associated with bins.
These must form a strictly increasing sequence.

y (float *, input) Pointer to array containing number of points in bin. This
is a float array so as to allow histograms of probabilities, etc.

cen (int, input) Indicates whether the values in x represent the lower bin
boundaries (cen=0) or whether the bin boundaries are to be midway between
the x values (cen=1). If the values in x are equally spaced and cen=1, the
values in x are the centre values of the bins.

fxbox (xopt, xtick, nxsub, yopt, ytick, nysub) ;

Draws a box around the currently defined viewport, and labels it with world
coordinate values appropriate to the window. Thus fxbox should only be
called after defining both viewport and window. The character strings xopt
and yopt specify how the box should be drawn as described below. If ticks
and/or subticks are to be drawn for a particular axis, the tick intervals
and number of subintervals may be specified explicitly, or they may be
defaulted by setting the appropriate arguments to zero.

xopt (char %, input) Pointer to character string specifying options for
horizontal axis. The string can include any combination of the following
letters (upper or lower case) in any order:

a: Draws axis, X-axis is horizontal line y=0, and Y-axis

is vertical line y=0.

Draws bottom (X) or left (Y) edge of frame.

Draws top (X) or right (Y) edge of frame.

Draws a grid at the major tick interval.

Inverts tick marks, so they are drawn outwards, rather than
inwards.

Labels axis logarithmically. This only affects the labels,

H-Q Q O

[

MathFX 20/34

not the data, and so it is necessary to compute the logarithms
of data points before passing them to any of the drawing
routines.

m: Writes numeric labels at major tick intervals in the
unconventional location (above box for X, right of box for Y).

n: Writes numeric labels at major tick intervals in the
conventional location (below box for X, left of box for Y).

s: Enables subticks between major ticks, only valid if t is also
specified.

t: Draws major ticks.

xtick (float, input) World coordinate interval between major ticks on the
x~axis. If it is set to zero, MathFX automatically generates a suitable
tick interval.

nxsub (int, input) Number of subintervals between major x~axis ticks for
minor ticks. If it is set to zero, MathFX automatically generates a suitable
minor tick interval.

yopt (char %, input) Pointer to character string specifying options for
vertical axis. The string can include any combination of the letters
defined above for xopt, and in addition may contain:

v: Write numeric labels for vertical axis parallel to the base of
the graph, rather than parallel to the axis.

ytick (real, input) World coordinate interval between major ticks on the
y~axis. If it is set to zero, MathFX automatically generates a suitable
tick interval.

nysub (int, input) Number of subintervals between major y~axis ticks for
minor ticks. If it is set to zero, MathFX automatically generates a suitable
minor tick interval.

fxbox3 (&xopt, xlabel, xtick, nxsub, yopt, ylabel,ytick, nysub, &zopt, zlabel, ztick,n
zsub) ;

Draws axes, numeric and text labels for a three-dimensional surface plot.

xopt (char %, input) Pointer to character string specifying options for the
x~axis. The string can include any combination of the following letters
(upper or lower case) in any order:

b: Draws axis at base, at height z=zmin where zmin is defined by
call to fxw3d. This character must be specified in order
to use any of the other options.

i: Inverts tick marks, so they are drawn downwards, rather than
upwards.

1: Labels axis logarithmically. This only affects the labels, not
the data, and so it is necessary to compute the logarithms of
data points before passing them to any of the drawing routines.

n: Writes numeric labels at major tick intervals.

MathFX 21/34

s: Enables subticks between major ticks, only valid if t is also
specified.

t: Draws major ticks.

u: If this is specified, the text label for the axis is
written under the axis.

xlabel (char x, input) Pointer to character string specifying text label for
the x~axis. It is only drawn if u is in the xopt string.

xtick (float, input) World coordinate interval between major ticks on the
x~axis. If it is set to zero, MathFX automatically generates a suitable tick
interval

nxsub (int, input) Number of subintervals between major x~axis ticks for
minor ticks. If it is set to zero, MathFX automatically generates a suitable
minor tick interval.

yopt (char %, input) Pointer to character string specifying options for the
y~axis. The string 1is interpreted in the same way as xopt.

ylabel (char %, input) Pointer to character string specifying text label for
the y~axis. It is only drawn if u is in the yopt string.

ytick (float, input) World coordinate interval between major ticks on the
y~axis. If it is set to zero, MathFX automatically generates a suitable
tick interval.

nysub (int, input) Number of subintervals between major y~axis ticks for
minor ticks. If it is set to zero, MathFX automatically generates a suitable
minor tick interval.

zopt (char =*, input) Pointer to character string specifying options for the
z~axis. The string can include any combination of the following letters
(upper or lower case) in any order:

Draws z~axis to the left of the surface plot.

Draws z~axis to the right of the surface plot.

Inverts tick marks, so they are drawn away from the centre.

Labels axis logarithmically. This only affects the labels, not

the data, and so it is necessary to compute the logarithms of

data points before passing them to any of the drawing routines.

m: Writes numeric labels at major tick intervals on the right-hand
verical axis.

n: Writes numeric labels at major tick intervals on the left-hand
verical axis.

s: Enables subticks between major ticks, only valid if t is also
specified.

t: Draws major ticks.

u: If this is specified, the text label is written beside the
left-hand axis.

v: If this is specified, the text label is written beside the

right-hand axis.

Qo

zlabel (char x, input) Pointer to character string specifying text label for
the z~axis. It is only drawn if u or v are in the zopt string.

MathFX 22/34

ztick (float, input) World coordinate interval between major ticks on the
z~axis. If it is set to zero, MathFX automatically generates a suitable tick
interval.

nzsub (int, input) Number of subintervals between major z~axis ticks for

minor ticks. If it is set to zero, MathFX automatically generates a suitable
minor tick interval.

fxclr;

Clears the graphics screen of an interactive device, or ejects a page on a
plotter.

fxcol (colour) ;
Sets the colour for subsequent lines.

colour (int, input) Integer representing the colour.

fxcont (z,nx,ny,kx,1x,ky,ly,clevel,nlevel, tr);

Draws a contour plot of the data in z[nx][ny], using the nlevel contour
levels specified by clevel. Only the region of the array from kx to 1lx and
from ky to ly is plotted out. A transformation routine tr is used to map

indicies within the array to the world coordinates.

z (float %, input) Pointer to a two-dimensional array containing data to be
contoured.

nx, ny (int, input) Physical dimensions of array z.
kx, 1x (int, input) Range of x indicies to consider.
ky, ly (int, input) Range of y indicies to consider.

clevel (float x, input) Pointer to array specifying levels at which to draw
contours.

nlevel (int, input) Number of contour levels to draw

tr (void «*,input) Pointer to function that defines transformation between
indicies in array z and the world coordinates. The function should have the
form tr(x,y,tx,ty);

x, y (float, input) Specifies the position in the array through which the
contour runs in terms of the array indicies

tx, ty (float =, output) Pointers to the world coordinates corresponding to
the point (x,y). A transformation function xform is provided for simple
linear mappings.

MathFX 23/34

fxend () ;

Ends a plotting session, tidies up all the output files, switches
interactive devices back into text mode and frees up any memory that was
allocated. Must be called before the end of the program.

fxenv (xmin, xmax, ymin, ymax, just, axis) ;

Sets up plotter environment for simple graphs by calling fxadv and setting
up viewport and window to sensible default values. fxenv leaves enough room
around most graphs for axis labels and a title. When these defaults are not
suitable, use the individual routines fxvspa or fxvpor for setting up the
viewport, fxwind for defining the window, and fxbox for drawing the box.

xmin (float, input) Value of~x at left-hand edge of window.
xmax (float, input) Value of~x at right-hand edge of window.
ymin (float, input) Value of~y at bottom edge of window.
ymax (float, input) Value of~y at top edge of window.
just (int, input) If just=0, the x~and~y axes are scaled independently to
use as much of the screen as possible, but if just=1, the scales of the
x~and~y axes are made equal.
axis (int, input) Controls drawing of the box around the plot:
—-2: No box or annotation.
—-1: Draw box only.
0: Draw box, labelled with coordinate values around edge.
1: In addition to box and labels, draw the two axes x=0 and y=0.

2: As for axis=1l, but also draw a grid at the major tick
interval.

10: Logarithmic x axis, linear y axis.
11: Logarithmic x axis, linear y axis and draw line y=0.
20: Linear x axis, logarithmic y axis.
21: Linear x axis, logarithmic y axis and draw line x=0.

30: Logarithmic x and y axes.

fxerrx (n, xmin, xmax,y) ;
Draws a set of n horizontal error bars, the i’th error bar extending from
xmin[i] to xmax[i] at y~coordinate y[i]. The terminals of the error bar are

of length equal to the minor tick length (settable using fxsmin).

n (int, input) Number of error bars to draw.

MathFX

24 /34

xmin (float %, input) Pointer to array with x~coordinates of left-hand
endpoint of error bars.

xmax (float %, input) Pointer to array with x~coordinates of right-hand
endpoint of error bars.

y (float *, input) Pointer to array with y~coordinates of error bar.

fxerry(n,x,ymin, ymax) ;

Draws a set of n vertical error bars, the i’th error bar extending from
ymin[i] to ymax[i] at x~coordinate x[i]. The terminals of the error bar are
of length equal to the minor tick length (settable using fxsmin).

n (int, input) Number of error bars to draw.

x (float *, input) Pointer to array with x~coordinates of error bars.

ymin (float %, input) Pointer to array with y~coordinates of lower endpoint
of error bars.

ymax (float %, input) Pointer to array with y~coordinate of upper endpoint
of error bar.

fxfont (font) ;

Sets the default character font for subsequent character drawing. Also
affects symbols produced by fxpoin.

font (int, input) Specifies the font:

Normal font (simplest and fastest)
Roman font
Italic font
Script font

SN

fxgral();

Sets an interactive device to graphics mode, used in conjunction with fxtext
to allow graphics and text to be interspersed.

fxgrid3 (ztick);

Draws grid lines perpendicular to the z axis. For use only when doing three
dimensional plots. If used this routine must be called after calling plot3d
first (in order for the hidden line removal to work).

MathFX 25/34

ztick (float, input) World coordinate interval between grid lines on the
z~axis. Usually this variable has the same value as ztick in fxbox3. If
ztick is zero MathFX will automatically generate a suitable tick interval.

fxgspa (xmin, xmax, ymin, ymax) ;

Gets the size of the current subpage in millimetres measured from the bottom
left hand corner of the output device page or screen. Can be used in
conjunction with fxsvpa for setting the size of a viewport in absolute

coordinates (millimetres).

xmin (float %, output) Pointer to variable with position of left hand edge
of subpage in millimetres.

xmax (float =*, output) Pointer to variable with position of right hand edge
of subpage in millimetres.

ymin (float %, output) Pointer to variable with position of bottom edge of
subpage in millimetres.

ymax (float =*, output) Pointer to variable with position of top edge of
subpage in millimetres.

fxhist (n,data, datmin, datmax, nbin, oldwin) ;

Plots a histogram from n data points stored in the array data. This routine
bins the data into nbin bins equally spaced between datmin and datmax, and
calls fxbin to draw the resulting histogram. Parameter oldwin allows the
histogram either to be plotted in an existing window or causes fxhist to
call fxenv with suitable limits before plotting the histogram.

n (int, input) Number of data points

data (float %, input) Pointer to array with values of the n data points.
datmin (float, input) Left-hand edge of lowest-valued bin.

datmax (float, input) Right-hand edge of highest-valued bin.

nbin (int, input) Number of (equal-sized) bins into which to divide the
interval xmin to =xmax.

oldwin (int, input) If one, the histogram is plotted in the

currently-defined window, and if zero, fxenv is called automatically before
plotting.

fxjoin(x1l,vyl,x2,vy2);
Joins the point (x1,yl) to (x2,v2).

x1 (float, input) =x~coordinate of first point.

MathFX

26/34

vyl (float, input) y~coordinate of first point.
x2 (float, input) =x~coordinate of second point.

y2 (float, input) y~coordinate of second point.

fxlab(xlabel,ylabel,tlabel);

Routine for writing simple labels. Use fxmtex for more complex labels.
xlabel (char *, input) Label for horizontal axis.

ylabel (char %, input) Label for vertical axis.

tlabel (char *, input) Title of graph.

fxline(n,x,Vy);

Draws n-1 line segments Jjoining points (x[i],yI[i]).

n (int, input) Number of points to join.

x (float %, input) Pointer to array with x~coordinates of points.

y (float %, input) Pointer to array with y~coordinates of points.

fxmtex (side, disp, pos, just, text);

Writes text at a specified position relative to the viewport boundaries.
Text may be written inside or outside the viewport, but is clipped at the
subpage boundaries. The reference point of a string lies along a line
passing through the string at half the height of a capital letter. The
position of the reference point along this line is determined by just, and
the position of the reference point relative to the viewport is set by disp
and pos.

side (char x, input) Specifies the side of the viewport along which the text
is to be written. The string must be one of:

b: Bottom of viwport.

1: Left of viewport, text written parallel to edge.

1lv: Left of viewport, text written at right angles to edge.
r: Right of viewport, text written parallel to edge.

rv: Right of viewport, text written at right angles to edge.

MathFX 27134

t: Top of viewport.

disp (float, input) Position of the reference point of string, measured
outwards from the specified viewport edge in units of the current character
height. Use negative disp to write within the viewport.

pos (float, input) Position of the reference point of string along the
specified edge, expressed as a fraction of the length of the edge.

just (float, input) Specifies the position of the string relative to its
reference point. If Just=0, the reference point is at the left and if
just=1, it is at the right of the string. Other wvalues of just give
intermediate justifications.

text (char %, input) The string to be written out.

plot3d(x,vy,z,work,ly,nx,ny,opt);

Plots a three dimensional surface plot within the environment set up by
fxw3d. The surface is defined by the two-dimensional array z[][ly], the
point z[i][Jj] being the value of the function at (x[i],y[Jj]). Note that the
points in arrays x and y do not need to be equally spaced, but must be
stored in ascending order. The parameter opt controls the way in which the
surface is displayed.

x (float *, input) Pointer to set of x~coordinate values at which the
function is evaluated.

y (float %, input) Pointer to set of y~coordinate values at which the
function is evaluated.

z (float #, input) Pointer to two dimensional array with set of function
values.

work (int %, input and output) Pointer to work array of dimension at least
four times the maximum of nx and ny.

ly (int, input) Declared second dimension of z~array.
nx (int, input) Number of x~values at which function is evaluated.
ny (int, input) Number of y~values at which function is evaluated.
opt (int, input) Determines the way in which the surface is represented:
1: Lines are drawn showing z as a function of x for each value
of y[3].
2: Lines are drawn showing z as a function of y for each value
of x[i].

3: Network of lines is drawn connecting points at which function is
defined.

MathFX

28/34

fxpoin(n, x,y, code);
Marks out a set of n points at positions (x(i),y(i)), using the symbol

defined by code. If code is between 32 and 127, the symbol is simply the
printable ASCII character in the default font.

n (int, input) Number of points to be marked.

x (float %, input) Pointer to array with set of x~coordinate values for the

points.

y (float %, input) Pointer to array with set of y~coordinate values for the

points.

code (int, input) Code number for the symbol to be plotted.

fxptex (x,y,dx,dy, just, text);

Writes text at a specified position and inclination within the viewport.

Text is clipped at the viewport boundaries. The reference point of a string
lies along a line passing through the string at half the height of a capital
letter. The position of the reference point along this line is determined by

just, the reference point is placed at world coordinates (x,y) within the

viewport. The inclination of the string is specified in terms of differences

of world coordinates making it easy to write text parallel to a line in a
graph.

x (float, input) x coordinate of reference point of string.
y (float, input) y coordinate of reference point of string.
dx (float, input) Together with dy, this specifies the inclination of the
string. The Dbaseline of the string is parallel to a line joining (x,y) to

(x+dx, y+dy) .

dy (float, input) Together with dx, this specifies the inclination of the
string.

just (float, input) Specifies the position of the string relative to its
reference point. If Just=0, the reference point is at the left and if
just=1, it is at the right of the string. Other values of Jjust give
intermediate justifications.

text (char %, input) The string to be written out.

MathFX 29/34

fxschr (def, scale);
This sets up the size of all subsequent characters drawn. The actual height
of a character is the product of the default character size and a scaling

factor.

def (float, input) The default height of a character in millimetres, should
be set to zero if the default height is to remain unchanged.

scale (float, input) Scale factor to be applied to default to get actual
character height.

fxside3 (x,vy,z,1ly,nx,ny,opt);
Draws sides on three dimensional plots. The sides extend from the plotted

function down to the x-y plane. Should only be called after plot3d. The
arguments passed to fxside3 should be the same as those used in plot3d.

x (float *, input) Pointer to set of x~coordinate values at which the
function is evaluated.

y (float *, input) Pointer to set of y~coordinate values at which the
function is evaluated.

z (float #*, input) Pointer to two dimensional array with set of function
values.

ly (int, input) Declared second dimension of z~array.
nx (int, input) Number of x~values at which function is evaluated.
ny (int, input) Number of y~values at which function is evaluated.
opt (int, input) Determines the way in which the sides are drawn:
1: Lines are drawn from z down to the y axis at each value
of y[3].
2: Lines are drawn from z down to the x axis at each value

of x[i].
3: Lines are drawn from z to both axes.

fxsmaj(def, scale);

This sets up the length of the major ticks. The actual length is the product
of the default length and a scaling factor as for character height.

def (float, input) The default length of a major tick in millimetres, should
be set to zero if the default length is to remain unchanged.

MathFX

30/34

scale (float, input) Scale factor to be applied to default to get actual
tick length.

fxsmin (def, scale);

This sets up the length of the minor ticks and the length of the terminals
on error bars. The actual length is the product of the default length and a
scaling factor as for character height.

def (float, input) The default length of a minor tick in millimetres, should
be set to zero if the default length is to remain unchanged.

scale (float, input) Scale factor to be applied to default to get actual
tick length.

fxssym(def, scale);

This sets up the size of all subsequent symbols drawn by fxpoin and fxsym.
The actual height of a symbol is the product of the default symbol size and
a scaling factor as for the character height.

def (float, input) The default height of a symbol in millimetres, should be
set to zero if the default height is to remain unchanged.

scale (float, input) Scale factor to be applied to default to get actual
symbol height.

fxstar (nx,ny) ;

Initializing the plotting package. The program prompts for the device number
of the desired output device. The output device is divided into nx by ny
sub-pages, each of which may be used independently. The subroutine fxadv is
used to advance from one subpage to the next.

nx (int, input) Number of subpages to divide output page in the horizontal
direction.

ny (int, input) Number of subpages to divide output page in the wvertical
direction.

MathFX

31/34

fxstyl (nels,mark, space) ;

This sets up the line style for all lines subsequently drawn. A line
consists of segments in which the pen is alternately down and up. The
lengths of these segments are passed in the arrays mark and space
respectively. The number of mark-space pairs is specified by nels. In order
to return the line style to the default continuous line, fxstyl should be
called with nels=0.

nels (int, input) The number of mark and space elements in a line. Thus a
simple broken line can be obtained by setting nels=1. A continuous line is
specified by setting nels=0.

mark (int *, input) Pointer to array with the lengths of the segments during
which the pen is down, measured in micrometres.

space (int *, input) Pointer to array with the lengths of the segments
during which the pen is up measured in micrometres.

fxsvpa (xmin, xmax, ymin, ymax) ;

Alternate routine to fxvpor for setting up the viewport. This routine should
be used only if the viewport is required to have a definite size in
millimetres. The routine fxgspa is useful for finding out the size of the
current subpage.

xmin (float, input) The distance of the left-hand edge of the viewport from
the left-hand edge of the subpage in millimetres.

xmax (float, input) The distance of the right-hand edge of the viewport from
the left-hand edge of the subpage in millimetres.

ymin (float, input) The distance of the bottom edge of the viewport from the
bottom edge of the subpage in millimetres.

ymax (float, input) The distance of the top edge of the viewport from the
top edge of the subpage in millimetres.

fxsym(n, x,y,code);

Marks out a set of n points at positions (x[i],y[i]), using the symbol
defined by code. The code is interpreted as an index in the Hershey font
tables.

n (int, input) Number of points to be marked.

x (float *, input) Pointer to array with set of x~coordinate values for the
points.

MathFX 32/34

y (float %, input) Pointer to array with set of y~coordinate values for the
points.

code (int, input) Code number for the symbol to be plotted.

fxtext ();

Sets an interactive device to text mode, used in conjunction with fxgra to
allow graphics and text to be interspersed. This is not currently supported
on the Amiga. All the labelling is drawn in vector mode.

fxvpor (xmin, xmax, ymin, ymax) ;

Device-independent routine for setting up the viewport. This defines the
viewport in terms of normalized subpage coordinates which run from 0.0 to
1.0 (left to right and bottom to top) along each edge of the current
subpage. Use the alternate routine fxsvpa in order to create a viewport of a
definite size.

xmin (float, input) The normalized subpage coordinate of the left-hand edge
of the viewport.

xmax (float, input) The normalized subpage coordinate of the right-hand edge
of the viewport.

ymin (float, input) The normalized subpage coordinate of the bottom edge of
the viewport.

ymax (float, input) The normalized subpage coordinate of the top edge of the
viewport.

fxvstal();

Sets up a standard viewport, leaving a left-hand margin of seven character
heights, and four character heights around the other three sides.

fxw3s (basex, basey, height, xmin, xmax, ymin, ymax, zmin, zmax, alt,az) ;

Sets up a window for a three-dimensional surface plot within the currently
defined two-dimensional window. The enclosing box for the surface plot
defined by xmin, xmax, ymin, ymax, zmin and zmax in user-coordinate space is

MathFX 33/34

mapped into a box of world coordinate size basex by basey by height so that
xmin maps to —-basex/2, xmax maps to basex/2, ymin maps to —-basey/2, ymax
maps to basey/2, zmin maps to 0 and zmax maps to height. The resulting
world-coordinate box is then viewed by an observer at altitude alt and
azimuth az. This routine must be called before fxbox3 or plot3d.

basex (float, input) The x~coordinate size of the world-coordinate box.
basey (float, input) The y~coordinate size of the world-coordinate box.
height (float, input) The z~coordinate size of the world-coordinate box.
xmin (float, input) The minimum user x~coordinate value.

xmax (float, input) The maximum user x~coordinate value.

ymin (float, input) The minimum user y~coordinate value.

ymax (float, input) The maximum user y~coordinate wvalue.

zmin (float, input) The minimum user z~coordinate value.

zmax (float, input) The maximum user z~coordinate value.

alt (float, input) The viewing altitude in degrees above the xy~plane.

az (float, input) The viewing azimuth in degrees. When az=0, the observer is

looking face onto the zx~plane, and as az is increased, the observer moves
clockwise around the box when viewed from above the xy~plane.

fxwind (xmin, xmax, ymin, ymax) ;
Sets up the world coordinates of the edges of the viewport.

xmin (float, input) The world x~coordinate of the left-hand edge of the
viewport.

xmax (float, input) The world x~coordinate of the right-hand edge of the
viewport.

ymin (float, input) The world y~coordinate of the bottom edge of the
viewport.

ymax (float, input) The world y~coordinate of the top edge of the viewport.

1.21 MathFX Manual: Registration Form

MathFX 34 /34

MathFX Registration Form

Yes, I want to register the plotting package MathFX and become a
registered user. By registering I am obliged x*NOTx to distribute the
personalized registered version (but I am free to distribute the programs
created with it).

Name

Company

Address

E-mail

Occupation

Comments

Send cheques of $20 US, payable to:

Manolis S Pappas
Thermopilon 24
14231 Nea Ionia
Athens GREECE

DO NOT send money!!!

Allow 2-3 weeks for delivery!

Thanks for your support! If you have any comments, contact us in the
address above, or via e-mail:

mpapW@acrogate.ath.forthnet.gr
mpappas@posidon.servicenet.ariadne-t.gr

	MathFX
	MathFX Manual: Table of Contents
	MathFX Manual: Introduction
	MathFX Manual: Overview
	MathFX Manual: Requirements
	MathFX Manual: Installation
	MathFX Manual: Registration Information
	MathFX Manual: Author Information
	MathFX Manual: Credits :-)
	MathFX Manual: Command reference help menu
	MathFX Manual: A Guided Tour...
	Math FX Manual: A Guided Tour; Hewlett Packard Printers...
	Math FX Manual: A Guided Tour; imPRESS & Tektronix Devices
	Math FX Manual: A Guided Tour; Support for other devices
	Math FX Manual: A Guided Tour; Starting MathFX.
	Math FX Manual: A Guided Tour; Labelling Graphs...
	Math FX Manual: The Full Guided Tour to MathFX...
	MathFX Manual: Advanced Use of MathFX
	MathFX Manual: Annotating the Viewport
	MathFX Manual: 3D surface plots.
	MathFX Manual: Commands Index
	MathFX Manual: Registration Form

