
User's Manual Version 3.2

April 10, 1988

Mactivation © 1987, 1988, 1989 by Mike Kranzdorf

Mactivation 3.2 April 10, 1988 1

Screen 1. After teaching 3 hetero-associations

Mactivation 3.2 April 10, 1988 2

Table of Contents

About Mactivation and its User's Manual… 5
MS Word and MacWrite: 5
Neural Network Introduction 6
Biological neurons and networks 6
Simulated neurons 9
Network architectures and interpretations 10
Learning and memory 12
Associative memory 13
Vector and matrix notation 14
Summary 15
Mactivation 17
Overview 17
The Windows 17
Modifier Keys 18
The Menus 19
File 19
Display 20
The Attributes dialog box: 20
Parameters 22
The Configure dialog box: 22
The Activations dialog box:23
The Learn dialog box: 24
The Normalize dialog box: 25
The Cycling dialog box: 26
Commands 27
Learn Current 27
Recall Current 27

Mactivation 3.2 April 10, 1988 3

Cyclic Recall 27
Randomizer… 28
The Clear commands 28
The equations 29

Mactivation 3.2 April 10, 1988 4

Mactivation

Mike Kranzdorf, author

University of Colorado
Optoelectronic Computing Systems Center
Campus Box 525
Boulder, Colorado 80309 - 0525

(303) 492-8099

mikek@boulder.colorado.EDU
{hao | nbires}!boulder!mikek

This work was funded through the National
Science Foundation's Engineering Center for
Opto-electronic Computing Systems (#CDR
8622236).

Future versions of Mactivation will be available
from:

Oblio, Inc.
Mactivation 3.2 April 10, 1988 5

5943 Sugarloaf Road
Boulder, Colorado 80309
(303) 444-7179

Mactivation © 1987, 1988, 1989 by Mike
Kranzdorf

LightspeedC is a Trademark of THINK
Technologies, Inc.
Macintosh and Multifinder are Trademarks of
Apple Computer, Inc.
MS Word is a Trademark of Microsoft, Inc.
MacWrite is a Trademark of Claris Corp.

Mactivation 3.2 April 10, 1988 6

About Mactivation and its User's Manual…

Mactivation is an interactive simulator for investigating the low
level concepts of associative memory in a parallel distributed
processing (PDP) architecture. A direct interface to units,
connections, and network parameters introduces the fundamental
principles of all connectionist networks. Functionally, Mactivation
performs vector outer products and matrix-vector multiplications.
There is access to numerous parameters which modify its
behavior during operation. The two basic configurations allow a
single layer of units to perform auto-associative memory and two
layers to perform hetero-associatively. The delta rule is provided
as an example of error correcting operation. Many of the
published models of single and double layer networks can be
simulated by adjusting the relevant parameters.

Mactivation 3.2 April 10, 1988 7

This user's manual has several sections. Cell biology is
provided for those with an interest in the relationship between
connectionist models and real neural networks. This information is
not necessary for an understanding of most connectionist systems.
It is related to connectionism in a way similar to the relationship of
understanding computer architecture and C programming. (Some
claim it is essential while others deny any usefulness at all.)
Simulated neurons and their networks are described in terms of
instantiation and interpretation. Associative memory if
Mactivation's forte, so a brief explanation is provided. The role of
learning (esp. Hebbian) is included. Vector mathematics and
notation common to the literature is outlined. The program
reference section describes the windows, menus, and command
actions. Mactivation's governing equations are found at the end of
this section.

Mactivation 3.1 was written using LightspeedC™ v 2.13 with
the 2.15 libraries. This version runs on all Macintosh computers,
including the Mac II running Multifinder. I would appreciate
feedback on all aspects of the program. I have tried to conform to
the standard Macintosh interface, so let me know if you find
anything inconsistent. Please send bug reports and suggestions
for both the program and the manual. Everything is subject to
change without notice.

MS Word and MacWrite:

This manual was written using MS Word, with a copy save
as...ed a MacWrite document. The MS Word version is much
prettier.

The footnotes are shoehorned into the text body in the
MacWrite copy. Sorry about that. MS Word keeps footnotes
separate from the document body. Shift-Command-Option-S
opens the footnote window.

Mactivation 3.2 April 10, 1988 8

Neural Network Introduction 1

Neural networks (aka connectionist architectures, parallel
distributed processing (PDP) systems) are groups of simple, highly
interconnected processing units which acts as a whole to perform
computable functions. These assemblies exhibit properties of
associative memory, recognition, search, learning, and
computation. At an abstract level, the units may be simulated
biological neurons, and the interconnections their axons and
dendrites. The amount and type of biological detail retained in a
given model depends on purposes of the model. Examples of
biological features which may be preserved by degrees are
membrane ionics, bias voltages, interconnection patterns,
input/output dynamics, temporal input summation, and long term
potentiation. Often the abstracted features are extended beyond
what is known in neurobiology, with diverse goals such as ease of
simulation, suggestion of principles to seek out in biological
preparations, and conceptual computational modeling. Many
researchers are not interested in the biological implications, and
construct networks purely as problem solving devices. Some
representative focuses of simulation work are modeling of brain
structures such as the visual cortex, natural language processing
and understanding, optimization problems, high density routing
tables, and memory systems.

Biological neurons and networks2

Neural cells, or neurons come in many shapes, sizes, and configurations. A representative neuron consists of a cell body or
soma, a number of input fibers or dendrites, and an output axon fiber which can bifurcate many times [Figure 1]. All or any of the
constituents may be referred to as a process. Cells are connected to each other through synapses, which are electro-chemical

1Note: this is a very brief and simple overview of the salient features of neural network modeling. For more complete information, I
suggest the PDP series from UCSD, namely:

Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations (1986), D.E Rumelhart, J.L.
McClelland, & the PDP Research Group , MIT Press/Bradford Books, Cambridge, Ma.

and
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 2: Psychological and Biological Models
(1986), J.L. McClelland, D.E Rumelhart, & the PDP Research Group , MIT Press/Bradford Books, Cambridge, Ma.

and
Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises(1988), J.L. McClelland, D.E
Rumelhart , MIT Press/Bradford Books, Cambridge, Ma.
This book comes with simulator software written in C.

2For a more thorough explanation of cell function, see for example:
Kuffler, S. W., Nicholls, J. G., and Martin, A. R. (1984) From Neuron To Brain, Sinauer Associates, Sunderland, MA.

Mactivation 3.2 April 10, 1988 9

junctions usually occurring between axons and dendrites.

Mactivation 3.2 April 10, 1988 10

Information is carried in electrical signals which flow in only one direction. Electrical activity, say from a dendrite attached to
a sensory transducer, flows down the dendrite and into the cell body. This may cause the cell to generate a burst of electrical activity
(at the axon hillock) which is transmitted outward along its axon. The axon branches and becomes the input to other processes. The
details of these events are very complex and interrelated (and are active areas of research).

signal
flow

dendrites

hair cell
(sensory transducer)

synapse

cell body

axon

axon hillock

synapse

Figure 1. Representative biological neurons

Mactivation 3.2 April 10, 1988 11

The entire neuron is enclosed in a semipermeable membrane made up of hydrocarbons, phosphates, and
proteins. Electrical current passes through these membranes in the form of various ions. (Ions are elements which
have excess positive or negative charge.) At rest, the concentrations of these ions inside the cell are different from
those outside the cell membrane. There are large negatively charged ions within the cell that can never escape through
the membrane which set up this condition. This produces chemical gradients across the membrane down which the
chemicals want to flow. The fact that the chemicals are mostly ionic makes electrical gradients as well down which
current wants to flow. These may be in the same or opposite directions. For each chemical, the ionic and chemical
gradients balance out, influenced by the other chemicals present which are doing the same thing. The result is a resting
potential of the cell which is lower than that of the surrounding fluid (about -70 millivolts for mammalian neurons). There

is a much higher concentration of sodium (Na+) outside the cell than inside, which contributes to much of this potential.
Neurons are connected to each other through formations called synapses. (The word synapse is used as a

noun and a verb.) Most commonly, an axonal branch from one neuron synapses on a dendrite of another neuron.
There is usually no physical contact between the two membranes. They are separated by a distance of about 20
nanometers called the synaptic cleft. When the current being carried in an axon arrives at a synapse, certain chemicals
known as neurotransmitters are released from the pre-synaptic membrane into the gap between the two membranes.
These transmitters move across the cleft and attach to the opposing cell (or post-synaptic) membrane. There, the
neurotransmitter acts as a key to change the local permeability of the cell membrane to a given ion. One
neurotransmitter mediates the flow of sodium. (The actual mechanisms of membrane transport are far more
complicated and incompletely understood.) Both the electrical and chemical gradients drive the positively charged
sodium ions into the cell, raising the electrical potential. The effect of the neurotransmitters does not last long, so the
result is a small depolarizing potential which flows down the dendrite into the soma. If enough of these small currents
arrive at the soma from the many dendrites at about the same time, the cell reaches its threshold potential. The entire
membrane suddenly becomes very permeable to sodium, and the internal potential quickly reaches a level about 50
millivolts higher than the external fluid. A potentialspike is produced at the axon hillock, and the resulting current or

action potential travels down the axon. Potassium (K+) then flows outward, bringing the cell back to its resting potential.
Active and passive pump mechanisms restore the original gradients. Further dendritic signals are ignored until after a
refractory period, when the cell is ready to receive inputs and fire again. Information appears to be carried
predominantly through the frequency at which a given cell fires. The firing frequency is a nonlinear function of the total
amount of input to the soma. Transmission down the axon

Mactivation 3.2 April 10, 1988 12

occurs through chemical means as well, and can be influenced by local conditions.
The impact that the firing of one cell will have on one to which it is connected is influenced by many factors. The

amount of neurotransmitter received by membrane receptors largely determines how much current is sent to the soma.
Mediating factors here include but are not limited to the amount and type of transmitter released by the pre-synaptic
membrane, the size and shape of the pre- and post-synaptic membranes, the surrounding fluid's exact chemical makeup
(which is influenced by metabolic mechanisms), and the synapse's recent history of activity. The amount of current
which reaches the soma depends on the transmission properties of the dendrite and the spatial location of the synapse
on the cell. In addition, there are inhibitory synapses which effectively lower the post-synaptic potential, preventing the
cell from firing. There are also synapses among axons and dendrites themselves, on the cell body itself, and synapses
can occur on top of other synapses. Some of these properties are evolutionary in nature. That is, the size of a synaptic
membrane's active area appears to grow with use. In fact, a mechanism of this nature is currently the most likely
candidate for the neurological basis of information storage and learning in the nervous system.

Simulated neurons

A schematic diagram of a representative unit is seen in Figure 2. Each unit contains a number of input lines and
one output line, which bifurcates. Signals in biological neural networks are based on trains of equal valued spikes at
different frequencies. Most simulations use real numbers to represent these signal frequencies at discrete time steps.
Thus the activity level of a unit is a real number, as are the inputs and outputs. Input lines are attached to a unit through
connections of (usually) variable strength, which are also represented by real numbers. The contribution of one input to
the unit is the product of the activity on that line and the value of the connection strength. The total input to the unit is
the sum of all the individual products. Connections may be positive or negative in sign. The former adds activity to the
total, while the latter subtracts from it. The output of the unit is some function of the total input. Some commonly used
activation functions are shown in Figure 3. Each unit may have associated with it a bias, which is the activity value of
the unit at rest. This is similar to the resting potential of biological neurons, though it is often viewed as an additional
input to the simulated neuron. It is worth repeating that this is a description of a representative simulated neuron.
Variations such as temporal summation, delayed outputs, multiplicative (rather then additive) synapses, and internal
memory of recent activity often occur in specialized systems.

Mactivation 3.2 April 10, 1988 13

i
1

i
2

i
3

i
4

i
5

s
1

s
5

inputs

synapses

output

f(∑i s)
n nn *

Figure 2. Representative simulated neuron

Output

Input

sigmoidal

Output

Input

linear threshold

Output

Input

step

Figure 3. Common activation functions

Network architectures and interpretations

The architecture or connectivity pattern of a network describes its physical (virtual, if inside a computer
simulation) layout. Spatial relations between units may be specified along with the connections between them. Usually,
the spatial layout of a network is just a convenience for the designer, since the topology can often be changed while
preserving the connectivity pattern. This is the specification of which unit's outputs connect to which other units as input.
To facilitate this, the units in a network are often partitioned in groups. These may be seen as functional subnetworks,
layers in a stratified structure, or just as divisions which represent the intentions of the designer. The layers are usually
distinguished by restricted connection specifications, such as allowing no connections among the units in a group, but
full connectivity between groups. The direction of propagation of the signals among units is usually restricted and is
formalized as well. Biological neural networks often appear to be partitionable into such interacting populations, and are
modeled as such.

Mactivation 3.2 April 10, 1988 14

a. b.

Figure 4. a) single layer network b) two layers

The structure of a network generally reflects the intended interpretations of its layers and units. The individual
populations in a multi-layered network might represent the notions of input mechanisms, processing structures, memory
systems, and output devices. Within populations, individual units may or may not have simple or discrete
interpretations. In localist networks, units may correspond to such high level notions as words, concepts, terms in an
equation, or categories. For example, a population of input units might represent line segment detectors, with
connections to another population of units which represent alphanumeric characters, with connections to another
population of units which represent words, with connections to another population of units which represent categories3.
The term localist is used in reference to the idea that these qualities are localized to specific units. Extracting meaning from a localist
network is relatively simple. The activity level of each unit represents the amount to which the indicated concept is involved in the
current state of the network. A list of all the units' meanings and their current activity levels can yield a complete description of a
network's current "thought". Different patterns of activity across the units represent different "thoughts".

On the other end of the spectrum are distributed or coarse coded representations in which such localization of concepts to
units is not possible. Rather, units correspond to so-called microfeatures of the environment. A localist unit is replaced by a group of
units who's activity levels as a group represent the quality in question. No single unit can be said to represent any describable entity.
This makes the interpretation of activity patterns more

3For example, McClelland, J. L., and Rumelhart, D. E. (1981) An Interactive Activation Model of Context Effects in Letter Perception:
Part 1. An Account of Basic Findings. Psychological Review 88: 375-407
Mactivation 3.2 April 10, 1988 15

difficult, but makes their interactions more subtle (and interesting). Many concepts can be represented and thus interact in a
single group of units. This type of representation also has the advantage of better fault tolerance and noise immunity, in that failure of
any single unit should not greatly disrupt the system as a whole. In contrast, failure of a localist unit which represents a word means
that the word can no longer be expressed. Similarly, while localist representations define and limit the concepts available to a system,
more distributed representations allow flexible interpretations of what concepts are in existence or are available.

Many issues in network and problem representation in general are complex and poorly understood. Local and distributed
schemes are regions on a continuum of problem and variable "coarseness". Most traditional artificial intelligence research has
focused on localist representation of symbols and meaning, probably influenced by the localist nature of traditional computer
architectures. Connectionist systems appear to alleviate this constraint to some degree, but much more work is required before any
claims of superiority can be made. A major problem with distributed representations is the difficulty in assigning meaningful activity
patterns to concepts and hence to populations. Unless this is done carefully, systems which attempt to be distributed in nature can
become nothing more than jumbled and complex versions of local instantiations.

Along with the information contained in the definition of units, there is information in the connections between them. The
presence of a unit (or group of units) defined as a concept means that the concept is available to the system. Similarly, a connection
between two units (groups) implies that the two concepts may be related and thus influence each other. In the case of a more
distributed representation, the connectivity pattern within a population can restrict and shape the activity patterns which are likely to
occur. While this is also applicable to localist systems, in the case of distributed representations it deeply affects the way concepts
are realized.

A network's connectivity pattern generally defines potential connections among units, but not the specific strengths. It is
these strengths which embody a given system's knowledge under its framework. Connection strengths may either be part of a
system's definition, or may be learned by the system through experience. The former scheme is usually restricted to localist
networks, where the correlations among pre-defined conceptual units are known. The larger and more interesting set of networks
learn these correlations.

Learning and memory

A widely held theory concerning the neurological basis of memory is that of long term potentiation (LTP), or Hebbian

learning.4 Though Donald Hebb did

4The more accurate term 'long term enhancement' (LTE) has recently been suggested by McNaughton and Morris (1987). [See below]
Mactivation 3.2 April 10, 1988 16

not create the notion of synaptic modification as the basis of learning, he is considered responsible for its current
understanding. In his 1949 book, The Organization of Behavior, he outlined cell assemblies that are the forerunners of today's neural

networks5. The concept of Hebbian learning specifically refers to the statement "When an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells

such that A's efficiency, as one of the cells firing B, is increased" 6. This was initially offered as an explanation of how information
arriving in a brain could be buffered during processing. Connections which quickly adapted to an activity pattern could keep that
pattern resonating as long as necessary. Such cell assemblies form the basis for learning in cognitive systems. Hebb suggested,
with no physiological evidence, that a change in the area of contact of synaptic knobs was responsible. Sufficient evidence now

exists such that this is the predominant paradigm today7. It is supposed that this increase in synaptic connection strength is related to
the firing frequencies of the two cells involved. In a simulated network, the product of two unit's activity values often determines the
change in their connection strength. This is generally what is referred to as Hebbian learning in connectionist systems. Variations
commonly arise when the values used in the product are not the cell activity values themselves, but are functions of them. This is
often done to include error correcting procedures. Neighboring cells and even more global interactions may also play a role in the
formulation of the learning rule.

Associative memory8

The notion of memory in traditional computer systems differs greatly from its conception in human cognition. 'Traditional
computer systems' refers to serial Von Neuman architectures with separate processing and memory systems. Information is stored in
discrete locations within some storage medium. Access to that information can only be made through its 'address', or known physical
location. When the content of the information is known but not its location, a search must be performed. In this case, the content
must be known exactly, or else some pattern matching function must be used. In contrast, human memories are accessed only by
content, with no regard to physical location. Stored information (events, names, faces) are recalled by

5Hebb, D.O. (1949) The Organization of Behavior, John Wiley & Sons, New York
6Hebb, D.O. (1949), pp. 62
7McNaughton, B. L., and Morris, R. G. M. (1987) Hippocampal Synaptic Enhancement and Information Storage Within a Distributed
Memory System. Trends in Neuroscience 10:408-415
8For a more complete description of associative memory see

Hinton, G. E., and Anderson, J. A. (1981) Parallel Models of Associative Memory, Lawrence Erlbaum Associates, Hillsdale, NJ.
and

Kohonen, T. (1983) Self Organization and Associative Memory, Springer Verlag
Mactivation 3.2 April 10, 1988 17

thinking about something related, or associated with that memory. Additionally, the information used as the key need only be
partially complete or correct. Incorrectly spelled names or partial views of objects usually do not impede the acts of recognition or
recall. The inability of traditional computer systems to perform such operations is undoubtedly a major obstacle in artificial intelligence
research. These most natural and prominent cognitive operations are difficult for these systems to emulate.

Two types of associative memory, auto- and hetero-associative, are often discussed. Auto-associative memory generally
refers to the ability of a system to recognize and correctly recall information from partial or corrupted versions used as input. Hetero-
associative memory systems 'couple' different information. If two items are stored as a pair, the presentation of one recalls the other.
For example, talk of food often makes one hungry. Hetero-associative memory can be seen as a subset of auto-associative memory.
Two events that are stored as a pair can be considered as a single event stored auto-associatively. Recall of one item from the other
is then the same as recall of the entire memory from one of its parts. The distinction between auto- and hetero-association is most
often a notational or architectural convenience.

Connectionist systems are well suited to perform associative memory operations. With a simple learning rule, a group of
completely interconnected units (every unit connects to every unit) can perform auto-associative memory (see Figures 4a and 5). A
pattern of activity is set up in the population (through dedicated input lines), and the synapses between the active cells are increased
in strength. When a subset of that pattern is presented to the group, sufficient activity can spread through the strong connections to
enable the missing units to fire, reinstating the original pattern. The information needed to recall a pattern is distributed throughout
the connections in the system. Missing or innacurate connection strength values do not greatly affect performance, as they represent
only a small amount the overall informational content. Many of these distributed representations can be stored simultaneously in the
same set of connections. The fidelity of this kind of storage can depend on pattern independence, network size and structure, and
learning specifications. Interference between stored patterns can be seen as a hindrance or as a benefit, depending on the aims of a
particular model. Bad interference overwrites memories, while good interference allows generalization.

Systems with two layers of units can perform hetero-associative memory. Patterns are presented to each group, and the
connections adjust to enable the mapping from one pattern to the other. A previously learned pattern is presented to one of the
groups, and activity flows to the other layer, recreating the second pattern there. Flow of activity may or may not be restricted to one
direction. When more than two groups are involved, architectures range from hierarchical trees to multiple interacting groups.

Mactivation 3.2 April 10, 1988 18

The storage and recall of sequences of events is another form of association. It can be viewed as associating the first item
with the second, the second with the third, and so on. Presentation of any of the items will evoke the sequence from that point.

The mechanism which distinguishes learning from recall in biological memory, if one exists, is not known. Almost all
simulations have distinct operations for them, and their use is under a system level control (usually the programmer).

Vector and matrix notation

A convenient and standard way to represent groups of units is as vectors. Each unit in a group is numbered, or indexed, and
its activity value is stored in a vector at that index. The number of units in a layer determines the length of the vector, say n. A set of
activity values in this vector can be viewed as a point in n dimensional space, just as the three component vector [x, y, z] is viewed as

a point in three dimensional space. The connection strengths between two layers of size n can be represented in a matrix of size n2.
Each matrix element represents the connection strength between two units. Let all of the units in layer 1 connect through synapses to
all of the units in layer 2. View the top row of the matrix as the synapses which connect unit one in layer 2 to each of the units in layer
1. Each row x represents the synapses from each unit in layer 1 to the single unit x in layer 2. Similarly, a column can be viewed to
represent the connections from a single unit in layer 1 to each unit in layer 2. A cell in the matrix, say [(row) 3,(column) 5] holds the
value of the connection between unit 3 in layer 1 and unit 5 in layer 2.

To learn patterns of activity, each cell in the matrix can be incremented by the product of the activities of the two units it
connects. This formulation is the same as the outer product of the two vectors (with layer 1 horizontal and layer 2 vertical) which
forms a matrix (figures 5 and 6). Recalling stored patterns is the action of propagating activity from layer 1 to layer 2, through the
connections. The layer 1 vector is oriented vertically to the right of the matrix, and a matrix-vector multiplication is performed. The
sum of the products of a matrix row x and the layer 1 vector is the total input to unit x in layer 2 (see figure 7). If there is only one
layer of units, the matrix stores the connections between those units. For example, [(row) 3,(column) 5] now holds the value of the
connection between unit 3 and unit 5 in a single layer. Some architectures require that there only be one connection between any two
units, and thus functions in both directions (so [3,5] = [5,3]). With the simple activity product rule above, this is a natural consequence
anyway (since multiplication is commutative). Multiple patterns can be stored in the same matrix simply by superimposing the
individual matrices formed by the above method. The associated patterns will interfere with each other if there is too much overlap or
just too many patterns. The need to determine these conditions was a major force in the writing of Mactivation.

Mactivation 3.2 April 10, 1988 19

1
0
1
0

Layer 1 vector =
1
0
1
0

[1 0 1 0]

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

Figure 5. Auto-associative outer product connection matrix

1
1
0
0

Layer 2 vector =

[1 0 1 0]

1
1
0
0

1 0 1 0
1 0 1 0
0 0 0 0
0 0 0 0

Figure 6. Hetero-associative outer product connection matrix

1 0 1 0
1 0 1 0
0 0 0 0
0 0 0 0

1
0
1
0

2
2
0
0

* = (normalizes to Layer 2 Vector)

Figure 7. Hetero-associative recall

Summary

The basic neural unit receives many inputs which are connected to the unit through synapses. The synapses
modulate the amount of signal transmitted. The unit performs some kind of integration of these inputs, forming a total
input signal for a given time slice. (This is continuous in biological neurons.) The unit's activation function determines
the output of the unit based on the total input. Units are connected to each other to form networks with the output of
units becoming the input to others. There must be some direct connections from the network to the outside world for
input and observation. When learning, the synaptic connection strengths are modified according to learning rules and
the pattern of activity in the network. These learning rules often have a local component based on what the synapse is
connecting, and a more global component based on the network

Mactivation 3.2 April 10, 1988 20

connectivity pattern. The mathematical outer product of two activity vectors is a matrix which represents
the change in connection strengths for learning those patterns. Matrices are superimposed to store multiple sets of
patterns. Activity in one layer is propagated to another by a matrix-vector multiplication.

Mactivation 3.2 April 10, 1988 21

Mactivation

Overview

There are two neural network architectures available in
Mactivation. A single layer of fully interconnected units with
modifiable synapses performs auto-associative memory. Patterns
are presented and learned, and can be recalled with a partial or
incorrect presentation of the same pattern. Alternately, two layers
of units with full connections from one layer to the other provides
hetero-associative memory. A different pattern can be presented
to each layer, and the mapping between the patterns is learned.
Partial or complete presentation of the source pattern can later
recall the target pattern. In addition to learn and recall commands,
a cycling option allows output vectors to be transferred to the input
vector in a continuous recall and update mechanism.

The Windows

Upon startup, the windows and menus appear as in Screen 1
(though the memory window and all activities would be empty).
Mactivation is constantly under development, so details may vary.
For example, windows may be in different places (or not there)
and the vectors may be of different size and shape9∂.

The Layer 1 and Layer 2 windows each contain one vector of units. Each is a one dimensional horizontal vector of activity
values, but is usually arranged in a two dimensional grid. This allows familiar two dimensional patterns like characters and digits to be

entered. Clicking the mouse in a unit in either of the vectors toggles the amount of input to that unit10¥. This input value is then put

through the activation function for that layer11£. If the Caps Lock key is down, the activation function is bypassed. If the resulting
activity value is positive, the unit appears grey. If the value is negative, the unit is black. If desired, these color assignments may be

reversed12¥. A value of zero appears white. The size of the resulting filled region within the unit reflects the ratio of the current value

and the maximum possible (absolute) value for that unit. Only the Layer 1 window is visible when in auto-associative mode∂, as there
is only one interconnected population of units in this architecture.

The Connection Matrix window contains a matrix of the synapses arranged as described in the vector-matrix notation
section. Clicking in a matrix cell toggles between the two activity input values. The value is bounded by limits which are set in the
Parameters -> Learn dialog box.

9∂ Parameters -> Configure (read: this parameter is in the dialog box reached from the Configure item in the Parameters menu)
10¥ Display -> Attributes
11£ Parameters -> Activations
12¥ Display -> Attributes
Mactivation 3.2 April 10, 1988 22

Positive, negative, and zero connection strengths appear as described above, using the ratio of each connection strength to
the limiting values for the overall matrix.

The fields in the Observe window reflect the position of the mouse if it is in a unit or connection cell. 'Layer 1', 'Layer 2',
'Matrix', or 'Memory' appears in the top of the window. If the Observe window is active, values may be entered into any of the fields.
This can used for getting values other than those set for toggling into the vectors, bypassing the activation function, and changing
connection strengths. The best way to use this feature is to make the observe window active. The value field will be selected for
keyboard input. Moving the mouse over the desired bit (layer unit or synapse) and typing the new value and a return will change that
bit's value accordingly. The bit can also be specified by entering values into the row and column fields. (The tab key advances
selection to the next field.) A return enters the information.

The file name window, with the same name as the current simulation system, displays previously learned vectors, in the
order of learning. This window is often referred to as the Memory window. In hetero-associative mode, the Layer 2 vectors appear
below the Layer 1 vectors. The Layer display threshold characteristics apply.

Modifier Keys
Option-clicking in either Layer vector or in any of the Memory vectors copies the pattern in that set of units into the Layer 1

vector. Option-shift-clicking copies the pattern into the Layer 2 vector.
The Caps Lock key disables the effect of the activation function when clicking a value into a vector. Similarly, connection

strength bounds are ignored when clicking into the matrix.

Mactivation 3.2 April 10, 1988 23

The Menus

The Apple and Edit menus are excluded from this section since they are trivial in Mactivation. The Edit menu is
unsupported, and is provided only for the use of desk accessories. The edit items become active when necessary.

File

The New command does a Reset Everything13 and names the current simulation "Untitled". Parameter settings are not
changed.

The Open command presents the standard open file dialog box, showing folders and Mactivation documents (file type
'MtVn').

The Close command doesn't do anything; a system must always be open. The menu item is provided for consistency and
for desk accessories.

The Save command saves all parameter settings, vector and matrix values, and learned vectors in the file with the current
system name. If the current system is Untitled, then Save As is invoked.

The Save As command presents the standard save as file dialog box.
The Revert command attempts to open the file in the current working directory with the same name as the current system.

Any state setting, learning, or changes to parameter values is considered a system modification and invokes a "Save
changes to file xxx" box when quitting and other relevent actions are taken.

13Commands -> Reset Everything
Mactivation 3.2 April 10, 1988 24

Display

The first five items in the Display menu refer to the simulation windows. Windows currently visible on the Desktop are
dimmed in the menu. When a window is completely obscured by other windows, its title becomes active in this menu list. Selecting
its title makes the window visible again.

The Attributes dialog box:

The top two selections toggle the display 'colors' for positive and negative values in the layers, matrix and memory windows.
The mouse click values are the numbers sent to a bit that is clicked on. If in a layer unit, the number is put through the

layer's activation function£. If in the matrix, values are bounded by the connection strength limiting values14Ω. When the Caps Lock
key is depressed, neither of these actions occur. Unit states can easily be set to zero and one with this feature,

14Ω Parameters -> Learn
Mactivation 3.2 April 10, 1988 25

regardless of the activation function. Mactivation does its best to toggle correctly when the bit's pre-click value is neither of
these, but you may have to click a couple times to get what you want.

The box size specifications let you adjust the simulation size to your liking.

Mactivation 3.2 April 10, 1988 26

Parameters

The Configure dialog box:

One layer or two layers of units configures the system for auto-associative or hetero-associative operation, respectively.
Auto-associative means that the system is usually used to reconstruct a learned vector from partial or incorrect input. The Layer 1
vector is crossed with itself (outer product) to generate the connection matrix increment values. Hetero-associative allows a Layer 1
vector to map to a different Layer 2 vector. The Layer 2 window is only available when in hetero-associative mode.

[Changing modes after learning is allowed, and makes for interesting results. For example, teaching the hetero-associative
system an overlapping sequence of patterns (i.e. a -> b, b -> c, c -> d) and then switching to auto-associative mode enables the

single layer to recall the sequence when cycling15ß. Note that the memory window displays its current understanding of the mode, so
only the layer 1 patterns are shown.]

The Number of units per layer refers to the state vector(s) for the system, given in "units" or "neurons" or "bits" or whatever
term you prefer.

Display as: refers to how the vector appears in the Layer 1, Layer 2,

15ß Commands -> Cyclic Recall
Mactivation 3.2 April 10, 1988 27

and Memory windows. Using a rectangle in this manner rather than a one dimensional vector makes things a lot easier to
look at and use. However, seeing a one-dimensional vector makes understanding the matrix multiplication easier for a while.
Remember that what is displayed is a one-dimensional vector regardless of its shape. The number of rows times the number of
columns must equal the vector size (for obvious reasons). Bit positions increase to the right and down, respectively.

The Activations dialog box:

Layer 1 and Layer 2 each have a different activation function for their units. Two prototypes are provided, a sigmoidal and a
bounded linear function. Complete descriptions of these formulae are found in the equations section of the manual. "Slope" is in
quotes since it is not actually a slope per se, but does change the speed of the function. A good way to get the feel of this function is

to vary these parameters and the mouse click toggle amounts¥. Click the mouse to input different integer amounts of activity to units.
The integer amount is immediately put through the function and displayed in the Observe window value field.

When the linear function is chosen, slope does indeed refer to its slope. A step function can be approximated with a large
value for the slope.

Changes in activation functions take effect immediately. The current

Mactivation 3.2 April 10, 1988 28

activity values in the affected vector are put through the new activation function and the display is updated.

The save button stores the current settings and leaves the dialog box up. This is for setting one layer's parameters and then
the other layer's. If you switch layers without doing a save, any changes made are discarded. Cancel does not undo changes which
have been saved. OK saves the current settings and dismisses the dialog box.

The Learn dialog box:

The Learn Current command16ƒ performs an outer product of the appropriate vectors and adds the result to the connection
matrix. (A discussion of learning is found in the Learning and memory section of the Neural Network Introduction.) The Learning

rate (η)171 modulates the amount of each synaptic strength change in one learning cycle. The change in strength of a synapse is the
product of η and the product of the two units' activity values. The equations are found at the end of the Mactivation reference section.

Max and Min connection strengths are limits for the matrix values. Connection strengths will not be increased (or
decreased) beyond these values during learning. Values input through the observe window are not affected by these limits.

The Delta rule, also known as the Widrow-Hoff procedure, is an error

16ƒ Commands -> Learn Current
171 This is the symbol "eta" in Symbol 12 font. If you don't have the Symbol font, this may look like a square box. Eta looks like an
"n" with a downward extended right edge in case you want to look for it in some other font (it's option-h in Math).
Mactivation 3.2 April 10, 1988 29

correcting variation of Hebbian learning. First, the layer 1 vector is multiplied by the matrix. The resulting vector is what the
system 'knows' about the input. (This is the same as the recall procedure.) The result is subtracted from the target vector (layer 1 for
auto-association, layer 2 for hetero-association), giving an error vector. The outer product of the layer 1 and error vectors is then
used to update the connection weights. The equations are found at the end of the Mactivation reference section.

Some auto-associative models, such as the Hopfield net18, do not allow a unit's output to connect back to the unit itself.
Units that do connect to themselves are known as self-exciting. If the toggle is off, the diagonal of the matrix will always be zero
since there will be no connection from unit n to unit n. Changing the setting only affects later presentations, not vectors that have
already been learned. Hetero-associative operation fully connects Layer 1 to Layer 2, so this item is disabled.

The Normalize dialog box:

If a vector is normalized after being recalled, it means that each unit's value in a recalled vector will be divided by the sum
total activity of a vector. In Mactivation, this division can be performed before or after the output unit's activation function is applied.
The divisor can be the sum of either the input vector or the output vector itself. The most common definition of normalization divides
the output activity after the activation function by the total of itself. This produces a standard normalized vector, the sum of which is
equal to one. The other configurations are provided for experimentation, and to be able to simulate the model given in a recent article

by Bruce McNaughton and Morris19. In this model, the division is performed before the activation function, with the total of the input
vector.

If total input is selected, the total of post-activation activity is taken. If total output is used, the total of pre-activation activity is
taken.

18Hopfield, J.J. (1982) Neural Networks and Physical Systems With Emergent Collective Computational Abilities. Proc. Natl. Acad.
Sci. USA 79: 2554-2558
19McNaughton and Morris (1987)
Mactivation 3.2 April 10, 1988 30

The Cycling dialog box:

This dialog controls the operation of the Cyclic Recall command20ß. When in hetero-associative mode, and cyclic recall
turned on, output from layer 2 is sent back to layer 1 after a recall, and the process repeats. The layer 2 vector can either be added
to layer 1 or can replace it. The activation function for layer 1 is then applied. When in auto-associative mode, the recalls are
performed as usual, so the add and replace buttons have no meaning and are disabled.

The delay time between cycles, in seconds, is also set here. Zero is an acceptable value, but causes a very tight loop. The
cursor changes to signify when a recall operation is being performed. TickCounts are used for this test, so accuracy is to
approximately the sixtieth of a second.

20ß Commands -> Cyclic Recall
Mactivation 3.2 April 10, 1988 31

Commands

Learn Current

The Learn Current command performs an outer product of the appropriate vectors and adds the result to the connection
matrix. A discussion of learning is found in the Learning and memory section of the Neural Network Introduction. The learning
equations follow this reference section. If auto-associative mode is currently being used, an outer product is formed by crossing the
Layer 1 vector with itself, and the matrix is updated according to the current system parameters, which are explained in the dialog box
descriptions. If in hetero-associative mode, this command crosses the two vectors with Layer 1 horizontal and Layer 2 vertical. The
Learn Current command also adds a copy of the learned vector(s) to the Memory window display.

Recall Current

The Recall Current command multiplies the Layer 1 vector by the connection matrix. In auto-associative mode, the new
Layer 1 activities are displayed. In hetero-associative mode, Layer 2 is updated. The appropriate activation function is first applied.
One would generally click a partial or distorted input (or option-click a memory pattern) into Layer 1 and then choose this command.
Normalization and thresholding occur as specified in the system parameters.

Cyclic Recall

Cyclic Recall is a toggled command and has a check mark to its left when in operation. At the specified interval, recall
operations are performed. In hetero-associative mode, the resulting Layer 2 vector can replace or be added to Layer 1. This decision
is based on the setting of the corresponding control in the Parameters -> Cycling… dialog box. The Layer 1 activation function is then
applied, and the result is displayed.

Mactivation 3.2 April 10, 1988 32

Randomizer…

Random values, or noise, may be added independently to the layers of units and the connection matrix. The probability
value determines how many units in the given structure will be affected. A probability of 0.5 says that about half of the the units will
have noise added to them. Higher probabilities allow more units to be influenced.

For each unit selected, a random number which lies between the two specified values is generated and added to the unit's
activity (or connection strength). Values are bounded by the maximum value allowed for a unit's activity or matrix connection
strenght. The associated algorithm is found in the equation section of the manual.

The Clear commands

Clear Vectors inputs zeros to all of the units in the two layers. The activation function is then applied, leaving the unit at its
'resting state'.

Reset Everything performs a Clear Vectors, fills the matrix with zeros, and empties the memory window.

Mactivation 3.2 April 10, 1988 33

The equations

[Layer1] = Vector of Layer 1 activation values
[Layer2] = Vector of Layer 2 activation values
[Temp] = A spare vector
[W] = Connection matrix
Wij = Connection weight from unit j to unit i
n = number of units
∆x = Change in value of x
⊗ = The vector outer product operator
• = Matrix - vector multiplication operator
T = The vector transpose operator
Remanining variables have the same names as in their dialog boxes.

Activation functions:

sigmoidal:

Output = Extent

1 + e
- ("slope" * (Input + Xoffset))

- Yof fset

linear:

Output = "slope" * (Input + Xoffset) - Yoffset

if Output < -Yoffset, then Output = -Yoffset
if Output > (-Yoffset + Extent), then Output = (-Yoffset + Extent)

Auto-associative recall:

Input to uni t i = ∑
n

(Wi j * Output (uni t j))

Output(unit i) = Activation function (Input to unit i)

In vector notation:

[Temp] = [W] • [Layer 1]
[Layer 1] = Activation function ([Temp])

Hetero-associative recall:

[Layer 2] = Activation function ([W] • [Layer 1])

Mactivation 3.2 April 10, 1988 34

Learning without the delta rule, auto-associative:

For all Wij:
∆Wij = η * Output(unit j, layer 1) * Output(unit i, layer 1)
Wij = Wij + ∆Wij

In vector notation:

[∆W] = η * [layer1] ⊗ [layer1]T

[W] = [W] + [∆W]

Learning without the delta rule, hetero-associative:

[∆W] = η * [layer2] ⊗ [layer1]T

[W] = [W] + [∆W]

Learning with the delta rule, auto-associative:

[Temp] = [W] • [Layer 1]
[Temp] = Activation function ([Temp])
[Temp] = [Layer 1] - [Temp]

[Temp] now contains an error vector

[∆W] = η * [Temp] ⊗ [Layer 1]T

[W] = [W] + [∆W]

Learning with the delta rule, hetero-associative:

[Temp] = [W] • [Layer 1]
[Temp] = Activation function ([Temp])
[Temp] = [Layer 2] - [Temp]

[Temp] now contains an error vector

[∆W] = η * [Temp] ⊗ [Layer 1]T

[W] = [W] + [∆W]

The Randomizer:

The call srand(time()) is made at application startup to seed the rand() function.
The LightspeedC rand() function generates a value between -32767 and +32767

For each unit in a selected layer/matrix:

Generate a random number with rand();
if it's less than the specified probability times 32767, then generate noise for that unit.

Mactivation 3.2 April 10, 1988 35

To generate the noise value:

Generate and take the absolute value of a rand() number;
Multiply it by the extent of the specified range of acceptable values (max - min);
Divide by 32767;

Add the final value to the unit.
Limit the resulting value by that allowed for the unit.

Mactivation 3.2 April 10, 1988 36

