
oodles-of-utils version 1.2
Copyright © 1992 Northwestern University Institute for the Learning Sciences - All Rights Reserved

Michael S. Engber

Neither I, Northwestern University, or the Institute for the Learning Sciences make any warranties about this code. It is provided free
of charge. If you redistribute oodles-of-utils, please redistribute the entire package.

oodles-of-utils is a collection of Macintosh Common LISP (MCL) code to help access the Mac ToolBox and create user interfaces.
The full source is provided so you can use the code or just look at the source for ideas on how to do things.

This document will make using oou a lot easier for both ILS and non-ILS users. Its target audience is both novice and neophyte MCL
users. Familiarity with Common LISP and CLOS is assumed. Parts of the document may make not make sense to non-ILS users (or
anyone else).

Send questions, suggestions, bug reports, and cash (in small, unmarked, bills) to:

Mike Engber
The Institute for the Learning Sciences
1890 Maple Ave
Evanston, IL    60201

(708)467-1006

from InterNet: engber@ils.nwu.edu
from AppleLink: engber@ils.nwu.edu@INTERNET#
from CompuServe: >INTERNET:engber@ils.nwu.edu

Table of Contents

Table of Contents...i

Acknowledgments & History...5

Using oodles-of-utils..6

System Requirements..6

Compiling oodles-of-utils..6

Modifying oodles-of-utils.. 7

Reading the Documentation... 7

Reading the Source... 7

mixin-madness... 9

Simple View Mixins...9
draggable-svm..9

droppable-svm..11

selectable-svm...11

frame-svm..12

frame-3D-svm...13

static-text-svm..13

rsrc-svm...13

graphic-rsrc-svm...15

PICT-svm...15

GWorld-svm...16

video-digitizer-svm (described in Video section)........19

video-svm (described in Video section)..................19

Dialog Item Mixins..19
button-dim...19

disable-dim..20

double-click-dim...20

te-dim...20

Window Mixins..22
video-wm (described in Video section)...................22

dialog-items..23
3D-PICT-button-di..23

3D-text-button-di..23

cicn-di..23

ICON-di..24

oodles-of-utils i

PICT-di..25

static-text-di...25

NotInROM-u.. 27

brutal-utils..29
GDevice-u..29

Menus-u..29

Resources-u..30

PICT-u...31

QuickDraw-u..31

QD-fx-u..32

records-u..35

macptr-u...35

Traps-u..36

MCLs-funniest-home-video...37

Digitizers.. 38
video-digitizer..38

MR-vd..40

RO-vd..41

RO24STV-vd...42

RO364-vd...43

Players.. 44
video-player...44

Pioneer-u..46

Pioneer-vp...47

P8000-vp...48

P4200-vp...48

P330-vp..48

Video Mixins.. 49
video-wm...49

video-digitizer-svm......................................50

video-svm..51

objects-of-desire...53
serial-port..53

room-with-a-view..54
back-PICT..54

WMgr-view..55

GWorld-view..55

te-view..56

low-class-extensions..58
dialog-item-ce...58

ii oodles-of-utils

simple-view-ce...58

window-ce..59

Appendix A - Classic LISP Blunders...61

Appendix B - Classic MCL Blunders..65

Appendix C - LISP & MCL Coding Style...67

Appendix D - Designing Code for MCL..69

References & Suggested Reading..71

Index...73

oodles-of-utils iii

Acknowledgments & History

oodles-of-utils is not a commercial product. It has evolved over the past 2+ years to satisfy the in house development needs of The
Institute for the Learning Sciences. oodles-of-utils has its roots in my "custom" folder of utilities, written for MACL 1.3.2. When MCL
2.0b1 came out in June '91, it made "custom" almost completely obsolete. Thus began a frantic race to write a replacement so we
could start using MCL 2.0 productively. After all, without on screen video meaningful software development is impossible.

I would like to thank

My in house users - or bug hallucinators as I usually refer to them:

Mark Chung, Ken Greenlee, Mike Korcuska, Rich Lynch, Tamar Offer, John Welch, Pete Welter, and the rest of the ILS
programming staff.

Brian Slator and Ray Bareiss, for letting me have the time to work on oou and the foresight to see that a shared code library is a
worthwhile investment.

Martha, for agreeing that it was worthwhile to spend $1001 on a copy of Coral Common LISP2 so I could do my AI homework at
home on my MacPlus.

And lastly, the MCL team for producing a truly outstanding product and listening to all my whining.

1educational price

2Yes, that's what ccl stands for, Coral Common LISP, the predecessor to MCL which actually ran quite well on a MacPlus with 1
MegaByte of RAM.

oodles-of-utils 5

Using oodles-of-utils

First you must learn to correctly pronounce oodles-of-utils. "utils" is short for utilities and should be pronounced with the accent on
the first syllable - so it rhymes with "oodles."

Then you should put a copy of the oodles-of-utils folder into your MCL folder and load oou-init.lisp.

Do not load in Traps.lisp or records.lisp. This can accidentally happen if you use some old MACL 1.3.2 code that
contains (require :Traps) or (require :records). These two files support the old MACL mechanism for accessing
the ToolBox and loading them interferes with MCL 2.0's mechanism.

You then load in the specific files you need using the oou-dependencies macro.

oou-dependencies &rest module-names

Each module name should be specified as a keyword or a string corresponding to an oou file name (file type omitted) For
example:

(oou-dependencies :QuickDraw-u
:Resources-u
:draggable-svm)

You must use oou-dependencies instead of require. Reasons:

The oou folder hierarchy is not in the normal search paths require uses.

oou's .fasl files are all kept in their own folder, which would confuse require even if its search path were set up correctly.

Many of the oou files contain macros which must be loaded at compile time or your code won't compile correctly. oou-
dependencies expands into an appropriate eval-when form to ensure they're loaded.

After you load oou-init.lisp, the oou package is created and cl-user package is set up to use the oou package, giving you
access to all the exported oou symbols (functions, macros, methods, …).

All of the symbols (functions, methods, classes, etc.) documented here should be exported. If you find one that's not, notify me and in
the meantime, use a fully qualified symbol name, oou::some-symbol. If you dig around in the source you may run into things that
are not exported. If you find one you think would be generally useful, notify me and I'll consider cleaning it up and exporting it.

System Requirements

oou was developed using a variety of beta versions of MCL 2.0. It has not yet been tested under MCL 2.0 final, but that shouldn't
introduce any problems (yeah, right).

• it will not work with any of the MCL 2.0b1pX versions
• parts of it require color QuickDraw (the GDevice stuff comes to mind)
• parts of it is require 32 bit QuickDraw (the GWorld stuff comes to mind)
• I don't think any of it is currently System 7 dependent, but parts probably will be in the future

Of course, the more memory you have allocated to MCL, the better things will work. I don't have any specific guidelines here, but the
.fasl files take up +300K on disk. If you're really tight on memory you may want to try recompiling oou with some of the memory
hogging options turned off.

6 oodles-of-utils

Compiling oodles-of-utils

All of the oou .fasl files are kept in a single folder, oou-fasl, which should be located in the oodles-of-utils folder. Since
these folders are so large, I'm distributing the oodles-of-utils folder and the oou-fasl folder separately.

For a variety of reasons, you may want to compile oou yourself. For example, you may want to turn off some of the memory
expensive compiler options, like *fasl-save-local-symbols*. To compile or re-compile oou, use the compile-oou
function.

compile-oou

This function compiles all .lisp files that are more recent than their corresponding .fasl file (located in the oou-fasl
folder).

Modifying oodles-of-utils

If, god forbid, you find a bug or something else tempts you to make changes to the oou source, resist. You shouldn't modify its files
directly or it will be a nightmare trying to reincorporate your changes into new versions of oodles of utils. Instead, you should place a
copy of the file in question into the oou-mods folder and make your changes in the copy. The oou-dependencies macro first
looks in the oou-mods folder, so your changed file will be loaded in preference to the original file.

If you decide to compile your modified file, you will need to do it yourself, compile-oou won't. You should place the .fasl in the
oou-mods folder. The oou-mods folder should be kept flat, don't put other folders in it.

Reading the Documentation

Documenting object libraries is difficult because understanding a class requires understanding all the classes it inherits from. This is
one reason I've moved all my documentation to a single file rather than keeping it spread out in the headers of the source files.

Many source files have commented out example code at the bottom. If after reading a file's documentation you still have some
questions, you should try out the example code. A line of working example code is worth a thousand lines of documentation.
Remember to first load the file before trying out the example code.

The document is broken up into sections that correspond the hierarchy of folders in oou. For each file, I give a brief discussion of its
purpose in life and then document the functions, macros, and classes it provides.

Functions, macros, and methods have their names shown in bold followed by a list of their arguments.

Initargs are shown as keywords followed by braces containing their default initarg values or [no default] indicating no default initarg.

If a description of a method states you should specialize or shadow it, that means you should define your own primary method and not
use call-next-method. If a method description states you should augment the method, that means you should define your own
before, after, around, or primary methods, being sure to use call-next-method if you write around or primary methods.

Reading the Source

I would like to encourage people to read the source. Significant effort went into making it legible. I even put in a few comments. It
may help if you first read Appendix C which explains some coding conventions used.

I use a few macros and functions from the ccl package which are not currently exported or documented. The most common of these
is the macro which creates local macptr variables of dynamic extent. The other unexported ccl stuff can usually be figured out by
its name, how it's used, or by expanding the macros.

oodles-of-utils 7

Many source files have commented out example code at the bottom. If after reading a file's documentation you still have some
questions, you should try out the example code. A line of working example code is worth a thousand lines of documentation.
Remember to load the file before trying out the example code.

8 oodles-of-utils

mixin-madness

Mixin classes are not designed to be instantiated themselves, but instead, used in defining other classes (i.e. mixed into their
definitions). Well designed mixins are the ultimate in code reusability, allowing you to define complex objects using only a    defclass.

In general, I try to keep the mixin classes orthogonal so it doesn't matter which order you use them in an object precedence list.
However, some conflicts are inevitable. I've tried to document the conflicts I know about. So far, they are all resolvable by proper
ordering of the precedence list.

The mixins in oou use a naming convention which indicate what classes they are to be mixed with. Mixin class names end in the
suffix; -svm, -dim, or -wm, indicating they work with the classes; simple-view, dialog-items, or window, respectively.
For more information on designing your own mixins, see Appendix D.

Simple View Mixins

Simple view mixins are all named with a -svm suffix. They can be mixed with classes that inherit from simple-view, including
dialog-item and view.

Notes:

Simple views and views get drawn with different coordinate systems conventions. Simple views are drawn using their container's
coordinate system, while views are drawn in their own coordinate system. This distinction is being made in the documentation
when I use the term, focusing view coordinates, which means the view container's coordinates for simple views and the view's
own coordinate system for views. All the oou simple view mixins are designed to handle these cases properly, so you shouldn't
normally have to worry about this detail. On those occasions when you do need to worry about this distinction, the methods
focused-corners and focusing-view are provided to simplify things.

Some simple view mixins require modification to work with the window class. This is because install-view-in-window
and remove-view-from-window are not called for windows as they are for other views. So mixins which specialize these
methods should probably specialize initialize-instance and window-close instead. For an example of this, see
back-PICT, which specializes PICT-svm to install background pictures in a window.

This mixin allows a view to be dragged around much like you drag icons around in the Finder.

See Also
droppable-svm - dropping the object onto a target
selectable-svm - dragging groups of items

Initargs

 [:none]

Determines the legal drag area (a rectangle). Allowed values are
:window item's window
:container item's containing view
:none entire desktop

oodles-of-utils 9

 [20]
 [20]

These control how far the user can move the cursor outside the drag bounds before the drag becomes void (and the outline
disappears). Try dragging the thumb on a standard scroll bar for an example of this behavior.

 [:both]

Constrains the drag direction. Allowed values are :vertical, :horizontal, or :both. Try dragging the thumb on a
standard scroll bar for an example of this behavior.

 [t]

It non-nil, only a dotted outline of the view is dragged around.

[t]
[nil]

[t]

These can be used in conjunction with a non-nil :drag-outline-p to achieve different effects.

:drag-pre-hilite-p is the original view hilited during the drag
:drag-pre-erase-p is the original view erased during the drag
:drag-post-erase-p is the dragged image erased after the drag

 [#@(2 2)]

This point specifies the delta-h and delta-v the mouse must travel before a click turns into a drag. This prevents accidentally
dragging something you only intended to click on. Try dragging an icon in the Finder for an example of this behavior. If you
observe carefully, you'll notice you have to move the mouse a few pixels before the drag actually starts.

 [no default]

The default drag-action method calls the function stored in this slot. The function should accept one argument, the view
being dragged. Use this function to perform some action continuously during the drag.

 [no default]

The default drag-end-action method calls the function stored in this slot. The function should accept 3 arguments, the
item dragged, the change in mouse position as a point (delta-h, delta-v), and the final mouse position as a point (in local
coordinates for a view, or in its container's coordinates for a simple-view) Use this function to perform an action after a legal
drag.

Methods of Interest

 (sv draggable-svm) hilite-flag

Specialize this to customize the highlight effect on the original position of the item being dragged. hilite-flag indicates
whether to highlight or unhighlight the item (t/nil). The default method uses inversion.

 (sv draggable-svm)

Specialize this to control when an item can be dragged. The default method always return t.

 (sv draggable-svm) drag-rgn

Specialize this method to customize the shape of the region that gets dragged around. The default method uses RectRgn to
set drag-rgn to the rectangular region defined by the view's corners. The drag-rgn argument is a region handle which
you should modify to define the desired drag region in global coordinates.

This mixin is a specialization of draggable-svm which allows a view to be dragged and dropped onto targets. It handles
highlighting during the drag when the item is over a legal drop target. This functionality is much like dragging files over a folder in the
Finder. If the item is released over a legal target, drop-action is executed rather than drag-end-action.

10 oodles-of-utils

See Also
draggable-svm - inherited behavior
selectable-svm - dropping groups of items

Initargs

 ['dialog-item]

All legal drop targets must inherit from this class.

 [no default]

A list of view-nick-names to be considered legal drop targets. If not supplied, any object in drop-target-class is legal. Items
can't be dropped onto themselves, so don't worry about excluding yourself from your own drop-targets list.

 [no default]

The default drop-action method calls the function stored in this slot. The function should accept 4 arguments, the item
dragged, the drop target, the change in mouse position as a point (delta-h,delta-v), and the final mouse position as a point (in
local coordinates for a view, or in its container's coordinates for a simple-view). Use this function to perform an action after
dropping the item over a legal drop target. (drag-end-action is called to handle non-dropping drags)

Methods of Interest

 (sv simple-view) hilite-flag

Specialize this method to customize the highlighting effect when the item is dragged over a legal drop target. hilite-
flag indicates whether to highlight or unhighlight the item (t/nil). The default method uses inversion.

 (sv droppable-svm) (target simple-view)

Specialize this method for more sophisticated legal drop target discrimination. The default method finds the view the mouse
is in and makes sure it isn't yourself, checks its class against drop-target-class, and finally checks for membership in drop-
targets (if drop-targets is bound).

These mixins allow for selecting groups of objects. They group views into clusters and handle selection of items within a cluster.
Three classes are defined, differing in how they handle multiple selections:

selectable-svm - shift click to extend selections (à la the Finder)
selectable-rb-svm - no multiple selections (à la radio buttons)
selectable-cb-svm - click to toggle selections (à la check boxes)

See Also
draggable-svm - dragging current selection
droppable-svm - dragging + dropping current selection onto targets

Note: When combining selectable and draggable behavior, selectable-svm must appear before draggable-svm in the class
precedence list (it specializes some of draggable-svm's methods). Keep this in mind when using selectable-svm with any
items that inherit from draggable-svm like droppable-svm.

Initargs

 [nil]

The selection cluster to which the item belongs. (test with eq) Members of a cluster are required to have the same containing
view. Multiple selection constraints are enforced within each cluster.

oodles-of-utils 11

 [nil]

Determines if the item is initially selected.

 [t]

If the item is draggable, this determines if the drag actions of all items in the selections will be called during the drag.

 [t]

If the item is draggable, this determines if the drag end actions of all items in the selections will be called after the drag.

 [t]

If the item is droppable, this determines if the drop actions of all items in the selections will be called after the drop.

Methods of Interest

 (sv selectable-svm)

Returns a list of the items currently selected in dialog item's cluster. Use with setf to change the current selection.

 (sv selectable-svm) hilite-flag

Specialize this to customize the highlighting effect for selected items. hilite-flag indicates whether to highlight or unhighlight
the item (t/nil). The default method uses inversion.

This mixin provides a frame for simple views.

Initargs

 [1]

Pixel width of the frame

Methods of Interest

 (sv frame-svm) rect

Specialize this method for custom frame types. The default method frames the specified rect.

This mixin is a specialization of frame-svm which provides a 3D frame for simple views. This effect only looks right over patterned
or colored backgrounds.

See Also
frame-svm - inherited behavior

Initargs

 [:botRight]

Determines the shadow position and consequently if the 3D effect makes the view looked pushed in or popped out. Allowed
values are :botRight (popped out) and :topLeft (pushed in).

12 oodles-of-utils

 [no default]

The additional part key, :frame-lite, is accepted and used for the lighter unshadowed half of the frame. The darker
shadowed part of the frame is drawn using the :frame part color.

 [2]

Pixel width of the frame.

This mixin provides static text imaging for views.

Initargs

 ["hi,ho"]

Specifies the initial string.

 [:center]

Determines the text justification. Allowed values are :left, :right, and :center.

Methods of Interest

 (sv static-text-svm)

Returns the current justification, :left, :right, or :center. Use with setf to change the justification.

 (sv static-text-svm)

Returns margins for indenting the text as two points (topLeft, botRight). Specialize this method to control text placement.

 (sv static-text-svm)

This accessor method returns the string to be displayed. Use with setf to change the text.

This mixin automates resource access for simple views. When the view is installed in a window the resource is read in. When the view
is removed from a window, the resource is disposed of (optionally). For graphic resources, there is a specialized class, graphic-
rsrc-svm.

Some familiarity with the ResourceManager may be helpful. A common problem with rsrc-svm happens when views share the
same handle. One of the views disposes of the handle leaving the other view holding an invalid handle. Two common ways this
situation occurs are:

1) Obviously, if you reuse the same handle as the :rsrc-handle initarg, objects are going to share resource handles. In this
case, specifying a nil :dispose-rsrc-on-remove-p initarg avoids the problem, but leaves you responsible for disposing of
the resource handle when you're through with it.

2) With most types of resources, if you reuse the same :rsrc-id or :rsrc-name initarg, the objects will share the same
resource handles. To avoid this problem you can still use the above solution, specifying a nil :dispose-rsrc-on-remove-p
initarg, but unless you go to a fair amount of trouble, you'll end up never disposing of the resource handle. An alternate solution is
to pass t for the :detach-p initarg, but then you end up with multiple copies of the resource in memory.

More really needs to be said here than I have time for. Resources are a relatively complex subject, but are fundamental to the
Macintosh. It is worth your time to do some reading about them. Inside Macintosh Volume I is a good place to start (be sure to ignore

oodles-of-utils 13

all the errata), then you need to read up on the specific type of resource you're using. The utilities provided in Resources-u can
simplify things a lot, especially the various with-xxx macros.

Initargs

 [no default]

The resource type (4 character string, e.g. "PICT")

[no default]
[no default]

The resource can be specified by id or name. The resource will be read in when the view is installed in a window. It is
assumed that the appropriate resource file will be open at that time.

 [no default]

If you already have a handle, it can be specified directly.

 [nil]

Determines if the resource should be detached after it's read in.

 [t]

Determines if the resource handle should be disposed of when the view is removed from its window. It also controls whether
the old resource handle is disposed of when a new one is installed via set-view-resource.

Methods of Interest

 (sv rsrc-svm) &key
:rsrc-type :rsrc-id :rsrc-name :rsrc-handle

Changes the resource of view. The keywords have the same meaning as in make-instance.

 (sv rsrc-svm) rsrc-type rsrc-id-or-name

The default version uses GetResource. This should be specialized for resource types that have their own get functions. (e.g.
"cicn" resources use GetCIcon)

 (sv rsrc-svm) rsrc-handle rsrc-handlep

The default version uses DisposeResource for resource handles and DisposeHandle on vanilla handles. This should
be specialized for resource types that have their own dispose functions. (e.g. "cicn" resources use DisposCIcon)

This mixin is a specialization of rsrc-svm which provides a framework for creating graphical objects based on resources.

See Also
rsrc-svm - inherited behavior
PICT-svm - example of a mixin class based on graphic-rsrc-svm
ICON-di - example of a dialog item based on graphic-rsrc-svm
cicn-di - slightly more complex example of a dialog item based on graphic-rsrc-svm

Initargs

All the rsrc-svm initargs are accepted.

 [:adjust-view-size]

Determines if the graphic is scaled to the view size or vice-versa. Allowed values are the keywords:

14 oodles-of-utils

:adjust-view-size - the view size is adjusted to fit the graphic
:scale-to-view - the graphic is scaled to the view size
:clip-to-view - the graphic is drawn clipped to the view

 [#@(32 32)]

Used as the default value for a graphic's size.

 [t]

Determines if the view is erased when the resource is changed.

Methods of Interest

 (sv graphic-rsrc-svm) rsrc-handle

Returns the size of the specified resource as a point. The default version simply returns the value of the graphic-
default-size slot. Unless the type of resource you're supporting is always displayed at the same size, you'll need to
specialize this function. e.g. PICT-svm's return:

(subtract-points (href rsrc-handle :Picture.picFrame.botRight)
(href rsrc-handle :Picture.picFrame.topLeft))

 (sv graphic-rsrc-svm) rsrc-handle rect

Specialize this method to draw the type of resource you're supporting. It should draw the specified resource scaled to rect.

 (sv graphic-rsrc-svm)

Returns margins for indenting the graphic as two points (topLeft, botRight). The default method returns zero margins.
Specialize this method to control placement.

This mixin is a specialization of graphic-rsrc-svm which provides a convenient way to display PICTs in views. It supports
PICTs stored as resources or in PICT files. In addition, PICTs stored in PICT files can optionally be spooled in from disk as needed
rather than read in and kept in RAM. When a PICT is created, it has a bounding rectangle, but can be displayed scaled(yuck) to any
size.

See Also
graphic-rsrc-svm - inherited behavior
PICT-di - this dialog item will probably suffice for most needs

Initargs

All the graphic-rsrc-svm initargs are accepted.

All the rsrc-svm initargs are accepted.

[no default]
[no default]

The PICT can be specified by id or name. The PICT resource will be read in when the view is installed in a window. It is
assumed that the appropriate resource file will be open at that time.

 [no default]

If you already have a PICT handle, it can be specified directly.

 [no default]

The name of a PICT file to use instead of looking for a PICT resource in the open resource files.

oodles-of-utils 15

 [:memory]

Applicable only when using a PICT file. It determines if the PICT will be kept memory or will be spooled in from disk.
Allowed keywords are :memory and :disk.

 [:adjust-view-size]

Determines if the PICT is scaled to the view size or vice-versa. Allowed values are the keywords:
:adjust-view-size - the view size is adjusted to fit the PICT
:scale-to-view - the PICT is scaled to the view size
:clip-to-view - the PICT is drawn clipped to the view

Methods of Interest

 (sv PICT-svm) &key
:PICT-id :PICT-name :PICT-handle :PICT-file :PICT-storage

Changes the PICT. The keywords have the same meaning as in make-instance.

This mixin uses a GWorld to cache an image (or series of images) offscreen for fast updates using spiffy special effects. You'll need
to read the Graphic Device Manager chapter of IM VI to appreciate some of the more esoteric options.

There is a series of slides underlying the view. Only one slide is current at a time. When the view needs to draw itself it copies from
the offscreen slide to the screen. You can use spiffy effects when you change the current slide, like dissolving from one slide to
another.

You'll need to draw into each slide to initialize its contents. You can later change a slide’s contents by drawing into it again. Drawing
into a slide uses a coordinate system with the slide's upper left corner at #@(0 0). The slide's size is returned by GWorld-slide-
size. Don't use the view's coordinate system when drawing into a slide or assume a slide is the same size as the view.

You can get quite a lot of neat effects by just specifying the copy mode and the fore and back colors. For instance, if you want a non-
rectangular image, this be achieved using the transparent copy mode. You don't have to resort to using a non-rectangular copy
region, which will be slower. The fore and back colors can colorize a slide as it's copied on screen. You can use colorizing to avoid
wasting memory with two similar slides.

There is more to work to do here, like supporting color table animation.

Initargs

 [no default]

With this initarg you can specify a GWorld-view to use rather than have a new one created (the default). This can save
memory if you have several views that share the same set of slide. It’s potentially dangerous if one view deallocates a
GWorld that other views are still using. Use a non-nil :GW-free-on-remove-p initarg to prevent this. There will also
be problems if any of the views draw to it. You can create the initial GWorld-view on your own, but it’s probably safest to
let one GWorld-svm create it and pass it out to subsequent views that want to share it.

 [no default]

When the GWorld is created, this function is called to initialize it. It is called once for each slide. It should accept 3
arguments, a GWorld-svm, the slide-number to draw, and the GWorld itself. You might very well choose to ignore all three
arguments, they're there in case you need them.

 [1]

Specifies how many offscreen slides are used.

16 oodles-of-utils

 [0]

Specifies which offscreen slide is initially the current slide.

 [8]

The depth of the offscreen bitmap.

 [#$srcCopy]

The copy mode used for copying the slide onto the screen. You may want to look into some of the new color QuickDraw
modes, like transparent or blend, to get some ideas on interesting effects that can be achieved using the copy mode.

 [(%null-ptr)]

Specifies a region to clip the slide to. The region should be in focusing view coordinates.

 [*black-color*]
 [*white-color*]

These fore and back colors will be using when copying of the slide on screen. You can change them from the defaults to get
interesting colorizing effects. See IM VI or Develop #6 for details on colorizing.

[:none]
[:transporter]

:GW-update-fx specifies what effect to using when doing normal updates. :GW-slide-fx specifies the effect to use
when switching from one slide to another. The currently supported effects are:
:none no effect used
:transporter random bits
:screen-door more organized than :transporter
:waynes-world wavy lines àla Wayne's World dream sequences - excellent!
:h-blind horizontal blinds turning
:v-blind vertical blinds turning
:left-to-right left to right wipe
:right-to-left right to left wipe
:top-to-bottom top to bottom wipe
:bottom-to-top bottom to top wipe
:round-iris-in expanding round iris
:round-iris-out contracting round iris
:square-iris-in expanding square iris
:square-iris-out contracting square iris

 [0]

The delay in ticks used to slow down the special effects, in case you find them too intense. The wipes are very fast - you’ll
probably need to use a non-zero delay for them.

The number of stages used in the various wipe effects. Make sure it’s less than the width or height of the GWorld.

 [t]

If nil, the offscreen GWorld-view won’t be deallocated when the view is removed from its window. This is useful if the
GWorld-view is being shared.

Methods of Interest

 (sv GWorld-svm)

Returns the offscreen GWorld-view being used.

oodles-of-utils 17

 (sv GWorld-svm) slide-num &key inval-p draw-now-p

Changes the current slide. If :draw-now-p is t (the default), the change will take place immediately using the GW-
slide-fx special effect. If :inval-p is t (defaults to nil) then the view will be invalidated and will get re drawn
through the normal update process using the GW-update-fx special effect. And yes, you can use t for both :inval-p
and :draw-now-p , but what's the point?

 (sv GWorld-svm) slide-num draw-fn

Use this method to change the contents of the specified slide after it has already been initialized. draw-fn should be of the
same form at the GW-init-fn. See the description of the :GW-init-fn initarg for more details.

 (sv GWorld-svm) from-slide-num to-slide-num
&key from-rect to-rect copy-mode copy-rgn fore-color back-color

Use this method to copy from one slide to another. This is useful if your slides are based on each other. It's much more
efficient to copy from one slide to another than to grab images off disk. The meanings of the keys are as follows:
:from-rect [full slide] specifies the portion of source slide to copy

:to-rect [full slide] specifies the destination rectangle - if it doesn't
match the source rectangle, scaling is performed

:copy-mode [#$srcCopy] the copy mode to use (if you're scaling you may want
to use ditherCopy)

:copy-rgn [(%null-ptr)] the copy is clipped to this region (specified in
slide drawing coordinates)

:fore-color [*black-color*] foreground color to use during copy

:back-color [*white-color*] background color to use during copy

 (sv GWorld-svm) slide-num
&key from-rect to-rect copy-mode copy-rgn fore-color back-color

Use this method to copy from the screen to a slide (sort of an inverse to displaying a slide). This is useful if you need a slide
to contain the current screen image so you can later restore it. The meanings of the keys are the same as for GWorld-
slide-to-slide-copy.

 (sv GWorld-svm)

Returns margins for indenting the slide as two points (topLeft, botRight). The default method returns zero margins. Specialize
this method to control placement.

 (sv GWorld-svm)

Returns the size of the slides. Call this method if you need to determine the botRight of the slide's rectangle for drawing
into the slide (the topLeft is always #@(0 0))

 (GWorld-svm)

This method updates the GWorld to use the current settings. You need to call this method after changing some setting (see
below). If you're using a pixel depth of 0 to get optimized copying speed, you need to call this method whenever the view's
global position changes (i.e. if the window containing the view moves).

(GWorld-svm)
(GWorld-svm)

(GWorld-svm)
(GWorld-svm)
(GWorld-svm)

(GWorld-svm)
(GWorld-svm)

(GWorld-svm)

These accessor methods can be used with setf to change various settings.

18 oodles-of-utils

video-digitizer-svm (described in Video section)

video-svm (described in Video section)

Dialog Item Mixins

Dialog item mixins are all named with a -dim suffix. They can be mixed with classes that inherit from dialog-item.

This mixin allows a dialog item to be used as a button. It handles tracking the mouse while appropriately highlighting/unhighlighting
the item.

Methods of Interest

 (di button-dim) hilite-flag

Specialize this to customize the highlighting effect when the mouse is pressed on a button. hilite-flag indicates whether to
highlight or unhighlight the item (t/nil). The default method uses inversion.

This mixin gives a disabled dialog item that familiar grayed out look by bit clearing alternating bits in the item's rectangle. This
dimming is implemented by defining an :after method on view-draw-contents. So you'll need to place disable-dim early in the class
precedence list to ensure the graying out is done after the dialog-item is already drawn. This is actually a pretty wimpy way to gray out
disabled dialog items. It's more efficient to draw them gray pen in the first place. (esp. now that system 7 provides the grayishTextOr
txMode) But hey, life is short.

Initargs

 [#$patBic]

ToolBox pen mode used to PaintRect the item's rectangle.

 [*gray-pattern*]

ToolBox pattern used to PaintRect the item's rectangle.

This mixin provides a double click action for dialog items. The first click on the item is handled normally (i.e. the dialog-item-action
may be run) The second click of the double click will trigger the double click action to be called.

Initargs

 [no default]

A function to be called when the item is double clicked. The function should accept one argument, the item.

Methods of Interest

oodles-of-utils 19

 (di double-click-dim)

This is called when the dialog item is double clicked. The default method calls the function in the slot, dialog-item-
double-click-action-function.

This mixin provides styled text edit for dialog items. It will become a simple view mixin as soon as I can figure out how to work
around the problems with MCL’s key-handle-mixin class. Most needs will probably be satisfied by the te-view which is much
simpler to use. Take a look at te-view before attempting to roll your own.

Currently, this class give every object its own TextEdit record (~32K). For most purposes this should be fine. But if you want to have a
zillion icons on the screen, each with it's own editable label underneath, this might be a problem. In the future I may add support (a
subclass) for a group of objects sharing a common TextEdit record.

See Also
te-view -    simpler way to get at most of the desired functionality

Initargs

 [:default]

Controls the text justification. Allowed values are :default, :left, :right, and :center.

 [t]

Determines if the text will be word wrapped.

 [nil]

This flag allows the text to be read only. Selection and copying are still allowed, but editing is not.

 ["hi,ho"]

A LISP string that will be used to initialize the text.

 [no default]

The resource id or name of a 'TEXT' resource to be used to initialize the text. If there is a 'styl' resource with the same
id or name, it will be used to initialize the style of the text. These 'TEXT'/'styl' resource pairs can be created and edited
with ResEdit. Make sure the resource file containing the resource is open.

 [no default]
 [no default]

These allow scroll bars to be associated with the text. Operating the scroll bars will scroll the text as you would expect. Plus,
the scroll bars will be updated if the user auto scrolls (i.e. drags the selection past the bounds of the text box to get the text to
automatically scroll). You need to pass in a scroll-bar-dialog-item or its nickname. If you pass a nickname, the
scroll bar has to already be installed. Appearing in the :view-subviews list before the te-dim will ensure this.

 [5]
 [5]

This controls how fast text will scroll. Five seems to be a pretty good choice for average sized text (9-12 point). If you use
exceptional small or large point sizes you may want to vary it.

Methods of Interest

 (di te-dim)

Returns two values, the character positions of the first and last character selected.

20 oodles-of-utils

 (di te-dim) sel-start sel-end

Sets the current selection.

 (di te-dim) font-spec &key font-color mode

Sets the font of the current selection. You can use the :font-color key to change the color by passing in an MCL style
encoded color like *red-color* (not an RGBColor record).    The :mode key is use to specify which attributes you want
to affect (the default is all). The value you pass in is a sum comprised of the following ToolBox constants: #$doFont,
#$doFace, #$doSize, #$doColor, #$doAll, and #$addSize. The #$addSize constant allows you to
increment/decrement the font size. See IM V p.269-270 for details.

 (di te-dim)

This accessor returns the text as a LISP string. Expensive for large amounts of text. It can be used with setf to change the text.

 (di te-dim) rsrc-id-or-name

This method lets you change the text using 'TEXT'/'styl' resource pairs a per the :te-init-rsrc initarg.

 (di te-dim) &key rsrc-id rsrc-name

This save the current text as a 'TEXT'/'styl' resource pair in the current resource file. Make sure the file you want it save
in is current (you can use with-res-file).

 (di te-dim)

Returns the margins for indenting the text box from the view boundaries. Specialize this method to control placement.

Window Mixins

Window mixins are all named with a -wm suffix. They can be mixed with classes that inherit from window including dialog.

video-wm (described in Video section)

oodles-of-utils 21

dialog-items

This dialog item is just a PICT-button-di with a 3D frame. This effect only looks right over patterned or colored backgrounds.

See Also
PICT-button-di - inherited behavior
frame-3D-svm - inherited behavior

Initargs

 [2]

Determines the thickness of the 3D frame.

This dialog item is just a static-text-di with a 3D frame. This effect only looks right over patterned or colored backgrounds.

See Also
static-text-di - inherited behavior
3D-frame-svm - inherited behavior

Initargs

 [2]

Determines the thickness of the 3D frame

These dialog items are specialization’s of graphic-rsrc-svm which provide a convenient way to display color icon resources
(cicn's). cicn-button-di additionally provides button behavior.

Some notes to those unfamiliar with cicn resources:

• a cicn occupies a fairly large amount of memory, and unlike GetIcon, GetCIcon allocates a new handle on every call.

• Unlike GetIcon, GetCIcon makes a copy of the information it needs from the cicn resource. This means you can make
cicn resources purgeable as advised in IM V p. 76.

• Unlike black and white ICONs, cicn's are not limited to 32x32 bits in size.

• ResEdit provides a nice cicn editor

See Also
graphic-rsrc-svm - inherited behavior

Initargs

All the graphic-rsrc-svm initargs are accepted.

22 oodles-of-utils

All the rsrc-svm initargs are accepted.

[no default]
[no default]

The cicn can be specified by id or name. The cicn resource will be used to create a cicn when the item is installed in a
window. It is assumed that the appropriate resource file will be open at that time.

 [no default]

If you already have a cicn handle, it can be specified directly.

 [:adjust-view-size]

Determines if the cicn is scaled to the view size or vice-versa. Allowed values are the keywords:

:adjust-view-size - the view size is adjusted to fit the cicn
:scale-to-view - the cicn is scaled to the view size
:clip-to-view - the cicn is drawn clipped to the view

Methods of Interest

 (di cicn-di) &key :cicn-id :cicn-name :cicn-handle

Changes the cicn. The keywords have the same meaning as in make-instance.

These dialog items are specialization’s of graphic-rsrc-svm which provide a convenient way to display ICON resources. ICON-
button-di additionally provides button behavior. ICONs are defined 32x32 pixels in size, but can be displayed scaled(yuck) to any
size.

See Also

graphic-rsrc-svm - inherited behavior

Initargs

All the graphic-rsrc-svm initargs are accepted.

All the rsrc-svm initargs are accepted.

[no default]
[no default]

The ICON can be specified by id or name. The ICON resource will be read in when the view is installed in a window. It is
assumed that the appropriate resource file will be open at that time.

 [no default]

If you already have a ICON handle, it can be specified directly.

 [:adjust-view-size]

Determines if the ICON is scaled to the view size or vice-versa. Allowed values are the keywords:

:adjust-view-size - the view size is adjusted to fit the ICON
:scale-to-view - the ICON is scaled to the view size
:clip-to-view - the ICON is drawn clipped to the view

Methods of Interest

oodles-of-utils 23

 (di ICON-di) &key :ICON-id :ICON-name :ICON-handle

Changes the ICON. The keywords have the same meaning as in make-instance.

These dialog items are a specialization of PICT-svm which provide a convenient way to display PICT resources. PICT-button-
di additionally provides button behavior. Most of these item's functionality is inherited from the mixin they're based on, PICT-svm.

See Also
PICT-svm - inherited behavior

Initargs

All the PICT-svm initargs are accepted.

All the graphic-rsrc-svm initargs are accepted.

All the rsrc-svm initargs are accepted.

This dialog item is similar to MCL's static-text-dialog-item, but supports left, center, & right justification. In addition, it
word wraps the text. Most of this item's functionality is inherited from the mixin it's based on, static-text-svm.

See Also
static-text-svm - inherited behavior

Initargs

["hi,ho"]

Use either to specify the initial string.

 [:center]

Determines the text justification. Allowed values are :left, :right, and :center.

[1]
[1]

Determines the horizontal and vertical indent (in pixels) used in drawing the text.

Methods of Interest

(di static-text-dim)
(di static-text-dim) string

These can be used as alternatives to the standard static-text-svm accessor method, text-string. They use the
text-string slot rather than the dialog-item-text-slot.

 (di static-text-dim)

Returns the current justification, :left, :right, or :center. Use with setf to change the justification.

24 oodles-of-utils

 (di static-text-dim)
 (di static-text-dim)

These accessor methods return the horizontal & vertical text indents. Use with setf to change these values.

oodles-of-utils 25

NotInROM-u provides a way to define trap calls which MCL does not provide. These are generally traps that are listed as "Not in
ROM" in Inside Macintosh. To call a "Not in ROM" trap you should use the following syntax:

(#~SomeTrap args…)
or
(require-trap-NotInROM #~SomeTrap args…)

The reader macro will first check if there is a Not in ROM definition in effect for the trap name. If so, that's what will be used, if not,
it will expand as if you'd used the regular #_ MCL syntax. The require-trap-NotInROM macro works analogously to MCL's
require-trap macro.

For example:

#~Control expands into the high level Control call documented in IM II
#_Control expands into the low level trap call documented under PBControl in IM II

In the NotInROM folder you will find a variety of files which define "Not in ROM traps." The files use a naming convention of
starting with a + followed by the name of the interfaces file, in MCL's interfaces folder, from which they were omitted.

Unlike regular traps, the Not in ROM traps are not automatically loaded on an as needed basis (maybe some day I'll get around to it).
So you will have to ensure the +interface files you need are loaded.

If you want to just load all the Not in ROM calls at once, load the file NotInROM.lisp. You may want to do this because
selectively loading the files requires you to know which trap calls are Not in ROM and which interface file they belong to. In addition,
both #~ and require-trap-NotInROM behave equivalently to #_ and require-trap for "in ROM" traps, so you can choose
to always use them and not worry about which traps are "Not in ROM."

The set of "Not in ROM" calls defined is not complete. It includes the most commonly needed ones; all the high level File Manager
calls, all the high level Device Manager calls, all the Serial Manager calls, plus others. I've been adding to it on an as needed basis.

Macros of Interest

To define your own Not In ROM traps use these macros. Note: all trap symbols should start with an underscore character,
'_'.

 symbol result-type (&rest typed-arglist) &body body

This macro defines a Not In ROM function. See the various +XXX.lisp files in the NotInROM folder for examples of it's
usage.

 trap-symbol &rest arglist

This macro works like MCL's require-trap except works properly for traps of the form #~SomeTrap as well as traps
of the form #_SomeTrap.

 alt-trap-symbol asm-trap-symbol

This macro is for defining traps whose high level names differ from their assembly language trap names. You can consider
this a special case of the "Not in ROM" traps which only requires name mapping to handle. For example, the function
DisposeHandle uses assembly language trap _DisposHandle. Currently, MCL seems to define all these traps in both
their high level and assembly language names. This macro is provided in case this changes or omissions are discovered.

MCL provides a file of it's own "Not In ROM" function definitions, . However, these are defined as normal lisp functions, they do not
use the #_ syntax, and the arguments they accept and the values they return are not always the same as those documented in Inside

26 oodles-of-utils

Macintosh. NotInROM-u is provided as an alternative which makes the "Not in ROM" calls more consistent with the other traps calls
and behave as per Inside Macintosh.

It may be the case, that a version of NotInROM will be provided by Apple in the MCL folder. If this is the case, you still want to use
the version in oou because it may be more up to date. If you use oou-dependencies to load in "Not in ROM" routines, you'll get
the proper files.

oodles-of-utils 27

brutal-utils

Utilities for working with GDevices.

Functions of Interest

 &optional globalRect

Returns the GDHandle of the deepest screen device intersecting the specified rectangle (global coordinates). If
globalRect is not specified, then it returns the GDHandle of the deepest available screen.

 fn &optional active-screens-only-p

Maps fn over the GDevice list. If active-screens-only-p is t (the default), then fn is only applied to active screen
GDevices, else it's applied to the entire GDevice list. fn should accept one argument, a GDHandle.

 &optional where

Returns the GDHandle of the GDevice containing the specified point (in global coordinates). If where is omitted, it defaults
to the current mouse position.

Right now, this file only contains pop-up menu related utilities.

Functions of Interest

 rect &key :width :right-indent

This function draws a standard pop-up menu down arrow in the right end of the specified rectangle. You can customize it's
size and location using :width and :right-indent.

 item-list &key
:where :default-item :checked-items :other-p :test :item-string-function
:hier-p-fn :hier-parent-fn :hier-items-fn :hier-select-p

This function is a pop-up menu equivalent to select-item-from-list. It returns two values. The first value is either the item
selected, nil (no choice), or :other (Other… menu item). The second value is the item's position (0 based) in the menu
or sub-menu. The keys are described below:
:where [current mouse position] point where the menu appears
:default-item [0] elt# of item in list initially highlighted
:checked-items [nil] list items to have check marks
:other-p [nil] if an Other… item is added to the menu
:test [eql] used for membership test in checked-items
:item-to-string-fn [princ-to-string] returns a menu item title for an item

These keys allow pup-menu-select to traverse item-list as a tree and create an isomorphic hierarchical pop-up menu (ugh!)
:hier-p-fn [no default] returns whether an item has a sub-menu
:hier-items-fn [no default] returns a list of an item's sub-items
:hier-parent-fn no default] returns the parent item of a sub-menu
:hier-select-p [t] can parents of sub-menus be selected?

Items that have sub-menus can be selected (unless :hier-select-p is nil), but they cannot be checked - due to
limitations in the Menu Manager.

28 oodles-of-utils

Also, see the example code at the bottom of Menus-u.lisp.

Utilities for working with resources

Macros of Interest

Resources-u provides a variety of with- macros which execute a body of code with the resource environment temporarily
changed.

 (pathname &key :if-does-not-exist :if-no-rsrc-fork
:if-not-open :if-open :write-changes-p) &body body

Executes body with the current resource file set to pathname. The meanings of the keys are:

:if-does-not-exist [:error] What to do if the file doesn't exist. Allowed
values are :error and :create.

:if-no-rsrc-fork [:error] What to do if the file exists, but doesn't have
a resource fork. Allowed values are :error
and :create.

:if-not-open [:close-when-done] Specifies what to do if the resource file was
not previously open. Allowed values are :close-
when-done and :leave-open.

:if-open [:leave-open] What to do if the resource file is already
open. Allowed values are :close-when-done
and :leave-open.

:write-changes-p [nil] Whether or not to call _UpdateResFile.

 &body body

Executes body with resource loading turned off.

 (rsrc-handle &key :changed-p nil) &body body

Executes body with rsrc-handle loaded and non-purgeable (it does not lock rsrc-handle). The changed-p key indicates
whether to mark rsrc-handle as changed (defaults to nil).

Functions of Interest

 rsrc-type rsrc-id-or-name &key :errorp

Returns a handle to a resource of the specified type. The resource can be specified by id (fixnum) or by name (string). The
errorp key determines if an error is signaled if the resource is not able to be loaded. It defaults to t. If errorp is nil and
the resource is not loaded, a null macptr is returned.

 rsrc-handle

Releases the specified resource. An error is signaled if rsrc-handle is not a handle to a resource.

 rsrc-type rsrc-name &key :errorp

Returns the id of the resource with the specified type and name. The errorp key determines if an error is signaled if the
resource is not found.

 handle

Returns t/nil indicating if handle is a resource handle.

 handle

Returns t/nil indicating if handle is a purgeable resource handle.

oodles-of-utils 29

 pathname

Returns t/nil indicating if pathname is a currently opened resource file.

 pathname &key :if-does-not-exist :if-no-rsrc-fork

Opens the specified resource file. The keys specify what to do if the file does not exist or it exists but has no resource fork.
Their allowed values are :error (the default) and :create.

 refNum-or-pathname

Closes the resource file specified by a reference number or a pathname.

Utilities for working with PICT files.

Functions of Interest

 pathname

This function allocates and returns a PICT handle created from the data fork of the specified PICT file.

 PICT-handle pathname &key :creator    :if-exists

The functions creates a PICT file from the specified PICT handle. The file creator can be specified with the :creator key
which defaults to "????". The :if-exists key specifies what to do if the file already exists. It can be either :error
(the default) indicating an error is signaled or :overwrite indicating the file should be overwritten.

 pathname rect &optional (scale-to-rect-p t)

This function draws a PICT from the specified PICT file by spooling it from disk. (i.e. without first reading the entire PICT
into memory) If scale-to-rect-p is non-nil, the PICT is drawn scaled to rect, else it is drawn at rect.topLeft,
but in it's original size (from its picFrame). The PICT size (in bytes) is returned.

 pathname picture-record-ptr

This function returns the size of the PICT (in bytes) in the specified PICT file. picture-record-ptr is a pointer to a
:Picture record that will have it's picSize and picFrame filled in from the PICT file. Note: QuickDraw now ignores
the picSize field because it wasn't large enough to support PICTs > 32K. The return value of this function is the correct
size.

Utilities for working with QuickDraw.

Macros of Interest

QuickDraw-u provides a variety of with- macros which execute a body of code with the drawing environment
temporarily changed. These macros all assume that the body code doesn't leave the current port changed.

 (&key :pnLoc :pnSize :pnMode :pnPat :pnPixPat) &body body

Executes body with the specified pen characteristics.

 (&key :txFont :txFace :txMode :txSize) &body body

Executes body with the specified text characteristics.

 font-spec &body body

Executes body with the specified pen characteristics.

30 oodles-of-utils

 portBits &body body

Executes body with portBits (which must be a symbol) bound to a the portBits field of the current port. If the current
port is a GrafPort this will actually be a BitMap. If the current port is a CGrafPort it will be a pointer to its pmVersion
field. In either case it can be passed to CopyBits and related traps which accept either a BitMap., a pointer to a
CGrafPort's pmVersion field, or a PixMapPtr.

 pattern &body body

Executes body with the specified back pattern. This works with either a GrafPort or a CGrafPort.

 pix-pat &body body

Executes body with the specified back pixel pattern. This works with either a GrafPort or a CGrafPort.

 rgb &body body

Executes body with the specified hilite color. Normally, the hilite color is set by the user via the Color Control Panal This
works with either a GrafPort or a CGrafPort.

 clip-rgn &body body

Executes body with the specified clip region.

 (&key
:textProc :lineProc :rectProc :rRectProc :ovalProc :arcProc :p

olyProc :gnProc :bitsProc :commentProc :txMeasProc :getPicProc :p
utPicProc :opCodeProc :newProc1 :newProc2 :newProc3 :newProc4 :ne
wProc5 :newProc6
)&body body

Executes body with the specified QuickDraw bottlenecks installed.

Functions of Interest

 rgn-handle h &optional v

Moves a region to the specified point by offsetting it.

 rect frame-width shadow-position

Draws a 3D frame inside the border of the specified rectangle. The shadow-position can be :topLeft (for a pushed in
effect) or :botRight (for a popped out effect). The shadowed half of the frame is drawn in the current foreground color,
the unshadowed half of the frame is drawn in the current background color. Note: This effect only looks right over patterned
or colored backgrounds.

QD-fx-u

Utilities for creating special bit copying effects that will amaze your friends. GWorld-svm already supports these effects, so you
probably won't need to use these functions directly unless you're rolling your own. You should be familiar with CopyBits as
described in IM I and V.

Functions of Interest

The src-portBits argument to each of these function needs to be either a BitMap, a pixMapPtr, or the portBits field
of either a GrafPort or a CGrafPort (or GWorld). The view-portBits method will return an appropriate value for a
view or simple view.

oodles-of-utils 31

 src-portBits src-rect dest-rect
&key copy-mode copy-rgn delay-ticks dissolve-type

Does a dissolve from the specified rectangle in src-portBits to the specified rectangle in the current port. The meanings
of the keys are:
:copy-mode [#$srcCopy] QuickDraw transfer mode
:copy-rgn [(%null-ptr)] clipping region for transfer (wptr coords)
:delay-ticks [0] time delay between stages of the transfer
:dissolve-type [:transporter] the type of dissolve used

The dissolve effects currently supported are:
:transporter random bits
:screen-door more organized than :transporter
:waynes-world wavy lines àla Wayne's World dream sequences, excellent!
:h-blind horizontal blinds turning
:v-blind vertical blinds turning

 src-portBits src-rect dest-rect
&key copy-mode copy-rgn delay-ticks dissolve-type

Does a wipe from the specified rectangle in src-portBits to the specified rectangle in the current port. The meanings of
the keys are:
:copy-mode [#$srcCopy] QuickDraw transfer mode
:copy-rgn [(%null-ptr)] clipping region for transfer (wptr coords)
:delay-ticks [0] time delay between stages of the transfer
:wipe-direction [:left-to-right] :left-to-right,:right-to-left,

:top-to-bottom,:bottom-to-top
:wipe-count [8] number of stages to the copy

 src-portBits src-rect dest-rect
&key copy-mode copy-rgn delay-ticks dissolve-type

Does an iris expansion/contraction from the specified rectangle in src-portBits to the specified rectangle in the current
port. The meanings of the keys are:
:copy-mode [#$srcCopy] QuickDraw transfer mode
:copy-rgn [(%null-ptr)] clipping region for transfer (wptr coords)
:delay-ticks [0] time delay between stages of the transfer
:iris-direction [:outward] :outward or :inward
:iris-count [8] number of stages to the copy
:iris-shape [:round] :round or :square

Advanced Functions

fn mask-rect pat-hex-string

fn mask-rect iris-direction iris-count

fn mask-rect iris-direction iris-count

These four functions repeatedly call fn with successive masks used in creating the bit copying effects described above. fn
should accept one parameter, the view-portBits of a 1 bit GWorld containing the mask to use (this value is suitable for
passing to CopyBits - for more info see view-portBits). The mask-rect parameter is used to define the size of the
mask. For best results, its topLeft should be #@(0 0) and its botRight the size of the destination.

If you're putting bits into a window, you should be using one of the x-o-rama functions. If the destination of your spiffy
effect is not a window, you can use these functions to generate the sequence of masks and use them as you please. The only
plausible use I can think of is for showing/hiding on screen video with an effect.

32 oodles-of-utils

Note: The successive masks do not overlap. The union of all the masks is pure black. This is precisely what's needed for
copies to the screen. You don't want the masks to overlap or you'll end up copying a bit twice, which is a problem for some
copy modes. For doing a fade into live video you'll want to accumulate the series of masks (oring them) into the mask the
video uses. For doing a fade out of live video you'll want to subtract (xoring them) them from a video mask that started at all
black.

Utilities for moving images around.

 drag-rgn start-pt
&key :bounds-rect :slop-rect :drag-axis :action-fn :erase-at-start-p

:erase-at-end-p :border-size :saved-bits-init-fn

This function is similar to the DragGrayRegion trap call - see IM I. Unlike DragGrayRegion, it drags the whole
image, not just a dotted outline. Two values are returned; change in mouse position as a point (delta-h,delta-v) and the final
mouse position as a point. The meanings of the keys are listed below. The first four are analogs to the arguments to
DragGrayRegion. The rest have no analog because dragging the whole image raises issues that do not arise when
dragging just an outline.
:bounds-rect [nil] A ptr to a rectangle record that limits the allowable

drag area. If nil, the drag is unconstrained.

:slop-rect [nil] A ptr to a rectangle record that controls the amount
of slop tolerated before the mouse is considered
outside the drag area. If nil, the bounds-rect is
used.

:drag-axis [:both] Determines the directions which the region can be
moved. Allowed values are: :both, :vertical,
or :horizontal.

:action-fn [nil] If specified, this function is funcalled continuously
during the drag. It takes no arguments.

:erase-at-start-p [nil] If this key is non-nil, the bits underneath the drag-
rgn will be erased in the current ports background
color an pattern - to give the effect of moving the
object (rather than moving a copy)

:erase-at-end-p [t] If this key in non-nil, the dragged bits will be
erased when the mouse is released. This might be
desirable if the drag conveyed an object being
deposited into a folder. It would probably be
undesirable if the drag conveyed an object being
moved to a new location.

:border-size [#@(50 50)] This controls how much screen is buffered for use in
saving and restoring the bits underneath the region.
It has a strong effect on the smoothness of the
animation. You can adjust it to suit your tastes.
Some factors to consider are: the speed of the
machine, the amount of available memory, the depth of
the monitor, the drag-axis.

:saved-bits-init-fn [nil] This function can be used to draw the bits which are
initially obscured by the object, but which are
revealed when the object is moved. This is a more
complex alternative (or addition) to the :erase-at-
start-p key. It would be useful if there were an
object obscured by the region. The function is passed
two arguments, the region being dragged and the
bounding rectangle of the offscreen GWorld used to
save the bits (both in global coordinates).

oodles-of-utils 33

:drag-over-p-fn [see desc] This function returns t when the drag is over. The
default simply calls the WaitMouseUp trap. This
function takes no arguments.

:drag-cur-pos-fn [see desc] This function returns the current position (in global
coordinates) of the drag. The default uses the
GetMouse trap. This function takes no arguments.

 drag-rgn point-list
&key :erase-at-start-p :erase-at-end-p :border-size :saved-bits-init-fn

This function is similar to drag-region, but instead of tracking the mouse it uses the points in point-list. The keys
have the same meanings as in drag-region. Note that movement of the region is determined by the deltas between the
points rather than the actual positions of the points. You don’t have to worry about making the first point line up exactly with
the topLeft of the region. This also means two objects that follow a parallel path can share the same point list.

Utilities for working with MCL records

Macros of Interest

These macros attempt not to generate runtime code. For example, if a record's length can be determined at macro expansion
time, the macro will expand into that value rather than generating code for a run time lookup of the length. In general, all you
need to do is make sure your defrecords have evaluated - MCL's defrecords get auto-loaded.

record-type

Returns the record-type's length (in bytes). Does not round to an even number of bytes like MCL's record-length macro
(ouch!).

record-type

Returns the record-type's default storage, :pointer or :handle.

record-type

Returns the record-type's fields.

record-type field

Returns the field's type.

record-type field

Returns the field's offset (in bytes).

record-type field

Returns the field's length (in bytes).

Utilities for working with macptrs.

Functions of interest

These functions are additions to the set of %get-xxx and %put-xxx functions MCL provides.

34 oodles-of-utils

 ptr &optional offset
 ptr bool &optional offset

Gets/puts boolean values. Especially useful when passing/getting boolean values as var parameters to ToolBox calls.

 ptr &optional offset
 ptr char &optional offset

Gets/puts character values. Especially useful when passing/getting character values as var parameters to ToolBox calls.

 ptr length &optional offset
 ptr string &optional offset

Gets/puts blocks of text. %get-text needs to be passed the number of characters to get (%put-text can figure it out
from (length string)).

 ptr elt-%get-fn elt-size elt-count &optional offset
 ptr list elt-%put-fn elt-size &optional offset

Gets/puts arbitrary lists. You pass in a %get-xxx or %put-xxx function to get/put individual elements of the list. You also
need to specify the size (in bytes) of each element. %get-list also needs to be passed the length of the list it's getting
(%put-list can figure it out from (length list)).

 ptr byte-count &optional offset
 ptr hex-str &optional offset

Gets/puts hex values (which you specify as LISP strings) into memory. %put-hex-str accepts a LISP string which can be
any length, so it is a useful alternative to the ToolBox function, StuffHex, which is limited to 255 characters. Unlike
StuffHex, %put-hex-str ignores (skips over) characters which are not hex digits ([1…9,A…F,a…f]). This allows you
to group your hex character into blank-separated groups without affecting their value. %get-hex-str is useful for taking a
quick look at the contents of a chunk of memory, it returns a string of hex digits with every four hex digits (word) separated
by a blank. Note: a byte corresponds to two hex digits, so if you specify n as the byte-count to %get-hex-str, you'll
get back a string containing 2n hex digits. Similarly, if you pass in a 2n hex digits to %put-hex-str, n bytes get written
to memory.

Macros of Interest

 trap-call

This macro is a simple way to error check trap calls for non-zero results. If trap-call returns a non-zero result an error
message is generated which shows the trap called and the arguments passed.

 trap-form &rest body

This macro checks for errors like trap-nz-echeck. In addition, if an error is detected, body is executed. Note: body is
only executed if an error occurs. If you have code that needs to execute either way, you should use unwind-protect in
conjunction with trap-nz-echeck.

 (trap-number new-trap-addr &optional old-trap-addr) &body body

This with- macro temporarily patches a trap. The old-trap-addr argument should be a symbol which will be bound to
the original address of the trap (in case you need to call the original trap). See the example code at the bottom of Traps-
u.lisp for a plausible usage.

oodles-of-utils 35

MCLs-funniest-home-video

How do I get video into my program? The quickest way to learn enough to get video up and running is to try the example code in
video-example.lisp and read the Video Mixins section. The rest of the sections can be read on an as needed basis.

This is a first cut at video classes. I've tried to anticipate the advent of QuickTime, hopefully it will smoothly integrate into the
architecture. When I get the time I will do this.

Before diving into the details of each class, it helps to have a big picture of how all the video classes are used together to get video into
a program.

video-svm

video-player slot

video-digitizer-svm

video-digitizer slot

video-digitizer

RO-vd

RO24STV-vd RO364-vd

MR-vd

video-player

Pioneer-vp

P8000-vpP4200-vp

P330-vp

video-wm

video-windowvideo-dialog

window

dialog

view

some video view Extremely Confusing Representation of oou Video Classes

Control of video sources and control of on screen video digitizing are handled by separate classes. It's quite possible to need one
without the other. For instance, your video source may be a home VCR with no serial port interface. In this case, digitizing is
controlled by the computer and the VCR is controlled manually.

Video sources are controlled through video-player objects. The video-player class provides a basic model of video control,
defining methods like vp-play and vp-stop which each hardware specific class must implement.

Video digitizers are controlled through video-digitizer objects. The video-digitizer class provides a basic model of
digitizer control, defining methods like vd-start-digitizing and vd-stop-digitizing which each hardware specific
class must implement.

Built on top of the video players and digitizers are two simple view mixins, video-digitizer-svm and video-svm. Using
these mixins, you can define view classes that will display and control video. It's far easier to use these mixins than to deal directly
with the video objects. For example, video-digitizer-svm automatically takes care of reconfiguring the video hardware if the
view is resized or moved.

Neither video-digitizer-svm or video-svm inherit from the video-digitizer or video-player classes. Instead
they use slots to hold video-digitizer or video-player objects. When you issue a video command to a video view, the view
passes the command on to the appropriate object. The video-digitizer-svm defines a slot for holding a video-digitizer
object. The video-svm class inherits from video-digitizer-svm. It defines a slot for holding a video-player object and
it inherits the digitizer slot from video-digitizer-svm.

Due to the way digitizers blast their video on screen, windows containing digitized video must be handled specially. The video-wm
mixin is designed to handle these problems. You can either use video-wm to create your own classes or use the pre-defined video-
window and video-dialog classes which are just the standard MCL window and dialog classes with the video-wm mixed
in.

The hardware this code has been tested on to date is:
Pioneer 8000 laserdisc player
RasterOps 364 digitizing board
RasterOps 24STV digitizing board (not very extensively)
MoonRaker digitizing board

I anticipate most people's needs will be satisfied by installing a video-view in a video-window or a video-dialog.

If you're controlling a video player, but not doing on screen digitizing, see the video-player class.

If you're using on screen video, but you're manually controlling the video source, see the video-digitizer and video-
digitizer-svm classes.

36 oodles-of-utils

If you dig into the rest of the documentation and the source you can see how to get more control over the hardware and how to create
classes for other digitizer boards or video players.

Digitizers

This object forms a framework for creating digitizer objects for specific video boards. Currently, this class is a dummy class (it
provides no functionality) The default routines must be shadowed by board specific specialization’s.

Using QuickTime this can change and it will be possible to write most of the default routines independent of any particular digitizing
board. (provided, of course, the board supports QuickTime)

Initargs

 [1]

If multiple video cards of the same type are in use, this specifies which card to use.

 [no default]

A pointer to the color window to contain the digitized image.

[no default]
[no default]

The source rectangle from which video is digitized. (MaxSrcRect coordinates)

[no default]
[no default]

Portion of the source rectangle from which video is grabbed. (MaxSrcRect coordinates)

[no default]
[no default]

The destination rectangle where the video is displayed. (display port coordinates)

 [:composite]

This controls the video format. Allowed values are :composite, :s-video,:RGB :NTSC, :PAL, :SECAM. Not all digitizer
boards support all these formats.

 [:NTSC]

This controls the signal standard. Allowed values are :RGB, :NTSC,:PAL,:SECAM. Not all digitizer boards support all these
standards.

[:unsupported]
[:unsupported]

[:unsupported]
[:unsupported]

[:unsupported]
[:unsupported]

These initargs control various aspects of the picture. The allowed range of values is 0 -65535. Not all digitizer boards support
all these settings. It is expected that each board specific classes will provide appropriate default initarg values.

Methods of Interest

 (vd video-digitizer) error-code

Used to check the result codes of commands to the digitizer board.

oodles-of-utils 37

 (vd video-digitizer)

Returns an alist    (error-code . message-string) used by vd-nz-error-check. Should be shadowed to return a board
specific error code alist.

 (vd video-digitizer)

Should be called before the vd object is used. Should be augmented with board specific methods to do whatever initialization
is required.

 (vd video-digitizer)

Should be called when you're through with a vd object. Should be augmented with board specific methods to do whatever
deallocation is needed.

 (vd video-digitizer)

Configures the digitizer board to the settings of a particular vd object. Necessary when a single board is shared by more than
one vd object. This should be augmented with an after method that installs board specific settings.

 (vd video-digitizer)

Grabs a single frame of video. Should be augmented with board specific after methods. The default routine calls vd-
install-settings and nothing else. So your after method needs to issue a board specific command to digitize a single
frame. The default method make no attempt to do the grab because, most boards support some way to do this other than
issuing a start digitizing and stop digitizing command in rapid succession.

(vd video-digitizer)
(vd video-digitizer)

Starts/stops the video digitizing. These should be augmented with board specific after methods. The default method maintains
a flag that keeps track if the video object is currently digitizing. The default start routine calls vd-install-settings.

 (vd video-digitizer)

Returns t/nil indicating whether the board is currently digitizing video. The default method returns the value of the
digitizing-flag slot. This should probably be specialized by a primary method that also makes some board specific
test which actually interrogates the hardware. e.g.

(defmethod vd-digitizing-p ((vd mr-vd-mx))
(and (call-next-method) (board-specific-test vd)))

(vd video-digitizer)
(vd video-digitizer)
(vd video-digitizer)
(vd video-digitizer)
(vd video-digitizer)

(vd video-digitizer)
(vd video-digitizer)

(vd video-digitizer)
(vd video-digitizer)
(vd video-digitizer)

(vd video-digitizer)
(vd video-digitizer)

(vd video-digitizer)
(vd video-digitizer)

These accessors are all usable with setf to change settings. The settings are stored away in slots and get used to configure
the board when the video object starts digitizing. The setf methods have after methods which will immediately update the
digitizer board if the video object is digitizing when you change a setting.

38 oodles-of-utils

(vd video-digitizer) topLeft botRight
(vd video-digitizer) topLeft botRight
(vd video-digitizer) topLeft botRight

(vd video-digitizer) format
(vd video-digitizer) standard

(vd video-digitizer) level
(vd video-digitizer) level

(vd video-digitizer) contrast
(vd video-digitizer) hue

(vd video-digitizer) saturation
(vd video-digitizer) sharpness

These methods should be shadowed by board specific ones that really do something. These methods only change the settings
on the digitizing hardware. They should NOT be used to change settings of a video object. Instead, setf on the
corresponding slot accessors should be used.

This class is a specialization of video-digitizer for MoonRaker digitizing boards. The MoonRaker board requires that the WTI-
VideoMgr init be installed in your system.

There is a bug in versions of the WTI-VideoMgr init involving clipping. The problem shows up when the origin of the windows
coordinate system is not at the topLeft corner of the window. This will happen when you focus on a view whose position is not #@(0
0). The work around for now is to only use MR video objects in simple views whose container is the window. A new version of WTI-
VideoMgr will be released to fix the problem.

The MR-vd file also contains a number of MoonRaker specific functions which I haven't taken the time to include in this document.
See their source + the MoonRaker Developer's manual for more information.

See Also
video-digitizer - inherited behavior

Initargs

 [nil]

Flag controlling whether or not to map 8 bit colors into grays.

 [nil]

Flag controlling whether or not to extract the sync information from the green channel when using :RGB1 or :RGB2 input
formats.

 [255]

Size of the color table.

 [:composite]

In addition to the normal formats, the MoonRaker boards supports two RGB inputs, specified with :RGB1 and :RGB2.
(:RGB defaults to :RGB1)

[:unsupported]
[:unsupported]

[:unsupported]

MoonRaker boards don't support these settings.

oodles-of-utils 39

[(ash 12 12)]
[(ash 8 12)]

[(ash 8 12)]

MoonRaker boards support 16 values [0-15] for each of these settings. Map these 16 values into the required range (0-65535)
using: (ash MR-setting 12) {or equivalently (* MR-setting 4096)}

Methods of Interest

(vd MR-vd)
(vd MR-vd)

(vd MR-vd)

These accessors are all usable with setf to change settings.

 (vd MR-vd)

This method installs an optimal color table into the window containing the video object. It takes several seconds to execute
and if digitizing is in progress it will be temporarily halted.

This class is a specialization of video-digitizer which forms the basis for model specific RasterOps classes. It cannot be used
by itself.

The RO-vd file also contains a number of RasterOps specific functions which I haven't taken the time to include in this document.
See their source + the RasterOps Developer's ToolKit for more information.

See Also
video-digitizer - inherited behavior

Initargs

 [t]

This flag determines if the RasterOps board will use an alternate Phase-lock-loop. Enabling this option may improve the
video signal stability on some video media.

[nil]
[nil]

These flags allow you to flip the image horizontally and/or vertically.

 [nil]

This flag determines if the RasterOps board will swap the order in which it display the odd/even fields. Enabling this option
may improve the video signal quality on some video media.

 [:full]

Controls rate of digitizing. Allowed values are :full(30 fps) and :half(15 fps).

 [:both]

Controls what fields are used in half size images. Allowed values are: :both, :odd, :even. Additionally, the 24STV
supports: :both-dls, :odd-sls, :even-sls.

This class is a specialization of RO-vd for model 24STV digitizing boards.

40 oodles-of-utils

A common problem in using the RO24STV-vd is access to it's driver. The disks that comes with the RasterOps board have the driver
on them. You will find the DRVR resource (ID=56) in the 24STV XCMDs and XObjects. Use ResEdit to copy the driver into your
own resource file. You must ensure:

• The resource file containing the driver is open. This can be done with code similar to:

(oou-dependencies :Resources-u)
(open-res-file "oou:MCLs-funniest-home-videos;RO24STV-driver.rsrc")

• The driver name is correct in the definition of RO24STV-drvr-name below. Different versions of the driver have different names.
The version used in the development of this code used the name, ".RasterOps24STVPIP1.1d3". If you upgrade the
driver, be sure to check the name.

High level functions have been provided to access all of the 24STV features, but they have not been incorporated into the normal
object behavior. Probably, the most useful of these features is masking. It would be nice to use masking to get the RO24STV-object to
respect the current clipping region.

The RO24STV-vd file also contains a number of 24STV specific functions which I haven't taken the time to include in this
document. See their source + the RasterOps Developer's ToolKit for more information.

See Also
RO-vd - inherited behavior
video-digitizer - inherited behavior

Initargs

[nil]
[nil]
[nil]

These flags allow suppression of individual RGB video components.

[:unsupported]
[:unsupported]

RO24STV boards don't support these settings.

[(ash    0 8)]
[(ash 59 8)]

RO24STV boards support 256 values [0-255] for each of these settings. Map these 256 values into the required range (0-
65535) using:

(ash MR-setting 8) {or equivalently (* MR-setting 256)}

Note: Some of the early 24STV board ROMs don't support saturation. An error code gets returned if you try to get the
saturation. I believe that RasterOps is making ROM upgrades available to fix the problem. Consequently, the definitions of
vd-set-saturation & vd-get-saturation are commented out. If your board supports saturation (or you want to
try it to find out), uncomment their definitions.

This class is a specialization of RO-vd for model 364 digitizing boards. (364 is a discontinued model)

The RO364-vd file also contains a number of 364 specific functions which I haven't taken the time to include in this document. See
their source + the RasterOps Developer's ToolKit for more information.

oodles-of-utils 41

See Also
RO-vd - inherited behavior
video-digitizer -inherited behavior

Initargs

 [32]

RO364 boards support brightness control. Allowed range is 0-63.

[nil]
[nil]
[nil]

These flags allow suppression of individual RGB video components.

 [:unsupported]

RO364 boards don't support sharpness.

[(ash 29 10)]
[(ash 56 10)]

[(ash 32 10)]
[(ash 32 10)]

[(ash 32 10)]

RO364 boards support 64 values [0-63] for each of these settings. Map these 64 values into the required range (0-65535)
using:

(ash RO364-setting 10) {or equivalently (* RO364-setting 512)}

Methods of interest

 (vd RO364vd-install-332-table)

This method installs a 3-3-3 table in the RO364 GDevice. This allows for reasonable looking video in 8 bit mode.

Players

This class is a first attempt to create a basis for controlling video input devices (laserdisc player, PC-VCRs, DVI hardware, ...)
Currently it's only been used for Pioneer laserdisc players. As more hardware becomes available (to me) it will be expanded.
Hopefully, the selection of video control methods will be sufficient for most purposes. Not all hardware will support everything. The
vp-features method should be used to see what's available.

Initargs

 [no default]

This initarg should be a function which takes one argument, the current frame. It will be called as the current frame number
changes. It allows displaying the current frame number. Some considerations:

• a slow framehook-fn will degraded MCL's performance
• it won't get called often enough to see every frame change, count on gaps
• the frame number will be decreasing during reverse scans

Methods of Interest

42 oodles-of-utils

Unless otherwise indicated, these methods return t if successful.

 (vp video-player)

Should be called before the vp object is used.

 (vp video-player)

Should be called when you're through with a vp object.

(vp video-player) &key &allow-other-keys
(vp video-player)

Make sure that the video player is loaded before using it. Use vp-loaded-p to check. Call vp-load when new media is
put into the player. vp-load accepts player specific keyword args (e.g. 330's use :disk and :side)

 (vp video-player)

Returns a list of keywords indicating what features are available. Features can vary with the loaded media (e.g. CAV vs. CLV
laserdiscs) Currently, the possible features are:
:freeze - stop at and continuously display a single frame
:step-forward - move forward a single frame
:step - move forward and backward a single frame
:scan - play forward and reverse at high speed

(vp video-player)
(vp video-player)

Returns the range of allowable frame number. Can vary with loaded media. (e.g. CAV laserdisc's max = 65535, CLV
laserdisc's max = 863970)

Core Feature Control Methods

 (vp video-player)

Returns the current frame number.

 (vp video-player) frame &key &allow-other-keys

The hardware searches to the specified frame (in preparation for play). Player specific keyword args are accepted as in vp-
load.

 (vp video-player)

Video is played starting from the current position.

 (vp video-player)

Stops video playing.

 (vp video-player) min-frame max-frame

Sets up limits for video play (nil for no limit). Use vp-play-clip if you want to set up temporary limits for the duration
of a clip. Note: vp-limit has no effect on video in progress. The new limits will not take effect until the current video
stops or freezes.

Optional Feature Control Methods

 (vp video-player)

Freezes the video on the current frame.

 (vp video-player) direction

Advances the video by one frame. The direction key can be :forward (the default) or :reverse.

oodles-of-utils 43

 (vp video-player) direction speed-x

The video plays at an accelerated or decelerated speed. The direction key can be :forward or :reverse. The :speed-x
key is a number indicating at how many times the normal rate the video should play (fractions can be used - e.g. 1/2 for half
speed).

High Level Feature Control Methods

 (vp video-player) start-frame end-frame &key &allow-other-keys

Plays the specified clip. Player specific keyword args are accepted as in vp-load.

 (vp video-player) direction frame-count

Jumps :forward or :reverse the specified number of frames.

Designing Video Players

Should be augmented with before/after methods to do player specific initialization. (e.g. Pioneer-vp, vp-init initializes the
serial port)

These primary methods need to be written. vp-load should do whatever player specific initialization is necessary when
new media is put in. vp-loaded-p checks if the player is loaded.

Should be specialized to return a list of available features.

These primary methods need to be written. The video-player class provides some around and after methods.

These methods should start the video and then return immediately (not waiting for completion of the play). The framehook
mechanism cuts play off at the limits, but it doesn't get called every frame, so it can miss by a few. I try to compensate, but if
your device supports stop markers or some other mechanism for controlling the limits of play, you should use them in your
vp-play and vp-scan methods. Check (frame-limit-p vp) and use (max-frame-limit vp) and (min-
frame-limit vp) as the limits. Also, be sure not to accidentally leave stop markers in place. You might fix this by first
clearing them in vp-play & vp-scan if (frame-limit-p vp) is nil or by clearing them in after methods to vp-
stop and vp-freeze.

These are considered higher level methods because they can be implemented in terms of the other methods. If your device
can perform them in a more efficient way, then their primary methods should be shadowed.

44 oodles-of-utils

This file contains various utilities for working with Pioneer laserdisc players.

Functions of Interest

frame
time

frame
time

These functions convert between frame numbers and the two time formats used by Pioneer, hmmss (hours minutes seconds)
and hmmssff (hours minutes seconds frames)

 port &key :timeout

Returns a plist describing the current player configuration. The port arg specifies whether to check the :printer or :modem
serial port. The timeout parameter controls how long to wait for the player to respond. This function is slow to execute, so
call it just once when your code starts up and save the plist. The plist format is:

indicator values
:port :modem, :printer
:baud 1200, 4800, 9600
:stop-bits 1.0, 2.0
:parity :none, :even, :odd
:data-bits 7, 8
:model P330-vp, P4200-vp, P8000-vp

These info plists are convenient for creating Pioneer-vp objects. e.g.

(defvar *pld-info* (or (Pioneer-player-info :modem)
(error "Player on modem port not responding.")))

(apply 'make-instance (getf *pld-info* :model) :framehook-fn #'my-hook *pld-info*)

Pioneer-player-info works by trying combinations (up to 36) of serial port settings until getting a response. This can take a
while. I've attempted to optimize the process is by trying the most likely combinations first. The timeout parameter
determines how long to wait for a response with each combination. The default is 2 seconds. Too short a value may miss the
response.

 port

This function returns the format of the currently loaded disk. (:CAV, :CLV,:CLV-E) CLV-E is a CLV disk with Extended
Philips Code. Pioneer models which don't handle CLV-E (e.g. 4200 and 330) will report such disks as vanilla CLV. (model
8000 supports CLV-E)

This class is a specialization of video-player for Pioneer laserdisc players with serial port control.

See Also
video-player - inherited behavior
serial-port - inherited behavior
Pioneer-u - utility functions

This class is a specialization of video-player which forms the basis for the model specific Pioneer-vp classes. The features
supported vary with model and the type of disk in use. So be sure to use the vp-features method to see what's available.

oodles-of-utils 45

Pioneer video players inherit from serial-port. When you create one you specify the baud rate, serial port, etc.…. The
Pioneer-player-info function can be used to determine what the player's current configuration is. This function is potentially
slow, so you probably want to call it once, when you start-up. e.g.

(defvar *pld-info* (or (Pioneer-player-info :modem)
(error "Player on modem port not responding.")))

(apply 'make-instance (getf *pld-info* :model) :framehook-fn #'my-hook *pld-info*)

Initargs

:framehook-fn - see docs on video-player

:port, :baud, … - see docs on serial-port

Methods of Interest

 (vp Pioneer-vp) code-string &key
:arg :frame :disk-format :response-p :error-p :flush-p

This function issues a command string to a Pioneer laserdisc player. It can prefix the commands with an arbitrary arg or an
address (specified as a frame      number) It handles formatting the frame number into an appropriate address.
:arg [no default] - pre-pended to the code-string
:frame [no default] - address is pre-pended to the code-string
:response-p [t] - if non-nil, pld-cmd waits for & returns the

player's response code
:error-p [t] - if non-nil, an error code response will signal

an error
:flush-p [t] - if non-nil, any pending result codes are flushed

(if response-p is t, a flush is performed regardless of flush-p)

 (vp Pioneer-vp) &key :wait-p

Reads the next pending response from the serial port buffer. If no response is      available and wait-p is nil (the default) it will
return immediately, else it      waits for a response. Note: The default serial port buffer holds only 64 bytes.

 (vp Pioneer-vp)

Flushes any pending responses from the serial port buffer.

 (vp Pioneer-vp) disk-format

This primary method needs to be implemented for each model specific class.      It returns what addressing format
(:frame,:hmmss,:hmmssff) should be used      with a given disk format.

This class is a specialization of Pioneer-vp. The model 8000 supports Extended Philips Coding on CLV disks. This allows CLV-E
disks to be accessed by frame number. Plain CLV disks are only accessible to the nearest second and do not support step or scan.

Features supported:
CLV :freeze
CLV-E :freeze, :step, :scan
CAV :freeze, :step, :scan

46 oodles-of-utils

The model 4200 does not support Extended Philips Coding on CLV disks. They are treated as ordinary CLV disks. This means that
CLV disks are only accessible to the nearest second and do not support freeze, step, or scan.

Features supported:
CLV none
CLV-E none
CAV :freeze, :step, :scan

P330-vp

The model 330 is basically a model 4200 with additional capabilities for selecting a disk (JukeBox style) and playing either side of the
disk.

See Also
P4200-vp - inherited behavior

Features supported:
CLV none
CLV-E none
CAV :freeze, :step, :scan

Methods of Interest

 (vp P330-vp) &key :disk :side
 (vp P330-vp) frame &key :disk :side

These two methods accept additional keywords, :disk and :side, for specifying disk number and side (:A or :B). The
vp-seek command handles loading the specified disk, so it's not necessary to call vp-load when you seek to a new disk.
When :disk or :side is not specified, the currently loaded disk and side are used.

Video Mixins

This mixin class attempts to solve some of the problems video digitizers cause. You should display video in windows which inherit
from video-wm. Since the most common use of video-wm is to mix it with the standard classes, window or dialog, two classes
are provided which do just that:

Some of the problems (and solutions) addressed by video-wm are:

If you drag a window containing live video to a new position, the video gets left behind.
This is solved by stopping digitization during the drag and restarting it afterwards.

Digitizers only support digitizing on a single screen.
This is solved by a variety of means:

• unless an initial position is specified, windows are created positioned on the proper screen
• user drags are limited to the proper screen

oodles-of-utils 47

• set-view-position    generates an error if    the new position isn't on the proper screen
• all video views installed in the same window must use the same screen.

If you obscure live video with another window, the live video blasts right through.
This problem is currently unsolved. If you need to address this, here are some things to think about. You could just stop
digitizing when the window gets deactivated. This is pretty foolproof, but too restrictive for many applications. You could try
clipping the video to the exposed area, but not all digitizers support clipping. Additionally, you'll need to figure out how to
get notified when your visible region changes.

Methods of Interest    (changes to existing methods)

 :after (w video-wm) &rest initargs

If no :view-position is specified and the window has some digitizer subviews, then the window will be moved onto the
appropriate screen. Note: the default value for the :color-p initarg is t.

 :around (w video-wm) h &optional v

Digitizing is stopped and restarted.

 :after (w video-wm) h &optional v

An error is generated if the new position is not entirely on the digitizer's GDevice.

 :after (w video-wm) &rest subviews

An error is generated unless all the video subviews in the window use the same GDevice.

 (w video-wm)

The digitizer's GDevice rectangle is used as the dragging rectangle.

 :before (w video-wm)

Digitization is stopped before hiding the window.

This mixin provides video display    for views. It allows controlling when and where the incoming video is placed on the screen, but
not control over the video player. This mixin will be useful in situations when the video source is not controlled by the computer.    A
specialized mixin, video-svm, addresses computer control of the player.

video-digitizer-svm uses a slot to hold a video digitizer object and provides methods which issue the basic digitizing
commands to this digitizer object. More control can be achieved by using the digitizer object directly.

Note: there is currently a problem with the MoonRaker drivers. See mr-vd for more details. The current work around is to only use it
with simple-views and to install them in a window (as opposed to a sub-view of the window)

Note: you should use video in windows of class video-window, video-dialog, or other classes which inherit from video-wm.

See Also
video-digitizer - for more info on video digitizer objects.
??-vd - board-specific -vd files for individual digitizers

Initargs

All the video-digitizer initargs are also accepted and used in creating the digitizer object. (the entire initarg list is
passed along)

48 oodles-of-utils

 [video-digitizer]

The class of digitizer object to use. (e.g. 'mr-vd for a MoonRaker board)

 [no default]

This initarg can be used to provide an already existing digitizer object. Allows multiple views to share a common digitizer
object. For shared video objects you may want to use a nil :dispose-vd-on-remove-p. See below.

 [t]

This flag determines if vd-dispose is called on the digitizer object when the view is removed from it's window. All the video-
digitizer initargs are also accepted and used in creating the digitizer object. (the entire initarg list is passed along)

Methods of Interest

 (sv video-digitizer-svm)

Returns t/nil indicating whether the board is currently digitizing.

(sv video-digitizer-svm)
(sv video-digitizer-svm)

Starts/stops continuous digitizing.

 (sv video-digitizer-svm)

Grabs a single frame of video.

 (sv video-digitizer-svm)

Returns margins for indenting the video as two points (topLeft, botRight). The default method returns zero margins.
Specialize this method to control placement.

 (sv video-digitizer-svm)

This accessor provides access to the digitizer object used to control the digitizing board. See video-digitizer for the
more info.

This mixin is a specialization of video-digitizer-svm which provides video display in views and control over the video source. It
incorporates control over the video player, along with control of the on screen digitizing.

video-svm uses a slot to hold a player object and provides methods which issue the basic video commands to this player object.
More control can be achieved by using the player object directly.

Note: you should use video in windows of class video-window, video-dialog, or other classes which inherit from video-wm.

See Also
video-digitizer-svm - inherited behavior
video-player - for more info on video player objects
??-vp - board-specific -vp files for individual player classes

Initargs

All the video-digitizer-svm initargs are accepted

All the video-player initargs are also accepted and used in creating the player object. (the entire initarg list is passed
along)

All the video-digitizer initargs are also accepted and used in creating the digitizer object. (the entire initarg list is
passed along)

oodles-of-utils 49

 [no default]

The class of video player object to use. (e.g. 'P330-vp for a Pioneer 330 laserdisc jukebox/boat-anchor)

 [no default]

This initarg can be used to provide an already existing player object. Allows multiple views to share a common player object.
For shared player objects you may want to use a nil :dispose-vd-on-remove-p. See below.

 [t]

This flag determines if vp-dispose is called on the player object when the view is removed from it's window.

Methods of Interest

 (sv video-svm)

This accessor provides access to the video player object used to control the video source. See video-player for the more
info.

See video-player for descriptions of these methods. The video-svm versions behave the same plus make appropriate
calls to the digitizer. (e.g. vp-play also starts digitizing, vp-stop also stops digitizing, ...)

50 oodles-of-utils

objects-of-desire

This class provides access to the Mac serial ports. In its current implementation it is not designed for high speed transfer of lots of
data. It's intended use is for controlling serial devices with an ASCII character command set, like laserdisc players and plotters.

Initargs

allowed values

[:modem] :modem,:printer
[9600] 300,600,1200,2400,3600,4800,7200,9600,19200,57600

[1.0] 1.0,1.5,2.0
[:none] :none,:odd,:even

[8] 5,6,7,8

These initargs control the serial port configuration.

[t]
[t]
[t]

These determines if the serial port will be opened, configured, and flushed automatically when the object is created (actually,
when the object is initialized). That latter two options are not applicable if :open-on-init-p is nil.

 [#\return]

This character is used to delimit lines for the purposes of read-line and write-line.

Methods of Interest

 (sp serial-port)

Returns which serial port the object is using, :modem or :printer.

(sp serial-port)
(sp serial-port)

(sp serial-port)
(sp serial-port)

These reader methods return the corresponding serial port params for the serial-port object. These are not necessarily
the settings currently installed in the physical serial port.

(sp serial-port) baud &key :config-p
(sp serial-port) stop-bits &key :config-p

(sp serial-port) parity &key :config-p
(sp serial-port) data-bits &key :config-p

Use these to change the serial port param. If :config-p is t (the default) then the change will also be installed in the
physical serial port.

 (sp serial-port)

Return t/nil indicating if the serial port has been opened.

oodles-of-utils 51

 (sp serial-port) &key :config-p :flush-p

Opens and configures the physical serial port. :config-p and :flush-p control whether or not the physical port is
configured and flushed when it is opened (both default to t). A port must be opened before it can be used. This is done
automatically when the object is created unless suppressed by a nil :open-on-init-p initarg.

 (sp serial-port)

Closes the port. Should be done when you're through with the object.

 (sp serial-port)

Flushes any data current in the serial port buffer.

 (sp serial-port)

Returns the number of characters currently in the serial port buffer.

 (sp serial-port) &key :wait-p

Returns a single character from the serial port buffer. If :wait-p is nil (the default) the function will return immediately if
no characters are available, else it waits for a character.

 (sp serial-port) &key :wait-p :wait-eoln-p :eoln-char

Reads characters one at a time from the serial port buffer until the eoln-char is read. The non-eoln characters are accumulated
into a string. It returns two values, the accumulated string, and t/nil indicating if the eoln-char was actually read. The
:eoln-char keyword can be used to override the character in the object's eoln-char slot. If :wait-p is nil (the default)
the function will return immediately if no characters are available, else it waits for a character. If at least 1 character has been
read, :wait-eoln-p controls whether the function will return as soon as no more characters are available or wait until the
eoln-char is read. The value of :wait-eoln-p defaults to the value of :wait-p.

 (sp serial-port) char

Writes a single character to the serial port.

 (sp serial-port) string &key :eoln-char

Writes a string of characters + an eoln-char to the serial port. The :eoln-char keyword can be used to override the
character in the object's eoln-char slot.

room-with-a-view

Two classes are defined, back-PICT-view and back-PICT-window, which create views and windows with background
pictures. Most of these item's functionality is inherited from the mixin they're based on, PICT-svm. The main reason these are
defined at all is because it's a little tricky to get PICT-svm to work with windows.

See Also
PICT-svm - inherited behavior

Initargs

All the PICT-svm initargs are accepted.

This class creates views based on the window manager port. Rather than instantiating the class yourself, you should probably just use
the pre-defined variable *WMgr-view*. To draw into the window manager port you’d just write something like:

52 oodles-of-utils

(with-focused-view *WMgr-view*
;nasty drawing code

)

Note: Drawing into the window manager port is generally considered evil. You should only use it for temporary images like an
something being dragged from one window to another. You should clean up after yourself by erasing any drawing you did (xor mode
drawing or saved bits) and restoring the drawing environment.

This class creates views based on offscreen GWorlds. You should familiarize yourself GWorlds by reading the GDevice chapter of
IM VI before attempting to use them.

Generally you’ll use the GWorld-views in one of two ways:

Drawing to them:

(with-focused-view my-gw-view
;drawing code

)

Copying them on-screen:

(with-locked-GWorld-view my-gw-view
(#_CopyBits (view-portBits my-gw-view) (view-portBits dest-view) …))

It’s important to use the with-locked-GWorld-view macro to lock the GWorld before using it (focusing on a GWorld-view
locks it’s bits, but for copying on-screen you want to be focused on the destination view).

Initargs

[8]

Specifies the depth of the GWorld.

GWorld-views use the view-position as their origin (coordinates of the top left
corner). The view-size determines the size of the GWorld.

[(%null-ptr)]
[(%null-ptr)]

These allow you to specify an alternate color table or graphics device.

[0]
[0]

These are the flags passed to NewGWorld and UpdatedGWorld. See IM VI for details.

Methods of Interest

 (view GWorld-view)
 (view GWorld-view)

Both of these methods return the offscreen GWorld.

oodles-of-utils 53

(view GWorld-view)
(view GWorld-view)

(view GWorld-view)
(view GWorld-view)

(view GWorld-view)

These accessors can be used with setf to change the various setting. However, the changes will not be propagated to the
offscreen GWorld until GWorld-alloc or GWorld-realloc is called.

(view GWorld-view)
(view GWorld-view)

(view GWorld-view)

These methods allocate, reallocate, and deallocate the GWorld underlying the view. It’s important that you allocate the
GWorld before you use it and that you deallocate it when you’re done. Forgetting to deallocate GWorlds will quickly chew up
your Mac heap.

Macros

 GWorld-view &body body

It’s essential to lock a GWorld before drawing to it or copying bits from it. Focusing on a GWorld automatically locks it - so
this macro isn’t generally needed if you’re drawing to a GWorld-view.

This view provides styled text editing. It consists of up to one to three subviews: a text-editing box, a vertical scroll bar and a
horizontal scroll bar.

See Also
te-dim -    basis for the text box subview

Initargs

 [:default]

Controls the text justification. Allowed values are :default, :left, :right, and :center.

 [t]

Determines if the text will be word wrapped.

 [nil]

This flag allows the text to be read only. Selection and copying are still allowed, but editing is not.

 ["The horror…"]

A LISP string that will be used to initialize the text.

 [no default]

The resource id or name of a 'TEXT' resource to be used to initialize the text. If there is a 'styl' resource with the same
id or name, it will be used to initialize the style of the text. These 'TEXT'/'styl' resource pairs can be created and edited
with ResEdit. Make sure the resource file containing the resource is open.

 [t]
 [nil]

Specifies if you want vertical and/or horizontal scroll bars.

Methods of Interest

54 oodles-of-utils

 (di te-dim)

Returns two values, the character positions of the first and last character selected.

 (di te-dim) sel-start sel-end

Sets the current selection.

 (di te-dim) font-spec &key font-color mode

Sets the font of the current selection. You can use the :font-color key to change the color by passing in an MCL style
encoded color like *red-color* (not an RGBColor record).    The :mode key is use to specify which attributes you want
to affect (the default is all). The value you pass in is a sum comprised of the following ToolBox constants: #$doFont,
#$doFace, #$doSize, #$doColor, #$doAll, and #$addSize. The #$addSize constant allows you to
increment/decrement the font size. See IM V p.269-270 for details.

 (di te-dim)

This accessor returns the text as a LISP string. Expensive for large amounts of text. It can be used with setf to change the text.

 (di te-dim) rsrc-id-or-name

This method lets you change the text using 'TEXT'/'styl' resource pairs a per the :te-init-rsrc initarg.

 (di te-dim) &key rsrc-id rsrc-name

This save the current text as a 'TEXT'/'styl' resource pair in the current resource file. Make sure the file you want it save
in is current (you can use with-res-file).

oodles-of-utils 55

low-class-extensions

Additional methods for the dialog items.

Methods of Interest

These methods hide/show dialog-items by adjusting their positions as per the Dialog Manager calls, HideDItem and
ShowDItem (IM IV p. 59).

 (di dialog-item)

Hides the specified dialog item by moving it to a position off screen.

 (di dialog-item)

Shows a hidden dialog item by moving it back on screen.

 (di dialog-item)

Returns t/nil indicating if the dialog item is currently hidden.

 (di dialog-item)

If the dialog item is hidden, it returns the original position of the dialog item. If the item is not hidden it just returns its
current position.

Additional methods for simple views.

Methods of Interest

 (sv simple-view) dh &optional dv

Moves a view relative to its current position.

These methods hide/show views by adjusting their positions as per the Dialog Manager calls, HideDItem and ShowDItem (IM
IV p. 59).

 (di dialog-item)

Hides the specified view by moving it to a position off screen.

 (di dialog-item)

Shows a hidden view by moving it back on screen.

 (di dialog-item)

Returns t/nil indicating if the view is currently hidden.

 (di dialog-item)

If the view is hidden, it returns the original position of the view. If the view is not hidden it just returns its current position.

 (sv simple-view) topLeft botRight

Adds the specified rectangle (window coordinates) to the view's containing window's erase region. It doesn't actually erase
the rectangle itself. The erase will be performed by the normal updating process.

56 oodles-of-utils

 (sv simple-view)

Adds the view's rectangle to the window's erase region. It doesn't actually erase the view itself. The erase will be performed
by the normal updating process.

Note: You should not normally need to call erase-corners and erase-view. Instead you should probably be using
invalidate-corners and invalidate-view. Neither of these methods change the update region, so unless the
update region already contains the region you cause to be erased, it won't get re drawn. For a discussion of when you might
need to use these methods, see Appendix D.

 (sv simple-view) hilite-flag

This method highlights a view by inverting it. The hilite-flag determines whether to highlight or unhighlight the view. The
default method uses InvertRect (in highlight mode).

Note: hilite-view is not a general purpose drawing method. It is intended for temporary highlighting effects, like those
used in button tracking. You may want to specialize for views you create to get custom highlighting effects. Be sure to read
the source for the default method before trying to specialize it.

(sv simple-view)
(v view)

This method returns the view that should be focused on for drawing and event handling. For simple views, this will be their
container. For views, this will be the view itself.

(sv simple-view)
(v view)

This method is like view-corners, except that it returns the corners in the coordinate system the view uses for drawing
and event handling. For a simple views, this will be its container. For a views, this will be itself.

 (sv simple-view)

This method returns a pointer to be passed into CopyBits. Nominally, it returns the portBits field of the specified view's
port. Even though CGrafPorts don't have a portBits field, the value returned is still valid to be passed to CopyBits
(see IM V p. 70)

 (sv simple-view) point
 (sv simple-view) point
 (sv simple-view) point
 (sv simple-view) point

These methods return point converted between various coordinate systems.

 (sv simple-view)
 (sv simple-view)

These methods are similar to view-corners, except their return values are in the specified coordinate system Note:
view-corners returns them in the coordinate system of the view's container.

Additional methods for the various classes of window.

Methods of Interest

 (w window) which-screen &key
:upper-3rd-p :move-now-p :GDevice :point

This method returns the position which will center a window on particular screen. The which-screen argument is a
keyword that specifies which screen to use. Allowed values are:

oodles-of-utils 57

:specified-GD the GDHandle is specified by the :GDevice key
:deepest screen with the greatest pixel depth
:main screen with the menu bar
:containing-mouse screen currently containing the mouse
:containing-point screen containing the point specified by the :point key

If :move-now-p is t (the default) it will call set-view-position to move the window to this position. If
:upper-3rd-p is t (the default) the window won't be vertically centered, but will be positioned with one third of the
empty space above it and two thirds below. This is usually more visually pleasing than perfect vertical centering. The
:GDevice and :point keys are only used in conjunction with certain types of screen specification .

58 oodles-of-utils

Appendix A - Classic LISP Blunders

" n c o n c d o e s n ' t w o r k . "
(setf a '(1))
(setf b '(2 3 4))
(setf c nil)

(nconc a b) ;-> (1 2 3 4) ;OK
a                      ;-> (1 2 3 4) ;Big deal.
(nconc c b) ;-> (2 3 4)      ;zzz…
c                      ;-> nil              ;WHAT! It's still nil?

Explanation: You're using nconc for side effects only, ignoring the return value. If the first argument to nconc is nil, nconc can't
modify it (i.e. destructively change the last cons in the list). If you still don't understand, try implementing your own version of
nconc, it's a simple, but instructive, exercise.

Solution: Always use the result of nconc. In the above example, using (setf c (nconc c b)) would have avoided the
problem.

" M i s c e l l a n e o u s
d e s t r u c t i v e s e q u e n c e
f u n c t i o n d o e s n ' t w o r k . "

(setf a '(1 2 3 4))

(delete 3 a) ;-> (1 2 4) ;OK
a                        ;-> (1 2 4) ;So what?
(delete 1 a) ;-> (2 4)      ;What's your point?
a                        ;-> (1 2 4) ;WHAT! How did 1 get back in there?

Explanation: When the need arises to change the first element of the sequence, the destructive sequence functions can only pass back
a pointer to the new first element, they can't do anything about any pointers you still have to the old first element.

Solution: Always use the result of the destructive function. In the above example, using (setf a (delete 3 a)) would have
avoided the problem.

" I c h a n g e o n e e l e m e n t o f
m y l i s t a n d a l l t h e
e l e m e n t s c h a n g e . "

(defun foo () '(1))
(setf a nil)

(push (foo) a)                          ;-> ((1))                  ;OK
(push (foo) a)                          ;-> ((1) (1))          ;Of course.
(push (foo) a)                          ;-> ((1) (1) (1)) ;It's obvious.
a  ;-> ((1) (1) (1)) ;ho, hum.
(setf (first (first a)) 2) ;-> 2                          ;
a  ;-> ((2) (2) (2)) ;WHAT!
(foo)  ;-> (2)                      ;Has LISP gone wild.

oodles-of-utils 59

Explanation: Some or all of the elements of your list (or other data structure) are shared. An easy way for this to happen is by a
function to return a quoted form. In most LISP implementations, such a function will always return the same lisp object. Therefore,
any destructive changes to that object are reflected in subsequent function calls. In the above example, note that not only the variable
a is affected, the function foo now returns (2).

Solution: Never return a quoted form from a function. Also, if you use quoted forms in a function, be careful not to pass them off to
any functions that might destructively change them. In the above example, using (defun foo () (list 1)) would have
avoided the problem.

" d e f m a c r o d o e s n ' t w o r k . "

Explanation: When you evaluate a defmacro it doesn't go back and update code that has already been compiled under the old
definition.

Solution: When redefining a macro, be sure to go back and recompile functions (and .fasl files) that use the macro.

" W h e n I c o m p i l e m y f i l e ,
L I S P w a r n s m e t h a t m y
m a c r o s a r e u n d e f i n e d
f u n c t i o n s . "

Explanation: defmacros, loads, and requires are not normally evaluated at compile time. If your file uses macros, you must
make sure they are in effect at compile time.

Solution: If the macros are used in the same file they are defined in, make sure they appear in an appropriate eval-when before they
are used. If the macros are defined in a file you require,    make sure your require or load statement is in an appropriate eval-
when. Many people avoid all this nonsense by making sure to load all their files before compiling them.

" C o n f l i c t e r r o r s a r e
d r i v i n g m e c r a z y ! > E r r o r :
N a m e c o n f l i c t d e t e c t e d b y

e x p o r t "

Explanation: A package is trying to export a symbol that's already defined. You probably tried to use a function only to discover you'd
forgotten to load its file. The failed attempt at using the function caused its symbol to be interned. So now when you try to load the
file, you get a conflict. Unfortunately, understanding and correcting the code which caused the export problem doesn't make those
nasty error messages go away. That symbol is still interned where it shouldn't be.

Conflicts can also occur if your code happens to use a symbol that later gets exported from some package. For example, if a file
containing (let ((foo 2))) is loaded, and then later, some file is loaded that which exports foo, you'll get a conflict error. The
fact that foo is a local variable has nothing to do with it, nor does whether or not the code was executed. The reader interns the
symbol when the file is loaded.

One particularly insidious way export conflicts can happen is if you use (require 'foo). Often the file "foo.lisp" will try to
export the symbol foo, but you've just interned foo in your package when calling require. Kind of a chicken and egg problem.

Solution: No, you don't have to restart LISP to stop those error messages. You can use unintern to remove the symbol from a
package, but make sure you remove it from the right package. Conflicts arising from accidental name overlaps can sometimes be
avoided if you load in all the package you need up front (or at least import their external symbols), but this is often impractical. It's
best to simply not use symbols that other packages export (consult your local seer for help). The require problem can be avoided by
always passing keywords or strings to require - (require :foo) or (require "foo")

60 oodles-of-utils

" d e f v a r d o e s n ' t i n i t i a l i z e
t h e v a r i a b l e "

Explanation: defvar only initializes the variable if it doesn't already have a value. So, re-evaluating a defvar after changing its
initializer doesn't have any effect.

Solution: You probably shouldn't be using global variables anyway, but if you insist, defparameter always evaluates its initializer
and sets the variable's value.

oodles-of-utils 61

Appendix B - Classic MCL Blunders

" A l l t h e d r a w i n g i n m y
v i e w i s s h i f t e d d o w n a n d
t o t h e r i g h t . "

Explanation: Is the amount your drawing is offset the same as the amount your view's top left corner is offset from its container? If
so, the problem is that views are drawn focused to themselves while dialog items (and other simple views) are drawn focused to their
container. For example, if you try to frame a view by drawing the rectangle defined by the values returned from view-corners, it's
using the wrong coordinates.

Solution: For the framing problem mentioned above, you should use the rectangle defined by #@(0 0) and the view's size. In
general, you need to understand the subtle differences between views and simple views. oou provides some additional methods for
views and simple views to help out. See focused-corners and focusing-view.

" I c a n ' t c h a n g e m y d i a l o g -
i t e m - a c t i o n w i t h o u t
r e c r e a t i n g t h e e n t i r e
d i a l o g . "

Explanation: You're probably using a closure, #'my-action, as your dialog item action. Redefining the function after the barn
door is closed doesn't affect the original closure. Your dialog item action is a closure which captures the original state of the function it
closes off.

Solution: Pass in a symbol, 'my-action, for the :dialog-item-action initarg. Funcall works with symbols as well as
functions. When you pass funcall a symbol, its current function definition is used.

" T h i s w o r k s f r o m t h e
L i s t e n e r , b u t n o t f r o m m y
d i a l o g i t e m a c t i o n . "

Explanation: There's so much to say about this one. Volumes could be written. Basically, you need to grok how MCL handles events.
This comes with reading the Events chapter about 500 times and banging your head against the wall about a million times. Before
reading the Events chapter in the MCL documentation, you need to have already read and fully understood the Events chapter in the
MCL documentation.

What's probably happening is that your dialog item action is sitting around waiting for something to happen, that won't happen until it
stops sitting around waiting for it to happen. A watched dialog item action never boils. Do you understand?

Enough Zen style explanation. There are two threads of execution going on in MCL. One handles events and one executes forms typed
into the Listener. The Listener thread periodically gives time to the event thread, that's why you can pull down menus and click on
dialog items while your program is running.

Dialog item actions and menu item actions are executed in the event thread. While one of these actions is executing, no other event
handling can take place. So if your action doesn't exit, you block the event handling process.

Functions like set-dialog-item-text, do not directly make changes to the screen, they generate update events that will
eventually be handled by the event thread. So if you call set-dialog-item-text from a dialog item action, it won't actually
happen until after you exit.

oodles-of-utils 63

There are a myriad of variations on this problem. Some quite baffling and difficult to explain. Fortunately, once you figure out the
problem is a blocked event thread, it's usually not hard to fix.

Solution: Your dialog item action needs to use . As a rule of thumb, dialog item actions and menu actions should do something quick
and exit. If they need to do something more complex, they should use eval-enqueue to have the listener thread execute it. (yes, I
know you were told that eval was evil, but this is one of those cases your LISP instructor said rarely arises) Since eval-enqueue
exits immediately, your dialog item action exits and frees up the event thread.

" T h i s T o o l B o x c a l l a c t s
l i k e i t s B o o l e a n a r g u m e n t
i s a l w a y s t r u e . "

Explanation: In days of old, you had to pass Boolean values to the traps as -1 or 0. Now you should pass t or nil and MCL's trap
calling mechanism will take care of pushing -1 or 0 onto the stack. Since both -1 and 0, are non-nil, they both are passed as true.

Solution: Don't do that! Pass t or nil for Boolean values.

" I c a n ' t s e t t h i s B o o l e a n
r e c o r d f i e l d t o f a l s e . "

Explanation: This is similar to the problem described above. However, it is not new to MCL 2.0. The rset macro takes a nil or
non-nil value and fills in the field with -1 or 0. This makes sense considering that rref on a Boolean field returns t or nil, not
-1 or 0.

Solution: Don't do that! Pass t or nil for Boolean values.

" W h y i s M C L c r a s h i n g ? A n d
w h a t ' s t h i s # < c c l : : i v e c t o r
s u b t y p e 0 l e n g t h 7 9 8 1 9 5 8

x F 3 9 6 D 9 > t h i n g ? "

Explanation: You're probably using a variable with dynamic extent after it's extent has expired. If you're unfamiliar with the term
extent, see Steele's discussion of scope and extent. Try issuing:

(rlet ((p :integer)) (print p) p)
-> #<A Mac Non-zone Pointer #xF396E8>                                ;what we expect
-> #<ccl::ivector subtype 0 length 7981958 #xF396D9> ;returned an expired object

But, make sure to save any work first because on occasion, just printing an expired object can crash the system. In this example, the
rlet returns an expired object which the Listener then tries to print.

Solution: Don't do that! Be careful when using variables with dynamic extent.

" D o u b l e c l i c k i n g M C L
d o c u m e n t s i n t h e F i n d e r
l a u n c h e s a s a v e d
a p p l i c a t i o n i n s t e a d o f
M C L . "

64 oodles-of-utils

Explanation: The saved MCL application has the same four character signature as MCL ("MCL2"). When you open a document from
the Finder, the Finder examines the creator of the document and looks for an application with that same signature. If there are multiple
applications with the same signature, the Finder chooses one (the one you don't want).

A similar problem occurs if you have multiple copies of MCL on your system.

Solution: When saving applications from MCL, give them a unique signature. You can change the signature of saved applications
using ResEdit. If you have multiple copies of MCL on your system, changing their signatures won't work. You can use the freeware
program, Save A BNDL, to reinstall the BNDL information of a particular copy of MCL.

oodles-of-utils 65

Appendix C - LISP & MCL Coding Style

Below is a list of coding conventions and advice I tell to new MCL programmers. Of course, no one listens, but at least I get to say "I
told you so" when they get burned. These conventions shouldn't adversely affect code efficiency (time or space), but they should make
it more legible and more reliable. I try to adhere to them myself, so reading them may make the oou source easier to digest.

• Use mnemonic variable names. It's an excellent way to document your code. If you really hate typing, learn to use search and
replace. Often I have a comment at the start of a function describing what its intended to do. Occasionally you'll see an inline
comment or two, but the nature of LISP code (function calls whose arguments are function calls…) doesn't always lend itself to inline
comments.

• The solution to all those compiler warnings is not to turn off the various compiler warning flags. Those warnings are your buddy,
they're telling you, "Hey knucklehead! fix your code."

• Don't use global variables! If you find you really need them, redesign your code. If you give into temptation, use defvar or
defparameter to define them.

• Use when and unless for conditionals with no else clause. They are more legible than if forms. You don't have to go hunting for
the else clause. You don't need progn to group multiple statements. If you see an (if foo …) in my code, you can count on there
being both an if and an else clause. I use cond for multiway decisions and sometimes to avoid using progn with if.

• Use case and typecase when applicable. These are very legible, but often overlooked, LISP constructs. For cheap error
checking, use their etypcase and ecase versions.

• Learn the sequence functions. These functions, especially the power of their keyword arguments, are often overlooked by novice
LISP coders (probably because their LISP instructor said they weren't allowed to use them). Almost anything can be accomplished
using the right sequence function and appropriate keywords. If you find yourself writing a nasty dolist, check though the sequence
function section of Steele.

• Use declare. It can really optimize your code. For instance, declaring a variable to be of type fixnum can make a big difference
in a loop. It's hard to tell what will make a difference and what won't. Experiment, use time and disassemble to see if it really
makes a difference. Let me know of any discoveries you make. I really ought to use some declares in my code. One warning: Lying
to declare is an offense punishable by System Error. Make sure your variables really conform to their declarations. One especially
unforgiving declaration is dynamic-extent. Declaring a variable to be dynamic-extent can help you avoid accumulating
garbage, but be sure that the variable is not used after its allocating block has exited.

• Don't use or , instead use , , , . You can get burned using rref and rset because they use the default record storage type which
may or may not be how your particular record is allocated. And yes, this requires knowing whether your record is allocated as a
pointer or a handle, but if you don't know, you are in serious trouble. Along similar lines, don't use the with-pointers macro
which is for dereferencing things which may be pointers or handles. If they're pointers, they don't need dereferencing. If they're
handles, use with-dereferenced-handles. If you don't know which they are, you're in the wrong business.

• Use to allocate stack space instead of . In MCL 2.0 final you can use rlet to allocate and initialize all mactypes, not just records.
The rlet code is more legible, terser, and ends up expanding into the same thing anyway.

(rlet ((refNum_p :integer 0)) …)
vs.

(%stack-block ((refNum_p 2)) (%put-word refNum_p 0) …)

My prediction is that rlet is destined to become the general purpose MCL stack allocation form of choice. Someday people won't

oodles-of-utils 67

remember what the 'r' stands for, just like few people remember what the 'n' in the destructive functions (nreverse, nbutlast,
…) means3.

• Use to locally allocate macptrs.

• Use a naming convention to help avoid confusion between pointers and what they point to. For example, if you allocate space for a
var integer parameter, don't call the pointer my-int or later on you'll accidentally use my-int as an integer, forgetting to use
(%get-byte my-int) instead. Make sure the variable name indicates it's a pointer. Try my-int-ptr or my-int_p.
Personally, I usually use an _p suffix to indicate pointers and an _h to indicate handles. This is a carryover from my C coding style. In
MCL, I sometimes get sloppy in my record variable names because, in MCL, all record variables are pointers to records, something
which isn't true in C.

3According to Chris Riesbeck, the explanation of the n prefix dates way back to the origins of LISP and the primordial destructive
function, conc. conc accepted two lists and destructively appended them. conc begat nconc which took n lists and destructively
appended them. The rest is history.

68 oodles-of-utils

Appendix D - Designing Code for MCL

Designing Specialized Dialog Items and Views

If your dialog item is getting really complex it may be better to instead, create a view containing other views or dialog items. That way
you can design and test the beast in simple pieces. To get the thing to really act as a unit, you can augment the initialize-instance
method of the outer view with an after method that creates and adds the various subviews. For a barely plausible illustration of this,
see hairy-view.lisp in the examples folder.

Another problem you may run into with your view classes is that sometimes they need to be erased before re-drawing. For example,
view classes that don't erase as part of their normal drawing need to do an erase when being resized to larger size, otherwise they will
re-draw superimposed over their old image. The standard set-view-size method does invalidate a view, but it doesn't add it to the
window's erase region. Oou provides two methods to address this problem, erase-view and erase-corners. All these methods
do is add a rectangle to a window's erase region. To solve the resizing problem, call erase-view in a set-view-size after
method.

Designing View Mixins

When designing a mixin class for simple views (or dialog items), with a little more forethought, you can usually make it work for
simple views and views. This can be a big win, especially if your dialog items get complex and you decide to turn them into views as
was previously suggested.

The main consideration in designing mixins for both simple views and views is that simple views are normally drawn focused on their
container while views are focused on themselves. Also, simple views get clicks in the coordinate system of their container while views
get them in their own coordinate system. You can avoid writing separate code to handle simple views and views, by using focused-
corners and focusing-view as alternatives to view-corners and view-container. These alternate methods are
described in simple-view-ce. For examples of this type of design, see the source to the various simple view mixins in oou.

Initarg Conflicts

If you're designing mixins or classes to be used with oou mixins, you may want to check for potential initarg conflicts by looking in
the initarg section of the index. Initarg conflicts are less likely to be detected by the compiler than method name conflicts. If you reuse
a method name, unless it's lambda list is congruent to the original, the compiler will issue a warning. No such checking is done for
initargs.

oodles-of-utils 69

References & Suggested Reading

Apple Computer, "Macintosh Common LISP 2.0 Reference - Draft." 1991, Apple Computer.
If you've got a legal copy of MCL, you should have a copy of this one. I haven't seen the final version yet. The draft has plenty of
errors and omissions. MCL's Apropos tool goes a long way toward making up for the deficiencies.

Apple Computer, "Inside Macintosh" - Volumes I-VI. 1985, Addison Wesley.
Essential references for Mac programming. Rumor is they're going to be replaced in late 1992 by a new and improved set.

Card, Orson Scott, "Ender's Game." 1991, Tom Doherty and Associates.
Very entertaining. Even people who don't normally like science fiction will enjoy this one.

Chernicoff, Stephen, "Macintosh Revealed" - Volumes I-IV. 1985, Hayden Books.
Digestible alternative to Inside Macintosh (or at least to many of the essential parts). Volumes I and II cover most of the basics.
Volume IV has a good introduction to color QuickDraw. Volume III covers advanced topics.

Engber, Michael S., The Sound Manager with LISP. MacTutor, March 1991, pp. 84-89.
An informative and well written article, if I do say so myself. It covers the basics of ToolBox access and illustrates them by using
the Sound Manager. It was written in the days of MACL 1.32, so parts are dated.

Irving, John, "The Cider House Rules." 1985, William Morrow and Company.
I haven't actually read this one, but my wife assures me it's quite excellent.

Keene, Sonya E., "Object-Oriented Programming in Common LISP." 1989, Addison Wesley.
A very complete and digestible introduction to CLOS. It can be read straight through (if you ignore that extended example on the
lock class).

Steele, Guy L., "Common LISP - The Language" 2nd edition. 1990, Digital Press.
Comprehensive, precise, essential, very dense. This is one of those books whose prerequisite is a solid understanding of the
subject it covers. Not a tutorial.

Steele, Guy L. and Harbison, Samuel P., "C - A Reference Manual" 2nd edition. 1987, Prentice Hall.
Steele does it again, a comprehensive and precise description of C, including ANSI C, thorough enough for C compiler writers to
use. Mixed in with the language issues is a lot of practical computer science.

Sherwood T.K. and Wilcox F.C., Sabotage of Gasoline Engines. 1946, Office of Scientific Research .
A definite must.

Wilensky, Robert, "Common LISPcraft." 1984, WW Norton and Company.
If you already know something about programming and you're looking for a book you can sit down, read, and come away with
the impression, albeit mistaken, that you know something about LISP, this is it. It has good, readable, explanations of the
fundamentals. Appendix A is a good Common LISP reference, although not as encyclopedic as Steele. When you outgrow
Wilensky, you'll be ready for Steele.

oodles-of-utils 71

Index
%get-boolean 36

%get-character 36

%get-hex-str 36

%get-list 36

%get-text 36

%put-boolean 36

%put-character 36

%put-hex-str 36

%put-list 36

%put-text 36

%stack-block 68

3D-PICT-button-di 23

3D-text-button-di 23

add-subviews 49

back-PICT 54

baud 53

black-level 40

button-dim 19

button-hilite 19

cicn-di 23

close-res-file 31

contrast 40

ctSize 41

data-bits 53

deftrap-alt-name 27

deftrap-NotInROM 27

dest-rect-botRight 40

dest-rect-topLeft 40

dialog-item-ce 58

dialog-item-double-click-action 20

dialog-item-hide 58

dialog-item-show 58

dialog-item-shown-p 58

dialog-item-shown-position 58

dialog-item-text 25

dig-rect-botRight 40

dig-rect-topLeft 40

digitizer-object 51

digitizing-p 50

disable-dim 20

dissolve-o-rama 33

double-click-dim 20

drag-region 34

draggable-p 10

draggable-svm 9

draw-frame 12

draw-graphic 15

draw-picture-from-file 31

droppable-p 11

droppable-svm 11

erase-corners 58

erase-view 59

eval-enqueue 66

find-GDevice-containing-point 29

flength 35

focused-corners 59

focusing-view 59

foffset 35

frame-3D-svm 13

frame-rect-3D 32

frame-svm 12

frame-to-hmmss 46

frame-to-hmmssff 46

ftype 35

GDevice-u 29

get-max-device 29

get-PICT-file-info 31

get-picture-from-file 31

get-resource 30

get-resource-id 30

global-to-view 59

grab-one-frame 51

graphic-margins 15

graphic-rsrc-svm 15

graphic-size 15

GW-back-color 19

GW-copy-mode 19

GW-copy-rgn 19

GW-cTable 56

GW-depth 56

GW-fore-color 19

GW-fx-delay 19

GW-gDevice 56

GW-init-flags 56

GW-slide-fx 19

GW-update-flags 56

GW-update-fx 19

GW-wipe-count 19

GWorld 56

GWorld-alloc 56

GWorld-draw-to-slide 18

GWorld-free 56

GWorld-margins 19

GWorld-realloc 56

GWorld-screen-to-slide-copy 19

GWorld-set-current-slide 18

GWorld-slide-size 19

GWorld-slide-to-slide-copy 18

GWorld-svm 16

GWorld-update 19

GWorld-view 18, 55

h-text-indent 26

hilite-selected-item 12

hilite-view 59

hmmss-to-frame 46

hmmssff-to-frame 46

href 67

hset 67

hue 40

ICON-di 24

initargs
:all-drag-actions-p 12
:all-drag-end-actions-p 12
:all-drop-actions-p 12
:alternate-PLL 42
:baud 53
:black-level 39, 41, 43
:blue-inhibit 43
:brightness 43
:card-num 38
:cicn-handle 24
:cicn-id 24
:cicn-name 24
:cicn-scaling 24
:config-on-init-p 53
:contrast 39, 41, 43
:control-flag 42
:ctSize 41
:data-bits 53
:dest-rect-botRight 39
:dest-rect-topLeft 39
:dest-wptr 38
:detach-p 14
:dialog-item-double-click-
action 20
:dialog-item-text 25
:dig-rect-botRight 39
:dig-rect-topLeft 39
:digitizer-class 50
:digitizer-object 50
:digitizing-speed 42
:dim-pnMode 20
:dim-pnPat 20
:dispose-rsrc-on-remove-p 14
:dispose-vd-on-remove-p 50

oodles-of-utils 73

:dispose-vp-on-remove-p 51
:drag-action-fn 10
:drag-axis 10
:drag-bounds 9
:drag-end-action-fn 10
:drag-outline-p 10
:drag-post-erase-p 10
:drag-pre-erase-p 10
:drag-pre-hilite-p 10
:drag-start-tol 10
:drop-action-fn 11
:drop-target-class 11
:drop-targets 11
:eoln-char 53
:erase-on-set-rsrc-p 15
:flush-on-init-p 53
:frame-width 12, 13, 23
:framehook-fn 44
:graphic-default-size 15
:graphic-scaling 15
:green-inhibit 43
:GW-back-color 17
:GW-copy-mode 17
:GW-copy-rgn 17
:GW-cTable 55
:GW-current-slide 17
:GW-depth 17, 55
:GW-fore-color 17
:GW-free-on-remove-p 18
:GW-fx-delay 18
:GW-gDevice 55
:GW-init-flags 55
:GW-init-fn 17
:GW-num-slides 17
:GW-slide-fx 17
:GW-update-flags 55
:GW-update-fx 17
:GW-wipe-count; [8] 18
:GWorld-view 17
:h-drag-slop 10
:h-flip 42
:h-text-indent 25
:hue 39, 41, 43
:ICON-handle 24
:ICON-id 24
:ICON-name 24
:ICON-scaling 24
:input-format 39, 41
:input-standard 39
:open-on-init-p 53
:parity 53
:part-color-list 13
:PICT-file 16
:PICT-handle 16
:PICT-id 16
:PICT-name 16
:PICT-scaling 16
:PICT-storage 16
:player-class 51
:player-object 51
:port 53
:red-inhibit 43
:reverse-fields 42
:rsrc-handle 14
:rsrc-id 14
:rsrc-name 14

:rsrc-type 14
:saturation 39, 41, 43
:selected-p 12
:selection-cluster 12
:shadow-position 13
:sharpness 39, 41, 43
:src-rect-botRight 38
:src-rect-topLeft 38
:stop-bits 53
:sync-on-green-p 41
:te-h-line-size 21
:te-h-scroll-bar 21
:te-h-scroll-bar-p 57
:te-init-rsrc 21, 56
:te-init-string 21, 56
:te-just 21, 56
:te-read-only-p 21, 56
:te-v-line-size 21
:te-v-scroll-bar 21
:te-v-scroll-bar-p 57
:te-word-wrap-p 21, 56
:text-just 13, 25
:text-string 13
:text-string
["hi,ho"] 25

:use-gray-p 41
:v-drag-slop 10
:v-flip 42
:v-text-indent 25
:view-position 55
:view-size; 55
:white-level 39, 41, 43

initialize-instance 49

input-format 40

input-standard 40

interfaces.lisp 28

iris-o-rama 33

kinesis-u 34

macptr-u 35

map-pat-masks 33

map-round-iris-masks 33

map-square-iris-masks 33

mapc-GDevices 29

Menus-u 29

move-region 35

move-region-to 32

MR-vd 40

MRvd-optimize-colors 41

NotInROM-u 27

offset-view-position 58

on-trap-nz-error 36

open-res-file 31

opened-res-file-p 31

P4200-vp 48

P8000-vp 48

parity 53

PICT-di 25

PICT-svm 15

PICT-u 31

Pioneer-disk-format 47

Pioneer-player-info 46

Pioneer-u 46

Pioneer-vp 47

player-object 51

pld-address-format 48

pld-cmd 47

pld-flush 48

pld-read 48

port 53

pre-drag-hilite 10

pre-drop-hilite 11

pref 67

pset 67

pup-arrow-draw 29

QuickDraw-u 31

records-u 35

release-resource 30

require-trap-NotInROM 27

resource-handlep 30

resource-purgeablep 31

Resources-u 30

rfields 35

rlength 35

rlet 68

RO-vd 41

RO24STV-vd 42

RO364-vd 43

RO364vd-install-332-table 44

rref 67

rset 67

rsrc-dispose-fn 14

rsrc-get-fn 14

rsrc-svm 13

rstorage 35

saturation 40

select-item-from-pup 29

selectable-svm 11

selected-items 12

serial-port 53

set-baud 53

set-data-bits 53

set-dialog-item-text 25

74 oodles-of-utils

set-drag-outline-rgn 10

set-parity 53

set-stop-bits 53

set-view-cicn 24

set-view-ICON 25

set-view-PICT 16

set-view-position 49

set-view-resource 14

sharpness 40

simple-view-ce 58

sport-chars-avail 54

sport-close 54

sport-flush 54

sport-open 54

sport-open-p 53

sport-read-char 54

sport-read-line 54

sport-write-char 54

sport-write-line 54

src-rect-botRight 40

src-rect-topLeft 40

start-digitizing 50

static-text-di 25

static-text-svm 13

stop-bits 53

stop-digitizing 50

sync-on-green-p 41

te-dim 20

te-margins 22

te-save-text-rsrc 22, 57

te-selection 21, 57

te-set-font 21, 57

te-set-selection 21, 57

te-set-text-rsrc 21, 57

te-string 21, 57

te-view 56

text-just 13, 25

text-margins 13

text-string 13

trap-nz-echeck 36

Traps-u 36

use-gray-p 41

v-text-indent 26

vd-digitizing-p 40

vd-dispose 39

vd-error-code-alist 39

vd-grab-one-frame 39

vd-init 39

vd-install-settings 39

vd-nz-error-check 39

vd-set-black-level 40

vd-set-contrast 40

vd-set-dest-rect 40

vd-set-dig-rect 40

vd-set-hue 40

vd-set-input-format 40

vd-set-input-standard 40

vd-set-saturation 40

vd-set-sharpness 40

vd-set-src-rect 40

vd-set-white-level 40

vd-start-digitizing 40

vd-stop-digitizing 40

video-dialog 49

video-digitizer 38

video-digitizer-svm 50

video-margins 51

video-player 44

video-svm 51

video-window 49

video-wm 49

view-global-corners 59

view-hide 58

view-portBits 59

view-show 58

view-shown-p 58

view-shown-position 58

view-to-global 59

view-to-window 59

view-window-corners 59

vp-current-frame 45, 46

vp-dispose 44, 45

vp-features 44, 46, 52

vp-freeze 45, 46, 52

vp-init 44, 45

vp-jump 45, 46, 52

vp-limit 45, 52

vp-load 44, 45, 49, 52

vp-loaded-p 44, 45, 52

vp-max-frame 44, 46

vp-min-frame 44, 46

vp-play 45, 46, 52

vp-play-clip 45, 46, 52

vp-scan 45, 46, 52

vp-seek 45, 46, 49, 52

vp-step 45, 46, 52

vp-stop 45, 46, 52

white-level 40

window-ce 59

window-center-on-screen 59

window-drag-rect 50

window-hide 50

window-to-view 59

wipe-o-rama 33

with-back-pat 32

with-back-pix-pat 32

with-clip-rgn 32

with-current-portBits 32

with-font-spec 32

with-hilite-color 32

with-locked-GWorld-view 56

with-macptrs 7, 68

with-patched-trap 36

with-pen-state 31

with-purgeable-resource 30

with-QDProcs 32

with-res-file 30

with-text-state 32

without-res-load 30

WMgr-view 55

wptr 56

write-picture-to-file 31

oodles-of-utils 75

