
Using 3D Graphics Package
The 3D Graphics Package is divided into separate Parts, one called GrafSys
and one Screen3D. The former is the actual 3D transformation unit, while the
latter contains the routines that draw on the screen.

Call InitGraf at the beginning of your program. This sets up the required
variables and initializes the transformation and projection packages within.

The GrafSys uses ports similar to Quickdraw. The main difference is that you
can have multiple GrafPort3D in a single Quickdraw GrafPort. A GrafPort3D
should always reside inside a Quickdraw GrafPort. Call NewGrafPort at least
once. This sets up the projection plane and initializes the projector to parallel
projection. This call should be immediately followed by a call to SetEye that
will define the viewangle.

After this, you usually load your objects from resource or create them with
the commands NewObject, AddPoint, AddLine and AddPoly. Once an object
is done constructing or loading, use the ObjRotate, ObjTranslate and
ObjScale to manipulate it. Call SetEye if you want to move the camera.

Note: object manipulation commands (rotate and translate) fall in two
different cathegories:

All the ObjRotate, ObjTranslate and ObjScale routines are
independent from each other and in which sequence they are
executed.

In contrast, the ObjFreeRotate and ObjFreeTranslate
commands all depend upon their order and different orders of
calling will have different results (they have a cummulative
effect). Those routines were added to give you an additional
degree of freedom but you should be careful if you use them
since an unexperienced user cannot predict what effect a change
in the sequence of commands will have.

To view an object, first call TransformObject and then DrawObject to draw it
on the Screen. If you are using the ScreenObjects, use CalcScreenObject and
DrawScreenObject instead.

Using the ScreenObject for your own Drawing Routines

If you have implemented your own perversely-fast graphics routines you
might not want to use the in the Screen3D provided drawing routines since
they rely on the normal QuickDraw routines. GrafSys provides you with an
easy interface that you can use to get all the data you need to draw the object.
This interface is the ScreenObject. It really is nothing else but a data
structure that contains all relevant data of the transformed object. You can
use this data to do anything that you like.

Lets have a closer look at the ScreenObject:

 ScreenObjPtr = ^ScreenObj;

 ScreenObj = record
 nhmin, nhmax, nvmin, nvmax: integer; (* new rect *)
 (* from last calculation *)
 hmin, hmax, vmin, vmax: integer;
 (* Rect in which ScreenObject from SECOND LAST *)
 (* call to ClacScreenObj was drawn *)
 Point: PointArray; (* Transformed Points of object *)
 deepz: real; (* maximum z of all Transformed Points. *)
 (* Used for Scene-Building/HL/HS Alg. *)
 maxPoint, maxLine, maxPoly: integer;
 (* number of Points, Lines and Polygons in this *)
 (* Object *)
 Line: LineArray; (* Lines as defined in Parent *)
 screenx: screenPts; (* x- and y-coords of all Points *)
 screeny: screenPts; (* after transformation *)
 Autoerase: Boolean;
 EraseType: Integer;
 screen1x: ScreenArray; (* x-coordinates for clipped *)
 (* lines in CxxxScreenObj *)
 screen1y: ScreenArray; (* - " - *)
 screen2x: screenArray; (* used in Line-Clipping mode*)
 screen2y: screenArray; (* - " - *)
 screenLines : Integer; (* - " - *)
 newLine: newLineArray; (* - " - *)
 Polygons: PolyArray; (* Polygons as in Parent *)
 end;

The ScreenObject contains some fields that are specific for use with the
DrawScreenObject routines. However, you can use them as well in your own
Programs.

nhmin, nvmin, nhmax and nvmax are four integers reserved for calculating
the screen boundaries of the object to draw. CalcScreenObject and
CCalcScreenObject place the information after transforming the object here.

hmin, vmin, hmax and vmax contain the objects screen boundaries from the
last time the object was drawn. This is of course used by the
DrawScreenObject routine to erase the old image. After drawing,
DrawScreenObjet copies the contents of the nhxxx and nvxxx variables into
these locations.

Point contains the coordinates of all the object points after transformation.
You can use this information for your own depth sorting algorithms. Note
that after transformation for the eye the coordinate system is moved rather
than the eye. This means that the eye will always look at the XY plane.
If for example you implemented a flight simulator and moved the eye around
the world, after transformation other objects distances to the eye are their
distances to the global origin. This makes collision detection and distance
calculation very easy.

Warning: If you are using the Fixed-Point version of the GrafSys, all
coordinates are given in Fixed data type and you have to
convert the X, Y and Z coodinates using the Fix2X call.

deepz contains the maximum (largest) Z coordinate of an object after
transformation. SIce the eye (after tzransformation) is looking at the XY
plane straight down the Z-achsis, use this value for queuing objects. The
greater their deepz value, the further the object is from the eye. A negative
values means that the whole object is behind the eye and should not be drawn
if clipping is on.

maxPoint, maxLine and maxPoly contain the number of Points, Lines and
Polygons so far defined in this obejct.

screenx and screeny are two arrays that contain the screen coordinates of
each transformed point.

Autoerase is a copy of the same flag used in the master object. Note that you
shouldn't rely on the correctnes of this value and rather look it up in the
master object itself.

EraseType contains the method of how to erase the object prior to redrawing
it if Autoerase is true. Note that so far no matter what you specify the object
gets erased by erasing the bounding rect.

screen1x/y and screen2x/y are four arrays that contain all screen coordinates
for all lines (aka 'Line Buffer'). These coordinates are the same as in
screenx/y except that this buffer is optimized for drawing:
It contains the screen coordinates of all Lines i.e. to draw line #5 you would

issue

MoveTo(screen1x[5],screen1y[5]);
DrawTo(screen2x[5],screen2y[5]);

As you can see, this can speed up drawing cosiderably.

Note: If you are using CCalcObject and clipping, those lines that
completely fall offscreen will not show up in this array. Lines
that are partially clipped will have their correct screen
coordinates in here.

screenLines is the number of lines that are currently contained in the line
buffer. Note that this number can be radically different from the number of
lines defined in the object. If for example a line falls completely off the
screen, the number of lines will be one less than in the objects definition.

newLine is an array that contains only boolean values. If a line begins at a
new screen position and the cursor must be moved there via the MoveTo
procedure, its corresponding value will be true. Otherwise you may skip the
MoveTo command and simply continue drawing from the last position.

Polygons contain the polygon definitions as in master object.

To illustrate how to use the ScreenObject, Iook at how the Screen3D units
DrawScreenObject command works:

procedure DrawScreenObject (theObject: GrafObjPtr);

var
index: Integer;
r: Rect;
x, y: integer;
theScrnObj: ScreenObjPtr;
thePort: Graf3DPtr;

begin
theScrnObj := theObject^.ScreenObjLink;

 (* get the screenObject *)
if theScrnObj = nil then (* failsafe *)
Exit(DrawScreenObject);

with theScrnObj^ do
begin
if Autoerase then
begin

GetGrafPort(thePort);
SetRect(r, theScrnObj^.hmin, theScrnObj^.vmin,

 theScrnObj^.hmax,theScrnObj^.vmax);
EraseRect(thePort^.viewPlane);

end; (* if autoerase *)

(* now draw the object. Use the Line Buffer for this *)
for index := 1 to screenLines do
begin

if newLine[index] then
MoveTo(screen1x[index], screen1y[index]);

LineTo(screen2x[index], screen2y[index]);
end;

(* since clipping might have destroyed/rendered useless the
 min/max values, rebuild them *)

hmax := -32000;
hmin := 32000;
vmax := -32000;
vmin := 32000;

for index := 1 to screenLines do
begin

x := screen1x[index];
y := screen1y[index];
if x > hmax then (* do bounds checking *)
hmax := x;

if x < hmin then
hmin := x;

if y > vmax then
vmax := y;

if y < vmin then
vmin := y;

x := screen2x[index];
y := screen2y[index];
if x > hmax then (* do bounds checking *)
hmax := x;

if x < hmin then
hmin := x;

if y > vmax then
vmax := y;

if y < vmin then
vmin := y;

end;
hmax := hmax + 1;
vmax := vmax + 1;
hmin := hmin - 1;
vmin := vmin - 1;

end; (* with *)
end;

881 versus FixedPoint Arithmetic

Response to the initial publication of the GrafSys caught me completely off-

guard. An overwhelming number of people asked me if it was possible to
supply a version that uses fixed-point arithmetic instead of relying on the 881
math coprocessor.

As a result, there are now two versions of the GrafSys library. Those libraries
that contain the word 'fix' in its name work with any Macintosh. This is
called 'the fixed version'. The other (original) version still requires at least a
020 processor and a math coprocessor.

Some people commented on the fact that Fixed-Point arithmetic is 'wickedly
fast'. I was really astonished to see just how fast these routines were. If
precision is not an issue, you might want to use the fixed version since it
works with more macs.

Using the 881 Version
To use the GrafSys, include the file GrafSys.lib and GrafSys.Int into your
project.

If you plan on using the provided screen drawing routines, you will also have
to include the files Screen3D.lib and Screen3D.int into your project.

If you plan on writing two versions of the same program one using the 881
version, the other the fixed version, make sure you read the 'Compatability'
paragraph, below.

Using FixedPoint Version
The fixed version runs on any Mac. Instead of using the math coprocessor it
uses fixed point arithmetic that is lighning fast but not as accurate as real
numbers. You should not use big numbers when using the fixed point
version. Numbers greater than 32000 will surely produce strange results
under certain conditions, numbers grater than 65000 are illegal. Note that
coordinates easily can become this large if you use large values for both
coordinates and translation.

To use the GrafSys, include the file GrafSys.fix.lib and GrafSys.fix.Int into
your project. In addition, you must include the SANElib.lib into your project.

If you plan on using the provided screen drawing routines, you will also have
to include the files Screen3D.fix.lib and Screen3D.fix.int into your project.

Compatability
The two versions of GrafSys are Source Level compatible. Well, almost. If
you use the RealVector4 type in your programs instead of the Vector4 type
you will have no compatability problems.

Object resources (the '3Dob' type) are totally compatible. The fixed library
automatically loads and converts the floating point definitions to fixed-point
while loading and back prior to writing them.

Make sure you never directly access an objects point definition since they are
different in the two versions. Instead, always use the GetPoint, AddPoint, and
ChangePoint routines. This way you will never have compatability problems.

